code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir("fixtures/test_sentencepiece.model") _a = {"target_lang": "fi", "source_lang": "en"} _a = ">>zh<<" _a = "Helsinki-NLP/" if is_torch_available(): _a = "pt" elif is_tf_available(): _a = "tf" else: _a = "jax" @require_sentencepiece class __A ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MarianTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def __lowerCamelCase ( self ): '''simple docstring''' super().setUp() lowerCamelCase__ = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] lowerCamelCase__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowerCamelCase__ = Path(self.tmpdirname ) save_json(__lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(__lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(__lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) lowerCamelCase__ = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , **__lowerCAmelCase ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''</s>''' lowerCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__lowerCAmelCase ) , 9 ) def __lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) lowerCamelCase__ = en_de_tokenizer(['''I am a small frog'''] , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(__lowerCAmelCase , batch.input_ids[0] ) lowerCamelCase__ = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__lowerCAmelCase ) lowerCamelCase__ = [x.name for x in Path(__lowerCAmelCase ).glob('''*''' )] self.assertIn('''source.spm''' , __lowerCAmelCase ) MarianTokenizer.from_pretrained(__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = tok( ['''I am a small frog''' * 1_0_0_0, '''I am a small frog'''] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=__lowerCAmelCase , return_tensors=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = {'''input_ids''': [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) lowerCamelCase__ = '''Tämä on testi''' lowerCamelCase__ = '''This is a test''' lowerCamelCase__ = [7_6, 7, 2_0_4_7, 2] lowerCamelCase__ = [6_9, 1_2, 1_1, 9_4_0, 2] lowerCamelCase__ = tokenizer(__lowerCAmelCase ).input_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = tokenizer(text_target=__lowerCAmelCase ).input_ids self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
209
def lowerCAmelCase__(__snake_case ) -> str: '''simple docstring''' return "".join(chr(ord(__snake_case ) - 32 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
209
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int = 50 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 ,5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
353
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase_ = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase_ = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCamelCase_ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ), reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ], ) def UpperCamelCase_ ( self, A, A, A=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(A, A, sample_weight=A ) ), }
246
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase_ : Optional[int] = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : str ) -> int: for attribute in key.split("." ): _a = getattr(lowercase , lowercase ) if weight_type is not None: _a = getattr(lowercase , lowercase ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCamelCase ( lowercase : int , lowercase : str ) -> Optional[Any]: _a = [] _a = fairseq_model.state_dict() _a = hf_model.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == "group" , ) _a = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _a = True if "*" in mapped_key: _a = name.split(lowercase )[0].split("." )[-2] _a = mapped_key.replace("*" , lowercase ) if "weight_g" in name: _a = "weight_g" elif "weight_v" in name: _a = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: _a = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _a = "weight" else: _a = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Dict ) -> Any: _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _a = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase ) @torch.no_grad() def _lowerCamelCase ( lowercase : int , lowercase : str , lowercase : List[Any]=None ) -> Union[str, Any]: # load the pre-trained checkpoints _a = torch.load(lowercase ) _a = WavLMConfigOrig(checkpoint["cfg"] ) _a = WavLMOrig(lowercase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: _a = WavLMConfig.from_pretrained(lowercase ) else: _a = WavLMConfig() _a = WavLMModel(lowercase ) recursively_load_weights(lowercase , lowercase ) hf_wavlm.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase_ : List[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
63
def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) if n == 0: return 0 lowerCamelCase__ : Union[str, Any] = float("-inf" ) for i in range(1 , n + 1 ): lowerCamelCase__ : int = max( _A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) ) return max_revue def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A , _A , _A ) def lowercase_ ( _A : int , _A : list , _A : list ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCamelCase__ : Dict = float("-inf" ) for i in range(1 , n + 1 ): lowerCamelCase__ : int = max( _A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , ) lowerCamelCase__ : List[Any] = max_revenue return max_rev[n] def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )] lowerCamelCase__ : Optional[int] = 0 for i in range(1 , n + 1 ): lowerCamelCase__ : Union[str, Any] = max_rev[i] for j in range(1 , i + 1 ): lowerCamelCase__ : Any = max(_A , prices[j - 1] + max_rev[i - j] ) lowerCamelCase__ : Any = max_revenue_i return max_rev[n] def lowercase_ ( _A : int , _A : list ): """simple docstring""" if n < 0: lowerCamelCase__ : Optional[int] = F"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_A ) if n > len(_A ): lowerCamelCase__ : Optional[int] = ( "Each integral piece of rod must have a corresponding price. " F"Got n = {n} but length of prices = {len(_A )}" ) raise ValueError(_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [6, 10, 12, 15, 20, 23] lowerCamelCase__ : Dict = len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCamelCase__ : int = 36 lowerCamelCase__ : List[Any] = top_down_cut_rod(_A , _A ) lowerCamelCase__ : List[Any] = bottom_up_cut_rod(_A , _A ) lowerCamelCase__ : List[Any] = naive_cut_rod_recursive(_A , _A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
184
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) lowerCamelCase_ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
1
from __future__ import annotations from collections.abc import Iterator class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = value __lowerCAmelCase = None __lowerCAmelCase = None class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = tree def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
92
from __future__ import annotations class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: str , UpperCamelCase_: str ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = text, pattern lowercase__ , lowercase__ = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCamelCase_ ( self: List[Any] ) -> list[int]: """simple docstring""" lowercase__ = [] for i in range(self.textLen - self.patLen + 1 ): lowercase__ = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: lowercase__ = self.match_in_pattern(self.text[mismatch_index] ) lowercase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase = 'ABAABA' lowerCAmelCase = 'AB' lowerCAmelCase = BoyerMooreSearch(text, pattern) lowerCAmelCase = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
110
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> float: '''simple docstring''' if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(snake_case__ ) * abs(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
365
'''simple docstring''' print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
83
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowercase__ : int = 2_9979_2458 # Symbols lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = symbols("ct x y z") def lowerCamelCase__ ( _A ): '''simple docstring''' if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def lowerCamelCase__ ( _A ): '''simple docstring''' return 1 / sqrt(1 - beta(_A ) ** 2 ) def lowerCamelCase__ ( _A ): '''simple docstring''' return np.array( [ [gamma(_A ), -gamma(_A ) * beta(_A ), 0, 0], [-gamma(_A ) * beta(_A ), gamma(_A ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def lowerCamelCase__ ( _A , _A = None ): '''simple docstring''' if event is None: snake_case_ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_A ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowercase__ : Any = transform(2997_9245) print("Example of four vector: ") print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values lowercase__ : Any = {ct: c, x: 1, y: 1, z: 1} lowercase__ : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
187
import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ : Tuple = re.compile(R"\b(a|an|the)\b", re.UNICODE) lowercase__ : Optional[int] = None def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=_A , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_A , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = bool(qa["answers"]["text"] ) return qid_to_has_ans def lowerCamelCase__ ( _A ): '''simple docstring''' def remove_articles(_A ): return ARTICLES_REGEX.sub(" " , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' if not s: return [] return normalize_answer(_A ).split() def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return int(normalize_answer(_A ) == normalize_answer(_A ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = get_tokens(_A ) snake_case_ = get_tokens(_A ) snake_case_ = collections.Counter(_A ) & collections.Counter(_A ) snake_case_ = sum(common.values() ) if len(_A ) == 0 or len(_A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = {} snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = qa["id"] snake_case_ = [t for t in qa["answers"]["text"] if normalize_answer(_A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case_ = [""] if qid not in preds: print(f"Missing prediction for {qid}" ) continue snake_case_ = preds[qid] # Take max over all gold answers snake_case_ = max(compute_exact(_A , _A ) for a in gold_answers ) snake_case_ = max(compute_fa(_A , _A ) for a in gold_answers ) return exact_scores, fa_scores def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = {} for qid, s in scores.items(): snake_case_ = na_probs[qid] > na_prob_thresh if pred_na: snake_case_ = float(not qid_to_has_ans[qid] ) else: snake_case_ = s return new_scores def lowerCamelCase__ ( _A , _A , _A=None ): '''simple docstring''' if not qid_list: snake_case_ = len(_A ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores.values() ) / total), ("f1", 1_00.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: snake_case_ = len(_A ) return collections.OrderedDict( [ ("exact", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' for k in new_eval: snake_case_ = new_eval[k] def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' plt.step(_A , _A , color="b" , alpha=0.2 , where="post" ) plt.fill_between(_A , _A , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_A ) plt.savefig(_A ) plt.clf() def lowerCamelCase__ ( _A , _A , _A , _A , _A=None , _A=None ): '''simple docstring''' snake_case_ = sorted(_A , key=lambda _A : na_probs[k] ) snake_case_ = 0.0 snake_case_ = 1.0 snake_case_ = 0.0 snake_case_ = [1.0] snake_case_ = [0.0] snake_case_ = 0.0 for i, qid in enumerate(_A ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case_ = true_pos / float(i + 1 ) snake_case_ = true_pos / float(_A ) if i == len(_A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_A ) recalls.append(_A ) if out_image: plot_pr_curve(_A , _A , _A , _A ) return {"ap": 1_00.0 * avg_prec} def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A ): '''simple docstring''' if out_image_dir and not os.path.exists(_A ): os.makedirs(_A ) snake_case_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case_ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) snake_case_ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) snake_case_ = {k: float(_A ) for k, v in qid_to_has_ans.items()} snake_case_ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_A , _A , "pr_exact" ) merge_eval(_A , _A , "pr_f1" ) merge_eval(_A , _A , "pr_oracle" ) def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' if not qid_list: return snake_case_ = [na_probs[k] for k in qid_list] snake_case_ = np.ones_like(_A ) / float(len(_A ) ) plt.hist(_A , weights=_A , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(_A , f"na_prob_hist_{name}.png" ) ) plt.clf() def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case_ = num_no_ans snake_case_ = cur_score snake_case_ = 0.0 snake_case_ = sorted(_A , key=lambda _A : na_probs[k] ) for i, qid in enumerate(_A ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case_ = scores[qid] else: if preds[qid]: snake_case_ = -1 else: snake_case_ = 0 cur_score += diff if cur_score > best_score: snake_case_ = cur_score snake_case_ = na_probs[qid] return 1_00.0 * best_score / len(_A ), best_thresh def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A ): '''simple docstring''' snake_case_ , snake_case_ = find_best_thresh(_A , _A , _A , _A ) snake_case_ , snake_case_ = find_best_thresh(_A , _A , _A , _A ) snake_case_ = best_exact snake_case_ = exact_thresh snake_case_ = best_fa snake_case_ = fa_thresh def lowerCamelCase__ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: snake_case_ = json.load(_A ) snake_case_ = dataset_json["data"] with open(OPTS.pred_file ) as f: snake_case_ = json.load(_A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case_ = json.load(_A ) else: snake_case_ = {k: 0.0 for k in preds} snake_case_ = make_qid_to_has_ans(_A ) # maps qid to True/False snake_case_ = [k for k, v in qid_to_has_ans.items() if v] snake_case_ = [k for k, v in qid_to_has_ans.items() if not v] snake_case_ , snake_case_ = get_raw_scores(_A , _A ) snake_case_ = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) snake_case_ = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) snake_case_ = make_eval_dict(_A , _A ) if has_ans_qids: snake_case_ = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , "HasAns" ) if no_ans_qids: snake_case_ = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(_A , _A , _A , _A , _A , _A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_A , _A , _A , _A , _A , OPTS.out_image_dir ) histogram_na_prob(_A , _A , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(_A , _A , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(_A , _A ) else: print(json.dumps(_A , indent=2 ) ) if __name__ == "__main__": lowercase__ : Union[str, Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
187
1
from __future__ import annotations import requests def __a ( lowerCAmelCase_ : str ) -> Any: '''simple docstring''' UpperCAmelCase_= F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(__UpperCamelCase ).json() def __a ( lowerCAmelCase_ : int = 10 ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" UpperCAmelCase_= requests.get(__UpperCamelCase ).json()[:max_stories] return [get_hackernews_story(__UpperCamelCase ) for story_id in story_ids] def __a ( lowerCAmelCase_ : int = 10 ) -> int: '''simple docstring''' UpperCAmelCase_= hackernews_top_stories(__UpperCamelCase ) return "\n".join("""* [{title}]({url})""".format(**__UpperCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
369
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_= tempfile.mkdtemp() UpperCAmelCase_= BlipImageProcessor() UpperCAmelCase_= GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCAmelCase_= BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **__UpperCAmelCase : Union[str, Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__UpperCAmelCase : str ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_= [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: UpperCAmelCase_= BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_= self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase_= self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) UpperCAmelCase_= BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= image_processor(__UpperCAmelCase , return_tensors="""np""" ) UpperCAmelCase_= processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= processor(text=__UpperCAmelCase ) UpperCAmelCase_= tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Dict: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_= processor.batch_decode(__UpperCAmelCase ) UpperCAmelCase_= tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_= self.get_image_processor() UpperCAmelCase_= self.get_tokenizer() UpperCAmelCase_= BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) UpperCAmelCase_= """lower newer""" UpperCAmelCase_= self.prepare_image_inputs() UpperCAmelCase_= processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
277
0
from __future__ import annotations __lowerCAmelCase : int = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __lowerCAmelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __magic_name__ ( A : list[float] ): '''simple docstring''' a = [] a = len(A ) for i in range(A ): a = -1 for j in range(i + 1, A ): if arr[i] < arr[j]: a = arr[j] break result.append(A ) return result def __magic_name__ ( A : list[float] ): '''simple docstring''' a = [] for i, outer in enumerate(A ): a = -1 for inner in arr[i + 1 :]: if outer < inner: a = inner break result.append(A ) return result def __magic_name__ ( A : list[float] ): '''simple docstring''' a = len(A ) a = [] a = [-1] * arr_size for index in reversed(range(A ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: a = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __lowerCAmelCase : str = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
107
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCAmelCase ( unittest.TestCase): __a : Tuple = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __snake_case ( self , _A , _A , _A ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _UpperCAmelCase : Tuple = VideoClassificationPipeline(model=_A , image_processor=_A , top_k=2 ) _UpperCAmelCase : List[str] = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def __snake_case ( self , _A , _A ) -> Optional[int]: '''simple docstring''' for example in examples: _UpperCAmelCase : str = video_classifier(_A ) self.assertEqual( _A , [ {"""score""": ANY(_A ), """label""": ANY(_A )}, {"""score""": ANY(_A ), """label""": ANY(_A )}, ] , ) @require_torch def __snake_case ( self ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _UpperCAmelCase : Optional[Any] = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _UpperCAmelCase : List[str] = pipeline( """video-classification""" , model=_A , feature_extractor=_A , frame_sampling_rate=4 ) _UpperCAmelCase : Union[str, Any] = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _UpperCAmelCase : Union[str, Any] = video_classifier(_A , top_k=2 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) _UpperCAmelCase : int = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def __snake_case ( self ) -> Any: '''simple docstring''' pass
246
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : int =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ='▁' lowerCAmelCase__ : Dict ={'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase__ : Union[str, Any] ={ 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase__ : str ={ 'facebook/xglm-564M': 2048, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , _A , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A = None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] __SCREAMING_SNAKE_CASE = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __SCREAMING_SNAKE_CASE = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __SCREAMING_SNAKE_CASE = 1 # Mimic fairseq token-to-id alignment for the first 4 token __SCREAMING_SNAKE_CASE = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __SCREAMING_SNAKE_CASE = len(self.sp_model ) __SCREAMING_SNAKE_CASE = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_A ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _A ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a __SCREAMING_SNAKE_CASE = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _A ( self , _A , _A = None , _A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) def _A ( self , _A , _A = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _A ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self , _A ): '''simple docstring''' return self.sp_model.encode(_A , out_type=_A ) def _A ( self , _A ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _A ( self , _A ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ''.join(_A ).replace(_A , ' ' ).strip() return out_string def _A ( self , _A , _A = None ): '''simple docstring''' if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , 'wb' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
359
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] )
118
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _lowerCamelCase : List[str] = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _lowerCamelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __SCREAMING_SNAKE_CASE ( _a ): @slow @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) UpperCamelCase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCamelCase__ = bertabert.config.encoder.vocab_size UpperCamelCase__ = tokenizer.sep_token_id UpperCamelCase__ = tokenizer.cls_token_id UpperCamelCase__ = 128 UpperCamelCase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) UpperCamelCase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) UpperCamelCase__ = train_dataset.select(range(32 ) ) UpperCamelCase__ = val_dataset.select(range(16 ) ) UpperCamelCase__ = 4 def _map_to_encoder_decoder_inputs(__lowerCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=512 ) UpperCamelCase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=128 ) UpperCamelCase__ = inputs.input_ids UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = outputs.input_ids UpperCamelCase__ = outputs.input_ids.copy() UpperCamelCase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] UpperCamelCase__ = outputs.attention_mask assert all(len(__lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCAmelCase ): UpperCamelCase__ = pred.label_ids UpperCamelCase__ = pred.predictions # all unnecessary tokens are removed UpperCamelCase__ = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) UpperCamelCase__ = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) UpperCamelCase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCAmelCase ) )] ) / len(__lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset UpperCamelCase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset UpperCamelCase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) UpperCamelCase__ = self.get_auto_remove_tmp_dir() UpperCamelCase__ = SeqaSeqTrainingArguments( output_dir=__lowerCAmelCase , per_device_train_batch_size=__lowerCAmelCase , per_device_eval_batch_size=__lowerCAmelCase , predict_with_generate=__lowerCAmelCase , evaluation_strategy="""steps""" , do_train=__lowerCAmelCase , do_eval=__lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase__ = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # start training trainer.train()
87
def _UpperCamelCase (a__ :str ): """simple docstring""" UpperCamelCase__ = 0 # if input_string is "aba" than new_input_string become "a|b|a" UpperCamelCase__ = """""" UpperCamelCase__ = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(a__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring UpperCamelCase__ , UpperCamelCase__ = 0, 0 # length[i] shows the length of palindromic substring with center i UpperCamelCase__ = [1 for i in range(len(a__ ) )] # for each character in new_string find corresponding palindromic string UpperCamelCase__ = 0 for j in range(len(a__ ) ): UpperCamelCase__ = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(a__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 UpperCamelCase__ = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: UpperCamelCase__ = j - k + 1 # noqa: E741 UpperCamelCase__ = j + k - 1 # update max_length and start position if max_length < length[j]: UpperCamelCase__ = length[j] UpperCamelCase__ = j # create that string UpperCamelCase__ = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
87
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class _UpperCAmelCase ( snake_case_ , snake_case_ ): """simple docstring""" snake_case = '''bit''' snake_case = ['''preactivation''', '''bottleneck'''] snake_case = ['''SAME''', '''VALID'''] def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : int=64 , __UpperCAmelCase : List[str]=[256, 512, 1024, 2048] , __UpperCAmelCase : Any=[3, 4, 6, 3] , __UpperCAmelCase : List[Any]="preactivation" , __UpperCAmelCase : Tuple="relu" , __UpperCAmelCase : int=None , __UpperCAmelCase : int=32 , __UpperCAmelCase : List[str]=0.0 , __UpperCAmelCase : List[Any]=False , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : int=None , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _A = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) _A = num_channels _A = embedding_size _A = hidden_sizes _A = depths _A = layer_type _A = hidden_act _A = global_padding _A = num_groups _A = drop_path_rate _A = embedding_dynamic_padding _A = output_stride _A = width_factor _A = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] _A , _A = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
79
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ : Any = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def A__ ( ): _UpperCamelCase : Tuple = Github(os.environ['GITHUB_TOKEN'] ) _UpperCamelCase : List[Any] = g.get_repo('huggingface/diffusers' ) _UpperCamelCase : List[Any] = repo.get_issues(state='open' ) for issue in open_issues: _UpperCamelCase : Dict = sorted(issue.get_comments() , key=lambda UpperCAmelCase_ : i.created_at , reverse=UpperCAmelCase_ ) _UpperCamelCase : List[str] = comments[0] if len(UpperCAmelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
83
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase_ ( A_ ): lowercase__ = field(default='''language-modeling''', metadata={'''include_in_asdict_even_if_is_default''': True} ) lowercase__ = Features({'''text''': Value('''string''' )} ) lowercase__ = Features({} ) lowercase__ = "text" @property def __magic_name__ ( self : Optional[int] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text"}
230
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=13 , snake_case_ : Optional[int]=7 , snake_case_ : Any=True , snake_case_ : List[Any]=True , snake_case_ : Dict=True , snake_case_ : Dict=True , snake_case_ : List[str]=99 , snake_case_ : Union[str, Any]=16 , snake_case_ : Any=36 , snake_case_ : List[Any]=6 , snake_case_ : Optional[Any]=6 , snake_case_ : Optional[Any]=6 , snake_case_ : Any=37 , snake_case_ : int="gelu" , snake_case_ : Any=0.1 , snake_case_ : int=0.1 , snake_case_ : str=512 , snake_case_ : Union[str, Any]=16 , snake_case_ : Tuple=2 , snake_case_ : Any=0.02 , snake_case_ : Optional[Any]=3 , snake_case_ : Union[str, Any]=4 , snake_case_ : Any=None , ) -> Tuple: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def __magic_name__ ( self : Tuple ) -> List[str]: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : int ) -> Dict: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ = AlbertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) A__ = model(snake_case_ , token_type_ids=snake_case_ ) A__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : int , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ) -> int: '''simple docstring''' A__ = AlbertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , sentence_order_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __magic_name__ ( self : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> Dict: '''simple docstring''' A__ = AlbertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : List[str] ) -> Tuple: '''simple docstring''' A__ = AlbertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Any ) -> Any: '''simple docstring''' A__ = self.num_labels A__ = AlbertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Tuple , snake_case_ : Dict , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] ) -> List[str]: '''simple docstring''' A__ = self.num_labels A__ = AlbertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Any ) -> Optional[Any]: '''simple docstring''' A__ = self.num_choices A__ = AlbertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ) = config_and_inputs A__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def __magic_name__ ( self : Tuple , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : List[Any]=False ) -> Optional[int]: '''simple docstring''' A__ = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = AlbertModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Any ) -> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def __magic_name__ ( self : int ) -> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def __magic_name__ ( self : Any ) -> str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*snake_case_ ) @slow def __magic_name__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = AlbertModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self : int ) -> Tuple: '''simple docstring''' A__ = AlbertModel.from_pretrained("albert-base-v2" ) A__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(snake_case_ , attention_mask=snake_case_ )[0] A__ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case_ ) A__ = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) )
230
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
78
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :int = { "configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ "LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST", "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :int = [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
0
"""simple docstring""" from manim import * class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase__ : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Dict = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) UpperCAmelCase__ : List[Any] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) UpperCAmelCase__ : Tuple = VGroup(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) UpperCAmelCase__ : str = Text("""CPU""" , font_size=24 ) UpperCAmelCase__ : Tuple = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = [mem.copy() for i in range(1 )] UpperCAmelCase__ : Tuple = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) UpperCAmelCase__ : Dict = Text("""GPU""" , font_size=24 ) UpperCAmelCase__ : str = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) gpu.align_to(_lowerCamelCase , _lowerCamelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowerCamelCase ) UpperCAmelCase__ : List[str] = [mem.copy() for i in range(6 )] UpperCAmelCase__ : Optional[int] = VGroup(*_lowerCamelCase ).arrange(_lowerCamelCase , buff=0 ) UpperCAmelCase__ : List[Any] = Text("""Model""" , font_size=24 ) UpperCAmelCase__ : Optional[Any] = Group(_lowerCamelCase , _lowerCamelCase ).arrange(_lowerCamelCase , buff=0.5 , aligned_edge=_lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) , Create(_lowerCamelCase , run_time=1 ) , ) UpperCAmelCase__ : Dict = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) UpperCAmelCase__ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase__ : Optional[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowerCamelCase , run_time=2.5 ) , Write(_lowerCamelCase ) , Write(_lowerCamelCase ) ) self.add(_lowerCamelCase ) UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : List[str] = [] UpperCAmelCase__ : List[Any] = [] for i, rect in enumerate(_lowerCamelCase ): UpperCAmelCase__ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowerCamelCase , opacity=0.7 ) cpu_target.move_to(_lowerCamelCase ) cpu_target.generate_target() UpperCAmelCase__ : int = 0.46 / 4 UpperCAmelCase__ : List[str] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_lowerCamelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowerCamelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowerCamelCase , buff=0.0 ) cpu_targs.append(_lowerCamelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowerCamelCase ) ) second_animations.append(MoveToTarget(_lowerCamelCase , run_time=1.5 ) ) self.play(*_lowerCamelCase ) self.play(*_lowerCamelCase ) self.wait()
367
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , ): """simple docstring""" UpperCAmelCase__ : Dict = [file for file in os.listdir(_lowerCamelCase ) if os.path.isfile(os.path.join(_lowerCamelCase , _lowerCamelCase ) )] if identifier is not None: UpperCAmelCase__ : List[str] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowerCamelCase , _lowerCamelCase ): for n_ in n_identifier: UpperCAmelCase__ : Optional[int] = [file for file in files if n_ not in file] else: UpperCAmelCase__ : List[Any] = [file for file in files if n_identifier not in file] UpperCAmelCase__ : str = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _lowerCamelCase ) if only_modules: UpperCAmelCase__ : List[str] = file.split(""".""" )[0] try: UpperCAmelCase__ : Any = getattr(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[int] = doctest.DocTestSuite(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = unittest.TextTestRunner().run(_lowerCamelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: UpperCAmelCase__ : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : Union[str, Any] = """modeling""" UpperCAmelCase__ : int = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase , ignore_files=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = """tokenization""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : int = Path("""src/transformers""" ) UpperCAmelCase__ : Optional[int] = """configuration""" self.analyze_directory(_lowerCamelCase , identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = Path("""src/transformers""" ) UpperCAmelCase__ : List[Any] = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_lowerCamelCase , n_identifier=_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = Path("""docs/source""" ) UpperCAmelCase__ : str = ["""favicon.ico"""] self.analyze_directory(_lowerCamelCase , ignore_files=_lowerCamelCase , only_modules=_lowerCamelCase )
166
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 class lowerCAmelCase ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , UpperCAmelCase : List[str]=(64,) , UpperCAmelCase : Any=2 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : List[str]="silu" , UpperCAmelCase : Tuple=True , ) -> Tuple: super().__init__() lowerCamelCase__ : Optional[Any] = layers_per_block lowerCamelCase__ : Dict = torch.nn.Convad( UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : Union[str, Any] = nn.ModuleList([] ) # down lowerCamelCase__ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : List[Any] = output_channel lowerCamelCase__ : Dict = block_out_channels[i] lowerCamelCase__ : int = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : int = get_down_block( UpperCAmelCase , num_layers=self.layers_per_block , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , ) self.down_blocks.append(UpperCAmelCase ) # mid lowerCamelCase__ : Tuple = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # out lowerCamelCase__ : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCAmelCase , eps=1e-6 ) lowerCamelCase__ : List[Any] = nn.SiLU() lowerCamelCase__ : List[str] = 2 * out_channels if double_z else out_channels lowerCamelCase__ : Any = nn.Convad(block_out_channels[-1] , UpperCAmelCase , 3 , padding=1 ) lowerCamelCase__ : List[Any] = False def A_ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Union[str, Any]: lowerCamelCase__ : Dict = x lowerCamelCase__ : Dict = self.conv_in(UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : Dict ): def custom_forward(*UpperCAmelCase : Any ): return module(*UpperCAmelCase ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: lowerCamelCase__ : Optional[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) # middle lowerCamelCase__ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: for down_block in self.down_blocks: lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase ) # middle lowerCamelCase__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCAmelCase ) else: # down for down_block in self.down_blocks: lowerCamelCase__ : Optional[Any] = down_block(UpperCAmelCase ) # middle lowerCamelCase__ : List[str] = self.mid_block(UpperCAmelCase ) # post-process lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) lowerCamelCase__ : List[Any] = self.conv_act(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.conv_out(UpperCAmelCase ) return sample class lowerCAmelCase ( nn.Module ): def __init__( self : Any , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : int=("UpDecoderBlock2D",) , UpperCAmelCase : Optional[Any]=(64,) , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : int="silu" , UpperCAmelCase : List[str]="group" , ) -> Any: super().__init__() lowerCamelCase__ : List[str] = layers_per_block lowerCamelCase__ : Optional[Any] = nn.Convad( UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase__ : Dict = None lowerCamelCase__ : List[str] = nn.ModuleList([] ) lowerCamelCase__ : Dict = in_channels if norm_type == 'spatial' else None # mid lowerCamelCase__ : List[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCAmelCase , temb_channels=UpperCAmelCase , ) # up lowerCamelCase__ : Tuple = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase ): lowerCamelCase__ : Dict = output_channel lowerCamelCase__ : List[Any] = reversed_block_out_channels[i] lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1 lowerCamelCase__ : Union[str, Any] = get_up_block( UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCAmelCase , resnet_groups=UpperCAmelCase , attention_head_dim=UpperCAmelCase , temb_channels=UpperCAmelCase , resnet_time_scale_shift=UpperCAmelCase , ) self.up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : str = output_channel # out if norm_type == "spatial": lowerCamelCase__ : Any = SpatialNorm(block_out_channels[0] , UpperCAmelCase ) else: lowerCamelCase__ : Optional[Any] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCAmelCase , eps=1e-6 ) lowerCamelCase__ : Tuple = nn.SiLU() lowerCamelCase__ : Union[str, Any] = nn.Convad(block_out_channels[0] , UpperCAmelCase , 3 , padding=1 ) lowerCamelCase__ : Dict = False def A_ ( self : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any=None ) -> List[str]: lowerCamelCase__ : Any = z lowerCamelCase__ : Union[str, Any] = self.conv_in(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCAmelCase : Any ): def custom_forward(*UpperCAmelCase : Any ): return module(*UpperCAmelCase ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) lowerCamelCase__ : Tuple = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase , use_reentrant=UpperCAmelCase ) else: # middle lowerCamelCase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Dict = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCamelCase__ : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) else: # middle lowerCamelCase__ : Any = self.mid_block(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = sample.to(UpperCAmelCase ) # up for up_block in self.up_blocks: lowerCamelCase__ : List[Any] = up_block(UpperCAmelCase , UpperCAmelCase ) # post-process if latent_embeds is None: lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) else: lowerCamelCase__ : Optional[Any] = self.conv_norm_out(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : List[str] = self.conv_act(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.conv_out(UpperCAmelCase ) return sample class lowerCAmelCase ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]="random" , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=True ) -> Optional[int]: super().__init__() lowerCamelCase__ : int = n_e lowerCamelCase__ : Any = vq_embed_dim lowerCamelCase__ : Optional[int] = beta lowerCamelCase__ : Optional[Any] = legacy lowerCamelCase__ : Any = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCamelCase__ : Any = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) lowerCamelCase__ : str = self.used.shape[0] lowerCamelCase__ : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase__ : List[Any] = self.re_embed lowerCamelCase__ : List[Any] = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: lowerCamelCase__ : List[Any] = n_e lowerCamelCase__ : Optional[Any] = sane_index_shape def A_ ( self : Union[str, Any] , UpperCAmelCase : Any ) -> Dict: lowerCamelCase__ : Any = inds.shape assert len(UpperCAmelCase ) > 1 lowerCamelCase__ : str = inds.reshape(ishape[0] , -1 ) lowerCamelCase__ : str = self.used.to(UpperCAmelCase ) lowerCamelCase__ : Dict = (inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase__ : Optional[int] = match.argmax(-1 ) lowerCamelCase__ : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCamelCase__ : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCamelCase__ : int = self.unknown_index return new.reshape(UpperCAmelCase ) def A_ ( self : List[str] , UpperCAmelCase : Tuple ) -> Optional[int]: lowerCamelCase__ : List[Any] = inds.shape assert len(UpperCAmelCase ) > 1 lowerCamelCase__ : List[Any] = inds.reshape(ishape[0] , -1 ) lowerCamelCase__ : str = self.used.to(UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase__ : Any = 0 # simply set to zero lowerCamelCase__ : Any = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCAmelCase ) return back.reshape(UpperCAmelCase ) def A_ ( self : Tuple , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten lowerCamelCase__ : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCamelCase__ : List[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase__ : List[str] = torch.argmin(torch.cdist(UpperCAmelCase , self.embedding.weight ) , dim=1 ) lowerCamelCase__ : Optional[Any] = self.embedding(UpperCAmelCase ).view(z.shape ) lowerCamelCase__ : int = None lowerCamelCase__ : Union[str, Any] = None # compute loss for embedding if not self.legacy: lowerCamelCase__ : Dict = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCamelCase__ : List[str] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCamelCase__ : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase__ : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCamelCase__ : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCamelCase__ : Union[str, Any] = self.remap_to_used(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCamelCase__ : Any = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def A_ ( self : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ) -> List[Any]: # shape specifying (batch, height, width, channel) if self.remap is not None: lowerCamelCase__ : str = indices.reshape(shape[0] , -1 ) # add batch axis lowerCamelCase__ : Optional[Any] = self.unmap_to_all(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCamelCase__ : str = self.embedding(UpperCAmelCase ) if shape is not None: lowerCamelCase__ : List[str] = z_q.view(UpperCAmelCase ) # reshape back to match original input shape lowerCamelCase__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> List[str]: lowerCamelCase__ : List[str] = parameters lowerCamelCase__ , lowerCamelCase__ : List[str] = torch.chunk(UpperCAmelCase , 2 , dim=1 ) lowerCamelCase__ : Union[str, Any] = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) lowerCamelCase__ : List[Any] = deterministic lowerCamelCase__ : Optional[int] = torch.exp(0.5 * self.logvar ) lowerCamelCase__ : Optional[Any] = torch.exp(self.logvar ) if self.deterministic: lowerCamelCase__ : str = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def A_ ( self : List[str] , UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype lowerCamelCase__ : Any = randn_tensor( self.mean.shape , generator=UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCamelCase__ : Optional[int] = self.mean + self.std * sample return x def A_ ( self : Dict , UpperCAmelCase : Optional[Any]=None ) -> Optional[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : List[Any]=[1, 2, 3] ) -> List[str]: if self.deterministic: return torch.Tensor([0.0] ) lowerCamelCase__ : int = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCAmelCase ) def A_ ( self : Optional[int] ) -> List[str]: return self.mean
50
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = CpmAntTokenizer lowerCamelCase__ = False def __A ( self : List[str] ) -> str: super().setUp() SCREAMING_SNAKE_CASE_ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) SCREAMING_SNAKE_CASE_ = "今天天气真好!" SCREAMING_SNAKE_CASE_ = ["今天", "天气", "真", "好", "!"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = "今天天气真好!" SCREAMING_SNAKE_CASE_ = [tokenizer.bos_token] + tokens SCREAMING_SNAKE_CASE_ = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
118
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : str ): """simple docstring""" __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Optional[Any] = config_class __UpperCAmelCase : str = has_text_modality __UpperCAmelCase : List[str] = kwargs __UpperCAmelCase : Dict = common_properties def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : str = self.config_class(**self.inputs_dict ) __UpperCAmelCase : Optional[int] = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase_ , UpperCAmelCase_ ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase_ ): try: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.parent.assertEqual( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , msg=f"`{name} value {idx} expected, but was {getattr(UpperCAmelCase_ , UpperCAmelCase_ )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase_ ): try: __UpperCAmelCase : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ , msg=f"`{name} value {idx} expected, but was {getattr(UpperCAmelCase_ , UpperCAmelCase_ )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Tuple = self.config_class(**self.inputs_dict ) __UpperCAmelCase : Optional[int] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : Any = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[Any] = os.path.join(UpperCAmelCase_ , "config.json" ) config_first.to_json_file(UpperCAmelCase_ ) __UpperCAmelCase : int = self.config_class.from_json_file(UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = self.config_class.from_pretrained(UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase_ ( self : int ): """simple docstring""" __UpperCAmelCase : Dict = self.config_class(**self.inputs_dict ) __UpperCAmelCase : str = "test" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Any = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) config_first.save_pretrained(UpperCAmelCase_ ) __UpperCAmelCase : int = self.config_class.from_pretrained(UpperCAmelCase_ , subfolder=UpperCAmelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowerCamelCase_ ( self : int ): """simple docstring""" __UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __UpperCAmelCase : List[Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowerCamelCase_ ( self : int ): """simple docstring""" if self.config_class.is_composition: return __UpperCAmelCase : List[str] = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : List[str] = copy.deepcopy(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = self.config_class(**UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase_ , UpperCAmelCase_ ) != value: wrong_values.append((key, getattr(UpperCAmelCase_ , UpperCAmelCase_ ), value) ) if len(UpperCAmelCase_ ) > 0: __UpperCAmelCase : Tuple = "\n".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
37
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase__ : str = logging.get_logger(__name__) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Dict = 4 __UpperCAmelCase : Dict = 3 __UpperCAmelCase : Dict = (32, 32) __UpperCAmelCase : Any = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : str = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : int ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return (3, 32, 32) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } __UpperCAmelCase : List[str] = self.dummy_input return init_dict, inputs_dict class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : str = 4 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : Optional[int] = (32, 32) __UpperCAmelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = torch.tensor([10] ).to(UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return (4, 32, 32) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return (4, 32, 32) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } __UpperCAmelCase : List[Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : List[str] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def lowerCamelCase_ ( self : str ): """simple docstring""" # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ ) model_accelerate.to(UpperCAmelCase_ ) model_accelerate.eval() __UpperCAmelCase : Optional[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : int = noise.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = model_accelerate(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() __UpperCAmelCase , __UpperCAmelCase : str = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=UpperCAmelCase_ , low_cpu_mem_usage=UpperCAmelCase_ ) model_normal_load.to(UpperCAmelCase_ ) model_normal_load.eval() __UpperCAmelCase : Optional[Any] = model_normal_load(UpperCAmelCase_ , UpperCAmelCase_ )["sample"] assert torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase : Optional[int] = noise.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.tensor([10] * noise.shape[0] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : Dict = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __UpperCAmelCase : int = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) ) class SCREAMING_SNAKE_CASE__ ( snake_case__ ,snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = UNetaDModel SCREAMING_SNAKE_CASE = '''sample''' @property def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase_ : List[str]=(32, 32) ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Tuple = 3 __UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=UpperCAmelCase_ ) return {"sample": noise, "timestep": time_step} @property def lowerCamelCase_ ( self : str ): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase_ ( self : Any ): """simple docstring""" return (3, 32, 32) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" __UpperCAmelCase : List[Any] = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } __UpperCAmelCase : int = self.dummy_input return init_dict, inputs_dict @slow def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : int = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Any = self.dummy_input __UpperCAmelCase : int = floats_tensor((4, 3) + (256, 256) ).to(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = noise __UpperCAmelCase : Optional[Any] = model(**UpperCAmelCase_ ) assert image is not None, "Make sure output is not None" @slow def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : int = (256, 256) __UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Dict = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : Tuple = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : Tuple = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Dict = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = 4 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : Union[str, Any] = (32, 32) __UpperCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(UpperCAmelCase_ ) with torch.no_grad(): __UpperCAmelCase : str = model(UpperCAmelCase_ , UpperCAmelCase_ ).sample __UpperCAmelCase : Dict = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off __UpperCAmelCase : Any = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-2 ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" # not required for this model pass
37
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase_ ( _lowerCamelCase : str = ""): lowercase__ : str = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowercase__ : int = BeautifulSoup(requests.get(_lowerCamelCase).text , "html.parser") lowercase__ : int = soup.find_all("td" , attrs="titleColumn") lowercase__ : Any = soup.find_all("td" , class_="ratingColumn imdbRating") return { title.a.text: float(rating.strong.text) for title, rating in zip(_lowerCamelCase , _lowerCamelCase) } def lowercase_ ( _lowerCamelCase : str = "IMDb_Top_250_Movies.csv"): lowercase__ : Dict = get_imdb_top_aaa_movies() with open(_lowerCamelCase , "w" , newline="") as out_file: lowercase__ : Optional[int] = csv.writer(_lowerCamelCase) writer.writerow(["Movie title", "IMDb rating"]) for title, rating in movies.items(): writer.writerow([title, rating]) if __name__ == "__main__": write_movies()
87
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
1
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowercase : str = logging.getLogger(__name__) def lowerCAmelCase_ ( ): '''simple docstring''' A : Any = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=snake_case__ , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=snake_case__ , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=snake_case__ , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=snake_case__ , default='''data/dump''' , help='''The dump file prefix.''' ) A : List[str] = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": A : Optional[int] = BertTokenizer.from_pretrained(args.tokenizer_name ) A : Optional[int] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` A : List[str] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": A : Optional[int] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) A : Optional[Any] = tokenizer.special_tokens_map['''cls_token'''] # `<s>` A : Any = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": A : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) A : str = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` A : Optional[int] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: A : Optional[int] = fp.readlines() logger.info('''Start encoding''' ) logger.info(F'{len(snake_case__ )} examples to process.' ) A : List[str] = [] A : str = 0 A : Optional[int] = 1_0000 A : Any = time.time() for text in data: A : int = F'{bos} {text.strip()} {sep}' A : Dict = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) rslt.append(snake_case__ ) iter += 1 if iter % interval == 0: A : int = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) A : int = time.time() logger.info('''Finished binarization''' ) logger.info(F'{len(snake_case__ )} examples processed.' ) A : str = F'{args.dump_file}.{args.tokenizer_name}.pickle' A : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): A : Optional[Any] = [np.uintaa(snake_case__ ) for d in rslt] else: A : Dict = [np.intaa(snake_case__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(snake_case__ , '''wb''' ) as handle: pickle.dump(rslt_ , snake_case__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( __snake_case ): __magic_name__ = (UniPCMultistepScheduler,) __magic_name__ = (('''num_inference_steps''', 25),) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" A : str = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**SCREAMING_SNAKE_CASE ) return config def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : List[Any] = dict(self.forward_default_kwargs ) A : Union[str, Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : int = 0.1 * sample A : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] A, A : Tuple = sample, sample for t in range(SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A : Any = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : Optional[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" A : Optional[Any] = dict(self.forward_default_kwargs ) A : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) A : List[Any] = self.dummy_sample A : int = 0.1 * sample A : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A : Optional[int] = self.get_scheduler_config() A : Any = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE ) A : int = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = new_scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" if scheduler is None: A : Dict = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[Any] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = self.scheduler_classes[0] A : Union[str, Any] = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : int = 10 A : Tuple = self.dummy_model() A : Any = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : int = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample return sample def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = dict(self.forward_default_kwargs ) A : List[Any] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config() A : Dict = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Optional[Any] = self.dummy_sample A : Optional[int] = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE , '''set_timesteps''' ): A : Tuple = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] A : List[str] = dummy_past_residuals[: scheduler.config.solver_order] A : List[Any] = scheduler.timesteps[5] A : Dict = scheduler.timesteps[6] A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample A : List[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Union[str, Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) A : List[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 A : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) A : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A : Optional[Any] = self.full_loop(scheduler=SCREAMING_SNAKE_CASE ) A : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , sample_max_value=SCREAMING_SNAKE_CASE , solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) A : Dict = self.full_loop( solver_order=SCREAMING_SNAKE_CASE , solver_type=SCREAMING_SNAKE_CASE , prediction_type=SCREAMING_SNAKE_CASE , ) assert not torch.isnan(SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE , time_step=0 ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : int = self.full_loop() A : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) A : Any = torch.mean(torch.abs(SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.scheduler_classes[0] A : List[Any] = self.get_scheduler_config(thresholding=SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE ) A : Tuple = 10 A : Union[str, Any] = self.dummy_model() A : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A : Dict = model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Optional[Any] = scheduler.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for scheduler_class in self.scheduler_classes: A : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE ) A : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
311
1
from typing import TYPE_CHECKING from ...utils import _LazyModule A__ = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A__ = '''http://www.mocksite.com/file1.txt''' A__ = '''"text": ["foo", "foo"]''' A__ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class a : __lowerCAmelCase : Optional[int] = 2_00 __lowerCAmelCase : List[str] = {"""Content-Length""": """100"""} __lowerCAmelCase : Dict = {} def __lowerCamelCase ( self :Dict ,**__lowercase :List[Any] ): return [bytes(__lowercase ,'''utf-8''' )] def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(__lowerCAmelCase , '''request''' , __lowerCAmelCase ) snake_case__ : Union[str, Any] = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[Any] = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = {'''train''': url} snake_case__ : Dict = '''dummy''' snake_case__ : Any = '''downloads''' snake_case__ : int = tmp_path snake_case__ : Any = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) snake_case__ : Tuple = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : List[Any] = dl_manager.download(__lowerCAmelCase ) snake_case__ : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[int] = [downloaded_paths] snake_case__ : Dict = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() snake_case__ : str = downloaded_paths.values() snake_case__ : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] snake_case__ : List[Any] = Path(__lowerCAmelCase ) snake_case__ : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() snake_case__ : List[str] = downloaded_path.read_text() assert content == CONTENT snake_case__ : List[str] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() snake_case__ : str = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : Any = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Tuple = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = {'''train''': filename} snake_case__ : Any = '''dummy''' snake_case__ : Any = xz_file.parent snake_case__ : List[str] = '''extracted''' snake_case__ : Dict = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) snake_case__ : Dict = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : str = dl_manager.extract(__lowerCAmelCase ) snake_case__ : int = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [extracted_paths] snake_case__ : Optional[Any] = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() snake_case__ : int = extracted_paths.values() snake_case__ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] snake_case__ : Optional[int] = Path(__lowerCAmelCase ) snake_case__ : int = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() snake_case__ : List[Any] = extracted_path.read_text() snake_case__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): snake_case__ : Any = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
230
1
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCamelCase = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = "ernie_m" SCREAMING_SNAKE_CASE_ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self, lowerCAmelCase__ = 25_0002, lowerCAmelCase__ = 768, lowerCAmelCase__ = 12, lowerCAmelCase__ = 12, lowerCAmelCase__ = 3072, lowerCAmelCase__ = "gelu", lowerCAmelCase__ = 0.1, lowerCAmelCase__ = 0.1, lowerCAmelCase__ = 514, lowerCAmelCase__ = 0.02, lowerCAmelCase__ = 1, lowerCAmelCase__ = 1e-05, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=0.0, **lowerCAmelCase__, ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = classifier_dropout snake_case_ = is_decoder snake_case_ = act_dropout
350
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCamelCase = False __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = '''ybelkada/fonts''' def UpperCAmelCase ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: requires_backends(UpperCAmelCase , ['torch'] ) _check_torch_version() snake_case_ = image_tensor.unsqueeze(0 ) snake_case_ = torch.nn.functional.unfold(UpperCAmelCase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) snake_case_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCAmelCase , UpperCAmelCase , -1 ) snake_case_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase = 36 , UpperCAmelCase = "black" , UpperCAmelCase = "white" , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = 5 , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Image.Image: requires_backends(UpperCAmelCase , 'vision' ) # Add new lines so that each line is no more than 80 characters. snake_case_ = textwrap.TextWrapper(width=80 ) snake_case_ = wrapper.wrap(text=UpperCAmelCase ) snake_case_ = '\n'.join(UpperCAmelCase ) if font_bytes is not None and font_path is None: snake_case_ = io.BytesIO(UpperCAmelCase ) elif font_path is not None: snake_case_ = font_path else: snake_case_ = hf_hub_download(UpperCAmelCase , 'Arial.TTF' ) snake_case_ = ImageFont.truetype(UpperCAmelCase , encoding='UTF-8' , size=UpperCAmelCase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. snake_case_ = ImageDraw.Draw(Image.new('RGB' , (1, 1) , UpperCAmelCase ) ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = temp_draw.textbbox((0, 0) , UpperCAmelCase , UpperCAmelCase ) # Create the actual image with a bit of padding around the text. snake_case_ = text_width + left_padding + right_padding snake_case_ = text_height + top_padding + bottom_padding snake_case_ = Image.new('RGB' , (image_width, image_height) , UpperCAmelCase ) snake_case_ = ImageDraw.Draw(UpperCAmelCase ) draw.text(xy=(left_padding, top_padding) , text=UpperCAmelCase , fill=UpperCAmelCase , font=UpperCAmelCase ) return image def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(UpperCAmelCase , 'vision' ) # Convert to PIL image if necessary snake_case_ = to_pil_image(UpperCAmelCase ) snake_case_ = render_text(UpperCAmelCase , **UpperCAmelCase ) snake_case_ = max(header_image.width , image.width ) snake_case_ = int(image.height * (new_width / image.width) ) snake_case_ = int(header_image.height * (new_width / header_image.width) ) snake_case_ = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary snake_case_ = to_numpy_array(UpperCAmelCase ) if infer_channel_dimension_format(UpperCAmelCase ) == ChannelDimension.LAST: snake_case_ = to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) return new_image class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = ["flattened_patches"] def __init__( self, lowerCAmelCase__ = True, lowerCAmelCase__ = True, lowerCAmelCase__ = None, lowerCAmelCase__ = 2048, lowerCAmelCase__ = False, **lowerCAmelCase__, ) -> None: super().__init__(**lowerCAmelCase__) snake_case_ = patch_size if patch_size is not None else {'height': 16, 'width': 16} snake_case_ = do_normalize snake_case_ = do_convert_rgb snake_case_ = max_patches snake_case_ = is_vqa def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> np.ndarray: requires_backends(self.extract_flattened_patches, 'torch') _check_torch_version() # convert to torch snake_case_ = to_channel_dimension_format(lowerCAmelCase__, ChannelDimension.FIRST) snake_case_ = torch.from_numpy(lowerCAmelCase__) snake_case_ , snake_case_ = patch_size['height'], patch_size['width'] snake_case_ , snake_case_ = get_image_size(lowerCAmelCase__) # maximize scale s.t. snake_case_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) snake_case_ = max(min(math.floor(scale * image_height / patch_height), lowerCAmelCase__), 1) snake_case_ = max(min(math.floor(scale * image_width / patch_width), lowerCAmelCase__), 1) snake_case_ = max(num_feasible_rows * patch_height, 1) snake_case_ = max(num_feasible_cols * patch_width, 1) snake_case_ = torch.nn.functional.interpolate( image.unsqueeze(0), size=(resized_height, resized_width), mode='bilinear', align_corners=lowerCAmelCase__, antialias=lowerCAmelCase__, ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] snake_case_ = torch_extract_patches(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) snake_case_ = patches.shape snake_case_ = patches_shape[1] snake_case_ = patches_shape[2] snake_case_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] snake_case_ = patches.reshape([rows * columns, depth]) # [rows * columns, 1] snake_case_ = torch.arange(lowerCAmelCase__).reshape([rows, 1]).repeat(1, lowerCAmelCase__).reshape([rows * columns, 1]) snake_case_ = torch.arange(lowerCAmelCase__).reshape([1, columns]).repeat(lowerCAmelCase__, 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] snake_case_ = row_ids.to(torch.floataa) snake_case_ = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.cat([row_ids, col_ids, patches], -1) # [max_patches, 2 + patch_height * patch_width * image_channels] snake_case_ = torch.nn.functional.pad(lowerCAmelCase__, [0, 0, 0, max_patches - (rows * columns)]).float() snake_case_ = to_numpy_array(lowerCAmelCase__) return result def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, **lowerCAmelCase__) -> np.ndarray: if image.dtype == np.uinta: snake_case_ = image.astype(np.floataa) # take mean across the whole `image` snake_case_ = np.mean(lowerCAmelCase__) snake_case_ = np.std(lowerCAmelCase__) snake_case_ = max(lowerCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape))) return normalize(lowerCAmelCase__, mean=lowerCAmelCase__, std=lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = None, lowerCAmelCase__ = ChannelDimension.FIRST, **lowerCAmelCase__, ) -> ImageInput: snake_case_ = do_normalize if do_normalize is not None else self.do_normalize snake_case_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case_ = patch_size if patch_size is not None else self.patch_size snake_case_ = max_patches if max_patches is not None else self.max_patches snake_case_ = self.is_vqa if kwargs.get('data_format', lowerCAmelCase__) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') snake_case_ = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case_ = [convert_to_rgb(lowerCAmelCase__) for image in images] # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCAmelCase__) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') snake_case_ = kwargs.pop('font_bytes', lowerCAmelCase__) snake_case_ = kwargs.pop('font_path', lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__): snake_case_ = [header_text] * len(lowerCAmelCase__) snake_case_ = [ render_header(lowerCAmelCase__, header_text[i], font_bytes=lowerCAmelCase__, font_path=lowerCAmelCase__) for i, image in enumerate(lowerCAmelCase__) ] if do_normalize: snake_case_ = [self.normalize(image=lowerCAmelCase__) for image in images] # convert to torch tensor and permute snake_case_ = [ self.extract_flattened_patches(image=lowerCAmelCase__, max_patches=lowerCAmelCase__, patch_size=lowerCAmelCase__) for image in images ] # create attention mask in numpy snake_case_ = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] snake_case_ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks}, tensor_type=lowerCAmelCase__) return encoded_outputs
312
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
345
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCamelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def _A ( ): """simple docstring""" __lowercase =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase =get_sagemaker_input() else: __lowercase =get_cluster_input() return config def _A ( _lowerCAmelCase=None ): """simple docstring""" if subparsers is not None: __lowercase =subparsers.add_parser('config' , description=_lowerCAmelCase ) else: __lowercase =argparse.ArgumentParser('Accelerate config command' , description=_lowerCAmelCase ) parser.add_argument( '--config_file' , default=_lowerCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =get_user_input() if args.config_file is not None: __lowercase =args.config_file else: if not os.path.isdir(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) __lowercase =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowerCAmelCase ) else: config.to_yaml_file(_lowerCAmelCase ) print(f"""accelerate configuration saved at {config_file}""" ) def _A ( ): """simple docstring""" __lowercase =config_command_parser() __lowercase =parser.parse_args() config_command(_lowerCAmelCase ) if __name__ == "__main__": main()
166
0
from typing import Any class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase : Dict = data UpperCamelCase : str = None def __repr__( self ) -> str: return F"""Node({self.data})""" class lowerCAmelCase_ : def __init__( self ) -> Any: UpperCamelCase : str = None def __iter__( self ) -> Any: UpperCamelCase : Tuple = self.head while node: yield node.data UpperCamelCase : List[Any] = node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self, SCREAMING_SNAKE_CASE_ ) -> Any: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) UpperCamelCase : List[str] = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = current.next UpperCamelCase : Dict = data def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: self.insert_nth(len(self ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> None: self.insert_nth(0, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> None: if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) UpperCamelCase : Any = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: UpperCamelCase : Optional[int] = new_node elif index == 0: UpperCamelCase : Any = self.head # link new_node to head UpperCamelCase : Tuple = new_node else: UpperCamelCase : str = self.head for _ in range(index - 1 ): UpperCamelCase : Dict = temp.next UpperCamelCase : int = temp.next UpperCamelCase : Optional[int] = new_node def snake_case_ ( self ) -> None: # print every node data print(self ) def snake_case_ ( self ) -> Any: return self.delete_nth(0 ) def snake_case_ ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) UpperCamelCase : List[str] = self.head # default first node if index == 0: UpperCamelCase : int = self.head.next else: UpperCamelCase : List[str] = self.head for _ in range(index - 1 ): UpperCamelCase : str = temp.next UpperCamelCase : Tuple = temp.next UpperCamelCase : Any = temp.next.next return delete_node.data def snake_case_ ( self ) -> bool: return self.head is None def snake_case_ ( self ) -> None: UpperCamelCase : int = None UpperCamelCase : Optional[Any] = self.head while current: # Store the current node's next node. UpperCamelCase : str = current.next # Make the current node's next point backwards UpperCamelCase : List[str] = prev # Make the previous node be the current node UpperCamelCase : Tuple = current # Make the current node the next node (to progress iteration) UpperCamelCase : Optional[Any] = next_node # Return prev in order to put the head at the end UpperCamelCase : List[Any] = prev def UpperCamelCase ( ) -> None: UpperCamelCase : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(snake_case__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case__ ) == i linked_list.insert_nth(snake_case__ , i + 1 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case__ ) == 9 assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase : Union[str, Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(-8 , 1 ) ) def UpperCamelCase ( ) -> None: UpperCamelCase : Optional[Any] = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.55555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] UpperCamelCase : Any = LinkedList() for i in test_input: linked_list.insert_tail(snake_case__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase : Dict = linked_list.delete_head() assert result == -9 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase : Any = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase : Tuple = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case__ ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def UpperCamelCase ( ) -> int: from doctest import testmod testmod() UpperCamelCase : Union[str, Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(snake_case__ ) print('\nReading/changing Node data using indexing:' ) print(F"""Element at Position 1: {linked_list[1]}""" ) UpperCamelCase : int = input('Enter New Value: ' ).strip() print('New list:' ) print(snake_case__ ) print(F"""length of linked_list is : {len(snake_case__ )}""" ) if __name__ == "__main__": main()
103
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __UpperCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __UpperCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
103
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = (DDPMScheduler,) def UpperCAmelCase_ ( self ,**__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Dict = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__UpperCAmelCase ) return config def UpperCAmelCase_ ( self ) -> str: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__UpperCAmelCase ,beta_end=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> int: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[Any]: self.check_over_configs(thresholding=__UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__UpperCAmelCase ,prediction_type=__UpperCAmelCase ,sample_max_value=__UpperCAmelCase ,) def UpperCAmelCase_ ( self ) -> int: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: for t in [0, 500, 999]: self.check_over_forward(time_step=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[Any] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase__ : Dict = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : int = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.dummy_model() lowerCAmelCase__ : str = self.dummy_sample_deter lowerCAmelCase__ : List[str] = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual lowerCAmelCase__ : int = model(__UpperCAmelCase ,__UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : Union[str, Any] = scheduler.step(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ : List[Any] = pred_prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ : List[Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase__ : List[str] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = len(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = self.dummy_model() lowerCAmelCase__ : Tuple = self.dummy_sample_deter lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__UpperCAmelCase ) ): # 1. predict noise residual lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,__UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : List[str] = scheduler.step(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,generator=__UpperCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ : str = pred_prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(__UpperCAmelCase ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Optional[Any] = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : str = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__UpperCAmelCase ) lowerCAmelCase__ : str = scheduler.timesteps for i, timestep in enumerate(__UpperCAmelCase ): if i == len(__UpperCAmelCase ) - 1: lowerCAmelCase__ : Union[str, Any] = -1 else: lowerCAmelCase__ : List[str] = timesteps[i + 1] lowerCAmelCase__ : str = scheduler.previous_timestep(__UpperCAmelCase ) lowerCAmelCase__ : Dict = prev_t.item() self.assertEqual(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : Tuple = [100, 87, 50, 51, 0] with self.assertRaises(__UpperCAmelCase ,msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config() lowerCAmelCase__ : Tuple = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = [100, 87, 50, 1, 0] lowerCAmelCase__ : Union[str, Any] = len(__UpperCAmelCase ) with self.assertRaises(__UpperCAmelCase ,msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__UpperCAmelCase ,timesteps=__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[Any]: lowerCAmelCase__ : List[Any] = self.scheduler_classes[0] lowerCAmelCase__ : int = self.get_scheduler_config() lowerCAmelCase__ : Tuple = scheduler_class(**__UpperCAmelCase ) lowerCAmelCase__ : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( __UpperCAmelCase ,msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" ,): scheduler.set_timesteps(timesteps=__UpperCAmelCase )
37
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: with open(UpperCamelCase , """rb""" ) as flax_state_f: lowerCAmelCase__ : Union[str, Any] = from_bytes(UpperCamelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCamelCase ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowerCAmelCase__ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase ) ).values() if any(UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowerCAmelCase__ : Dict = jax.tree_util.tree_map( lambda UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase ) lowerCAmelCase__ : Any = """""" lowerCAmelCase__ : Any = flatten_dict(UpperCamelCase , sep=""".""" ) lowerCAmelCase__ : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase__ : Union[str, Any] = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase__ : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = jnp.transpose(UpperCamelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase__ : str = flax_key_tuple_array[:-1] + ["""weight"""] lowerCAmelCase__ : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase__ : int = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCamelCase ): lowerCAmelCase__ : List[str] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowerCAmelCase__ : Union[str, Any] = """.""".join(UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase__ : int = np.asarray(UpperCamelCase ) if not isinstance(UpperCamelCase , np.ndarray ) else flax_tensor lowerCAmelCase__ : int = torch.from_numpy(UpperCamelCase ) # remove from missing keys missing_keys.remove(UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase ) pt_model.load_state_dict(UpperCamelCase ) # re-transform missing_keys to list lowerCAmelCase__ : Optional[int] = list(UpperCamelCase ) if len(UpperCamelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCamelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
37
1
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [1] for i in range(2 , _UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __a = [] __a = list(range(_UpperCAmelCase ) ) # Find permutation while factorials: __a = factorials.pop() __a , __a = divmod(_UpperCAmelCase , _UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
361
def __snake_case ( _UpperCAmelCase = 1000000 ): __a = limit + 1 __a = [0] * limit for first_term in range(1 , _UpperCAmelCase ): for n in range(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __a = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
131
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ["speech"] def __init__( self , *snake_case , **snake_case ): '''simple docstring''' requires_backends(self , ["speech"] ) class UpperCamelCase__ ( metaclass=lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = ["speech"] def __init__( self , *snake_case , **snake_case ): '''simple docstring''' requires_backends(self , ["speech"] )
311
'''simple docstring''' from jiwer import compute_measures import datasets a : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" a : str = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" a : Union[str, Any] = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def A_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def A_ ( self , snake_case=None , snake_case=None , snake_case=False ): '''simple docstring''' if concatenate_texts: return compute_measures(snake_case , snake_case )["wer"] else: UpperCAmelCase : Dict = 0 UpperCAmelCase : Optional[Any] = 0 for prediction, reference in zip(snake_case , snake_case ): UpperCAmelCase : Tuple = compute_measures(snake_case , snake_case ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
311
1
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule __UpperCamelCase = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
356
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = XGLMConfig SCREAMING_SNAKE_CASE_ : List[str] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = """gelu""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=14 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=0.02 , ) -> str: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = d_model SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = ffn_dim SCREAMING_SNAKE_CASE = activation_function SCREAMING_SNAKE_CASE = activation_dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 1 def __A ( self ) -> Optional[int]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self ) -> int: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = config_and_inputs SCREAMING_SNAKE_CASE = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : int = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @slow def __A ( self ) -> Tuple: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __A ( self ) -> Tuple: super().test_resize_token_embeddings() @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self , lowerCAmelCase__=True ) -> Optional[Any]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off SCREAMING_SNAKE_CASE = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) SCREAMING_SNAKE_CASE = tokenizer('Today is a nice day and' , return_tensors='tf' ) SCREAMING_SNAKE_CASE = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): SCREAMING_SNAKE_CASE = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) SCREAMING_SNAKE_CASE = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_tensors='tf' , padding=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inputs['input_ids'] SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[0] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer(sentences[1] , return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=12 ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
38
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCAmelCase_ : Optional[Any] = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""" ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.transformer_dir shutil.copy( os.path.join(__snake_case , """src/transformers/models/bert/modeling_bert.py""" ) , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""" ) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = """src/transformers""" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ): _SCREAMING_SNAKE_CASE : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: _SCREAMING_SNAKE_CASE : Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result _SCREAMING_SNAKE_CASE : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _SCREAMING_SNAKE_CASE : str = black.format_str(__snake_case , mode=__snake_case ) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.transformer_dir , """new_code.py""" ) with open(__snake_case , """w""" , newline="""\n""" ) as f: f.write(__snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__snake_case ) with open(__snake_case , """r""" ) as f: self.assertTrue(f.read() , __snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(__snake_case , __snake_case ) def UpperCAmelCase_ ( self ): # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , __snake_case , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) # Copy consistency with a really long name _SCREAMING_SNAKE_CASE : Tuple = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("""Bert""" , __snake_case , __snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , __snake_case , overwrite_result=re.sub("""Bert""" , """TestModel""" , __snake_case ) , ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Dict = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _SCREAMING_SNAKE_CASE : List[str] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _SCREAMING_SNAKE_CASE : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE : str = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) self.assertFalse(__snake_case ) self.assertEqual(__snake_case , __snake_case ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _SCREAMING_SNAKE_CASE : List[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE : Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = check_copies.convert_to_localized_md( __snake_case , __snake_case , localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(__snake_case , __snake_case )
200
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : Tuple = 'OwlViTImageProcessor' _lowerCamelCase : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Optional[Any] , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Any ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="max_length" , UpperCAmelCase : Optional[Any]="np" , **UpperCAmelCase : Optional[int] ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCAmelCase , UpperCAmelCase ) or (isinstance(UpperCAmelCase , UpperCAmelCase ) and not isinstance(text[0] , UpperCAmelCase )): A_ = [self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(text[0] , UpperCAmelCase ): A_ = [] # Maximum number of queries across batch A_ = max([len(UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCAmelCase ) != max_num_queries: A_ = t + [" "] * (max_num_queries - len(UpperCAmelCase )) A_ = self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) encodings.append(UpperCAmelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": A_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp A_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch A_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) A_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf A_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) A_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) A_ = BatchEncoding() A_ = input_ids A_ = attention_mask if query_images is not None: A_ = BatchEncoding() A_ = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ).pixel_values A_ = query_pixel_values if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Optional[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ): return self.image_processor.post_process(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): return self.image_processor.post_process_object_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def __A ( self : Optional[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
312
0
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : def __init__( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : int=13 , __magic_name__ : Dict=32 , __magic_name__ : List[str]=2 , __magic_name__ : int=3 , __magic_name__ : int=16 , __magic_name__ : str=[32, 64, 1_28] , __magic_name__ : Union[str, Any]=[1, 2, 1] , __magic_name__ : Any=[2, 2, 4] , __magic_name__ : List[Any]=2 , __magic_name__ : List[str]=2.0 , __magic_name__ : Tuple=True , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : int="gelu" , __magic_name__ : int=False , __magic_name__ : int=True , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : Any=True , __magic_name__ : int=None , __magic_name__ : str=True , __magic_name__ : int=10 , __magic_name__ : List[str]=8 , __magic_name__ : Optional[Any]=["stage1", "stage2"] , __magic_name__ : Tuple=[1, 2] , ) -> Union[str, Any]: """simple docstring""" __snake_case : Union[str, Any] = parent __snake_case : str = batch_size __snake_case : Union[str, Any] = image_size __snake_case : List[str] = patch_size __snake_case : Tuple = num_channels __snake_case : Optional[Any] = embed_dim __snake_case : str = hidden_sizes __snake_case : str = depths __snake_case : str = num_heads __snake_case : Dict = window_size __snake_case : List[str] = mlp_ratio __snake_case : Dict = qkv_bias __snake_case : Tuple = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : List[Any] = drop_path_rate __snake_case : List[str] = hidden_act __snake_case : Union[str, Any] = use_absolute_embeddings __snake_case : Tuple = patch_norm __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = is_training __snake_case : Union[str, Any] = scope __snake_case : Union[str, Any] = use_labels __snake_case : Any = type_sequence_label_size __snake_case : Any = encoder_stride __snake_case : List[str] = out_features __snake_case : Optional[Any] = out_indices def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[int] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = self.get_config() return config, pixel_values, labels def lowercase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : int ) -> Dict: """simple docstring""" __snake_case : Dict = FocalNetModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Union[str, Any] = model(__magic_name__ ) __snake_case : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __snake_case : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : Dict ) -> Any: """simple docstring""" __snake_case : str = FocalNetBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : str = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __snake_case : Optional[Any] = None __snake_case : str = FocalNetBackbone(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = model(__magic_name__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> Optional[int]: """simple docstring""" __snake_case : Any = FocalNetForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __snake_case : List[Any] = 1 __snake_case : Tuple = FocalNetForMaskedImageModeling(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = self.type_sequence_label_size __snake_case : Optional[int] = FocalNetForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Dict = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : Optional[int] = 1 __snake_case : Optional[Any] = FocalNetForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Tuple ) -> int: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Tuple = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__: List[str] = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__: int = False lowercase__: str = False lowercase__: List[Any] = False lowercase__: Optional[int] = False lowercase__: Optional[Any] = False def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = FocalNetModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=__magic_name__ , embed_dim=37 , has_text_modality=__magic_name__ ) def lowercase__ ( self : str ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return def lowercase__ ( self : List[str] ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def lowercase__ ( self : str ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def lowercase__ ( self : Any ) -> int: """simple docstring""" pass def lowercase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Any = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __snake_case : Optional[int] = model_class(__magic_name__ ) __snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[Any] = [*signature.parameters.keys()] __snake_case : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def lowercase__ ( self : int , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int ) -> Any: """simple docstring""" __snake_case : Optional[int] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : Any = outputs.hidden_states __snake_case : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # FocalNet has a different seq_length __snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __snake_case : Any = outputs.reshaped_hidden_states self.assertEqual(len(__magic_name__ ) , __magic_name__ ) __snake_case , __snake_case , __snake_case , __snake_case : Dict = reshaped_hidden_states[0].shape __snake_case : List[str] = ( reshaped_hidden_states[0].view(__magic_name__ , __magic_name__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __snake_case : Tuple = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : int = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __snake_case : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __snake_case : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __snake_case : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __snake_case : List[Any] = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True self.check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ , (padded_height, padded_width) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = FocalNetModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Optional[Any] ) -> int: """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" __snake_case : Optional[int] = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(__magic_name__ ) __snake_case : Optional[int] = self.default_image_processor __snake_case : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Optional[int] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _A ( __lowercase , unittest.TestCase ): lowercase__: int = (FocalNetBackbone,) if is_torch_available() else () lowercase__: str = FocalNetConfig lowercase__: Dict = False def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = FocalNetModelTester(self )
13
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase = ["small", "medium", "large"] __UpperCamelCase = "lm_head.decoder.weight" __UpperCamelCase = "lm_head.weight" def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase ) __snake_case : Optional[int] = d.pop(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) torch.save(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __UpperCamelCase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") __UpperCamelCase = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
13
1
import requests from bsa import BeautifulSoup def UpperCamelCase( __UpperCamelCase : str = "AAPL" ): lowerCAmelCase_ : Optional[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" lowerCAmelCase_ : Any = BeautifulSoup(requests.get(__UpperCamelCase ).text ,'''html.parser''' ) lowerCAmelCase_ : int = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' ,class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
103
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Tuple = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __snake_case ( UpperCamelCase_ ): _a = '''xlm-roberta-xl''' def __init__( self : int , A_ : List[str]=2_5_0_8_8_0 , A_ : List[str]=2_5_6_0 , A_ : Optional[int]=3_6 , A_ : List[Any]=3_2 , A_ : Optional[int]=1_0_2_4_0 , A_ : Dict="gelu" , A_ : int=0.1 , A_ : Optional[Any]=0.1 , A_ : int=5_1_4 , A_ : Any=1 , A_ : Optional[Any]=0.02 , A_ : str=1e-05 , A_ : Dict=1 , A_ : Any=0 , A_ : Tuple=2 , A_ : str="absolute" , A_ : str=True , A_ : List[str]=None , **A_ : Dict , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_) lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Dict = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : List[str] = classifier_dropout class __snake_case ( UpperCamelCase_ ): @property def UpperCAmelCase__ ( self : List[str]): if self.task == "multiple-choice": lowerCAmelCase_ : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase_ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
103
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : str = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : Optional[int] = logging.get_logger(__name__) __lowerCamelCase : str = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "roberta-prelayernorm" def __init__( self : Tuple , __A : Any=5_0_2_6_5 , __A : Optional[int]=7_6_8 , __A : Dict=1_2 , __A : Union[str, Any]=1_2 , __A : List[Any]=3_0_7_2 , __A : Optional[Any]="gelu" , __A : Optional[int]=0.1 , __A : Tuple=0.1 , __A : Optional[Any]=5_1_2 , __A : List[str]=2 , __A : Optional[int]=0.0_2 , __A : Tuple=1e-1_2 , __A : Any=1 , __A : str=0 , __A : int=2 , __A : List[str]="absolute" , __A : Optional[Any]=True , __A : List[Any]=None , **__A : Optional[Any] , ): super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Optional[int] = initializer_range snake_case__ : int = layer_norm_eps snake_case__ : Dict = position_embedding_type snake_case__ : int = use_cache snake_case__ : Dict = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" @property def _lowercase ( self : Optional[int] ): if self.task == "multiple-choice": snake_case__ : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
286
0
def lowercase__ ( __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
29
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : Dict = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_a )[0] @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Any = _readaa(_a ) if magic != 2_051: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Any = _readaa(_a ) lowerCAmelCase__ : Tuple = _readaa(_a ) lowerCAmelCase__ : List[Any] = _readaa(_a ) lowerCAmelCase__ : Union[str, Any] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ : List[Any] = numpy.frombuffer(_a , dtype=numpy.uinta ) lowerCAmelCase__ : int = data.reshape(_a , _a , _a , 1 ) return data @deprecated(_a , '''Please use tf.one_hot on tensors.''' ) def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = labels_dense.shape[0] lowerCAmelCase__ : Optional[Any] = numpy.arange(_a ) * num_classes lowerCAmelCase__ : str = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ : Optional[Any] = 1 return labels_one_hot @deprecated(_a , '''Please use tf.data to implement this functionality.''' ) def lowerCamelCase_ ( _a , _a=False , _a=10 ): """simple docstring""" print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=_a ) as bytestream: lowerCAmelCase__ : Optional[int] = _readaa(_a ) if magic != 2_049: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) lowerCAmelCase__ : Union[str, Any] = _readaa(_a ) lowerCAmelCase__ : Tuple = bytestream.read(_a ) lowerCAmelCase__ : Dict = numpy.frombuffer(_a , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_a , _a ) return labels class _a : @deprecated( _SCREAMING_SNAKE_CASE , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[Any]=dtypes.floataa , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : List[str]=None , )-> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = random_seed.get_seed(_SCREAMING_SNAKE_CASE ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ : Optional[int] = dtypes.as_dtype(_SCREAMING_SNAKE_CASE ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: lowerCAmelCase__ : int = 1_0000 lowerCAmelCase__ : List[Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowerCAmelCase__ : List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ : Tuple = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ : Any = images.astype(numpy.floataa ) lowerCAmelCase__ : Any = numpy.multiply(_SCREAMING_SNAKE_CASE , 1.0 / 255.0 ) lowerCAmelCase__ : Tuple = images lowerCAmelCase__ : Tuple = labels lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Tuple = 0 @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._images @property def UpperCAmelCase__( self : Tuple )-> Optional[int]: return self._labels @property def UpperCAmelCase__( self : Tuple )-> Dict: return self._num_examples @property def UpperCAmelCase__( self : Tuple )-> Any: return self._epochs_completed def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Dict=False , _SCREAMING_SNAKE_CASE : Optional[int]=True )-> List[str]: if fake_data: lowerCAmelCase__ : Dict = [1] * 784 lowerCAmelCase__ : Union[str, Any] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_SCREAMING_SNAKE_CASE )], [fake_label for _ in range(_SCREAMING_SNAKE_CASE )], ) lowerCAmelCase__ : str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.images[perma] lowerCAmelCase__ : Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ : Any = self._num_examples - start lowerCAmelCase__ : List[str] = self._images[start : self._num_examples] lowerCAmelCase__ : Tuple = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ : Union[str, Any] = numpy.arange(self._num_examples ) numpy.random.shuffle(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = self.images[perm] lowerCAmelCase__ : List[Any] = self.labels[perm] # Start next epoch lowerCAmelCase__ : Dict = 0 lowerCAmelCase__ : Union[str, Any] = batch_size - rest_num_examples lowerCAmelCase__ : Any = self._index_in_epoch lowerCAmelCase__ : Optional[Any] = self._images[start:end] lowerCAmelCase__ : Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ : Dict = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_a , '''Please write your own downloading logic.''' ) def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" if not gfile.Exists(_a ): gfile.MakeDirs(_a ) lowerCAmelCase__ : str = os.path.join(_a , _a ) if not gfile.Exists(_a ): urllib.request.urlretrieve(_a , _a ) # noqa: S310 with gfile.GFile(_a ) as f: lowerCAmelCase__ : Optional[Any] = f.size() print('''Successfully downloaded''' , _a , _a , '''bytes.''' ) return filepath @deprecated( _a , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def lowerCamelCase_ ( _a , _a=False , _a=False , _a=dtypes.floataa , _a=True , _a=5_000 , _a=None , _a=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_a , one_hot=_a , dtype=_a , seed=_a ) lowerCAmelCase__ : Tuple = fake() lowerCAmelCase__ : Union[str, Any] = fake() lowerCAmelCase__ : Tuple = fake() return _Datasets(train=_a , validation=_a , test=_a ) if not source_url: # empty string check lowerCAmelCase__ : Optional[Any] = DEFAULT_SOURCE_URL lowerCAmelCase__ : Tuple = '''train-images-idx3-ubyte.gz''' lowerCAmelCase__ : Dict = '''train-labels-idx1-ubyte.gz''' lowerCAmelCase__ : List[str] = '''t10k-images-idx3-ubyte.gz''' lowerCAmelCase__ : Optional[int] = '''t10k-labels-idx1-ubyte.gz''' lowerCAmelCase__ : Optional[Any] = _maybe_download( _a , _a , source_url + train_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Optional[Any] = _extract_images(_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + train_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : Any = _extract_labels(_a , one_hot=_a ) lowerCAmelCase__ : Any = _maybe_download( _a , _a , source_url + test_images_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : str = _extract_images(_a ) lowerCAmelCase__ : Dict = _maybe_download( _a , _a , source_url + test_labels_file ) with gfile.Open(_a , '''rb''' ) as f: lowerCAmelCase__ : int = _extract_labels(_a , one_hot=_a ) if not 0 <= validation_size <= len(_a ): lowerCAmelCase__ : Dict = ( '''Validation size should be between 0 and ''' f'{len(_a )}. Received: {validation_size}.' ) raise ValueError(_a ) lowerCAmelCase__ : List[str] = train_images[:validation_size] lowerCAmelCase__ : Any = train_labels[:validation_size] lowerCAmelCase__ : Optional[Any] = train_images[validation_size:] lowerCAmelCase__ : Optional[int] = train_labels[validation_size:] lowerCAmelCase__ : Optional[Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} lowerCAmelCase__ : List[str] = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) lowerCAmelCase__ : Dict = _DataSet(_a , _a , **_a ) return _Datasets(train=_a , validation=_a , test=_a )
131
0
import os import string import sys __A = 1 << 8 __A = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __A = KEYMAP["up"] __A = KEYMAP["left"] if sys.platform == "win32": __A = [] __A = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __A = ord(str(i)) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" if os.name == "nt": import msvcrt lowerCamelCase__: Optional[Any] ="mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__a ) == 0: # Read the keystroke lowerCamelCase__: Optional[int] =msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCamelCase__: List[str] =ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCamelCase__: Optional[Any] =chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(__a ) if ord(__a ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCamelCase__: List[str] =chr(KEYMAP["esc"] ) except KeyError: lowerCamelCase__: Any =cha[1] else: lowerCamelCase__: Dict =ch.decode(__a ) else: lowerCamelCase__: Any =WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCamelCase__: int =sys.stdin.fileno() lowerCamelCase__: Optional[int] =termios.tcgetattr(__a ) try: tty.setraw(__a ) lowerCamelCase__: int =sys.stdin.read(1 ) finally: termios.tcsetattr(__a , termios.TCSADRAIN , __a ) return ch def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Optional[Any] =get_raw_chars() if ord(__a ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__a ) == KEYMAP["esc"]: lowerCamelCase__: List[Any] =get_raw_chars() if ord(__a ) == KEYMAP["mod_int"]: lowerCamelCase__: int =get_raw_chars() if ord(__a ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__a ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__a ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
355
def lowerCAmelCase_ ( __a , __a ) -> Tuple: """simple docstring""" assert x is not None assert y is not None lowerCamelCase__: Any =len(__a ) lowerCamelCase__: int =len(__a ) # declaring the array for storing the dp values lowerCamelCase__: List[Any] =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowerCamelCase__: str =1 if x[i - 1] == y[j - 1] else 0 lowerCamelCase__: str =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowerCamelCase__: Any ="" lowerCamelCase__ , lowerCamelCase__: str =m, n while i > 0 and j > 0: lowerCamelCase__: Union[str, Any] =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowerCamelCase__: Any =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A = "AGGTAB" __A = "GXTXAYB" __A = 4 __A = "GTAB" __A , __A = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
273
0
"""simple docstring""" import gc import threading import time import psutil import torch class UpperCAmelCase_ : def __init__( self ) -> str: __lowercase : List[str] = psutil.Process() __lowercase : Optional[Any] = False def _lowerCamelCase ( self ) -> List[str]: __lowercase : List[str] = -1 while True: __lowercase : Union[str, Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCamelCase ( self ) -> Dict: __lowercase : Dict = True __lowercase : List[str] = threading.Thread(target=self.peak_monitor ) __lowercase : Optional[Any] = True self.thread.start() def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Any = False self.thread.join() return self.cpu_memory_peak a_ = PeakCPUMemory() def __UpperCAmelCase ( ): __lowercase : Dict = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : Optional[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : Union[str, Any] = torch.cuda.memory_allocated(__UpperCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : List[Any] = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : str = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 __lowercase : Optional[Any] = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : Optional[int] = (torch.cuda.memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 __lowercase : Any = (torch.cuda.max_memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 return measures def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__UpperCamelCase )]:.2f}MiB""" ) __lowercase : Optional[Any] = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
249
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Any = """openai/whisper-base""" snake_case__ : Optional[int] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) snake_case__ : Any = """transcriber""" snake_case__ : Optional[int] = WhisperProcessor snake_case__ : str = WhisperForConditionalGeneration snake_case__ : Optional[Any] = ["""audio"""] snake_case__ : Any = ["""text"""] def _A ( self : str , __lowerCamelCase : Dict ): return self.pre_processor(__lowerCamelCase , return_tensors="""pt""" ).input_features def _A ( self : Dict , __lowerCamelCase : List[Any] ): return self.model.generate(inputs=__lowerCamelCase ) def _A ( self : Any , __lowerCamelCase : Optional[Any] ): return self.pre_processor.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )[0]
38
0
from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCamelCase ( lowerCAmelCase__ : Tuple ): for param in module.parameters(): lowerCAmelCase__ = False def __lowerCamelCase ( ): lowerCAmelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCAmelCase__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __lowerCamelCase ( lowerCAmelCase__ : Tuple ): lowerCAmelCase__ = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def __lowerCamelCase ( ): lowerCAmelCase__ = datetime.now() lowerCAmelCase__ = current_time.strftime('%H:%M:%S' ) return timestamp
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase__ = TaTokenizerFast lowerCAmelCase__ = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase__ = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
119
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=13 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Optional[int]=16 , lowerCAmelCase__ : Optional[int]=[32, 64, 128] , lowerCAmelCase__ : Union[str, Any]=[1, 2, 1] , lowerCAmelCase__ : Optional[int]=[2, 2, 4] , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Dict=2.0 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : List[str]=1E-5 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=10 , lowerCAmelCase__ : Optional[int]=8 , lowerCAmelCase__ : List[Any]=["stage1", "stage2"] , lowerCAmelCase__ : str=[1, 2] , ): SCREAMING_SNAKE_CASE_: Tuple = parent SCREAMING_SNAKE_CASE_: str = batch_size SCREAMING_SNAKE_CASE_: int = image_size SCREAMING_SNAKE_CASE_: str = patch_size SCREAMING_SNAKE_CASE_: Optional[Any] = num_channels SCREAMING_SNAKE_CASE_: str = embed_dim SCREAMING_SNAKE_CASE_: Optional[int] = hidden_sizes SCREAMING_SNAKE_CASE_: str = depths SCREAMING_SNAKE_CASE_: Optional[int] = num_heads SCREAMING_SNAKE_CASE_: Optional[Any] = window_size SCREAMING_SNAKE_CASE_: int = mlp_ratio SCREAMING_SNAKE_CASE_: Any = qkv_bias SCREAMING_SNAKE_CASE_: List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_: Optional[int] = hidden_act SCREAMING_SNAKE_CASE_: Dict = use_absolute_embeddings SCREAMING_SNAKE_CASE_: Any = patch_norm SCREAMING_SNAKE_CASE_: str = layer_norm_eps SCREAMING_SNAKE_CASE_: Any = initializer_range SCREAMING_SNAKE_CASE_: List[str] = is_training SCREAMING_SNAKE_CASE_: Dict = scope SCREAMING_SNAKE_CASE_: Any = use_labels SCREAMING_SNAKE_CASE_: List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_: Optional[int] = encoder_stride SCREAMING_SNAKE_CASE_: int = out_features SCREAMING_SNAKE_CASE_: str = out_indices def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: int = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_: Optional[Any] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Tuple): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = FocalNetModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) SCREAMING_SNAKE_CASE_: Optional[int] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]): SCREAMING_SNAKE_CASE_: str = FocalNetBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE_: Optional[Any] = None SCREAMING_SNAKE_CASE_: Optional[int] = FocalNetBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: List[Any] = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Optional[Any] = 1 SCREAMING_SNAKE_CASE_: Any = FocalNetForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE_: str = FocalNetForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: int = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_: Optional[Any] = 1 SCREAMING_SNAKE_CASE_: Optional[Any] = FocalNetForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: str = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: List[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = config_and_inputs SCREAMING_SNAKE_CASE_: Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _UpperCAmelCase : Dict = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase : int = False _UpperCAmelCase : List[str] = False _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : Optional[int] = False def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = FocalNetModelTester(self) SCREAMING_SNAKE_CASE_: str = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : int): return def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @unittest.skip(reason="FocalNet does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): pass @unittest.skip(reason="FocalNet does not use feedforward chunking") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_: str = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_: Optional[int] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Tuple = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE_: Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # FocalNet has a different seq_length SCREAMING_SNAKE_CASE_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE_: Dict = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE_: List[Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_: List[str] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE_: Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE_: List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE_: List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: SCREAMING_SNAKE_CASE_: Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: str = FocalNetModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: int = _config_zero_init(lowerCAmelCase__) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: str = model_class(config=lowerCAmelCase__) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : List[str]): # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") SCREAMING_SNAKE_CASE_: Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = torch.tensor([0.2166, -0.4368, 0.2191]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281) @require_torch class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : int = (FocalNetBackbone,) if is_torch_available() else () _UpperCAmelCase : int = FocalNetConfig _UpperCAmelCase : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = FocalNetModelTester(self)
13
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : str = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCAmelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCAmelCase : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _UpperCAmelCase : str = "audio" _UpperCAmelCase : str = "transcription" def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : int): if self.audio_column not in features: raise ValueError(F"Column {self.audio_column} is not present in features.") if not isinstance(features[self.audio_column] , lowerCAmelCase__): raise ValueError(F"Column {self.audio_column} is not an Audio type.") SCREAMING_SNAKE_CASE_: Tuple = copy.deepcopy(self) SCREAMING_SNAKE_CASE_: Optional[int] = self.input_schema.copy() SCREAMING_SNAKE_CASE_: Dict = features[self.audio_column] SCREAMING_SNAKE_CASE_: int = input_schema return task_template @property def _SCREAMING_SNAKE_CASE ( self : int): return {self.audio_column: "audio", self.transcription_column: "transcription"}
13
1
lowerCAmelCase__ :Tuple = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ :Optional[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ :str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
356
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCAmelCase__ :Tuple = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') lowerCAmelCase__ :Optional[int] = parser.parse_args() if args.model_type == "bert": lowerCAmelCase__ :Tuple = BertForMaskedLM.from_pretrained(args.model_name) lowerCAmelCase__ :Optional[int] = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') lowerCAmelCase__ :Any = model.state_dict() lowerCAmelCase__ :Dict = {} for w in ["word_embeddings", "position_embeddings"]: lowerCAmelCase__ :List[Any] = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: lowerCAmelCase__ :Union[str, Any] = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] lowerCAmelCase__ :str = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: lowerCAmelCase__ :Any = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] lowerCAmelCase__ :List[str] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] lowerCAmelCase__ :int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] lowerCAmelCase__ :List[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 lowerCAmelCase__ :Optional[int] = state_dict['''cls.predictions.decoder.weight'''] lowerCAmelCase__ :List[str] = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: lowerCAmelCase__ :Any = state_dict[f'''cls.predictions.transform.dense.{w}'''] lowerCAmelCase__ :List[str] = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
185
0
'''simple docstring''' import numpy as np from PIL import Image def _lowerCAmelCase ( _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 # compute the shape of the output matrix _SCREAMING_SNAKE_CASE =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _SCREAMING_SNAKE_CASE =np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _SCREAMING_SNAKE_CASE =np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 return updated_arr def _lowerCAmelCase ( _UpperCamelCase : np.ndarray , _UpperCamelCase : int , _UpperCamelCase : int ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 # compute the shape of the output matrix _SCREAMING_SNAKE_CASE =(arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _SCREAMING_SNAKE_CASE =np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _SCREAMING_SNAKE_CASE =int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image lowerCamelCase : Optional[Any] = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
47
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = """informer""" lowercase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case_ = None , snake_case_ = None , snake_case_ = "student_t" , snake_case_ = "nll" , snake_case_ = 1 , snake_case_ = None , snake_case_ = "mean" , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = 6_4 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = 2 , snake_case_ = True , snake_case_ = "gelu" , snake_case_ = 0.05 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 0.1 , snake_case_ = 1_0_0 , snake_case_ = 0.02 , snake_case_=True , snake_case_ = "prob" , snake_case_ = 5 , snake_case_ = True , **snake_case_ , ): """simple docstring""" A_ : str = prediction_length A_ : List[Any] = context_length or prediction_length A_ : str = distribution_output A_ : Dict = loss A_ : Any = input_size A_ : Union[str, Any] = num_time_features A_ : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A_ : List[Any] = scaling A_ : Tuple = num_dynamic_real_features A_ : Any = num_static_real_features A_ : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) A_ : Optional[int] = cardinality else: A_ : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) A_ : Any = embedding_dimension else: A_ : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] A_ : int = num_parallel_samples # Transformer architecture configuration A_ : str = input_size * len(self.lags_sequence ) + self._number_of_features A_ : List[Any] = d_model A_ : Dict = encoder_attention_heads A_ : Dict = decoder_attention_heads A_ : List[Any] = encoder_ffn_dim A_ : Union[str, Any] = decoder_ffn_dim A_ : int = encoder_layers A_ : Any = decoder_layers A_ : List[Any] = dropout A_ : str = attention_dropout A_ : Tuple = activation_dropout A_ : List[str] = encoder_layerdrop A_ : List[str] = decoder_layerdrop A_ : str = activation_function A_ : Optional[int] = init_std A_ : List[Any] = use_cache # Informer A_ : Tuple = attention_type A_ : List[Any] = sampling_factor A_ : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase_ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
286
0
import math def lowerCAmelCase_ ( _snake_case : int ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : str = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case_ ) def lowerCAmelCase_ ( _snake_case : float = 1 / 12345 ) -> Tuple: '''simple docstring''' __magic_name__ : str = 0 __magic_name__ : Dict = 0 __magic_name__ : Dict = 3 while True: __magic_name__ : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case_ ): __magic_name__ : List[str] = int(snake_case_ ) total_partitions += 1 if check_partition_perfect(snake_case_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case_ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
355
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features snake_case : List[str] = logging.get_logger(__name__) snake_case : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) snake_case : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case )} ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) UpperCamelCase__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCamelCase__ = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) UpperCamelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) UpperCamelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) UpperCamelCase__ = field( default=snake_case , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) UpperCamelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) UpperCamelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) UpperCamelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) UpperCamelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _snake_case ( snake_case ): UpperCamelCase__ = 'train' UpperCamelCase__ = 'dev' class _snake_case ( snake_case ): UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 UpperCamelCase__ = 42 def __init__( self , _a , _a , _a = None , _a = Split.train , _a = False , _a = None , _a = "pt" , ): __magic_name__ : Optional[Any] = args __magic_name__ : str = is_language_sensitive __magic_name__ : Union[str, Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a ): try: __magic_name__ : int = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __magic_name__ : List[str] = mode # Load data features from cache or dataset file __magic_name__ : Union[str, Any] = "v2" if args.version_2_with_negative else "v1" __magic_name__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __magic_name__ : Optional[Any] = cached_features_file + ".lock" with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: __magic_name__ : List[Any] = time.time() __magic_name__ : Dict = torch.load(_a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __magic_name__ : Dict = self.old_features["features"] __magic_name__ : Optional[Any] = self.old_features.get("dataset" , _a ) __magic_name__ : str = self.old_features.get("examples" , _a ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' " future run" ) else: if mode == Split.dev: __magic_name__ : Optional[int] = self.processor.get_dev_examples(args.data_dir ) else: __magic_name__ : Optional[Any] = self.processor.get_train_examples(args.data_dir ) __magic_name__ , __magic_name__ : List[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) __magic_name__ : Any = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , _a ): # Convert to Tensors and build dataset __magic_name__ : List[Any] = self.features[i] __magic_name__ : Union[str, Any] = torch.tensor(feature.input_ids , dtype=torch.long ) __magic_name__ : Dict = torch.tensor(feature.attention_mask , dtype=torch.long ) __magic_name__ : List[str] = torch.tensor(feature.token_type_ids , dtype=torch.long ) __magic_name__ : Tuple = torch.tensor(feature.cls_index , dtype=torch.long ) __magic_name__ : str = torch.tensor(feature.p_mask , dtype=torch.float ) __magic_name__ : Dict = torch.tensor(feature.is_impossible , dtype=torch.float ) __magic_name__ : Union[str, Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __magic_name__ : Optional[int] = torch.tensor(feature.start_position , dtype=torch.long ) __magic_name__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
41
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[int] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Dict = image_size __lowerCAmelCase : Union[str, Any] = num_channels __lowerCAmelCase : List[Any] = embeddings_size __lowerCAmelCase : Tuple = hidden_sizes __lowerCAmelCase : Dict = depths __lowerCAmelCase : int = is_training __lowerCAmelCase : Any = use_labels __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : Any = num_labels __lowerCAmelCase : int = scope __lowerCAmelCase : List[Any] = len(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[Any] = None if self.use_labels: __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = TFResNetModel(config=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : Tuple = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = config_and_inputs __lowerCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () A_ : Dict = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) A_ : Any = False A_ : int = False A_ : Optional[int] = False A_ : int = False A_ : str = False def __lowerCamelCase ( self ): __lowerCAmelCase : int = TFResNetModelTester(self ) __lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : List[Any] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Dict = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : int = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase : Dict = layer_type __lowerCAmelCase : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (): __lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowerCAmelCase : Tuple = self.default_image_processor __lowerCAmelCase : int = prepare_img() __lowerCAmelCase : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' ) # forward pass __lowerCAmelCase : Any = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase : Optional[Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
86
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_A , ) assert hasattr(self , '''env''' ) def _lowercase ( self , _A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def _lowercase ( self , _A ): '''simple docstring''' TrainingJobAnalytics(_A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.create_estimator() # run training estimator.fit() # result dataframe UpperCAmelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _A )
273
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: # vision encoder if "img_encoder.pos_embed" in name: lowercase : Dict = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowercase : Any = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowercase : Tuple = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowercase : Tuple = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowercase : Optional[Any] = name.replace("""blocks""" , """layers""" ) if "attn" in name and "pre_assign" not in name: lowercase : Union[str, Any] = name.replace("""attn""" , """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase : Dict = name.replace("""proj""" , """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowercase : Dict = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowercase : Tuple = name.replace("""norm1""" , """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowercase : Tuple = name.replace("""norm2""" , """layer_norm2""" ) if "img_encoder.norm" in name: lowercase : List[Any] = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowercase : Tuple = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowercase : Any = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowercase : Dict = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" ) if "ln_1" in name: lowercase : List[str] = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: lowercase : Tuple = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: lowercase : str = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: lowercase : Union[str, Any] = name.replace("""c_proj""" , """fc2""" ) if "text_encoder" in name: lowercase : Tuple = name.replace("""text_encoder""" , """text_model""" ) if "ln_final" in name: lowercase : Optional[Any] = name.replace("""ln_final""" , """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowercase : List[str] = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" ) if "img_projector.linear_out." in name: lowercase : Tuple = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowercase : List[Any] = name.replace("""text_projector.linear_hidden""" , """text_projection""" ) if "text_projector.linear_out" in name: lowercase : List[Any] = name.replace("""text_projector.linear_out""" , """text_projection.3""" ) return name def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: for key in orig_state_dict.copy().keys(): lowercase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase : Dict = key.split(""".""" ) lowercase , lowercase : Optional[Any] = int(key_split[2] ), int(key_split[4] ) lowercase : List[Any] = config.vision_config.hidden_size if "weight" in key: lowercase : str = val[:dim, :] lowercase : List[str] = val[dim : dim * 2, :] lowercase : Optional[int] = val[-dim:, :] else: lowercase : Dict = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : Dict = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase : int = key.split(""".""" ) lowercase : Tuple = int(key_split[3] ) lowercase : str = config.text_config.hidden_size if "weight" in key: lowercase : Optional[int] = val[:dim, :] lowercase : Optional[Any] = val[ dim : dim * 2, : ] lowercase : Optional[int] = val[-dim:, :] else: lowercase : Optional[int] = val[:dim] lowercase : Dict = val[dim : dim * 2] lowercase : List[str] = val[-dim:] else: lowercase : Tuple = rename_key(SCREAMING_SNAKE_CASE__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase : str = val.squeeze_() else: lowercase : Any = val return orig_state_dict def _snake_case( ) -> List[Any]: lowercase : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE__=False ) -> str: lowercase : Dict = GroupViTConfig() lowercase : Tuple = GroupViTModel(SCREAMING_SNAKE_CASE__ ).eval() lowercase : List[str] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )["""model"""] lowercase : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE__ ) == 0) # verify result lowercase : Tuple = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowercase : Optional[Any] = prepare_img() lowercase : List[Any] = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) with torch.no_grad(): lowercase : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) if model_name == "groupvit-gcc-yfcc": lowercase : Optional[int] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase : int = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(f"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print("""Successfully saved processor and model to""" , SCREAMING_SNAKE_CASE__ ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , organization="""nielsr""" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) lowercase : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[Any] = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class __snake_case ( lowerCAmelCase ): _a : Dict= "mobilenet_v1" def __init__( self ,snake_case=3 ,snake_case=224 ,snake_case=1.0 ,snake_case=8 ,snake_case="relu6" ,snake_case=True ,snake_case=0.999 ,snake_case=0.02 ,snake_case=0.001 ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) if depth_multiplier <= 0: raise ValueError("""depth_multiplier must be greater than zero.""" ) lowercase : int = num_channels lowercase : Union[str, Any] = image_size lowercase : int = depth_multiplier lowercase : Tuple = min_depth lowercase : Dict = hidden_act lowercase : Dict = tf_padding lowercase : Dict = classifier_dropout_prob lowercase : int = initializer_range lowercase : List[str] = layer_norm_eps class __snake_case ( lowerCAmelCase ): _a : int= version.parse("1.11" ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return OrderedDict([("""pixel_values""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([("""logits""", {0: """batch"""})] ) else: return OrderedDict([("""last_hidden_state""", {0: """batch"""}), ("""pooler_output""", {0: """batch"""})] ) @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1e-4
285
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE :Any = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: SCREAMING_SNAKE_CASE :Union[str, Any] = json.load(f) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str] ): return FSMTTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( self : List[str] ,A : int ): __A = FSMTForConditionalGeneration.from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def UpperCamelCase_ ( self : Any ,A : Union[str, Any] ,A : List[str] ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __A = f'''facebook/wmt19-{pair}''' __A = self.get_tokenizer(SCREAMING_SNAKE_CASE_ ) __A = self.get_model(SCREAMING_SNAKE_CASE_ ) __A = bleu_data[pair]['src'] __A = bleu_data[pair]['tgt'] __A = tokenizer(SCREAMING_SNAKE_CASE_ ,return_tensors="pt" ,truncation=SCREAMING_SNAKE_CASE_ ,padding="longest" ).to(SCREAMING_SNAKE_CASE_ ) __A = model.generate( input_ids=batch.input_ids ,num_beams=8 ,) __A = tokenizer.batch_decode( SCREAMING_SNAKE_CASE_ ,skip_special_tokens=SCREAMING_SNAKE_CASE_ ,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) __A = calculate_bleu(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(scores["bleu"] ,SCREAMING_SNAKE_CASE_ )
15
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ) -> tuple[list[int], int]: UpperCamelCase : int = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase : Dict = randint(-5000 , 5000 ) return (arr, r) __UpperCAmelCase = make_dataset() def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, ...]: for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase : List[str] = len(snake_case__ ) for i in range(n - 1 ): UpperCamelCase , UpperCamelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ) -> tuple[float, float]: UpperCamelCase : Any = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' UpperCamelCase : Optional[Any] = '\ntriplet_sum1(*dataset)\n' UpperCamelCase : Dict = '\ntriplet_sum2(*dataset)\n' UpperCamelCase : Optional[int] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) UpperCamelCase : Any = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
119
0
# flake8: noqa # Lint as: python3 a__: int = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
39
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a__: Union[str, Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) A__ = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = generator.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=2,output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): A__ = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''',torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) A__ = '''A painting of a squirrel eating a burger ''' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__lowerCamelCase,generator=__lowerCamelCase,guidance_scale=7.5,num_inference_steps=50,output_type='''numpy''' ).images A__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) A__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
39
1
"""simple docstring""" from maths.prime_factors import prime_factors def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase_ :Any = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCAmelCase_ ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(UpperCAmelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
84
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if dst_width < 0 or dst_height < 0: raise ValueError('Destination width/height should be > 0' ) __lowerCamelCase : Dict = img __lowerCamelCase : Any = img.shape[1] __lowerCamelCase : Optional[int] = img.shape[0] __lowerCamelCase : Dict = dst_width __lowerCamelCase : str = dst_height __lowerCamelCase : Dict = self.src_w / self.dst_w __lowerCamelCase : List[Any] = self.src_h / self.dst_h __lowerCamelCase : Optional[int] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def lowercase_ ( self ) -> List[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): __lowerCamelCase : Union[str, Any] = self.img[self.get_y(SCREAMING_SNAKE_CASE_ )][self.get_x(SCREAMING_SNAKE_CASE_ )] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: return int(self.ratio_x * x ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": A__ , A__ : Optional[Any] = 800, 600 A__ : List[str] = imread("""image_data/lena.jpg""", 1) A__ : List[Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
185
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __SCREAMING_SNAKE_CASE = get_logger() __SCREAMING_SNAKE_CASE = None class lowerCamelCase_ ( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : List[str] ) -> Union[str, Any]: super().__init__(features=__lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( F"""Expected {device} to be a `str` not {type(__lowerCamelCase )}, as `jaxlib.xla_extension.Device` """ "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) A : Union[str, Any] = device if isinstance(__lowerCamelCase , __lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A : Tuple = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) A : Union[str, Any] = str(jax.devices()[0] ) A : Tuple = jnp_array_kwargs @staticmethod def SCREAMING_SNAKE_CASE__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(__lowerCamelCase ): device for device in jax.devices()} def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : List[Any] ) -> List[str]: import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCamelCase , axis=0 ) return column def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : List[str] ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() A : Union[str, Any] = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: A : Tuple = {"dtype": jnp.intaa} else: A : int = {"dtype": jnp.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): A : List[str] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): A : Optional[int] = np.asarray(__lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: A : Dict = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : Dict ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , jax.Array ): A : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : dict ) -> Optional[Any]: return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , __lowerCamelCase : pa.Table ) -> Mapping: A : Optional[int] = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) A : Optional[int] = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : pa.Table ) -> "jax.Array": A : Any = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) A : Dict = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) A : Union[str, Any] = self.recursive_tensorize(__lowerCamelCase ) A : Tuple = self._consolidate(__lowerCamelCase ) return column def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : pa.Table ) -> Mapping: A : Dict = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) A : List[Any] = self.python_features_decoder.decode_batch(__lowerCamelCase ) A : List[str] = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: A : List[str] = self._consolidate(batch[column_name] ) return batch
256
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = CLIPConfig a__ = ["CLIPEncoderLayer"] def __init__( self : Optional[Any] , __lowerCamelCase : CLIPConfig ) -> Tuple: super().__init__(__lowerCamelCase ) A : List[Any] = CLIPVisionModelWithProjection(config.vision_config ) A : List[str] = nn.Linear(config.vision_config.projection_dim , 1 ) A : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=0.5 , __lowerCamelCase : Dict=0.5 ) -> Optional[int]: A : List[str] = self.vision_model(__lowerCamelCase )[0] A : Dict = self.p_head(__lowerCamelCase ) A : Dict = nsfw_detected.flatten() A : Any = nsfw_detected > p_threshold A : Optional[int] = nsfw_detected.tolist() if any(__lowerCamelCase ): logger.warning( "Potential NSFW content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, nsfw_detected_ in enumerate(__lowerCamelCase ): if nsfw_detected_: A : List[str] = np.zeros(images[idx].shape ) A : List[str] = self.w_head(__lowerCamelCase ) A : str = watermark_detected.flatten() A : List[Any] = watermark_detected > w_threshold A : List[Any] = watermark_detected.tolist() if any(__lowerCamelCase ): logger.warning( "Potential watermarked content was detected in one or more images. A black image will be returned instead." " Try again with a different prompt and/or seed." ) for idx, watermark_detected_ in enumerate(__lowerCamelCase ): if watermark_detected_: A : List[str] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
256
1
import os from datetime import datetime as dt from github import Github _snake_case = [ "good first issue", "feature request", "wip", ] def lowerCAmelCase_ ( ): _A : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) _A : Union[str, Any] = g.get_repo("""huggingface/accelerate""" ) _A : List[Any] = repo.get_issues(state="""open""" ) for issue in open_issues: _A : Tuple = sorted([comment for comment in issue.get_comments()],key=lambda snake_case_ : i.created_at,reverse=snake_case_ ) _A : int = comments[0] if len(snake_case_ ) > 0 else None _A : Dict = dt.utcnow() _A : Union[str, Any] = (current_time - issue.updated_at).days _A : Union[str, Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
26
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _A : Dict ={'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] =['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
0
def __lowercase ( lowerCamelCase : int ): if n == 1 or not isinstance(lowerCamelCase , lowerCamelCase ): return 0 elif n == 2: return 1 else: UpperCamelCase_ : int = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowercase ( lowerCamelCase : int ): UpperCamelCase_ : List[str] = 0 UpperCamelCase_ : int = 2 while digits < n: index += 1 UpperCamelCase_ : Any = len(str(fibonacci(lowerCamelCase ) ) ) return index def __lowercase ( lowerCamelCase : int = 1000 ): return fibonacci_digits_index(lowerCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
50
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self : List[Any] , snake_case : List[str] , snake_case : str=1_3 , snake_case : Any=3_0 , snake_case : Tuple=2 , snake_case : List[Any]=3 , snake_case : str=True , snake_case : List[Any]=True , snake_case : List[Any]=3_2 , snake_case : Union[str, Any]=5 , snake_case : Dict=4 , snake_case : str=3_7 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Union[str, Any]=1_0 , snake_case : List[str]=0.02 , snake_case : Optional[int]=3 , snake_case : str=0.6 , snake_case : Any=None , ) -> Dict: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : Optional[Any] = batch_size UpperCamelCase_ : List[str] = image_size UpperCamelCase_ : Optional[Any] = patch_size UpperCamelCase_ : Optional[int] = num_channels UpperCamelCase_ : Union[str, Any] = is_training UpperCamelCase_ : Dict = use_labels UpperCamelCase_ : Tuple = hidden_size UpperCamelCase_ : str = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Any = intermediate_size UpperCamelCase_ : Dict = hidden_act UpperCamelCase_ : Tuple = hidden_dropout_prob UpperCamelCase_ : Dict = attention_probs_dropout_prob UpperCamelCase_ : Any = type_sequence_label_size UpperCamelCase_ : str = initializer_range UpperCamelCase_ : Tuple = mask_ratio UpperCamelCase_ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ : List[Any] = (image_size // patch_size) ** 2 UpperCamelCase_ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ : List[str] = None if self.use_labels: UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[str] = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case : Dict , snake_case : List[str] , snake_case : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[int] = ViTMAEModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : Tuple = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ : Tuple = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : Dict = ViTMAEForPreTraining(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ : Tuple = model(snake_case ) UpperCamelCase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[Any] = self.prepare_config_and_inputs() UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ : int = config_and_inputs UpperCamelCase_ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : int ) -> Any: """simple docstring""" UpperCamelCase_ : Any = ViTMAEModelTester(self ) UpperCamelCase_ : Tuple = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Any = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : List[str] = model_class(snake_case ) UpperCamelCase_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase_ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : List[str] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ : int = torch.from_numpy(snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ : Tuple = pt_noise super().check_pt_tf_models(snake_case , snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ : Tuple = model_class(snake_case ) model.to(snake_case ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : str = model(**self._prepare_for_class(snake_case , snake_case ) ) UpperCamelCase_ : Any = outputs[0].cpu().numpy() UpperCamelCase_ : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case ) UpperCamelCase_ : Union[str, Any] = model_class.from_pretrained(snake_case ) model.to(snake_case ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ : Any = model(**self._prepare_for_class(snake_case , snake_case ) ) # Make sure we don't have nans UpperCamelCase_ : Optional[Any] = after_outputs[0].cpu().numpy() UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case , 1e-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> int: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ : Dict = ViTMAEModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __lowercase ( ): UpperCamelCase_ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ : List[str] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(snake_case ) UpperCamelCase_ : Tuple = self.default_image_processor UpperCamelCase_ : Union[str, Any] = prepare_img() UpperCamelCase_ : Optional[int] = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ : int = ViTMAEConfig() UpperCamelCase_ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ : str = model(**snake_case , noise=torch.from_numpy(snake_case ).to(device=snake_case ) ) # verify the logits UpperCamelCase_ : Dict = torch.Size((1, 1_9_6, 7_6_8) ) self.assertEqual(outputs.logits.shape , snake_case ) UpperCamelCase_ : Union[str, Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(snake_case ) , atol=1e-4 ) )
50
1
import os import sys import unittest _UpperCAmelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase : Dict = os.path.join(git_repo_path, """src""", """diffusers""") class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = find_backend(' if not is_torch_available():' ) self.assertEqual(snake_case , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") snake_case_ = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(snake_case , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") snake_case_ = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(snake_case , 'torch_and_transformers_and_onnx' ) def a ( self ): snake_case_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , snake_case ) self.assertIn('torch_and_transformers' , snake_case ) self.assertIn('flax_and_transformers' , snake_case ) self.assertIn('torch_and_transformers_and_onnx' , snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def a ( self ): snake_case_ = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(snake_case , '\nCONSTANT = None\n' ) snake_case_ = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( snake_case , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case_ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' snake_case_ = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(snake_case , snake_case ) def a ( self ): snake_case_ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' snake_case_ = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , snake_case )
285
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_features''', '''is_longer'''] def __init__( self , snake_case=64 , snake_case=4_8000 , snake_case=480 , snake_case=10 , snake_case=1024 , snake_case=0.0 , snake_case=False , snake_case = 0 , snake_case = 1_4000 , snake_case = None , snake_case = "fusion" , snake_case = "repeatpad" , **snake_case , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) snake_case_ = top_db snake_case_ = truncation snake_case_ = padding snake_case_ = fft_window_size snake_case_ = (fft_window_size >> 1) + 1 snake_case_ = hop_length snake_case_ = max_length_s snake_case_ = max_length_s * sampling_rate snake_case_ = sampling_rate snake_case_ = frequency_min snake_case_ = frequency_max snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='htk' , ) snake_case_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='slaney' , mel_scale='slaney' , ) def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def a ( self , snake_case , snake_case = None ): snake_case_ = spectrogram( snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def a ( self , snake_case , snake_case , snake_case ): snake_case_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ = [0] # randomly choose index for each part snake_case_ = np.random.choice(ranges[0] ) snake_case_ = np.random.choice(ranges[1] ) snake_case_ = np.random.choice(ranges[2] ) snake_case_ = mel[idx_front : idx_front + chunk_frames, :] snake_case_ = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ = mel[idx_back : idx_back + chunk_frames, :] snake_case_ = torch.tensor(mel[None, None, :] ) snake_case_ = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=snake_case ) snake_case_ = mel_shrink[0][0].numpy() snake_case_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def a ( self , snake_case , snake_case , snake_case , snake_case ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ = len(snake_case ) - max_length snake_case_ = np.random.randint(0 , overflow + 1 ) snake_case_ = waveform[idx : idx + max_length] snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters ) snake_case_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ = False else: snake_case_ = self._random_mel_fusion(snake_case , snake_case , snake_case ) snake_case_ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: snake_case_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ = int(max_length / len(snake_case ) ) snake_case_ = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ = int(max_length / len(snake_case ) ) snake_case_ = np.stack(np.tile(snake_case , snake_case ) ) snake_case_ = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters ) snake_case_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ): snake_case_ = truncation if truncation is not None else self.truncation snake_case_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) snake_case_ = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): snake_case_ = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] snake_case_ = [] snake_case_ = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ = np.random.randint(0 , len(snake_case ) ) snake_case_ = True if isinstance(input_mel[0] , snake_case ): snake_case_ = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ = [[longer] for longer in is_longer] snake_case_ = {'input_features': input_mel, 'is_longer': is_longer} snake_case_ = BatchFeature(snake_case ) if return_tensors is not None: snake_case_ = input_features.convert_to_tensors(snake_case ) return input_features
285
1
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = XCLIPTextConfig() # derive patch size from model name __lowerCAmelCase = model_name.find('''patch''') __lowerCAmelCase = int(model_name[start_idx + len('''patch''') : start_idx + len('''patch''') + 2]) __lowerCAmelCase = XCLIPVisionConfig(patch_size=lowerCamelCase, num_frames=lowerCamelCase) if "large" in model_name: __lowerCAmelCase = 7_6_8 __lowerCAmelCase = 3_0_7_2 __lowerCAmelCase = 1_2 __lowerCAmelCase = 1_0_2_4 __lowerCAmelCase = 4_0_9_6 __lowerCAmelCase = 1_6 __lowerCAmelCase = 2_4 __lowerCAmelCase = 7_6_8 __lowerCAmelCase = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase = 3_3_6 __lowerCAmelCase = XCLIPConfig.from_text_vision_configs(lowerCamelCase, lowerCamelCase) if "large" in model_name: __lowerCAmelCase = 7_6_8 return config def __magic_name__( lowerCamelCase): # text encoder if name == "token_embedding.weight": __lowerCAmelCase = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''') if name == "positional_embedding": __lowerCAmelCase = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''') if "ln_1" in name: __lowerCAmelCase = name.replace('''ln_1''', '''layer_norm1''') if "ln_2" in name: __lowerCAmelCase = name.replace('''ln_2''', '''layer_norm2''') if "c_fc" in name: __lowerCAmelCase = name.replace('''c_fc''', '''fc1''') if "c_proj" in name: __lowerCAmelCase = name.replace('''c_proj''', '''fc2''') if name.startswith('''transformer.resblocks'''): __lowerCAmelCase = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''') if "attn.out_proj" in name and "message" not in name: __lowerCAmelCase = name.replace('''attn.out_proj''', '''self_attn.out_proj''') if "ln_final" in name: __lowerCAmelCase = name.replace('''ln_final''', '''text_model.final_layer_norm''') # visual encoder if name == "visual.class_embedding": __lowerCAmelCase = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''') if name == "visual.positional_embedding": __lowerCAmelCase = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''') if name.startswith('''visual.transformer.resblocks'''): __lowerCAmelCase = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''') if "visual.conv1" in name: __lowerCAmelCase = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''') if "visual.ln_pre" in name: __lowerCAmelCase = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''') if "visual.ln_post" in name: __lowerCAmelCase = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''') if "visual.proj" in name: __lowerCAmelCase = name.replace('''visual.proj''', '''visual_projection.weight''') if "text_projection" in name: __lowerCAmelCase = name.replace('''text_projection''', '''text_projection.weight''') # things on top if "prompts_visual_proj" in name: __lowerCAmelCase = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''') if "prompts_visual_ln" in name: __lowerCAmelCase = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''') # mit if name == "mit.positional_embedding": __lowerCAmelCase = name.replace('''positional''', '''position''') if name.startswith('''mit.resblocks'''): __lowerCAmelCase = name.replace('''mit.resblocks''', '''mit.encoder.layers''') # prompts generator if name.startswith('''prompts_generator.norm'''): __lowerCAmelCase = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''') return name def __magic_name__( lowerCamelCase, lowerCamelCase): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(lowerCamelCase) if "attn.in_proj" in key: __lowerCAmelCase = key.split('''.''') if key.startswith('''visual'''): __lowerCAmelCase = key_split[3] __lowerCAmelCase = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __lowerCAmelCase = val[ :dim, : ] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[ -dim:, : ] else: __lowerCAmelCase = val[ :dim ] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[ -dim: ] else: if "weight" in key: __lowerCAmelCase = val[ :dim, : ] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[ -dim:, : ] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[-dim:] elif key.startswith('''mit'''): __lowerCAmelCase = key_split[2] __lowerCAmelCase = config.vision_config.mit_hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = key_split[2] __lowerCAmelCase = config.text_config.hidden_size if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[ dim : dim * 2, : ] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[ dim : dim * 2 ] __lowerCAmelCase = val[-dim:] else: __lowerCAmelCase = rename_key(lowerCamelCase) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __lowerCAmelCase = val.T __lowerCAmelCase = val return orig_state_dict def __magic_name__( lowerCamelCase): if num_frames == 8: __lowerCAmelCase = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: __lowerCAmelCase = '''eating_spaghetti.npy''' elif num_frames == 3_2: __lowerCAmelCase = '''eating_spaghetti_32_frames.npy''' __lowerCAmelCase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''', filename=lowerCamelCase, repo_type='''dataset''', ) __lowerCAmelCase = np.load(lowerCamelCase) return list(lowerCamelCase) def __magic_name__( lowerCamelCase, lowerCamelCase=None, lowerCamelCase=False): __lowerCAmelCase = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __lowerCAmelCase = model_to_url[model_name] __lowerCAmelCase = 8 if "16-frames" in model_name: __lowerCAmelCase = 1_6 elif "shot" in model_name: __lowerCAmelCase = 3_2 __lowerCAmelCase = get_xclip_config(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = XCLIPModel(lowerCamelCase) model.eval() if "drive" in checkpoint_url: __lowerCAmelCase = '''pytorch_model.bin''' gdown.cached_download(lowerCamelCase, lowerCamelCase, quiet=lowerCamelCase) __lowerCAmelCase = torch.load(lowerCamelCase, map_location='''cpu''')['''model'''] else: __lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCamelCase)['''model'''] __lowerCAmelCase = convert_state_dict(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = XCLIPModel(lowerCamelCase) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __lowerCAmelCase = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 __lowerCAmelCase = VideoMAEImageProcessor(size=lowerCamelCase) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''') __lowerCAmelCase = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''') __lowerCAmelCase = XCLIPProcessor(image_processor=lowerCamelCase, tokenizer=lowerCamelCase) __lowerCAmelCase = prepare_video(lowerCamelCase) __lowerCAmelCase = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=lowerCamelCase, return_tensors='''pt''', padding=lowerCamelCase) print('''Shape of pixel values:''', inputs.pixel_values.shape) with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase) # Verify outputs __lowerCAmelCase = outputs.logits_per_video __lowerCAmelCase = logits_per_video.softmax(dim=1) print('''Probs:''', lowerCamelCase) # kinetics-400 if model_name == "xclip-base-patch32": __lowerCAmelCase = torch.tensor([[0.00_19, 0.99_51, 0.00_30]]) elif model_name == "xclip-base-patch32-16-frames": __lowerCAmelCase = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]]) elif model_name == "xclip-base-patch16": __lowerCAmelCase = torch.tensor([[0.00_83, 0.96_81, 0.02_36]]) elif model_name == "xclip-base-patch16-16-frames": __lowerCAmelCase = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]]) elif model_name == "xclip-large-patch14": __lowerCAmelCase = torch.tensor([[0.00_62, 0.98_64, 0.00_75]]) elif model_name == "xclip-large-patch14-16-frames": __lowerCAmelCase = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]]) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __lowerCAmelCase = torch.tensor([[0.05_55, 0.89_14, 0.05_31]]) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __lowerCAmelCase = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]]) elif model_name == "xclip-large-patch14-kinetics-600": __lowerCAmelCase = torch.tensor([[0.00_36, 0.99_20, 0.00_45]]) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __lowerCAmelCase = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]]) elif model_name == "xclip-base-patch16-hmdb-4-shot": __lowerCAmelCase = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]]) elif model_name == "xclip-base-patch16-hmdb-8-shot": __lowerCAmelCase = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]]) elif model_name == "xclip-base-patch16-hmdb-16-shot": __lowerCAmelCase = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]]) elif model_name == "xclip-base-patch16-ucf-2-shot": __lowerCAmelCase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]]) elif model_name == "xclip-base-patch16-ucf-4-shot": __lowerCAmelCase = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]]) elif model_name == "xclip-base-patch16-ucf-8-shot": __lowerCAmelCase = torch.tensor([[0.00_27, 0.99_04, 0.00_70]]) elif model_name == "xclip-base-patch16-ucf-16-shot": __lowerCAmelCase = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]]) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __lowerCAmelCase = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]]) else: raise ValueError(F"""Model name {model_name} not supported""") assert torch.allclose(lowerCamelCase, lowerCamelCase, atol=1E-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(lowerCamelCase) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''') model.push_to_hub(lowerCamelCase, organization='''nielsr''') processor.push_to_hub(lowerCamelCase, organization='''nielsr''') slow_tokenizer.push_to_hub(lowerCamelCase, organization='''nielsr''') if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
'''simple docstring''' # Imports import numpy as np class a__ : """simple docstring""" def __init__(self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) def _snake_case (self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): if red is not None: __lowerCAmelCase = red if green is not None: __lowerCAmelCase = green if blue is not None: __lowerCAmelCase = blue if red_edge is not None: __lowerCAmelCase = red_edge if nir is not None: __lowerCAmelCase = nir return True def _snake_case (self , __lowercase="" , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None ): self.set_matricies(red=__lowercase , green=__lowercase , blue=__lowercase , red_edge=__lowercase , nir=__lowercase ) __lowerCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _snake_case (self ): return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case (self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case (self ): return self.nir * (self.red / (self.green**2)) def _snake_case (self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case (self ): return (self.nir - self.red) / (self.nir + self.red) def _snake_case (self ): return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case (self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case (self ): return (self.nir - self.green) / (self.nir + self.green) def _snake_case (self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case (self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case (self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case (self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case (self , __lowercase=0.0_8 , __lowercase=1.2_2 , __lowercase=0.0_3 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case (self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case (self ): return (self.nir / self.green) - 1 def _snake_case (self ): return (self.nir / self.redEdge) - 1 def _snake_case (self ): return (self.red - self.blue) / self.red def _snake_case (self ): __lowerCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case (self ): return self.nir - self.green def _snake_case (self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case (self ): __lowerCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case (self , __lowercase=0.1_6 ): return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case (self , __lowercase=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case (self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case (self , __lowercase=None , __lowercase=None ): return (self.nir - b) / (a * self.red) def _snake_case (self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case (self ): return (self.red + self.green + self.blue) / 3_0.5 def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case (self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case (self ): return self.green / (self.nir + self.red + self.green) def _snake_case (self ): return self.nir / (self.nir + self.red + self.green) def _snake_case (self ): return self.red / (self.nir + self.red + self.green) def _snake_case (self ): return (self.green - self.red) / (self.green + self.red) def _snake_case (self ): return (self.red - self.green) / (self.red + self.green) def _snake_case (self ): __lowerCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case (self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case (self ): return self.nir / self.red def _snake_case (self ): return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case (self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
9
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _UpperCAmelCase = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) sd_pipe.set_scheduler('sample_euler' ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _UpperCAmelCase = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) sd_pipe.set_scheduler('sample_euler' ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _UpperCAmelCase = sd_pipe.to(UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sd_pipe( [prompt] , generator=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=UpperCAmelCase , ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(snake_case__ ,snake_case__ ,repo_type="""dataset""" ) ,"""r""" ) ) _SCREAMING_SNAKE_CASE = {int(snake_case__ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" _SCREAMING_SNAKE_CASE = BitConfig( conv_layer=snake_case__ ,num_labels=10_00 ,idalabel=snake_case__ ,labelaid=snake_case__ ,) return config def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" if "stem.conv" in name: _SCREAMING_SNAKE_CASE = name.replace("""stem.conv""" ,"""bit.embedder.convolution""" ) if "blocks" in name: _SCREAMING_SNAKE_CASE = name.replace("""blocks""" ,"""layers""" ) if "head.fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""head.fc""" ,"""classifier.1""" ) if name.startswith("""norm""" ): _SCREAMING_SNAKE_CASE = """bit.""" + name if "bit" not in name and "classifier" not in name: _SCREAMING_SNAKE_CASE = """bit.encoder.""" + name return name def __lowerCamelCase ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE = Image.open(requests.get(snake_case__ ,stream=snake_case__ ).raw ) return im @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__=False ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = get_config(snake_case__ ) # load original model from timm _SCREAMING_SNAKE_CASE = create_model(snake_case__ ,pretrained=snake_case__ ) timm_model.eval() # load state_dict of original model _SCREAMING_SNAKE_CASE = timm_model.state_dict() for key in state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = state_dict.pop(snake_case__ ) _SCREAMING_SNAKE_CASE = val.squeeze() if """head""" in key else val # load HuggingFace model _SCREAMING_SNAKE_CASE = BitForImageClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # create image processor _SCREAMING_SNAKE_CASE = create_transform(**resolve_data_config({} ,model=snake_case__ ) ) _SCREAMING_SNAKE_CASE = transform.transforms _SCREAMING_SNAKE_CASE = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } _SCREAMING_SNAKE_CASE = BitImageProcessor( do_resize=snake_case__ ,size={"""shortest_edge""": timm_transforms[0].size} ,resample=pillow_resamplings[timm_transforms[0].interpolation.value] ,do_center_crop=snake_case__ ,crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} ,do_normalize=snake_case__ ,image_mean=timm_transforms[-1].mean.tolist() ,image_std=timm_transforms[-1].std.tolist() ,) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = transform(snake_case__ ).unsqueeze(0 ) _SCREAMING_SNAKE_CASE = processor(snake_case__ ,return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(snake_case__ ,snake_case__ ) # verify logits with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(snake_case__ ) _SCREAMING_SNAKE_CASE = outputs.logits print("""Logits:""" ,logits[0, :3] ) print("""Predicted class:""" ,model.config.idalabel[logits.argmax(-1 ).item()] ) _SCREAMING_SNAKE_CASE = timm_model(snake_case__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(snake_case__ ,outputs.logits ,atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) UpperCamelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
125
import copy import re class __UpperCAmelCase : __snake_case : Any = "hp" __snake_case : str = {} __snake_case : List[Any] = None @classmethod def UpperCamelCase ( cls: Optional[Any] , UpperCAmelCase_: int , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = prefix _SCREAMING_SNAKE_CASE = defaults cls.build_naming_info() @staticmethod def UpperCamelCase ( UpperCAmelCase_: Any , UpperCAmelCase_: str ): '''simple docstring''' if len(UpperCAmelCase_ ) == 0: return "" _SCREAMING_SNAKE_CASE = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(UpperCAmelCase_ ) + 1 ): _SCREAMING_SNAKE_CASE = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(UpperCAmelCase_: List[Any] ): _SCREAMING_SNAKE_CASE = """""" while integer != 0: _SCREAMING_SNAKE_CASE = chr(ord("""A""" ) + integer % 10 ) + s integer //= 10 return s _SCREAMING_SNAKE_CASE = 0 while True: _SCREAMING_SNAKE_CASE = word + """#""" + int_to_alphabetic(UpperCAmelCase_ ) if sword in info["reverse_short_word"]: continue else: _SCREAMING_SNAKE_CASE = sword break _SCREAMING_SNAKE_CASE = short_word _SCREAMING_SNAKE_CASE = word return short_word @staticmethod def UpperCamelCase ( UpperCAmelCase_: List[str] , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = param_name.split("""_""" ) _SCREAMING_SNAKE_CASE = [TrialShortNamer.shortname_for_word(UpperCAmelCase_ , UpperCAmelCase_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _SCREAMING_SNAKE_CASE = ["""""", """_"""] for separator in separators: _SCREAMING_SNAKE_CASE = separator.join(UpperCAmelCase_ ) if shortname not in info["reverse_short_param"]: _SCREAMING_SNAKE_CASE = shortname _SCREAMING_SNAKE_CASE = param_name return shortname return param_name @staticmethod def UpperCamelCase ( UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TrialShortNamer.shortname_for_key(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = short_name _SCREAMING_SNAKE_CASE = param_name @classmethod def UpperCamelCase ( cls: str ): '''simple docstring''' if cls.NAMING_INFO is not None: return _SCREAMING_SNAKE_CASE = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } _SCREAMING_SNAKE_CASE = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = info @classmethod def UpperCamelCase ( cls: Any , UpperCAmelCase_: Optional[Any] ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _SCREAMING_SNAKE_CASE = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _SCREAMING_SNAKE_CASE = cls.NAMING_INFO["""short_param"""][k] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _SCREAMING_SNAKE_CASE = 1 if v else 0 _SCREAMING_SNAKE_CASE = """""" if isinstance(UpperCAmelCase_ , (int, float) ) else """-""" _SCREAMING_SNAKE_CASE = F'{key}{sep}{v}' name.append(UpperCAmelCase_ ) return "_".join(UpperCAmelCase_ ) @classmethod def UpperCamelCase ( cls: int , UpperCAmelCase_: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = repr[len(cls.PREFIX ) + 1 :] if repr == "": _SCREAMING_SNAKE_CASE = [] else: _SCREAMING_SNAKE_CASE = repr.split("""_""" ) _SCREAMING_SNAKE_CASE = {} for value in values: if "-" in value: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = value.split("""-""" ) else: _SCREAMING_SNAKE_CASE = re.sub("""[0-9.]""" , """""" , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = float(re.sub("""[^0-9.]""" , """""" , UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = cls.NAMING_INFO["""reverse_short_param"""][p_k] _SCREAMING_SNAKE_CASE = p_v for k in cls.DEFAULTS: if k not in parameters: _SCREAMING_SNAKE_CASE = cls.DEFAULTS[k] return parameters
125
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _lowercase , unittest.TestCase): snake_case__ = BlenderbotSmallTokenizer snake_case__ = False def _UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: super().setUp() _UpperCamelCase = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _UpperCamelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCamelCase = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _UpperCamelCase = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCamelCase ) ) def _UpperCamelCase ( self : Any , **__UpperCamelCase : Optional[int] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> Optional[int]: _UpperCamelCase = '''adapt act apte''' _UpperCamelCase = '''adapt act apte''' return input_text, output_text def _UpperCamelCase ( self : List[Any] ) -> List[Any]: _UpperCamelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCamelCase = '''adapt act apte''' _UpperCamelCase = ['''adapt''', '''act''', '''ap@@''', '''te'''] _UpperCamelCase = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _UpperCamelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> int: _UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] _UpperCamelCase = '''I am a small frog.''' _UpperCamelCase = tok([src_text] , padding=__UpperCamelCase , truncation=__UpperCamelCase )['''input_ids'''] _UpperCamelCase = tok.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _UpperCamelCase ( self : str ) -> Optional[int]: _UpperCamelCase = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _UpperCamelCase = '''I am a small frog .''' _UpperCamelCase = '''.''' _UpperCamelCase = tok(__UpperCamelCase )['''input_ids'''] _UpperCamelCase = tok(__UpperCamelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
256
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model"""} UpperCAmelCase = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } UpperCAmelCase = {"""bert_for_seq_generation""": 512} class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = [] snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , __UpperCamelCase : int , __UpperCamelCase : Optional[int]="<s>" , __UpperCamelCase : Optional[Any]="</s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : int="<::::>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Any , ) -> None: _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def _UpperCamelCase ( self : Optional[int] ) -> Tuple: return self.sp_model.get_piece_size() def _UpperCamelCase ( self : int ) -> Optional[int]: _UpperCamelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , __UpperCamelCase : Any ) -> Tuple: _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Any ) -> Optional[int]: return self.sp_model.piece_to_id(__UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) -> Optional[Any]: _UpperCamelCase = self.sp_model.IdToPiece(__UpperCamelCase ) return token def _UpperCamelCase ( self : str , __UpperCamelCase : Dict ) -> Optional[Any]: _UpperCamelCase = [] _UpperCamelCase = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCamelCase ) + token _UpperCamelCase = [] else: current_sub_tokens.append(__UpperCamelCase ) out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,)
256
1
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class a__ : def __init__( self , UpperCAmelCase ) -> Optional[Any]: if isinstance(snake_case__ , snake_case__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __a = deepcopy(snake_case__ ) elif os.path.exists(snake_case__ ): with io.open(snake_case__ , 'r' , encoding='utf-8' ) as f: __a = json.load(snake_case__ ) else: try: __a = baseaa.urlsafe_baadecode(snake_case__ ).decode('utf-8' ) __a = json.loads(snake_case__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) __a = config self.set_stage_and_offload() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = self.get_value('zero_optimization.stage' , -1 ) # offload __a = False if self.is_zeroa() or self.is_zeroa(): __a = set(['cpu', 'nvme'] ) __a = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __a = True def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> List[str]: __a = self.config # find the config node of interest if it exists __a = ds_key_long.split('.' ) __a = nodes.pop() for node in nodes: __a = config.get(snake_case__ ) if config is None: return None, ds_key return config, ds_key def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Tuple: __a = self.find_config_node(snake_case__ ) if config is None: return default return config.get(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[int]: __a = self.config # find the config node of interest if it exists __a = ds_key_long.split('.' ) for node in nodes: __a = config __a = config.get(snake_case__ ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[int]: __a = self.get_value(snake_case__ ) return False if value is None else bool(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[Any]: __a = self.get_value(snake_case__ ) return False if value is None else not bool(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: return self._stage == 2 def __SCREAMING_SNAKE_CASE ( self ) -> int: return self._stage == 3 def __SCREAMING_SNAKE_CASE ( self ) -> int: return self._offload class a__ : def __init__( self , UpperCAmelCase ) -> Optional[Any]: __a = engine def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , **UpperCAmelCase ) -> Dict: self.engine.backward(snake_case__ , **snake_case__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class a__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self , UpperCAmelCase ) -> Union[str, Any]: super().__init__(snake_case__ , device_placement=snake_case__ , scaler=snake_case__ ) __a = hasattr(self.optimizer , 'overflow' ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase=None ) -> List[Any]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __SCREAMING_SNAKE_CASE ( self ) -> str: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __SCREAMING_SNAKE_CASE ( self ) -> Any: if self.__has_overflow__: return self.optimizer.overflow return False class a__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: super().__init__(snake_case__ , snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=0.001 , UpperCAmelCase=0 , **UpperCAmelCase ) -> List[str]: __a = params __a = lr __a = weight_decay __a = kwargs class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=0 , **UpperCAmelCase ) -> List[str]: __a = optimizer __a = total_num_steps __a = warmup_num_steps __a = kwargs
353
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__snake_case ): A__ : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Dict: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Dict = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class a__ ( metaclass=__snake_case ): A__ : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> int: requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> List[str]: requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Any: requires_backends(cls , ['torch', 'transformers', 'onnx'] )
197
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCAmelCase : int = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _UpperCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
50
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Optional[Any] = """▁""" _UpperCAmelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = BertGenerationTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True def A_ ( self : List[Any] ) -> List[str]: super().setUp() lowerCamelCase__ : Dict = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ) -> Dict: lowerCamelCase__ : List[str] = '<s>' lowerCamelCase__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A_ ( self : List[str] ) -> Optional[int]: lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(UpperCAmelCase ) , 1002 ) def A_ ( self : List[Any] ) -> Optional[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = BertGenerationTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowerCamelCase__ : List[str] = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [285, 46, 10, 170, 382] , ) lowerCamelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase__ : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A_ ( self : Dict ) -> Tuple: return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A_ ( self : Optional[int] ) -> List[str]: lowerCamelCase__ : Union[str, Any] = 'Hello World!' lowerCamelCase__ : Dict = [18536, 2260, 101] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A_ ( self : Optional[Any] ) -> str: lowerCamelCase__ : List[Any] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowerCamelCase__ : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @require_torch @slow def A_ ( self : int ) -> Optional[Any]: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase__ : str = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase__ : int = ' '.join(UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.big_tokenizer.encode_plus(UpperCAmelCase , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=UpperCAmelCase ) lowerCamelCase__ : Tuple = BertGenerationConfig() lowerCamelCase__ : Optional[Any] = BertGenerationEncoder(UpperCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase ) model(**UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> List[Any]: # fmt: off lowerCamelCase__ : Any = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
50
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Union[str, Any] = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''FNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ['''FNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FNetForMaskedLM''', '''FNetForMultipleChoice''', '''FNetForNextSentencePrediction''', '''FNetForPreTraining''', '''FNetForQuestionAnswering''', '''FNetForSequenceClassification''', '''FNetForTokenClassification''', '''FNetLayer''', '''FNetModel''', '''FNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE = ( "Wrong input data's dimensions... " f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowerCAmelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE = ( "Wrong input data's shape... " f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowerCAmelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("Wrong shape" ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE = ( "Input data have different datatype... " f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for value in value_array: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , dataset[0] ) __SCREAMING_SNAKE_CASE = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE = euclidean(lowerCAmelCase_ , lowerCAmelCase_ ) if dist > temp_dist: __SCREAMING_SNAKE_CASE = temp_dist __SCREAMING_SNAKE_CASE = dataset_value.tolist() answer.append([vector, dist] ) return answer def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' return np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) / (norm(lowerCAmelCase_ ) * norm(lowerCAmelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
195
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = XCLIPTextConfig() # derive patch size from model name __SCREAMING_SNAKE_CASE : Optional[int] = model_name.find('''patch''' ) __SCREAMING_SNAKE_CASE : Dict = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPVisionConfig(patch_size=lowercase__ , num_frames=lowercase__ ) if "large" in model_name: __SCREAMING_SNAKE_CASE : int = 768 __SCREAMING_SNAKE_CASE : Dict = 3072 __SCREAMING_SNAKE_CASE : List[Any] = 12 __SCREAMING_SNAKE_CASE : Any = 1024 __SCREAMING_SNAKE_CASE : Union[str, Any] = 4096 __SCREAMING_SNAKE_CASE : Union[str, Any] = 16 __SCREAMING_SNAKE_CASE : List[Any] = 24 __SCREAMING_SNAKE_CASE : Union[str, Any] = 768 __SCREAMING_SNAKE_CASE : str = 3072 if model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Any = 336 __SCREAMING_SNAKE_CASE : int = XCLIPConfig.from_text_vision_configs(lowercase__ , lowercase__ ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 768 return config def _UpperCamelCase ( lowercase__ ): # text encoder if name == "token_embedding.weight": __SCREAMING_SNAKE_CASE : Dict = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : int = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __SCREAMING_SNAKE_CASE : str = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __SCREAMING_SNAKE_CASE : Dict = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def _UpperCamelCase ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : List[str] = orig_state_dict.pop(lowercase__ ) if "attn.in_proj" in key: __SCREAMING_SNAKE_CASE : str = key.split('''.''' ) if key.startswith('''visual''' ): __SCREAMING_SNAKE_CASE : str = key_split[3] __SCREAMING_SNAKE_CASE : Union[str, Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __SCREAMING_SNAKE_CASE : int = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : str = val[ :dim ] __SCREAMING_SNAKE_CASE : Union[str, Any] = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Optional[int] = val[ -dim: ] else: if "weight" in key: __SCREAMING_SNAKE_CASE : Any = val[ :dim, : ] __SCREAMING_SNAKE_CASE : Optional[int] = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Optional[int] = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Optional[int] = val[:dim] __SCREAMING_SNAKE_CASE : Optional[int] = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif key.startswith('''mit''' ): __SCREAMING_SNAKE_CASE : Dict = key_split[2] __SCREAMING_SNAKE_CASE : Any = config.vision_config.mit_hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Dict = val[:dim, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : List[Any] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : Optional[Any] = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : List[str] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = key_split[2] __SCREAMING_SNAKE_CASE : Optional[int] = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Dict = val[:dim, :] __SCREAMING_SNAKE_CASE : Optional[Any] = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Tuple = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Any = val[-dim:] else: __SCREAMING_SNAKE_CASE : List[str] = rename_key(lowercase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __SCREAMING_SNAKE_CASE : Any = val.T __SCREAMING_SNAKE_CASE : Dict = val return orig_state_dict def _UpperCamelCase ( lowercase__ ): if num_frames == 8: __SCREAMING_SNAKE_CASE : List[str] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __SCREAMING_SNAKE_CASE : str = '''eating_spaghetti.npy''' elif num_frames == 32: __SCREAMING_SNAKE_CASE : Dict = '''eating_spaghetti_32_frames.npy''' __SCREAMING_SNAKE_CASE : str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=lowercase__ , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.load(lowercase__ ) return list(lowercase__ ) def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Union[str, Any] = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] __SCREAMING_SNAKE_CASE : int = 8 if "16-frames" in model_name: __SCREAMING_SNAKE_CASE : Tuple = 16 elif "shot" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = 32 __SCREAMING_SNAKE_CASE : Any = get_xclip_config(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : str = XCLIPModel(lowercase__ ) model.eval() if "drive" in checkpoint_url: __SCREAMING_SNAKE_CASE : Optional[int] = '''pytorch_model.bin''' gdown.cached_download(lowercase__ , lowercase__ , quiet=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowercase__ , map_location='''cpu''' )['''model'''] else: __SCREAMING_SNAKE_CASE : List[str] = torch.hub.load_state_dict_from_url(lowercase__ )['''model'''] __SCREAMING_SNAKE_CASE : str = convert_state_dict(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = XCLIPModel(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __SCREAMING_SNAKE_CASE : Tuple = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __SCREAMING_SNAKE_CASE : Dict = VideoMAEImageProcessor(size=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : int = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = XCLIPProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = prepare_video(lowercase__ ) __SCREAMING_SNAKE_CASE : int = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=lowercase__ , return_tensors='''pt''' , padding=lowercase__ ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowercase__ ) # Verify outputs __SCREAMING_SNAKE_CASE : Tuple = outputs.logits_per_video __SCREAMING_SNAKE_CASE : Optional[int] = logits_per_video.softmax(dim=1 ) print('''Probs:''' , lowercase__ ) # kinetics-400 if model_name == "xclip-base-patch32": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": __SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __SCREAMING_SNAKE_CASE : Any = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __SCREAMING_SNAKE_CASE : Any = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(lowercase__ , lowercase__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(lowercase__ , organization='''nielsr''' ) processor.push_to_hub(lowercase__ , organization='''nielsr''' ) slow_tokenizer.push_to_hub(lowercase__ , organization='''nielsr''' ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : List[str] ='true' def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=16 ): set_seed(42 ) __SCREAMING_SNAKE_CASE : Optional[int] = RegressionModel() __SCREAMING_SNAKE_CASE : Optional[int] = deepcopy(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = RegressionDataset(length=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def _UpperCamelCase ( lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __SCREAMING_SNAKE_CASE : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : Tuple = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(lowercase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = get_dataloader(lowercase__ , not dispatch_batches ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for batch in dataloader: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = batch.values() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Dict = model(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def _UpperCamelCase ( lowercase__ , lowercase__=82 , lowercase__=False , lowercase__=False , lowercase__=16 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}''' def _UpperCamelCase ( lowercase__ = False , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = setup['''no'''] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch['''labels'''] ) __SCREAMING_SNAKE_CASE : int = metric.compute() # Then do distributed __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __SCREAMING_SNAKE_CASE : int = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE : Any = batch['''labels'''] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __SCREAMING_SNAKE_CASE : Tuple = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def _UpperCamelCase ( lowercase__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
9
1
"""simple docstring""" from __future__ import annotations def _lowerCamelCase( a , a = None , a = None ): if start is None: __a = 0 if end is None: __a = len(SCREAMING_SNAKE_CASE__ ) - 1 if start >= end: return __a = (start + end) // 2 slowsort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) slowsort(SCREAMING_SNAKE_CASE__ , mid + 1 , SCREAMING_SNAKE_CASE__ ) if sequence[end] < sequence[mid]: __a , __a = sequence[mid], sequence[end] slowsort(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
367
"""simple docstring""" import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging SCREAMING_SNAKE_CASE__:Union[str, Any] = logging.get_logger(__name__) class snake_case__ : _snake_case : List[str] = None @experimental def _lowerCamelCase( a , a , a , a , a , a , a ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( a , a , a , a , a , a , a ) return _map_with_joblib(a , a , a , a , a , a , a ) def _lowerCamelCase( a , a , a , a , a , a , a ): __a = num_proc if num_proc <= len(a ) else len(a ) __a = [] # We organize the splits ourselve (contiguous splits) for index in range(a ): __a = len(a ) // num_proc __a = len(a ) % num_proc __a = div * index + min(a , a ) __a = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(a ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(a )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(a )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) __a , __a = None, None if not disable_tqdm: __a , __a = (RLock(),), tqdm.set_lock with Pool(a , initargs=a , initializer=a ) as pool: __a = pool.map(a , a ) logger.info(F"Finished {num_proc} processes" ) __a = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(a )} objects" ) return mapped def _lowerCamelCase( a , a , a , a , a , a , a ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=a ): return joblib.Parallel()( joblib.delayed(a )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def _lowerCamelCase( a ): __a = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: __a = None
268
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> str | Literal[False]: UpperCAmelCase_ : Union[str, Any] = list(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = list(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase_ : List[str] = '''_''' if count > 1: return False else: return "".join(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[str] ) -> list[str]: UpperCAmelCase_ : List[Any] = [] while True: UpperCAmelCase_ : Tuple = ['''$'''] * len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : Optional[int] = compare_string(binary[i], binary[j] ) if k is False: UpperCAmelCase_ : Union[str, Any] = '''*''' UpperCAmelCase_ : Optional[Any] = '''*''' temp.append('''X''' ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(SCREAMING_SNAKE_CASE__ ) == 0: return pi UpperCAmelCase_ : Optional[Any] = list(set(SCREAMING_SNAKE_CASE__ ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Sequence[float] ) -> list[str]: UpperCAmelCase_ : int = [] for minterm in minterms: UpperCAmelCase_ : Optional[int] = '''''' for _ in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(SCREAMING_SNAKE_CASE__ ) return temp def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int ) -> bool: UpperCAmelCase_ : Tuple = list(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = list(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[list[int]], SCREAMING_SNAKE_CASE__ : list[str] ) -> list[str]: UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Dict = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(len(chart[0] ) ): UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[Any] = -1 for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase_ : Any = j if count == 1: UpperCAmelCase_ : List[str] = 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : Any = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Union[str, Any] = -1 UpperCAmelCase_ : Optional[Any] = 0 for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : Optional[int] = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase_ : int = count_n UpperCAmelCase_ : List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : Optional[int] = 0 def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[str], SCREAMING_SNAKE_CASE__ : list[str] ) -> list[list[int]]: UpperCAmelCase_ : Tuple = [[0 for x in range(len(SCREAMING_SNAKE_CASE__ ) )] for x in range(len(SCREAMING_SNAKE_CASE__ ) )] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : Any = prime_implicants[i].count('''_''' ) for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if is_for_table(prime_implicants[i], binary[j], SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : str = 1 return chart def lowerCamelCase_ ( ) -> None: UpperCAmelCase_ : Optional[int] = int(input('''Enter the no. of variables\n''' ) ) UpperCAmelCase_ : Union[str, Any] = [ float(SCREAMING_SNAKE_CASE__ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCAmelCase_ : Tuple = decimal_to_binary(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = check(SCREAMING_SNAKE_CASE__ ) print('''Prime Implicants are:''' ) print(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = prime_implicant_chart(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = selection(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) print('''Essential Prime Implicants are:''' ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
125
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Dict = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class __a (lowerCamelCase ): __a : Tuple = "roc_bert" def __init__( self : Union[str, Any] , __magic_name__ : List[str]=3_05_22 , __magic_name__ : Tuple=7_68 , __magic_name__ : Any=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Any=5_12 , __magic_name__ : str=2 , __magic_name__ : Any=0.0_2 , __magic_name__ : Dict=1E-12 , __magic_name__ : int=True , __magic_name__ : Optional[int]=0 , __magic_name__ : str="absolute" , __magic_name__ : Tuple=None , __magic_name__ : Any=True , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=7_68 , __magic_name__ : List[Any]=9_10 , __magic_name__ : Tuple=5_12 , __magic_name__ : Dict=2_48_58 , __magic_name__ : Any=True , **__magic_name__ : Union[str, Any] , ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = enable_pronunciation UpperCAmelCase_ : Union[str, Any] = enable_shape UpperCAmelCase_ : List[str] = pronunciation_embed_dim UpperCAmelCase_ : List[str] = pronunciation_vocab_size UpperCAmelCase_ : int = shape_embed_dim UpperCAmelCase_ : Optional[int] = shape_vocab_size UpperCAmelCase_ : Optional[Any] = concat_input UpperCAmelCase_ : Dict = position_embedding_type UpperCAmelCase_ : Union[str, Any] = classifier_dropout super().__init__(pad_token_id=__magic_name__ , **__magic_name__ )
125
1
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = 1 @register_to_config def __init__( self : List[Any], a_ : int = 1000, a_ : Optional[Union[np.ndarray, List[float]]] = None ): """simple docstring""" self.set_timesteps(a_ ) # standard deviation of the initial noise distribution UpperCamelCase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCamelCase__ = 4 # running values UpperCamelCase__ = [] def lowercase_ ( self : str, a_ : int, a_ : Union[str, torch.device] = None ): """simple docstring""" UpperCamelCase__ = num_inference_steps UpperCamelCase__ = torch.linspace(1, 0, num_inference_steps + 1 )[:-1] UpperCamelCase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCamelCase__ = torch.tensor(self.config.trained_betas, dtype=torch.floataa ) else: UpperCamelCase__ = torch.sin(steps * math.pi / 2 ) ** 2 UpperCamelCase__ = (1.0 - self.betas**2) ** 0.5 UpperCamelCase__ = (torch.atana(self.betas, self.alphas ) / math.pi * 2)[:-1] UpperCamelCase__ = timesteps.to(a_ ) UpperCamelCase__ = [] def lowercase_ ( self : List[str], a_ : torch.FloatTensor, a_ : int, a_ : torch.FloatTensor, a_ : bool = True, ): """simple docstring""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) UpperCamelCase__ = (self.timesteps == timestep).nonzero().item() UpperCamelCase__ = timestep_index + 1 UpperCamelCase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(a_ ) if len(self.ets ) == 1: UpperCamelCase__ = self.ets[-1] elif len(self.ets ) == 2: UpperCamelCase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCamelCase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCamelCase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCamelCase__ = self._get_prev_sample(a_, a_, a_, a_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a_ ) def lowercase_ ( self : str, a_ : torch.FloatTensor, *a_ : Dict, **a_ : Dict ): """simple docstring""" return sample def lowercase_ ( self : Optional[Any], a_ : Dict, a_ : int, a_ : Optional[Any], a_ : Tuple ): """simple docstring""" UpperCamelCase__ = self.alphas[timestep_index] UpperCamelCase__ = self.betas[timestep_index] UpperCamelCase__ = self.alphas[prev_timestep_index] UpperCamelCase__ = self.betas[prev_timestep_index] UpperCamelCase__ = (sample - sigma * ets) / max(a_, 1e-8 ) UpperCamelCase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ): """simple docstring""" return self.config.num_train_timesteps
31
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=SCREAMING_SNAKE_CASE__): _lowerCamelCase : str = ['torch', 'scipy'] def __init__( self : List[str], *a_ : Optional[int], **a_ : int ): """simple docstring""" requires_backends(self, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Dict, *a_ : Tuple, **a_ : Dict ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] ) @classmethod def lowercase_ ( cls : Optional[Any], *a_ : List[Any], **a_ : Any ): """simple docstring""" requires_backends(cls, ["torch", "scipy"] )
31
1
from ..utils import DummyObject, requires_backends class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Tuple = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> int: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> List[str]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Dict: requires_backends(lowerCamelCase_ , ['torch'] ) def UpperCamelCase_( *lowerCamelCase_ , **lowerCamelCase_ ) -> Optional[int]: requires_backends(lowerCamelCase_ , ['torch'] ) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[int] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Tuple = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : str = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Union[str, Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Any = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : int = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> str: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> int: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Dict = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : Optional[Any] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> Any: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" requires_backends(cls, ['torch']) class _lowerCamelCase( metaclass=_a ): lowercase_ : List[str] = ["""torch"""] def __init__( self, *lowerCamelCase, **lowerCamelCase) -> List[str]: """simple docstring""" requires_backends(self, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['torch']) @classmethod def UpperCamelCase ( cls, *lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" requires_backends(cls, ['torch'])
21
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Path , lowerCAmelCase__ :str = None , lowerCAmelCase__ :str = None , lowerCAmelCase__ :str = None , ) -> Optional[int]: '''simple docstring''' if config_name_or_path is None: lowercase = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowercase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase = question_encoder_name_or_path lowercase = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowercase = RagConfig.from_pretrained(lowerCAmelCase__ ) lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) lowercase = AutoConfig.from_pretrained(lowerCAmelCase__ ) lowercase = gen_config lowercase = question_encoder_config lowercase = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) rag_model.save_pretrained(lowerCAmelCase__ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase__ ) # Save tokenizers. lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": __lowerCAmelCase : int =argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) __lowerCAmelCase : List[str] =parser.parse_args() __lowerCAmelCase : Dict =Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
197
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { "configuration_mobilenet_v2": [ "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileNetV2Config", "MobileNetV2OnnxConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MobileNetV2FeatureExtractor"] UpperCamelCase_ = ["MobileNetV2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
246
'''simple docstring''' from scipy.stats import spearmanr import datasets UpperCamelCase_ = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" UpperCamelCase_ = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" UpperCamelCase_ = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ), reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'], ) def UpperCamelCase_ ( self, A, A, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = spearmanr(A, A ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
246
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class __snake_case : '''simple docstring''' def __init__( self : List[str] , A : Dict , A : Optional[Any]=13 , A : Optional[int]=7 , A : Optional[Any]=6 , A : List[Any]=17 , A : Any=23 , A : Union[str, Any]=11 , A : int=True , ): __snake_case: Tuple = parent __snake_case: Optional[int] = batch_size __snake_case: Optional[int] = seq_length __snake_case: Optional[int] = act_dim __snake_case: Tuple = state_dim __snake_case: List[Any] = hidden_size __snake_case: Tuple = max_length __snake_case: List[str] = is_training def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __snake_case: Any = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __snake_case: str = floats_tensor((self.batch_size, self.seq_length, 1) ) __snake_case: Optional[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) __snake_case: Dict = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_000 ) __snake_case: Optional[Any] = random_attention_mask((self.batch_size, self.seq_length) ) __snake_case: Optional[Any] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCAmelCase__ ( self : Optional[Any] ): return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCAmelCase__ ( self : int , A : Dict , A : Optional[int] , A : Any , A : Any , A : List[Any] , A : Any , A : Union[str, Any] , ): __snake_case: Tuple = DecisionTransformerModel(config=__a ) model.to(__a ) model.eval() __snake_case: int = model(__a , __a , __a , __a , __a , __a ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCAmelCase__ ( self : Tuple ): __snake_case: Any = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ): Tuple = config_and_inputs __snake_case: Tuple = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = (DecisionTransformerModel,) if is_torch_available() else () lowerCAmelCase__ = () lowerCAmelCase__ = {"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids lowerCAmelCase__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Union[str, Any] = DecisionTransformerModelTester(self ) __snake_case: Any = ConfigTester(self , config_class=__a , hidden_size=37 ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Tuple ): __snake_case: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @slow def UpperCAmelCase__ ( self : Dict ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case: Dict = DecisionTransformerModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def UpperCAmelCase__ ( self : Tuple ): __snake_case , __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[int] = model_class(__a ) __snake_case: Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case: Tuple = [*signature.parameters.keys()] __snake_case: List[str] = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(__a )] , __a ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Tuple = 2 # number of steps of autoregressive prediction we will perform __snake_case: Tuple = 10 # defined by the RL environment, may be normalized __snake_case: Optional[int] = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) __snake_case: Optional[int] = model.to(__a ) __snake_case: List[Any] = model.config torch.manual_seed(0 ) __snake_case: List[str] = torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ) # env.reset() __snake_case: Union[str, Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=__a ) __snake_case: Dict = torch.tensor(__a , device=__a , dtype=torch.floataa ).reshape(1 , 1 , 1 ) __snake_case: List[str] = state __snake_case: Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=__a , dtype=torch.floataa ) __snake_case: List[str] = torch.zeros(1 , 0 , device=__a , dtype=torch.floataa ) __snake_case: Dict = torch.tensor(0 , device=__a , dtype=torch.long ).reshape(1 , 1 ) for step in range(__a ): __snake_case: Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__a )] , dim=1 ) __snake_case: Dict = torch.cat([rewards, torch.zeros(1 , 1 , device=__a )] , dim=1 ) __snake_case: Dict = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): __snake_case , __snake_case , __snake_case: Dict = model( states=__a , actions=__a , rewards=__a , returns_to_go=__a , timesteps=__a , attention_mask=__a , return_dict=__a , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) __snake_case , __snake_case , __snake_case , __snake_case: str = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__a , dtype=torch.floataa ), 1.0, False, {}, ) __snake_case: str = action_pred[0, -1] __snake_case: int = torch.cat([states, state] , dim=1 ) __snake_case: Optional[int] = returns_to_go[0, -1] - reward __snake_case: Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) __snake_case: List[str] = torch.cat( [timesteps, torch.ones((1, 1) , device=__a , dtype=torch.long ) * (step + 1)] , dim=1 )
111
"""simple docstring""" import torch from torch import nn class _UpperCAmelCase( nn.Module ): def __init__( self , __a , __a , __a , __a , __a=1 , __a=False) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase = n_token _UpperCamelCase = d_embed _UpperCamelCase = d_proj _UpperCamelCase = cutoffs + [n_token] _UpperCamelCase = [0] + self.cutoffs _UpperCamelCase = div_val _UpperCamelCase = self.cutoffs[0] _UpperCamelCase = len(self.cutoffs) - 1 _UpperCamelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _UpperCamelCase = nn.Parameter(torch.zeros(self.n_clusters)) _UpperCamelCase = nn.ModuleList() _UpperCamelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a))) else: self.out_projs.append(__a) self.out_layers.append(nn.Linear(__a , __a)) else: for i in range(len(self.cutoffs)): _UpperCamelCase , _UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCamelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__a , __a))) self.out_layers.append(nn.Linear(__a , r_idx - l_idx)) _UpperCamelCase = keep_order def UpperCAmelCase ( self , __a , __a , __a , __a) -> Any: '''simple docstring''' if proj is None: _UpperCamelCase = nn.functional.linear(__a , __a , bias=__a) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCamelCase = nn.functional.linear(__a , proj.t().contiguous()) _UpperCamelCase = nn.functional.linear(__a , __a , bias=__a) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCAmelCase ( self , __a , __a=None , __a=False) -> Dict: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n _UpperCamelCase = hidden[..., :-1, :].contiguous() _UpperCamelCase = labels[..., 1:].contiguous() _UpperCamelCase = hidden.view(-1 , hidden.size(-1)) _UpperCamelCase = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''') else: _UpperCamelCase = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _UpperCamelCase = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _UpperCamelCase = labels != -1_00 _UpperCamelCase = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device) _UpperCamelCase = ( -nn.functional.log_softmax(__a , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _UpperCamelCase = nn.functional.log_softmax(__a , dim=-1) else: # construct weights and biases _UpperCamelCase , _UpperCamelCase = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _UpperCamelCase , _UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCamelCase = self.out_layers[i].weight _UpperCamelCase = self.out_layers[i].bias if i == 0: _UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0) _UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(__a) biases.append(__a) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = weights[0], biases[0], self.out_projs[0] _UpperCamelCase = self._compute_logit(__a , __a , __a , __a) _UpperCamelCase = nn.functional.log_softmax(__a , dim=1) if labels is None: _UpperCamelCase = hidden.new_empty((head_logit.size(0), self.n_token)) else: _UpperCamelCase = torch.zeros_like(__a , dtype=hidden.dtype , device=hidden.device) _UpperCamelCase = 0 _UpperCamelCase = [0] + self.cutoffs for i in range(len(__a) - 1): _UpperCamelCase , _UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCamelCase = (labels >= l_idx) & (labels < r_idx) _UpperCamelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCamelCase = labels.index_select(0 , __a) - l_idx _UpperCamelCase = head_logprob.index_select(0 , __a) _UpperCamelCase = hidden.index_select(0 , __a) else: _UpperCamelCase = hidden if i == 0: if labels is not None: _UpperCamelCase = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = weights[i], biases[i], self.out_projs[i] _UpperCamelCase = self._compute_logit(__a , __a , __a , __a) _UpperCamelCase = nn.functional.log_softmax(__a , dim=1) _UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCamelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _UpperCamelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCamelCase = logprob_i if labels is not None: if (hasattr(self , '''keep_order''') and self.keep_order) or keep_order: out.index_copy_(0 , __a , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCAmelCase ( self , __a) -> List[str]: '''simple docstring''' if self.n_clusters == 0: _UpperCamelCase = self._compute_logit(__a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(__a , dim=-1) else: # construct weights and biases _UpperCamelCase , _UpperCamelCase = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _UpperCamelCase , _UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCamelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCamelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCamelCase = self.out_layers[i].weight _UpperCamelCase = self.out_layers[i].bias if i == 0: _UpperCamelCase = torch.cat([weight_i, self.cluster_weight] , dim=0) _UpperCamelCase = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(__a) biases.append(__a) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = weights[0], biases[0], self.out_projs[0] _UpperCamelCase = self._compute_logit(__a , __a , __a , __a) _UpperCamelCase = hidden.new_empty((head_logit.size(0), self.n_token)) _UpperCamelCase = nn.functional.log_softmax(__a , dim=1) _UpperCamelCase = [0] + self.cutoffs for i in range(len(__a) - 1): _UpperCamelCase , _UpperCamelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCamelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = weights[i], biases[i], self.out_projs[i] _UpperCamelCase = self._compute_logit(__a , __a , __a , __a) _UpperCamelCase = nn.functional.log_softmax(__a , dim=1) _UpperCamelCase = head_logprob[:, -i] + tail_logprob_i _UpperCamelCase = logprob_i return out
194
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __lowerCamelCase : str = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __lowerCamelCase : Tuple = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : Tuple=False ): snake_case__, snake_case__ : Tuple = create_model( "HTSAT-tiny" , "roberta" , lowerCamelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=lowerCamelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Union[str, Any] = {} snake_case__ : List[str] = R".*sequential.(\d+).*" snake_case__ : Optional[int] = R".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case__ : Any = key.replace(lowerCamelCase__ , lowerCamelCase__ ) if re.match(lowerCamelCase__ , lowerCamelCase__ ): # replace sequential layers with list snake_case__ : Any = re.match(lowerCamelCase__ , lowerCamelCase__ ).group(1 ) snake_case__ : Any = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(lowerCamelCase__ )//3}.linear.''' ) elif re.match(lowerCamelCase__ , lowerCamelCase__ ): snake_case__ : Union[str, Any] = int(re.match(lowerCamelCase__ , lowerCamelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case__ : Optional[int] = 1 if projecton_layer == 0 else 2 snake_case__ : List[str] = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case__ : List[str] = value snake_case__ : Optional[int] = mixed_qkv.size(0 ) // 3 snake_case__ : Union[str, Any] = mixed_qkv[:qkv_dim] snake_case__ : List[str] = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case__ : Optional[Any] = mixed_qkv[qkv_dim * 2 :] snake_case__ : Optional[int] = query_layer snake_case__ : List[str] = key_layer snake_case__ : int = value_layer else: snake_case__ : List[str] = value return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : Any=False ): snake_case__, snake_case__ : List[str] = init_clap(lowerCamelCase__ , enable_fusion=lowerCamelCase__ ) clap_model.eval() snake_case__ : str = clap_model.state_dict() snake_case__ : Dict = rename_state_dict(lowerCamelCase__ ) snake_case__ : Tuple = ClapConfig() snake_case__ : int = enable_fusion snake_case__ : Optional[int] = ClapModel(lowerCamelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) transformers_config.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") __lowerCamelCase : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
350
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = StableDiffusionInstructPixaPixPipeline a_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "cross_attention_kwargs"} a_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS a_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : List[str] ): torch.manual_seed(0 ) snake_case__ : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) snake_case__ : int = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) snake_case__ : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case__ : Union[str, Any] = CLIPTextModel(__A ) snake_case__ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) snake_case__ : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowercase ( self : List[Any] , __A : int , __A : Any=0 ): snake_case__ : Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__A ) ).to(__A ) snake_case__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case__ : Union[str, Any] = Image.fromarray(np.uinta(__A ) ).convert("RGB" ) if str(__A ).startswith("mps" ): snake_case__ : List[Any] = torch.manual_seed(__A ) else: snake_case__ : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) snake_case__ : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def _lowercase ( self : int ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.get_dummy_components() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : List[Any] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Tuple = self.get_dummy_inputs(__A ) snake_case__ : List[str] = sd_pipe(**__A ).images snake_case__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : List[Any] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Union[str, Any] ): snake_case__ : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = self.get_dummy_inputs(__A ) snake_case__ : List[Any] = "french fries" snake_case__ : str = sd_pipe(**__A , negative_prompt=__A ) snake_case__ : Any = output.images snake_case__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : Union[str, Any] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : str = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : Any = self.get_dummy_inputs(__A ) snake_case__ : Tuple = [inputs["prompt"]] * 2 snake_case__ : Any = np.array(inputs["image"] ).astype(np.floataa ) / 2_5_5.0 snake_case__ : List[str] = torch.from_numpy(__A ).unsqueeze(0 ).to(__A ) snake_case__ : Union[str, Any] = image / 2 + 0.5 snake_case__ : str = image.permute(0 , 3 , 1 , 2 ) snake_case__ : int = image.repeat(2 , 1 , 1 , 1 ) snake_case__ : str = sd_pipe(**__A ).images snake_case__ : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case__ : int = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : Union[str, Any] ): snake_case__ : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case__ : int = self.get_dummy_components() snake_case__ : Dict = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" ) snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) snake_case__ : str = self.get_dummy_inputs(__A ) snake_case__ : Optional[Any] = sd_pipe(**__A ).images snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : Union[str, Any] = [round(__A , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(__A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case__ : str = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowercase ( self : List[str] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _lowercase ( self : List[Any] ): snake_case__ : Tuple = self.get_dummy_components() snake_case__ : Tuple = StableDiffusionInstructPixaPixPipeline(**__A ) snake_case__ : int = VaeImageProcessor(do_resize=__A , do_normalize=__A ) snake_case__ : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) snake_case__ : Dict = pipe(**self.get_dummy_inputs_by_type(__A , input_image_type="pt" ) )[0] snake_case__ : int = components["vae"] snake_case__ : Union[str, Any] = self.get_dummy_inputs_by_type(__A , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case__ : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case__ : str = pipe(**__A )[0] snake_case__ : Dict = np.abs(out - out_latents_inputs ).max() self.assertLess(__A , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : str , __A : Dict=0 ): snake_case__ : Optional[int] = torch.manual_seed(__A ) snake_case__ : Tuple = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) snake_case__ : Optional[Any] = { "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def _lowercase ( self : int ): snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**__A ).images snake_case__ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Any = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : str ): snake_case__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) snake_case__ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : List[str] = self.get_inputs() snake_case__ : Any = pipe(**__A ).images snake_case__ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Optional[Any] = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : Dict ): snake_case__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A ) snake_case__ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : int = self.get_inputs() snake_case__ : Union[str, Any] = pipe(**__A ).images snake_case__ : Tuple = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : Union[str, Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _lowercase ( self : List[Any] ): snake_case__ : Optional[Any] = 0 def callback_fn(__A : int , __A : int , __A : torch.FloatTensor ) -> None: snake_case__ : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case__ : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : int = latents[0, -3:, -3:, -1] snake_case__ : Optional[int] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case__ : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case__ : Any = latents[0, -3:, -3:, -1] snake_case__ : Dict = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case__ : Any = False snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A , torch_dtype=torch.floataa ) snake_case__ : int = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Optional[Any] = self.get_inputs() pipe(**__A , callback=__A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _lowercase ( self : List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=__A , torch_dtype=torch.floataa ) snake_case__ : Tuple = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case__ : Dict = self.get_inputs() snake_case__ : List[Any] = pipe(**__A ) snake_case__ : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def _lowercase ( self : Tuple ): snake_case__ : int = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : Union[str, Any] = inputs["image"].resize((5_0_4, 5_0_4) ) snake_case__ : Optional[Any] = "timbrooks/instruct-pix2pix" snake_case__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() snake_case__ : Union[str, Any] = pipe(**__A ) snake_case__ : Tuple = output.images[0] snake_case__ : List[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case__ : int = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
286
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a__ : List[str] = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
54
"""simple docstring""" lowerCamelCase_ = [ (1000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def snake_case ( A__ ): UpperCAmelCase_ : List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 1_00, "D": 5_00, "M": 10_00} UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Tuple = 0 while place < len(A__ ): if (place + 1 < len(A__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def snake_case ( A__ ): UpperCAmelCase_ : Union[str, Any] = [] for arabic, roman in ROMAN: ((UpperCAmelCase_) , (UpperCAmelCase_)) : str = divmod(A__ ,A__ ) result.append(roman * factor ) if number == 0: break return "".join(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
268
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a_ = logging.get_logger(__name__) a_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class __SCREAMING_SNAKE_CASE : def __init__( self : Any , __lowercase : List[str]=None , **__lowercase : Dict ) -> Optional[Any]: logger.info('''`diffusers.OnnxRuntimeModel` is experimental and might change in the future.''' ) SCREAMING_SNAKE_CASE__ : List[str] =model SCREAMING_SNAKE_CASE__ : str =kwargs.get('''model_save_dir''' , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =kwargs.get('''latest_model_name''' , __lowercase ) def __call__( self : int , **__lowercase : str ) -> Any: SCREAMING_SNAKE_CASE__ : Any ={k: np.array(__lowercase ) for k, v in kwargs.items()} return self.model.run(__lowercase , __lowercase ) @staticmethod def __magic_name__ ( __lowercase : Union[str, Path] , __lowercase : Optional[Any]=None , __lowercase : Tuple=None ) -> Any: if provider is None: logger.info('''No onnxruntime provider specified, using CPUExecutionProvider''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''CPUExecutionProvider''' return ort.InferenceSession(__lowercase , providers=[provider] , sess_options=__lowercase ) def __magic_name__ ( self : List[str] , __lowercase : Union[str, Path] , __lowercase : Optional[str] = None , **__lowercase : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ : Optional[Any] =file_name if file_name is not None else ONNX_WEIGHTS_NAME SCREAMING_SNAKE_CASE__ : Optional[Any] =self.model_save_dir.joinpath(self.latest_model_name ) SCREAMING_SNAKE_CASE__ : Any =Path(__lowercase ).joinpath(__lowercase ) try: shutil.copyfile(__lowercase , __lowercase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.model_save_dir.joinpath(__lowercase ) if src_path.exists(): SCREAMING_SNAKE_CASE__ : str =Path(__lowercase ).joinpath(__lowercase ) try: shutil.copyfile(__lowercase , __lowercase ) except shutil.SameFileError: pass def __magic_name__ ( self : Tuple , __lowercase : Union[str, os.PathLike] , **__lowercase : List[Any] , ) -> Any: if os.path.isfile(__lowercase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(__lowercase , exist_ok=__lowercase ) # saving model weights/files self._save_pretrained(__lowercase , **__lowercase ) @classmethod def __magic_name__ ( cls : List[Any] , __lowercase : Union[str, Path] , __lowercase : Optional[Union[bool, str, None]] = None , __lowercase : Optional[Union[str, None]] = None , __lowercase : bool = False , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , __lowercase : Optional["ort.SessionOptions"] = None , **__lowercase : Union[str, Any] , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple =file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__lowercase ): SCREAMING_SNAKE_CASE__ : int =OnnxRuntimeModel.load_model( os.path.join(__lowercase , __lowercase ) , provider=__lowercase , sess_options=__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =Path(__lowercase ) # load model from hub else: # download model SCREAMING_SNAKE_CASE__ : int =hf_hub_download( repo_id=__lowercase , filename=__lowercase , use_auth_token=__lowercase , revision=__lowercase , cache_dir=__lowercase , force_download=__lowercase , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =Path(__lowercase ).parent SCREAMING_SNAKE_CASE__ : List[str] =Path(__lowercase ).name SCREAMING_SNAKE_CASE__ : int =OnnxRuntimeModel.load_model(__lowercase , provider=__lowercase , sess_options=__lowercase ) return cls(model=__lowercase , **__lowercase ) @classmethod def __magic_name__ ( cls : List[Any] , __lowercase : Union[str, Path] , __lowercase : bool = True , __lowercase : Optional[str] = None , __lowercase : Optional[str] = None , **__lowercase : List[str] , ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =None if len(str(__lowercase ).split('''@''' ) ) == 2: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =model_id.split('''@''' ) return cls._from_pretrained( model_id=__lowercase , revision=__lowercase , cache_dir=__lowercase , force_download=__lowercase , use_auth_token=__lowercase , **__lowercase , )
222
'''simple docstring''' from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE__ : List[Any] =repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE__ : List[Any] =sorted([comment for comment in issue.get_comments()], key=lambda UpperCamelCase__ : i.created_at, reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
222
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE : Dict = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] __SCREAMING_SNAKE_CASE : str = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] __SCREAMING_SNAKE_CASE : Tuple = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): __SCREAMING_SNAKE_CASE : Optional[Any] = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
'''simple docstring''' class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : Any , A : str , A : Union[str, Any] ): _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Any = graph self._normalize_graph(A , A ) _UpperCAmelCase : List[str] = len(A ) _UpperCAmelCase : Tuple = None def _A ( self : Any , A : List[Any] , A : str ): if sources is int: _UpperCAmelCase : List[Any] = [sources] if sinks is int: _UpperCAmelCase : List[Any] = [sinks] if len(A ) == 0 or len(A ) == 0: return _UpperCAmelCase : str = sources[0] _UpperCAmelCase : Union[str, Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(A ) > 1 or len(A ) > 1: _UpperCAmelCase : Dict = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _UpperCAmelCase : Optional[Any] = max_input_flow _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _UpperCAmelCase : Dict = max_input_flow _UpperCAmelCase : List[Any] = size - 1 def _A ( self : Union[str, Any] ): if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _A ( self : Tuple , A : Dict ): _UpperCAmelCase : str = algorithm(self ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , A : str ): _UpperCAmelCase : Optional[int] = flow_network _UpperCAmelCase : Any = flow_network.verticesCount _UpperCAmelCase : List[str] = flow_network.sourceIndex _UpperCAmelCase : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _UpperCAmelCase : Any = flow_network.graph _UpperCAmelCase : Union[str, Any] = False def _A ( self : List[str] ): if not self.executed: self._algorithm() _UpperCAmelCase : int = True def _A ( self : List[Any] ): pass class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Optional[int] , A : Union[str, Any] ): super().__init__(A ) # use this to save your result _UpperCAmelCase : Any = -1 def _A ( self : Union[str, Any] ): if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class lowerCamelCase_ (snake_case__ ): '''simple docstring''' def __init__( self : Tuple , A : int ): super().__init__(A ) _UpperCAmelCase : List[str] = [[0] * self.verticies_count for i in range(self.verticies_count )] _UpperCAmelCase : Union[str, Any] = [0] * self.verticies_count _UpperCAmelCase : int = [0] * self.verticies_count def _A ( self : Dict ): _UpperCAmelCase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _UpperCAmelCase : Optional[int] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _UpperCAmelCase : Any = 0 while i < len(A ): _UpperCAmelCase : int = vertices_list[i] _UpperCAmelCase : int = self.heights[vertex_index] self.process_vertex(A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A ) ) _UpperCAmelCase : Union[str, Any] = 0 else: i += 1 _UpperCAmelCase : List[Any] = sum(self.preflow[self.source_index] ) def _A ( self : Union[str, Any] , A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A , A ) self.relabel(A ) def _A ( self : int , A : Dict , A : List[str] ): _UpperCAmelCase : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _A ( self : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : str = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _UpperCAmelCase : Tuple = self.heights[to_index] if min_height is not None: _UpperCAmelCase : Optional[Any] = min_height + 1 if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = [0] __SCREAMING_SNAKE_CASE : Union[str, Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __SCREAMING_SNAKE_CASE : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __SCREAMING_SNAKE_CASE : Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __SCREAMING_SNAKE_CASE : Optional[Any] = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
31
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCAmelCase( lowercase__ ): """simple docstring""" __lowerCamelCase = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ): '''simple docstring''' super().__init__(**lowercase_ ) lowercase__ : List[str]= size if size is not None else {"shortest_edge": 224} lowercase__ : Tuple= get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase__ : Union[str, Any]= crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase__ : int= get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name="crop_size" ) lowercase__ : Any= do_resize lowercase__ : List[Any]= size lowercase__ : Union[str, Any]= resample lowercase__ : int= do_center_crop lowercase__ : str= crop_size lowercase__ : Optional[Any]= do_rescale lowercase__ : Tuple= rescale_factor lowercase__ : Union[str, Any]= do_normalize lowercase__ : Dict= image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase__ : Tuple= image_std if image_std is not None else OPENAI_CLIP_STD lowercase__ : List[Any]= do_convert_rgb def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): '''simple docstring''' lowercase__ : List[Any]= get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ : str= get_resize_output_image_size(lowercase_ , size=size["shortest_edge"] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' lowercase__ : Union[str, Any]= get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size["height"], size["width"]) , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' lowercase__ : List[Any]= do_resize if do_resize is not None else self.do_resize lowercase__ : List[str]= size if size is not None else self.size lowercase__ : str= get_size_dict(lowercase_ , param_name="size" , default_to_square=lowercase_ ) lowercase__ : Optional[Any]= resample if resample is not None else self.resample lowercase__ : Union[str, Any]= do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ : Tuple= crop_size if crop_size is not None else self.crop_size lowercase__ : List[Any]= get_size_dict(lowercase_ , param_name="crop_size" , default_to_square=lowercase_ ) lowercase__ : Union[str, Any]= do_rescale if do_rescale is not None else self.do_rescale lowercase__ : List[str]= rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ : Any= do_normalize if do_normalize is not None else self.do_normalize lowercase__ : List[Any]= image_mean if image_mean is not None else self.image_mean lowercase__ : Optional[Any]= image_std if image_std is not None else self.image_std lowercase__ : str= do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase__ : Tuple= make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase__ : List[str]= [convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. lowercase__ : Dict= [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase__ : List[str]= [self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: lowercase__ : List[str]= [self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: lowercase__ : Optional[Any]= [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase__ : List[Any]= [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase__ : str= [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase__ : Tuple= {"pixel_values": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
351
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Union[str, Any] = False class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= "A painting of a squirrel eating a burger " lowercase__ : Optional[Any]= torch.manual_seed(0 ) lowercase__ : List[str]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowercase__ : Optional[Any]= VersatileDiffusionTextToImagePipeline.from_pretrained(snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : Any= generator.manual_seed(0 ) lowercase__ : Tuple= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase__ : List[str]= "A painting of a squirrel eating a burger " lowercase__ : Union[str, Any]= torch.manual_seed(0 ) lowercase__ : Optional[Any]= pipe( prompt=snake_case__ , generator=snake_case__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowercase__ : List[str]= image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ : Optional[int]= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
150
0
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCamelCase__ : str = logging.get_logger(__name__) # General docstring lowerCamelCase__ : str = '''PoolFormerConfig''' # Base docstring lowerCamelCase__ : Any = '''sail/poolformer_s12''' lowerCamelCase__ : Optional[Any] = [1, 5_12, 7, 7] # Image classification docstring lowerCamelCase__ : str = '''sail/poolformer_s12''' lowerCamelCase__ : List[Any] = '''tabby, tabby cat''' lowerCamelCase__ : Union[str, Any] = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase ( _lowerCAmelCase : List[str], _lowerCAmelCase : float = 0.0, _lowerCAmelCase : bool = False ) -> Union[str, Any]: if drop_prob == 0.0 or not training: return input _UpperCAmelCase : List[Any] = 1 - drop_prob _UpperCAmelCase : Optional[int] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _UpperCAmelCase : List[Any] = keep_prob + torch.rand(_lowerCAmelCase, dtype=input.dtype, device=input.device ) random_tensor.floor_() # binarize _UpperCAmelCase : str = input.div(_lowerCAmelCase ) * random_tensor return output class _UpperCAmelCase ( nn.Module): def __init__( self , _A = None ) -> None: '''simple docstring''' super().__init__() _UpperCAmelCase : List[str] = drop_prob def __snake_case ( self , _A ) -> torch.Tensor: '''simple docstring''' return drop_path(_A , self.drop_prob , self.training ) def __snake_case ( self ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class _UpperCAmelCase ( nn.Module): def __init__( self , _A , _A , _A , _A , _A , _A=None ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : Any = patch_size if isinstance(_A , collections.abc.Iterable ) else (patch_size, patch_size) _UpperCAmelCase : Any = stride if isinstance(_A , collections.abc.Iterable ) else (stride, stride) _UpperCAmelCase : List[str] = padding if isinstance(_A , collections.abc.Iterable ) else (padding, padding) _UpperCAmelCase : str = nn.Convad(_A , _A , kernel_size=_A , stride=_A , padding=_A ) _UpperCAmelCase : Optional[int] = norm_layer(_A ) if norm_layer else nn.Identity() def __snake_case ( self , _A ) -> Any: '''simple docstring''' _UpperCAmelCase : List[Any] = self.projection(_A ) _UpperCAmelCase : int = self.norm(_A ) return embeddings class _UpperCAmelCase ( nn.GroupNorm): def __init__( self , _A , **_A ) -> str: '''simple docstring''' super().__init__(1 , _A , **_A ) class _UpperCAmelCase ( nn.Module): def __init__( self , _A ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] = nn.AvgPoolad(_A , stride=1 , padding=pool_size // 2 , count_include_pad=_A ) def __snake_case ( self , _A ) -> int: '''simple docstring''' return self.pool(_A ) - hidden_states class _UpperCAmelCase ( nn.Module): def __init__( self , _A , _A , _A , _A ) -> Any: '''simple docstring''' super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Convad(_A , _A , 1 ) _UpperCAmelCase : Dict = nn.Convad(_A , _A , 1 ) _UpperCAmelCase : List[Any] = PoolFormerDropPath(_A ) if isinstance(config.hidden_act , _A ): _UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] else: _UpperCAmelCase : str = config.hidden_act def __snake_case ( self , _A ) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = self.conva(_A ) _UpperCAmelCase : Any = self.act_fn(_A ) _UpperCAmelCase : Dict = self.drop(_A ) _UpperCAmelCase : str = self.conva(_A ) _UpperCAmelCase : int = self.drop(_A ) return hidden_states class _UpperCAmelCase ( nn.Module): def __init__( self , _A , _A , _A , _A , _A , _A ) -> str: '''simple docstring''' super().__init__() _UpperCAmelCase : int = PoolFormerPooling(_A ) _UpperCAmelCase : List[Any] = PoolFormerOutput(_A , _A , _A , _A ) _UpperCAmelCase : int = PoolFormerGroupNorm(_A ) _UpperCAmelCase : Dict = PoolFormerGroupNorm(_A ) # Useful for training neural nets _UpperCAmelCase : Optional[int] = PoolFormerDropPath(_A ) if drop_path > 0.0 else nn.Identity() _UpperCAmelCase : Dict = config.use_layer_scale if config.use_layer_scale: _UpperCAmelCase : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) , requires_grad=_A ) _UpperCAmelCase : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((_A) ) , requires_grad=_A ) def __snake_case ( self , _A ) -> Union[str, Any]: '''simple docstring''' if self.use_layer_scale: _UpperCAmelCase : List[Any] = self.pooling(self.before_norm(_A ) ) _UpperCAmelCase : Any = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _UpperCAmelCase : Dict = hidden_states + self.drop_path(_A ) _UpperCAmelCase : Optional[Any] = () _UpperCAmelCase : List[Any] = self.output(self.after_norm(_A ) ) _UpperCAmelCase : Any = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _UpperCAmelCase : str = hidden_states + self.drop_path(_A ) _UpperCAmelCase : Optional[Any] = (output,) + outputs return outputs else: _UpperCAmelCase : str = self.drop_path(self.pooling(self.before_norm(_A ) ) ) # First residual connection _UpperCAmelCase : Optional[Any] = pooling_output + hidden_states _UpperCAmelCase : Optional[Any] = () # Second residual connection inside the PoolFormerOutput block _UpperCAmelCase : List[Any] = self.drop_path(self.output(self.after_norm(_A ) ) ) _UpperCAmelCase : Dict = hidden_states + layer_output _UpperCAmelCase : Optional[int] = (output,) + outputs return outputs class _UpperCAmelCase ( nn.Module): def __init__( self , _A ) -> Dict: '''simple docstring''' super().__init__() _UpperCAmelCase : Optional[Any] = config # stochastic depth decay rule _UpperCAmelCase : Union[str, Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _UpperCAmelCase : Any = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _UpperCAmelCase : List[str] = nn.ModuleList(_A ) # Transformer blocks _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[str] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _UpperCAmelCase : int = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_A ) ) _UpperCAmelCase : Union[str, Any] = nn.ModuleList(_A ) def __snake_case ( self , _A , _A=False , _A=True ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[str] = () if output_hidden_states else None _UpperCAmelCase : Dict = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = layers # Get patch embeddings from hidden_states _UpperCAmelCase : Tuple = embedding_layer(_A ) # Send the embeddings through the blocks for _, blk in enumerate(_A ): _UpperCAmelCase : Optional[Any] = blk(_A ) _UpperCAmelCase : Dict = layer_outputs[0] if output_hidden_states: _UpperCAmelCase : str = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_A , hidden_states=_A ) class _UpperCAmelCase ( __a): __a : str = PoolFormerConfig __a : Optional[int] = """poolformer""" __a : Optional[int] = """pixel_values""" __a : Optional[Any] = True def __snake_case ( self , _A ) -> Tuple: '''simple docstring''' if isinstance(_A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __snake_case ( self , _A , _A=False ) -> Optional[Any]: '''simple docstring''' if isinstance(_A , _A ): _UpperCAmelCase : Tuple = value lowerCamelCase__ : Any = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase__ : int = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , __a , ) class _UpperCAmelCase ( __a): def __init__( self , _A ) -> List[Any]: '''simple docstring''' super().__init__(_A ) _UpperCAmelCase : Optional[Any] = config _UpperCAmelCase : List[Any] = PoolFormerEncoder(_A ) # Initialize weights and apply final processing self.post_init() def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __snake_case ( self , _A = None , _A = None , _A = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' _UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) _UpperCAmelCase : Optional[Any] = self.encoder( _A , output_hidden_states=_A , return_dict=_A , ) _UpperCAmelCase : Dict = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_A , hidden_states=encoder_outputs.hidden_states , ) class _UpperCAmelCase ( nn.Module): def __init__( self , _A ) -> Dict: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def __snake_case ( self , _A ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.dense(_A ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , __a , ) class _UpperCAmelCase ( __a): def __init__( self , _A ) -> Optional[int]: '''simple docstring''' super().__init__(_A ) _UpperCAmelCase : int = config.num_labels _UpperCAmelCase : List[str] = PoolFormerModel(_A ) # Final norm _UpperCAmelCase : Dict = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _UpperCAmelCase : Union[str, Any] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __snake_case ( self , _A = None , _A = None , _A = None , _A = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' _UpperCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict _UpperCAmelCase : Union[str, Any] = self.poolformer( _A , output_hidden_states=_A , return_dict=_A , ) _UpperCAmelCase : Union[str, Any] = outputs[0] _UpperCAmelCase : Optional[int] = self.classifier(self.norm(_A ).mean([-2, -1] ) ) _UpperCAmelCase : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCAmelCase : Optional[int] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCAmelCase : Dict = """single_label_classification""" else: _UpperCAmelCase : Optional[Any] = """multi_label_classification""" if self.config.problem_type == "regression": _UpperCAmelCase : Dict = MSELoss() if self.num_labels == 1: _UpperCAmelCase : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCAmelCase : List[Any] = loss_fct(_A , _A ) elif self.config.problem_type == "single_label_classification": _UpperCAmelCase : Union[str, Any] = CrossEntropyLoss() _UpperCAmelCase : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCAmelCase : Optional[Any] = BCEWithLogitsLoss() _UpperCAmelCase : int = loss_fct(_A , _A ) if not return_dict: _UpperCAmelCase : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_A , logits=_A , hidden_states=outputs.hidden_states )
246
"""simple docstring""" import math lowerCamelCase__ : List[Any] = 10 lowerCamelCase__ : Optional[int] = 7 lowerCamelCase__ : Dict = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( _lowerCAmelCase : int = 20 ) -> str: _UpperCAmelCase : List[str] = math.comb(_lowerCAmelCase, _lowerCAmelCase ) _UpperCAmelCase : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, _lowerCAmelCase ) _UpperCAmelCase : List[str] = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
246
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase: int = logging.get_logger(__name__) __lowercase: Any = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Dict = 'encodec' def __init__( self : int, a_ : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0], a_ : Optional[int]=2_4000, a_ : List[Any]=1, a_ : Optional[Any]=False, a_ : Optional[Any]=None, a_ : Optional[int]=None, a_ : List[Any]=128, a_ : Any=32, a_ : str=1, a_ : Optional[int]=[8, 5, 4, 2], a_ : Tuple="weight_norm", a_ : Dict=7, a_ : Union[str, Any]=7, a_ : Tuple=3, a_ : List[str]=2, a_ : Any=True, a_ : str="reflect", a_ : Optional[Any]=2, a_ : Optional[Any]=2, a_ : Union[str, Any]=1.0, a_ : Optional[Any]=1024, a_ : Optional[int]=None, a_ : str=True, **a_ : List[str], ): """simple docstring""" UpperCamelCase__ = target_bandwidths UpperCamelCase__ = sampling_rate UpperCamelCase__ = audio_channels UpperCamelCase__ = normalize UpperCamelCase__ = chunk_length_s UpperCamelCase__ = overlap UpperCamelCase__ = hidden_size UpperCamelCase__ = num_filters UpperCamelCase__ = num_residual_layers UpperCamelCase__ = upsampling_ratios UpperCamelCase__ = norm_type UpperCamelCase__ = kernel_size UpperCamelCase__ = last_kernel_size UpperCamelCase__ = residual_kernel_size UpperCamelCase__ = dilation_growth_rate UpperCamelCase__ = use_causal_conv UpperCamelCase__ = pad_mode UpperCamelCase__ = compress UpperCamelCase__ = num_lstm_layers UpperCamelCase__ = trim_right_ratio UpperCamelCase__ = codebook_size UpperCamelCase__ = codebook_dim if codebook_dim is not None else hidden_size UpperCamelCase__ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**a_ ) @property def lowercase_ ( self : Optional[Any] ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_ ( self : Dict ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1, int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowercase_ ( self : Dict ): """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
31
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __lowercase: str = random.Random() def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int]=1.0 , _UpperCamelCase : Dict=None , _UpperCamelCase : List[str]=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: UpperCamelCase__ = global_rng UpperCamelCase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase ( unittest.TestCase): def __init__( self : List[Any], a_ : List[str], a_ : Any=7, a_ : Dict=400, a_ : str=2000, a_ : List[Any]=24, a_ : int=24, a_ : int=0.0, a_ : Union[str, Any]=1_6000, a_ : Union[str, Any]=True, a_ : Optional[Any]=True, ): """simple docstring""" UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = min_seq_length UpperCamelCase__ = max_seq_length UpperCamelCase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ = feature_size UpperCamelCase__ = num_mel_bins UpperCamelCase__ = padding_value UpperCamelCase__ = sampling_rate UpperCamelCase__ = return_attention_mask UpperCamelCase__ = do_normalize def lowercase_ ( self : Tuple ): """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase_ ( self : Optional[Any], a_ : Union[str, Any]=False, a_ : Optional[int]=False ): """simple docstring""" def _flatten(a_ : Dict ): return list(itertools.chain(*a_ ) ) if equal_length: UpperCamelCase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: UpperCamelCase__ = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = SpeechaTextFeatureExtractionTester(self ) def lowercase_ ( self : Optional[int], a_ : Tuple ): """simple docstring""" self.assertTrue(np.all(np.mean(a_, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ = feature_extractor(a_, padding=a_, return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test batched UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase__ = np.asarray(a_ ) UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features UpperCamelCase__ = feature_extractor(a_, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(a_, a_ ): self.assertTrue(np.allclose(a_, a_, atol=1e-3 ) ) def lowercase_ ( self : List[str] ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, padding=a_, max_length=a_, return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = ["longest", "max_length", "do_not_pad"] UpperCamelCase__ = [None, 16, None] for max_length, padding in zip(a_, a_ ): UpperCamelCase__ = feature_extractor( a_, max_length=a_, padding=a_, return_tensors="np", return_attention_mask=a_ ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase_ ( self : str ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="max_length", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase_ ( self : Any ): """simple docstring""" UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=4, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24) ) UpperCamelCase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] UpperCamelCase__ = feature_extractor( a_, padding="longest", max_length=16, truncation=a_, return_tensors="np", return_attention_mask=a_, ) UpperCamelCase__ = inputs.input_features UpperCamelCase__ = inputs.attention_mask UpperCamelCase__ = np.sum(attention_mask == 1, axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24) ) def lowercase_ ( self : Optional[Any] ): """simple docstring""" import torch UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = np.random.rand(100, 32 ).astype(np.floataa ) UpperCamelCase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase_ ( self : List[str], a_ : int ): """simple docstring""" from datasets import load_dataset UpperCamelCase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech UpperCamelCase__ = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase_ ( self : int ): """simple docstring""" UpperCamelCase__ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on UpperCamelCase__ = self._load_datasamples(1 ) UpperCamelCase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase__ = feature_extractor(a_, return_tensors="pt" ).input_features self.assertEquals(input_features.shape, (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30], a_, atol=1e-4 ) )
31
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : Optional[Any] = "longformer" def __init__(self : Optional[Any] , snake_case__ : Union[List[int], int] = 5_12 , snake_case__ : int = 2 , snake_case__ : int = 1 , snake_case__ : int = 0 , snake_case__ : int = 2 , snake_case__ : int = 3_05_22 , snake_case__ : int = 7_68 , snake_case__ : int = 12 , snake_case__ : int = 12 , snake_case__ : int = 30_72 , snake_case__ : str = "gelu" , snake_case__ : float = 0.1 , snake_case__ : float = 0.1 , snake_case__ : int = 5_12 , snake_case__ : int = 2 , snake_case__ : float = 0.02 , snake_case__ : float = 1e-12 , snake_case__ : bool = False , **snake_case__ : List[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) snake_case : List[Any] = attention_window snake_case : Any = sep_token_id snake_case : str = bos_token_id snake_case : List[str] = eos_token_id snake_case : Optional[Any] = vocab_size snake_case : List[str] = hidden_size snake_case : Dict = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : str = hidden_act snake_case : List[str] = intermediate_size snake_case : Any = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : int = max_position_embeddings snake_case : int = type_vocab_size snake_case : Dict = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : List[str] = onnx_export class UpperCAmelCase ( A_ ): def __init__(self : Dict , snake_case__ : "PretrainedConfig" , snake_case__ : str = "default" , snake_case__ : "List[PatchingSpec]" = None ) -> Dict: '''simple docstring''' super().__init__(snake_case__ , snake_case__ , snake_case__ ) snake_case : int = True @property def _SCREAMING_SNAKE_CASE (self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' snake_case : Any = super().outputs if self.task == "default": snake_case : List[Any] = {0: "batch"} return outputs @property def _SCREAMING_SNAKE_CASE (self : int ) -> float: '''simple docstring''' return 1e-4 @property def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def _SCREAMING_SNAKE_CASE (self : List[Any] , snake_case__ : "PreTrainedTokenizerBase" , snake_case__ : int = -1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case : int = super().generate_dummy_inputs( preprocessor=snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly snake_case : Optional[int] = torch.zeros_like(inputs["input_ids"] ) # make every second token global snake_case : Union[str, Any] = 1 return inputs
59
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): """simple docstring""" super().__init__() A_ : Optional[int] = nn.Parameter(torch.zeros(1 , snake_case_ ) ) A_ : Optional[int] = nn.Parameter(torch.ones(1 , snake_case_ ) ) def lowerCamelCase_ ( self , snake_case_ = None , snake_case_ = None , ): """simple docstring""" A_ : str = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) A_ : Optional[int] = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = (embeds * self.std) + self.mean return embeds
286
0
'''simple docstring''' from __future__ import annotations from random import choice def __snake_case( _lowerCAmelCase ) -> Any: return choice(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time snake_case__ : Optional[Any] = [e for e in lst if e < pivot] snake_case__ : Tuple = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Dict=7 , snake_case_ : str=3 , snake_case_ : List[str]=18 , snake_case_ : Tuple=30 , snake_case_ : int=400 , snake_case_ : Any=True , snake_case_ : List[str]=None , snake_case_ : List[str]=True , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=True , ): snake_case__ : List[str] = size if size is not None else {"""shortest_edge""": 20} snake_case__ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} snake_case__ : Tuple = parent snake_case__ : Tuple = batch_size snake_case__ : List[str] = num_channels snake_case__ : Any = image_size snake_case__ : str = min_resolution snake_case__ : Dict = max_resolution snake_case__ : Optional[int] = do_resize snake_case__ : int = size snake_case__ : List[Any] = do_center_crop snake_case__ : int = crop_size snake_case__ : Dict = do_flip_channel_order def lowerCamelCase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = MobileViTImageProcessingTester(self ) @property def lowerCamelCase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """do_flip_channel_order""" ) ) def lowerCamelCase ( self : List[str] ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) snake_case__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase ( self : str ): pass def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : str = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : List[Any] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : Optional[Any] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
43
1
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = 50 , A_ = "pil" , A_ = True , **A_ , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" UpperCamelCase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A_ , ) UpperCamelCase = image.to(self.device ) # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCamelCase = self.unet(A_ , A_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , A_ , A_ ).prev_sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=A_ ), "This is a local test"
222
from random import randint from tempfile import TemporaryFile import numpy as np def A ( lowercase , lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 if start < end: UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count _UpperCAmelCase : Union[str, Any] = TemporaryFile() _UpperCAmelCase : List[Any] = 100 # 1000 elements are to be sorted _UpperCAmelCase ,_UpperCAmelCase : Any = 0, 1 # mean and standard deviation _UpperCAmelCase : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _UpperCAmelCase : Any = np.load(outfile) _UpperCAmelCase : str = len(M) - 1 _UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
222
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, __magic_name__, __magic_name__ = True, __magic_name__ = None, __magic_name__ = 32, __magic_name__ = True, __magic_name__ = 1 / 255, __magic_name__ = True, __magic_name__ = True, __magic_name__ = [0.4814_5466, 0.457_8275, 0.4082_1073], __magic_name__ = [0.2686_2954, 0.2613_0258, 0.2757_7711], __magic_name__ = True, __magic_name__=7, __magic_name__=30, __magic_name__=400, __magic_name__=3, ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : List[str] = parent UpperCamelCase__ : Optional[Any] = do_resize UpperCamelCase__ : Dict = size if size is not None else {'''shortest_edge''': 288} UpperCamelCase__ : Any = size_divisor UpperCamelCase__ : Dict = do_rescale UpperCamelCase__ : List[str] = rescale_factor UpperCamelCase__ : Tuple = do_normalize UpperCamelCase__ : Tuple = do_center_crop UpperCamelCase__ : Tuple = image_mean UpperCamelCase__ : Optional[int] = image_std UpperCamelCase__ : Tuple = do_pad UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : Union[str, Any] = num_channels UpperCamelCase__ : Dict = min_resolution UpperCamelCase__ : Optional[int] = max_resolution def UpperCamelCase__ ( self ) -> str: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCamelCase__ ( self, __magic_name__, __magic_name__=False ) -> str: """simple docstring""" if not batched: UpperCamelCase__ : Dict = self.size['''shortest_edge'''] UpperCamelCase__ : Tuple = image_inputs[0] if isinstance(__magic_name__, Image.Image ): UpperCamelCase__ : Tuple = image.size else: UpperCamelCase__ : str = image.shape[1], image.shape[2] UpperCamelCase__ : Any = size / min(__magic_name__, __magic_name__ ) if h < w: UpperCamelCase__ : List[str] = size, scale * w else: UpperCamelCase__ : Union[str, Any] = scale * h, size UpperCamelCase__ : int = int((1333 / 800) * size ) if max(__magic_name__, __magic_name__ ) > max_size: UpperCamelCase__ : List[Any] = max_size / max(__magic_name__, __magic_name__ ) UpperCamelCase__ : Optional[Any] = newh * scale UpperCamelCase__ : int = neww * scale UpperCamelCase__ : Optional[Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCamelCase__ : List[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCamelCase__ : Tuple = [] for image in image_inputs: UpperCamelCase__ : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ : Union[str, Any] = max(__magic_name__, key=lambda __magic_name__ : item[0] )[0] UpperCamelCase__ : Union[str, Any] = max(__magic_name__, key=lambda __magic_name__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Tuple = BridgeTowerImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = BridgeTowerImageProcessingTester(self ) @property def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__, '''image_mean''' ) ) self.assertTrue(hasattr(__magic_name__, '''image_std''' ) ) self.assertTrue(hasattr(__magic_name__, '''do_normalize''' ) ) self.assertTrue(hasattr(__magic_name__, '''do_resize''' ) ) self.assertTrue(hasattr(__magic_name__, '''size''' ) ) self.assertTrue(hasattr(__magic_name__, '''size_divisor''' ) ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__, Image.Image ) # Test not batched input UpperCamelCase__ : Optional[Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values UpperCamelCase__ : Optional[Any] = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCamelCase__ : int = image_processing(__magic_name__, return_tensors='''pt''' ).pixel_values UpperCamelCase__ : Any = self.image_processor_tester.get_expected_values(__magic_name__, batched=__magic_name__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=__magic_name__, numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__, np.ndarray ) # Test not batched input UpperCamelCase__ : List[str] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values UpperCamelCase__ : Tuple = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCamelCase__ : Union[str, Any] = image_processing(__magic_name__, return_tensors='''pt''' ).pixel_values UpperCamelCase__ : List[Any] = self.image_processor_tester.get_expected_values(__magic_name__, batched=__magic_name__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=__magic_name__, torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__, torch.Tensor ) # Test not batched input UpperCamelCase__ : Any = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values UpperCamelCase__ : Dict = self.image_processor_tester.get_expected_values(__magic_name__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched UpperCamelCase__ : int = image_processing(__magic_name__, return_tensors='''pt''' ).pixel_values UpperCamelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__magic_name__, batched=__magic_name__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
367
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> list[int]: if length <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
247
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL lowercase : int = logging.get_logger(__name__) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[List[ImageInput]]: if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(SCREAMING_SNAKE_CASE__ ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class __snake_case ( lowerCAmelCase ): _a : Dict= ["pixel_values"] def __init__( self ,snake_case = True ,snake_case = None ,snake_case = PILImageResampling.BILINEAR ,snake_case = True ,snake_case = None ,snake_case = True ,snake_case = 1 / 255 ,snake_case = True ,snake_case = True ,snake_case = None ,snake_case = None ,**snake_case ,): '''simple docstring''' super().__init__(**snake_case ) lowercase : int = size if size is not None else {"""shortest_edge""": 256} lowercase : Union[str, Any] = get_size_dict(snake_case ,default_to_square=snake_case ) lowercase : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase : Tuple = get_size_dict(snake_case ,param_name="""crop_size""" ) lowercase : Union[str, Any] = do_resize lowercase : str = size lowercase : Optional[int] = do_center_crop lowercase : List[Any] = crop_size lowercase : List[str] = resample lowercase : Any = do_rescale lowercase : Union[str, Any] = rescale_factor lowercase : Any = offset lowercase : Optional[int] = do_normalize lowercase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = PILImageResampling.BILINEAR ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : List[Any] = get_size_dict(snake_case ,default_to_square=snake_case ) if "shortest_edge" in size: lowercase : str = get_resize_output_image_size(snake_case ,size["""shortest_edge"""] ,default_to_square=snake_case ) elif "height" in size and "width" in size: lowercase : Optional[int] = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(snake_case ,size=snake_case ,resample=snake_case ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : List[Any] = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(snake_case ,size=(size["""height"""], size["""width"""]) ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case = True ,snake_case = None ,**snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = image.astype(np.floataa ) if offset: lowercase : Optional[Any] = image - (scale / 2) return rescale(snake_case ,scale=snake_case ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case = None ,**snake_case ,): '''simple docstring''' return normalize(snake_case ,mean=snake_case ,std=snake_case ,data_format=snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = ChannelDimension.FIRST ,): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowercase : Optional[int] = to_numpy_array(snake_case ) if do_resize: lowercase : Union[str, Any] = self.resize(image=snake_case ,size=snake_case ,resample=snake_case ) if do_center_crop: lowercase : Optional[Any] = self.center_crop(snake_case ,size=snake_case ) if do_rescale: lowercase : Optional[int] = self.rescale(image=snake_case ,scale=snake_case ,offset=snake_case ) if do_normalize: lowercase : Any = self.normalize(image=snake_case ,mean=snake_case ,std=snake_case ) lowercase : Any = to_channel_dimension_format(snake_case ,snake_case ) return image def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = None ,snake_case = ChannelDimension.FIRST ,**snake_case ,): '''simple docstring''' lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase : List[str] = resample if resample is not None else self.resample lowercase : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : List[str] = offset if offset is not None else self.offset lowercase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowercase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowercase : Optional[Any] = image_std if image_std is not None else self.image_std lowercase : int = size if size is not None else self.size lowercase : List[Any] = get_size_dict(snake_case ,default_to_square=snake_case ) lowercase : str = crop_size if crop_size is not None else self.crop_size lowercase : List[Any] = get_size_dict(snake_case ,param_name="""crop_size""" ) if not valid_images(snake_case ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowercase : List[Any] = make_batched(snake_case ) lowercase : Any = [ [ self._preprocess_image( image=snake_case ,do_resize=snake_case ,size=snake_case ,resample=snake_case ,do_center_crop=snake_case ,crop_size=snake_case ,do_rescale=snake_case ,rescale_factor=snake_case ,offset=snake_case ,do_normalize=snake_case ,image_mean=snake_case ,image_std=snake_case ,data_format=snake_case ,) for img in video ] for video in videos ] lowercase : Optional[int] = {"""pixel_values""": videos} return BatchFeature(data=snake_case ,tensor_type=snake_case )
20
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient SCREAMING_SNAKE_CASE__ = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"]) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> List[Any]: """simple docstring""" snake_case = test_results.split(' ' ) snake_case = 0 snake_case = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. snake_case = expressions[-2] if '=' in expressions[-1] else expressions[-1] for i, expression in enumerate(_UpperCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" snake_case = {} snake_case = None snake_case = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , _UpperCamelCase ): snake_case = True snake_case = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): snake_case = line snake_case = False return failures class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = title snake_case = doc_test_results['time_spent'].split(',' )[0] snake_case = doc_test_results['success'] snake_case = doc_test_results['failures'] snake_case = self.n_success + self.n_failures # Failures and success of the modeling tests snake_case = doc_test_results @property def snake_case ( self ): """simple docstring""" snake_case = [self._time_spent] snake_case = 0 for time in time_spent: snake_case = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase ) == 1: snake_case = [0, 0, time_parts[0]] snake_case ,snake_case ,snake_case = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds snake_case ,snake_case ,snake_case = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return F"""{int(lowerCAmelCase )}h{int(lowerCAmelCase )}m{int(lowerCAmelCase )}s""" @property def snake_case ( self ): """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case ( self ): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def snake_case ( self ): """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def snake_case ( self ): """simple docstring""" snake_case = 40 snake_case = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase , lowerCAmelCase )} snake_case = '' for category, failures in category_failures.items(): if len(lowerCAmelCase ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def snake_case ( self ): """simple docstring""" snake_case = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCAmelCase ) @staticmethod def snake_case ( ): """simple docstring""" snake_case = [ { 'type': 'section', 'text': { 'type': 'plain_text', 'text': 'There was an issue running the tests.', }, 'accessory': { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True}, 'url': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(lowerCAmelCase )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=lowerCAmelCase , ) def snake_case ( self ): """simple docstring""" print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) snake_case = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else 'All tests passed.' snake_case = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=lowerCAmelCase , ) def snake_case ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = '' for key, value in failures.items(): snake_case = value[:2_00] + ' [Truncated]' if len(lowerCAmelCase ) > 2_50 else value failures_text += F"""*{key}*\n_{value}_\n\n""" snake_case = job_name snake_case = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}} if job_link is not None: snake_case = { 'type': 'button', 'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True}, 'url': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case ( self ): """simple docstring""" if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) snake_case = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) snake_case = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): snake_case = F"""*Num failures* :{len(job_result["failed"] )} \n""" snake_case = job_result['failures'] snake_case = self.get_reply_blocks(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , text=lowerCAmelCase ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F"""Results for {job}""" , blocks=lowerCAmelCase , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" snake_case = os.environ['GITHUB_RUN_ID'] snake_case = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" snake_case = requests.get(_UpperCamelCase ).json() snake_case = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) snake_case = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(_UpperCamelCase ): snake_case = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , _UpperCamelCase ) return {} def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" snake_case = {} if os.path.exists(_UpperCamelCase ): snake_case = os.listdir(_UpperCamelCase ) for file in files: try: with open(os.path.join(_UpperCamelCase , _UpperCamelCase ) , encoding='utf-8' ) as f: snake_case = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(_UpperCamelCase , _UpperCamelCase )}.""" ) from e return _artifact def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase ): """simple docstring""" snake_case = name snake_case = [] def __str__( self ): """simple docstring""" return self.name def snake_case ( self , lowerCAmelCase ): """simple docstring""" self.paths.append({'name': self.name, 'path': path} ) snake_case = {} snake_case = filter(os.path.isdir , os.listdir() ) for directory in directories: snake_case = directory if artifact_name not in _available_artifacts: snake_case = Artifact(_UpperCamelCase ) _available_artifacts[artifact_name].add_path(_UpperCamelCase ) return _available_artifacts if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = get_job_links() SCREAMING_SNAKE_CASE__ = retrieve_available_artifacts() SCREAMING_SNAKE_CASE__ = collections.OrderedDict( [ ("*.py", "API Examples"), ("*.md", "MD Examples"), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' SCREAMING_SNAKE_CASE__ = { v: { "failed": [], "failures": {}, } for v in docs.values() } # Link to the GitHub Action job SCREAMING_SNAKE_CASE__ = github_actions_job_links.get("run_doctests") SCREAMING_SNAKE_CASE__ = available_artifacts["doc_tests_gpu_test_reports"].paths[0] SCREAMING_SNAKE_CASE__ = retrieve_artifact(artifact_path["name"]) if "stats" in artifact: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = handle_test_results(artifact["stats"]) SCREAMING_SNAKE_CASE__ = failed SCREAMING_SNAKE_CASE__ = success SCREAMING_SNAKE_CASE__ = time_spent[1:-1] + ", " SCREAMING_SNAKE_CASE__ = extract_first_line_failure(artifact["failures_short"]) for line in artifact["summary_short"].split("\n"): if re.search("FAILED", line): SCREAMING_SNAKE_CASE__ = line.replace("FAILED ", "") SCREAMING_SNAKE_CASE__ = line.split()[0].replace("\n", "") if "::" in line: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line.split("::") else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): SCREAMING_SNAKE_CASE__ = docs[file_regex] doc_test_results[category]["failed"].append(test) SCREAMING_SNAKE_CASE__ = all_failures[test] if test in all_failures else "N/A" SCREAMING_SNAKE_CASE__ = failure break SCREAMING_SNAKE_CASE__ = Message("🤗 Results of the doc tests.", doc_test_results) message.post() message.post_reply()
150
0
from __future__ import annotations import time A : Any = list[tuple[int, int]] A : Any = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] A : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class A : '''simple docstring''' def __init__( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Node | None ) -> int: """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = parent class A : '''simple docstring''' def __init__( self : Optional[Any] , __lowerCAmelCase : tuple[int, int] , __lowerCAmelCase : tuple[int, int] ) -> List[str]: """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , __lowerCAmelCase ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , __lowerCAmelCase ) A__ = [self.start] A__ = False def a_ ( self : List[str] ) -> Path | None: """simple docstring""" while self.node_queue: A__ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: A__ = True return self.retrace_path(__lowerCAmelCase ) A__ = self.get_successors(__lowerCAmelCase ) for node in successors: self.node_queue.append(__lowerCAmelCase ) if not self.reached: return [self.start.pos] return None def a_ ( self : Any , __lowerCAmelCase : Node ) -> list[Node]: """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__lowerCAmelCase , __lowerCAmelCase , self.target.pos_y , self.target.pos_x , __lowerCAmelCase ) ) return successors def a_ ( self : List[Any] , __lowerCAmelCase : Node | None ) -> Path: """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path class A : '''simple docstring''' def __init__( self : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" A__ = BreadthFirstSearch(__lowerCAmelCase , __lowerCAmelCase ) A__ = BreadthFirstSearch(__lowerCAmelCase , __lowerCAmelCase ) A__ = False def a_ ( self : Optional[Any] ) -> Path | None: """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: A__ = self.fwd_bfs.node_queue.pop(0 ) A__ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: A__ = True return self.retrace_bidirectional_path( __lowerCAmelCase , __lowerCAmelCase ) A__ = current_bwd_node A__ = current_fwd_node A__ = { self.fwd_bfs: self.fwd_bfs.get_successors(__lowerCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(__lowerCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__lowerCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def a_ ( self : int , __lowerCAmelCase : Node , __lowerCAmelCase : Node ) -> Path: """simple docstring""" A__ = self.fwd_bfs.retrace_path(__lowerCAmelCase ) A__ = self.bwd_bfs.retrace_path(__lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() A__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() A : str = (0, 0) A : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) A : Dict = time.time() A : Any = BreadthFirstSearch(init, goal) A : Union[str, Any] = bfs.search() A : Any = time.time() - start_bfs_time print('''Unidirectional BFS computation time : ''', bfs_time) A : Optional[int] = time.time() A : str = BidirectionalBreadthFirstSearch(init, goal) A : List[Any] = bd_bfs.search() A : Dict = time.time() - start_bd_bfs_time print('''Bidirectional BFS computation time : ''', bd_bfs_time)
276
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
1
'''simple docstring''' import os import sys import unittest __SCREAMING_SNAKE_CASE : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(git_repo_path, """src""", """transformers""") __SCREAMING_SNAKE_CASE : Optional[int] = """ {0} = None """ __SCREAMING_SNAKE_CASE : Dict = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ __SCREAMING_SNAKE_CASE : Union[str, Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : Any ): _UpperCAmelCase : Optional[Any] = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(A ) _UpperCAmelCase : int = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(A , "tokenizers" ) _UpperCAmelCase : Optional[int] = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(A , "tensorflow_text" ) _UpperCAmelCase : List[str] = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(A , "sentencepiece_and_tokenizers" ) _UpperCAmelCase : Any = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(A , "sentencepiece_and_tensorflow_text" ) _UpperCAmelCase : Union[str, Any] = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(A , "sentencepiece_and_tokenizers_and_vision" ) def _A ( self : Any ): _UpperCAmelCase : str = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , A ) self.assertIn("tensorflow_text" , A ) self.assertIn("sentencepiece_and_tokenizers" , A ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def _A ( self : Dict ): _UpperCAmelCase : List[str] = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(A , "\nCONSTANT = None\n" ) _UpperCAmelCase : Union[str, Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( A , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) _UpperCAmelCase : List[str] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" _UpperCAmelCase : Any = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(A , A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Dict = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" _UpperCAmelCase : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , A )
31
'''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCamelCase_ ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
31
1
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCAmelCase : Tuple = HUGGINGFACE_HUB_CACHE _lowerCAmelCase : int = """config.json""" _lowerCAmelCase : Dict = """diffusion_pytorch_model.bin""" _lowerCAmelCase : Dict = """diffusion_flax_model.msgpack""" _lowerCAmelCase : int = """model.onnx""" _lowerCAmelCase : List[Any] = """diffusion_pytorch_model.safetensors""" _lowerCAmelCase : Any = """weights.pb""" _lowerCAmelCase : int = """https://huggingface.co""" _lowerCAmelCase : Union[str, Any] = default_cache_path _lowerCAmelCase : str = """diffusers_modules""" _lowerCAmelCase : List[str] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) _lowerCAmelCase : Any = ["""fp16""", """non-ema"""] _lowerCAmelCase : List[str] = """.self_attn"""
298
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Dict ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=snake_case__ , ) def __a ( self : int , snake_case__ : str , snake_case__ : List[str] ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def __a ( self : Any , snake_case__ : str , snake_case__ : str ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) class lowerCAmelCase__ ( datasets.BeamBasedBuilder ): def __a ( self : Any ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=snake_case__ , ) def __a ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def __a ( self : Dict , snake_case__ : List[Any] , snake_case__ : Any ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Dict: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def SCREAMING_SNAKE_CASE__ ( )-> List[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class lowerCAmelCase__ ( __magic_name__ ): @require_beam def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : Dict ): '''simple docstring''' import apache_beam as beam UpperCAmelCase__ : Dict = beam.io.parquetio.WriteToParquet UpperCAmelCase__ : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Union[str, Any] = DummyBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCAmelCase__ : List[Any] = partial(snake_case__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCAmelCase__ : Dict = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def __a ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=snake_case__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase__ : List[Any] = NestedBeamDataset(cache_dir=snake_case__ , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCAmelCase__ : Tuple = builder.as_dataset() self.assertEqual(dset["train"].num_rows , snake_case__ ) self.assertEqual(dset["train"].info.splits["train"].num_examples , snake_case__ ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(snake_case__ , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Dict = MvpTokenizer a__ : str = MvpTokenizerFast a__ : Any = True a__ : Optional[int] = filter_roberta_detectors def UpperCamelCase__ ( self) -> List[str]: super().setUp() __UpperCamelCase :str = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase :int = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :Dict = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase :List[str] = {'''unk_token''': '''<unk>'''} __UpperCamelCase :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__lowercase) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__lowercase)) def UpperCamelCase__ ( self , **__lowercase) -> Optional[int]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , __lowercase) -> str: return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self) -> Optional[Any]: return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''') @cached_property def UpperCamelCase__ ( self) -> Any: return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''') @require_torch def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __UpperCamelCase :Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :Tuple = tokenizer(__lowercase , max_length=len(__lowercase) , padding=__lowercase , return_tensors='''pt''') self.assertIsInstance(__lowercase , __lowercase) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) __UpperCamelCase :List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__lowercase , __lowercase) # Test that special tokens are reset @require_torch def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :int = tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''') # check if input_ids are returned and no labels self.assertIn('''input_ids''' , __lowercase) self.assertIn('''attention_mask''' , __lowercase) self.assertNotIn('''labels''' , __lowercase) self.assertNotIn('''decoder_attention_mask''' , __lowercase) @require_torch def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :Union[str, Any] = tokenizer(text_target=__lowercase , max_length=32 , padding='''max_length''' , return_tensors='''pt''') self.assertEqual(32 , targets['''input_ids'''].shape[1]) @require_torch def UpperCamelCase__ ( self) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :Union[str, Any] = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=__lowercase , truncation=__lowercase , return_tensors='''pt''') self.assertIsInstance(__lowercase , __lowercase) self.assertEqual(batch.input_ids.shape , (2, 1_024)) @require_torch def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[Any] = ['''A long paragraph for summarization.'''] __UpperCamelCase :List[Any] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :List[Any] = tokenizer(__lowercase , text_target=__lowercase , return_tensors='''pt''') __UpperCamelCase :Tuple = inputs['''input_ids'''] __UpperCamelCase :Optional[int] = inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) def UpperCamelCase__ ( self) -> Optional[int]: pass def UpperCamelCase__ ( self) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __UpperCamelCase :List[Any] = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase) __UpperCamelCase :int = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase) __UpperCamelCase :str = '''A, <mask> AllenNLP sentence.''' __UpperCamelCase :List[Any] = tokenizer_r.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase) __UpperCamelCase :Union[str, Any] = tokenizer_p.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) __UpperCamelCase :Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) __UpperCamelCase :Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''])
43
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __lowercase = logging.get_logger(__name__) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = R'''\w+[.]\d+''' __UpperCamelCase :List[str] = re.findall(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for pat in pats: __UpperCamelCase :int = key.replace(SCREAMING_SNAKE_CASE , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __UpperCamelCase :str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __UpperCamelCase :Any = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __UpperCamelCase :str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer __UpperCamelCase :List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __UpperCamelCase :List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __UpperCamelCase :List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": __UpperCamelCase :Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __UpperCamelCase :int = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __UpperCamelCase :int = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=42 ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __UpperCamelCase :str = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :int = flatten_dict(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __UpperCamelCase :List[Any] = rename_key(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters __UpperCamelCase , __UpperCamelCase :Any = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __UpperCamelCase :str = jnp.asarray(SCREAMING_SNAKE_CASE ) return unflatten_dict(SCREAMING_SNAKE_CASE )
43
1
"""simple docstring""" def _lowerCamelCase( a , a ): return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
268
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case__ ( snake_case_ ): _snake_case : List[str] = """WhisperFeatureExtractor""" _snake_case : Any = """WhisperTokenizer""" def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.feature_extractor __a = False def a__ ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=lowerCamelCase , language=lowerCamelCase , no_timestamps=lowerCamelCase ) def __call__( self , *lowerCamelCase , **lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) __a = kwargs.pop("audio" , lowerCamelCase ) __a = kwargs.pop("sampling_rate" , lowerCamelCase ) __a = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __a = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __a = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , lowerCamelCase , lowerCamelCase="np" ): return self.tokenizer.get_prompt_ids(lowerCamelCase , return_tensors=lowerCamelCase )
268
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _lowerCamelCase : Optional[Any] = "http://www.mocksite.com/file1.txt" _lowerCamelCase : Any = "\"text\": [\"foo\", \"foo\"]" _lowerCamelCase : str = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __UpperCAmelCase : UpperCamelCase = 2_0_0 UpperCamelCase = {"""Content-Length""": """100"""} UpperCamelCase = {} def __magic_name__ ( self : Dict, **__A : List[str] ): return [bytes(snake_case_, '''utf-8''' )] def a__ ( *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Any: return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ) -> Optional[int]: import requests monkeypatch.setattr(lowercase_ , '''request''' , lowercase_ ) UpperCAmelCase : str = URL if issubclass(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[Any] = url elif issubclass(lowercase_ , lowercase_ ): UpperCAmelCase : Dict = [url] elif issubclass(lowercase_ , lowercase_ ): UpperCAmelCase : str = {'''train''': url} UpperCAmelCase : List[Any] = '''dummy''' UpperCAmelCase : int = '''downloads''' UpperCAmelCase : Dict = tmp_path UpperCAmelCase : Optional[Any] = DownloadConfig( cache_dir=os.path.join(lowercase_ , lowercase_ ) , use_etag=lowercase_ , ) UpperCAmelCase : Union[str, Any] = DownloadManager(dataset_name=lowercase_ , download_config=lowercase_ ) UpperCAmelCase : List[Any] = dl_manager.download(lowercase_ ) UpperCAmelCase : List[str] = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : List[Any] = [downloaded_paths] UpperCAmelCase : Any = [urls] elif isinstance(lowercase_ , lowercase_ ): assert "train" in downloaded_paths.keys() UpperCAmelCase : Optional[Any] = downloaded_paths.values() UpperCAmelCase : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowercase_ , lowercase_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCAmelCase : List[Any] = Path(lowercase_ ) UpperCAmelCase : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCAmelCase : Optional[int] = downloaded_path.read_text() assert content == CONTENT UpperCAmelCase : List[str] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() UpperCAmelCase : List[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : int = str(lowercase_ ) if issubclass(lowercase_ , lowercase_ ): UpperCAmelCase : List[str] = filename elif issubclass(lowercase_ , lowercase_ ): UpperCAmelCase : str = [filename] elif issubclass(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = {'''train''': filename} UpperCAmelCase : Optional[Any] = '''dummy''' UpperCAmelCase : int = xz_file.parent UpperCAmelCase : int = '''extracted''' UpperCAmelCase : Optional[int] = DownloadConfig( cache_dir=lowercase_ , use_etag=lowercase_ , ) UpperCAmelCase : Any = DownloadManager(dataset_name=lowercase_ , download_config=lowercase_ ) UpperCAmelCase : Tuple = dl_manager.extract(lowercase_ ) UpperCAmelCase : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Any = [extracted_paths] UpperCAmelCase : List[str] = [paths] elif isinstance(lowercase_ , lowercase_ ): assert "train" in extracted_paths.keys() UpperCAmelCase : Any = extracted_paths.values() UpperCAmelCase : Union[str, Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowercase_ , lowercase_ ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCAmelCase : Optional[Any] = Path(lowercase_ ) UpperCAmelCase : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowercase_ , etag=lowercase_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCAmelCase : Union[str, Any] = extracted_path.read_text() UpperCAmelCase : Optional[int] = text_file.read_text() assert extracted_file_content == expected_file_content def a__ ( UpperCAmelCase : List[Any] , UpperCAmelCase : Any ) -> Dict: assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(lowercase_ , start=1 ): UpperCAmelCase : Union[str, Any] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def a__ ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ) -> str: UpperCAmelCase : List[str] = request.getfixturevalue(lowercase_ ) UpperCAmelCase : Any = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowercase_ ) , start=1 ): _test_jsonl(lowercase_ , lowercase_ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ) -> Optional[Any]: UpperCAmelCase : int = request.getfixturevalue(lowercase_ ) UpperCAmelCase : Optional[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowercase_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowercase_ ) , start=1 ): _test_jsonl(lowercase_ , lowercase_ ) assert num_tar == 1 assert num_jsonl == 2 def a__ ( UpperCAmelCase : Union[str, Any] ) -> Any: UpperCAmelCase : int = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowercase_ ) , start=1 ): assert os.path.basename(lowercase_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
336
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowercase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) lowercase__ = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) lowercase__ = field( default=A_, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) @dataclass class UpperCAmelCase_ : lowercase__ = field(default=A_, metadata={'''help''': '''The input training data file (a text file).'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''}, ) lowercase__ = field( default=A_, metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase__ = field( default=A_, metadata={'''help''': '''The number of processes to use for the preprocessing.'''}, ) lowercase__ = field( default=A_, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) lowercase__ = field( default=A_, metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) }, ) lowercase__ = field( default=A_, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) lowercase__ = field( default=A_, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) def __magic_name__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A__ = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: A__ = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCAmelCase_ : lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None def __call__( self : Optional[Any] , snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ = "label" if "label" in features[0].keys() else "labels" A__ = [feature.pop(snake_case_ ) for feature in features] A__ = len(snake_case_ ) A__ = len(features[0]["input_ids"] ) A__ = [ [{k: v[i] for k, v in feature.items()} for i in range(snake_case_ )] for feature in features ] A__ = list(chain(*snake_case_ ) ) A__ = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten A__ = {k: v.view(snake_case_ , snake_case_ , -1 ) for k, v in batch.items()} # Add back labels A__ = torch.tensor(snake_case_ , dtype=torch.intaa ) return batch def _SCREAMING_SNAKE_CASE ( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__, A__, A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__, A__, A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , lowercase_ , lowercase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(lowercase_ ) datasets.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: A__ = {} if data_args.train_file is not None: A__ = data_args.train_file if data_args.validation_file is not None: A__ = data_args.validation_file A__ = data_args.train_file.split("." )[-1] A__ = load_dataset( lowercase_ , data_files=lowercase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. A__ = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. A__ = [f"""ending{i}""" for i in range(4 )] A__ = "sent1" A__ = "sent2" if data_args.max_seq_length is None: A__ = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) A__ = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) A__ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase_ ): A__ = [[context] * 4 for context in examples[context_name]] A__ = examples[question_header_name] A__ = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase_ ) ] # Flatten out A__ = list(chain(*lowercase_ ) ) A__ = list(chain(*lowercase_ ) ) # Tokenize A__ = tokenizer( lowercase_ , lowercase_ , truncation=lowercase_ , max_length=lowercase_ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowercase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) A__ = raw_datasets["train"] if data_args.max_train_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_train_samples ) A__ = train_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): A__ = train_dataset.map( lowercase_ , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) A__ = raw_datasets["validation"] if data_args.max_eval_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_eval_samples ) A__ = eval_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): A__ = eval_dataset.map( lowercase_ , batched=lowercase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator A__ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase_ ): A__, A__ = eval_predictions A__ = np.argmax(lowercase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer A__ = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowercase_ , data_collator=lowercase_ , compute_metrics=lowercase_ , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=lowercase_ ) trainer.save_model() # Saves the tokenizer too for easy upload A__ = train_result.metrics A__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics("train" , lowercase_ ) trainer.save_metrics("train" , lowercase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) A__ = trainer.evaluate() A__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics("eval" , lowercase_ ) trainer.save_metrics("eval" , lowercase_ ) A__ = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**lowercase_ ) else: trainer.create_model_card(**lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
247
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = "▁" __magic_name__ = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} __magic_name__ = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } __magic_name__ = {"vinai/bartpho-syllable": 1024} class SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowercase : Tuple = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(_a , lstrip=_a , rstrip=_a) if isinstance(_a , _a) else mask_token __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = monolingual_vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_a)) # Load the reduced vocab # Keep order of special tokens for backward compatibility __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a) not in self.fairseq_tokens_to_ids: __SCREAMING_SNAKE_CASE = cnt cnt += 1 with open(_a , """r""" , encoding="""utf-8""") as f: for line in f.readlines(): __SCREAMING_SNAKE_CASE = line.strip().split()[0] __SCREAMING_SNAKE_CASE = len(self.fairseq_tokens_to_ids) if str(_a) not in self.fairseq_tokens_to_ids: __SCREAMING_SNAKE_CASE = len(self.fairseq_tokens_to_ids) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self): __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a) if token_ids_a is None: return [1] + ([0] * len(_a)) + [1] return [1] + ([0] * len(_a)) + [1, 1] + ([0] * len(_a)) + [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def snake_case_ ( self): return len(self.fairseq_ids_to_tokens) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def snake_case_ ( self , lowerCAmelCase__): return self.sp_model.encode(_a , out_type=_a) def snake_case_ ( self , lowerCAmelCase__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self , lowerCAmelCase__): return self.fairseq_ids_to_tokens[index] def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """""".join(_a).replace(_a , """ """).strip() return out_string def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): if not os.path.isdir(_a): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __SCREAMING_SNAKE_CASE = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) __SCREAMING_SNAKE_CASE = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file) != os.path.abspath(_a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _a) elif not os.path.isfile(self.vocab_file): with open(_a , """wb""") as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_a) if os.path.abspath(self.monolingual_vocab_file) != os.path.abspath( _a) and os.path.isfile(self.monolingual_vocab_file): copyfile(self.monolingual_vocab_file , _a) elif not os.path.isfile(self.monolingual_vocab_file): with open(_a , """w""" , encoding="""utf-8""") as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f"{str(_a)} \n") return out_vocab_file, out_monolingual_vocab_file
361
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
255
0
'''simple docstring''' import math def SCREAMING_SNAKE_CASE_ ( ) -> None: _a : List[str] =input("""Enter message: """ ) _a : Optional[Any] =int(input(F"Enter key [2-{len(_UpperCAmelCase ) - 1}]: " ) ) _a : List[Any] =input("""Encryption/Decryption [e/d]: """ ) if mode.lower().startswith("""e""" ): _a : Optional[Any] =encrypt_message(_UpperCAmelCase ,_UpperCAmelCase ) elif mode.lower().startswith("""d""" ): _a : Tuple =decrypt_message(_UpperCAmelCase ,_UpperCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"Output:\n{text + '|'}" ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : str ) -> str: _a : int =[""""""] * key for col in range(_UpperCAmelCase ): _a : List[Any] =col while pointer < len(_UpperCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ,_UpperCAmelCase : str ) -> str: _a : Union[str, Any] =math.ceil(len(_UpperCAmelCase ) / key ) _a : List[Any] =key _a : List[Any] =(num_cols * num_rows) - len(_UpperCAmelCase ) _a : Union[str, Any] =[""""""] * num_cols _a : List[str] =0 _a : str =0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _a : List[Any] =0 row += 1 return "".join(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
276
'''simple docstring''' class A__ : def __init__( self :List[Any] ) -> None: '''simple docstring''' _a : dict[str, TrieNode] ={} # Mapping from char to TrieNode _a : List[str] =False def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :list[str] ) -> None: '''simple docstring''' for word in words: self.insert(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' _a : str =self for char in word: if char not in curr.nodes: _a : Dict =TrieNode() _a : List[Any] =curr.nodes[char] _a : int =True def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> bool: '''simple docstring''' _a : int =self for char in word: if char not in curr.nodes: return False _a : List[Any] =curr.nodes[char] return curr.is_leaf def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' def _delete(SCREAMING_SNAKE_CASE :TrieNode , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :int ) -> bool: if index == len(SCREAMING_SNAKE_CASE ): # If word does not exist if not curr.is_leaf: return False _a : Any =False return len(curr.nodes ) == 0 _a : int =word[index] _a : int =curr.nodes.get(SCREAMING_SNAKE_CASE ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _a : List[Any] =_delete(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , SCREAMING_SNAKE_CASE , 0 ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : TrieNode ,_UpperCAmelCase : str ) -> None: if node.is_leaf: print(_UpperCAmelCase ,end=""" """ ) for key, value in node.nodes.items(): print_words(_UpperCAmelCase ,word + key ) def SCREAMING_SNAKE_CASE_ ( ) -> bool: _a : List[str] ="""banana bananas bandana band apple all beast""".split() _a : List[Any] =TrieNode() root.insert_many(_UpperCAmelCase ) # print_words(root, "") assert all(root.find(_UpperCAmelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : bool ) -> None: print(str(_UpperCAmelCase ) ,"""works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE_ ( ) -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ ( ) -> None: print_results("""Testing trie functionality""" ,test_trie() ) if __name__ == "__main__": main()
276
1
from math import isqrt def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = False return [i for i in range(2 , __UpperCamelCase ) if is_prime[i]] def a__ ( __UpperCamelCase = 1_0**8 ): SCREAMING_SNAKE_CASE_ = calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"{solution() = }")
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase = '''src/transformers''' _lowerCAmelCase = '''docs/source/en/tasks''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCamelCase : str = f.readlines() # Find the start prompt. __UpperCamelCase : Dict = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCamelCase : Dict = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) __UpperCamelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCamelCase : List[str] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
298
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py _lowerCAmelCase = '''src/transformers''' _lowerCAmelCase = '''docs/source/en/tasks''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: __UpperCamelCase : str = f.readlines() # Find the start prompt. __UpperCamelCase : Dict = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 __UpperCamelCase : Dict = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) _lowerCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). _lowerCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) __UpperCamelCase : Union[str, Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def __lowerCAmelCase ( snake_case__ , snake_case__=False ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) __UpperCamelCase : List[str] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowerCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
298
1
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = num_of_nodes lowerCAmelCase : list[list[int]] = [] lowerCAmelCase : dict[int, int] = {} def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowerCAmelCase : Optional[int] = self.find_component(snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowerCAmelCase : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case__ ) elif component_size[u_node] >= component_size[v_node]: lowerCAmelCase : str = self.find_component(snake_case__ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowerCAmelCase : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = edge lowerCAmelCase : Optional[int] = self.m_component[u] lowerCAmelCase : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowerCAmelCase : int = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = edge lowerCAmelCase : List[str] = self.m_component[u] lowerCAmelCase : List[Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case__ , snake_case__ , snake_case__ ) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 lowerCAmelCase : Union[str, Any] = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def a__ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
133
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def a__ ( SCREAMING_SNAKE_CASE : str ): # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def a__ ( ): '''simple docstring''' with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" lowerCAmelCase : List[str] = [1, 2, 3] with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=2 ) with pytest.raises(SCREAMING_SNAKE_CASE ): with parallel_backend("unsupported backend" ): map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Tuple = [1, 2] lowerCAmelCase : int = {"a": 1, "b": 2} lowerCAmelCase : List[str] = {"a": [1, 2], "b": [3, 4]} lowerCAmelCase : Dict = {"a": {"1": 1}, "b": 2} lowerCAmelCase : Tuple = {"a": 1, "b": 2, "c": 3, "d": 4} lowerCAmelCase : Any = [2, 3] lowerCAmelCase : Any = {"a": 2, "b": 3} lowerCAmelCase : Optional[int] = {"a": [2, 3], "b": [4, 5]} lowerCAmelCase : Optional[int] = {"a": {"1": 2}, "b": 3} lowerCAmelCase : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa assert map_nested(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_proc=SCREAMING_SNAKE_CASE ) == expected_map_nested_sa
133
1
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ (__A , unittest.TestCase ): __magic_name__ = BertTokenizer __magic_name__ = BertTokenizerFast __magic_name__ = True __magic_name__ = True __magic_name__ = filter_non_english def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: super().setUp() UpperCAmelCase_ : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : str ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = "UNwant\u00E9d,running" UpperCAmelCase_ : Any = "unwanted, running" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Any = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: if not self.test_rust_tokenizer: return UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : List[Any] = "UNwant\u00E9d,running" UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : int = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing UpperCAmelCase_ : Tuple = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = "UNwant\u00E9d,running" UpperCAmelCase_ : List[Any] = tokenizer.tokenize(lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: UpperCAmelCase_ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: UpperCAmelCase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _SCREAMING_SNAKE_CASE ( self : int ) -> int: UpperCAmelCase_ : Any = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_ : Optional[int] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : Tuple = BasicTokenizer() UpperCAmelCase_ : Dict = "a\n'll !!to?'d of, can't." UpperCAmelCase_ : List[str] = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_ : int = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase_ : Tuple = {} for i, token in enumerate(lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = i UpperCAmelCase_ : Optional[Any] = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) UpperCAmelCase_ : Any = tokenizer.encode("sequence builders" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase_ : Tuple = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) UpperCAmelCase_ : Optional[int] = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , "do_lower_case" ) else False UpperCAmelCase_ : List[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ["的", "人", "有"] UpperCAmelCase_ : Tuple = "".join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Any = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : Any = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : int = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase_ : Tuple = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
268
"""simple docstring""" from __future__ import annotations class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : Any = data UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def snake_case ( A__ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def snake_case ( A__ ): return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def snake_case ( A__ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def snake_case ( ): # Main function for testing. UpperCAmelCase_ : List[str] = Node(1 ) UpperCAmelCase_ : Any = Node(2 ) UpperCAmelCase_ : Optional[Any] = Node(3 ) UpperCAmelCase_ : Union[str, Any] = Node(4 ) UpperCAmelCase_ : int = Node(5 ) UpperCAmelCase_ : Optional[int] = Node(6 ) UpperCAmelCase_ : Any = Node(7 ) UpperCAmelCase_ : List[str] = Node(8 ) UpperCAmelCase_ : List[Any] = Node(9 ) print(is_full_binary_tree(A__ ) ) print(depth_of_tree(A__ ) ) print("Tree is: " ) display(A__ ) if __name__ == "__main__": main()
268
1
'''simple docstring''' from typing import Any class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Any ) -> str: """simple docstring""" _UpperCAmelCase : Any = data _UpperCAmelCase : List[str] = None class A__ : """simple docstring""" def __init__( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : List[Any] = temp.next print() def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = Node(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.head _UpperCAmelCase : Any = new_node def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase : str = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Optional[Any] = node_a.next _UpperCAmelCase : Optional[int] = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : List[str] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Tuple = node_a.data, node_a.data if __name__ == "__main__": __a = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> Optional[int]: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def __A (self ) -> Optional[int]: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> Optional[Any]: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _lowercase =LlamaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) _lowercase =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Any: _lowercase =True _lowercase =LlamaModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , ) _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> Union[str, Any]: _lowercase =LlamaForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> List[Any]: _lowercase =True _lowercase =True _lowercase =LlamaForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase , ) _lowercase =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase =ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowercase =torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase =torch.cat([input_mask, next_mask] , dim=-1 ) _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] _lowercase =model( UpperCAmelCase , attention_mask=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )['''hidden_states'''][0] # select random slice _lowercase =ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase =output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def __A (self ) -> Any: _lowercase =self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =config_and_inputs _lowercase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): SCREAMING_SNAKE_CASE__ = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = (LlamaForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A (self ) -> Optional[int]: _lowercase =LlamaModelTester(self ) _lowercase =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def __A (self ) -> Dict: self.config_tester.run_common_tests() def __A (self ) -> Union[str, Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase =type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A (self ) -> Union[str, Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A (self ) -> str: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='''single_label_classification''' _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A (self ) -> Dict: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =3 _lowercase ='''multi_label_classification''' _lowercase =input_dict['''input_ids'''] _lowercase =input_ids.ne(1 ).to(UpperCAmelCase ) _lowercase =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase =LlamaForSequenceClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _lowercase =model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __A (self ) -> Dict: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __A (self , UpperCAmelCase ) -> Optional[Any]: _lowercase , _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =ids_tensor([1, 1_0] , config.vocab_size ) _lowercase =ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowercase =LlamaModel(UpperCAmelCase ) original_model.to(UpperCAmelCase ) original_model.eval() _lowercase =original_model(UpperCAmelCase ).last_hidden_state _lowercase =original_model(UpperCAmelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _lowercase ={'''type''': scaling_type, '''factor''': 10.0} _lowercase =LlamaModel(UpperCAmelCase ) scaled_model.to(UpperCAmelCase ) scaled_model.eval() _lowercase =scaled_model(UpperCAmelCase ).last_hidden_state _lowercase =scaled_model(UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-5 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> Tuple: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> List[str]: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __A (self ) -> int: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) # Expected mean on dim = -1 _lowercase =torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _lowercase =torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __A (self ) -> Dict: _lowercase =[1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _lowercase =LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) _lowercase =model(torch.tensor(UpperCAmelCase ) ) _lowercase =torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCAmelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off _lowercase =torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCAmelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __A (self ) -> int: _lowercase ='''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' _lowercase ='''Simply put, the theory of relativity states that ''' _lowercase =LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) _lowercase =tokenizer.encode(UpperCAmelCase , return_tensors='''pt''' ) _lowercase =LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCAmelCase ) # greedy generation outputs _lowercase =model.generate(UpperCAmelCase , max_new_tokens=6_4 , top_p=UpperCAmelCase , temperature=1 , do_sample=UpperCAmelCase ) _lowercase =tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
5
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = StableDiffusionDiffEditPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def lowercase ( self : Any ) -> Dict: torch.manual_seed(0 ) lowercase : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, attention_head_dim=(2, 4), use_linear_projection=lowerCAmelCase, ) lowercase : Tuple = DDIMScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_one=lowerCAmelCase, ) lowercase : Any = DDIMInverseScheduler( beta_start=0.0_0085, beta_end=0.012, beta_schedule='scaled_linear', clip_sample=lowerCAmelCase, set_alpha_to_zero=lowerCAmelCase, ) torch.manual_seed(0 ) lowercase : int = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, sample_size=128, ) torch.manual_seed(0 ) lowercase : List[str] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='gelu', projection_dim=512, ) lowercase : str = CLIPTextModel(lowerCAmelCase ) lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase : Tuple = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowercase ( self : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Tuple=0 ) -> Union[str, Any]: lowercase : List[Any] = floats_tensor((1, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[Any] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Tuple = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Union[str, Any], lowerCAmelCase : Tuple, lowerCAmelCase : Dict=0 ) -> Optional[Any]: lowercase : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : List[str] = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : Optional[Any] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : List[Any] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int], lowerCAmelCase : Any, lowerCAmelCase : List[str]=0 ) -> Union[str, Any]: lowercase : Optional[int] = floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) lowercase : Tuple = image.cpu().permute(0, 2, 3, 1 )[0] lowercase : Tuple = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('RGB' ) if str(lowerCAmelCase ).startswith('mps' ): lowercase : Optional[int] = torch.manual_seed(lowerCAmelCase ) else: lowercase : List[str] = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) lowercase : Union[str, Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def lowercase ( self : Optional[int] ) -> str: if not hasattr(self.pipeline_class, '_optional_components' ): return lowercase : Optional[int] = self.get_dummy_components() lowercase : int = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase : List[Any] = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Any = pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) lowercase : Any = self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase, lowerCAmelCase ) is None, f'''`{optional_component}` did not stay set to None after loading.''', ) lowercase : Tuple = self.get_dummy_inputs(lowerCAmelCase ) lowercase : Optional[Any] = pipe_loaded(**lowerCAmelCase )[0] lowercase : List[Any] = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase, 1e-4 ) def lowercase ( self : Any ) -> str: lowercase : Union[str, Any] = 'cpu' lowercase : Optional[int] = self.get_dummy_components() lowercase : List[str] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_mask_inputs(lowerCAmelCase ) lowercase : str = pipe.generate_mask(**lowerCAmelCase ) lowercase : str = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16) ) lowercase : List[str] = np.array([0] * 9 ) lowercase : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) self.assertEqual(mask[0, -3, -4], 0 ) def lowercase ( self : int ) -> str: lowercase : int = 'cpu' lowercase : Dict = self.get_dummy_components() lowercase : Optional[int] = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Any = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : Tuple = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def lowercase ( self : List[str] ) -> Tuple: lowercase : Dict = 'cpu' lowercase : Any = self.get_dummy_components() lowercase : List[Any] = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowercase : List[str] = DPMSolverMultistepScheduler(**lowerCAmelCase ) lowercase : Dict = DPMSolverMultistepInverseScheduler(**lowerCAmelCase ) lowercase : str = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = self.get_dummy_inversion_inputs(lowerCAmelCase ) lowercase : int = pipe.invert(**lowerCAmelCase ).images lowercase : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3) ) lowercase : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799], ) lowercase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase, 1e-3 ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): def lowercase ( self : Optional[Any] ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def lowercase ( cls : Optional[int] ) -> Tuple: lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowercase : Optional[Any] = raw_image.convert('RGB' ).resize((768, 768) ) lowercase : Any = raw_image def lowercase ( self : Optional[Any] ) -> List[Any]: lowercase : str = torch.manual_seed(0 ) lowercase : int = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase : List[Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : List[Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : int = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : Tuple = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase ).latents lowercase : str = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, output_type='numpy', ).images[0] lowercase : Dict = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def lowercase ( self : Union[str, Any] ) -> List[Any]: lowercase : Dict = torch.manual_seed(0 ) lowercase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1', safety_checker=lowerCAmelCase, torch_dtype=torch.floataa ) lowercase : Optional[int] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) lowercase : Union[str, Any] = 'a bowl of fruit' lowercase : List[Any] = 'a bowl of pears' lowercase : List[Any] = pipe.generate_mask( image=self.raw_image, source_prompt=lowerCAmelCase, target_prompt=lowerCAmelCase, generator=lowerCAmelCase, ) lowercase : List[str] = pipe.invert( prompt=lowerCAmelCase, image=self.raw_image, inpaint_strength=0.7, generator=lowerCAmelCase, num_inference_steps=25, ).latents lowercase : int = pipe( prompt=lowerCAmelCase, mask_image=lowerCAmelCase, image_latents=lowerCAmelCase, generator=lowerCAmelCase, negative_prompt=lowerCAmelCase, inpaint_strength=0.7, num_inference_steps=25, output_type='numpy', ).images[0] lowercase : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
255
0
'''simple docstring''' from __future__ import annotations class lowercase__ : def __init__( self : Any ,lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Optional[int] = data _UpperCamelCase : Node | None = None _UpperCamelCase : Node | None = None def A__ ( UpperCAmelCase_ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A__ ( UpperCAmelCase_ ): return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A__ ( UpperCAmelCase_ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A__ ( ): # Main function for testing. _UpperCamelCase : Union[str, Any] = Node(1 ) _UpperCamelCase : Union[str, Any] = Node(2 ) _UpperCamelCase : Dict = Node(3 ) _UpperCamelCase : List[str] = Node(4 ) _UpperCamelCase : List[Any] = Node(5 ) _UpperCamelCase : Union[str, Any] = Node(6 ) _UpperCamelCase : str = Node(7 ) _UpperCamelCase : str = Node(8 ) _UpperCamelCase : Tuple = Node(9 ) print(is_full_binary_tree(UpperCAmelCase_ ) ) print(depth_of_tree(UpperCAmelCase_ ) ) print('Tree is: ' ) display(UpperCAmelCase_ ) if __name__ == "__main__": main()
236
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Optional[Any] = { 'configuration_clip': [ 'CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPConfig', 'CLIPOnnxConfig', 'CLIPTextConfig', 'CLIPVisionConfig', ], 'processing_clip': ['CLIPProcessor'], 'tokenization_clip': ['CLIPTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['CLIPTokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ['CLIPFeatureExtractor'] snake_case_ : Dict = ['CLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ 'CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPModel', 'CLIPPreTrainedModel', 'CLIPTextModel', 'CLIPTextModelWithProjection', 'CLIPVisionModel', 'CLIPVisionModelWithProjection', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCLIPModel', 'TFCLIPPreTrainedModel', 'TFCLIPTextModel', 'TFCLIPVisionModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'FlaxCLIPModel', 'FlaxCLIPPreTrainedModel', 'FlaxCLIPTextModel', 'FlaxCLIPTextPreTrainedModel', 'FlaxCLIPVisionModel', 'FlaxCLIPVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
236
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=1024 , _UpperCAmelCase : Tuple=1024 , _UpperCAmelCase : str=3.6 ) -> str: """simple docstring""" lowercase__ = tokenizer lowercase__ = tokenizer.bos_token_id lowercase__ = dataset lowercase__ = seq_length lowercase__ = seq_length * chars_per_token * num_of_sequences def __iter__(self : Any ) -> Tuple: """simple docstring""" lowercase__ = iter(self.dataset ) lowercase__ = True while more_examples: lowercase__ , lowercase__ = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_UpperCAmelCase )["""content"""] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase__ = False break lowercase__ = tokenizer(_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_UpperCAmelCase ) , self.seq_length ): lowercase__ = all_token_ids[i : i + self.seq_length] if len(_UpperCAmelCase ) == self.seq_length: yield torch.tensor(_UpperCAmelCase ) def UpperCamelCase ( __magic_name__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = {"""streaming""": True} lowercase__ = load_dataset(args.dataset_name , split="""train""" , **__magic_name__ ) lowercase__ = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase__ = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def UpperCamelCase ( __magic_name__ : Dict ) -> int: """simple docstring""" model.eval() lowercase__ = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase__ = model(__magic_name__ , labels=__magic_name__ ) lowercase__ = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase__ = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase__ = torch.exp(__magic_name__ ) except OverflowError: lowercase__ = float("""inf""" ) return loss.item(), perplexity.item() # Setup Accelerator A : int = Accelerator() # Parse configuration A : List[Any] = HfArgumentParser(EvaluationArguments) A : List[Any] = parser.parse_args() set_seed(args.seed) # Logging A : Union[str, Any] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer A : str = AutoModelForCausalLM.from_pretrained(args.model_ckpt) A : int = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader A : Dict = create_dataloader(args) # Prepare everything with our `accelerator`. A , A : List[str] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') A , A : List[str] = evaluate(args) logger.info(F'loss/eval: {eval_loss}, perplexity: {perplexity}')
305
def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" assert column_title.isupper() lowercase__ = 0 lowercase__ = len(__magic_name__ ) - 1 lowercase__ = 0 while index >= 0: lowercase__ = (ord(column_title[index] ) - 64) * pow(26 , __magic_name__ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
305
1
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 1_6 lowerCAmelCase__ = 3_2 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" lowercase__ : Any = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase__ : List[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ : List[str] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ : Union[str, Any] = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : List[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ : Any = 16 elif accelerator.mixed_precision != "no": lowercase__ : int = 8 else: lowercase__ : List[str] = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowercase__ : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowercase__ : List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase__ = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowercase__ : Union[str, Any] = 2 # Initialize accelerator lowercase__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Tuple = config["lr"] lowercase__ : List[str] = int(config["num_epochs"] ) lowercase__ : List[str] = int(config["seed"] ) lowercase__ : Union[str, Any] = int(config["batch_size"] ) lowercase__ : Union[str, Any] = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCamelCase__ ) def inner_training_loop(lowerCamelCase__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ : Any = model.to(accelerator.device ) # Instantiate optimizer lowercase__ : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) lowercase__ , lowercase__ : Union[str, Any] = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) # Instantiate scheduler lowercase__ : Any = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ : List[Any] = model(**lowerCamelCase__ ) lowercase__ : Union[str, Any] = outputs.loss accelerator.backward(lowerCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : int = model(**lowerCamelCase__ ) lowercase__ : List[Any] = outputs.logits.argmax(dim=-1 ) lowercase__ , lowercase__ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowercase__ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowerCamelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowercase__ : Tuple = parser.parse_args() lowercase__ : str = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
121
from math import ceil, sqrt def __lowerCamelCase ( lowerCamelCase__ = 1_000_000 ): """simple docstring""" lowercase__ : int = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: lowercase__ : List[str] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: lowercase__ : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
121
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ : List[str] = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : List[str] = [ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowercase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
133
from typing import Any class __lowerCAmelCase : def __init__( self : List[Any] , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = data _UpperCAmelCase = None class __lowerCAmelCase : def __init__( self : Optional[Any] ): """simple docstring""" _UpperCAmelCase = None def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase = temp.next print() def UpperCamelCase ( self : Any , snake_case__ : Any ): """simple docstring""" _UpperCAmelCase = Node(snake_case__ ) _UpperCAmelCase = self.head _UpperCAmelCase = new_node def UpperCamelCase ( self : List[str] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next _UpperCAmelCase = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase = node_a.data, node_a.data if __name__ == "__main__": lowercase_ : Union[str, Any] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
133
1
from math import isclose, sqrt def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase =point_y / 4 / point_x lowerCamelCase =2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCamelCase =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCamelCase =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCamelCase =outgoing_gradient**2 + 4 lowerCamelCase =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCamelCase =(point_y - outgoing_gradient * point_x) ** 2 - 1_00 lowerCamelCase =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCamelCase =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCamelCase =x_minus if isclose(__lowerCamelCase , __lowerCamelCase ) else x_plus lowerCamelCase =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _lowercase ( _UpperCAmelCase = 1.4 , _UpperCAmelCase = -9.6 ) -> Optional[int]: lowerCamelCase =0 lowerCamelCase =first_x_coord lowerCamelCase =first_y_coord lowerCamelCase =(1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): lowerCamelCase =next_point(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"{solution() = }")
351
import qiskit def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> qiskit.result.counts.Counts: lowerCamelCase =qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register lowerCamelCase =qiskit.QuantumCircuit(_UpperCAmelCase , _UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowerCamelCase =qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": print(F"Total count for various states are: {single_qubit_measure(1, 1)}")
262
0
"""simple docstring""" import sys __UpperCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = 1 for digit in s: product *= int(UpperCAmelCase ) return product def UpperCAmelCase ( UpperCAmelCase = N ) -> int: snake_case_ = -sys.maxsize - 1 snake_case_ = n[:13] snake_case_ = 13 while cur_index < len(UpperCAmelCase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): snake_case_ = substr[1:] + n[cur_index] cur_index += 1 else: snake_case_ = max(UpperCAmelCase , str_eval(UpperCAmelCase ) ) snake_case_ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
69
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _a = _symbol_database.Default() _a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) _a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: _a = None _a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _a = 45 _a = 15_81 _a = 15_17 _a = 15_70 _a = 15_84 _a = 17_93 _a = 17_95 _a = 19_16 _a = 18_64 _a = 19_05 _a = 19_19 _a = 24_29 _a = 22_08 _a = 24_18 _a = 23_23 _a = 24_07 # @@protoc_insertion_point(module_scope)
17
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase__ : Any = 'xvjiarui/stable-diffusion-2-inpainting' lowerCAmelCase__ , lowerCAmelCase__ : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) lowerCAmelCase__ : int = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase__ : str = jax.random.PRNGKey(0 ) lowerCAmelCase__ : int = 50 lowerCAmelCase__ : int = jax.device_count() lowerCAmelCase__ : Optional[Any] = num_samples * [prompt] lowerCAmelCase__ : List[str] = num_samples * [init_image] lowerCAmelCase__ : int = num_samples * [mask_image] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = pipeline.prepare_inputs(a , a , a ) # shard inputs and rng lowerCAmelCase__ : int = replicate(a ) lowerCAmelCase__ : str = jax.random.split(a , jax.device_count() ) lowerCAmelCase__ : Any = shard(a ) lowerCAmelCase__ : List[Any] = shard(a ) lowerCAmelCase__ : int = shard(a ) lowerCAmelCase__ : List[Any] = pipeline( a , a , a , a , a , a , jit=a ) lowerCAmelCase__ : Any = output.images.reshape(a , 512 , 512 , 3 ) lowerCAmelCase__ : Union[str, Any] = images[0, 253:256, 253:256, -1] lowerCAmelCase__ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ : str = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
_UpperCAmelCase : int = range(2, 20 + 1) _UpperCAmelCase : List[Any] = [10**k for k in range(ks[-1] + 1)] _UpperCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :Optional[int] = sum(a_i[j] for j in range(lowerCamelCase, len(lowerCamelCase ) ) ) lowercase :Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase ), lowerCamelCase ) ) ) lowercase , lowercase :str = 0, 0 lowercase :Optional[int] = n - i lowercase :List[Any] = memo.get(lowerCamelCase ) if sub_memo is not None: lowercase :Optional[Any] = sub_memo.get(lowerCamelCase ) if jumps is not None and len(lowerCamelCase ) > 0: # find and make the largest jump without going over lowercase :Optional[Any] = -1 for _k in range(len(lowerCamelCase ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase :Dict = _k break if max_jump >= 0: lowercase , lowercase , lowercase :Optional[Any] = jumps[max_jump] # since the difference between jumps is cached, add c lowercase :int = diff + c for j in range(min(lowerCamelCase, len(lowerCamelCase ) ) ): lowercase , lowercase :List[Any] = divmod(lowerCamelCase, 10 ) if new_c > 0: add(lowerCamelCase, lowerCamelCase, lowerCamelCase ) else: lowercase :Optional[Any] = [] else: lowercase :Any = {c: []} lowercase :Dict = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase , lowercase :Optional[Any] = next_term(lowerCamelCase, k - 1, i + dn, lowerCamelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase , lowercase :Dict = compute(lowerCamelCase, lowerCamelCase, i + dn, lowerCamelCase ) diff += _diff dn += terms_jumped lowercase :Any = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase :Optional[int] = 0 while j < len(lowerCamelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): if i >= n: return 0, i if k > len(lowerCamelCase ): a_i.extend([0 for _ in range(k - len(lowerCamelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase :List[Any] = i lowercase , lowercase , lowercase :str = 0, 0, 0 for j in range(len(lowerCamelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase :int = ds_c + ds_b diff += addend lowercase :List[str] = 0 for j in range(lowerCamelCase ): lowercase :int = a_i[j] + addend lowercase , lowercase :str = divmod(lowerCamelCase, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return diff, i - start_i def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): for j in range(lowerCamelCase, len(lowerCamelCase ) ): lowercase :Any = digits[j] + addend if s >= 10: lowercase , lowercase :str = divmod(lowerCamelCase, 10 ) lowercase :Union[str, Any] = addend // 10 + quotient else: lowercase :Optional[int] = s lowercase :str = addend // 10 if addend == 0: break while addend > 0: lowercase , lowercase :Optional[int] = divmod(lowerCamelCase, 10 ) digits.append(lowerCamelCase ) def UpperCAmelCase__ ( lowerCamelCase = 10**15 ): lowercase :int = [1] lowercase :str = 1 lowercase :Tuple = 0 while True: lowercase , lowercase :List[str] = next_term(lowerCamelCase, 20, i + dn, lowerCamelCase ) dn += terms_jumped if dn == n - i: break lowercase :Any = 0 for j in range(len(lowerCamelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
236
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : int = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') _UpperCamelCase = '''https://www.google.com/search?q=''' + ''' '''.join(sys.argv[1:]) _UpperCamelCase = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) _UpperCamelCase = BeautifulSoup(res.text, '''html.parser''') _UpperCamelCase = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'https://google.com{link.get("href")}')
16
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( lowerCAmelCase__ : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __UpperCAmelCase : Any = nums[0] for i in range(1 , len(lowerCAmelCase__ ) ): __UpperCAmelCase : Union[str, Any] = nums[i] __UpperCAmelCase : List[Any] = max(lowerCAmelCase__ , ans + num , lowerCAmelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _UpperCamelCase = int(input('''Enter number of elements : ''').strip()) _UpperCamelCase = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
16
1
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" _A: int = tempfile.mkdtemp() _A: str = SamImageProcessor() _A: List[str] = SamProcessor(lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : str , **lowerCAmelCase_ : List[Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _A: List[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self : Any ): """simple docstring""" _A: List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A: Dict = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A: str = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Union[str, Any] = self.get_image_processor() _A: Any = SamProcessor(image_processor=lowerCAmelCase_ ) _A: int = self.prepare_image_inputs() _A: str = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) _A: Optional[Any] = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def __magic_name__ ( self : str ): """simple docstring""" _A: int = self.get_image_processor() _A: int = SamProcessor(image_processor=lowerCAmelCase_ ) _A: Any = [torch.ones((1, 3, 5, 5) )] _A: List[str] = [[1_7_6_4, 2_6_4_6]] _A: Optional[Any] = [[6_8_3, 1_0_2_4]] _A: List[str] = processor.post_process_masks(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _A: int = processor.post_process_masks( lowerCAmelCase_ , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np _A: List[str] = [np.ones((1, 3, 5, 5) )] _A: str = processor.post_process_masks(lowerCAmelCase_ , np.array(lowerCAmelCase_ ) , np.array(lowerCAmelCase_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _A: Tuple = [[1, 0], [0, 1]] with self.assertRaises(lowerCAmelCase_ ): _A: List[str] = processor.post_process_masks(lowerCAmelCase_ , np.array(lowerCAmelCase_ ) , np.array(lowerCAmelCase_ ) ) @require_vision @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[int] ): """simple docstring""" _A: Any = tempfile.mkdtemp() _A: Any = SamImageProcessor() _A: int = SamProcessor(lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Optional[Any] , **lowerCAmelCase_ : int ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : Any ): """simple docstring""" _A: Tuple = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _A: List[str] = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self : Any ): """simple docstring""" _A: int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A: List[Any] = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A: Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def __magic_name__ ( self : int ): """simple docstring""" _A: Optional[Any] = self.get_image_processor() _A: Any = SamProcessor(image_processor=lowerCAmelCase_ ) _A: List[str] = self.prepare_image_inputs() _A: Union[str, Any] = image_processor(lowerCAmelCase_ , return_tensors='''np''' ) _A: Union[str, Any] = processor(images=lowerCAmelCase_ , return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def __magic_name__ ( self : str ): """simple docstring""" _A: List[Any] = self.get_image_processor() _A: Dict = SamProcessor(image_processor=lowerCAmelCase_ ) _A: Dict = [tf.ones((1, 3, 5, 5) )] _A: List[Any] = [[1_7_6_4, 2_6_4_6]] _A: Any = [[6_8_3, 1_0_2_4]] _A: Optional[Any] = processor.post_process_masks(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _A: str = processor.post_process_masks( lowerCAmelCase_ , tf.convert_to_tensor(lowerCAmelCase_ ) , tf.convert_to_tensor(lowerCAmelCase_ ) , return_tensors='''tf''' , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np _A: Dict = [np.ones((1, 3, 5, 5) )] _A: Optional[Any] = processor.post_process_masks( lowerCAmelCase_ , np.array(lowerCAmelCase_ ) , np.array(lowerCAmelCase_ ) , return_tensors='''tf''' ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) _A: int = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _A: int = processor.post_process_masks( lowerCAmelCase_ , np.array(lowerCAmelCase_ ) , np.array(lowerCAmelCase_ ) , return_tensors='''tf''' ) @require_vision @require_torchvision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Any ): """simple docstring""" _A: Optional[Any] = tempfile.mkdtemp() _A: List[str] = SamImageProcessor() _A: Union[str, Any] = SamProcessor(lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def __magic_name__ ( self : Union[str, Any] , **lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def __magic_name__ ( self : Optional[int] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self : List[Any] ): """simple docstring""" _A: Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _A: Dict = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: str = self.get_image_processor() _A: Optional[Any] = SamProcessor(image_processor=lowerCAmelCase_ ) _A: Optional[Any] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _A: List[Any] = [tf.convert_to_tensor(lowerCAmelCase_ )] _A: Optional[Any] = [torch.tensor(lowerCAmelCase_ )] _A: Dict = [[1_7_6_4, 2_6_4_6]] _A: Tuple = [[6_8_3, 1_0_2_4]] _A: Union[str, Any] = processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''tf''' ) _A: Optional[Any] = processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def __magic_name__ ( self : Optional[Any] ): """simple docstring""" _A: Optional[Any] = self.get_image_processor() _A: Tuple = SamProcessor(image_processor=lowerCAmelCase_ ) _A: Any = self.prepare_image_inputs() _A: List[Any] = image_processor(lowerCAmelCase_ , return_tensors='''pt''' )['''pixel_values'''].numpy() _A: List[Any] = processor(images=lowerCAmelCase_ , return_tensors='''pt''' )['''pixel_values'''].numpy() _A: Optional[int] = image_processor(lowerCAmelCase_ , return_tensors='''tf''' )['''pixel_values'''].numpy() _A: int = processor(images=lowerCAmelCase_ , return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertTrue(np.allclose(lowerCAmelCase_ , lowerCAmelCase_ ) )
121
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase__ ( a , a=10_00 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _A: List[Any] = n - 1 _A: Dict = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _A: List[str] = 0 while count < prec: _A: Optional[int] = random.randint(2 , n - 1 ) _A: Union[str, Any] = bin_exp_mod(a , a , a ) if b != 1: _A: Optional[Any] = True for _ in range(a ): if b == n - 1: _A: int = False break _A: Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": UpperCAmelCase__ : Dict = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
121
1
UpperCAmelCase_ = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' UpperCAmelCase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] UpperCAmelCase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
369
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' while b: UpperCAmelCase__ , UpperCAmelCase__ = b, a % b return a def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(SCREAMING_SNAKE_CASE__ , a % b ) def _UpperCamelCase ( ): '''simple docstring''' print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
61
0