code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]: lowercase__ : Optional[Any] = state_dict.pop(__lowerCamelCase ) lowercase__ : Any = val def __UpperCAmelCase ( __lowerCamelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ : Any = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__ : str = value else: lowercase__ : Optional[Any] = value return new_state_dict def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ : int = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Tuple = in_proj_weight[:2_56, :] lowercase__ : Union[str, Any] = in_proj_bias[:2_56] lowercase__ : List[str] = in_proj_weight[2_56:5_12, :] lowercase__ : Any = in_proj_bias[2_56:5_12] lowercase__ : Any = in_proj_weight[-2_56:, :] lowercase__ : Union[str, Any] = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ : Tuple = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowercase__ : Any = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Any = in_proj_weight[:2_56, :] lowercase__ : str = in_proj_bias[:2_56] lowercase__ : Union[str, Any] = in_proj_weight[2_56:5_12, :] lowercase__ : int = in_proj_bias[2_56:5_12] lowercase__ : Optional[Any] = in_proj_weight[-2_56:, :] lowercase__ : str = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowercase__ : Optional[Any] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowercase__ : Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ : int = in_proj_weight_cross_attn[:2_56, :] lowercase__ : Dict = in_proj_bias_cross_attn[:2_56] lowercase__ : Any = in_proj_weight_cross_attn[2_56:5_12, :] lowercase__ : Dict = in_proj_bias_cross_attn[2_56:5_12] lowercase__ : Dict = in_proj_weight_cross_attn[-2_56:, :] lowercase__ : Dict = in_proj_bias_cross_attn[-2_56:] def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str: lowercase__ , lowercase__ : Tuple = image.size lowercase__ : Optional[Any] = max(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[Any] = 8_00 if '''detection''' in checkpoint_url else 10_00 lowercase__ : Any = target_max_size / current_max_size lowercase__ : Optional[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: lowercase__ : List[Any] = F.to_tensor(__lowerCamelCase ) lowercase__ : Dict = F.normalize(__lowerCamelCase , mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ) return image @torch.no_grad() def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: logger.info('''Converting model...''' ) # load original state dict lowercase__ : Tuple = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : int = rename_backbone_keys(__lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ : Tuple = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__ : Optional[Any] = state_dict.pop(__lowerCamelCase ) lowercase__ : str = val # create HuggingFace model and load state dict lowercase__ : Dict = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ : int = 15 lowercase__ : int = 2 lowercase__ : Any = {0: '''table''', 1: '''table rotated'''} lowercase__ : int = idalabel lowercase__ : int = {v: k for k, v in idalabel.items()} else: lowercase__ : List[Any] = 1_25 lowercase__ : Optional[Any] = 6 lowercase__ : Dict = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } lowercase__ : Optional[Any] = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowercase__ : Optional[int] = DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) lowercase__ : List[str] = TableTransformerForObjectDetection(__lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # verify our conversion lowercase__ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' lowercase__ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=__lowerCamelCase ) lowercase__ : List[Any] = Image.open(__lowerCamelCase ).convert('''RGB''' ) lowercase__ : Any = normalize(resize(__lowerCamelCase , __lowerCamelCase ) ).unsqueeze(0 ) lowercase__ : int = model(__lowerCamelCase ) if "detection" in checkpoint_url: lowercase__ : List[Any] = (1, 15, 3) lowercase__ : Dict = torch.tensor( [[-6.7_8_9_7, -1_6.9_9_8_5, 6.7_9_3_7], [-8.0_1_8_6, -2_2.2_1_9_2, 6.9_6_7_7], [-7.3_1_1_7, -2_1.0_7_0_8, 7.4_0_5_5]] ) lowercase__ : Any = torch.tensor([[0.4_8_6_7, 0.1_7_6_7, 0.6_7_3_2], [0.6_7_1_8, 0.4_4_7_9, 0.3_8_3_0], [0.4_7_1_6, 0.1_7_6_0, 0.6_3_6_4]] ) else: lowercase__ : Optional[Any] = (1, 1_25, 7) lowercase__ : int = torch.tensor( [[-1_8.1_4_3_0, -8.3_2_1_4, 4.8_2_7_4], [-1_8.4_6_8_5, -7.1_3_6_1, -4.2_6_6_7], [-2_6.3_6_9_3, -9.3_4_2_9, -4.9_9_6_2]] ) lowercase__ : Tuple = torch.tensor([[0.4_9_8_3, 0.5_5_9_5, 0.9_4_4_0], [0.4_9_1_6, 0.6_3_1_5, 0.5_9_5_4], [0.6_1_0_8, 0.8_6_3_7, 0.1_1_3_5]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) lowercase__ : Optional[int] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(__lowerCamelCase ) image_processor.push_to_hub(__lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
16
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Dict ={ """susnato/ernie-m-base_pytorch""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json""", """susnato/ernie-m-large_pytorch""": """https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json""", } class snake_case__( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = """ernie_m""" SCREAMING_SNAKE_CASE__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __lowercase = 2_5_0_0_0_2 , __lowercase = 7_6_8 , __lowercase = 1_2 , __lowercase = 1_2 , __lowercase = 3_0_7_2 , __lowercase = "gelu" , __lowercase = 0.1 , __lowercase = 0.1 , __lowercase = 5_1_4 , __lowercase = 0.02 , __lowercase = 1 , __lowercase = 1e-05 , __lowercase=None , __lowercase=False , __lowercase=0.0 , **__lowercase , ) -> Tuple: super().__init__(pad_token_id=__lowercase , **__lowercase ) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Tuple = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : List[Any] = classifier_dropout lowerCAmelCase_ : Any = is_decoder lowerCAmelCase_ : List[Any] = act_dropout
262
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _snake_case = 16 _snake_case = 32 def A ( _lowerCamelCase , _lowerCamelCase = 16 ): '''simple docstring''' _lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : str = 8 else: _lowerCAmelCase : Optional[Any] = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : int = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _snake_case = mocked_dataloaders # noqa: F811 def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": _lowerCAmelCase : Tuple = 2 # New Code # _lowerCAmelCase : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCamelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Tuple = config["lr"] _lowerCAmelCase : List[str] = int(config["num_epochs"] ) _lowerCAmelCase : Any = int(config["seed"] ) _lowerCAmelCase : Union[str, Any] = int(config["batch_size"] ) _lowerCAmelCase : Union[str, Any] = evaluate.load("glue" , "mrpc" ) set_seed(_lowerCamelCase ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Any = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Union[str, Any] = AdamW(params=model.parameters() , lr=_lowerCamelCase ) # Instantiate scheduler _lowerCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCamelCase ): _lowerCAmelCase : Tuple = model(**_lowerCamelCase ) _lowerCAmelCase : Dict = output.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Dict = model(**_lowerCamelCase ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) _lowerCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _lowerCamelCase ) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_lowerCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : int = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
300
from __future__ import annotations from typing import Any class UpperCAmelCase_ : def __init__( self, __a, __a, __a = 0): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = row, column _lowerCAmelCase : str = [[default_value for c in range(__a)] for r in range(__a)] def __str__( self): '''simple docstring''' _lowerCAmelCase : Tuple = f"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier _lowerCAmelCase : str = 0 for row_vector in self.array: for obj in row_vector: _lowerCAmelCase : List[str] = max(__a, len(str(__a))) _lowerCAmelCase : Union[str, Any] = f"%{max_element_length}s" # Make string and return def single_line(__a) -> str: nonlocal string_format_identifier _lowerCAmelCase : Dict = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(__a) for row_vector in self.array) return s def __repr__( self): '''simple docstring''' return str(self) def snake_case__ ( self, __a): '''simple docstring''' if not (isinstance(__a, (list, tuple)) and len(__a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self, __a): '''simple docstring''' assert self.validate_indicies(__a) return self.array[loc[0]][loc[1]] def __setitem__( self, __a, __a): '''simple docstring''' assert self.validate_indicies(__a) _lowerCAmelCase : Union[str, Any] = value def __add__( self, __a): '''simple docstring''' assert isinstance(__a, __a) assert self.row == another.row and self.column == another.column # Add _lowerCAmelCase : Any = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] + another[r, c] return result def __neg__( self): '''simple docstring''' _lowerCAmelCase : List[str] = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : str = -self[r, c] return result def __sub__( self, __a): '''simple docstring''' return self + (-another) def __mul__( self, __a): '''simple docstring''' if isinstance(__a, (int, float)): # Scalar multiplication _lowerCAmelCase : Dict = Matrix(self.row, self.column) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Optional[Any] = self[r, c] * another return result elif isinstance(__a, __a): # Matrix multiplication assert self.column == another.row _lowerCAmelCase : List[str] = Matrix(self.row, another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCAmelCase : Optional[Any] = f"Unsupported type given for another ({type(__a)})" raise TypeError(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Matrix(self.column, self.row) for r in range(self.row): for c in range(self.column): _lowerCAmelCase : Any = self[r, c] return result def snake_case__ ( self, __a, __a): '''simple docstring''' assert isinstance(__a, __a) and isinstance(__a, __a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCAmelCase : int = v.transpose() _lowerCAmelCase : str = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def A ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCAmelCase : Union[str, Any] = 1 print(F"a^(-1) is {ainv}" ) # u, v _lowerCAmelCase : Any = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 1, 2, -3 _lowerCAmelCase : List[Any] = Matrix(3 , 1 , 0 ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(_lowerCamelCase , _lowerCamelCase )}" ) def A ( ): '''simple docstring''' import doctest doctest.testmod() testa()
300
1
import re def a_ ( _A ) -> bool: """simple docstring""" snake_case__ = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(_A , _A ) ) if __name__ == "__main__": __UpperCamelCase : Any = """0094702343221""" print(is_sri_lankan_phone_number(phone))
307
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCamelCase ( lowerCAmelCase__ : dict ): return (data["data"], data["target"]) def __UpperCamelCase ( lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray ): __a : Dict = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(lowerCAmelCase__ , lowerCAmelCase__ ) # Predict target for test data __a : Any = xgb.predict(lowerCAmelCase__ ) __a : List[str] = predictions.reshape(len(lowerCAmelCase__ ) , 1 ) return predictions def __UpperCamelCase ( ): __a : List[Any] = fetch_california_housing() __a , __a : str = data_handling(lowerCAmelCase__ ) __a , __a , __a , __a : List[Any] = train_test_split( lowerCAmelCase__ , lowerCAmelCase__ , test_size=0.25 , random_state=1 ) __a : Union[str, Any] = xgboost(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Error printing print(f"Mean Absolute Error : {mean_absolute_error(lowerCAmelCase__ , lowerCAmelCase__ )}" ) print(f"Mean Square Error : {mean_squared_error(lowerCAmelCase__ , lowerCAmelCase__ )}" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
90
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase__ =logging.get_logger(__name__) lowercase__ ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase__ ={ 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowercase__ ={'allegro/herbert-base-cased': 514} lowercase__ ={} class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[Any] = HerbertTokenizer def __init__(self : str , snake_case_ : Optional[Any]=None , snake_case_ : Tuple=None , snake_case_ : Dict=None , snake_case_ : List[str]="<s>" , snake_case_ : Any="<unk>" , snake_case_ : Optional[int]="<pad>" , snake_case_ : Optional[Any]="<mask>" , snake_case_ : List[Any]="</s>" , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , sep_token=snake_case_ , **snake_case_ , ) def lowerCAmelCase (self : int , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : int = [self.cls_token_id] __a : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase (self : Optional[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] def lowerCAmelCase (self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __a : Optional[int] = [self.sep_token_id] __a : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase (self : int , snake_case_ : str , snake_case_ : Optional[str] = None ): __a : Any = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
90
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) lowerCAmelCase_ = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'''https://google.com{link.get("href")}''')
16
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ = 4 lowerCAmelCase_ = 3 class __A ( A_ ): '''simple docstring''' pass def __UpperCAmelCase ( __lowerCamelCase ) -> Dict: for shard in shards: for i in range(__lowerCamelCase ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> Tuple: lowercase__ : int = int(os.environ['''RANK'''] ) lowercase__ : str = int(os.environ['''WORLD_SIZE'''] ) lowercase__ : List[Any] = ArgumentParser() parser.add_argument('''--streaming''' , type=__lowerCamelCase ) parser.add_argument('''--local_rank''' , type=__lowerCamelCase ) parser.add_argument('''--num_workers''' , type=__lowerCamelCase , default=0 ) lowercase__ : int = parser.parse_args() lowercase__ : Optional[Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Optional[Any] = {'''shards''': [f"""shard_{shard_idx}""" for shard_idx in range(__lowerCamelCase )]} lowercase__ : Dict = IterableDataset.from_generator(__lowerCamelCase , gen_kwargs=__lowerCamelCase ) if not streaming: lowercase__ : int = Dataset.from_list(list(__lowerCamelCase ) ) lowercase__ : int = split_dataset_by_node(__lowerCamelCase , rank=__lowerCamelCase , world_size=__lowerCamelCase ) lowercase__ : Optional[Any] = torch.utils.data.DataLoader(__lowerCamelCase , num_workers=__lowerCamelCase ) lowercase__ : Optional[Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : str = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowercase__ : str = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
16
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowercase_ : def __init__( self : Optional[int] , A__ : List[str] ) -> Tuple: _snake_case = data _snake_case = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCamelCase_ ( A__ : List[str] , A__ : Union[str, Any] ) -> Optional[Any]: return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCamelCase_ ( self : List[Any] ) -> Optional[int]: _snake_case = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) _snake_case = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def UpperCamelCase_ ( self : Union[str, Any] ) -> Dict: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def UpperCamelCase_ ( self : Tuple , A__ : List[str] ) -> Dict: _snake_case = list(struct.unpack('''>16L''' , A__ ) ) + [0] * 64 for i in range(16 , 80 ): _snake_case = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def UpperCamelCase_ ( self : List[str] ) -> Union[str, Any]: _snake_case = self.padding() _snake_case = self.split_blocks() for block in self.blocks: _snake_case = self.expand_block(A__ ) _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.h for i in range(0 , 80 ): if 0 <= i < 20: _snake_case = (b & c) | ((~b) & d) _snake_case = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: _snake_case = b ^ c ^ d _snake_case = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: _snake_case = (b & c) | (b & d) | (c & d) _snake_case = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: _snake_case = b ^ c ^ d _snake_case = 0XC_A_6_2_C_1_D_6 _snake_case, _snake_case, _snake_case, _snake_case, _snake_case = ( self.rotate(A__ , 5 ) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(A__ , 30 ), c, d, ) _snake_case = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_() -> List[str]: """simple docstring""" _snake_case = b'''Test String''' assert SHAaHash(_UpperCamelCase ).final_hash() == hashlib.shaa(_UpperCamelCase ).hexdigest() # noqa: S324 def snake_case_() -> str: """simple docstring""" _snake_case = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) _snake_case = parser.parse_args() _snake_case = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: _snake_case = f.read() else: _snake_case = bytes(_UpperCamelCase , '''utf-8''' ) print(SHAaHash(_UpperCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
0
import os import string import sys A_ : Tuple = 1 << 8 A_ : List[Any] = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } A_ : Tuple = KEYMAP['up'] A_ : Dict = KEYMAP['left'] if sys.platform == "win32": A_ : Optional[int] = [] A_ : int = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): A_ : str = ord(str(i)) def UpperCamelCase () -> List[Any]: if os.name == "nt": import msvcrt A__ : Optional[Any] = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowerCamelCase ) == 0: # Read the keystroke A__ : Any = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(__lowerCamelCase ) if ord(__lowerCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) A__ : Dict = chr(KEYMAP["""esc"""] ) except KeyError: A__ : List[Any] = cha[1] else: A__ : Dict = ch.decode(__lowerCamelCase ) else: A__ : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ : Dict = sys.stdin.fileno() A__ : Union[str, Any] = termios.tcgetattr(__lowerCamelCase ) try: tty.setraw(__lowerCamelCase ) A__ : str = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowerCamelCase , termios.TCSADRAIN , __lowerCamelCase ) return ch def UpperCamelCase () -> Optional[Any]: A__ : Union[str, Any] = get_raw_chars() if ord(__lowerCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowerCamelCase ) == KEYMAP["esc"]: A__ : Tuple = get_raw_chars() if ord(__lowerCamelCase ) == KEYMAP["mod_int"]: A__ : Tuple = get_raw_chars() if ord(__lowerCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowerCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowerCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
192
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A_ (unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_=13 , lowercase_=30 , lowercase_=2 , lowercase_=3 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , ): """simple docstring""" UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : List[str] = patch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Dict = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Any = (image_size // patch_size) ** 2 UpperCAmelCase_ : List[str] = num_patches + 1 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Dict = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[str] = FlaxViTModel(config=lowercase_ ) UpperCAmelCase_ : int = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ : Optional[Any] = (self.image_size, self.image_size) UpperCAmelCase_ : List[Any] = (self.patch_size, self.patch_size) UpperCAmelCase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Tuple = self.type_sequence_label_size UpperCAmelCase_ : Tuple = FlaxViTForImageClassification(config=lowercase_ ) UpperCAmelCase_ : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Optional[int] = FlaxViTForImageClassification(lowercase_ ) UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Tuple = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class A_ (lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = FlaxViTModelTester(self ) UpperCAmelCase_ : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class(lowercase_ ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[str] = [*signature.parameters.keys()] UpperCAmelCase_ : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase_ : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ , **lowercase_ ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ : Union[str, Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ : Tuple = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowercase_ )
61
0
from __future__ import annotations import queue class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : Tuple ) -> Optional[int]: __lowerCAmelCase = data __lowerCAmelCase = None __lowerCAmelCase = None def a_ ( ): print('\n********Press N to stop entering at any point of time********\n' ) __lowerCAmelCase = input('Enter the value of the root node: ' ).strip().lower() __lowerCAmelCase = queue.Queue() __lowerCAmelCase = TreeNode(int(lowerCAmelCase_ ) ) q.put(lowerCAmelCase_ ) while not q.empty(): __lowerCAmelCase = q.get() __lowerCAmelCase = F"""Enter the left node of {node_found.data}: """ __lowerCAmelCase = input(lowerCAmelCase_ ).strip().lower() or 'n' if check == "n": return tree_node __lowerCAmelCase = TreeNode(int(lowerCAmelCase_ ) ) __lowerCAmelCase = left_node q.put(lowerCAmelCase_ ) __lowerCAmelCase = F"""Enter the right node of {node_found.data}: """ __lowerCAmelCase = input(lowerCAmelCase_ ).strip().lower() or 'n' if check == "n": return tree_node __lowerCAmelCase = TreeNode(int(lowerCAmelCase_ ) ) __lowerCAmelCase = right_node q.put(lowerCAmelCase_ ) raise def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return print(node.data, end=',' ) pre_order(node.left ) pre_order(node.right ) def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return in_order(node.left ) print(node.data, end=',' ) in_order(node.right ) def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data, end=',' ) def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return __lowerCAmelCase = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): __lowerCAmelCase = q.get() print(node_dequeued.data, end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return __lowerCAmelCase = queue.Queue() q.put(lowerCAmelCase_ ) while not q.empty(): __lowerCAmelCase = [] while not q.empty(): __lowerCAmelCase = q.get() print(node_dequeued.data, end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return __lowerCAmelCase = [] __lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data, end=',' ) stack.append(lowerCAmelCase_ ) __lowerCAmelCase = n.left # end of while means current node doesn't have left child __lowerCAmelCase = stack.pop() # start to traverse its right child __lowerCAmelCase = n.right def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return __lowerCAmelCase = [] __lowerCAmelCase = node while n or stack: while n: stack.append(lowerCAmelCase_ ) __lowerCAmelCase = n.left __lowerCAmelCase = stack.pop() print(n.data, end=',' ) __lowerCAmelCase = n.right def a_ ( lowerCAmelCase_ : TreeNode ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ) or not node: return __lowerCAmelCase , __lowerCAmelCase = [], [] __lowerCAmelCase = node stacka.append(lowerCAmelCase_ ) while stacka: # to find the reversed order of post order, store it in stack2 __lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowerCAmelCase_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data, end=',' ) def a_ ( lowerCAmelCase_ : str = "", lowerCAmelCase_ : Tuple=50, lowerCAmelCase_ : Tuple="*" ): if not s: return "\n" + width * char __lowerCAmelCase , __lowerCAmelCase = divmod(width - len(lowerCAmelCase_ ) - 2, 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) _snake_case : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
207
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : int = 6_5_5_3_6 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 2 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : str = "fourier" , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowerCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowerCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Tuple[int] = (3_2, 3_2, 6_4) , lowerCAmelCase_ : str = None , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : bool = False , ) -> Optional[int]: super().__init__() __lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": __lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowerCAmelCase_ , log=lowerCAmelCase_ , flip_sin_to_cos=lowerCAmelCase_ ) __lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": __lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowerCAmelCase_ , downscale_freq_shift=lowerCAmelCase_ ) __lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: __lowerCAmelCase = block_out_channels[0] * 4 __lowerCAmelCase = TimestepEmbedding( in_channels=lowerCAmelCase_ , time_embed_dim=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , out_dim=block_out_channels[0] , ) __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None __lowerCAmelCase = nn.ModuleList([] ) __lowerCAmelCase = None # down __lowerCAmelCase = in_channels for i, down_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_down_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowerCAmelCase_ ) # mid __lowerCAmelCase = get_mid_block( lowerCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowerCAmelCase_ , add_downsample=lowerCAmelCase_ , ) # up __lowerCAmelCase = list(reversed(lowerCAmelCase_ ) ) __lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: __lowerCAmelCase = out_channels else: __lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = output_channel __lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(lowerCAmelCase_ ) - 1 else final_upsample_channels ) __lowerCAmelCase = i == len(lowerCAmelCase_ ) - 1 __lowerCAmelCase = get_up_block( lowerCAmelCase_ , num_layers=lowerCAmelCase_ , in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowerCAmelCase_ ) __lowerCAmelCase = output_channel # out __lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) __lowerCAmelCase = get_out_block( out_block_type=lowerCAmelCase_ , num_groups_out=lowerCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[torch.Tensor, float, int] , lowerCAmelCase_ : bool = True , ) -> Union[UNetaDOutput, Tuple]: __lowerCAmelCase = timestep if not torch.is_tensor(lowerCAmelCase_ ): __lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(lowerCAmelCase_ ) and len(timesteps.shape ) == 0: __lowerCAmelCase = timesteps[None].to(sample.device ) __lowerCAmelCase = self.time_proj(lowerCAmelCase_ ) if self.config.use_timestep_embedding: __lowerCAmelCase = self.time_mlp(lowerCAmelCase_ ) else: __lowerCAmelCase = timestep_embed[..., None] __lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) __lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down __lowerCAmelCase = () for downsample_block in self.down_blocks: __lowerCAmelCase , __lowerCAmelCase = downsample_block(hidden_states=lowerCAmelCase_ , temb=lowerCAmelCase_ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: __lowerCAmelCase = self.mid_block(lowerCAmelCase_ , lowerCAmelCase_ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): __lowerCAmelCase = down_block_res_samples[-1:] __lowerCAmelCase = down_block_res_samples[:-1] __lowerCAmelCase = upsample_block(lowerCAmelCase_ , res_hidden_states_tuple=lowerCAmelCase_ , temb=lowerCAmelCase_ ) # 5. post-process if self.out_block: __lowerCAmelCase = self.out_block(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (sample,) return UNetaDOutput(sample=lowerCAmelCase_ )
207
1
def __snake_case ( _lowerCAmelCase : list ) -> int: if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] A_ : Optional[int] = grid[0] for row_n in range(1 , len(_lowerCAmelCase ) ): A_ : Optional[Any] = grid[row_n] A_ : List[Any] = fill_row(_lowerCAmelCase , _lowerCAmelCase ) A_ : Dict = grid[row_n] return grid[-1][-1] def __snake_case ( _lowerCAmelCase : list , _lowerCAmelCase : list ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(_lowerCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
300
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
1
def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' def merge(lowercase__ , lowercase__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase__ ) <= 1: return collection __lowercase= len(lowercase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=16 , lowerCamelCase__=[32, 64, 128] , lowerCamelCase__=[1, 2, 1] , lowerCamelCase__=[2, 2, 4] , lowerCamelCase__=2 , lowerCamelCase__=2.0 , lowerCamelCase__=True , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.1 , lowerCamelCase__="gelu" , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=0.02 , lowerCamelCase__=1e-5 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=10 , lowerCamelCase__=8 , lowerCamelCase__=["stage1", "stage2"] , lowerCamelCase__=[1, 2] , ) -> int: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = embed_dim __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = num_heads __lowerCamelCase = window_size __lowerCamelCase = mlp_ratio __lowerCamelCase = qkv_bias __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = drop_path_rate __lowerCamelCase = hidden_act __lowerCamelCase = use_absolute_embeddings __lowerCamelCase = patch_norm __lowerCamelCase = layer_norm_eps __lowerCamelCase = initializer_range __lowerCamelCase = is_training __lowerCamelCase = scope __lowerCamelCase = use_labels __lowerCamelCase = type_sequence_label_size __lowerCamelCase = encoder_stride __lowerCamelCase = out_features __lowerCamelCase = out_indices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = None if self.use_labels: __lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> List[str]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) __lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __lowerCamelCase = None __lowerCamelCase = FocalNetBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = FocalNetForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = self.type_sequence_label_size __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase = 1 __lowerCamelCase = FocalNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 , has_text_modality=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> str: '''simple docstring''' return def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __lowerCamelCase = model_class(lowerCamelCase__ ) __lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = outputs.hidden_states __lowerCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # FocalNet has a different seq_length __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = reshaped_hidden_states[0].shape __lowerCamelCase = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = 3 __lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ) -> str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase = FocalNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: __lowerCamelCase = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> List[str]: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(lowerCamelCase__ ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCamelCase = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = (FocalNetBackbone,) if is_torch_available() else () snake_case_ = FocalNetConfig snake_case_ = False def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = FocalNetModelTester(self )
90
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
90
1
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : int ): '''simple docstring''' __lowerCamelCase = list(range(len(A__ ) ) ) __lowerCamelCase = [v / w for v, w in zip(A__ , A__ )] index.sort(key=lambda A__ : ratio[i] , reverse=A__ ) __lowerCamelCase = 0 __lowerCamelCase = [0] * len(A__ ) for i in index: if weight[i] <= capacity: __lowerCamelCase = 1 max_value += value[i] capacity -= weight[i] else: __lowerCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
29
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'yolos' def __init__( self: Dict , UpperCamelCase_: List[Any]=7_68 , UpperCamelCase_: Tuple=12 , UpperCamelCase_: int=12 , UpperCamelCase_: int=30_72 , UpperCamelCase_: List[str]="gelu" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: int=0.0 , UpperCamelCase_: Optional[int]=0.02 , UpperCamelCase_: Dict=1E-12 , UpperCamelCase_: List[Any]=[5_12, 8_64] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: Any=3 , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: List[str]=1_00 , UpperCamelCase_: List[str]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Any=5 , UpperCamelCase_: Any=2 , UpperCamelCase_: Tuple=5 , UpperCamelCase_: str=2 , UpperCamelCase_: Any=0.1 , **UpperCamelCase_: Any , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = image_size __lowerCamelCase = patch_size __lowerCamelCase = num_channels __lowerCamelCase = qkv_bias __lowerCamelCase = num_detection_tokens __lowerCamelCase = use_mid_position_embeddings __lowerCamelCase = auxiliary_loss # Hungarian matcher __lowerCamelCase = class_cost __lowerCamelCase = bbox_cost __lowerCamelCase = giou_cost # Loss coefficients __lowerCamelCase = bbox_loss_coefficient __lowerCamelCase = giou_loss_coefficient __lowerCamelCase = eos_coefficient class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = version.parse('1.11') @property def lowerCAmelCase__ ( self: Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self: Dict ): return 1E-4 @property def lowerCAmelCase__ ( self: Dict ): return 12
29
1
'''simple docstring''' from math import loga def SCREAMING_SNAKE_CASE( __lowercase ) -> Union[str, Any]: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_A , _A ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
319
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCamelCase ( _A ): lowerCAmelCase_ = 384 lowerCAmelCase_ = 7 if "tiny" in model_name: lowerCAmelCase_ = 96 lowerCAmelCase_ = (2, 2, 6, 2) lowerCAmelCase_ = (3, 6, 12, 24) elif "small" in model_name: lowerCAmelCase_ = 96 lowerCAmelCase_ = (2, 2, 18, 2) lowerCAmelCase_ = (3, 6, 12, 24) elif "base" in model_name: lowerCAmelCase_ = 128 lowerCAmelCase_ = (2, 2, 18, 2) lowerCAmelCase_ = (4, 8, 16, 32) lowerCAmelCase_ = 12 lowerCAmelCase_ = 512 elif "large" in model_name: lowerCAmelCase_ = 192 lowerCAmelCase_ = (2, 2, 18, 2) lowerCAmelCase_ = (6, 12, 24, 48) lowerCAmelCase_ = 12 lowerCAmelCase_ = 768 # set label information lowerCAmelCase_ = 150 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''ade20k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = SwinConfig( embed_dim=_A , depths=_A , num_heads=_A , window_size=_A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowerCAmelCase_ = UperNetConfig( backbone_config=_A , auxiliary_in_channels=_A , num_labels=_A , idalabel=_A , labelaid=_A , ) return config def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(_A ) lowerCAmelCase_ = val def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight" ) lowerCAmelCase_ = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:dim, :] lowerCAmelCase_ = in_proj_bias[: dim] lowerCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase_ = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase_ = in_proj_weight[ -dim :, : ] lowerCAmelCase_ = in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = x.shape lowerCAmelCase_ = x.reshape(_A , 4 , in_channel // 4 ) lowerCAmelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_A , _A ) return x def __UpperCamelCase ( _A ): lowerCAmelCase_ , lowerCAmelCase_ = x.shape lowerCAmelCase_ = x.reshape(_A , in_channel // 4 , 4 ) lowerCAmelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_A , _A ) return x def __UpperCamelCase ( _A ): lowerCAmelCase_ = x.shape[0] lowerCAmelCase_ = x.reshape(4 , in_channel // 4 ) lowerCAmelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_A ) return x def __UpperCamelCase ( _A ): lowerCAmelCase_ = x.shape[0] lowerCAmelCase_ = x.reshape(in_channel // 4 , 4 ) lowerCAmelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_A ) return x def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowerCAmelCase_ = model_name_to_url[model_name] lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' , file_name=_A )[ '''state_dict''' ] for name, param in state_dict.items(): print(_A , param.shape ) lowerCAmelCase_ = get_upernet_config(_A ) lowerCAmelCase_ = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCAmelCase_ = state_dict.pop(_A ) if "bn" in key: lowerCAmelCase_ = key.replace('''bn''' , '''batch_norm''' ) lowerCAmelCase_ = val # rename keys lowerCAmelCase_ = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCAmelCase_ = reverse_correct_unfold_reduction_order(_A ) if "norm" in key: lowerCAmelCase_ = reverse_correct_unfold_norm_order(_A ) model.load_state_dict(_A ) # verify on image lowerCAmelCase_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) lowerCAmelCase_ = SegformerImageProcessor() lowerCAmelCase_ = processor(_A , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCAmelCase_ = model(_A ) lowerCAmelCase_ = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCAmelCase_ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": lowerCAmelCase_ = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": lowerCAmelCase_ = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": lowerCAmelCase_ = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[f"upernet-swin-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
278
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __A : Any = logging.get_logger(__name__) # pylint: disable=invalid-name __A : str = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def UpperCamelCase_ ( A__ : List[Any] , A__ : str , A__ : Dict=8 ): '''simple docstring''' lowerCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : int , lowerCamelCase : UNetaDConditionModel , lowerCamelCase : DDPMScheduler , lowerCamelCase : VQModel , ) -> Dict: super().__init__() self.register_modules( unet=lowerCamelCase , scheduler=lowerCamelCase , movq=lowerCamelCase , ) lowerCAmelCase_ : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowercase ( self : int , lowerCamelCase : Tuple , lowerCamelCase : Any , lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : int ) -> Union[str, Any]: if latents is None: lowerCAmelCase_ : Optional[Any] = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=lowerCamelCase , dtype=lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase_ : Union[str, Any] = latents.to(lowerCamelCase ) lowerCAmelCase_ : Tuple = latents * scheduler.init_noise_sigma return latents def __lowercase ( self : List[Any] , lowerCamelCase : str=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase_ : Tuple = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : Dict , lowerCamelCase : List[str]=0 ) -> Any: if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase_ : int = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase_ : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase_, lowerCAmelCase_ : Dict = cpu_offload_with_hook(lowerCamelCase , lowerCamelCase , prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. lowerCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowercase ( self : List[Any] ) -> List[str]: if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : List[Any] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int = 5_12 , lowerCamelCase : int = 5_12 , lowerCamelCase : int = 1_00 , lowerCamelCase : float = 4.0 , lowerCamelCase : int = 1 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[torch.FloatTensor] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> Union[str, Any]: lowerCAmelCase_ : Dict = self._execution_device lowerCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Any = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Dict = torch.cat(lowerCamelCase , dim=0 ) if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : List[Any] = torch.cat(lowerCamelCase , dim=0 ) lowerCAmelCase_ : Optional[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowerCAmelCase_ : List[Any] = image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) lowerCAmelCase_ : Any = negative_image_embeds.repeat_interleave(lowerCamelCase , dim=0 ) lowerCAmelCase_ : int = hint.repeat_interleave(lowerCamelCase , dim=0 ) lowerCAmelCase_ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase ) lowerCAmelCase_ : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase ) self.scheduler.set_timesteps(lowerCamelCase , device=lowerCamelCase ) lowerCAmelCase_ : Dict = self.scheduler.timesteps lowerCAmelCase_ : Dict = self.movq.config.latent_channels lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = downscale_height_and_width(lowerCamelCase , lowerCamelCase , self.movq_scale_factor ) # create initial latent lowerCAmelCase_ : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase , lowerCamelCase , lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : int = {"""image_embeds""": image_embeds, """hint""": hint} lowerCAmelCase_ : Tuple = self.unet( sample=lowerCamelCase , timestep=lowerCamelCase , encoder_hidden_states=lowerCamelCase , added_cond_kwargs=lowerCamelCase , return_dict=lowerCamelCase , )[0] if do_classifier_free_guidance: lowerCAmelCase_, lowerCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase_, lowerCAmelCase_ : Tuple = noise_pred.chunk(2 ) lowerCAmelCase_, lowerCAmelCase_ : List[str] = variance_pred.chunk(2 ) lowerCAmelCase_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase_, lowerCAmelCase_ : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : List[str] = self.scheduler.step( lowerCamelCase , lowerCamelCase , lowerCamelCase , generator=lowerCamelCase , )[0] # post-processing lowerCAmelCase_ : str = self.movq.decode(lowerCamelCase , force_not_quantize=lowerCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase_ : Tuple = image * 0.5 + 0.5 lowerCAmelCase_ : Optional[int] = image.clamp(0 , 1 ) lowerCAmelCase_ : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase_ : Any = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
89
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' print("""Loading config file...""" ) def flatten_yaml_as_dict(A__ : int , A__ : str="" , A__ : Dict="." ): lowerCAmelCase_ : int = [] for k, v in d.items(): lowerCAmelCase_ : Any = parent_key + sep + k if parent_key else k if isinstance(A__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(A__ , A__ , sep=A__ ).items() ) else: items.append((new_key, v) ) return dict(A__ ) lowerCAmelCase_ : Optional[int] = argparse.Namespace() with open(A__ , """r""" ) as yaml_file: try: lowerCAmelCase_ : Any = yaml.load(A__ , Loader=yaml.FullLoader ) lowerCAmelCase_ : Any = flatten_yaml_as_dict(A__ ) for k, v in flat_cfg.items(): setattr(A__ , A__ , A__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(A__ , str(A__ ) ) ) return config def UpperCamelCase_ ( A__ : Optional[int] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = MobileViTVaConfig() lowerCAmelCase_ : Any = False # dataset if task_name.startswith("""imagenet1k_""" ): lowerCAmelCase_ : Tuple = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: lowerCAmelCase_ : List[str] = 3_84 else: lowerCAmelCase_ : Optional[int] = 2_56 lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): lowerCAmelCase_ : int = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: lowerCAmelCase_ : int = 3_84 else: lowerCAmelCase_ : int = 2_56 lowerCAmelCase_ : Optional[Any] = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): lowerCAmelCase_ : Dict = 1_51 lowerCAmelCase_ : Any = 5_12 lowerCAmelCase_ : int = """ade20k-id2label.json""" lowerCAmelCase_ : Union[str, Any] = True elif task_name.startswith("""voc_""" ): lowerCAmelCase_ : Any = 21 lowerCAmelCase_ : List[str] = 5_12 lowerCAmelCase_ : Union[str, Any] = """pascal-voc-id2label.json""" lowerCAmelCase_ : int = True # orig_config lowerCAmelCase_ : Optional[int] = load_orig_config_file(A__ ) assert getattr(A__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" lowerCAmelCase_ : Union[str, Any] = getattr(A__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(A__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCAmelCase_ : List[Any] = getattr(A__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCAmelCase_ : List[str] = getattr(A__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: lowerCAmelCase_ : Optional[int] = getattr(A__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) lowerCAmelCase_ : Optional[Any] = getattr(A__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) lowerCAmelCase_ : Optional[int] = getattr(A__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label lowerCAmelCase_ : Any = """huggingface/label-files""" lowerCAmelCase_ : Any = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Any = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = idalabel lowerCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase_ ( A__ : int , A__ : Dict , A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : List[Any] = dct.pop(A__ ) lowerCAmelCase_ : Optional[int] = val def UpperCamelCase_ ( A__ : int , A__ : int=False ): '''simple docstring''' if base_model: lowerCAmelCase_ : List[Any] = """""" else: lowerCAmelCase_ : Any = """mobilevitv2.""" lowerCAmelCase_ : int = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCAmelCase_ : List[Any] = k[8:] else: lowerCAmelCase_ : Optional[Any] = k if ".block." in k: lowerCAmelCase_ : Dict = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: lowerCAmelCase_ : Any = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: lowerCAmelCase_ : Any = k_new.replace("""conv_1.""" , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: lowerCAmelCase_ : List[str] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: lowerCAmelCase_ : str = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: lowerCAmelCase_ : Optional[Any] = [0, 1] elif i == 4: lowerCAmelCase_ : Any = [0, 1, 2, 3] elif i == 5: lowerCAmelCase_ : Any = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: lowerCAmelCase_ : Optional[Any] = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: lowerCAmelCase_ : str = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: lowerCAmelCase_ : Dict = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: lowerCAmelCase_ : Any = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: lowerCAmelCase_ : int = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: lowerCAmelCase_ : Optional[int] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: lowerCAmelCase_ : Optional[Any] = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: lowerCAmelCase_ : Dict = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(A__ ) for k in keys_to_ignore: state_dict.pop(A__ , A__ ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCAmelCase_ : Optional[Any] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( A__ : Dict , A__ : Union[str, Any] , A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : int = get_mobilevitva_config(A__ , A__ ) # load original state_dict lowerCAmelCase_ : int = torch.load(A__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): lowerCAmelCase_ : Union[str, Any] = MobileViTVaForSemanticSegmentation(A__ ).eval() lowerCAmelCase_ : Union[str, Any] = False else: lowerCAmelCase_ : List[Any] = MobileViTVaForImageClassification(A__ ).eval() lowerCAmelCase_ : Optional[int] = False # remove and rename some keys of load the original model lowerCAmelCase_ : Tuple = checkpoint remove_unused_keys(A__ ) lowerCAmelCase_ : List[Any] = create_rename_keys(A__ , base_model=A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ , A__ , A__ ) # load modified state_dict model.load_state_dict(A__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase_ : Dict = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : int = model(**A__ ) # verify classification model if task_name.startswith("""imagenet""" ): lowerCAmelCase_ : Optional[Any] = outputs.logits lowerCAmelCase_ : Tuple = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCAmelCase_ : int = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ) assert torch.allclose(logits[0, :3] , A__ , atol=1E-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __A : Union[str, Any] = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
89
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def a ( *lowerCamelCase_ ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = list(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): lowercase__ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def a ( lowerCamelCase_ = None , lowerCamelCase_ = 128 ): '''simple docstring''' if function is None: return functools.partial(lowerCamelCase_ , starting_batch_size=lowerCamelCase_ ) lowercase__ = starting_batch_size def decorator(*lowerCamelCase_ , **lowerCamelCase_ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowercase__ = list(inspect.signature(lowerCamelCase_ ).parameters.keys() ) # Guard against user error if len(lowerCamelCase_ ) < (len(lowerCamelCase_ ) + 1): lowercase__ = ''', '''.join([F"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"""Batch size was passed into `{function.__name__}` as the first argument when called.""" F"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) except Exception as e: if should_reduce_batch_size(lowerCamelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
207
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_attention_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : str=3, lowerCamelCase : int=3, lowerCamelCase : Dict=2, lowerCamelCase : int=1, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Dict=[128, 256, 384], lowerCamelCase : Tuple=[4, 6, 8], lowerCamelCase : Optional[Any]=[2, 3, 4], lowerCamelCase : str=[16, 16, 16], lowerCamelCase : Dict=0, lowerCamelCase : List[str]=[2, 2, 2], lowerCamelCase : str=[2, 2, 2], lowerCamelCase : List[Any]=0.02, lowerCamelCase : Any=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[Any]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = LevitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase__ = problem_type['''title'''] lowercase__ = problem_type['''num_labels'''] lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) lowercase__ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: lowercase__ = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
1
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def __a ( _SCREAMING_SNAKE_CASE ) ->str: a__: Optional[int] = [False] * len(_SCREAMING_SNAKE_CASE ) a__: int = [-1] * len(_SCREAMING_SNAKE_CASE ) def dfs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Optional[int] = True a__: List[Any] = c for u in graph[v]: if not visited[u]: dfs(_SCREAMING_SNAKE_CASE , 1 - c ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): if not visited[i]: dfs(_SCREAMING_SNAKE_CASE , 0 ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowercase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
203
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = PriorTransformer a__ = """hidden_states""" @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Union[str, Any] = 4 a__: Any = 8 a__: Optional[Any] = 7 a__: Tuple = floats_tensor((batch_size, embedding_dim)).to(lowercase) a__: Optional[int] = floats_tensor((batch_size, embedding_dim)).to(lowercase) a__: List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase_ ( self , lowercase=0) -> str: '''simple docstring''' torch.manual_seed(lowercase) a__: Optional[Any] = 4 a__: Optional[Any] = 8 a__: Union[str, Any] = 7 a__: Optional[Any] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: List[str] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: Tuple = torch.randn((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return (4, 8) @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return (4, 8) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } a__: Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__: Union[str, Any] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowercase) self.assertIsNotNone(lowercase) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(lowercase) a__: Any = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: Tuple = self.prepare_init_args_and_inputs_for_common() a__: Any = self.model_class(**lowercase) a__: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Tuple = [*signature.parameters.keys()] a__: List[Any] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowercase) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy') a__: str = model.to(lowercase) if hasattr(lowercase , 'set_default_attn_processor'): model.set_default_attn_processor() a__: Dict = self.get_dummy_seed_input() with torch.no_grad(): a__: str = model(**lowercase)[0] a__: str = output[0, :5].flatten().cpu() print(lowercase) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. a__: Any = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239]) self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2)) @slow class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self , lowercase=1 , lowercase=7_68 , lowercase=77 , lowercase=0) -> int: '''simple docstring''' torch.manual_seed(lowercase) a__: Union[str, Any] = batch_size a__: List[str] = embedding_dim a__: str = num_embeddings a__: Tuple = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: List[str] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: str = torch.randn((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ]) def lowerCamelCase_ ( self , lowercase , lowercase) -> str: '''simple docstring''' a__: Tuple = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior') model.to(lowercase) a__: Optional[Any] = self.get_dummy_seed_input(seed=lowercase) with torch.no_grad(): a__: Optional[int] = model(**lowercase)[0] assert list(sample.shape) == [1, 7_68] a__: List[str] = sample[0, :8].flatten().cpu() print(lowercase) a__: Union[str, Any] = torch.tensor(lowercase) assert torch_all_close(lowercase , lowercase , atol=1e-3)
203
1
import math from datetime import datetime, timedelta def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> datetime: """simple docstring""" SCREAMING_SNAKE_CASE__ = year % 19 SCREAMING_SNAKE_CASE__ = year % 4 SCREAMING_SNAKE_CASE__ = year % 7 SCREAMING_SNAKE_CASE__ = math.floor(year / 1_00 ) SCREAMING_SNAKE_CASE__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE__ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__UpperCamelCase , 4 , 18 ) else: return datetime(__UpperCamelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): __lowerCamelCase : List[str] = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
219
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( A : list , A : int , A : int , A : int ) -> list: UpperCAmelCase_ : Any = [] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : List[Any] = result + left + right return input_list def __UpperCAmelCase ( A : list ) -> list: if len(A ) <= 1: return input_list UpperCAmelCase_ : List[str] = list(A ) # iteration for two-way merging UpperCAmelCase_ : Tuple = 2 while p <= len(A ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(A ) , A ): UpperCAmelCase_ : Union[str, Any] = i UpperCAmelCase_ : int = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(A , A , A , A ) # final merge of last two parts if p * 2 >= len(A ): UpperCAmelCase_ : str = i UpperCAmelCase_ : Tuple = merge(A , 0 , A , len(A ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _UpperCamelCase : str = input('Enter numbers separated by a comma:\n').strip() if user_input == "": _UpperCamelCase : List[str] = [] else: _UpperCamelCase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
304
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model A__ : Optional[int] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any=None ) -> List[Any]: if rng is None: lowerCamelCase_ : Any =random.Random() lowerCamelCase_ : List[str] =1 for dim in shape: total_dims *= dim lowerCamelCase_ : Optional[Any] =[] for _ in range(lowerCamelCase__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCamelCase_ : Union[str, Any] =np.array(lowerCamelCase__ , dtype=jnp.intaa ).reshape(lowerCamelCase__ ) return output def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any]=None ) -> Dict: lowerCamelCase_ : Dict =ids_tensor(lowerCamelCase__ , vocab_size=2 , rng=lowerCamelCase__ ) # make sure that at least one token is attended to for each batch lowerCamelCase_ : List[Any] =1 return attn_mask @require_flax class lowercase__ : _UpperCAmelCase :Dict = None _UpperCAmelCase :Dict = () def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCamelCase_ : Union[str, Any] =2 lowerCamelCase_ : int =inputs["input_ids"].shape[-1] // 2 lowerCamelCase_ : List[str] =inputs["input_ids"][:max_batch_size, :sequence_length] lowerCamelCase_ : Tuple =jnp.ones_like(snake_case__ ) lowerCamelCase_ : Union[str, Any] =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCamelCase_ : int =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCamelCase_ : List[Any] =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =self._get_input_ids_and_config() lowerCamelCase_ : Union[str, Any] =False lowerCamelCase_ : Union[str, Any] =max_length lowerCamelCase_ : Dict =0 for model_class in self.all_generative_model_classes: lowerCamelCase_ : Optional[Any] =model_class(snake_case__ ) lowerCamelCase_ : int =model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase_ : Union[str, Any] =getattr(snake_case__ , snake_case__ ) lowerCamelCase_ : Any =pt_model_class(snake_case__ ).eval() lowerCamelCase_ : Tuple =load_flax_weights_in_pytorch_model(snake_case__ , flax_model.params ) lowerCamelCase_ : Optional[int] =flax_model.generate(snake_case__ ).sequences lowerCamelCase_ : List[Any] =pt_model.generate(torch.tensor(snake_case__ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCamelCase_ : int =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[Any] =self._get_input_ids_and_config() lowerCamelCase_ : List[str] =False lowerCamelCase_ : int =max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ : Any =model_class(snake_case__ ) lowerCamelCase_ : Union[str, Any] =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : List[str] =jit(model.generate ) lowerCamelCase_ : Optional[Any] =jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Optional[int] =self._get_input_ids_and_config() lowerCamelCase_ : int =True lowerCamelCase_ : List[str] =max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ : Any =model_class(snake_case__ ) lowerCamelCase_ : Optional[Any] =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : int =jit(model.generate ) lowerCamelCase_ : int =jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Tuple =self._get_input_ids_and_config() lowerCamelCase_ : Any =False lowerCamelCase_ : List[str] =max_length lowerCamelCase_ : List[Any] =2 for model_class in self.all_generative_model_classes: lowerCamelCase_ : Dict =model_class(snake_case__ ) lowerCamelCase_ : Optional[Any] =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : Tuple =jit(model.generate ) lowerCamelCase_ : Optional[Any] =jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Dict =self._get_input_ids_and_config() lowerCamelCase_ : Any =False lowerCamelCase_ : Any =max_length lowerCamelCase_ : int =2 lowerCamelCase_ : Tuple =2 for model_class in self.all_generative_model_classes: lowerCamelCase_ : Any =model_class(snake_case__ ) lowerCamelCase_ : int =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =self._get_input_ids_and_config() lowerCamelCase_ : List[str] =True lowerCamelCase_ : Union[str, Any] =max_length lowerCamelCase_ : str =0.8 lowerCamelCase_ : Dict =10 lowerCamelCase_ : Tuple =0.3 lowerCamelCase_ : Optional[Any] =1 lowerCamelCase_ : str =8 lowerCamelCase_ : Tuple =9 for model_class in self.all_generative_model_classes: lowerCamelCase_ : int =model_class(snake_case__ ) lowerCamelCase_ : int =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : Tuple =jit(model.generate ) lowerCamelCase_ : Optional[Any] =jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Union[str, Any] =self._get_input_ids_and_config() lowerCamelCase_ : Dict =max_length lowerCamelCase_ : List[str] =1 lowerCamelCase_ : str =8 lowerCamelCase_ : Dict =9 for model_class in self.all_generative_model_classes: lowerCamelCase_ : Optional[Any] =model_class(snake_case__ ) lowerCamelCase_ : Any =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : Optional[int] =jit(model.generate ) lowerCamelCase_ : List[Any] =jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : Any =self._get_input_ids_and_config() lowerCamelCase_ : int =max_length lowerCamelCase_ : List[Any] =2 lowerCamelCase_ : List[Any] =1 lowerCamelCase_ : List[str] =8 lowerCamelCase_ : Tuple =9 for model_class in self.all_generative_model_classes: lowerCamelCase_ : Optional[int] =model_class(snake_case__ ) lowerCamelCase_ : List[Any] =model.generate(snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : int =jit(model.generate ) lowerCamelCase_ : Dict =jit_generate(snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : int =self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase_ : str =attention_mask.at[(0, 0)].set(0 ) lowerCamelCase_ : List[Any] =False lowerCamelCase_ : List[Any] =max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ : str =model_class(snake_case__ ) lowerCamelCase_ : int =model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : List[Any] =jit(model.generate ) lowerCamelCase_ : Optional[Any] =jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Union[str, Any] =self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase_ : Optional[Any] =attention_mask.at[(0, 0)].set(0 ) lowerCamelCase_ : List[str] =True lowerCamelCase_ : Tuple =max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ : List[str] =model_class(snake_case__ ) lowerCamelCase_ : int =model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : Any =jit(model.generate ) lowerCamelCase_ : Dict =jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : Optional[int] =self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase_ : Tuple =attention_mask.at[(0, 0)].set(0 ) lowerCamelCase_ : Optional[Any] =2 lowerCamelCase_ : Any =max_length for model_class in self.all_generative_model_classes: lowerCamelCase_ : Tuple =model_class(snake_case__ ) lowerCamelCase_ : List[str] =model.generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertEqual(generation_outputs.shape[-1] , snake_case__ ) lowerCamelCase_ : List[Any] =jit(model.generate ) lowerCamelCase_ : Any =jit_generate(snake_case__ , attention_mask=snake_case__ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Union[str, Any] =AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) lowerCamelCase_ : Optional[int] =FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) lowerCamelCase_ : Dict ="Hello world" lowerCamelCase_ : Optional[int] =tokenizer(snake_case__ , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(snake_case__ , "do_samples" ): model.generate(snake_case__ , do_samples=snake_case__ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(snake_case__ , "foo" ): lowerCamelCase_ : int ={"foo": "bar"} model.generate(snake_case__ , **snake_case__ )
365
"""simple docstring""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor A__ : str = logging.get_logger(__name__) class lowercase__ ( snake_case__ ): def __init__( self : Optional[Any] , *snake_case__ : int , **snake_case__ : Any ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
209
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowercase__ ( __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : int = {} UpperCAmelCase_ : Tuple = tokenizer(example['content'] , truncation=__snake_case )['input_ids'] UpperCAmelCase_ : List[Any] = len(example['content'] ) / len(output['input_ids'] ) return output __UpperCAmelCase = HfArgumentParser(PretokenizationArguments) __UpperCAmelCase = parser.parse_args() if args.num_workers is None: __UpperCAmelCase = multiprocessing.cpu_count() __UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_dir) __UpperCAmelCase = time.time() __UpperCAmelCase = load_dataset(args.dataset_name, split='train') print(F'Dataset loaded in {time.time()-t_start:.2f}s') __UpperCAmelCase = time.time() __UpperCAmelCase = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') __UpperCAmelCase = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
29
def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head: return True # split the list to two parts UpperCAmelCase_ , UpperCAmelCase_ : Any = head.next, head while fast and fast.next: UpperCAmelCase_ : str = fast.next.next UpperCAmelCase_ : Union[str, Any] = slow.next UpperCAmelCase_ : int = slow.next UpperCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part UpperCAmelCase_ : Tuple = None while second: UpperCAmelCase_ : int = second.next UpperCAmelCase_ : Any = node UpperCAmelCase_ : Optional[Any] = second UpperCAmelCase_ : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Dict = head.next return True def lowercase__ ( __snake_case : Union[str, Any] ): '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCAmelCase_ : Any = head while fast and fast.next: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fast.next.next, slow.next # 2. Push the second half into the stack UpperCAmelCase_ : List[str] = [slow.val] while slow.next: UpperCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCAmelCase_ : int = cur.next return True def lowercase__ ( __snake_case : Dict ): '''simple docstring''' if not head or not head.next: return True UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : int = 0 while head: if head.val in d: d[head.val].append(__snake_case ) else: UpperCAmelCase_ : List[Any] = [pos] UpperCAmelCase_ : Any = head.next pos += 1 UpperCAmelCase_ : Dict = pos - 1 UpperCAmelCase_ : Optional[int] = 0 for v in d.values(): if len(__snake_case ) % 2 != 0: middle += 1 else: UpperCAmelCase_ : int = 0 for i in range(0 , len(__snake_case ) ): if v[i] + v[len(__snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
29
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase : Dict =logging.get_logger(__name__) class a_ ( A__ ): def __init__( self : Optional[int] , *lowercase : Dict , **lowercase : List[str] ): """simple docstring""" warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , __A , ) super().__init__(*__A , **__A )
351
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : int , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : Dict=30 , lowercase : Dict=2 , lowercase : Tuple=3 , lowercase : Dict=True , lowercase : Dict=True , lowercase : Tuple=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[Any]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[str]=0.1 , lowercase : List[Any]=0.1 , lowercase : List[str]=10 , lowercase : Any=0.02 , lowercase : Union[str, Any]=3 , lowercase : Tuple=None , lowercase : List[str]=2 , ): """simple docstring""" lowercase_ :Union[str, Any] = parent lowercase_ :Optional[int] = batch_size lowercase_ :Tuple = image_size lowercase_ :Any = patch_size lowercase_ :List[Any] = num_channels lowercase_ :Optional[Any] = is_training lowercase_ :str = use_labels lowercase_ :Any = hidden_size lowercase_ :Optional[int] = num_hidden_layers lowercase_ :List[Any] = num_attention_heads lowercase_ :str = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :List[Any] = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :Dict = initializer_range lowercase_ :List[Any] = scope lowercase_ :List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Any = num_patches + 2 def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Optional[Any] = None if self.use_labels: lowercase_ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Any = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self : Tuple , lowercase : int , lowercase : str , lowercase : Tuple ): """simple docstring""" lowercase_ :Optional[int] = TFDeiTModel(config=lowercase ) lowercase_ :str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[Any] , lowercase : str ): """simple docstring""" lowercase_ :List[str] = TFDeiTForMaskedImageModeling(config=lowercase ) lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ :List[str] = 1 lowercase_ :List[str] = TFDeiTForMaskedImageModeling(lowercase ) lowercase_ :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :List[str] = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : List[str] , lowercase : Any , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Tuple = self.type_sequence_label_size lowercase_ :str = TFDeiTForImageClassification(lowercase ) lowercase_ :str = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ :Optional[int] = 1 lowercase_ :Optional[int] = TFDeiTForImageClassification(lowercase ) lowercase_ :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :int = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __A = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = TFDeiTModelTester(self ) lowercase_ :List[Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowercase__ ( self : Optional[int] ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Dense ) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Tuple = model_class(lowercase ) lowercase_ :Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Tuple = [*signature.parameters.keys()] lowercase_ :Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : str ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def lowercase__ ( self : List[Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Any=False ): """simple docstring""" lowercase_ :Dict = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase__ ( self : List[Any] ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = TFDeiTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def UpperCAmelCase_ ( ): lowercase_ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) lowercase_ :Optional[int] = self.default_image_processor lowercase_ :Union[str, Any] = prepare_img() lowercase_ :Dict = image_processor(images=lowercase , return_tensors="tf" ) # forward pass lowercase_ :Union[str, Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :Dict = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
147
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class __magic_name__ ( _UpperCamelCase ): def __init__( self : Union[str, Any] ): _a : Dict = [] def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Any ): self.events.append('on_init_end' ) def __lowercase ( self : List[str] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Tuple ,**_UpperCAmelCase : Dict ): self.events.append('on_train_begin' ) def __lowercase ( self : List[str] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : List[Any] ): self.events.append('on_train_end' ) def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Any ,**_UpperCAmelCase : Optional[Any] ): self.events.append('on_epoch_begin' ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Union[str, Any] ,**_UpperCAmelCase : Optional[Any] ): self.events.append('on_epoch_end' ) def __lowercase ( self : Dict ,_UpperCAmelCase : int ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,**_UpperCAmelCase : Optional[int] ): self.events.append('on_step_begin' ) def __lowercase ( self : str ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ,**_UpperCAmelCase : Dict ): self.events.append('on_step_end' ) def __lowercase ( self : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ,**_UpperCAmelCase : Any ): self.events.append('on_evaluate' ) def __lowercase ( self : int ,_UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : int ): self.events.append('on_predict' ) def __lowercase ( self : int ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Tuple ): self.events.append('on_save' ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ,**_UpperCAmelCase : Union[str, Any] ): self.events.append('on_log' ) def __lowercase ( self : Optional[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int ,**_UpperCAmelCase : List[str] ): self.events.append('on_prediction_step' ) @require_torch class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : int ): _a : Optional[int] = tempfile.mkdtemp() def __lowercase ( self : str ): shutil.rmtree(self.output_dir ) def __lowercase ( self : int ,_UpperCAmelCase : Dict=0 ,_UpperCAmelCase : str=0 ,_UpperCAmelCase : Dict=64 ,_UpperCAmelCase : List[str]=64 ,_UpperCAmelCase : Union[str, Any]=None ,_UpperCAmelCase : List[Any]=False ,**_UpperCAmelCase : int ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _a : int = RegressionDataset(length=_UpperCAmelCase ) _a : str = RegressionDataset(length=_UpperCAmelCase ) _a : List[Any] = RegressionModelConfig(a=_UpperCAmelCase ,b=_UpperCAmelCase ) _a : Optional[int] = RegressionPreTrainedModel(_UpperCAmelCase ) _a : Optional[int] = TrainingArguments(self.output_dir ,disable_tqdm=_UpperCAmelCase ,report_to=[] ,**_UpperCAmelCase ) return Trainer( _UpperCAmelCase ,_UpperCAmelCase ,train_dataset=_UpperCAmelCase ,eval_dataset=_UpperCAmelCase ,callbacks=_UpperCAmelCase ,) def __lowercase ( self : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Union[str, Any] ): self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) ) # Order doesn't matter _a : List[Any] = sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : cb.__name__ if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else cb.__class__.__name__ ) _a : List[str] = sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : cb.__name__ if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else cb.__class__.__name__ ) for cba, cba in zip(_UpperCAmelCase ,_UpperCAmelCase ): if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ): self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and not isinstance(_UpperCAmelCase ,_UpperCAmelCase ): self.assertEqual(_UpperCAmelCase ,cba.__class__ ) elif not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) and isinstance(_UpperCAmelCase ,_UpperCAmelCase ): self.assertEqual(cba.__class__ ,_UpperCAmelCase ) else: self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase ) def __lowercase ( self : Any ,_UpperCAmelCase : Optional[Any] ): _a : str = ['on_init_end', 'on_train_begin'] _a : str = 0 _a : Optional[int] = len(trainer.get_eval_dataloader() ) _a : List[Any] = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(_UpperCAmelCase ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowercase ( self : Optional[Any] ): _a : str = self.get_trainer() _a : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) # Callbacks passed at init are added to the default callbacks _a : Optional[int] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _a : Union[str, Any] = self.get_trainer(disable_tqdm=_UpperCAmelCase ) _a : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) def __lowercase ( self : Tuple ): _a : List[str] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _a : Optional[int] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(_UpperCAmelCase ) expected_callbacks.remove(_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) _a : Optional[Any] = self.get_trainer() _a : List[Any] = trainer.pop_callback(_UpperCAmelCase ) self.assertEqual(cb.__class__ ,_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) trainer.add_callback(_UpperCAmelCase ) expected_callbacks.insert(0 ,_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) # We can also add, pop, or remove by instance _a : str = self.get_trainer() _a : Optional[Any] = trainer.callback_handler.callbacks[0] trainer.remove_callback(_UpperCAmelCase ) expected_callbacks.remove(_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) _a : Tuple = self.get_trainer() _a : Optional[Any] = trainer.callback_handler.callbacks[0] _a : Optional[Any] = trainer.pop_callback(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase ,_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) trainer.add_callback(_UpperCAmelCase ) expected_callbacks.insert(0 ,_UpperCAmelCase ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,_UpperCAmelCase ) def __lowercase ( self : List[Any] ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' ,category=_UpperCAmelCase ) _a : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _a : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) ) # Independent log/save/eval _a : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() _a : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) ) _a : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() _a : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) ) _a : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='steps' ) trainer.train() _a : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) ) _a : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='epoch' ) trainer.train() _a : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) ) # A bit of everything _a : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=10 ,eval_steps=5 ,evaluation_strategy='steps' ,) trainer.train() _a : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(_UpperCAmelCase ,self.get_expected_events(_UpperCAmelCase ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: _a : List[str] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(_UpperCAmelCase ) in warn_mock.call_args[0][0]
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCAmelCase = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
1
"""simple docstring""" def lowercase__ ( snake_case_ :int ): __UpperCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowercase__ ( snake_case_ :int ): __UpperCAmelCase = 0 while number > 0: __UpperCAmelCase = number % 10 sum_of_digits += last_digit __UpperCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowercase__ ( snake_case_ :int = 100 ): __UpperCAmelCase = factorial(snake_case_ ) __UpperCAmelCase = split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
361
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _lowercase : List[Any] = TypeVar('T') class _UpperCAmelCase ( Generic[T] ): a__ : deque[T] # Cache store of keys a__ : set[T] # References of the keys in cache a__ : int = 10 # Maximum capacity of cache def __init__( self : Optional[Any] , _lowercase : int ): __UpperCAmelCase = deque() __UpperCAmelCase = set() if not n: __UpperCAmelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __UpperCAmelCase = n def a ( self : Optional[Any] , _lowercase : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __UpperCAmelCase = self.dq_store.pop() self.key_reference.remove(_lowercase ) else: self.dq_store.remove(_lowercase ) self.dq_store.appendleft(_lowercase ) self.key_reference.add(_lowercase ) def a ( self : str ): for k in self.dq_store: print(_lowercase ) def __repr__( self : Dict ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _lowercase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
86
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : list[int] ) -> float: """simple docstring""" if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) snake_case : List[str] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
203
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCAmelCase ( lowercase : Any ) -> Union[str, Any]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCAmelCase ( lowercase : int , lowercase : Dict ) -> Tuple: """simple docstring""" if args.student_type == "roberta": snake_case : List[str] = False elif args.student_type == "gpt2": snake_case : Optional[int] = False def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" if args.student_type == "roberta": snake_case : Optional[Any] = False def __lowerCAmelCase ( ) -> int: """simple docstring""" snake_case : Any = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=lowercase , required=lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=lowercase , required=lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=lowercase , choices=["distilbert", "roberta", "gpt2"] , required=lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=lowercase , required=lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=lowercase , type=lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=lowercase , required=lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=lowercase , default=4000 , help="Checkpoint interval." ) snake_case : str = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.student_type] snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case : int = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case : List[str] = tokenizer.all_special_tokens.index(lowercase ) snake_case : Optional[int] = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) snake_case : Any = special_tok_ids snake_case : Dict = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: snake_case : Optional[int] = pickle.load(lowercase ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: snake_case : Dict = pickle.load(lowercase ) snake_case : str = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case : str = 0.0 # do not predict special tokens snake_case : Dict = torch.from_numpy(lowercase ) else: snake_case : Tuple = None snake_case : str = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) snake_case : str = student_config_class.from_pretrained(args.student_config ) snake_case : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) snake_case : Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: snake_case : Union[str, Any] = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # snake_case : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case : Optional[Any] = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
203
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Namespace ) -> int: return TrainCommand(lowerCAmelCase ) class a ( UpperCAmelCase ): @staticmethod def _UpperCAmelCase ( A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=A_ , required=A_ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=A_ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=A_ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=A_ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=A_ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=A_ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=A_ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=A_ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=A_ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=A_ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=A_ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=A_ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=A_ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=A_ ) def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = logging.get_logger("transformers-cli/training" ) _UpperCAmelCase : Union[str, Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=A_ ) _UpperCAmelCase : Dict = args.output _UpperCAmelCase : Dict = args.column_label _UpperCAmelCase : Any = args.column_text _UpperCAmelCase : List[str] = args.column_id self.logger.info(f'Loading {args.task} pipeline for {args.model}' ) if args.task == "text_classification": _UpperCAmelCase : Dict = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'Loading dataset from {args.train_data}' ) _UpperCAmelCase : int = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase : Union[str, Any] = None if args.validation_data: self.logger.info(f'Loading validation dataset from {args.validation_data}' ) _UpperCAmelCase : List[str] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _UpperCAmelCase : Any = args.validation_split _UpperCAmelCase : int = args.train_batch_size _UpperCAmelCase : int = args.valid_batch_size _UpperCAmelCase : Dict = args.learning_rate _UpperCAmelCase : Optional[Any] = args.adam_epsilon def _UpperCAmelCase ( self ): '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def _UpperCAmelCase ( self ): '''simple docstring''' raise NotImplementedError def _UpperCAmelCase ( self ): '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
189
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCAmelCase : Optional[int] = k.replace(lowerCAmelCase , lowerCAmelCase ) if k.startswith("encoder" ): _UpperCAmelCase : Tuple = k.replace(".attn" , ".self_attn" ) _UpperCAmelCase : str = k.replace("norm1" , "self_attn_layer_norm" ) _UpperCAmelCase : Optional[Any] = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): _UpperCAmelCase : Union[str, Any] = k.replace("norm1" , "self_attn_layer_norm" ) _UpperCAmelCase : Tuple = k.replace("norm2" , "encoder_attn_layer_norm" ) _UpperCAmelCase : Any = k.replace("norm3" , "final_layer_norm" ) return k def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> List[Any]: _UpperCAmelCase : int = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: _UpperCAmelCase : Dict = sd.pop(lowerCAmelCase ) _UpperCAmelCase : str = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd _UpperCAmelCase : Dict = v SCREAMING_SNAKE_CASE_ = ['START'] @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: int , lowerCAmelCase: int ) -> int: _UpperCAmelCase : Union[str, Any] = torch.load(lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase : List[str] = model["model"] _UpperCAmelCase : List[str] = BlenderbotConfig.from_json_file(lowerCAmelCase ) _UpperCAmelCase : str = BlenderbotForConditionalGeneration(lowerCAmelCase ) _UpperCAmelCase : List[str] = m.model.state_dict().keys() _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCAmelCase : Tuple = rename_state_dict_key(lowerCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCAmelCase : Tuple = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCAmelCase ) m.model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) m.half() m.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
189
1
"""simple docstring""" def _snake_case ( UpperCamelCase : int , UpperCamelCase : Any ): return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
109
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _a = logging.get_logger(__name__) _a = {"vocab_file": "spiece.model"} _a = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _a = { "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase = None , **__lowerCAmelCase , ): '''simple docstring''' lowerCamelCase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) lowerCamelCase__ = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__ = '''<|endoftext|>''' if eos_token is None else eos_token lowerCamelCase__ = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__ = unk_token if pad_token is None else pad_token lowerCamelCase__ = eos_token if bos_token is None else bos_token else: lowerCamelCase__ = '''<pad>''' if pad_token is None else pad_token lowerCamelCase__ = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) lowerCamelCase__ = do_lower_case lowerCamelCase__ = remove_space lowerCamelCase__ = keep_accents lowerCamelCase__ = vocab_file lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__ = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__ = re.compile( F'[{"".join(map(__lowerCAmelCase , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]' ) def __getstate__( self ): '''simple docstring''' lowerCamelCase__ = self.__dict__.copy() lowerCamelCase__ = None return state def __setstate__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase__ = {} lowerCamelCase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.non_printing_characters_re.sub('''''' , __lowerCAmelCase ) # Normalize whitespaces lowerCamelCase__ = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization lowerCamelCase__ = unicodedata.normalize('''NFC''' , __lowerCAmelCase ) return text def __lowerCamelCase ( self , __lowerCAmelCase , **__lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.preprocess_text(__lowerCAmelCase ) return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.PieceToId(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.IdToPiece(__lowerCAmelCase ) @staticmethod def __lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' return out_string def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = '''''' lowerCamelCase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token lowerCamelCase__ = True lowerCamelCase__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) lowerCamelCase__ = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase__ = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: lowerCamelCase__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = False ): '''simple docstring''' if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = self.preprocess_text(__lowerCAmelCase ) lowerCamelCase__ = self.sp_model.encode(__lowerCAmelCase ) else: lowerCamelCase__ = [self.preprocess_text(__lowerCAmelCase ) for t in text] lowerCamelCase__ = self.sp_model.encode(__lowerCAmelCase ) if return_tensors is True or return_tensors == "pt": lowerCamelCase__ = torch.tensor(__lowerCAmelCase ) return token_ids def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return self.sp_model.decode(__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCamelCase__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(__lowerCAmelCase ) + F'{self.bos_token}Bot:' ) return self.encode(text=__lowerCAmelCase )
209
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase__ ( lowercase ): @staticmethod @abstractmethod def UpperCamelCase_ ( lowerCamelCase__ : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : Any ): '''simple docstring''' raise NotImplementedError()
236
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Optional[int] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : int = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
236
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Dict , lowerCAmelCase__: int , lowerCAmelCase__: Tuple , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Dict , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: int , lowerCAmelCase__: List[str] , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: int , ): """simple docstring""" UpperCAmelCase_: Tuple = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } UpperCAmelCase_ , UpperCAmelCase_: str = input_paths_and_base_extractors[compression_format] if input_path is None: UpperCAmelCase_: Optional[Any] = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) assert base_extractor.is_extractable(lowerCAmelCase__ ) UpperCAmelCase_: Tuple = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase_: int = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase_: Tuple = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase_: List[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCAmelCase_ (lowerCAmelCase__: Any , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[str] , lowerCAmelCase__: Tuple , lowerCAmelCase__: Tuple , lowerCAmelCase__: str , lowerCAmelCase__: Optional[int] , lowerCAmelCase__: int , lowerCAmelCase__: Dict , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: List[Any] , lowerCAmelCase__: Dict , ): """simple docstring""" UpperCAmelCase_: Any = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } UpperCAmelCase_: Any = input_paths[compression_format] if input_path is None: UpperCAmelCase_: Union[str, Any] = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCAmelCase__ ) UpperCAmelCase_: List[str] = Extractor.infer_extractor_format(lowerCAmelCase__ ) assert extractor_format is not None UpperCAmelCase_: List[str] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name UpperCAmelCase_: List[str] = file_path.read_text(encoding="""utf-8""" ) else: UpperCAmelCase_: Any = output_path.read_text(encoding="""utf-8""" ) UpperCAmelCase_: Union[str, Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: int ): """simple docstring""" import tarfile UpperCAmelCase_: Dict = tmp_path / """data_dot_dot""" directory.mkdir() UpperCAmelCase_: List[Any] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(lowerCAmelCase__ , """w""" ) as f: f.add(lowerCAmelCase__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCAmelCase_ (lowerCAmelCase__: Any ): """simple docstring""" import tarfile UpperCAmelCase_: Dict = tmp_path / """data_sym_link""" directory.mkdir() UpperCAmelCase_: Union[str, Any] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=lowerCAmelCase__ ) with tarfile.TarFile(lowerCAmelCase__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: Tuple , lowerCAmelCase__: Dict , lowerCAmelCase__: int , lowerCAmelCase__: Dict , lowerCAmelCase__: List[Any] ): """simple docstring""" UpperCAmelCase_: Optional[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } UpperCAmelCase_: Any = insecure_tar_files[insecure_tar_file] UpperCAmelCase_: Tuple = tmp_path / """extracted""" TarExtractor.extract(lowerCAmelCase__ , lowerCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" UpperCAmelCase_: Dict = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 UpperCAmelCase_: List[str] = ( B"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" B"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" B"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" B"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(lowerCAmelCase__ ) assert zipfile.is_zipfile(str(lowerCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCAmelCase__ ) # but we're right
147
import os # Precomputes a list of the 100 first triangular numbers a : Optional[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Any = os.path.dirname(os.path.realpath(lowerCAmelCase__ ) ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , """words.txt""" ) UpperCAmelCase_: int = """""" with open(lowerCAmelCase__ ) as f: UpperCAmelCase_: str = f.readline() UpperCAmelCase_: Optional[int] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCAmelCase_: Union[str, Any] = [ word for word in [sum(ord(lowerCAmelCase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
147
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 3_2 def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase = 16 ): """simple docstring""" _UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase = DatasetDict( { """train""": dataset["""train"""].select(lowercase ), """validation""": dataset["""train"""].select(lowercase ), """test""": dataset["""validation"""], } ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=lowercase ,max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( lowercase ,batched=lowercase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( lowercase ,padding="""longest""" ,max_length=lowercase ,pad_to_multiple_of=lowercase ,return_tensors="""pt""" ,) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["""train"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""validation"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) _UpperCAmelCase = DataLoader( tokenized_datasets["""test"""] ,shuffle=lowercase ,collate_fn=lowercase ,batch_size=lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] # Download the dataset _UpperCAmelCase = load_dataset("""glue""" ,"""mrpc""" ) # Create our splits _UpperCAmelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config["""lr"""] _UpperCAmelCase = int(config["""num_epochs"""] ) _UpperCAmelCase = int(config["""seed"""] ) _UpperCAmelCase = int(config["""batch_size"""] ) _UpperCAmelCase = evaluate.load("""glue""" ,"""mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) # New Code # # Create our folds: _UpperCAmelCase = kfold.split(np.zeros(datasets["""train"""].num_rows ) ,datasets["""train"""]["""label"""] ) _UpperCAmelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = get_fold_dataloaders( lowercase ,lowercase ,lowercase ,lowercase ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() ,lr=lowercase ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowercase ,num_warmup_steps=1_00 ,num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowercase ,references=lowercase ,) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' ,lowercase ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase = [] for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowercase ) _UpperCAmelCase = outputs.logits _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase = torch.cat(lowercase ,dim=0 ) _UpperCAmelCase = torch.stack(lowercase ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase = metric.compute(predictions=lowercase ,references=lowercase ) accelerator.print("""Average test metrics from all folds:""" ,lowercase ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" ,type=lowercase ,default=lowercase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" ,) parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" ,type=lowercase ,default=3 ,help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase ,lowercase ) if __name__ == "__main__": main()
365
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'vision-encoder-decoder' _snake_case : Optional[int] = True def __init__( self : int , **__lowerCAmelCase : Any ): super().__init__(**__lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) _UpperCAmelCase = kwargs.pop("""encoder""" ) _UpperCAmelCase = encoder_config.pop("""model_type""" ) _UpperCAmelCase = kwargs.pop("""decoder""" ) _UpperCAmelCase = decoder_config.pop("""model_type""" ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = True @classmethod def lowerCAmelCase_ ( cls : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , **__lowerCAmelCase : str ): logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) _UpperCAmelCase = True _UpperCAmelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.encoder.to_dict() _UpperCAmelCase = self.decoder.to_dict() _UpperCAmelCase = self.__class__.model_type return output class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Tuple ): return 1e-4 @property def lowerCAmelCase_ ( self : Dict ): return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = OrderedDict() _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _UpperCAmelCase = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : "PreTrainedTokenizerBase" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , ): import torch _UpperCAmelCase = OrderedDict() _UpperCAmelCase = super().generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = dummy_input["""input_ids"""].shape _UpperCAmelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCAmelCase = dummy_input.pop("""input_ids""" ) _UpperCAmelCase = dummy_input.pop("""attention_mask""" ) _UpperCAmelCase = torch.zeros(__lowerCAmelCase ) return common_inputs class a ( lowerCAmelCase_ ): @property def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : PretrainedConfig ): return VisionEncoderDecoderEncoderOnnxConfig(__lowerCAmelCase ) def lowerCAmelCase_ ( self : int , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : PretrainedConfig , __lowerCAmelCase : str = "default" ): _UpperCAmelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCAmelCase , __lowerCAmelCase )
30
0
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" def get_matched_characters(lowercase , lowercase ) -> str: __lowercase = [] __lowercase = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __lowercase = int(max(0 , i - limit ) ) __lowercase = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(_UpperCamelCase ) __lowercase = F"{_stra[0:_stra.index(_UpperCamelCase )]} {_stra[_stra.index(_UpperCamelCase ) + 1:]}" return "".join(_UpperCamelCase ) # matching characters __lowercase = get_matched_characters(_UpperCamelCase , _UpperCamelCase ) __lowercase = get_matched_characters(_UpperCamelCase , _UpperCamelCase ) __lowercase = len(_UpperCamelCase ) # transposition __lowercase = ( len([(ca, ca) for ca, ca in zip(_UpperCamelCase , _UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: __lowercase = 0.0 else: __lowercase = ( 1 / 3 * ( match_count / len(_UpperCamelCase ) + match_count / len(_UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __lowercase = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
210
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum): A_ : List[Any] = 0 A_ : Dict = 1 A_ : Union[str, Any] = 2 @add_end_docstrings(_lowerCamelCase) class A__ ( _lowerCamelCase): A_ : str = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase : Any = None if self.model.config.prefix is not None: __lowerCAmelCase : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase : Tuple = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params ) __lowerCAmelCase : List[str] = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase : List[str] = {**self._forward_params, **forward_params} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Optional[int] = {} if prefix is not None: __lowerCAmelCase : Union[str, Any] = prefix if prefix: __lowerCAmelCase : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : List[Any] = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ' [None, \'hole\']' ) __lowerCAmelCase : int = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = generate_kwargs __lowerCAmelCase : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) __lowerCAmelCase : List[Any] = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase : Optional[Any] = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase : Union[str, Any] = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __lowerCAmelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) __lowerCAmelCase : Optional[Any] = prompt_text if handle_long_generation == "hole": __lowerCAmelCase : str = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase : Union[str, Any] = generate_kwargs['max_new_tokens'] else: __lowerCAmelCase : Any = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase : Any = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) __lowerCAmelCase : int = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase : List[Any] = inputs['attention_mask'][:, -keep_length:] return inputs def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = model_inputs['input_ids'] __lowerCAmelCase : List[Any] = model_inputs.get('attention_mask' , _SCREAMING_SNAKE_CASE ) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase : Dict = None __lowerCAmelCase : str = None __lowerCAmelCase : Tuple = 1 else: __lowerCAmelCase : Any = input_ids.shape[0] __lowerCAmelCase : Union[str, Any] = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase : Optional[int] = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: __lowerCAmelCase : Any = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase : List[str] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase : Dict = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase : Optional[int] = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase : Dict = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": __lowerCAmelCase : Any = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE=True ): __lowerCAmelCase : Any = model_outputs['generated_sequence'][0] __lowerCAmelCase : Tuple = model_outputs['input_ids'] __lowerCAmelCase : Any = model_outputs['prompt_text'] __lowerCAmelCase : int = generated_sequence.numpy().tolist() __lowerCAmelCase : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase : int = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase : Any = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase : Optional[Any] = 0 else: __lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) ) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase : Union[str, Any] = prompt_text + text[prompt_length:] else: __lowerCAmelCase : int = text[prompt_length:] __lowerCAmelCase : Dict = {'generated_text': all_text} records.append(_SCREAMING_SNAKE_CASE ) return records
86
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : List[str] ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) class __a ( datasets.BeamBasedBuilder ): def __lowercase ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE , ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class __a ( A__ ): @require_beam def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : int = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : List[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : Any ): '''simple docstring''' import apache_beam as beam UpperCamelCase__ : Any = beam.io.parquetio.WriteToParquet UpperCamelCase__ : Tuple = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : str = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCamelCase__ : Optional[Any] = partial(SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : int = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Any = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , F'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCamelCase__ : List[Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
189
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowerCamelCase : int =TypeVar('''T''') class __a ( Generic[T] ): _lowerCAmelCase : deque[T] # Cache store of keys _lowerCAmelCase : set[T] # References of the keys in cache _lowerCAmelCase : int = 1_0 # Maximum capacity of cache def __init__( self : List[str] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' UpperCamelCase__ : Tuple = deque() UpperCamelCase__ : Optional[int] = set() if not n: UpperCamelCase__ : Tuple = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: UpperCamelCase__ : Dict = n def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : T ): '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: UpperCamelCase__ : int = self.dq_store.pop() self.key_reference.remove(SCREAMING_SNAKE_CASE ) else: self.dq_store.remove(SCREAMING_SNAKE_CASE ) self.dq_store.appendleft(SCREAMING_SNAKE_CASE ) self.key_reference.add(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict ): '''simple docstring''' for k in self.dq_store: print(SCREAMING_SNAKE_CASE ) def __repr__( self : Union[str, Any] ): '''simple docstring''' return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : LRUCache[str | int] =LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
189
1
import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Tuple: a = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''encoder.deit.blocks.{i}.norm1.weight''', f'''encoder.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((f'''encoder.deit.blocks.{i}.norm1.bias''', f'''encoder.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.weight''', f'''encoder.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append( (f'''encoder.deit.blocks.{i}.attn.proj.bias''', f'''encoder.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append( (f'''encoder.deit.blocks.{i}.norm2.weight''', f'''encoder.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((f'''encoder.deit.blocks.{i}.norm2.bias''', f'''encoder.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.weight''', f'''encoder.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc1.bias''', f'''encoder.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append( (f'''encoder.deit.blocks.{i}.mlp.fc2.weight''', f'''encoder.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((f'''encoder.deit.blocks.{i}.mlp.fc2.bias''', f'''encoder.encoder.layer.{i}.output.dense.bias''')) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ]) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> List[str]: for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) a = state_dict.pop(f'''encoder.deit.blocks.{i}.attn.qkv.weight''') a = in_proj_weight[ : encoder_config.hidden_size, : ] a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] a = in_proj_weight[ -encoder_config.hidden_size :, : ] def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) -> Union[str, Any]: a = dct.pop(__UpperCamelCase) a = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> List[str]: if "handwritten" in checkpoint_url: a = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: a = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" a = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase).raw).convert("RGB") return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Dict: a = ViTConfig(image_size=3_84 , qkv_bias=__UpperCamelCase) a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: a = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder a = 10_24 a = 40_96 a = 24 a = 16 a = 10_24 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: a = False a = "relu" a = 10_24 a = True a = False a = False # load HuggingFace model a = ViTModel(__UpperCamelCase , add_pooling_layer=__UpperCamelCase) a = TrOCRForCausalLM(__UpperCamelCase) a = VisionEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase) model.eval() # load state_dict of original model, rename some keys a = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="cpu" , check_hash=__UpperCamelCase)["model"] a = create_rename_keys(__UpperCamelCase , __UpperCamelCase) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): a = state_dict.pop(__UpperCamelCase) if key.startswith("decoder") and "output_projection" not in key: a = val else: a = val # load state dict model.load_state_dict(__UpperCamelCase) # Check outputs on an image a = ViTImageProcessor(size=encoder_config.image_size) a = RobertaTokenizer.from_pretrained("roberta-large") a = TrOCRProcessor(__UpperCamelCase , __UpperCamelCase) a = processor(images=prepare_img(__UpperCamelCase) , return_tensors="pt").pixel_values # verify logits a = torch.tensor([[model.config.decoder.decoder_start_token_id]]) a = model(pixel_values=__UpperCamelCase , decoder_input_ids=__UpperCamelCase) a = outputs.logits a = torch.Size([1, 1, 5_02_65]) if "trocr-base-handwritten" in checkpoint_url: a = torch.tensor( [-1.4_502, -4.6_683, -0.5_347, -2.9_291, 9.1_435, -3.0_571, 8.9_764, 1.7_560, 8.7_358, -1.5_311]) elif "trocr-large-handwritten" in checkpoint_url: a = torch.tensor( [-2.6_437, -1.3_129, -2.2_596, -5.3_455, 6.3_539, 1.7_604, 5.4_991, 1.4_702, 5.6_113, 2.0_170]) elif "trocr-base-printed" in checkpoint_url: a = torch.tensor( [-5.6_816, -5.8_388, 1.1_398, -6.9_034, 6.8_505, -2.4_393, 1.2_284, -1.0_232, -1.9_661, -3.9_210]) elif "trocr-large-printed" in checkpoint_url: a = torch.tensor( [-6.0_162, -7.0_959, 4.4_155, -5.1_063, 7.0_468, -3.1_631, 2.6_466, -0.3_081, -0.8_106, -1.7_535]) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , __UpperCamelCase , atol=1e-3), "First elements of logits not as expected" Path(__UpperCamelCase).mkdir(exist_ok=__UpperCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(__UpperCamelCase) print(f'''Saving processor to {pytorch_dump_folder_path}''') processor.save_pretrained(__UpperCamelCase) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) lowercase__ : str = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
180
import math def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCamelCase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 0.1) -> int: a = 3 a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1): primes += is_prime(__UpperCamelCase) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
180
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowerCAmelCase ( datasets.BuilderConfig): _a = None class __lowerCAmelCase ( datasets.ArrowBasedBuilder): _a = PandasConfig def SCREAMING_SNAKE_CASE ( self: Any ): return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: List[str] ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowercase :int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCAmelCase , (str, list, tuple) ): lowercase :Union[str, Any] = data_files if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[int] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowercase :List[Any] = [] for split_name, files in data_files.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase :Optional[Any] = [dl_manager.iter_files(_lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCAmelCase , gen_kwargs={"files": files} ) ) return splits def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase :Any = table_cast(_lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(_lowerCAmelCase ) ): with open(_lowerCAmelCase , "rb" ) as f: lowercase :int = pa.Table.from_pandas(pd.read_pickle(_lowerCAmelCase ) ) yield i, self._cast_table(_lowerCAmelCase )
236
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[str] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
1
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowercase_ = logging.getLogger(__name__) lowercase_ = tf.data.AUTOTUNE def __UpperCamelCase () -> int: lowercase__ = argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=_UpperCAmelCase , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=_UpperCAmelCase , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=_UpperCAmelCase , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=_UpperCAmelCase , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=_UpperCAmelCase , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=_UpperCAmelCase , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=_UpperCAmelCase , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=_UpperCAmelCase , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=_UpperCAmelCase , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=_UpperCAmelCase , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=_UpperCAmelCase , default=1E-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=_UpperCAmelCase , default=1E-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=_UpperCAmelCase , default=0.1_5 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=_UpperCAmelCase , help='Model ID to upload to on the Hugging Face Hub.' ) lowercase__ = parser.parse_args() return args def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: try: if args.tpu_name: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(_UpperCAmelCase ) tf.tpu.experimental.initialize_tpu_system(_UpperCAmelCase ) return tpu def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = 0 for file in file_list: lowercase__ = file.split('/' )[-1] lowercase__ = re.search(R'-\d+-(\d+)\.tfrecord' , _UpperCAmelCase ).group(1 ) lowercase__ = int(_UpperCAmelCase ) num_samples += sample_count return num_samples def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[str]: lowercase__ = count_samples(_UpperCAmelCase ) lowercase__ = tf.data.Dataset.from_tensor_slices(_UpperCAmelCase ) if shuffle: lowercase__ = dataset.shuffle(len(_UpperCAmelCase ) ) lowercase__ = tf.data.TFRecordDataset(_UpperCAmelCase , num_parallel_reads=_UpperCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase__ = dataset.apply(tf.data.experimental.assert_cardinality(_UpperCAmelCase ) ) lowercase__ = dataset.map(_UpperCAmelCase , num_parallel_calls=_UpperCAmelCase ) if shuffle: assert shuffle_buffer_size is not None lowercase__ = dataset.shuffle(args.shuffle_buffer_size ) lowercase__ = dataset.batch(_UpperCAmelCase , drop_remainder=_UpperCAmelCase ) lowercase__ = dataset.map(_UpperCAmelCase , num_parallel_calls=_UpperCAmelCase ) lowercase__ = dataset.prefetch(_UpperCAmelCase ) return dataset def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: if not args.no_tpu: lowercase__ = initialize_tpu(_UpperCAmelCase ) lowercase__ = tf.distribute.TPUStrategy(_UpperCAmelCase ) else: lowercase__ = tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) lowercase__ = AutoTokenizer.from_pretrained(args.tokenizer ) lowercase__ = AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase__ = tokenizer.vocab_size lowercase__ = tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(F"""No .tfrecord files found in {args.train_dataset}.""" ) lowercase__ = tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(F"""No .tfrecord files found in {args.eval_dataset}.""" ) lowercase__ = count_samples(_UpperCAmelCase ) lowercase__ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase__ = steps_per_epoch * args.num_epochs with strategy.scope(): lowercase__ = TFAutoModelForMaskedLM.from_config(_UpperCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase__ = create_optimizer( num_train_steps=_UpperCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_UpperCAmelCase , metrics=['accuracy'] ) def decode_fn(_SCREAMING_SNAKE_CASE ): lowercase__ = { 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_UpperCAmelCase , _UpperCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase__ = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm_probability=args.mlm_probability , mlm=_UpperCAmelCase , return_tensors='tf' ) def mask_with_collator(_SCREAMING_SNAKE_CASE ): # TF really needs an isin() function lowercase__ = ( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) lowercase__ = data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(_UpperCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_UpperCAmelCase , ) return batch lowercase__ = args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase__ = prepare_dataset( _UpperCAmelCase , decode_fn=_UpperCAmelCase , mask_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , shuffle=_UpperCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase__ = prepare_dataset( _UpperCAmelCase , decode_fn=_UpperCAmelCase , mask_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase , shuffle=_UpperCAmelCase , ) lowercase__ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_UpperCAmelCase ) ) model.fit( _UpperCAmelCase , validation_data=_UpperCAmelCase , epochs=args.num_epochs , callbacks=_UpperCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowercase_ = parse_args() main(args)
351
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: lowercase__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) lowercase__ = state_dict['encoder.embed_tokens.weight'].shape[0] lowercase__ = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: lowercase__ = 'relu' lowercase__ = state_dict['decoder.embed_tokens.weight'] lowercase__ = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: lowercase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default="""facebook/mbart-large-cc25""", type=str, help="""Which huggingface architecture to use: mbart-large""", ) parser.add_argument("""--mbart_50""", action="""store_true""", help="""whether the model is mMART-50 checkpoint""") parser.add_argument("""--finetuned""", action="""store_true""", help="""whether the model is a fine-tuned checkpoint""") lowercase_ = parser.parse_args() lowercase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
269
0
"""simple docstring""" from collections.abc import Callable def A_ ( _lowerCAmelCase : Callable[[float], float], _lowerCAmelCase : float, _lowerCAmelCase : float ): """simple docstring""" _a = a _a = b if function(snake_case__ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case__ ) == 0: return b elif ( function(snake_case__ ) * function(snake_case__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: _a = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case__ ) == 0: return mid elif function(snake_case__ ) * function(snake_case__ ) < 0: _a = mid else: _a = mid _a = start + (end - start) / 2.0 return mid def A_ ( _lowerCAmelCase : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
320
import argparse import os import re __a = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __a = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings __a = re.compile(r'\s*\(\s*"(\S[^"]+)"') def a ( snake_case__: str , snake_case__: bool = False ): '''simple docstring''' with open(snake_case__ , '''r''' , encoding='''utf-8''' ) as f: lowercase_ = f.read() lowercase_ = content.split('''\n''' ) lowercase_ = [] lowercase_ = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase_ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase_ = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase_ = sorted(snake_case__ , key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def a ( snake_case__: bool = False ): '''simple docstring''' lowercase_ = [os.path.join(snake_case__ , snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith('''.py''' )] lowercase_ = [sort_auto_mapping(snake_case__ , overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): lowercase_ = [f for f, d in zip(snake_case__ , snake_case__ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __a = parser.parse_args() sort_all_auto_mappings(not args.check_only)
30
0
from __future__ import annotations from typing import Any class A : """simple docstring""" def __init__( self : int,lowercase_ : int,lowercase_ : int,lowercase_ : float = 0 )-> None: '''simple docstring''' A__ , A__ = row, column A__ = [[default_value for c in range(lowercase_ )] for r in range(lowercase_ )] def __str__( self : List[str] )-> str: '''simple docstring''' A__ = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier A__ = 0 for row_vector in self.array: for obj in row_vector: A__ = max(lowercase_,len(str(lowercase_ ) ) ) A__ = F'%{max_element_length}s' # Make string and return def single_line(lowercase_ : list[float] ) -> str: nonlocal string_format_identifier A__ = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase_ ) for row_vector in self.array ) return s def __repr__( self : Any )-> str: '''simple docstring''' return str(self ) def snake_case__ ( self : Optional[int],lowercase_ : tuple[int, int] )-> bool: '''simple docstring''' if not (isinstance(lowercase_,(list, tuple) ) and len(lowercase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : int,lowercase_ : tuple[int, int] )-> Any: '''simple docstring''' assert self.validate_indicies(lowercase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self : int,lowercase_ : tuple[int, int],lowercase_ : float )-> None: '''simple docstring''' assert self.validate_indicies(lowercase_ ) A__ = value def __add__( self : Optional[Any],lowercase_ : Matrix )-> Matrix: '''simple docstring''' assert isinstance(lowercase_,lowercase_ ) assert self.row == another.row and self.column == another.column # Add A__ = Matrix(self.row,self.column ) for r in range(self.row ): for c in range(self.column ): A__ = self[r, c] + another[r, c] return result def __neg__( self : Dict )-> Matrix: '''simple docstring''' A__ = Matrix(self.row,self.column ) for r in range(self.row ): for c in range(self.column ): A__ = -self[r, c] return result def __sub__( self : str,lowercase_ : Matrix )-> Matrix: '''simple docstring''' return self + (-another) def __mul__( self : List[Any],lowercase_ : int | float | Matrix )-> Matrix: '''simple docstring''' if isinstance(lowercase_,(int, float) ): # Scalar multiplication A__ = Matrix(self.row,self.column ) for r in range(self.row ): for c in range(self.column ): A__ = self[r, c] * another return result elif isinstance(lowercase_,lowercase_ ): # Matrix multiplication assert self.column == another.row A__ = Matrix(self.row,another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: A__ = F'Unsupported type given for another ({type(lowercase_ )})' raise TypeError(lowercase_ ) def snake_case__ ( self : List[Any] )-> Matrix: '''simple docstring''' A__ = Matrix(self.column,self.row ) for r in range(self.row ): for c in range(self.column ): A__ = self[r, c] return result def snake_case__ ( self : List[str],lowercase_ : Matrix,lowercase_ : Matrix )-> Any: '''simple docstring''' assert isinstance(lowercase_,lowercase_ ) and isinstance(lowercase_,lowercase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A__ = v.transpose() A__ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case( ) -> None: A__ = Matrix(3 , 3 , 0 ) for i in range(3 ): A__ = 1 print(f'a^(-1) is {ainv}' ) # u, v A__ = Matrix(3 , 1 , 0 ) A__ , A__ , A__ = 1, 2, -3 A__ = Matrix(3 , 1 , 0 ) A__ , A__ , A__ = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}' ) def _snake_case( ) -> None: import doctest doctest.testmod() testa()
353
import datasets from .evaluate import evaluate lowercase_ = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowercase_ = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowercase_ = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def snake_case__ ( self : List[Any] )-> Tuple: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ),codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'],reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'],) def snake_case__ ( self : str,lowercase_ : List[Any],lowercase_ : Dict )-> List[str]: '''simple docstring''' A__ = {prediction['id']: prediction['prediction_text'] for prediction in predictions} A__ = [ { 'paragraphs': [ { 'qas': [ { 'answers': [{'text': answer_text} for answer_text in ref['answers']['text']], 'id': ref['id'], } for ref in references ] } ] } ] A__ = evaluate(dataset=lowercase_,predictions=lowercase_ ) return score
282
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCamelCase : Dict = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase : Union[str, Any] = concatenate_datasets UpperCamelCase : Any = DownloadConfig UpperCamelCase : List[Any] = DownloadManager UpperCamelCase : Dict = DownloadMode UpperCamelCase : Any = DownloadConfig UpperCamelCase : Union[str, Any] = DownloadMode UpperCamelCase : Any = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
def a( A : int ) -> bool: """simple docstring""" if not isinstance(_snake_case , _snake_case ): a = f'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 0: return False a = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
352
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "ViTImageProcessor" __A = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase_ , ) a = kwargs.pop("feature_extractor" ) a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__(self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: a = self.tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if images is not None: a = self.image_processor(lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) if visual_prompt is not None and images is not None: a = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: a = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: a = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowerCamelCase_ ) , tensor_type=lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCamelCase_ (self , *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase_ , ) return self.image_processor_class @property def UpperCamelCase_ (self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase_ , ) return self.image_processor
71
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: _A = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_28, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_42, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } _A = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_28, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_42, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(lowerCAmelCase_ ) , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: _A = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ ) , x.transpose() ) ) _A = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def UpperCAmelCase ( self ) -> List[Any]: _A = np.random.randn(3 , 4 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ ) , transpose(lowerCAmelCase_ ).numpy() ) ) _A = np.random.randn(3 , 4 , 5 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ , axes=(1, 2, 0) ) , transpose(lowerCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> Union[str, Any]: _A = np.random.randn(3 , 4 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ ) , transpose(lowerCAmelCase_ ).numpy() ) ) _A = np.random.randn(3 , 4 , 5 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ , axes=(1, 2, 0) ) , transpose(lowerCAmelCase_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Union[str, Any]: _A = np.random.randn(3 , 4 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ ) , np.asarray(transpose(lowerCAmelCase_ ) ) ) ) _A = np.random.randn(3 , 4 , 5 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(transpose(lowerCAmelCase_ , axes=(1, 2, 0) ) , np.asarray(transpose(lowerCAmelCase_ , axes=(1, 2, 0) ) ) ) ) def UpperCAmelCase ( self ) -> List[str]: _A = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (4, 3) ) , np.reshape(lowerCAmelCase_ , (4, 3) ) ) ) _A = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (12, 5) ) , np.reshape(lowerCAmelCase_ , (12, 5) ) ) ) @require_torch def UpperCAmelCase ( self ) -> int: _A = np.random.randn(3 , 4 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (4, 3) ) , reshape(lowerCAmelCase_ , (4, 3) ).numpy() ) ) _A = np.random.randn(3 , 4 , 5 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (12, 5) ) , reshape(lowerCAmelCase_ , (12, 5) ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> Optional[Any]: _A = np.random.randn(3 , 4 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (4, 3) ) , reshape(lowerCAmelCase_ , (4, 3) ).numpy() ) ) _A = np.random.randn(3 , 4 , 5 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (12, 5) ) , reshape(lowerCAmelCase_ , (12, 5) ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> List[str]: _A = np.random.randn(3 , 4 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (4, 3) ) , np.asarray(reshape(lowerCAmelCase_ , (4, 3) ) ) ) ) _A = np.random.randn(3 , 4 , 5 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(reshape(lowerCAmelCase_ , (12, 5) ) , np.asarray(reshape(lowerCAmelCase_ , (12, 5) ) ) ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ ) , np.squeeze(lowerCAmelCase_ ) ) ) _A = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ , axis=2 ) , np.squeeze(lowerCAmelCase_ , axis=2 ) ) ) @require_torch def UpperCAmelCase ( self ) -> Optional[int]: _A = np.random.randn(1 , 3 , 4 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ ) , squeeze(lowerCAmelCase_ ).numpy() ) ) _A = np.random.randn(1 , 4 , 1 , 5 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ , axis=2 ) , squeeze(lowerCAmelCase_ , axis=2 ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> str: _A = np.random.randn(1 , 3 , 4 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ ) , squeeze(lowerCAmelCase_ ).numpy() ) ) _A = np.random.randn(1 , 4 , 1 , 5 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ , axis=2 ) , squeeze(lowerCAmelCase_ , axis=2 ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Optional[int]: _A = np.random.randn(1 , 3 , 4 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ ) , np.asarray(squeeze(lowerCAmelCase_ ) ) ) ) _A = np.random.randn(1 , 4 , 1 , 5 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(squeeze(lowerCAmelCase_ , axis=2 ) , np.asarray(squeeze(lowerCAmelCase_ , axis=2 ) ) ) ) def UpperCAmelCase ( self ) -> Any: _A = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase_ , axis=1 ) , np.expand_dims(lowerCAmelCase_ , axis=1 ) ) ) @require_torch def UpperCAmelCase ( self ) -> int: _A = np.random.randn(3 , 4 ) _A = torch.tensor(lowerCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase_ , axis=1 ) , expand_dims(lowerCAmelCase_ , axis=1 ).numpy() ) ) @require_tf def UpperCAmelCase ( self ) -> int: _A = np.random.randn(3 , 4 ) _A = tf.constant(lowerCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase_ , axis=1 ) , expand_dims(lowerCAmelCase_ , axis=1 ).numpy() ) ) @require_flax def UpperCAmelCase ( self ) -> Optional[int]: _A = np.random.randn(3 , 4 ) _A = jnp.array(lowerCAmelCase_ ) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase_ , axis=1 ) , np.asarray(expand_dims(lowerCAmelCase_ , axis=1 ) ) ) )
180
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Any = '''biogpt''' def __init__( self , lowerCAmelCase_=4_23_84 , lowerCAmelCase_=10_24 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=40_96 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10_24 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , **lowerCAmelCase_ , ) -> Tuple: _A = vocab_size _A = max_position_embeddings _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = scale_embedding _A = use_cache _A = layerdrop _A = activation_dropout super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
180
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') A : Optional[Any] = {'target_lang': 'fi', 'source_lang': 'en'} A : List[Any] = '>>zh<<' A : int = 'Helsinki-NLP/' if is_torch_available(): A : Tuple = 'pt' elif is_tf_available(): A : Any = 'tf' else: A : Any = 'jax' @require_sentencepiece class __A( a , unittest.TestCase ): snake_case_ = MarianTokenizer snake_case_ = False snake_case_ = True def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' super().setUp() __a = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] __a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __a = Path(self.tmpdirname ) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_snake_case , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_snake_case , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) __a = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> MarianTokenizer: '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return ( "This is a test", "This is a test", ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''</s>''' __a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_snake_case ) , 9 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) __a = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) __a = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(_snake_case , batch.input_ids[0] ) __a = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_snake_case ) __a = [x.name for x in Path(_snake_case ).glob('''*''' )] self.assertIn('''source.spm''' , _snake_case ) MarianTokenizer.from_pretrained(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.get_tokenizer() __a = tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''] , padding=_snake_case , truncation=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def SCREAMING_SNAKE_CASE_ ( self ) -> str: '''simple docstring''' __a = self.get_tokenizer() __a = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_snake_case , return_tensors=_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = {'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) __a = '''Tämä on testi''' __a = '''This is a test''' __a = [76, 7, 2_047, 2] __a = [69, 12, 11, 940, 2] __a = tokenizer(_snake_case ).input_ids self.assertListEqual(_snake_case , _snake_case ) __a = tokenizer(text_target=_snake_case ).input_ids self.assertListEqual(_snake_case , _snake_case ) __a = tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case )
33
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : int = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ['MobileViTFeatureExtractor'] A : str = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
33
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
38
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'torchsde'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: str) -> Dict: """simple docstring""" requires_backends(self , ["torch", "torchsde"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "torchsde"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Any) -> Optional[int]: """simple docstring""" requires_backends(cls , ["torch", "torchsde"])
269
0
import functools from typing import Any def _A ( _a : str , _a : list[str] ): """simple docstring""" if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not all( isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie A = {} A = "WORD_KEEPER" for word in words: A = trie for c in word: if c not in trie_node: A = {} A = trie_node[c] A = True A = len(_lowerCamelCase ) # Dynamic programming method @functools.cache def is_breakable(_a : int ) -> bool: if index == len_string: return True A = trie for i in range(_lowerCamelCase , _lowerCamelCase ): A = trie_node.get(string[i] , _lowerCamelCase ) if trie_node is None: return False if trie_node.get(_lowerCamelCase , _lowerCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" def _A ( _a : int ): """simple docstring""" A = abs(_a ) A = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def _A ( _a : int ): """simple docstring""" A = abs(_a ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def _A ( _a : int ): """simple docstring""" return sum(int(_a ) for c in str(abs(_a ) ) ) def _A ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_a : Callable , _a : int ) -> None: A = f'{func.__name__}({value})' A = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(_a )} -- {timing:.4f} seconds' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_a , _a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
77
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : int = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: Optional[int] = "roformer" def __init__( self : List[str] , A : List[Any]=50000 , A : Dict=None , A : Tuple=768 , A : Optional[Any]=12 , A : Tuple=12 , A : Dict=3072 , A : List[Any]="gelu" , A : Optional[Any]=0.1 , A : str=0.1 , A : int=1536 , A : Optional[int]=2 , A : List[str]=0.02 , A : List[str]=1E-12 , A : Optional[int]=0 , A : List[Any]=False , A : List[str]=True , **A : Dict , ): super().__init__(pad_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Optional[Any] = rotary_value _UpperCAmelCase : Optional[int] = use_cache class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @property def _A ( self : Tuple ): if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : Optional[Any] = {0: "batch", 1: "sequence"} _UpperCAmelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
31
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _lowerCamelCase : int = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def A ( self : Union[str, Any] , lowercase : Optional[int]=32 ): '''simple docstring''' set_seed(0 ) _snake_case = UNetaDModel(sample_size=lowercase , in_channels=3 , out_channels=3 ) _snake_case = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def A ( self : List[str] ): '''simple docstring''' _snake_case = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _snake_case = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=lowercase , ) _snake_case = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=lowercase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _snake_case = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(lowercase ) for _ in range(4 )] _snake_case = [torch.randn((4, 3, 32, 32) ).to(lowercase ) for _ in range(4 )] _snake_case = [torch.randint(0 , 1_000 , (4,) ).long().to(lowercase ) for _ in range(4 )] # train with a DDPM scheduler _snake_case , _snake_case = self.get_model_optimizer(resolution=32 ) model.train().to(lowercase ) for i in range(4 ): optimizer.zero_grad() _snake_case = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _snake_case = model(lowercase , timesteps[i] ).sample _snake_case = torch.nn.functional.mse_loss(lowercase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _snake_case , _snake_case = self.get_model_optimizer(resolution=32 ) model.train().to(lowercase ) for i in range(4 ): optimizer.zero_grad() _snake_case = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _snake_case = model(lowercase , timesteps[i] ).sample _snake_case = torch.nn.functional.mse_loss(lowercase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-5 ) ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1E-5 ) )
282
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class a ( UpperCAmelCase ): _lowercase = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
350
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( UpperCAmelCase ): _lowercase = (PNDMScheduler,) _lowercase = (("num_inference_steps", 5_0),) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**A_ ) return config def _UpperCAmelCase ( self , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : int = dict(self.forward_default_kwargs ) _UpperCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Dict = 0.1 * sample _UpperCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Dict = self.get_scheduler_config(**A_ ) _UpperCAmelCase : Any = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(A_ ) new_scheduler.set_timesteps(A_ ) # copy over dummy past residuals _UpperCAmelCase : Union[str, Any] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Any = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Union[str, Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : Any = dict(self.forward_default_kwargs ) _UpperCAmelCase : int = kwargs.pop("num_inference_steps" , A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : Any = 0.1 * sample _UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : Any = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A_ ) _UpperCAmelCase : str = scheduler_class.from_pretrained(A_ ) # copy over dummy past residuals new_scheduler.set_timesteps(A_ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : List[Any] = dummy_past_residuals[:] _UpperCAmelCase : Tuple = scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : Union[str, Any] = new_scheduler.step_prk(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step_plms(A_ , A_ , A_ , **A_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config(**A_ ) _UpperCAmelCase : List[str] = scheduler_class(**A_ ) _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : Optional[int] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(A_ ) for i, t in enumerate(scheduler.prk_timesteps ): _UpperCAmelCase : Dict = model(A_ , A_ ) _UpperCAmelCase : int = scheduler.step_prk(A_ , A_ , A_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _UpperCAmelCase : Any = model(A_ , A_ ) _UpperCAmelCase : Any = scheduler.step_plms(A_ , A_ , A_ ).prev_sample return sample def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = dict(self.forward_default_kwargs ) _UpperCAmelCase : str = kwargs.pop("num_inference_steps" , A_ ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**A_ ) _UpperCAmelCase : int = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample if num_inference_steps is not None and hasattr(A_ , "set_timesteps" ): scheduler.set_timesteps(A_ ) elif num_inference_steps is not None and not hasattr(A_ , "set_timesteps" ): _UpperCAmelCase : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCAmelCase : Any = dummy_past_residuals[:] _UpperCAmelCase : Any = scheduler.step_prk(A_ , 0 , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_prk(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCAmelCase : Optional[int] = scheduler.step_plms(A_ , 0 , A_ , **A_ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_plms(A_ , 1 , A_ , **A_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCAmelCase ( self ): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=A_ ) _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(steps_offset=1 ) _UpperCAmelCase : str = scheduler_class(**A_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _UpperCAmelCase ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = 27 for scheduler_class in self.scheduler_classes: _UpperCAmelCase : str = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(A_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _UpperCAmelCase : Dict = scheduler.step_prk(A_ , A_ , A_ ).prev_sample def _UpperCAmelCase ( self ): '''simple docstring''' with self.assertRaises(A_ ): _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**A_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.full_loop() _UpperCAmelCase : int = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : Union[str, Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Dict = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.full_loop(set_alpha_to_one=A_ , beta_start=0.01 ) _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(A_ ) ) _UpperCAmelCase : Dict = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
189
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A_ ( tf.keras.layers.Layer ): def __init__( self : Tuple , snake_case_ : Dict[str, int] , snake_case_ : List[str] , snake_case_ : int = None , snake_case_ : int = None ): super().__init__() _UpperCAmelCase = pad_token_id _UpperCAmelCase = max_length _UpperCAmelCase = vocab _UpperCAmelCase = merges _UpperCAmelCase = BytePairTokenizer(snake_case_ , snake_case_ , sequence_length=snake_case_ ) @classmethod def lowercase ( cls : Optional[int] , snake_case_ : GPTaTokenizer , *snake_case_ : List[Any] , **snake_case_ : Any ): _UpperCAmelCase = [" ".join(snake_case_ ) for m in tokenizer.bpe_ranks.keys()] _UpperCAmelCase = tokenizer.get_vocab() return cls(snake_case_ , snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowercase ( cls : Optional[int] , snake_case_ : Union[str, os.PathLike] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): _UpperCAmelCase = GPTaTokenizer.from_pretrained(snake_case_ , *snake_case_ , **snake_case_ ) return cls.from_tokenizer(snake_case_ , *snake_case_ , **snake_case_ ) @classmethod def lowercase ( cls : int , snake_case_ : List[Any] ): return cls(**snake_case_ ) def lowercase ( self : str ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase ( self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : int = None ): _UpperCAmelCase = self.tf_tokenizer(snake_case_ ) _UpperCAmelCase = tf.ones_like(snake_case_ ) if self.pad_token_id is not None: # pad the tokens up to max length _UpperCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: _UpperCAmelCase , _UpperCAmelCase = pad_model_inputs( snake_case_ , max_seq_length=snake_case_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
22
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A_ :List[str] = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] A_ :Optional[Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def A ( a_ ,a_ ) -> str: __UpperCamelCase : Any ={ 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __UpperCamelCase : Tuple =int(re.match(r'.*layer_(\d*).*' ,a_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def A ( a_ ) -> Any: if dtype == torch.bool: return 1 / 8 __UpperCamelCase : Dict =re.search(r'[^\d](\d+)$' ,str(a_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) __UpperCamelCase : Tuple =int(bit_search.groups()[0] ) return bit_size // 8 def A ( a_ ,a_ ,a_ ,a_ ,a_ ) -> Dict: # Construct model if bloom_config_file == "": __UpperCamelCase : List[Any] =BloomConfig() else: __UpperCamelCase : List[str] =BloomConfig.from_json_file(a_ ) if shard_model: __UpperCamelCase : int =os.listdir(a_ ) __UpperCamelCase : Union[str, Any] =sorted(filter(lambda a_ : s.startswith('layer' ) and "model_00" in s ,a_ ) ) __UpperCamelCase : Optional[Any] ={'weight_map': {}, 'metadata': {}} __UpperCamelCase : Dict =0 __UpperCamelCase : int =None __UpperCamelCase : Any =BloomConfig() for j, file in enumerate(a_ ): print('Processing file: {}'.format(a_ ) ) __UpperCamelCase : Optional[int] =None for i in range(a_ ): # load all TP files __UpperCamelCase : Dict =file.replace('model_00' ,F'model_0{i}' ) __UpperCamelCase : Optional[Any] =torch.load(os.path.join(a_ ,a_ ) ,map_location='cpu' ) # Rename keys in the transformers names __UpperCamelCase : int =list(temp.keys() ) for key in keys: __UpperCamelCase : Dict =temp.pop(a_ ) if tensors is None: __UpperCamelCase : Any =temp else: for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __UpperCamelCase : List[Any] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __UpperCamelCase : Any =torch.cat([tensors[key], temp[key]] ,dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __UpperCamelCase : Optional[Any] =tensors[key] / pretraining_tp torch.save( a_ ,os.path.join( a_ ,'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) ,str(len(a_ ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): __UpperCamelCase : Union[str, Any] =tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __UpperCamelCase : int ='pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) ,str(len(a_ ) ).zfill(5 ) ) __UpperCamelCase : Union[str, Any] =BloomConfig() __UpperCamelCase : Tuple =pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase : Optional[int] =total_size with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(a_ ,WEIGHTS_NAME + '.index.json' ) ,'w' ,encoding='utf-8' ) as f: __UpperCamelCase : List[Any] =json.dumps(a_ ,indent=2 ,sort_keys=a_ ) + '\n' f.write(a_ ) else: __UpperCamelCase : List[Any] =BloomModel(a_ ) __UpperCamelCase : Optional[Any] =os.listdir(a_ ) __UpperCamelCase : Dict =sorted(filter(lambda a_ : s.startswith('layer' ) and "model_00" in s ,a_ ) ) __UpperCamelCase : Any =None for i, file in enumerate(a_ ): __UpperCamelCase : Union[str, Any] =None for i in range(a_ ): # load all TP files __UpperCamelCase : Optional[Any] =file.replace('model_00' ,F'model_0{i}' ) __UpperCamelCase : str =torch.load(os.path.join(a_ ,a_ ) ,map_location='cpu' ) # Rename keys in the transformers names __UpperCamelCase : List[str] =list(temp.keys() ) for key in keys: __UpperCamelCase : Union[str, Any] =temp.pop(a_ ) if tensors is None: __UpperCamelCase : Optional[Any] =temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __UpperCamelCase : Optional[int] =1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __UpperCamelCase : int =torch.cat([tensors[key], temp[key]] ,dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __UpperCamelCase : Dict =tensors[key] / pretraining_tp __UpperCamelCase : str =model.load_state_dict(a_ ,strict=a_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __UpperCamelCase : str =set(other_keys.missing_keys ) else: __UpperCamelCase : int =missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(a_ ,exist_ok=a_ ) __UpperCamelCase : Optional[int] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Dict =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __UpperCamelCase : List[str] =model.to(config.torch_dtype ) torch.save(model.state_dict() ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) A_ :str = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
71
0
"""simple docstring""" import qiskit def _UpperCAmelCase ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]: _snake_case = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _snake_case = qiskit.QuantumCircuit(A__ , A__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _snake_case = qiskit.execute(A__ , A__ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A__ ) if __name__ == "__main__": UpperCAmelCase__ = single_qubit_measure(2, 2) print(F"Total count for various states are: {counts}")
357
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): __a = MODEL_FOR_MASKED_LM_MAPPING __a = TF_MODEL_FOR_MASKED_LM_MAPPING def lowercase ( self : Optional[int] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 38015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 25506, '''token_str''': ''' accuser''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : List[str] ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS'''}, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 13606, '''token_str''': ''' Clara'''}, ] , ) _snake_case = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 35676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 16416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowercase ( self : Optional[Any] ): _snake_case = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() _snake_case = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) @slow @require_torch def lowercase ( self : Dict ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowerCamelCase ) @slow @require_tf def lowercase ( self : Tuple ): _snake_case = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowerCamelCase ) def lowercase ( self : Tuple , _lowerCamelCase : Optional[int] ): _snake_case = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) _snake_case = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 12790, '''token_str''': ''' Lyon''', }, ] , ) _snake_case = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 13606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowercase ( self : str ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) @require_tf def lowercase ( self : Any ): _snake_case = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) _snake_case = None _snake_case = None self.run_pipeline_test(_lowerCamelCase , [] ) def lowercase ( self : int , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[str] ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def lowercase ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): _snake_case = fill_masker.tokenizer _snake_case = fill_masker.model _snake_case = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , ) with self.assertRaises(_lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowerCamelCase ): fill_masker('''This is''' ) self.run_test_top_k(_lowerCamelCase , _lowerCamelCase ) self.run_test_targets(_lowerCamelCase , _lowerCamelCase ) self.run_test_top_k_targets(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_multiple_masks(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[int] ): _snake_case = tokenizer.get_vocab() _snake_case = sorted(vocab.keys() )[:2] # Pipeline argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , targets=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Call argument _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) _snake_case = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Score equivalence _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''token_str'''] for top_mask in outputs] _snake_case = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ) == set(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=_lowerCamelCase ) _snake_case = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) # Raises with invalid with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def lowercase ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , top_k=2 ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): _snake_case = tokenizer.get_vocab() _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) # top_k=2, ntargets=3 _snake_case = sorted(vocab.keys() )[:3] _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results _snake_case = [el['''token_str'''] for el in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ).issubset(_lowerCamelCase ): _snake_case = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = tokenizer.get_vocab() # String duplicates + id duplicates _snake_case = sorted(vocab.keys() )[:3] _snake_case = [targets[0], targets[1], targets[0], targets[2], targets[1]] _snake_case = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=_lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCamelCase ) , 3 ) def lowercase ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple ): _snake_case = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) _snake_case = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , )
40
0
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Dict = "AutoImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] = "AutoTokenizer" def __init__( self : Optional[Any] , A : Any=None , A : List[Any]=None , **A : List[str] ) -> Optional[int]: lowercase_ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , A , ) lowercase_ : Optional[Any] = kwargs.pop('''feature_extractor''' ) lowercase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(A , A ) lowercase_ : List[Any] = self.image_processor lowercase_ : int = False def __call__( self : Tuple , *A : Optional[Any] , **A : List[str] ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A , **A ) lowercase_ : int = kwargs.pop('''images''' , A ) lowercase_ : List[str] = kwargs.pop('''text''' , A ) if len(A ) > 0: lowercase_ : List[Any] = args[0] lowercase_ : Optional[int] = args[1:] if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: lowercase_ : str = self.image_processor(A , *A , **A ) if text is not None: lowercase_ : Dict = self.tokenizer(A , **A ) if text is None: return inputs elif images is None: return encodings else: lowercase_ : int = encodings['''input_ids'''] return inputs def A ( self : int , *A : Tuple , **A : Optional[Any] ) -> List[str]: return self.tokenizer.batch_decode(*A , **A ) def A ( self : Any , *A : List[str] , **A : Optional[Any] ) -> Optional[Any]: return self.tokenizer.decode(*A , **A ) @contextmanager def A ( self : Dict ) -> Union[str, Any]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your images inputs, or in a separate call.''' ) lowercase_ : Union[str, Any] = True lowercase_ : Optional[int] = self.tokenizer yield lowercase_ : Dict = self.image_processor lowercase_ : List[Any] = False def A ( self : Any , A : Optional[Any] , A : Optional[int]=False , A : Any=None ) -> Dict: if added_vocab is None: lowercase_ : Tuple = self.tokenizer.get_added_vocab() lowercase_ : Optional[int] = {} while tokens: lowercase_ : int = re.search(R'''<s_(.*?)>''' , A , re.IGNORECASE ) if start_token is None: break lowercase_ : Tuple = start_token.group(1 ) lowercase_ : Optional[Any] = re.search(RF'''</s_{key}>''' , A , re.IGNORECASE ) lowercase_ : int = start_token.group() if end_token is None: lowercase_ : int = tokens.replace(A , '''''' ) else: lowercase_ : Any = end_token.group() lowercase_ : int = re.escape(A ) lowercase_ : Tuple = re.escape(A ) lowercase_ : Optional[int] = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , A , re.IGNORECASE ) if content is not None: lowercase_ : int = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase_ : List[Any] = self.tokenajson(A , is_inner_value=A , added_vocab=A ) if value: if len(A ) == 1: lowercase_ : Optional[int] = value[0] lowercase_ : str = value else: # leaf nodes lowercase_ : int = [] for leaf in content.split(R'''<sep/>''' ): lowercase_ : Optional[int] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase_ : List[Any] = leaf[1:-2] # for categorical special tokens output[key].append(A ) if len(output[key] ) == 1: lowercase_ : Dict = output[key][0] lowercase_ : int = tokens[tokens.find(A ) + len(A ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=A , added_vocab=A ) if len(A ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def A ( self : Any ) -> str: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , A , ) return self.image_processor_class @property def A ( self : Optional[int] ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , A , ) return self.image_processor
33
"""simple docstring""" __A : Any = { '''Pillow''': '''Pillow''', '''accelerate''': '''accelerate>=0.11.0''', '''compel''': '''compel==0.1.8''', '''black''': '''black~=23.1''', '''datasets''': '''datasets''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.13.2''', '''requests-mock''': '''requests-mock==1.10.0''', '''importlib_metadata''': '''importlib_metadata''', '''invisible-watermark''': '''invisible-watermark''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2''', '''jaxlib''': '''jaxlib>=0.1.65''', '''Jinja2''': '''Jinja2''', '''k-diffusion''': '''k-diffusion>=0.0.12''', '''torchsde''': '''torchsde''', '''note_seq''': '''note_seq''', '''librosa''': '''librosa''', '''numpy''': '''numpy''', '''omegaconf''': '''omegaconf''', '''parameterized''': '''parameterized''', '''protobuf''': '''protobuf>=3.20.3,<4''', '''pytest''': '''pytest''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''ruff''': '''ruff>=0.0.241''', '''safetensors''': '''safetensors''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''scipy''': '''scipy''', '''onnx''': '''onnx''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''tensorboard''': '''tensorboard''', '''torch''': '''torch>=1.4''', '''torchvision''': '''torchvision''', '''transformers''': '''transformers>=4.25.1''', '''urllib3''': '''urllib3<=2.0.0''', }
33
1
'''simple docstring''' def UpperCAmelCase_ (__a : int ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError('Input value must be a \'int\' type' ) return bin(_lowerCAmelCase ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import sys def UpperCAmelCase_ (__a : List[str] ): """simple docstring""" _a : List[str] = len(__a ) _a : Dict = [[0 for x in range(__a )] for x in range(__a )] _a : Union[str, Any] = [[0 for x in range(__a )] for x in range(__a )] for chain_length in range(2 , __a ): for a in range(1 , n - chain_length + 1 ): _a : Tuple = a + chain_length - 1 _a : Any = sys.maxsize for c in range(__a , __a ): _a : Optional[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _a : Dict = cost _a : Any = c return matrix, sol def UpperCAmelCase_ (__a : Tuple , __a : List[str] , __a : Dict ): """simple docstring""" if i == j: print('A' + str(__a ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(__a , __a , optimal_solution[i][j] ) print_optiomal_solution(__a , optimal_solution[i][j] + 1 , __a ) print(')' , end=' ' ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = [3_0, 3_5, 1_5, 5, 1_0, 2_0, 2_5] _a : Any = len(__a ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _a, _a : Union[str, Any] = matrix_chain_order(__a ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(__a , 1 , n - 1 ) if __name__ == "__main__": main()
5
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A = logging.get_logger(__name__) _A = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } _A = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCAmelCase ( ): __UpperCamelCase =( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __UpperCamelCase =bs[:] __UpperCamelCase =0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE__ ) cs.append(2**8 + n ) n += 1 __UpperCamelCase =[chr(SCREAMING_SNAKE_CASE__ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =set() __UpperCamelCase =word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCamelCase =char return pairs class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Dict = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> Union[str, Any]: __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase =json.load(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =errors # how to handle errors in decoding __UpperCamelCase =bytes_to_unicode() __UpperCamelCase ={v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: __UpperCamelCase =merges_handle.read().split('\n' )[1:-1] __UpperCamelCase =[tuple(merge.split() ) for merge in bpe_merges] __UpperCamelCase =dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCamelCase ={} __UpperCamelCase =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCamelCase =re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _a ( self ) -> Union[str, Any]: return len(self.encoder ) def _a ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self , A_ ) -> List[str]: if token in self.cache: return self.cache[token] __UpperCamelCase =tuple(A_ ) __UpperCamelCase =get_pairs(A_ ) if not pairs: return token while True: __UpperCamelCase =min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __UpperCamelCase , __UpperCamelCase =bigram __UpperCamelCase =[] __UpperCamelCase =0 while i < len(A_ ): try: __UpperCamelCase =word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCamelCase =j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCamelCase =tuple(A_ ) __UpperCamelCase =new_word if len(A_ ) == 1: break else: __UpperCamelCase =get_pairs(A_ ) __UpperCamelCase =' '.join(A_ ) __UpperCamelCase =word return word def _a ( self , A_ ) -> Tuple: __UpperCamelCase =[] for token in re.findall(self.pat , A_ ): __UpperCamelCase =''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) ) return bpe_tokens def _a ( self , A_ ) -> Dict: return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def _a ( self , A_ ) -> Optional[Any]: return self.decoder.get(A_ ) def _a ( self , A_ ) -> int: __UpperCamelCase =''.join(A_ ) __UpperCamelCase =bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) __UpperCamelCase =0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) __UpperCamelCase =token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , A_ , A_=False , **A_ ) -> Tuple: __UpperCamelCase =kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): __UpperCamelCase =' ' + text return (text, kwargs) def _a ( self , A_ , A_ = None ) -> Tuple: return token_ids_a + [self.eos_token_id] def _a ( self , A_ ) -> List[int]: __UpperCamelCase =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) __UpperCamelCase =' '.join(A_ ) __UpperCamelCase =self.encode(A_ ) if len(A_ ) > self.model_max_length: __UpperCamelCase =input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
62
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def a_ ( _lowerCAmelCase : jnp.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : float = 1 , _lowerCAmelCase : float = 1 , _lowerCAmelCase : float = 1.0E4 , _lowerCAmelCase : bool = False , _lowerCAmelCase : float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f"""Embedding dimension {embedding_dim} should be even""" lowercase__ : Optional[Any] = float(embedding_dim // 2 ) lowercase__ : Optional[Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowercase__ : Any = min_timescale * jnp.exp(jnp.arange(_lowerCAmelCase , dtype=jnp.floataa ) * -log_timescale_increment ) lowercase__ : Dict = jnp.expand_dims(_lowerCAmelCase , 1 ) * jnp.expand_dims(_lowerCAmelCase , 0 ) # scale embeddings lowercase__ : List[str] = scale * emb if flip_sin_to_cos: lowercase__ : Dict = jnp.concatenate([jnp.cos(_lowerCAmelCase ), jnp.sin(_lowerCAmelCase )] , axis=1 ) else: lowercase__ : Optional[int] = jnp.concatenate([jnp.sin(_lowerCAmelCase ), jnp.cos(_lowerCAmelCase )] , axis=1 ) lowercase__ : List[Any] = jnp.reshape(_lowerCAmelCase , [jnp.shape(_lowerCAmelCase )[0], embedding_dim] ) return signal class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ : int = 3_2 lowerCamelCase__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self , a ) -> Any: lowercase__ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(a ) lowercase__ : Union[str, Any] = nn.silu(a ) lowercase__ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(a ) return temb class UpperCAmelCase_ ( nn.Module): lowerCamelCase__ : int = 3_2 lowerCamelCase__ : bool = False lowerCamelCase__ : float = 1 @nn.compact def __call__( self , a ) -> str: return get_sinusoidal_embeddings( a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
77
0
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> np.ndarray: lowerCamelCase__ : Union[str, Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> np.ndarray: return (gray > 127) & (gray <= 255) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> np.ndarray: lowerCamelCase__ : Tuple = np.zeros_like(UpperCamelCase ) lowerCamelCase__ : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCamelCase__ : List[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCamelCase__ : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCamelCase__ : List[str] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _A : Optional[int] =Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' _A : str =np.array(Image.open(lena_path)) # kernel to be applied _A : Optional[Any] =np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _A : str =dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _A : Any =Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
354
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Union[str, Any] =8 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple: lowerCamelCase__ : List[str] = x.device lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 ) lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" ) lowerCamelCase__ : Tuple = ((x & mask) != 0).float() lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" ) lowerCamelCase__ : Optional[int] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]: lowerCamelCase__ : List[Any] = x.device lowerCamelCase__ : Dict = (x > 0).int() lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[timestep] lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ : Dict = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu""" lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise lowerCamelCase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ : List[str] = None # 1. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[t] lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ : str = 1 - alpha_prod_t lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ : str = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ : Optional[Any] = 0 if t > 0: lowerCamelCase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise lowerCamelCase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class _lowercase ( _lowercase ): def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ): super().__init__() lowerCamelCase__ : Optional[int] = bit_scale lowerCamelCase__ : List[Any] = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale lowerCamelCase__ : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ ) if output_type == "pil": lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
129
0
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : List[str] = torch.exp(A_ ) lowerCAmelCase__ : Tuple = torch.sum(A_ , dim=1 ) # sum of exp(x_i) lowerCAmelCase__ : Any = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(A_ ) - B / A class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : str ,lowercase_ : Optional[int] ): super().__init__() lowerCAmelCase__ : Tuple = config.output_attentions lowerCAmelCase__ : List[str] = config.output_hidden_states lowerCAmelCase__ : Union[str, Any] = nn.ModuleList([BertLayer(lowercase_ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase__ : int = nn.ModuleList([BertHighway(lowercase_ ) for _ in range(config.num_hidden_layers )] ) lowerCAmelCase__ : Any = [-1 for _ in range(config.num_hidden_layers )] def __lowerCAmelCase ( self : List[str] ,lowercase_ : List[Any] ): if (type(lowercase_ ) is float) or (type(lowercase_ ) is int): for i in range(len(self.early_exit_entropy ) ): lowerCAmelCase__ : List[str] = x else: lowerCAmelCase__ : Optional[Any] = x def __lowerCAmelCase ( self : Any ,lowercase_ : int ): lowerCAmelCase__ : Any = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __lowerCAmelCase ( self : str ,lowercase_ : Optional[int] ,lowercase_ : Union[str, Any]=None ,lowercase_ : Any=None ,lowercase_ : Union[str, Any]=None ,lowercase_ : Optional[Any]=None ,): lowerCAmelCase__ : Tuple = () lowerCAmelCase__ : Optional[int] = () lowerCAmelCase__ : str = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: lowerCAmelCase__ : Dict = all_hidden_states + (hidden_states,) lowerCAmelCase__ : str = layer_module( lowercase_ ,lowercase_ ,head_mask[i] ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : int = layer_outputs[0] if self.output_attentions: lowerCAmelCase__ : Optional[int] = all_attentions + (layer_outputs[1],) lowerCAmelCase__ : str = (hidden_states,) if self.output_hidden_states: lowerCAmelCase__ : Tuple = current_outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase__ : Any = current_outputs + (all_attentions,) lowerCAmelCase__ : Dict = self.highway[i](lowercase_ ) # logits, pooled_output if not self.training: lowerCAmelCase__ : str = highway_exit[0] lowerCAmelCase__ : str = entropy(lowercase_ ) lowerCAmelCase__ : str = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowerCAmelCase__ : Dict = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowerCAmelCase__ : str = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowercase_ ,i + 1 ) else: lowerCAmelCase__ : Union[str, Any] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowerCAmelCase__ : List[Any] = all_hidden_states + (hidden_states,) lowerCAmelCase__ : Dict = (hidden_states,) if self.output_hidden_states: lowerCAmelCase__ : List[Any] = outputs + (all_hidden_states,) if self.output_attentions: lowerCAmelCase__ : List[Any] = outputs + (all_attentions,) lowerCAmelCase__ : List[Any] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , a_ , ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : Tuple ): super().__init__(lowercase_ ) lowerCAmelCase__ : List[Any] = config lowerCAmelCase__ : int = BertEmbeddings(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = DeeBertEncoder(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = BertPooler(lowercase_ ) self.init_weights() def __lowerCAmelCase ( self : str ): self.encoder.init_highway_pooler(self.pooler ) def __lowerCAmelCase ( self : Tuple ): return self.embeddings.word_embeddings def __lowerCAmelCase ( self : List[str] ,lowercase_ : Optional[Any] ): lowerCAmelCase__ : Any = value def __lowerCAmelCase ( self : str ,lowercase_ : Tuple ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowercase_ ) @add_start_docstrings_to_model_forward(lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : int=None ,lowercase_ : int=None ,lowercase_ : Tuple=None ,lowercase_ : Dict=None ,lowercase_ : Dict=None ,lowercase_ : Optional[int]=None ,lowercase_ : Optional[int]=None ,lowercase_ : str=None ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: lowerCAmelCase__ : List[str] = input_ids.size() elif inputs_embeds is not None: lowerCAmelCase__ : Optional[Any] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) lowerCAmelCase__ : Union[str, Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowerCAmelCase__ : Union[str, Any] = torch.ones(lowercase_ ,device=lowercase_ ) if encoder_attention_mask is None: lowerCAmelCase__ : Tuple = torch.ones(lowercase_ ,device=lowercase_ ) if token_type_ids is None: lowerCAmelCase__ : int = torch.zeros(lowercase_ ,dtype=torch.long ,device=lowercase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowerCAmelCase__ : torch.Tensor = self.get_extended_attention_mask(lowercase_ ,lowercase_ ,lowercase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowerCAmelCase__ : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowerCAmelCase__ : Dict = encoder_attention_mask[:, None, None, :] lowerCAmelCase__ : List[Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility lowerCAmelCase__ : Any = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowerCAmelCase__ : Tuple = self.get_head_mask(lowercase_ ,self.config.num_hidden_layers ) lowerCAmelCase__ : Any = self.embeddings( input_ids=lowercase_ ,position_ids=lowercase_ ,token_type_ids=lowercase_ ,inputs_embeds=lowercase_ ) lowerCAmelCase__ : Tuple = self.encoder( lowercase_ ,attention_mask=lowercase_ ,head_mask=lowercase_ ,encoder_hidden_states=lowercase_ ,encoder_attention_mask=lowercase_ ,) lowerCAmelCase__ : str = encoder_outputs[0] lowerCAmelCase__ : Dict = self.pooler(lowercase_ ) lowerCAmelCase__ : Any = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : Any ,lowercase_ : int ): lowerCAmelCase__ : List[Any] = message lowerCAmelCase__ : Any = exit_layer # start from 1! class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : Any ): super().__init__() lowerCAmelCase__ : Optional[int] = BertPooler(lowercase_ ) lowerCAmelCase__ : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase__ : str = nn.Linear(config.hidden_size ,config.num_labels ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : int ): # Pooler lowerCAmelCase__ : Tuple = encoder_outputs[0] lowerCAmelCase__ : Optional[int] = self.pooler(lowercase_ ) # "return" pooler_output # BertModel lowerCAmelCase__ : List[str] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowerCAmelCase__ : List[str] = bmodel_output[1] lowerCAmelCase__ : str = self.dropout(lowercase_ ) lowerCAmelCase__ : List[str] = self.classifier(lowercase_ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , a_ , ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : str ): super().__init__(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = config.num_labels lowerCAmelCase__ : Optional[int] = config.num_hidden_layers lowerCAmelCase__ : Any = DeeBertModel(lowercase_ ) lowerCAmelCase__ : str = nn.Dropout(config.hidden_dropout_prob ) lowerCAmelCase__ : Union[str, Any] = nn.Linear(config.hidden_size ,self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Tuple=None ,lowercase_ : Optional[int]=None ,lowercase_ : List[Any]=None ,lowercase_ : int=None ,lowercase_ : Tuple=None ,lowercase_ : Optional[Any]=None ,lowercase_ : Optional[int]=None ,lowercase_ : Dict=-1 ,lowercase_ : Dict=False ,): lowerCAmelCase__ : Tuple = self.num_layers try: lowerCAmelCase__ : Dict = self.bert( lowercase_ ,attention_mask=lowercase_ ,token_type_ids=lowercase_ ,position_ids=lowercase_ ,head_mask=lowercase_ ,inputs_embeds=lowercase_ ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowerCAmelCase__ : Any = outputs[1] lowerCAmelCase__ : str = self.dropout(lowercase_ ) lowerCAmelCase__ : List[Any] = self.classifier(lowercase_ ) lowerCAmelCase__ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowerCAmelCase__ : Dict = e.message lowerCAmelCase__ : Dict = e.exit_layer lowerCAmelCase__ : int = outputs[0] if not self.training: lowerCAmelCase__ : Union[str, Any] = entropy(lowercase_ ) lowerCAmelCase__ : str = [] lowerCAmelCase__ : Optional[int] = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowerCAmelCase__ : Optional[Any] = MSELoss() lowerCAmelCase__ : str = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: lowerCAmelCase__ : int = CrossEntropyLoss() lowerCAmelCase__ : Union[str, Any] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits lowerCAmelCase__ : Union[str, Any] = [] for highway_exit in outputs[-1]: lowerCAmelCase__ : List[Any] = highway_exit[0] if not self.training: highway_logits_all.append(lowercase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression lowerCAmelCase__ : int = MSELoss() lowerCAmelCase__ : str = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: lowerCAmelCase__ : Optional[int] = CrossEntropyLoss() lowerCAmelCase__ : Optional[int] = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(lowercase_ ) if train_highway: lowerCAmelCase__ : Optional[int] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: lowerCAmelCase__ : Any = (loss,) + outputs if not self.training: lowerCAmelCase__ : Union[str, Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowerCAmelCase__ : Optional[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
106
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCamelCase : Tuple =_symbol_database.Default() lowerCamelCase : List[str] =_descriptor_pool.Default().AddSerializedFile( b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03''' ) lowerCamelCase : str =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCamelCase : Optional[int] =None lowerCamelCase : Tuple =b'''H\003''' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCamelCase : List[str] =45 lowerCamelCase : List[Any] =1581 lowerCamelCase : Optional[int] =1517 lowerCamelCase : Tuple =1570 lowerCamelCase : Dict =1584 lowerCamelCase : Optional[Any] =1793 lowerCamelCase : Dict =1795 lowerCamelCase : Any =1916 lowerCamelCase : Dict =1864 lowerCamelCase : Dict =1905 lowerCamelCase : Dict =1919 lowerCamelCase : Union[str, Any] =2429 lowerCamelCase : List[Any] =2208 lowerCamelCase : List[Any] =2418 lowerCamelCase : List[str] =2323 lowerCamelCase : Dict =2407 # @@protoc_insertion_point(module_scope)
189
0
"""simple docstring""" import math class lowerCamelCase : def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = 0.0 UpperCamelCase : Dict = 0.0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for i in range(len(SCREAMING_SNAKE_CASE_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' UpperCamelCase : Tuple = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) UpperCamelCase : List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training UpperCamelCase : Optional[Any] = SelfOrganizingMap() UpperCamelCase : Tuple = 3 UpperCamelCase : int = 0.5 for _ in range(snake_case_ ): for j in range(len(snake_case_ ) ): # training sample UpperCamelCase : int = training_samples[j] # Compute the winning vector UpperCamelCase : List[Any] = self_organizing_map.get_winner(snake_case_ ,snake_case_ ) # Update the winning vector UpperCamelCase : str = self_organizing_map.update(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) # classify test sample UpperCamelCase : List[Any] = [0, 0, 0, 1] UpperCamelCase : Optional[Any] = self_organizing_map.get_winner(snake_case_ ,snake_case_ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
353
"""simple docstring""" import argparse import os import re __A : Dict = '''src/diffusers''' # Pattern that looks at the indentation in a line. __A : Union[str, Any] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __A : Dict = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __A : List[str] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __A : Tuple = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __A : Tuple = re.compile(R'''\[([^\]]+)\]''') def A_ ( snake_case_ : Dict ): '''simple docstring''' UpperCamelCase : Union[str, Any] = _re_indent.search(snake_case_ ) return "" if search is None else search.groups()[0] def A_ ( snake_case_ : Union[str, Any] ,snake_case_ : Dict="" ,snake_case_ : Dict=None ,snake_case_ : Any=None ): '''simple docstring''' UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(snake_case_ ): index += 1 UpperCamelCase : Optional[Any] = ["""\n""".join(lines[:index] )] else: UpperCamelCase : int = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase : Any = [lines[index]] index += 1 while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(snake_case_ ) ) if index < len(snake_case_ ) - 1: UpperCamelCase : Any = [lines[index + 1]] index += 1 else: UpperCamelCase : List[str] = [] else: blocks.append("""\n""".join(snake_case_ ) ) UpperCamelCase : int = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case_ ) > 0: blocks.append("""\n""".join(snake_case_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def A_ ( snake_case_ : Optional[Any] ): '''simple docstring''' def _inner(snake_case_ : Tuple ): return key(snake_case_ ).lower().replace("""_""" ,"""""" ) return _inner def A_ ( snake_case_ : List[Any] ,snake_case_ : Optional[int]=None ): '''simple docstring''' # If no key is provided, we use a noop. def noop(snake_case_ : Dict ): return x if key is None: UpperCamelCase : int = noop # Constants are all uppercase, they go first. UpperCamelCase : List[Any] = [obj for obj in objects if key(snake_case_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase : List[str] = [obj for obj in objects if not key(snake_case_ )[0].isupper()] UpperCamelCase : Tuple = ignore_underscore(snake_case_ ) return sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) + sorted(snake_case_ ,key=snake_case_ ) def A_ ( snake_case_ : int ): '''simple docstring''' # This inner function sort imports between [ ]. def _replace(snake_case_ : List[Any] ): UpperCamelCase : Any = match.groups()[0] if "," not in imports: return f'[{imports}]' UpperCamelCase : Union[str, Any] = [part.strip().replace("""\"""" ,"""""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase : List[str] = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(snake_case_ )] ) + "]" UpperCamelCase : str = import_statement.split("""\n""" ) if len(snake_case_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase : str = 2 if lines[1].strip() == """[""" else 1 UpperCamelCase : Dict = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCamelCase : int = sort_objects(snake_case_ ,key=lambda snake_case_ : x[1] ) UpperCamelCase : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCamelCase : List[Any] = _re_bracket_content.sub(_replace ,lines[1] ) else: UpperCamelCase : Optional[Any] = [part.strip().replace("""\"""" ,"""""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCamelCase : List[Any] = keys[:-1] UpperCamelCase : int = get_indent(lines[1] ) + """, """.join([f'"{k}"' for k in sort_objects(snake_case_ )] ) return "\n".join(snake_case_ ) else: # Finally we have to deal with imports fitting on one line UpperCamelCase : List[str] = _re_bracket_content.sub(_replace ,snake_case_ ) return import_statement def A_ ( snake_case_ : Tuple ,snake_case_ : str=True ): '''simple docstring''' with open(snake_case_ ,"""r""" ) as f: UpperCamelCase : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase : Dict = split_code_in_indented_blocks( snake_case_ ,start_prompt="""_import_structure = {""" ,end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(snake_case_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase : Optional[Any] = main_blocks[block_idx] UpperCamelCase : Optional[int] = block.split("""\n""" ) # Get to the start of the imports. UpperCamelCase : Union[str, Any] = 0 while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase : List[str] = len(snake_case_ ) else: line_idx += 1 if line_idx >= len(snake_case_ ): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase : Dict = """\n""".join(block_lines[line_idx:-1] ) UpperCamelCase : Union[str, Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCamelCase : Optional[int] = split_code_in_indented_blocks(snake_case_ ,indent_level=snake_case_ ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase : Union[str, Any] = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase : Union[str, Any] = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None] UpperCamelCase : List[Any] = [x[0] for x in sorted(snake_case_ ,key=lambda snake_case_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase : str = 0 UpperCamelCase : List[Any] = [] for i in range(len(snake_case_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCamelCase : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(snake_case_ ) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase : Tuple = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case_ ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(snake_case_ ,"""w""" ) as f: f.write("""\n""".join(snake_case_ ) ) def A_ ( snake_case_ : int=True ): '''simple docstring''' UpperCamelCase : Any = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: UpperCamelCase : Union[str, Any] = sort_imports(os.path.join(snake_case_ ,"""__init__.py""" ) ,check_only=snake_case_ ) if result: UpperCamelCase : Any = [os.path.join(snake_case_ ,"""__init__.py""" )] if len(snake_case_ ) > 0: raise ValueError(f'Would overwrite {len(snake_case_ )} files, run `make style`.' ) if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __A : str = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
27
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : int = { "google/vit-base-patch16-224": "https://huggingface.co/vit-base-patch16-224/resolve/main/config.json", # See all ViT models at https://huggingface.co/models?filter=vit } class __snake_case ( a ): UpperCAmelCase__ : Dict = '''vit''' def __init__( self : Any , _snake_case : List[Any]=768 , _snake_case : Any=12 , _snake_case : List[Any]=12 , _snake_case : Union[str, Any]=3072 , _snake_case : Dict="gelu" , _snake_case : List[str]=0.0 , _snake_case : List[Any]=0.0 , _snake_case : Optional[Any]=0.0_2 , _snake_case : Tuple=1e-12 , _snake_case : Dict=224 , _snake_case : Tuple=16 , _snake_case : int=3 , _snake_case : List[str]=True , _snake_case : Optional[int]=16 , **_snake_case : Tuple , ): """simple docstring""" super().__init__(**_snake_case) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = encoder_stride class __snake_case ( a ): UpperCAmelCase__ : Optional[Any] = version.parse('''1.11''' ) @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" return 1e-4
51
"""simple docstring""" class _A : """simple docstring""" def __init__( self : int , __UpperCAmelCase : int): a : Tuple = size a : Dict = [0] * size a : Optional[int] = [0] * size @staticmethod def __snake_case ( __UpperCAmelCase : int): return index | (index + 1) @staticmethod def __snake_case ( __UpperCAmelCase : int): return (index & (index + 1)) - 1 def __snake_case ( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : int): a : Union[str, Any] = value while index < self.size: a : Dict = self.get_prev(__UpperCAmelCase) + 1 if current_left_border == index: a : Optional[int] = value else: a : Any = max(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Optional[int] = self.get_next(__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int): right -= 1 # Because of right is exclusive a : List[str] = 0 while left <= right: a : Dict = self.get_prev(__UpperCAmelCase) if left <= current_left: a : Optional[int] = max(__UpperCAmelCase , self.tree[right]) a : Optional[Any] = current_left else: a : List[str] = max(__UpperCAmelCase , self.arr[right]) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
40
0
import logging import os from .state import PartialState class _UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any] , *_SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) UpperCamelCase_ = kwargs.pop("main_process_only" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("in_order" , _SCREAMING_SNAKE_CASE ) if self.isEnabledFor(_SCREAMING_SNAKE_CASE ): if self._should_log(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ , UpperCamelCase_ = self.process(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.logger.log(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) elif in_order: UpperCamelCase_ = PartialState() for i in range(state.num_processes ): if i == state.process_index: UpperCamelCase_ , UpperCamelCase_ = self.process(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.logger.log(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = None ) -> List[str]: if log_level is None: UpperCamelCase_ = os.environ.get("ACCELERATE_LOG_LEVEL" , UpperCamelCase_ ) UpperCamelCase_ = logging.getLogger(UpperCamelCase_ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(UpperCamelCase_ , {} )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] =logging.get_logger(__name__) A__ : List[Any] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class UpperCAmelCase ( snake_case_ ): _lowercase: int = '''markuplm''' def __init__( self : Dict , __snake_case : Union[str, Any]=3_05_22 , __snake_case : Tuple=7_68 , __snake_case : Any=12 , __snake_case : List[str]=12 , __snake_case : str=30_72 , __snake_case : List[Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Union[str, Any]=5_12 , __snake_case : List[str]=2 , __snake_case : int=0.02 , __snake_case : List[str]=1E-1_2 , __snake_case : Optional[int]=0 , __snake_case : str=0 , __snake_case : Tuple=2 , __snake_case : Tuple=2_56 , __snake_case : int=10_24 , __snake_case : Union[str, Any]=2_16 , __snake_case : List[str]=10_01 , __snake_case : Any=32 , __snake_case : Tuple=50 , __snake_case : str="absolute" , __snake_case : Tuple=True , __snake_case : List[Any]=None , **__snake_case : Union[str, Any] , ) -> List[Any]: super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case , ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout # additional properties _lowerCAmelCase = max_depth _lowerCAmelCase = max_xpath_tag_unit_embeddings _lowerCAmelCase = max_xpath_subs_unit_embeddings _lowerCAmelCase = tag_pad_id _lowerCAmelCase = subs_pad_id _lowerCAmelCase = xpath_unit_hidden_size
70
def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" _lowercase =0 # if input_string is "aba" than new_input_string become "a|b|a" _lowercase ='''''' _lowercase ='''''' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowercase , _lowercase =0, 0 # length[i] shows the length of palindromic substring with center i _lowercase =[1 for i in range(len(__snake_case ) )] # for each character in new_string find corresponding palindromic string _lowercase =0 for j in range(len(__snake_case ) ): _lowercase =1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowercase =2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowercase =j - k + 1 # noqa: E741 _lowercase =j + k - 1 # update max_length and start position if max_length < length[j]: _lowercase =length[j] _lowercase =j # create that string _lowercase =new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
0
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase__ : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''input_values''', '''attention_mask'''] def __init__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 1_6000 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = False , _UpperCAmelCase = 80 , _UpperCAmelCase = 16 , _UpperCAmelCase = 64 , _UpperCAmelCase = "hann_window" , _UpperCAmelCase = 1.0 , _UpperCAmelCase = 80 , _UpperCAmelCase = 7600 , _UpperCAmelCase = 1e-1_0 , _UpperCAmelCase = 2 , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase) __A : Union[str, Any] = do_normalize __A : Dict = return_attention_mask __A : Any = num_mel_bins __A : Union[str, Any] = hop_length __A : List[str] = win_length __A : int = win_function __A : Any = frame_signal_scale __A : List[str] = fmin __A : Optional[Any] = fmax __A : Dict = mel_floor __A : Optional[Any] = reduction_factor __A : Optional[Any] = win_length * sampling_rate // 1000 __A : str = hop_length * sampling_rate // 1000 __A : Tuple = optimal_fft_length(self.sample_size) __A : str = (self.n_fft // 2) + 1 __A : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase) __A : List[str] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 0.0): '''simple docstring''' if attention_mask is not None: __A : List[Any] = np.array(_UpperCAmelCase , np.intaa) __A : int = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1)): __A : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: __A : Dict = padding_value normed_input_values.append(_UpperCAmelCase) else: __A : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , ): '''simple docstring''' __A : Tuple = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.') if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') if audio is not None: __A : Dict = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: __A : Union[str, Any] = None if audio_target is not None: __A : Optional[int] = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: __A : Any = inputs_target['input_values'] __A : Union[str, Any] = inputs_target.get('attention_mask') if decoder_attention_mask is not None: __A : List[str] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = isinstance(_UpperCAmelCase , np.ndarray) and len(speech.shape) > 1 if is_batched_numpy and len(speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') __A : Optional[int] = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple)) and (isinstance(speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __A : Dict = [np.asarray(_UpperCAmelCase , dtype=np.floataa) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray): __A : List[str] = np.asarray(_UpperCAmelCase , dtype=np.floataa) elif isinstance(_UpperCAmelCase , np.ndarray) and speech.dtype is np.dtype(np.floataa): __A : List[Any] = speech.astype(np.floataa) # always return batch if not is_batched: __A : Tuple = [speech] # needed to make pad() work on spectrogram inputs __A : Tuple = self.feature_size # convert into correct format for padding if is_target: __A : Dict = [self._extract_mel_features(_UpperCAmelCase) for waveform in speech] __A : Dict = BatchFeature({'input_values': features}) __A : Any = self.num_mel_bins else: __A : int = BatchFeature({'input_values': speech}) __A : Union[str, Any] = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) __A : Any = feature_size_hack # convert input values to correct format __A : Union[str, Any] = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray): __A : List[str] = [np.asarray(_UpperCAmelCase , dtype=np.floataa) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray) and isinstance(input_values[0] , np.ndarray) and input_values[0].dtype is np.dtype(np.floataa) ): __A : Any = [array.astype(np.floataa) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray) and input_values.dtype is np.dtype(np.floataa): __A : List[Any] = input_values.astype(np.floataa) # convert attention_mask to correct format __A : int = padded_inputs.get('attention_mask') if attention_mask is not None: __A : Optional[int] = [np.asarray(_UpperCAmelCase , dtype=np.intaa) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __A : Optional[int] = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase) is not PaddingStrategy.DO_NOT_PAD else None ) __A : str = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value) if return_tensors is not None: __A : Dict = padded_inputs.convert_to_tensors(_UpperCAmelCase) return padded_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = super().to_dict() # Don't serialize these as they are derived from the other properties. __A : str = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
190
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str ) -> str: __A : Optional[Any] = [0] * len(__snake_case ) __A : Dict = [] __A : Optional[int] = [1] * len(__snake_case ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__snake_case ) ): if indegree[i] == 0: queue.append(__snake_case ) while queue: __A : int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__snake_case ) print(max(__snake_case ) ) # Adjacency list of Graph lowercase__ : Dict = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
190
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _A = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _A = 10 _A = 256 def __UpperCamelCase ( _A ): if len(lowerCamelCase_ ) < MIN_NUM_TOKENS: return None lowerCAmelCase_ = MinHash(num_perm=lowerCamelCase_ ) for token in set(lowerCamelCase_ ): min_hash.update(token.encode() ) return min_hash def __UpperCamelCase ( _A ): return {t for t in NON_ALPHA.split(lowerCamelCase_ ) if len(t.strip() ) > 0} class A : def __init__( self, *, UpperCamelCase__ = 0.85, ): """simple docstring""" lowerCAmelCase_ = duplication_jaccard_threshold lowerCAmelCase_ = NUM_PERM lowerCAmelCase_ = MinHashLSH(threshold=self._duplication_jaccard_threshold, num_perm=self._num_perm ) lowerCAmelCase_ = defaultdict(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(__lowerCamelCase, __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = [] for base, duplicates in self._duplicate_clusters.items(): lowerCAmelCase_ = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict lowerCAmelCase_ = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.get_duplicate_clusters() with open(__lowerCamelCase, '''w''' ) as f: json.dump(__lowerCamelCase, __lowerCamelCase ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = element lowerCAmelCase_ = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def __UpperCamelCase ( _A ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCamelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = DuplicationIndex(duplication_jaccard_threshold=lowerCamelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCamelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCamelCase_ , lowerCamelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = get_tokens(lowerCamelCase_ ) lowerCAmelCase_ = get_tokens(lowerCamelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _A = None def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = [] for elementa in cluster: lowerCAmelCase_ = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: lowerCAmelCase_ = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(lowerCamelCase_ , lowerCamelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: lowerCAmelCase_ = 1 extremes.append(lowerCamelCase_ ) return extremes def __UpperCamelCase ( _A , _A , _A ): global _shared_dataset lowerCAmelCase_ = dataset lowerCAmelCase_ = [] lowerCAmelCase_ = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCamelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCamelCase_ , lowerCamelCase_ , ) , total=len(lowerCamelCase_ ) , ): extremes_list.append(lowerCamelCase_ ) return extremes_list def __UpperCamelCase ( _A , _A = 0.8_5 ): lowerCAmelCase_ = make_duplicate_clusters(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase_ = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} lowerCAmelCase_ = {} lowerCAmelCase_ = find_extremes(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for extremes in extremes_clusters: for element in extremes: lowerCAmelCase_ = element lowerCAmelCase_ = duplicate_indices - set(extreme_dict.keys() ) lowerCAmelCase_ = dataset.filter(lambda _A , _A : idx not in remove_indices , with_indices=lowerCamelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: lowerCAmelCase_ = element['''base_index'''] in extreme_dict if element["is_extreme"]: lowerCAmelCase_ = extreme_dict[element['''base_index''']]['''copies'''] print(f"Original dataset size: {len(lowerCamelCase_ )}" ) print(f"Number of duplicate clusters: {len(lowerCamelCase_ )}" ) print(f"Files in duplicate cluster: {len(lowerCamelCase_ )}" ) print(f"Unique files in duplicate cluster: {len(lowerCamelCase_ )}" ) print(f"Filtered dataset size: {len(lowerCamelCase_ )}" ) return ds_filter, duplicate_clusters
278
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class A_ : def __init__(self :List[Any] , _UpperCamelCase :int )-> Optional[int]: if isinstance(_UpperCamelCase , _UpperCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __A = deepcopy(_UpperCamelCase ) elif os.path.exists(_UpperCamelCase ): with io.open(_UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: __A = json.load(_UpperCamelCase ) else: try: __A = baseaa.urlsafe_baadecode(_UpperCamelCase ).decode('''utf-8''' ) __A = json.loads(_UpperCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) __A = config self.set_stage_and_offload() def _lowerCAmelCase (self :int )-> Optional[Any]: # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. __A = self.get_value('''zero_optimization.stage''' , -1 ) # offload __A = False if self.is_zeroa() or self.is_zeroa(): __A = set(['''cpu''', '''nvme'''] ) __A = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __A = True def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :Union[str, Any] )-> Union[str, Any]: __A = self.config # find the config node of interest if it exists __A = ds_key_long.split('''.''' ) __A = nodes.pop() for node in nodes: __A = config.get(_UpperCamelCase ) if config is None: return None, ds_key return config, ds_key def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[str] , _UpperCamelCase :Dict=None )-> str: __A , __A = self.find_config_node(_UpperCamelCase ) if config is None: return default return config.get(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase (self :Any , _UpperCamelCase :Dict , _UpperCamelCase :Union[str, Any]=False )-> Union[str, Any]: __A = self.config # find the config node of interest if it exists __A = ds_key_long.split('''.''' ) for node in nodes: __A = config __A = config.get(_UpperCamelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(_UpperCamelCase ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :List[Any] )-> Dict: __A = self.get_value(_UpperCamelCase ) return False if value is None else bool(_UpperCamelCase ) def _lowerCAmelCase (self :int , _UpperCamelCase :Any )-> Any: __A = self.get_value(_UpperCamelCase ) return False if value is None else not bool(_UpperCamelCase ) def _lowerCAmelCase (self :int )-> Union[str, Any]: return self._stage == 2 def _lowerCAmelCase (self :str )-> Optional[Any]: return self._stage == 3 def _lowerCAmelCase (self :Optional[Any] )-> List[Any]: return self._offload class A_ : def __init__(self :Dict , _UpperCamelCase :Optional[int] )-> Optional[Any]: __A = engine def _lowerCAmelCase (self :Dict , _UpperCamelCase :Tuple , **_UpperCamelCase :List[str] )-> Optional[int]: # runs backpropagation and handles mixed precision self.engine.backward(_UpperCamelCase , **_UpperCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class A_ ( _lowerCamelCase ): def __init__(self :Dict , _UpperCamelCase :Optional[Any] )-> List[Any]: super().__init__(_UpperCamelCase , device_placement=_UpperCamelCase , scaler=_UpperCamelCase ) __A = hasattr(self.optimizer , '''overflow''' ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :List[str]=None )-> Dict: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowerCAmelCase (self :Union[str, Any] )-> Optional[int]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowerCAmelCase (self :Optional[int] )-> str: if self.__has_overflow__: return self.optimizer.overflow return False class A_ ( _lowerCamelCase ): def __init__(self :Dict , _UpperCamelCase :Dict , _UpperCamelCase :Dict )-> int: super().__init__(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase (self :int )-> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class A_ : def __init__(self :Tuple , _UpperCamelCase :Optional[int] , _UpperCamelCase :Tuple=0.0_0_1 , _UpperCamelCase :List[str]=0 , **_UpperCamelCase :int )-> Union[str, Any]: __A = params __A = lr __A = weight_decay __A = kwargs class A_ : def __init__(self :Optional[int] , _UpperCamelCase :Optional[int] , _UpperCamelCase :Optional[Any]=None , _UpperCamelCase :Optional[int]=0 , **_UpperCamelCase :Union[str, Any] )-> Optional[int]: __A = optimizer __A = total_num_steps __A = warmup_num_steps __A = kwargs
250
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Dict = {'vocab_file': 'vocab.txt'} snake_case__ : Dict = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } snake_case__ : Optional[int] = { 'openbmb/cpm-ant-10b': 1024, } def _a ( lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' __A = collections.OrderedDict() with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as reader: __A = reader.readlines() for index, token in enumerate(lowerCamelCase ): __A = token.rstrip('''\n''' ) __A = index return vocab class A_ ( _lowerCamelCase ): def __init__(self :Any , _UpperCamelCase :Dict , _UpperCamelCase :Optional[int]="<unk>" , _UpperCamelCase :List[str]=200 )-> List[str]: __A = vocab __A = unk_token __A = max_input_chars_per_word def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[Any] )-> str: __A = list(_UpperCamelCase ) if len(_UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __A = 0 __A = [] while start < len(_UpperCamelCase ): __A = len(_UpperCamelCase ) __A = None while start < end: __A = ''''''.join(chars[start:end] ) if substr in self.vocab: __A = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_UpperCamelCase ) __A = end return sub_tokens class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = False def __init__(self :str , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Any="<d>" , _UpperCamelCase :List[str]="</d>" , _UpperCamelCase :Dict="<s>" , _UpperCamelCase :Optional[Any]="</s>" , _UpperCamelCase :Optional[int]="<pad>" , _UpperCamelCase :List[str]="<unk>" , _UpperCamelCase :str="</n>" , _UpperCamelCase :Optional[int]="</_>" , _UpperCamelCase :Optional[Any]="left" , **_UpperCamelCase :Any , )-> Union[str, Any]: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_UpperCamelCase , eod_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , unk_token=_UpperCamelCase , line_token=_UpperCamelCase , space_token=_UpperCamelCase , padding_side=_UpperCamelCase , **_UpperCamelCase , ) __A = bod_token __A = eod_token __A = load_vocab(_UpperCamelCase ) __A = self.encoder[space_token] __A = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) __A = {v: k for k, v in self.encoder.items()} __A = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowerCAmelCase (self :Union[str, Any] )-> Dict: return self.encoder[self.bod_token] @property def _lowerCAmelCase (self :Optional[int] )-> Dict: return self.encoder[self.eod_token] @property def _lowerCAmelCase (self :Any )-> List[Any]: return self.encoder["\n"] @property def _lowerCAmelCase (self :List[str] )-> int: return len(self.encoder ) def _lowerCAmelCase (self :List[str] )-> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Dict )-> Union[str, Any]: __A = [] for x in jieba.cut(_UpperCamelCase , cut_all=_UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCamelCase ) ) return output_tokens def _lowerCAmelCase (self :str , _UpperCamelCase :int , **_UpperCamelCase :List[str] )-> Tuple: __A = [i for i in token_ids if i >= 0] __A = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Optional[int] )-> List[str]: return token in self.encoder def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[str] )-> str: return "".join(_UpperCamelCase ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> List[Any]: return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase (self :Any , _UpperCamelCase :Tuple )-> int: return self.decoder.get(_UpperCamelCase , self.unk_token ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: if os.path.isdir(_UpperCamelCase ): __A = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __A = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __A = 0 if " " in self.encoder: __A = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __A = self.encoder['''\n'''] del self.encoder["\n"] __A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __A = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[int] , _UpperCamelCase :List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None , _UpperCamelCase :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase ))
250
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class _lowercase ( lowerCAmelCase_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ : Tuple = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> int: """simple docstring""" with self.assertRaises(__a ): UpperCamelCase_ : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> str: """simple docstring""" with self.assertRaises(__a ): UpperCamelCase_ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" UpperCamelCase_ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase_ : Union[str, Any] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: """simple docstring""" UpperCamelCase_ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: """simple docstring""" UpperCamelCase_ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCamelCase_ : Any = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" UpperCamelCase_ : str = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" import PIL.Image UpperCamelCase_ : Union[str, Any] = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=__a ) as mock_cast_to_python_objects: UpperCamelCase_ : Union[str, Any] = pa.array(TypedSequence([{'path': None, 'bytes': B'image_bytes'}, pil_image] , type=Image() ) ) UpperCamelCase_ : Optional[Any] = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , __a ) self.assertFalse(kwargs['optimize_list_casting'] ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : int ): UpperCamelCase_ : str = pa.BufferReader(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , pa.Buffer ) else pa.memory_map(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Dict = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __lowercase ( lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] ): UpperCamelCase_ : str = pa.BufferOutputStream() UpperCamelCase_ : Any = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCamelCase_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase_ : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowercase ( ): UpperCamelCase_ : int = pa.BufferOutputStream() UpperCamelCase_ : Optional[int] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) UpperCamelCase_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCamelCase_ : int = pa.BufferReader(output.getvalue() ) UpperCamelCase_ : Tuple = pa.ipc.open_stream(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : pa.Table = f.read_all() UpperCamelCase_ : Optional[int] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_SCREAMING_SNAKE_CASE ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) def __lowercase ( lowerCamelCase : Any ): UpperCamelCase_ : int = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({'col_1': 'foo', 'col_2': 1} , key=[1, 2] ) UpperCamelCase_ : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : Tuple = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: with pytest.raises(_SCREAMING_SNAKE_CASE ): writer.write({'col_1': 'foo', 'col_2': 1} , key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=10 ) UpperCamelCase_ : Optional[Any] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' , [None, 2, 10] ) def __lowercase ( lowerCamelCase : List[str] ): UpperCamelCase_ : List[str] = pa.BufferOutputStream() with ArrowWriter( stream=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE , hash_salt='split_name' , check_duplicates=_SCREAMING_SNAKE_CASE , ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} , key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} , key=2 ) UpperCamelCase_ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Dict ): UpperCamelCase_ : Optional[int] = pa.BufferOutputStream() UpperCamelCase_ : int = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) UpperCamelCase_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase_ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : List[Any] ): UpperCamelCase_ : Tuple = pa.BufferOutputStream() UpperCamelCase_ : str = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) UpperCamelCase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase_ : List[str] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' , [None, 1, 10] ) @pytest.mark.parametrize( 'fields' , [None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[str] ): UpperCamelCase_ : List[Any] = pa.BufferOutputStream() UpperCamelCase_ : List[Any] = pa.schema(_SCREAMING_SNAKE_CASE ) if fields else None with ArrowWriter(stream=_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , writer_batch_size=_SCREAMING_SNAKE_CASE ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) UpperCamelCase_ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCamelCase_ : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def __lowercase ( ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ : List[Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} UpperCamelCase_ : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , 'test.arrow' ) with ArrowWriter(path=_SCREAMING_SNAKE_CASE , schema=pa.schema(_SCREAMING_SNAKE_CASE ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) UpperCamelCase_ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_SCREAMING_SNAKE_CASE , metadata=writer._schema.metadata ) _check_output(_SCREAMING_SNAKE_CASE , 1 ) def __lowercase ( lowerCamelCase : int ): if pa.types.is_list(_SCREAMING_SNAKE_CASE ): return get_base_dtype(arr_type.value_type ) else: return arr_type def __lowercase ( lowerCamelCase : Any , lowerCamelCase : int ): if isinstance(lst[0] , _SCREAMING_SNAKE_CASE ): change_first_primitive_element_in_list(lst[0] , _SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ : List[str] = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' , [(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : Optional[Any] = pa.array(TypedSequence(_SCREAMING_SNAKE_CASE , optimized_int_type=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' , [ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] , ) @pytest.mark.parametrize('sequence' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def __lowercase ( lowerCamelCase : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any] ): # in range UpperCamelCase_ : Any = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE , col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCamelCase_ : Optional[Any] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : List[str] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Dict = pa.array(OptimizedTypedSequence(_SCREAMING_SNAKE_CASE , col=_SCREAMING_SNAKE_CASE ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' , [False, True] ) def __lowercase ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : Union[str, Any] = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_SCREAMING_SNAKE_CASE ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def __lowercase ( lowerCamelCase : Optional[Any] ): UpperCamelCase_ : Optional[Any] = 'mock://dataset-train.arrow' with ArrowWriter(path=_SCREAMING_SNAKE_CASE , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_SCREAMING_SNAKE_CASE ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCamelCase_ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_SCREAMING_SNAKE_CASE ) def __lowercase ( ): UpperCamelCase_ : List[Any] = pa.BufferOutputStream() with ParquetWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCamelCase_ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCamelCase_ : Optional[Any] = pa.BufferReader(output.getvalue() ) UpperCamelCase_ : pa.Table = pq.read_table(_SCREAMING_SNAKE_CASE ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' , [False, True] ) def __lowercase ( lowerCamelCase : str , lowerCamelCase : str ): import PIL.Image UpperCamelCase_ : List[Any] = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_SCREAMING_SNAKE_CASE , format='png' ) UpperCamelCase_ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=_SCREAMING_SNAKE_CASE , features=Features({'image': Image()} ) , embed_local_files=_SCREAMING_SNAKE_CASE ) as writer: writer.write({'image': image_path} ) writer.finalize() UpperCamelCase_ : Any = pa.BufferReader(output.getvalue() ) UpperCamelCase_ : pa.Table = pq.read_table(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Union[str, Any] = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] , _SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def __lowercase ( ): UpperCamelCase_ : Tuple = pa.schema([pa.field('col_1' , pa.string() , nullable=_SCREAMING_SNAKE_CASE )] ) UpperCamelCase_ : str = pa.BufferOutputStream() with ArrowWriter(stream=_SCREAMING_SNAKE_CASE ) as writer: writer._build_writer(inferred_schema=_SCREAMING_SNAKE_CASE ) assert writer._schema == pa.schema([pa.field('col_1' , pa.string() )] )
175
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict ): __a : Optional[Any] = tmp_path / 'file.csv' __a : Union[str, Any] = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : str = tmp_path / 'malformed_file.csv' __a : int = textwrap.dedent( '\\n header1,header2\n 1,2\n 10,20,\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): __a : Optional[Any] = tmp_path / 'csv_with_image.csv' __a : Dict = textwrap.dedent( F"""\ image {image_file} """ ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Union[str, Any] = tmp_path / 'csv_with_label.csv' __a : Any = textwrap.dedent( '\\n label\n good\n bad\n good\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[Any] ): __a : Dict = tmp_path / 'csv_with_int_list.csv' __a : Tuple = textwrap.dedent( '\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' ) with open(_SCREAMING_SNAKE_CASE , 'w' ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): __a : int = Csv() __a : str = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_SCREAMING_SNAKE_CASE , match='Error tokenizing data' ): for _ in generator: pass assert any( record.levelname == 'ERROR' and 'Failed to read file' in record.message and os.path.basename(_SCREAMING_SNAKE_CASE ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Tuple = f.read().splitlines()[1] __a : Tuple = Csv(encoding='utf-8' , features=Features({'image': Image()} ) ) __a : Any = csv._generate_tables([[csv_file_with_image]] ) __a : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('image' ).type == Image()() __a : Any = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] ): with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f: __a : Tuple = f.read().splitlines()[1:] __a : Optional[int] = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) ) __a : List[str] = csv._generate_tables([[csv_file_with_label]] ) __a : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )() __a : int = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(_SCREAMING_SNAKE_CASE ) for label in labels] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda _SCREAMING_SNAKE_CASE : [int(_SCREAMING_SNAKE_CASE ) for i in x.split()]} ) __a : Any = csv._generate_tables([[csv_file_with_int_list]] ) __a : Any = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('int_list' ).type ) __a : Tuple = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
27
0
import requests A : List[str] = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def UpperCamelCase ( __magic_name__ : Any ) -> List[Any]: """simple docstring""" lowercase__ = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(f'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
353
A : Union[str, Any] = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" lowercase__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} lowercase__ = 0 lowercase__ = 0 while place < len(__magic_name__ ): if (place + 1 < len(__magic_name__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCamelCase ( __magic_name__ : int ) -> str: """simple docstring""" lowercase__ = [] for arabic, roman in ROMAN: ((lowercase__) , (lowercase__)) = divmod(__magic_name__ , __magic_name__ ) result.append(roman * factor ) if number == 0: break return "".join(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
146
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = ['image_processor', 'tokenizer'] _snake_case = 'AutoImageProcessor' _snake_case = 'AutoTokenizer' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: __UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A__ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> Optional[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
328
import math def A_ ( snake_case : int ) -> bool: '''simple docstring''' return math.sqrt(snake_case ) * math.sqrt(snake_case ) == num def A_ ( snake_case : int ) -> bool: '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = n while left <= right: __UpperCamelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __UpperCamelCase = mid - 1 else: __UpperCamelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
328
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> List[Any]: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: lowercase_ = k.replace(__lowerCAmelCase , __lowerCAmelCase ) return k def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> PegasusForConditionalGeneration: '''simple docstring''' lowercase_ = DEFAULTS.copy() cfg_kwargs.update(__lowerCAmelCase ) lowercase_ = PegasusConfig(**__lowerCAmelCase ) lowercase_ = PegasusForConditionalGeneration(__lowerCAmelCase ) lowercase_ = torch_model.model.state_dict() lowercase_ = {} for k, v in tf_weights.items(): lowercase_ = rename_state_dict_key(__lowerCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase_ = v.T lowercase_ = torch.tensor(__lowerCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase_ = torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) lowercase_ = mapping["""shared.weight"""] lowercase_ = mapping["""shared.weight"""] lowercase_ = {k: torch.zeros_like(__lowerCAmelCase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**__lowerCAmelCase ) lowercase_ , lowercase_ = torch_model.model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) lowercase_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def _SCREAMING_SNAKE_CASE (__lowerCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' lowercase_ = tf.train.list_variables(__lowerCAmelCase ) lowercase_ = {} lowercase_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(__lowerCAmelCase , desc="""converting tf checkpoint to dict""" ): lowercase_ = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase_ = tf.train.load_variable(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = array return tf_weights def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = Path(__lowerCAmelCase ).parent.name lowercase_ = task_specific_params[F'''summarization_{dataset}''']["""max_position_embeddings"""] lowercase_ = PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=__lowerCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__lowerCAmelCase ) # convert model lowercase_ = get_tf_weights_as_numpy(__lowerCAmelCase ) lowercase_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": lowercase_ = task_specific_params lowercase_ = convert_pegasus(__lowerCAmelCase , __lowerCAmelCase ) torch_model.save_pretrained(__lowerCAmelCase ) lowercase_ = torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(__lowerCAmelCase , Path(__lowerCAmelCase ) / """pytorch_model.bin""" ) if __name__ == "__main__": UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase : List[Any] = parser.parse_args() if args.save_dir is None: UpperCAmelCase : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase : int = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
364
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
313
0
'''simple docstring''' from scipy.stats import spearmanr import datasets lowercase__ : Any = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowercase__ : Dict = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowercase__ : Tuple = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Tuple = spearmanr(_UpperCAmelCase , _UpperCAmelCase) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
190
'''simple docstring''' import math import qiskit def _lowerCAmelCase ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __A : int = qiskit.QuantumRegister(4 , 'qr' ) __A : Optional[int] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __A : Union[str, Any] = [input_a, input_a, carry_in] __A : Dict = qiskit.QuantumCircuit(__snake_case , __snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits __A : str = qiskit.Aer.get_backend('aer_simulator' ) __A : Any = qiskit.execute(__snake_case , __snake_case , shots=10_00 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
190
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCamelCase_ = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)] def SCREAMING_SNAKE_CASE_ ( ) -> str: _SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(__A ) ) _SCREAMING_SNAKE_CASE = os.path.join(__A , "words.txt" ) _SCREAMING_SNAKE_CASE = "" with open(__A ) as f: _SCREAMING_SNAKE_CASE = f.readline() _SCREAMING_SNAKE_CASE = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] _SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(__A ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__A ) if __name__ == "__main__": print(solution())
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : str , __A : str ) -> str: _SCREAMING_SNAKE_CASE = len(__A ) _SCREAMING_SNAKE_CASE = len(__A ) _SCREAMING_SNAKE_CASE = ( first_str_length if first_str_length > second_str_length else second_str_length ) _SCREAMING_SNAKE_CASE = [] for char_count in range(__A ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__A ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
111
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _A ( snake_case ) -> Dict: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class a__ ( lowerCamelCase_ ): @staticmethod def _lowerCamelCase ( _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=_UpperCamelCase , default=_UpperCamelCase , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=_UpperCamelCase , help="Name of the model to download" ) download_parser.set_defaults(func=_UpperCamelCase ) def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Dict = model _lowercase : List[Any] = cache _lowercase : Union[str, Any] = force _lowercase : Dict = trust_remote_code def _lowerCamelCase ( self ): """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
250
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: _lowercase : Optional[Any] = 0.00 _lowercase : Dict = 0 for resistor in resistors: if resistor <= 0: _lowercase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _A ( snake_case ) -> float: _lowercase : Dict = 0.00 _lowercase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowercase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _lowercase : Tuple = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] _lowercase : Optional[int] = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def lowerCamelCase__ ( A : Dict , A : str ): '''simple docstring''' UpperCAmelCase = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase = int(re.match(R'''.*layer_(\d*).*''' , A )[1] ) layer_number -= 3 return f"""h.{layer_number}.""" + key def lowerCamelCase__ ( A : str ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase = re.search(R'''[^\d](\d+)$''' , str(A ) ) if bit_search is None: raise ValueError(f"""`dtype` is not a valid dtype: {dtype}.""" ) UpperCAmelCase = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( A : Any , A : Tuple , A : Dict , A : Optional[Any] , A : Union[str, Any] ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase = BloomConfig() else: UpperCAmelCase = BloomConfig.from_json_file(A ) if shard_model: UpperCAmelCase = os.listdir(A ) UpperCAmelCase = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) UpperCAmelCase = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = BloomConfig() for j, file in enumerate(A ): print('''Processing file: {}'''.format(A ) ) UpperCAmelCase = None for i in range(A ): # load all TP files UpperCAmelCase = file.replace('''model_00''' , f"""model_0{i}""" ) UpperCAmelCase = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase = list(temp.keys() ) for key in keys: UpperCAmelCase = temp.pop(A ) if tensors is None: UpperCAmelCase = temp else: for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase = tensors[key] / pretraining_tp torch.save( A , os.path.join( A , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(A ) ).zfill(5 ) ) UpperCAmelCase = BloomConfig() UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase = total_size with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.dumps(A , indent=2 , sort_keys=A ) + '''\n''' f.write(A ) else: UpperCAmelCase = BloomModel(A ) UpperCAmelCase = os.listdir(A ) UpperCAmelCase = sorted(filter(lambda A : s.startswith('''layer''' ) and "model_00" in s , A ) ) UpperCAmelCase = None for i, file in enumerate(A ): UpperCAmelCase = None for i in range(A ): # load all TP files UpperCAmelCase = file.replace('''model_00''' , f"""model_0{i}""" ) UpperCAmelCase = torch.load(os.path.join(A , A ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase = list(temp.keys() ) for key in keys: UpperCAmelCase = temp.pop(A ) if tensors is None: UpperCAmelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase = torch.cat([tensors[key], temp[key]] , dim=A ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase = tensors[key] / pretraining_tp UpperCAmelCase = model.load_state_dict(A , strict=A ) assert not other_keys.unexpected_keys, f"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: UpperCAmelCase = set(other_keys.missing_keys ) else: UpperCAmelCase = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A , exist_ok=A ) UpperCAmelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: UpperCAmelCase = model.to(config.torch_dtype ) torch.save(model.state_dict() , A ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) _lowercase : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
360
'''simple docstring''' import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class UpperCamelCase__: def __init__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : int="resnet50" , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Tuple=True , lowerCAmelCase : str=True , )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = out_indices if out_indices is not None else [4] UpperCAmelCase = stage_names UpperCAmelCase = out_features UpperCAmelCase = backbone UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = use_pretrained_backbone UpperCAmelCase = is_training def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def a__( self : int )-> Optional[Any]: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a__( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = TimmBackbone(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a__( self : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : List[str] = (TimmBackbone,) if is_torch_available() else () __magic_name__ : Any = {"feature-extraction": TimmBackbone} if is_torch_available() else {} __magic_name__ : Union[str, Any] = False __magic_name__ : int = False __magic_name__ : Tuple = False __magic_name__ : List[str] = False def a__( self : int )-> str: """simple docstring""" UpperCAmelCase = TimmBackboneModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase ) def a__( self : List[str] )-> Dict: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = '''resnet18''' UpperCAmelCase = '''microsoft/resnet-18''' UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase ) UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase , out_indices=[1, 2, 3] ) UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a__( self : Union[str, Any] )-> Tuple: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a__( self : Dict )-> Dict: """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a__( self : Tuple )-> List[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a__( self : List[str] )-> Optional[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a__( self : Optional[Any] )-> Optional[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a__( self : Any )-> Optional[int]: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a__( self : str )-> str: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a__( self : Any )-> int: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a__( self : List[Any] )-> int: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a__( self : List[Any] )-> List[str]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a__( self : List[str] )-> Dict: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a__( self : str )-> Tuple: """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a__( self : List[Any] )-> List[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__( self : int )-> Tuple: """simple docstring""" pass def a__( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def a__( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCAmelCase = self.all_model_classes[0] UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = model(**lowerCAmelCase ) UpperCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models UpperCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(**lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCAmelCase = copy.deepcopy(lowerCAmelCase ) UpperCAmelCase = None UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(**lowerCAmelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCAmelCase = copy.deepcopy(lowerCAmelCase ) UpperCAmelCase = False UpperCAmelCase = model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase = model(**lowerCAmelCase )
91
0
'''simple docstring''' import math def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' return math.sqrt(__lowercase ) * math.sqrt(__lowercase ) == num def UpperCAmelCase_ ( __lowercase : int ) -> bool: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = n while left <= right: _UpperCAmelCase = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __magic_name__ ( __lowerCAmelCase): A: torch.FloatTensor class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase): @register_to_config def __init__( self : Union[str, Any] , lowerCamelCase__ : int = 32 , lowerCamelCase__ : int = 64 , lowerCamelCase__ : int = 20 , lowerCamelCase__ : int = 768 , lowerCamelCase__ : Optional[Any]=77 , lowerCamelCase__ : Optional[int]=4 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : str = "silu" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = "linear" , lowerCamelCase__ : Optional[str] = "prd" , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , ) -> Optional[Any]: '''simple docstring''' super().__init__() UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Optional[Any] = attention_head_dim UpperCamelCase__ : List[str] = num_attention_heads * attention_head_dim UpperCamelCase__ : Union[str, Any] = additional_embeddings UpperCamelCase__ : Union[str, Any] = time_embed_dim or inner_dim UpperCamelCase__ : int = embedding_proj_dim or embedding_dim UpperCamelCase__ : Optional[Any] = clip_embed_dim or embedding_dim UpperCamelCase__ : Dict = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) UpperCamelCase__ : List[Any] = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: UpperCamelCase__ : int = None elif embedding_proj_norm_type == "layer": UpperCamelCase__ : Optional[int] = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) UpperCamelCase__ : Dict = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: UpperCamelCase__ : List[Any] = None elif encoder_hid_proj_type == "linear": UpperCamelCase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) UpperCamelCase__ : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": UpperCamelCase__ : Any = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: UpperCamelCase__ : Union[str, Any] = None else: raise ValueError( F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) UpperCamelCase__ : str = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='''gelu''' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": UpperCamelCase__ : int = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: UpperCamelCase__ : int = None else: raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." ) UpperCamelCase__ : Optional[Any] = nn.LayerNorm(lowerCamelCase__ ) UpperCamelCase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) UpperCamelCase__ : Union[str, Any] = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , lowerCamelCase__ , persistent=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) UpperCamelCase__ : Optional[int] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = {} def fn_recursive_add_processors(lowerCamelCase__ : str , lowerCamelCase__ : torch.nn.Module , lowerCamelCase__ : Dict[str, AttentionProcessor] ): if hasattr(lowerCamelCase__ , '''set_processor''' ): UpperCamelCase__ : Optional[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def UpperCAmelCase__ ( self : int , lowerCamelCase__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Tuple = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowerCamelCase__ : str , lowerCamelCase__ : torch.nn.Module , lowerCamelCase__ : Dict ): if hasattr(lowerCamelCase__ , '''set_processor''' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(F"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[torch.Tensor, float, int] , lowerCamelCase__ : torch.FloatTensor , lowerCamelCase__ : Optional[torch.FloatTensor] = None , lowerCamelCase__ : Optional[torch.BoolTensor] = None , lowerCamelCase__ : bool = True , ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = hidden_states.shape[0] UpperCamelCase__ : List[Any] = timestep if not torch.is_tensor(lowerCamelCase__ ): UpperCamelCase__ : List[str] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: UpperCamelCase__ : Optional[int] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : List[str] = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) UpperCamelCase__ : int = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCamelCase__ : List[str] = timesteps_projected.to(dtype=self.dtype ) UpperCamelCase__ : Optional[Any] = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: UpperCamelCase__ : Dict = self.embedding_proj_norm(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCamelCase__ : int = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) UpperCamelCase__ : Optional[int] = self.proj_in(lowerCamelCase__ ) UpperCamelCase__ : int = self.positional_embedding.to(hidden_states.dtype ) UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCamelCase__ : Tuple = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCamelCase__ : Dict = hidden_states[:, None, :] UpperCamelCase__ : Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCamelCase__ : int = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCamelCase__ : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCamelCase__ : List[str] = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCamelCase__ : int = hidden_states + positional_embeddings if attention_mask is not None: UpperCamelCase__ : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 UpperCamelCase__ : Any = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) UpperCamelCase__ : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCamelCase__ : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCamelCase__ : List[str] = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: UpperCamelCase__ : Any = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: UpperCamelCase__ : Optional[int] = hidden_states[:, -1] else: UpperCamelCase__ : int = hidden_states[:, additional_embeddings_len:] UpperCamelCase__ : List[str] = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Tuple = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
146
0
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a : Any = False a : Dict = logging.get_logger(__name__) a : Optional[int] = 'ybelkada/fonts' def lowerCAmelCase_ (): """simple docstring""" if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' """Pix2StructImageProcessor. Please upgrade torch.""" ) def lowerCAmelCase_ (lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: List[Any] ): """simple docstring""" requires_backends(a__ , ["""torch"""] ) _check_torch_version() UpperCAmelCase_: Optional[Any] = image_tensor.unsqueeze(0 ) UpperCAmelCase_: int = torch.nn.functional.unfold(a__ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCAmelCase_: int = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , a__ , a__ , -1 ) UpperCAmelCase_: List[Any] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ (lowerCAmelCase__: str , lowerCAmelCase__: int = 3_6 , lowerCAmelCase__: str = "black" , lowerCAmelCase__: str = "white" , lowerCAmelCase__: int = 5 , lowerCAmelCase__: int = 5 , lowerCAmelCase__: int = 5 , lowerCAmelCase__: int = 5 , lowerCAmelCase__: Optional[bytes] = None , lowerCAmelCase__: Optional[str] = None , ): """simple docstring""" requires_backends(a__ , """vision""" ) # Add new lines so that each line is no more than 80 characters. UpperCAmelCase_: Optional[Any] = textwrap.TextWrapper(width=8_0 ) UpperCAmelCase_: Optional[Any] = wrapper.wrap(text=a__ ) UpperCAmelCase_: Optional[Any] = """\n""".join(a__ ) if font_bytes is not None and font_path is None: UpperCAmelCase_: Optional[int] = io.BytesIO(a__ ) elif font_path is not None: UpperCAmelCase_: Union[str, Any] = font_path else: UpperCAmelCase_: Union[str, Any] = hf_hub_download(a__ , """Arial.TTF""" ) UpperCAmelCase_: Optional[int] = ImageFont.truetype(a__ , encoding="""UTF-8""" , size=a__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCAmelCase_: Tuple = ImageDraw.Draw(Image.new("""RGB""" , (1, 1) , a__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = temp_draw.textbbox((0, 0) , a__ , a__ ) # Create the actual image with a bit of padding around the text. UpperCAmelCase_: Optional[Any] = text_width + left_padding + right_padding UpperCAmelCase_: Dict = text_height + top_padding + bottom_padding UpperCAmelCase_: Optional[int] = Image.new("""RGB""" , (image_width, image_height) , a__ ) UpperCAmelCase_: Union[str, Any] = ImageDraw.Draw(a__ ) draw.text(xy=(left_padding, top_padding) , text=a__ , fill=a__ , font=a__ ) return image def lowerCAmelCase_ (lowerCAmelCase__: np.ndarray , lowerCAmelCase__: str , **lowerCAmelCase__: Optional[Any] ): """simple docstring""" requires_backends(a__ , """vision""" ) # Convert to PIL image if necessary UpperCAmelCase_: Optional[int] = to_pil_image(a__ ) UpperCAmelCase_: Optional[int] = render_text(a__ , **a__ ) UpperCAmelCase_: int = max(header_image.width , image.width ) UpperCAmelCase_: Dict = int(image.height * (new_width / image.width) ) UpperCAmelCase_: int = int(header_image.height * (new_width / header_image.width) ) UpperCAmelCase_: int = Image.new("""RGB""" , (new_width, new_height + new_header_height) , """white""" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCAmelCase_: int = to_numpy_array(a__ ) if infer_channel_dimension_format(a__ ) == ChannelDimension.LAST: UpperCAmelCase_: int = to_channel_dimension_format(a__ , ChannelDimension.LAST ) return new_image class _a ( _lowercase ): A = ['''flattened_patches'''] def __init__(self, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = True, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 2048, SCREAMING_SNAKE_CASE_ = False, **SCREAMING_SNAKE_CASE_, ) -> None: super().__init__(**__UpperCamelCase ) UpperCAmelCase_: Any = patch_size if patch_size is not None else {"""height""": 16, """width""": 16} UpperCAmelCase_: str = do_normalize UpperCAmelCase_: List[Any] = do_convert_rgb UpperCAmelCase_: Dict = max_patches UpperCAmelCase_: Union[str, Any] = is_vqa def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ ) -> np.ndarray: requires_backends(self.extract_flattened_patches, """torch""" ) _check_torch_version() # convert to torch UpperCAmelCase_: Optional[Any] = to_channel_dimension_format(__UpperCamelCase, ChannelDimension.FIRST ) UpperCAmelCase_: Optional[int] = torch.from_numpy(__UpperCamelCase ) UpperCAmelCase_ , UpperCAmelCase_: Optional[Any] = patch_size["""height"""], patch_size["""width"""] UpperCAmelCase_ , UpperCAmelCase_: Any = get_image_size(__UpperCamelCase ) # maximize scale s.t. UpperCAmelCase_: Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCAmelCase_: str = max(min(math.floor(scale * image_height / patch_height ), __UpperCamelCase ), 1 ) UpperCAmelCase_: Any = max(min(math.floor(scale * image_width / patch_width ), __UpperCamelCase ), 1 ) UpperCAmelCase_: str = max(num_feasible_rows * patch_height, 1 ) UpperCAmelCase_: Optional[Any] = max(num_feasible_cols * patch_width, 1 ) UpperCAmelCase_: Union[str, Any] = torch.nn.functional.interpolate( image.unsqueeze(0 ), size=(resized_height, resized_width), mode="""bilinear""", align_corners=__UpperCamelCase, antialias=__UpperCamelCase, ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCAmelCase_: List[Any] = torch_extract_patches(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) UpperCAmelCase_: Optional[Any] = patches.shape UpperCAmelCase_: Union[str, Any] = patches_shape[1] UpperCAmelCase_: Tuple = patches_shape[2] UpperCAmelCase_: str = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCAmelCase_: int = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCAmelCase_: Tuple = torch.arange(__UpperCamelCase ).reshape([rows, 1] ).repeat(1, __UpperCamelCase ).reshape([rows * columns, 1] ) UpperCAmelCase_: str = torch.arange(__UpperCamelCase ).reshape([1, columns] ).repeat(__UpperCamelCase, 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCAmelCase_: int = row_ids.to(torch.floataa ) UpperCAmelCase_: List[Any] = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCAmelCase_: List[Any] = torch.cat([row_ids, col_ids, patches], -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCAmelCase_: Dict = torch.nn.functional.pad(__UpperCamelCase, [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCAmelCase_: Optional[Any] = to_numpy_array(__UpperCamelCase ) return result def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_ ) -> np.ndarray: if image.dtype == np.uinta: UpperCAmelCase_: Union[str, Any] = image.astype(np.floataa ) # take mean across the whole `image` UpperCAmelCase_: int = np.mean(__UpperCamelCase ) UpperCAmelCase_: Dict = np.std(__UpperCamelCase ) UpperCAmelCase_: List[Any] = max(__UpperCamelCase, 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__UpperCamelCase, mean=__UpperCamelCase, std=__UpperCamelCase, **__UpperCamelCase ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST, **SCREAMING_SNAKE_CASE_, ) -> ImageInput: UpperCAmelCase_: int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_: Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_: Union[str, Any] = patch_size if patch_size is not None else self.patch_size UpperCAmelCase_: List[str] = max_patches if max_patches is not None else self.max_patches UpperCAmelCase_: List[str] = self.is_vqa if kwargs.get("""data_format""", __UpperCamelCase ) is not None: raise ValueError("""data_format is not an accepted input as the outputs are """ ) UpperCAmelCase_: Any = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_: Dict = [convert_to_rgb(__UpperCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_: int = [to_numpy_array(__UpperCamelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError("""A header text must be provided for VQA models.""" ) UpperCAmelCase_: str = kwargs.pop("""font_bytes""", __UpperCamelCase ) UpperCAmelCase_: str = kwargs.pop("""font_path""", __UpperCamelCase ) if isinstance(__UpperCamelCase, __UpperCamelCase ): UpperCAmelCase_: Optional[Any] = [header_text] * len(__UpperCamelCase ) UpperCAmelCase_: int = [ render_header(__UpperCamelCase, header_text[i], font_bytes=__UpperCamelCase, font_path=__UpperCamelCase ) for i, image in enumerate(__UpperCamelCase ) ] if do_normalize: UpperCAmelCase_: List[str] = [self.normalize(image=__UpperCamelCase ) for image in images] # convert to torch tensor and permute UpperCAmelCase_: Optional[Any] = [ self.extract_flattened_patches(image=__UpperCamelCase, max_patches=__UpperCamelCase, patch_size=__UpperCamelCase ) for image in images ] # create attention mask in numpy UpperCAmelCase_: Optional[int] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCAmelCase_: List[Any] = BatchFeature( data={"""flattened_patches""": images, """attention_mask""": attention_masks}, tensor_type=__UpperCamelCase ) return encoded_outputs
360
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a : Tuple = logging.get_logger(__name__) a : Optional[Any] = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( _lowerCAmelCase ): A = '''encodec''' def __init__(self, SCREAMING_SNAKE_CASE_=[1.5, 3.0, 6.0, 1_2.0, 2_4.0], SCREAMING_SNAKE_CASE_=24000, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=128, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=[8, 5, 4, 2], SCREAMING_SNAKE_CASE_="weight_norm", SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="reflect", SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=1.0, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: UpperCAmelCase_: List[Any] = target_bandwidths UpperCAmelCase_: str = sampling_rate UpperCAmelCase_: Any = audio_channels UpperCAmelCase_: List[str] = normalize UpperCAmelCase_: List[Any] = chunk_length_s UpperCAmelCase_: List[Any] = overlap UpperCAmelCase_: Any = hidden_size UpperCAmelCase_: str = num_filters UpperCAmelCase_: Any = num_residual_layers UpperCAmelCase_: int = upsampling_ratios UpperCAmelCase_: Tuple = norm_type UpperCAmelCase_: Union[str, Any] = kernel_size UpperCAmelCase_: str = last_kernel_size UpperCAmelCase_: Union[str, Any] = residual_kernel_size UpperCAmelCase_: str = dilation_growth_rate UpperCAmelCase_: int = use_causal_conv UpperCAmelCase_: int = pad_mode UpperCAmelCase_: List[Any] = compress UpperCAmelCase_: Dict = num_lstm_layers UpperCAmelCase_: List[Any] = trim_right_ratio UpperCAmelCase_: List[Any] = codebook_size UpperCAmelCase_: List[Any] = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase_: Optional[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**SCREAMING_SNAKE_CASE_ ) @property def __snake_case (self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __snake_case (self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length ) ) @property def __snake_case (self ) -> int: UpperCAmelCase_: Optional[int] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __snake_case (self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
82
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =tempfile.mkdtemp() # fmt: off __lowercase =['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowercase =dict(zip(_lowerCamelCase , range(len(_lowerCamelCase)))) __lowercase =['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowercase ={'''unk_token''': '''<unk>'''} __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_lowerCamelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(_lowerCamelCase)) __lowercase ={ '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __lowercase =os.path.join(self.tmpdirname , _lowerCamelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_lowerCamelCase , _lowerCamelCase) def __lowerCamelCase ( self : str , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_lowerCamelCase) def __lowerCamelCase ( self : Optional[Any] , **_lowerCAmelCase : Any): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_lowerCamelCase) def __lowerCamelCase ( self : Any , **_lowerCAmelCase : Optional[int]): '''simple docstring''' return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase) def __lowerCamelCase ( self : Tuple): '''simple docstring''' shutil.rmtree(self.tmpdirname) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta)] __lowercase =[Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1)) for x in image_inputs] return image_inputs def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =self.get_rust_tokenizer() __lowercase =self.get_image_processor() __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) processor_slow.save_pretrained(self.tmpdirname) __lowercase =OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase) __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) processor_fast.save_pretrained(self.tmpdirname) __lowercase =OwlViTProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __lowercase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __lowercase =self.get_image_processor(do_normalize=_lowerCamelCase) __lowercase =OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCamelCase) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowerCamelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowerCamelCase) def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) __lowercase =self.prepare_image_inputs() __lowercase =image_processor(_lowerCamelCase , return_tensors='np') __lowercase =processor(images=_lowerCamelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) __lowercase ='''lower newer''' __lowercase =processor(text=_lowerCamelCase , return_tensors='np') __lowercase =tokenizer(_lowerCamelCase , return_tensors='np') for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist()) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) __lowercase ='''lower newer''' __lowercase =self.prepare_image_inputs() __lowercase =processor(text=_lowerCamelCase , images=_lowerCamelCase) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase): processor() def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='''google/owlvit-base-patch32''' __lowercase =OwlViTProcessor.from_pretrained(_lowerCamelCase) __lowercase =['''cat''', '''nasa badge'''] __lowercase =processor(text=_lowerCamelCase) __lowercase =1_6 self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape , (2, seq_length)) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase): processor() def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase ='''google/owlvit-base-patch32''' __lowercase =OwlViTProcessor.from_pretrained(_lowerCamelCase) __lowercase =[['''cat''', '''nasa badge'''], ['''person''']] __lowercase =processor(text=_lowerCamelCase) __lowercase =1_6 __lowercase =len(_lowerCamelCase) __lowercase =max([len(_lowerCamelCase) for texts in input_texts]) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length)) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase): processor() def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase ='''google/owlvit-base-patch32''' __lowercase =OwlViTProcessor.from_pretrained(_lowerCamelCase) __lowercase =['''cat''', '''nasa badge'''] __lowercase =processor(text=_lowerCamelCase) __lowercase =1_6 __lowercase =inputs['''input_ids'''] __lowercase =[ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask']) self.assertEqual(inputs['input_ids'].shape , (2, seq_length)) self.assertListEqual(list(input_ids[0]) , predicted_ids[0]) self.assertListEqual(list(input_ids[1]) , predicted_ids[1]) def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) __lowercase =self.prepare_image_inputs() __lowercase =self.prepare_image_inputs() __lowercase =processor(images=_lowerCamelCase , query_images=_lowerCamelCase) self.assertListEqual(list(inputs.keys()) , ['query_pixel_values', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase): processor() def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_image_processor() __lowercase =self.get_tokenizer() __lowercase =OwlViTProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase) __lowercase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase =processor.batch_decode(_lowerCamelCase) __lowercase =tokenizer.batch_decode(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , _lowerCamelCase)
166
from abc import ABC, abstractmethod from typing import List, Optional class a_ ( a__ ): """simple docstring""" def __init__( self ) ->List[str]: # test for the above condition self.test() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : List[Any] = self.advance() if not self.does_advance(_lowerCamelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.update(_lowerCamelCase ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self ) ->Union[str, Any]: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Any: raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = token_ids SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.token_ids ) SCREAMING_SNAKE_CASE : Any = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->List[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = False if self.does_advance(_lowerCamelCase ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : str = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : Dict = True self.reset() return stepped, completed, reset def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self ) ->Any: return self.seqlen - (self.fulfilled_idx + 1) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Dict: SCREAMING_SNAKE_CASE : Any = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Dict = self.seqlen SCREAMING_SNAKE_CASE : int = self.fulfilled_idx SCREAMING_SNAKE_CASE : Tuple = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=True ) ->Dict: SCREAMING_SNAKE_CASE : Any = max([len(_lowerCamelCase ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : List[str] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Optional[Any] = root for tidx, token_id in enumerate(_lowerCamelCase ): if token_id not in level: SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : Tuple = level[token_id] if no_subsets and self.has_subsets(_lowerCamelCase , _lowerCamelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F""" {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = root def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : int = start[current_token] SCREAMING_SNAKE_CASE : Optional[int] = list(start.keys() ) return next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = self.next_tokens(_lowerCamelCase ) return len(_lowerCamelCase ) == 0 def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = list(root.values() ) if len(_lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(_lowerCamelCase ) for nn in next_nodes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = self.count_leaves(_lowerCamelCase ) return len(_lowerCamelCase ) != leaf_count class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super(_lowerCamelCase , self ).__init__() if not isinstance(_lowerCamelCase , _lowerCamelCase ) or len(_lowerCamelCase ) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(_lowerCamelCase , _lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(_lowerCamelCase , _lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveTrie(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = nested_token_ids SCREAMING_SNAKE_CASE : Optional[int] = self.trie.max_height SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False if self.does_advance(_lowerCamelCase ): self.current_seq.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : Any = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[Any] = completed return stepped, completed, reset def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = [] def __lowerCAmelCase ( self ) ->Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->List[str]: SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : int = self.current_seq SCREAMING_SNAKE_CASE : Optional[int] = self.completed return new_constraint class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : str = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False self.init_state() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = [constraint.copy(stateful=_lowerCamelCase ) for constraint in self.constraints] def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : Optional[int] = constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.advance() if isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.append(_lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): token_list.extend(_lowerCamelCase ) if len(_lowerCamelCase ) == 0: return None else: return token_list def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.add(_lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.inprogress_constraint.update(_lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : str = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = pending_constraint.update(_lowerCamelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = None if not complete and stepped: SCREAMING_SNAKE_CASE : Optional[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : str = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __lowerCAmelCase ( self , _lowerCamelCase=True ) ->str: SCREAMING_SNAKE_CASE : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : str = [ constraint.copy(stateful=_lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.copy(stateful=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
313
0
'''simple docstring''' from __future__ import annotations def _lowercase ( __A ,__A ): '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) __UpperCamelCase = number_of_bytes // partitions __UpperCamelCase = [] for i in range(__A ): __UpperCamelCase = i * bytes_per_partition + 1 __UpperCamelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = filter(lambda __A : p.requires_grad ,model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : Optional[Any] = logging.getLogger(__name__) def _lowercase ( __A ,__A ): '''simple docstring''' if metric == "rouge2": __UpperCamelCase = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __UpperCamelCase = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __UpperCamelCase = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" """ function.""" ) __UpperCamelCase = ModelCheckpoint( dirpath=__A ,filename=__A ,monitor=f"val_{metric}" ,mode="""max""" ,save_top_k=3 ,every_n_epochs=1 ,) return checkpoint_callback def _lowercase ( __A ,__A ): '''simple docstring''' return EarlyStopping( monitor=f"val_{metric}" ,mode="""min""" if """loss""" in metric else """max""" ,patience=__A ,verbose=__A ,) class UpperCAmelCase__ ( pl.Callback): def __lowerCamelCase ( self , lowercase , lowercase ) -> Dict: __UpperCamelCase = {f"lr_group_{i}": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / """test_results.txt""" __UpperCamelCase = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __UpperCamelCase = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=lowercase ) generations_file.parent.mkdir(exist_ok=lowercase ) with open(lowercase , """a+""" ) as writer: for key in sorted(lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(lowercase , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = f"{key}: {val:.6f}\n" writer.write(lowercase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(lowercase ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> str: try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(lowercase ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1E6, """grad_mp""": n_trainable_pars / 1E6} ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> Optional[Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowercase , lowercase , """test""" ) @rank_zero_only def __lowerCamelCase ( self , lowercase , lowercase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
243
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = "Hello, World!" __UpperCAmelCase : Any = "en_XX" def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> Optional[int]: __snake_case: Optional[Any] = Path("""data_bin""") __snake_case: Tuple = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE__).parent) , checkpoint_file=Path(SCREAMING_SNAKE_CASE__).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(SCREAMING_SNAKE_CASE__) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE__).parent / """sentencepiece.bpe.model""") , src_dict=str(data_dir / """dict.txt""") , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE__) __snake_case: int = xmod.model.encoder.sentence_encoder __snake_case: Optional[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __snake_case: Optional[Any] = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = XmodForSequenceClassification(SCREAMING_SNAKE_CASE__) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE__) model.eval() # Now let's copy all the weights. # Embeddings __snake_case: int = xmod_sent_encoder.embed_tokens.weight __snake_case: Optional[Any] = xmod_sent_encoder.embed_positions.weight __snake_case: str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. __snake_case: Optional[int] = xmod_sent_encoder.layernorm_embedding.weight __snake_case: List[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer __snake_case: int = model.roberta.encoder.layer[i] __snake_case: Tuple = xmod_sent_encoder.layers[i] # self attention __snake_case: Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError("""Dimensions of self-attention weights do not match.""") __snake_case: int = xmod_layer.self_attn.q_proj.weight __snake_case: Tuple = xmod_layer.self_attn.q_proj.bias __snake_case: List[str] = xmod_layer.self_attn.k_proj.weight __snake_case: Any = xmod_layer.self_attn.k_proj.bias __snake_case: Dict = xmod_layer.self_attn.v_proj.weight __snake_case: Dict = xmod_layer.self_attn.v_proj.bias # self-attention output __snake_case: Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""") __snake_case: Dict = xmod_layer.self_attn.out_proj.weight __snake_case: List[Any] = xmod_layer.self_attn.out_proj.bias __snake_case: Optional[Any] = xmod_layer.self_attn_layer_norm.weight __snake_case: int = xmod_layer.self_attn_layer_norm.bias # intermediate __snake_case: List[str] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""") __snake_case: Optional[int] = xmod_layer.fca.weight __snake_case: List[Any] = xmod_layer.fca.bias # output __snake_case: Tuple = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""") __snake_case: Optional[Any] = xmod_layer.fca.weight __snake_case: Any = xmod_layer.fca.bias __snake_case: str = xmod_layer.final_layer_norm.weight __snake_case: Optional[int] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __snake_case: List[str] = xmod_layer.adapter_layer_norm.weight __snake_case: Tuple = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError("""Lists of language adapters do not match.""") for lang_code, adapter in xmod_layer.adapter_modules.items(): __snake_case: Tuple = bert_output.adapter_modules[lang_code] __snake_case: Optional[Any] = xmod_layer.adapter_modules[lang_code] __snake_case: Optional[int] = from_adapter.fca.weight __snake_case: int = from_adapter.fca.bias __snake_case: List[str] = from_adapter.fca.weight __snake_case: Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __snake_case: Any = xmod_sent_encoder.layer_norm.weight __snake_case: Optional[int] = xmod_sent_encoder.layer_norm.bias if classification_head: __snake_case: Optional[int] = xmod.model.classification_heads["""mnli"""].dense.weight __snake_case: int = xmod.model.classification_heads["""mnli"""].dense.bias __snake_case: Tuple = xmod.model.classification_heads["""mnli"""].out_proj.weight __snake_case: int = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __snake_case: str = xmod.model.encoder.lm_head.dense.weight __snake_case: str = xmod.model.encoder.lm_head.dense.bias __snake_case: List[Any] = xmod.model.encoder.lm_head.layer_norm.weight __snake_case: List[Any] = xmod.model.encoder.lm_head.layer_norm.bias __snake_case: List[Any] = xmod.model.encoder.lm_head.weight __snake_case: Union[str, Any] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __snake_case: List[Any] = xmod.encode(SCREAMING_SNAKE_CASE__).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE__) __snake_case: Optional[Any] = model(SCREAMING_SNAKE_CASE__)[0] if classification_head: __snake_case: List[Any] = xmod.model.classification_heads["""mnli"""](xmod.extract_features(SCREAMING_SNAKE_CASE__)) else: __snake_case: int = xmod.model(SCREAMING_SNAKE_CASE__ , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) __snake_case: List[str] = torch.max(torch.abs(our_output - their_output)).item() print(F'''max_absolute_diff = {max_absolute_diff}''') # ~ 1e-7 __snake_case: Any = torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""") if not success: raise Exception("""Something went wRoNg""") Path(SCREAMING_SNAKE_CASE__).mkdir(parents=SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __UpperCAmelCase : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
111
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """ibert""" def __init__( self : Dict , A : Union[str, Any]=30_522 , A : List[Any]=768 , A : List[Any]=12 , A : Optional[int]=12 , A : Optional[Any]=3_072 , A : int="gelu" , A : str=0.1 , A : List[Any]=0.1 , A : Optional[Any]=512 , A : int=2 , A : Union[str, Any]=0.02 , A : List[str]=1E-12 , A : Optional[int]=1 , A : Optional[int]=0 , A : List[str]=2 , A : str="absolute" , A : Any=False , A : Optional[Any]="none" , **A : Any , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) __snake_case: List[Any] = vocab_size __snake_case: Optional[Any] = hidden_size __snake_case: List[str] = num_hidden_layers __snake_case: Tuple = num_attention_heads __snake_case: List[str] = hidden_act __snake_case: Optional[Any] = intermediate_size __snake_case: Tuple = hidden_dropout_prob __snake_case: List[str] = attention_probs_dropout_prob __snake_case: Any = max_position_embeddings __snake_case: int = type_vocab_size __snake_case: List[str] = initializer_range __snake_case: List[Any] = layer_norm_eps __snake_case: Optional[int] = position_embedding_type __snake_case: str = quant_mode __snake_case: Optional[int] = force_dequant class __snake_case ( __lowerCamelCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Tuple ): if self.task == "multiple-choice": __snake_case: List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case: List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
111
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = GPTSwaTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = GPTSwaTokenizer(__a , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ (self , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = 'This is a test' UpperCAmelCase__ = 'This is a test' return input_text, output_text def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = '<s>' UpperCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__a ) , 2000 ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = GPTSwaTokenizer(__a ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [465, 287, 265, 631, 842] ) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( __a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(__a ) # fmt: off self.assertListEqual( __a , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = GPTSwaTokenizer(__a ) UpperCAmelCase__ = ['This is a test', 'I was born in 92000, and this is falsé.'] UpperCAmelCase__ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__a , __a ): self.assertListEqual(tokenizer.encode_fast(__a ) , __a ) # Test that decode_fast returns the input text for text, token_ids in zip(__a , __a ): self.assertEqual(tokenizer.decode_fast(__a ) , __a ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off UpperCAmelCase__ = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name='AI-Sweden/gpt-sw3-126m' , sequences=__a , )
357
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase__ = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase__ = model_name.find('patch' ) UpperCAmelCase__ = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) UpperCAmelCase__ = XCLIPVisionConfig(patch_size=snake_case__ , num_frames=snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 UpperCAmelCase__ = 12 UpperCAmelCase__ = 10_24 UpperCAmelCase__ = 40_96 UpperCAmelCase__ = 16 UpperCAmelCase__ = 24 UpperCAmelCase__ = 7_68 UpperCAmelCase__ = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = 3_36 UpperCAmelCase__ = XCLIPConfig.from_text_vision_configs(snake_case__ , snake_case__ ) if "large" in model_name: UpperCAmelCase__ = 7_68 return config def UpperCamelCase_( snake_case__: Any ) -> Tuple: # text encoder if name == "token_embedding.weight": UpperCAmelCase__ = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": UpperCAmelCase__ = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: UpperCAmelCase__ = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: UpperCAmelCase__ = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: UpperCAmelCase__ = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: UpperCAmelCase__ = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): UpperCAmelCase__ = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase__ = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: UpperCAmelCase__ = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase__ = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": UpperCAmelCase__ = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): UpperCAmelCase__ = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: UpperCAmelCase__ = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: UpperCAmelCase__ = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: UpperCAmelCase__ = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: UpperCAmelCase__ = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: UpperCAmelCase__ = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase__ = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: UpperCAmelCase__ = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": UpperCAmelCase__ = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): UpperCAmelCase__ = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): UpperCAmelCase__ = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def UpperCamelCase_( snake_case__: Union[str, Any] , snake_case__: List[Any] ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): UpperCAmelCase__ = orig_state_dict.pop(snake_case__ ) if "attn.in_proj" in key: UpperCAmelCase__ = key.split('.' ) if key.startswith('visual' ): UpperCAmelCase__ = key_split[3] UpperCAmelCase__ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[ :dim ] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[ -dim: ] else: if "weight" in key: UpperCAmelCase__ = val[ :dim, : ] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[ -dim:, : ] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] elif key.startswith('mit' ): UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[dim : dim * 2, :] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[dim : dim * 2] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = key_split[2] UpperCAmelCase__ = config.text_config.hidden_size if "weight" in key: UpperCAmelCase__ = val[:dim, :] UpperCAmelCase__ = val[ dim : dim * 2, : ] UpperCAmelCase__ = val[-dim:, :] else: UpperCAmelCase__ = val[:dim] UpperCAmelCase__ = val[ dim : dim * 2 ] UpperCAmelCase__ = val[-dim:] else: UpperCAmelCase__ = rename_key(snake_case__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase__ = val.T UpperCAmelCase__ = val return orig_state_dict def UpperCamelCase_( snake_case__: Tuple ) -> Optional[Any]: if num_frames == 8: UpperCAmelCase__ = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: UpperCAmelCase__ = 'eating_spaghetti.npy' elif num_frames == 32: UpperCAmelCase__ = 'eating_spaghetti_32_frames.npy' UpperCAmelCase__ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=snake_case__ , repo_type='dataset' , ) UpperCAmelCase__ = np.load(snake_case__ ) return list(snake_case__ ) def UpperCamelCase_( snake_case__: Tuple , snake_case__: str=None , snake_case__: Union[str, Any]=False ) -> List[Any]: UpperCAmelCase__ = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } UpperCAmelCase__ = model_to_url[model_name] UpperCAmelCase__ = 8 if "16-frames" in model_name: UpperCAmelCase__ = 16 elif "shot" in model_name: UpperCAmelCase__ = 32 UpperCAmelCase__ = get_xclip_config(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase__ = 'pytorch_model.bin' gdown.cached_download(snake_case__ , snake_case__ , quiet=snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] else: UpperCAmelCase__ = torch.hub.load_state_dict_from_url(snake_case__ )['model'] UpperCAmelCase__ = convert_state_dict(snake_case__ , snake_case__ ) UpperCAmelCase__ = XCLIPModel(snake_case__ ) UpperCAmelCase__ , UpperCAmelCase__ = model.load_state_dict(snake_case__ , strict=snake_case__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase__ = 3_36 if model_name == 'xclip-large-patch14-16-frames' else 2_24 UpperCAmelCase__ = VideoMAEImageProcessor(size=snake_case__ ) UpperCAmelCase__ = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) UpperCAmelCase__ = XCLIPProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) UpperCAmelCase__ = prepare_video(snake_case__ ) UpperCAmelCase__ = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=snake_case__ , return_tensors='pt' , padding=snake_case__ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase__ = model(**snake_case__ ) # Verify outputs UpperCAmelCase__ = outputs.logits_per_video UpperCAmelCase__ = logits_per_video.softmax(dim=1 ) print('Probs:' , snake_case__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase__ = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase__ = torch.tensor([[7.0_999e-04, 9.9_883e-01, 4.5_580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase__ = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase__ = torch.tensor([[7.6_937e-04, 9.9_728e-01, 1.9_473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase__ = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase__ = torch.tensor([[3.3_877e-04, 9.9_937e-01, 2.8_888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase__ = torch.tensor([[3.8_554e-04, 9.9_929e-01, 3.2_754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase__ = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase__ = torch.tensor([[7.1_890e-06, 9.9_994e-01, 5.6_559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase__ = torch.tensor([[1.0_320e-05, 9.9_993e-01, 6.2_435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase__ = torch.tensor([[4.1_377e-06, 9.9_990e-01, 9.8_386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase__ = torch.tensor([[4.1_347e-05, 9.9_962e-01, 3.3_411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase__ = torch.tensor([[8.5_857e-05, 9.9_928e-01, 6.3_291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase__ = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase__ = torch.tensor([[9.8_219e-04, 9.9_593e-01, 3.0_863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase__ = torch.tensor([[3.5_082e-04, 9.9_785e-01, 1.7_966e-03]] ) else: raise ValueError(f"Model name {model_name} not supported" ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(snake_case__ , organization='nielsr' ) processor.push_to_hub(snake_case__ , organization='nielsr' ) slow_tokenizer.push_to_hub(snake_case__ , organization='nielsr' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _UpperCamelCase = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
335
0
'''simple docstring''' import random from typing import Any def _lowerCAmelCase ( _UpperCamelCase : Dict ) -> list[Any]: """simple docstring""" for _ in range(len(__a ) ): _SCREAMING_SNAKE_CASE =random.randint(0 , len(__a ) - 1 ) _SCREAMING_SNAKE_CASE =random.randint(0 , len(__a ) - 1 ) _SCREAMING_SNAKE_CASE =data[b], data[a] return data if __name__ == "__main__": lowerCamelCase : Dict = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase : Dict = ["""python""", """says""", """hello""", """!"""] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
47
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py UpperCAmelCase_ : Optional[int] = """src/transformers""" UpperCAmelCase_ : Tuple = """docs/source/en""" UpperCAmelCase_ : Optional[Any] = """.""" def _A (__a , __a , __a ) -> Dict: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Dict = f.readlines() # Find the start prompt. SCREAMING_SNAKE_CASE_ : List[Any] = 0 while not lines[start_index].startswith(__a ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Tuple = start_index while not lines[end_index].startswith(__a ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | UpperCAmelCase_ : Optional[Any] = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. UpperCAmelCase_ : int = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") UpperCAmelCase_ : Dict = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCAmelCase_ : int = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase_ : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) def _A (__a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , __a ) return [m.group(0 ) for m in matches] def _A (__a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 2 if text == '''✅''' or text == '''❌''' else len(__a ) SCREAMING_SNAKE_CASE_ : Tuple = (width - text_length) // 2 SCREAMING_SNAKE_CASE_ : Tuple = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ : Tuple = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } SCREAMING_SNAKE_CASE_ : List[Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. SCREAMING_SNAKE_CASE_ : List[str] = collections.defaultdict(__a ) SCREAMING_SNAKE_CASE_ : int = collections.defaultdict(__a ) SCREAMING_SNAKE_CASE_ : List[str] = collections.defaultdict(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = collections.defaultdict(__a ) SCREAMING_SNAKE_CASE_ : int = collections.defaultdict(__a ) # Let's lookup through all transformers object (once). for attr_name in dir(__a ): SCREAMING_SNAKE_CASE_ : Any = None if attr_name.endswith('''Tokenizer''' ): SCREAMING_SNAKE_CASE_ : Dict = slow_tokenizers SCREAMING_SNAKE_CASE_ : Dict = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = fast_tokenizers SCREAMING_SNAKE_CASE_ : Optional[Any] = attr_name[:-13] elif _re_tf_models.match(__a ) is not None: SCREAMING_SNAKE_CASE_ : int = tf_models SCREAMING_SNAKE_CASE_ : Dict = _re_tf_models.match(__a ).groups()[0] elif _re_flax_models.match(__a ) is not None: SCREAMING_SNAKE_CASE_ : Any = flax_models SCREAMING_SNAKE_CASE_ : Tuple = _re_flax_models.match(__a ).groups()[0] elif _re_pt_models.match(__a ) is not None: SCREAMING_SNAKE_CASE_ : str = pt_models SCREAMING_SNAKE_CASE_ : int = _re_pt_models.match(__a ).groups()[0] if lookup_dict is not None: while len(__a ) > 0: if attr_name in model_name_to_prefix.values(): SCREAMING_SNAKE_CASE_ : List[str] = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(camel_case_split(__a )[:-1] ) # Let's build that table! SCREAMING_SNAKE_CASE_ : Any = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) SCREAMING_SNAKE_CASE_ : Any = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). SCREAMING_SNAKE_CASE_ : List[str] = [len(__a ) + 2 for c in columns] SCREAMING_SNAKE_CASE_ : str = max([len(__a ) for name in model_names] ) + 2 # Build the table per se SCREAMING_SNAKE_CASE_ : List[Any] = '''|''' + '''|'''.join([_center_text(__a , __a ) for c, w in zip(__a , __a )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {True: '''✅''', False: '''❌'''} for name in model_names: SCREAMING_SNAKE_CASE_ : str = model_name_to_prefix[name] SCREAMING_SNAKE_CASE_ : int = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(__a , __a ) for l, w in zip(__a , __a )] ) + "|\n" return table def _A (__a=False ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = _find_text_in_file( filename=os.path.join(__a , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) SCREAMING_SNAKE_CASE_ : Tuple = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(__a , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : Any = parser.parse_args() check_model_table(args.fix_and_overwrite)
91
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def a__ ( __lowercase , __lowercase ) -> Dict: _A = old_name if "patch_embed" in old_name: _A , _A , _A = old_name.split("." ) if layer == "0": _A = old_name.replace("0" , "convolution1" ) elif layer == "1": _A = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": _A = old_name.replace("3" , "convolution2" ) else: _A = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , __lowercase ): _A = R"\b\d{2}\b" if bool(re.search(__lowercase , __lowercase ) ): _A = re.search(R"\d\.\d\d." , __lowercase ).group() else: _A = re.search(R"\d\.\d." , __lowercase ).group() if int(match[0] ) < 6: _A = old_name.replace(__lowercase , "" ) _A = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) _A = "intermediate_stages." + trimmed_name else: _A = old_name.replace(__lowercase , "" ) if int(match[2] ) < num_meta4D_last_stage: _A = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: _A = str(int(match[2] ) - num_meta4D_last_stage ) _A = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: _A = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: _A = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: _A = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: _A = trimmed_name.replace("fc2" , "linear_out" ) _A = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , __lowercase ): _A = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: _A = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): _A = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): _A = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: _A = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: _A = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: _A = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: _A = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": _A = new_name.replace("norm" , "layernorm" ) _A = "efficientformer." + new_name else: _A = "efficientformer.encoder." + new_name return new_name def a__ ( __lowercase , __lowercase ) -> List[str]: for key in checkpoint.copy().keys(): _A = checkpoint.pop(__lowercase ) _A = val return checkpoint def a__ ( ) -> Dict: _A = "http://images.cocodataset.org/val2017/000000039769.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return image def a__ ( __lowercase , __lowercase , __lowercase , __lowercase ) -> str: _A = torch.load(__lowercase , map_location="cpu" )["model"] _A = EfficientFormerConfig.from_json_file(__lowercase ) _A = EfficientFormerForImageClassificationWithTeacher(__lowercase ) _A = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) _A = config.depths[-1] - config.num_metaad_blocks + 1 _A = convert_torch_checkpoint(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() _A = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image _A = prepare_img() _A = 256 _A = 224 _A = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) _A = processor(images=__lowercase , return_tensors="pt" ).pixel_values # original processing pipeline _A = Compose( [ Resize(__lowercase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(__lowercase ), ToTensor(), Normalize(__lowercase , __lowercase ), ] ) _A = image_transforms(__lowercase ).unsqueeze(0 ) assert torch.allclose(__lowercase , __lowercase ) _A = model(__lowercase ) _A = outputs.logits _A = (1, 1000) if "l1" in model_name: _A = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , __lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: _A = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , __lowercase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: _A = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(__lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add model" , use_temp_dir=__lowercase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message="Add image processor" , use_temp_dir=__lowercase , ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) a_ = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
352
"""simple docstring""" def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(__lowercase , __lowercase ) ) ) def a__ ( __lowercase ) -> None: if point: if isinstance(__lowercase , __lowercase ): for item in point: if not isinstance(__lowercase , (int, float) ): _A = ( "Expected a list of numbers as input, found " f"""{type(__lowercase ).__name__}""" ) raise TypeError(__lowercase ) else: _A = f"""Expected a list of numbers as input, found {type(__lowercase ).__name__}""" raise TypeError(__lowercase ) else: raise ValueError("Missing an input" ) def a__ ( __lowercase , __lowercase ) -> float: _validate_point(__lowercase ) _validate_point(__lowercase ) if len(__lowercase ) != len(__lowercase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(__lowercase , __lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
163
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : Any = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } __lowerCamelCase : Optional[Any] = {"""allegro/herbert-base-cased""": 514} __lowerCamelCase : Any = {} class A__ ( __snake_case ): _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :str = HerbertTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_="</s>" , **A_ , ): '''simple docstring''' super().__init__( A_ , A_ , tokenizer_file=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , sep_token=A_ , **A_ , ) def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Optional[int] = [self.cls_token_id] UpperCamelCase : List[Any] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase( self , A_ , A_ = None , A_ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Any = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
52
from __future__ import annotations import math def _UpperCAmelCase ( snake_case ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = str(snake_case ) _lowerCAmelCase = [n] for i in range(1 , len(snake_case ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def _UpperCAmelCase ( snake_case ): """simple docstring""" if len(str(snake_case ) ) > 3: if not is_prime(int(str(snake_case )[-3:] ) ) or not is_prime(int(str(snake_case )[:3] ) ): return False return True def _UpperCAmelCase ( snake_case = 11 ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 13 while len(snake_case ) != count: if validate(snake_case ): _lowerCAmelCase = list_truncated_nums(snake_case ) if all(is_prime(snake_case ) for i in list_nums ): list_truncated_primes.append(snake_case ) num += 2 return list_truncated_primes def _UpperCAmelCase ( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"{sum(compute_truncated_primes(11)) = }")
82
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore a__: Optional[Any] = '\nHuman: <<task>>\n\nAssistant: ' a__: List[Any] = 'huggingface-tools/default-prompts' a__: int = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int="run" )->List[str]: if prompt_or_repo_id is None: A__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , UpperCamelCase__ ) is not None: return prompt_or_repo_id A__ = cached_file( UpperCamelCase__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
350
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: Union[str, Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
0
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" lowercase_ : Dict = [[0 for _ in range(__SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase_ : Optional[Any] = 1 for n in range(m + 1 ): for k in range(1 , __SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: _lowercase : Any = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: _lowercase : int = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
93
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = """""" a_ : Dict = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(self , **__UpperCAmelCase) a_ = repo_info a_ = token a_ = None def UpperCAmelCase__ ( self) ->Tuple: if self.dir_cache is None: a_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a_ = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCAmelCase): {"name": str(__UpperCAmelCase), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , **__UpperCAmelCase , ) ->List[Any]: if not isinstance(self.repo_info , __UpperCAmelCase): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''') a_ = hf_hub_url(self.repo_info.id , __UpperCAmelCase , revision=self.repo_info.sha) return fsspec.open( __UpperCAmelCase , mode=__UpperCAmelCase , headers=get_authentication_headers_for_url(__UpperCAmelCase , use_auth_token=self.token) , client_kwargs={"trust_env": True} , ).open() def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->int: self._get_dirs() a_ = self._strip_protocol(__UpperCAmelCase) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase) ->List[Any]: self._get_dirs() a_ = PurePosixPath(path.strip("/")) a_ = {} for p, f in self.dir_cache.items(): a_ = PurePosixPath(p.strip("/")) a_ = p.parent if root == path: a_ = f a_ = list(paths.values()) if detail: return out else: return sorted(f["name"] for f in out)
243
0
from __future__ import annotations def A ( lowercase , lowercase ) -> list[int]: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = len(lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase = i + 1 else: UpperCamelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
110
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def A ( ) -> int: '''simple docstring''' UpperCamelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' UpperCamelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) return image def A ( lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def A ( lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = dct.pop(lowercase ) UpperCamelCase = val def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) UpperCamelCase = qkv_bias def A ( lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 364 if 'coco' in model_name else 224 UpperCamelCase = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() UpperCamelCase = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def A ( lowercase , lowercase=None , lowercase=False ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) UpperCamelCase = tokenizer('\n' , add_special_tokens=lowercase ).input_ids[0] UpperCamelCase , UpperCamelCase = get_blipa_config(lowercase , eos_token_id=lowercase ) UpperCamelCase = BlipaForConditionalGeneration(lowercase ).eval() UpperCamelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } UpperCamelCase , UpperCamelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase , UpperCamelCase , UpperCamelCase = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print('Done!' ) # update state dict keys UpperCamelCase = original_model.state_dict() UpperCamelCase = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase = state_dict.pop(lowercase ) if key.startswith('Qformer.bert' ): UpperCamelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: UpperCamelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: UpperCamelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: UpperCamelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): UpperCamelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): UpperCamelCase = key.replace('t5' , 'language' ) UpperCamelCase = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) UpperCamelCase , UpperCamelCase = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase = load_demo_image() UpperCamelCase = vis_processors['eval'](lowercase ).unsqueeze(0 ).to(lowercase ) UpperCamelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowercase ) # create processor UpperCamelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowercase , image_std=lowercase ) UpperCamelCase = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) UpperCamelCase = processor(images=lowercase , return_tensors='pt' ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits UpperCamelCase = hf_model(lowercase , lowercase ).logits else: UpperCamelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits UpperCamelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=lowercase ) else: # cast to same type UpperCamelCase = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) UpperCamelCase = '' UpperCamelCase = tokenizer(lowercase , return_tensors='pt' ).input_ids.to(lowercase ) UpperCamelCase = original_model.generate({'image': original_pixel_values} ) UpperCamelCase = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowercase ) UpperCamelCase = input_ids.shape[1] UpperCamelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) UpperCamelCase = [text.strip() for text in output_text] print('HF generation:' , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() _UpperCAmelCase : str = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _UpperCAmelCase : List[str] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
110
1
"""simple docstring""" import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(UpperCAmelCase_ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Optional[Any] = _distribute_shards(**UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[str] = _split_gen_kwargs(UpperCAmelCase_ , UpperCAmelCase_ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ): if expected is RuntimeError: with pytest.raises(UpperCAmelCase_ ): _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) else: lowercase_ : Union[str, Any] = _number_of_shards_in_gen_kwargs(UpperCAmelCase_ ) assert out == expected
213
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : Dict ): # noqa: E741 A__ = len(UpperCAmelCase_ ) A__ = 0 A__ = [0] * n A__ = [False] * n A__ = [False] * n def dfs(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ): if parent == root: out_edge_count += 1 A__ = True A__ = at for to in l[at]: if to == parent: pass elif not visited[to]: A__ = dfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) A__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: A__ = True # AP found via cycle if at == low[to]: A__ = True else: A__ = min(low[at] , UpperCAmelCase_ ) return out_edge_count for i in range(UpperCAmelCase_ ): if not visited[i]: A__ = 0 A__ = dfs(UpperCAmelCase_ , UpperCAmelCase_ , -1 , UpperCAmelCase_ ) A__ = out_edge_count > 1 for x in range(len(UpperCAmelCase_ ) ): if is_art[x] is True: print(UpperCAmelCase_ ) # Adjacency list of graph SCREAMING_SNAKE_CASE_ : Optional[int] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
335
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> float: '''simple docstring''' if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(_UpperCamelCase ) * abs(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[Any] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCAmelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
320
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCAmelCase : List[str] = logging.getLogger(__name__) def A_ ( a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.argmax(UpperCamelCase__ , axis=1 ) return np.sum(outputs == labels ) def A_ ( a ): """simple docstring""" with open(UpperCamelCase__ , encoding='utf_8' ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = csv.reader(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [] next(UpperCamelCase__ ) # skip the first line for line in tqdm(UpperCamelCase__ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def A_ ( a , a , a , a , a , a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] for dataset in encoded_datasets: SCREAMING_SNAKE_CASE_ : Optional[int] = len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : int = np.zeros((n_batch, 2) , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : int = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE_ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] SCREAMING_SNAKE_CASE_ : List[Any] = with_conta SCREAMING_SNAKE_CASE_ : List[Any] = with_conta SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(UpperCamelCase__ ) - 1 SCREAMING_SNAKE_CASE_ : Any = len(UpperCamelCase__ ) - 1 SCREAMING_SNAKE_CASE_ : Optional[int] = with_conta SCREAMING_SNAKE_CASE_ : Dict = with_conta SCREAMING_SNAKE_CASE_ : List[str] = mc_label SCREAMING_SNAKE_CASE_ : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(UpperCamelCase__ ) for t in all_inputs ) ) return tensor_datasets def A_ ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = argparse.ArgumentParser() parser.add_argument('--model_name' , type=UpperCamelCase__ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=UpperCamelCase__ , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=UpperCamelCase__ , default='' ) parser.add_argument('--eval_dataset' , type=UpperCamelCase__ , default='' ) parser.add_argument('--seed' , type=UpperCamelCase__ , default=4_2 ) parser.add_argument('--num_train_epochs' , type=UpperCamelCase__ , default=3 ) parser.add_argument('--train_batch_size' , type=UpperCamelCase__ , default=8 ) parser.add_argument('--eval_batch_size' , type=UpperCamelCase__ , default=1_6 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=UpperCamelCase__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=UpperCamelCase__ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=UpperCamelCase__ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=UpperCamelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=UpperCamelCase__ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=UpperCamelCase__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=UpperCamelCase__ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=UpperCamelCase__ , default=0.01 ) parser.add_argument('--lm_coef' , type=UpperCamelCase__ , default=0.9 ) parser.add_argument('--n_valid' , type=UpperCamelCase__ , default=3_7_4 ) parser.add_argument('--server_ip' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCamelCase__ , default='' , help='Can be used for distant debugging.' ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() print(UpperCamelCase__ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) SCREAMING_SNAKE_CASE_ : List[str] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE_ : Tuple = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(UpperCamelCase__ , UpperCamelCase__ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset SCREAMING_SNAKE_CASE_ : List[Any] = ["""_start_""", """_delimiter_""", """_classify_"""] SCREAMING_SNAKE_CASE_ : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(UpperCamelCase__ ) ) model.to(UpperCamelCase__ ) # Load and encode the datasets def tokenize_and_encode(a ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): return obj return [tokenize_and_encode(UpperCamelCase__ ) for o in obj] logger.info('Encoding dataset...' ) SCREAMING_SNAKE_CASE_ : List[str] = load_rocstories_dataset(args.train_dataset ) SCREAMING_SNAKE_CASE_ : List[str] = load_rocstories_dataset(args.eval_dataset ) SCREAMING_SNAKE_CASE_ : Optional[int] = (train_dataset, eval_dataset) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenize_and_encode(UpperCamelCase__ ) # Compute the max input length for the Transformer SCREAMING_SNAKE_CASE_ : Dict = model.config.n_positions // 2 - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) SCREAMING_SNAKE_CASE_ : str = min(UpperCamelCase__ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders SCREAMING_SNAKE_CASE_ : Tuple = pre_process_datasets(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tensor_datasets[0], tensor_datasets[1] SCREAMING_SNAKE_CASE_ : Optional[Any] = TensorDataset(*UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = RandomSampler(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.train_batch_size ) SCREAMING_SNAKE_CASE_ : int = TensorDataset(*UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = SequentialSampler(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.max_steps SCREAMING_SNAKE_CASE_ : Optional[int] = args.max_steps // (len(UpperCamelCase__ ) // args.gradient_accumulation_steps) + 1 else: SCREAMING_SNAKE_CASE_ : Optional[int] = len(UpperCamelCase__ ) // args.gradient_accumulation_steps * args.num_train_epochs SCREAMING_SNAKE_CASE_ : Optional[int] = list(model.named_parameters() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] SCREAMING_SNAKE_CASE_ : List[Any] = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] SCREAMING_SNAKE_CASE_ : Dict = AdamW(UpperCamelCase__ , lr=args.learning_rate , eps=args.adam_epsilon ) SCREAMING_SNAKE_CASE_ : List[Any] = get_linear_schedule_with_warmup( UpperCamelCase__ , num_warmup_steps=args.warmup_steps , num_training_steps=UpperCamelCase__ ) if args.do_train: SCREAMING_SNAKE_CASE_ : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : List[Any] = tqdm(UpperCamelCase__ , desc='Training' ) for step, batch in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = tuple(t.to(UpperCamelCase__ ) for t in batch ) SCREAMING_SNAKE_CASE_ : Optional[int] = batch SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = """Training loss: {:.2e} lr: {:.2e}""".format(UpperCamelCase__ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer SCREAMING_SNAKE_CASE_ : List[Any] = model.module if hasattr(UpperCamelCase__ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(args.output_dir , UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = os.path.join(args.output_dir , UpperCamelCase__ ) torch.save(model_to_save.state_dict() , UpperCamelCase__ ) model_to_save.config.to_json_file(UpperCamelCase__ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned SCREAMING_SNAKE_CASE_ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) SCREAMING_SNAKE_CASE_ : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(UpperCamelCase__ ) if args.do_eval: model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = 0, 0 SCREAMING_SNAKE_CASE_ : int = 0, 0 for batch in tqdm(UpperCamelCase__ , desc='Evaluating' ): SCREAMING_SNAKE_CASE_ : Tuple = tuple(t.to(UpperCamelCase__ ) for t in batch ) SCREAMING_SNAKE_CASE_ : Tuple = batch with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model( UpperCamelCase__ , mc_token_ids=UpperCamelCase__ , lm_labels=UpperCamelCase__ , mc_labels=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = mc_logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE_ : Tuple = mc_labels.to('cpu' ).numpy() SCREAMING_SNAKE_CASE_ : Any = accuracy(UpperCamelCase__ , UpperCamelCase__ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = eval_loss / nb_eval_steps SCREAMING_SNAKE_CASE_ : List[Any] = eval_accuracy / nb_eval_examples SCREAMING_SNAKE_CASE_ : List[str] = tr_loss / nb_tr_steps if args.do_train else None SCREAMING_SNAKE_CASE_ : Any = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} SCREAMING_SNAKE_CASE_ : str = os.path.join(args.output_dir , 'eval_results.txt' ) with open(UpperCamelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , UpperCamelCase__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
253
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def _UpperCamelCase ( UpperCamelCase__ ): if hor == 1_2_8: UpperCAmelCase__ : int = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Tuple = (3_2, 1_2_8, 2_5_6) UpperCAmelCase__ : Union[str, Any] = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 3_2: UpperCAmelCase__ : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") UpperCAmelCase__ : Union[str, Any] = (3_2, 6_4, 1_2_8, 2_5_6) UpperCAmelCase__ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") UpperCAmelCase__ : Any = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) UpperCAmelCase__ : Tuple = model.state_dict() UpperCAmelCase__ : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 1_4, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_5_5_3_6, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } UpperCAmelCase__ : List[Any] = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Optional[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : Union[str, Any] = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCamelCase ( ): UpperCAmelCase__ : Any = { """in_channels""": 1_4, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (3_2, 6_4, 1_2_8, 2_5_6), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_5_5_3_6, """out_channels""": 1_4, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } UpperCAmelCase__ : Tuple = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) UpperCAmelCase__ : Optional[Any] = model UpperCAmelCase__ : Dict = UNetaDModel(**UpperCamelCase__ ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) UpperCAmelCase__ : Dict = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCAmelCase__ : str = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
163
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def snake_case ( A__ ,A__=False ): UpperCAmelCase_ : Optional[int] = OmegaConf.load(A__ ) if display: print(yaml.dump(OmegaConf.to_container(A__ ) ) ) return config def snake_case ( A__ ,A__=None ,A__=None ): if conf_path is None: UpperCAmelCase_ : Optional[Any] = "./model_checkpoints/vqgan_only.yaml" UpperCAmelCase_ : Tuple = load_config(A__ ,display=A__ ) UpperCAmelCase_ : List[Any] = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase_ : Union[str, Any] = "./model_checkpoints/vqgan_only.pt" UpperCAmelCase_ : List[Any] = torch.load(A__ ,map_location=A__ ) if ".ckpt" in ckpt_path: UpperCAmelCase_ : str = sd["state_dict"] model.load_state_dict(A__ ,strict=A__ ) model.to(A__ ) del sd return model def snake_case ( A__ ,A__ ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model.encode(A__ ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCAmelCase_ : List[Any] = model.decode(A__ ) return xrec def snake_case ( A__ ,A__=False ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = string.rsplit("." ,1 ) if reload: UpperCAmelCase_ : Tuple = importlib.import_module(A__ ) importlib.reload(A__ ) return getattr(importlib.import_module(A__ ,package=A__ ) ,cls ) def snake_case ( A__ ): if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" ,{} ) ) def snake_case ( A__ ,A__ ,A__=True ,A__=True ): UpperCAmelCase_ : Any = instantiate_from_config(A__ ) if sd is not None: model.load_state_dict(A__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def snake_case ( A__ ,A__ ,A__ ,A__ ): # load the specified checkpoint if ckpt: UpperCAmelCase_ : Tuple = torch.load(A__ ,map_location="cpu" ) UpperCAmelCase_ : int = pl_sd["global_step"] print(F"""loaded model from global step {global_step}.""" ) else: UpperCAmelCase_ : Tuple = {"state_dict": None} UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = load_model_from_config(config.model ,pl_sd["state_dict"] ,gpu=A__ ,eval_mode=A__ )["model"] return model, global_step
253
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: UpperCAmelCase_ : str = torch.nn.Linear(10 , 10 ) UpperCAmelCase_ : Optional[Any] = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase_ : Optional[Any] = Accelerator() UpperCAmelCase_ : Optional[Any] = accelerator.prepare(lowerCAmelCase_ ) try: pickle.loads(pickle.dumps(lowerCAmelCase_ ) ) except Exception as e: self.fail(f"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
253
1
def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple = 60_08_51_47_51_43 ) -> int: """simple docstring""" try: SCREAMING_SNAKE_CASE__ = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 SCREAMING_SNAKE_CASE__ = i while n % i == 0: SCREAMING_SNAKE_CASE__ = n // i i += 1 return int(__lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
219
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
117
import pprint import requests _A = 'https://zenquotes.io/api' def _UpperCAmelCase ( ): return requests.get(API_ENDPOINT_URL + '/today' ).json() def _UpperCAmelCase ( ): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": _A = random_quotes() pprint.pprint(response)
117
1
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" def constraint_to_multiple_of(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=None ): lowercase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ = math.ceil(val / multiple ) * multiple return x lowercase__ = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else output_size lowercase__ , lowercase__ = get_image_size(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = output_size # determine new height and width lowercase__ = output_height / input_height lowercase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ = scale_width else: # fit height lowercase__ = scale_height lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE ) lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE ) return (new_height, new_width) class _a ( UpperCamelCase__ ): _lowercase : List[Any] = ['''pixel_values'''] def __init__( self: Optional[Any] , UpperCamelCase_: bool = True , UpperCamelCase_: Dict[str, int] = None , UpperCamelCase_: PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_: bool = False , UpperCamelCase_: int = 1 , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 255 , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , **UpperCamelCase_: List[Any] , ) -> None: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = size if size is not None else {'''height''': 384, '''width''': 384} lowercase__ = get_size_dict(UpperCamelCase_ ) lowercase__ = do_resize lowercase__ = size lowercase__ = keep_aspect_ratio lowercase__ = ensure_multiple_of lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self: Dict , UpperCamelCase_: np.ndarray , UpperCamelCase_: Dict[str, int] , UpperCamelCase_: bool = False , UpperCamelCase_: int = 1 , UpperCamelCase_: PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Dict , ) -> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase__ = get_resize_output_image_size( UpperCamelCase_ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCamelCase_ , multiple=UpperCamelCase_ , ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[int, float] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Optional[Any] , ) -> Tuple: """simple docstring""" return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: int , UpperCamelCase_: np.ndarray , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Union[float, List[float]] , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: int , ) -> np.ndarray: """simple docstring""" return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: ImageInput , UpperCamelCase_: bool = None , UpperCamelCase_: int = None , UpperCamelCase_: bool = None , UpperCamelCase_: int = None , UpperCamelCase_: PILImageResampling = None , UpperCamelCase_: bool = None , UpperCamelCase_: float = None , UpperCamelCase_: bool = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[float, List[float]]] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_: List[str] , ) -> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(UpperCamelCase_ ) lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: lowercase__ = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] lowercase__ = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] lowercase__ = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: List[Tuple] = None ) -> Optional[Any]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase_ ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(UpperCamelCase_ ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase_ ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
110
from __future__ import annotations from collections.abc import Iterator class _a : def __init__( self: List[str] , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = value lowercase__ = None lowercase__ = None class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: Node ) -> None: """simple docstring""" lowercase__ = tree def lowerCamelCase_ ( self: Any , UpperCamelCase_: Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self: List[str] ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
110
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES A : Optional[int] = 'tiny-wmt19-en-ru' # Build # borrowed from a test A : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A : Union[str, Any] = dict(zip(vocab, range(len(vocab)))) A : int = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: A : Optional[Any] = Path(tmpdirname) A : List[str] = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] A : List[Any] = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] A : Tuple = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) A : List[Any] = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) A : Any = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1_0_0_0, tgt_vocab_size=1_0_0_0, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) A : Union[str, Any] = FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test A : str = tokenizer(['Making tiny model'], return_tensors='pt') A : Union[str, Any] = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
146
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A : int = trt.Logger(trt.Logger.WARNING) A : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A : Union[str, Any] = logging.getLogger(__name__) A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) A : List[Any] = parser.parse_args() if args.tokenizer_name: A : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) A : Optional[Any] = args.per_device_eval_batch_size A : Tuple = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A : Any = True A : Optional[int] = 'temp_engine/bert-fp32.engine' if args.fpaa: A : Union[str, Any] = 'temp_engine/bert-fp16.engine' if args.inta: A : Optional[int] = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') A : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A : List[str] = [network.get_input(i) for i in range(network.num_inputs)] A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A : Union[str, Any] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __magic_name__ ) # start time lowercase__ = time.time() # Run inference context.execute_async( bindings=[int(__magic_name__ ) for d_inp in d_inputs] + [int(__magic_name__ ), int(__magic_name__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase__ = time.time() lowercase__ = end_time - start_time lowercase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A : str = raw_datasets['validation'].column_names A : Any = 'question' if 'question' in column_names else column_names[0] A : int = 'context' if 'context' in column_names else column_names[1] A : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A : Dict = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A : str = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=__magic_name__ , stride=args.doc_stride , return_overflowing_tokens=__magic_name__ , return_offsets_mapping=__magic_name__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase__ = tokenized_examples.sequence_ids(__magic_name__ ) lowercase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples A : Optional[Any] = raw_datasets['validation'] # Validation Feature Creation A : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) A : Dict = default_data_collator A : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) A : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any]="eval" ) -> List[Any]: """simple docstring""" lowercase__ = postprocess_qa_predictions( examples=__magic_name__ , features=__magic_name__ , predictions=__magic_name__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__magic_name__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__magic_name__ , label_ids=__magic_name__ ) A : Union[str, Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(__magic_name__ ) ) * engine.get_binding_dtype(__magic_name__ ).itemsize # Allocate device memory for inputs and outputs. A : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A : List[str] = cuda.mem_alloc(h_outputa.nbytes) A : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') A : List[Any] = 0.0 A : Any = 0 A : str = timeit.default_timer() A : Tuple = None for step, batch in enumerate(eval_dataloader): A , A : Optional[int] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A , A : int = outputs A : str = torch.tensor(start_logits) A : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) A : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) A : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: A : List[str] = nested_truncate(all_preds, len(eval_dataset)) A : List[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) A : Dict = post_processing_function(eval_examples, eval_dataset, all_preds) A : Any = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
146
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , ) -> List[Any]: _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def _UpperCAmelCase ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = DPTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = DPTImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def _UpperCAmelCase ( self ) -> Any: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> Optional[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
320
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :List[str] ) -> Optional[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. a__ = [[1, 2, 4], [1, 2, 3, 4]] a__ = DisjunctiveConstraint(__snake_case ) self.assertTrue(isinstance(dc.token_ids ,__snake_case ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCamelCase__( self :int ) -> int: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). a__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__snake_case ): DisjunctiveConstraint(__snake_case ) # fails here def lowerCamelCase__( self :Optional[Any] ) -> int: a__ = [[1, 2, 3], [1, 2, 4]] a__ = DisjunctiveConstraint(__snake_case ) a__ , a__ , a__ = dc.update(1 ) a__ = stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a__ , a__ , a__ = dc.update(2 ) a__ = stepped is True and completed is False and reset is False self.assertTrue(__snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a__ , a__ , a__ = dc.update(3 ) a__ = stepped is True and completed is True and reset is False self.assertTrue(__snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCamelCase__( self :Any ) -> str: a__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] a__ = DisjunctiveConstraint(__snake_case ) a__ , a__ , a__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) a__ , a__ , a__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) a__ , a__ , a__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) a__ , a__ , a__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() a__ , a__ , a__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) a__ , a__ , a__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) a__ , a__ , a__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
109
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : List[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : int = '''efficientformer''' def __init__( self :List[str] ,__snake_case :List[int] = [3, 2, 6, 4] ,__snake_case :List[int] = [48, 96, 2_24, 4_48] ,__snake_case :List[bool] = [True, True, True, True] ,__snake_case :int = 4_48 ,__snake_case :int = 32 ,__snake_case :int = 4 ,__snake_case :int = 7 ,__snake_case :int = 5 ,__snake_case :int = 8 ,__snake_case :int = 4 ,__snake_case :float = 0.0 ,__snake_case :int = 16 ,__snake_case :int = 3 ,__snake_case :int = 3 ,__snake_case :int = 3 ,__snake_case :int = 2 ,__snake_case :int = 1 ,__snake_case :float = 0.0 ,__snake_case :int = 1 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :float = 1E-5 ,__snake_case :str = "gelu" ,__snake_case :float = 0.02 ,__snake_case :float = 1E-12 ,__snake_case :int = 2_24 ,__snake_case :float = 1E-05 ,**__snake_case :Dict ,) -> None: super().__init__(**__snake_case ) a__ = hidden_act a__ = hidden_dropout_prob a__ = hidden_sizes a__ = num_hidden_layers a__ = num_attention_heads a__ = initializer_range a__ = layer_norm_eps a__ = patch_size a__ = num_channels a__ = depths a__ = mlp_expansion_ratio a__ = downsamples a__ = dim a__ = key_dim a__ = attention_ratio a__ = resolution a__ = pool_size a__ = downsample_patch_size a__ = downsample_stride a__ = downsample_pad a__ = drop_path_rate a__ = num_metaad_blocks a__ = distillation a__ = use_layer_scale a__ = layer_scale_init_value a__ = image_size a__ = batch_norm_eps
109
1
import math def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [True] * n SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : int = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE_ : str = i * 2 while index < n: SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = index + i SCREAMING_SNAKE_CASE_ : Optional[int] = [2] for i in range(3 , a , 2 ): if is_prime[i]: primes.append(a ) return primes def A_ ( a = 9_9_9_9_6_6_6_6_3_3_3_3 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = math.floor(math.sqrt(a ) ) + 1_0_0 SCREAMING_SNAKE_CASE_ : Any = prime_sieve(a ) SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : List[str] = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE_ : Any = primes[prime_index + 1] SCREAMING_SNAKE_CASE_ : Optional[Any] = last_prime**2 SCREAMING_SNAKE_CASE_ : List[str] = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE_ : Optional[int] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE_ : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE_ : Tuple = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE_ : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
253
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowerCAmelCase : Optional[int] = {'bert_for_seq_generation': 5_12} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any]=13 , UpperCamelCase : List[str]=7 , UpperCamelCase : Any=True , UpperCamelCase : Dict=True , UpperCamelCase : Any=True , UpperCamelCase : Any=True , UpperCamelCase : Tuple=99 , UpperCamelCase : List[str]=32 , UpperCamelCase : int=5 , UpperCamelCase : Dict=4 , UpperCamelCase : Dict=37 , UpperCamelCase : Dict="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : Optional[int]=5_12 , UpperCamelCase : int=16 , UpperCamelCase : List[str]=2 , UpperCamelCase : str=0.02 , UpperCamelCase : Tuple=4 , ): '''simple docstring''' _snake_case : List[Any] = parent _snake_case : List[str] = batch_size _snake_case : Any = seq_length _snake_case : str = is_training _snake_case : int = use_attention_mask _snake_case : Optional[int] = use_token_type_ids _snake_case : Tuple = use_labels _snake_case : Any = vocab_size _snake_case : Any = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : str = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : Optional[Any] = type_vocab_size _snake_case : Dict = type_sequence_label_size _snake_case : Tuple = initializer_range _snake_case : List[str] = num_choices def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : Tuple = None if self.use_attention_mask: _snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Dict = None if self.use_token_type_ids: _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : int = self.prepare_config_and_inputs() _snake_case : Dict = config_and_inputs _snake_case : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' a_ : int =True a_ : List[Any] =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : List[Any] = FlaxRoFormerModelTester(self ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: _snake_case : int = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_lowerCamelCase ) _snake_case : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : int = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _snake_case : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) _snake_case : Optional[Any] = model(_lowerCamelCase )[0] _snake_case : Optional[Any] = 5_00_00 _snake_case : Dict = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase ) _snake_case : Any = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
354
lowerCAmelCase_ = 256 # Modulus to hash a string lowerCAmelCase_ = 100_0003 def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: str )-> bool: _snake_case : Optional[int] = len(lowerCAmelCase ) _snake_case : int = len(lowerCAmelCase ) if p_len > t_len: return False _snake_case : str = 0 _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = 1 # Calculating the hash of pattern and substring of text for i in range(lowerCAmelCase ): _snake_case : Union[str, Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _snake_case : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _snake_case : Union[str, Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _snake_case : int = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase_ ( )-> None: _snake_case : int = 'abc1abc12' _snake_case : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' _snake_case : Tuple = 'alskfjaldsk23adsfabcabc' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) and not rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 2) _snake_case : List[str] = 'ABABX' _snake_case : Optional[Any] = 'ABABZABABYABABX' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 3) _snake_case : Tuple = 'AAAB' _snake_case : Dict = 'ABAAAAAB' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 4) _snake_case : List[Any] = 'abcdabcy' _snake_case : Dict = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) # Test 5) _snake_case : Optional[int] = 'Lü' _snake_case : Optional[int] = 'Lüsai' assert rabin_karp(lowerCAmelCase , lowerCAmelCase ) _snake_case : Any = 'Lue' assert not rabin_karp(lowerCAmelCase , lowerCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
260
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase__ = VQModel lowerCAmelCase__ = """sample""" @property def _lowerCAmelCase (self :Any , _UpperCamelCase :Optional[int]=(32, 32) )-> Any: __A = 4 __A = 3 __A = floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCamelCase ) return {"sample": image} @property def _lowerCAmelCase (self :Tuple )-> Union[str, Any]: return (3, 32, 32) @property def _lowerCAmelCase (self :Tuple )-> List[Any]: return (3, 32, 32) def _lowerCAmelCase (self :Optional[int] )-> Optional[Any]: __A = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } __A = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase (self :Optional[Any] )-> Any: pass def _lowerCAmelCase (self :List[Any] )-> Optional[int]: pass def _lowerCAmelCase (self :Optional[int] )-> List[str]: __A , __A = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_UpperCamelCase ) __A = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCAmelCase (self :int )-> List[str]: __A = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __A = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __A = image.to(_UpperCamelCase ) with torch.no_grad(): __A = model(_UpperCamelCase ).sample __A = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __A = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) )
117
import heapq import sys import numpy as np snake_case__ : Tuple = tuple[int, int] class A_ : def __init__(self :Union[str, Any] )-> Union[str, Any]: __A = [] __A = set() def _lowerCAmelCase (self :List[str] )-> str: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _lowerCAmelCase (self :Any )-> Any: return len(self.elements ) == 0 def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Optional[Any] , _UpperCamelCase :Optional[int] )-> Optional[int]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_UpperCamelCase ) else: # update # print("update", item) __A = [] ((__A) , (__A)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__A) , (__A)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowerCAmelCase (self :int , _UpperCamelCase :int )-> int: if item in self.set: self.set.remove(_UpperCamelCase ) __A = [] ((__A) , (__A)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__A) , (__A)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowerCAmelCase (self :Optional[Any] )-> int: return self.elements[0][1] def _lowerCAmelCase (self :List[str] )-> List[Any]: ((__A) , (__A)) = heapq.heappop(self.elements ) self.set.remove(_UpperCamelCase ) return (priority, item) def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos ) -> Any: '''simple docstring''' __A = np.array(lowerCamelCase ) __A = np.array(lowerCamelCase ) return np.linalg.norm(a - b ) def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos ) -> List[str]: '''simple docstring''' return consistent_heuristic(lowerCamelCase , lowerCamelCase ) // t def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos ) -> Any: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _a ( lowerCamelCase: TPos , lowerCamelCase: int , lowerCamelCase: TPos , lowerCamelCase: dict[TPos, float] ) -> Tuple: '''simple docstring''' __A = g_function[start] + Wa * heuristics[i](lowerCamelCase , lowerCamelCase ) return ans def _a ( lowerCamelCase: Tuple , lowerCamelCase: Optional[int] , lowerCamelCase: Optional[int] ) -> Tuple: '''simple docstring''' __A = np.chararray((n, n) ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): __A = '''*''' for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (j, (n - 1) - i) in blocks: __A = '''#''' __A = '''-''' __A = back_pointer[goal] while x != start: ((__A) , (__A)) = x # print(x) __A = '''-''' __A = back_pointer[x] __A = '''-''' for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __A = back_pointer[goal] while x != start: print(lowerCamelCase , end=''' ''' ) __A = back_pointer[x] print(lowerCamelCase ) sys.exit() def _a ( lowerCamelCase: TPos ) -> Optional[Any]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _a ( lowerCamelCase: int , lowerCamelCase: Optional[int] , lowerCamelCase: Tuple , lowerCamelCase: Tuple , lowerCamelCase: Optional[int] , lowerCamelCase: str , lowerCamelCase: List[Any] , lowerCamelCase: Dict , ) -> Dict: '''simple docstring''' for itera in range(lowerCamelCase ): open_list[itera].remove_element(lowerCamelCase ) # print("s", s) # print("j", j) ((__A) , (__A)) = s __A = (x - 1, y) __A = (x + 1, y) __A = (x, y + 1) __A = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCamelCase ) __A = -1 __A = float('''inf''' ) if valid(lowerCamelCase ) and g_function[neighbours] > g_function[s] + 1: __A = g_function[s] + 1 __A = s if neighbours not in close_list_anchor: open_list[0].put(lowerCamelCase , key(lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCamelCase ): if key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) <= Wa * key( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase ): open_list[j].put( lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) def _a ( ) -> str: '''simple docstring''' __A = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case__ : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case__ : List[str] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case__ : List[str] = make_common_ground() snake_case__ : int = blocks_blk # hyper parameters snake_case__ : Optional[int] = 1 snake_case__ : List[Any] = 1 snake_case__ : int = 20 snake_case__ : Optional[int] = 3 # one consistent and two other inconsistent # start and end destination snake_case__ : Tuple = (0, 0) snake_case__ : Any = (n - 1, n - 1) snake_case__ : List[Any] = 1 def _a ( lowerCamelCase: TPos , lowerCamelCase: TPos , lowerCamelCase: int ) -> Union[str, Any]: '''simple docstring''' __A = {start: 0, goal: float('''inf''' )} __A = {start: -1, goal: -1} __A = [] __A = set() for i in range(lowerCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCamelCase , key(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) __A = [] __A = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowerCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __A , __A = open_list[i].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_inad.append(lowerCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __A = open_list[0].top_show() visited.add(lowerCamelCase ) expand_state( lowerCamelCase , 0 , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) close_list_anchor.append(lowerCamelCase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCamelCase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
117
1
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase__ ( lowercase_ ,lowercase_ = 0.0 ,lowercase_ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[Any] = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : Any = _sin / (2 * q_factor) _UpperCamelCase : str = (1 - _cos) / 2 _UpperCamelCase : Any = 1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : List[str] = -2 * _cos _UpperCamelCase : Tuple = 1 - alpha _UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : List[str] = tau * frequency / samplerate _UpperCamelCase : str = sin(lowercase_ ) _UpperCamelCase : Optional[Any] = cos(lowercase_ ) _UpperCamelCase : Dict = _sin / (2 * q_factor) _UpperCamelCase : List[Any] = (1 + _cos) / 2 _UpperCamelCase : Optional[int] = -1 - _cos _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : str = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : Tuple = tau * frequency / samplerate _UpperCamelCase : Optional[int] = sin(lowercase_ ) _UpperCamelCase : Dict = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Dict = _sin / 2 _UpperCamelCase : int = 0 _UpperCamelCase : str = -ba _UpperCamelCase : List[str] = 1 + alpha _UpperCamelCase : Optional[int] = -2 * _cos _UpperCamelCase : Optional[Any] = 1 - alpha _UpperCamelCase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" _UpperCamelCase : str = tau * frequency / samplerate _UpperCamelCase : Optional[Any] = sin(lowercase_ ) _UpperCamelCase : Optional[int] = cos(lowercase_ ) _UpperCamelCase : int = _sin / (2 * q_factor) _UpperCamelCase : List[str] = 1 - alpha _UpperCamelCase : int = -2 * _cos _UpperCamelCase : Union[str, Any] = 1 + alpha _UpperCamelCase : Dict = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : int = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : List[Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Optional[int] = 10 ** (gain_db / 40) _UpperCamelCase : str = 1 + alpha * big_a _UpperCamelCase : Union[str, Any] = -2 * _cos _UpperCamelCase : Optional[int] = 1 - alpha * big_a _UpperCamelCase : int = 1 + alpha / big_a _UpperCamelCase : Optional[Any] = -2 * _cos _UpperCamelCase : Any = 1 - alpha / big_a _UpperCamelCase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Union[str, Any] = tau * frequency / samplerate _UpperCamelCase : Any = sin(lowercase_ ) _UpperCamelCase : Union[str, Any] = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : Union[str, Any] = 10 ** (gain_db / 40) _UpperCamelCase : Dict = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : int = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : int = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : List[str] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : Any = big_a * (pmc + aaa) _UpperCamelCase : Dict = 2 * big_a * mpc _UpperCamelCase : str = big_a * (pmc - aaa) _UpperCamelCase : Dict = ppmc + aaa _UpperCamelCase : List[Any] = -2 * pmpc _UpperCamelCase : Dict = ppmc - aaa _UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ = 1 / sqrt(2 ) ,) -> IIRFilter: """simple docstring""" _UpperCamelCase : Optional[int] = tau * frequency / samplerate _UpperCamelCase : int = sin(lowercase_ ) _UpperCamelCase : Any = cos(lowercase_ ) _UpperCamelCase : str = _sin / (2 * q_factor) _UpperCamelCase : str = 10 ** (gain_db / 40) _UpperCamelCase : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos _UpperCamelCase : Dict = (big_a + 1) + (big_a - 1) * _cos _UpperCamelCase : List[str] = (big_a - 1) - (big_a + 1) * _cos _UpperCamelCase : Dict = (big_a - 1) + (big_a + 1) * _cos _UpperCamelCase : Optional[Any] = 2 * sqrt(lowercase_ ) * alpha _UpperCamelCase : List[Any] = big_a * (ppmc + aaa) _UpperCamelCase : Dict = -2 * big_a * pmpc _UpperCamelCase : Dict = big_a * (ppmc - aaa) _UpperCamelCase : Optional[Any] = pmc + aaa _UpperCamelCase : Any = 2 * mpc _UpperCamelCase : Any = pmc - aaa _UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
310
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __magic_name__ ( __lowerCAmelCase): A: Union[str, Any] = "dandelin/vilt-b32-finetuned-vqa" A: Union[str, Any] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) A: Optional[Any] = "image_qa" A: Dict = AutoProcessor A: Tuple = AutoModelForVisualQuestionAnswering A: str = ["image", "text"] A: str = ["text"] def __init__( self : List[str] , *lowerCamelCase__ : Any , **lowerCamelCase__ : List[str] ) -> List[str]: '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : "Image" , lowerCamelCase__ : str ) -> List[Any]: '''simple docstring''' return self.pre_processor(lowerCamelCase__ , lowerCamelCase__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : int , lowerCamelCase__ : List[str] ) -> Any: '''simple docstring''' with torch.no_grad(): return self.model(**lowerCamelCase__ ).logits def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
146
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : str = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCamelCase__ : int = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ : Optional[Any] = load_in_abit UpperCamelCase__ : List[str] = load_in_abit UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCamelCase__ : str = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Dict = True UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCamelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = special_dtypes UpperCamelCase__ : Optional[int] = no_split_module_classes UpperCamelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : Dict = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = max_memory UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCamelCase__ : List[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with init_empty_weights(): UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ : str = False if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ): UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ : int = ['''.weight''', '''.bias'''] UpperCamelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = param_name UpperCamelCase__ : str = model if "." in tensor_name: UpperCamelCase__ : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCamelCase__ : Optional[int] = new_module UpperCamelCase__ : List[str] = splits[-1] # offload weights UpperCamelCase__ : Any = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
146
1
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[List[PIL.Image.Image], np.ndarray] lowerCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
351
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1_024 , __lowerCAmelCase=1_024 , __lowerCAmelCase=False , **__lowerCAmelCase ): _UpperCAmelCase : Any = AutoTokenizer.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase : List[str] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="train" , **__lowerCAmelCase ) _UpperCAmelCase : Dict = tok.pad_token_id def get_lens(__lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = tqdm( DataLoader(__lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=__lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _UpperCAmelCase : List[str] = [] for batch in dl: _UpperCAmelCase : Any = batch["input_ids"].ne(__lowerCAmelCase ).sum(1 ).tolist() _UpperCAmelCase : Tuple = batch["labels"].ne(__lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(__lowerCAmelCase , __lowerCAmelCase ): max_lens.append(max(__lowerCAmelCase , __lowerCAmelCase ) ) else: max_lens.extend(__lowerCAmelCase ) return max_lens _UpperCAmelCase : Dict = get_lens(__lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = SeqaSeqDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , type_path="val" , **__lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = get_lens(__lowerCAmelCase ) pickle_save(__lowerCAmelCase , train_ds.len_file ) pickle_save(__lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
322
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(transformer=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) # create a imagenet -> id dictionary for easier use UpperCAmelCase : Tuple = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(""",""" ): UpperCAmelCase : Tuple = int(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = dict(sorted(self.labels.items() ) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[Any] = list(_SCREAMING_SNAKE_CASE ) for l in label: if l not in self.labels: raise ValueError( F"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' UpperCAmelCase : List[str] = len(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = self.transformer.config.sample_size UpperCAmelCase : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase : List[Any] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE , device=self.device ).reshape(-1 ) UpperCAmelCase : int = torch.tensor([1000] * batch_size , device=self.device ) UpperCAmelCase : Optional[int] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase : str = latent_model_input[: len(_SCREAMING_SNAKE_CASE ) // 2] UpperCAmelCase : Optional[Any] = torch.cat([half, half] , dim=0 ) UpperCAmelCase : Optional[int] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = t if not torch.is_tensor(_SCREAMING_SNAKE_CASE ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase : Union[str, Any] = latent_model_input.device.type == """mps""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase : Dict = torch.intaa if is_mps else torch.intaa UpperCAmelCase : Optional[Any] = torch.tensor([timesteps] , dtype=_SCREAMING_SNAKE_CASE , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase : Optional[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase : int = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase : int = self.transformer( _SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase , UpperCAmelCase : List[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase , UpperCAmelCase : Dict = torch.split(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) // 2 , dim=0 ) UpperCAmelCase : List[str] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase : Optional[Any] = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase , UpperCAmelCase : Optional[int] = torch.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dim=1 ) else: UpperCAmelCase : str = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample if guidance_scale > 1: UpperCAmelCase , UpperCAmelCase : str = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase : Optional[int] = latent_model_input UpperCAmelCase : Optional[int] = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase : Tuple = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCAmelCase : Any = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase : Tuple = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase : List[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (samples,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
109
"""simple docstring""" from math import isqrt, loga def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Any = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): UpperCAmelCase : str = False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def _snake_case ( UpperCamelCase : int = 800800 , UpperCamelCase : int = 800800 ): UpperCAmelCase : Union[str, Any] = degree * loga(UpperCamelCase ) UpperCAmelCase : int = int(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = calculate_prime_numbers(UpperCamelCase ) UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Dict = len(UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
109
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _UpperCAmelCase : Optional[int] = logging.getLogger(__name__) _UpperCAmelCase : Optional[Any] = "pytorch_model.bin" @dataclasses.dataclass class lowercase : __lowercase : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) __lowercase : Optional[str] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowercase : __lowercase : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) __lowercase : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) __lowercase : Optional[str] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} ) __lowercase : Optional[str] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The name of the task to train on."} , ) __lowercase : Optional[List[str]] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowercase : __lowercase : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) __lowercase : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) __lowercase : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) __lowercase : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) __lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) __lowercase : Optional[bool] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) __lowercase : Optional[bool] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) __lowercase : Optional[bool] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) __lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) __lowercase : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) __lowercase : Optional[int] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Random seed for initialization."} , ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCamelCase = dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCamelCase = int(eval_result * len(lowercase ) ) print(lowercase ) UpperCamelCase = dataset.sort('probability' , reverse=lowercase ) UpperCamelCase = dataset.select(range(lowercase ) ) UpperCamelCase = dataset.remove_columns(['label', 'probability'] ) UpperCamelCase = dataset.rename_column('prediction' , 'label' ) UpperCamelCase = dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) UpperCamelCase = dataset.shuffle(seed=args.seed ) UpperCamelCase = os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase , index=lowercase ) else: dataset.to_json(lowercase ) def A ( lowercase , lowercase , lowercase , lowercase , **lowercase ) -> Any: '''simple docstring''' UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCamelCase = STModelArguments(model_name_or_path=lowercase ) UpperCamelCase = STDataArguments(train_file=lowercase , infer_file=lowercase ) UpperCamelCase = STTrainingArguments(output_dir=lowercase ) UpperCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase , lowercase , lowercase ) for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) # Sanity checks UpperCamelCase = {} UpperCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCamelCase = args.train_file UpperCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCamelCase = args.eval_file for key in data_files: UpperCamelCase = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: UpperCamelCase = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) UpperCamelCase = f'''{args.output_dir}/self-train_iter-{{}}'''.format UpperCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) accelerator.wait_for_everyone() UpperCamelCase = None UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = False # Show the progress bar UpperCamelCase = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCamelCase = data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCamelCase = os.path.join(lowercase , 'stage-1' ) UpperCamelCase = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase , lowercase ): arguments_dict.update({key: value} ) UpperCamelCase = os.path.join(lowercase , 'best-checkpoint' , lowercase ) if os.path.exists(lowercase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , lowercase , lowercase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCamelCase = os.path.join(lowercase , 'best-checkpoint' ) UpperCamelCase = os.path.join(lowercase , 'stage-2' ) # Update arguments_dict UpperCamelCase = model_path UpperCamelCase = data_files['train'] UpperCamelCase = current_output_dir UpperCamelCase = os.path.join(lowercase , 'best-checkpoint' , lowercase ) if os.path.exists(lowercase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , lowercase , lowercase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , lowercase ) UpperCamelCase = iteration UpperCamelCase = data_dir_format(iteration + 1 ) UpperCamelCase = AutoConfig.from_pretrained(os.path.join(lowercase , 'best-checkpoint' ) ) UpperCamelCase = config.idalabel UpperCamelCase = os.path.join(lowercase , 'eval_results_best-checkpoint.json' ) UpperCamelCase = os.path.join(lowercase , 'test_results_best-checkpoint.json' ) assert os.path.exists(lowercase ) with open(lowercase , 'r' ) as f: UpperCamelCase = float(json.load(lowercase )[args.eval_metric] ) UpperCamelCase = os.path.join(lowercase , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. UpperCamelCase = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] UpperCamelCase = load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(lowercase , exist_ok=lowercase ) shutil.copy(lowercase , os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase ): shutil.copy(lowercase , os.path.join(lowercase , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) accelerator.wait_for_everyone() UpperCamelCase = os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCamelCase = eval_result if best_iteration is None: UpperCamelCase = new_iteration UpperCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCamelCase = new_iteration UpperCamelCase = new_eval_result UpperCamelCase = 0 else: if new_eval_result == best_eval_result: UpperCamelCase = new_iteration UpperCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , lowercase ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase , 'eval_results_best-iteration.json' ) , )
359
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Union[str, Any] = 16 _UpperCAmelCase : Dict = 32 def A ( lowercase , lowercase = 16 ) -> str: '''simple docstring''' UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) UpperCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( lowercase , batched=lowercase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( lowercase , padding='longest' , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=lowercase ) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase , drop_last=(accelerator.mixed_precision == 'fp8') , ) return train_dataloader, eval_dataloader def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs'] ) UpperCamelCase = int(config['seed'] ) UpperCamelCase = int(config['batch_size'] ) UpperCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(lowercase ) UpperCamelCase , UpperCamelCase = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**lowercase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase , references=lowercase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowercase ) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=lowercase , default=lowercase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
110
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" @register_to_config def __init__( self : Optional[Any] , __UpperCamelCase : int = 7_6_8 , )->List[str]: super().__init__() _UpperCAmelCase = nn.Parameter(torch.zeros(1 , __UpperCamelCase ) ) _UpperCAmelCase = nn.Parameter(torch.ones(1 , __UpperCamelCase ) ) def lowercase__ ( self : Dict , __UpperCamelCase : Optional[Union[str, torch.device]] = None , __UpperCamelCase : Optional[torch.dtype] = None , )->List[Any]: _UpperCAmelCase = nn.Parameter(self.mean.to(__UpperCamelCase ).to(__UpperCamelCase ) ) _UpperCAmelCase = nn.Parameter(self.std.to(__UpperCamelCase ).to(__UpperCamelCase ) ) return self def lowercase__ ( self : str , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : List[str] )->Dict: _UpperCAmelCase = (embeds * self.std) + self.mean return embeds
260
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A : Union[str, Any] = 16 __A : Optional[Any] = 32 def lowercase ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 ): '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_SCREAMING_SNAKE_CASE : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_SCREAMING_SNAKE_CASE : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A : Optional[int] = mocked_dataloaders # noqa: F811 def lowercase ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _SCREAMING_SNAKE_CASE ) == "1": _UpperCAmelCase = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _UpperCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['''lr'''] _UpperCAmelCase = int(config['''num_epochs'''] ) _UpperCAmelCase = int(config['''seed'''] ) _UpperCAmelCase = int(config['''batch_size'''] ) set_seed(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _UpperCAmelCase = os.path.split(_SCREAMING_SNAKE_CASE )[-1].split('''.''' )[0] accelerator.init_trackers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _UpperCAmelCase = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase , _UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _SCREAMING_SNAKE_CASE ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(_SCREAMING_SNAKE_CASE ), '''epoch''': epoch, } , step=_SCREAMING_SNAKE_CASE , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=_SCREAMING_SNAKE_CASE , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
260
1
'''simple docstring''' def UpperCAmelCase_ (__a : str , __a : str ): """simple docstring""" _a : str = len(__a ) _a : Union[str, Any] = len(__a ) _a : int = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _a : List[str] = True for i in range(__a ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _a : List[Any] = True if a[i].islower(): _a : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' from functools import lru_cache @lru_cache def UpperCAmelCase_ (__a : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: A : List[Any] = None A : List[str] = logging.get_logger(__name__) A : Dict = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A : int = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 A : Optional[int] = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } class A (_a ): '''simple docstring''' __lowerCamelCase : str = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[Any] = TaTokenizer __lowerCamelCase : Any = [] def __init__( self : List[str] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : int="</s>" , __lowerCAmelCase : Tuple="<unk>" , __lowerCAmelCase : Dict="<pad>" , __lowerCAmelCase : Union[str, Any]=1_00 , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: A__ = [f'<extra_id_{i}>' for i in range(A_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens A__ = len(set(filter(lambda __lowerCAmelCase : bool("""extra_id_""" in str(A_ ) ) , A_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( A_ , tokenizer_file=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , extra_ids=A_ , additional_special_tokens=A_ , **A_ , ) A__ = vocab_file A__ = False if not self.vocab_file else True A__ = extra_ids @staticmethod def a_ ( __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> Any: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: A__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , A_ , ) return max_model_length def a_ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> List[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def a_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> Optional[int]: """simple docstring""" A__ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: A__ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def a_ ( self : Any , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[str]: """simple docstring""" A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a_ ( self : str ) -> int: """simple docstring""" return list( set(filter(lambda __lowerCAmelCase : bool(re.search(R"""<extra_id_\d+>""" , A_ ) ) is not None , self.additional_special_tokens ) ) ) def a_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return [self.convert_tokens_to_ids(A_ ) for token in self.get_sentinel_tokens()]
274
def _A ( _lowercase ) -> list: """simple docstring""" def merge(_lowercase , _lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowercase ) <= 1: return collection __UpperCamelCase = len(_lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
310
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __lowerCAmelCase = Lock() def UpperCAmelCase_ (__a : Union[str, Any] , __a : Optional[Any] , __a : Optional[int] , __a : Optional[int] , __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _a : List[Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _a : List[str] = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _a : Dict = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _a : Union[str, Any] = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : int = [] _a : List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _a : Dict = Pipe() _a : Optional[Any] = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _a : List[Any] = temp_rs _a : Optional[int] = temp_rr for i in range(1 , len(__a ) - 1 ): _a : int = Pipe() _a : List[str] = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _a : List[str] = temp_rs _a : str = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): _a : List[str] = result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCAmelCase_ (): """simple docstring""" _a : Optional[int] = list(range(1_0 , 0 , -1 ) ) print('Initial List' ) print(*__a ) _a : Tuple = odd_even_transposition(__a ) print('Sorted List\n' ) print(*__a ) if __name__ == "__main__": main()
364
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) != 3_2: raise ValueError('Input must be of length 32' ) _a : Any = b'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '08x' )[-8:] _a : str = b'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : List[Any] = b'' for char in message: bit_string += format(__a , '08b' ).encode('utf-8' ) _a : int = format(len(__a ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__a ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def UpperCAmelCase_ (__a : bytes ): """simple docstring""" if len(__a ) % 5_1_2 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(__a ) , 5_1_2 ): _a : List[Any] = bit_string[pos : pos + 5_1_2] _a : str = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def UpperCAmelCase_ (__a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) _a : List[str] = format(__a , '032b' ) _a : int = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(__a , 2 ) def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" return (a + b) % 2**3_2 def UpperCAmelCase_ (__a : int , __a : int ): """simple docstring""" if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def UpperCAmelCase_ (__a : bytes ): """simple docstring""" _a : str = preprocess(__a ) _a : Optional[int] = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states _a : int = 0x67_45_23_01 _a : Union[str, Any] = 0xEF_CD_AB_89 _a : str = 0x98_BA_DC_FE _a : List[Any] = 0x10_32_54_76 _a : Optional[int] = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__a ): _a : Union[str, Any] = aa _a : List[Any] = ba _a : List[Any] = ca _a : Dict = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a : Optional[int] = d ^ (b & (c ^ d)) _a : Optional[Any] = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a : Optional[Any] = c ^ (d & (b ^ c)) _a : Dict = (5 * i + 1) % 1_6 elif i <= 4_7: _a : Optional[Any] = b ^ c ^ d _a : Dict = (3 * i + 5) % 1_6 else: _a : int = c ^ (b | not_aa(__a )) _a : List[str] = (7 * i) % 1_6 _a : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**3_2 _a : Union[str, Any] = d _a : Tuple = c _a : Optional[int] = b _a : Union[str, Any] = sum_aa(__a , left_rotate_aa(__a , shift_amounts[i] ) ) # Add hashed chunk to running total _a : Any = sum_aa(__a , __a ) _a : Dict = sum_aa(__a , __a ) _a : Union[str, Any] = sum_aa(__a , __a ) _a : str = sum_aa(__a , __a ) _a : Optional[Any] = reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) + reformat_hex(__a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
5
0