date
timestamp[ns]date
2023-05-05 00:00:00
2025-07-15 00:00:00
arxiv_id
stringlengths
10
10
title
stringlengths
8
202
authors
listlengths
1
3.3k
github
stringlengths
0
116
abstract
stringlengths
165
1.92k
2024-06-19T00:00:00
2406.12292
JEN-1 DreamStyler: Customized Musical Concept Learning via Pivotal Parameters Tuning
[ "Boyu Chen", "Peike Li", "Yao Yao", "Alex Wang" ]
Large models for text-to-music generation have achieved significant progress, facilitating the creation of high-quality and varied musical compositions from provided text prompts. However, input text prompts may not precisely capture user requirements, particularly when the objective is to generate music that embodies a specific concept derived from a designated reference collection. In this paper, we propose a novel method for customized text-to-music generation, which can capture the concept from a two-minute reference music and generate a new piece of music conforming to the concept. We achieve this by fine-tuning a pretrained text-to-music model using the reference music. However, directly fine-tuning all parameters leads to overfitting issues. To address this problem, we propose a Pivotal Parameters Tuning method that enables the model to assimilate the new concept while preserving its original generative capabilities. Additionally, we identify a potential concept conflict when introducing multiple concepts into the pretrained model. We present a concept enhancement strategy to distinguish multiple concepts, enabling the fine-tuned model to generate music incorporating either individual or multiple concepts simultaneously. Since we are the first to work on the customized music generation task, we also introduce a new dataset and evaluation protocol for the new task. Our proposed Jen1-DreamStyler outperforms several baselines in both qualitative and quantitative evaluations. Demos will be available at https://www.jenmusic.ai/research#DreamStyler.
2024-06-19T00:00:00
2406.12168
BPO: Supercharging Online Preference Learning by Adhering to the Proximity of Behavior LLM
[ "Wenda Xu", "Jiachen Li", "William Yang Wang", "Lei Li" ]
Direct alignment from preferences (DAP) has emerged as a promising paradigm for aligning large language models (LLMs) to human desiderata from pre-collected, offline preference datasets. While recent studies indicate that existing offline DAP methods can directly benefit from online training samples, we highlight the need to develop specific online DAP algorithms to fully harness the power of online training. Specifically, we identify that the learned LLM should adhere to the proximity of the behavior LLM, which collects the training samples. To this end, we propose online Preference Optimization in proximity to the Behavior LLM (BPO), emphasizing the importance of constructing a proper trust region for LLM alignment. We conduct extensive experiments to validate the effectiveness and applicability of our approach by integrating it with various DAP methods, resulting in significant performance improvements across a wide range of tasks when training with the same amount of preference data. Even when only introducing one additional data collection phase, our online BPO improves its offline DAP baseline from 72.0% to 80.2% on TL;DR and from 82.2% to 89.1% on Anthropic Helpfulness in terms of win rate against human reference text.
2024-06-19T00:00:00
2406.09760
Bootstrapping Language Models with DPO Implicit Rewards
[ "Changyu Chen", "Zichen Liu", "Chao Du", "Tianyu Pang", "Qian Liu", "Arunesh Sinha", "Pradeep Varakantham", "Min Lin" ]
https://github.com/sail-sg/dice
Human alignment in large language models (LLMs) is an active area of research. A recent groundbreaking work, direct preference optimization (DPO), has greatly simplified the process from past work in reinforcement learning from human feedback (RLHF) by bypassing the reward learning stage in RLHF. DPO, after training, provides an implicit reward model. In this work, we make a novel observation that this implicit reward model can by itself be used in a bootstrapping fashion to further align the LLM. Our approach is to use the rewards from a current LLM model to construct a preference dataset, which is then used in subsequent DPO rounds. We incorporate refinements that debias the length of the responses and improve the quality of the preference dataset to further improve our approach. Our approach, named self-alignment with DPO ImpliCit rEwards (DICE), shows great improvements in alignment and achieves superior performance than Gemini Pro on AlpacaEval 2, reaching 27.55% length-controlled win rate against GPT-4 Turbo, but with only 8B parameters and no external feedback. Our code is available at https://github.com/sail-sg/dice.
2024-06-19T00:00:00
2406.12742
Benchmarking Multi-Image Understanding in Vision and Language Models: Perception, Knowledge, Reasoning, and Multi-Hop Reasoning
[ "Bingchen Zhao", "Yongshuo Zong", "Letian Zhang", "Timothy Hospedales" ]
The advancement of large language models (LLMs) has significantly broadened the scope of applications in natural language processing, with multi-modal LLMs extending these capabilities to integrate and interpret visual data. However, existing benchmarks for visual language models (VLMs) predominantly focus on single-image inputs, neglecting the crucial aspect of multi-image understanding. In this paper, we introduce a Multi-Image Relational Benchmark MIRB, designed to evaluate VLMs' ability to compare, analyze, and reason across multiple images. Our benchmark encompasses four categories: perception, visual world knowledge, reasoning, and multi-hop reasoning. Through a comprehensive evaluation of a wide range of open-source and closed-source models, we demonstrate that while open-source VLMs were shown to approach the performance of GPT-4V in single-image tasks, a significant performance gap remains in multi-image reasoning tasks. Our findings also reveal that even the state-of-the-art GPT-4V model struggles with our benchmark, underscoring the need for further research and development in this area. We believe our contribution of MIRB could serve as a testbed for developing the next-generation multi-modal models.
2024-06-19T00:00:00
2406.11687
Tokenization Falling Short: The Curse of Tokenization
[ "Yekun Chai", "Yewei Fang", "Qiwei Peng", "Xuhong Li" ]
Language models typically tokenize raw text into sequences of subword identifiers from a predefined vocabulary, a process inherently sensitive to typographical errors, length variations, and largely oblivious to the internal structure of tokens-issues we term the curse of tokenization. In this study, we delve into these drawbacks and demonstrate that large language models (LLMs) remain susceptible to these problems. This study systematically investigates these challenges and their impact on LLMs through three critical research questions: (1) complex problem solving, (2) token structure probing, and (3) resilience to typographical variation. Our findings reveal that scaling model parameters can mitigate the issue of tokenization; however, LLMs still suffer from biases induced by typos and other text format variations. Our experiments show that subword regularization such as BPE-dropout can mitigate this issue. We will release our code and data to facilitate further research.
2024-06-19T00:00:00
2406.12311
Mixture of Scales: Memory-Efficient Token-Adaptive Binarization for Large Language Models
[ "Dongwon Jo", "Taesu Kim", "Yulhwa Kim", "Jae-Joon Kim" ]
Binarization, which converts weight parameters to binary values, has emerged as an effective strategy to reduce the size of large language models (LLMs). However, typical binarization techniques significantly diminish linguistic effectiveness of LLMs. To address this issue, we introduce a novel binarization technique called Mixture of Scales (BinaryMoS). Unlike conventional methods, BinaryMoS employs multiple scaling experts for binary weights, dynamically merging these experts for each token to adaptively generate scaling factors. This token-adaptive approach boosts the representational power of binarized LLMs by enabling contextual adjustments to the values of binary weights. Moreover, because this adaptive process only involves the scaling factors rather than the entire weight matrix, BinaryMoS maintains compression efficiency similar to traditional static binarization methods. Our experimental results reveal that BinaryMoS surpasses conventional binarization techniques in various natural language processing tasks and even outperforms 2-bit quantization methods, all while maintaining similar model size to static binarization techniques.
2024-06-19T00:00:00
2406.12459
HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors
[ "Panwang Pan", "Zhuo Su", "Chenguo Lin", "Zhen Fan", "Yongjie Zhang", "Zeming Li", "Tingting Shen", "Yadong Mu", "Yebin Liu" ]
Despite recent advancements in high-fidelity human reconstruction techniques, the requirements for densely captured images or time-consuming per-instance optimization significantly hinder their applications in broader scenarios. To tackle these issues, we present HumanSplat which predicts the 3D Gaussian Splatting properties of any human from a single input image in a generalizable manner. In particular, HumanSplat comprises a 2D multi-view diffusion model and a latent reconstruction transformer with human structure priors that adeptly integrate geometric priors and semantic features within a unified framework. A hierarchical loss that incorporates human semantic information is further designed to achieve high-fidelity texture modeling and better constrain the estimated multiple views. Comprehensive experiments on standard benchmarks and in-the-wild images demonstrate that HumanSplat surpasses existing state-of-the-art methods in achieving photorealistic novel-view synthesis.
2024-06-19T00:00:00
2406.12031
Large Scale Transfer Learning for Tabular Data via Language Modeling
[ "Josh Gardner", "Juan C. Perdomo", "Ludwig Schmidt" ]
Tabular data -- structured, heterogeneous, spreadsheet-style data with rows and columns -- is widely used in practice across many domains. However, while recent foundation models have reduced the need for developing task-specific datasets and predictors in domains such as language modeling and computer vision, this transfer learning paradigm has not had similar impact in the tabular domain. In this work, we seek to narrow this gap and present TabuLa-8B, a language model for tabular prediction. We define a process for extracting a large, high-quality training dataset from the TabLib corpus, proposing methods for tabular data filtering and quality control. Using the resulting dataset, which comprises over 1.6B rows from 3.1M unique tables, we fine-tune a Llama 3-8B large language model (LLM) for tabular data prediction (classification and binned regression) using a novel packing and attention scheme for tabular prediction. Through evaluation across a test suite of 329 datasets, we find that TabuLa-8B has zero-shot accuracy on unseen tables that is over 15 percentage points (pp) higher than random guessing, a feat that is not possible with existing state-of-the-art tabular prediction models (e.g. XGBoost, TabPFN). In the few-shot setting (1-32 shots), without any fine-tuning on the target datasets, TabuLa-8B is 5-15 pp more accurate than XGBoost and TabPFN models that are explicitly trained on equal, or even up to 16x more data. We release our model, code, and data along with the publication of this paper.
2024-06-19T00:00:00
2406.11912
AgileCoder: Dynamic Collaborative Agents for Software Development based on Agile Methodology
[ "Minh Huynh Nguyen", "Thang Phan Chau", "Phong X. Nguyen", "Nghi D. Q. Bui" ]
https://github.com/FSoft-AI4Code/AgileCoder
Software agents have emerged as promising tools for addressing complex software engineering tasks. However, existing works oversimplify software development workflows by following the waterfall model. Thus, we propose AgileCoder, a multi-agent system that integrates Agile Methodology (AM) into the framework. This system assigns specific AM roles such as Product Manager, Developer, and Tester to different agents, who then collaboratively develop software based on user inputs. AgileCoder enhances development efficiency by organizing work into sprints, focusing on incrementally developing software through sprints. Additionally, we introduce Dynamic Code Graph Generator, a module that creates a Code Dependency Graph dynamically as updates are made to the codebase. This allows agents to better comprehend the codebase, leading to more precise code generation and modifications throughout the software development process. AgileCoder surpasses existing benchmarks, like ChatDev and MetaGPT, establishing a new standard and showcasing the capabilities of multi-agent systems in advanced software engineering environments. Our source code can be found at https://github.com/FSoft-AI4Code/AgileCoder.
2024-06-19T00:00:00
2406.12849
Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation
[ "Ning-Hsu Wang", "Yu-Lun Liu" ]
Accurately estimating depth in 360-degree imagery is crucial for virtual reality, autonomous navigation, and immersive media applications. Existing depth estimation methods designed for perspective-view imagery fail when applied to 360-degree images due to different camera projections and distortions, whereas 360-degree methods perform inferior due to the lack of labeled data pairs. We propose a new depth estimation framework that utilizes unlabeled 360-degree data effectively. Our approach uses state-of-the-art perspective depth estimation models as teacher models to generate pseudo labels through a six-face cube projection technique, enabling efficient labeling of depth in 360-degree images. This method leverages the increasing availability of large datasets. Our approach includes two main stages: offline mask generation for invalid regions and an online semi-supervised joint training regime. We tested our approach on benchmark datasets such as Matterport3D and Stanford2D3D, showing significant improvements in depth estimation accuracy, particularly in zero-shot scenarios. Our proposed training pipeline can enhance any 360 monocular depth estimator and demonstrates effective knowledge transfer across different camera projections and data types. See our project page for results: https://albert100121.github.io/Depth-Anywhere/
2024-06-19T00:00:00
2406.11939
From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline
[ "Tianle Li", "Wei-Lin Chiang", "Evan Frick", "Lisa Dunlap", "Tianhao Wu", "Banghua Zhu", "Joseph E. Gonzalez", "Ion Stoica" ]
The rapid evolution of language models has necessitated the development of more challenging benchmarks. Current static benchmarks often struggle to consistently distinguish between the capabilities of different models and fail to align with real-world user preferences. On the other hand, live crowd-sourced platforms like the Chatbot Arena collect a wide range of natural prompts and user feedback. However, these prompts vary in sophistication and the feedback cannot be applied offline to new models. In order to ensure that benchmarks keep up with the pace of LLM development, we address how one can evaluate benchmarks on their ability to confidently separate models and their alignment with human preference. Under these principles, we developed BenchBuilder, a living benchmark that filters high-quality prompts from live data sources to enable offline evaluation on fresh, challenging prompts. BenchBuilder identifies seven indicators of a high-quality prompt, such as the requirement for domain knowledge, and utilizes an LLM annotator to select a high-quality subset of prompts from various topic clusters. The LLM evaluation process employs an LLM judge to ensure a fully automated, high-quality, and constantly updating benchmark. We apply BenchBuilder on prompts from the Chatbot Arena to create Arena-Hard-Auto v0.1: 500 challenging user prompts from a wide range of tasks. Arena-Hard-Auto v0.1 offers 3x tighter confidence intervals than MT-Bench and achieves a state-of-the-art 89.1% agreement with human preference rankings, all at a cost of only $25 and without human labelers. The BenchBuilder pipeline enhances evaluation benchmarks and provides a valuable tool for developers, enabling them to extract high-quality benchmarks from extensive data with minimal effort.
2024-06-19T00:00:00
2406.12814
Adversarial Attacks on Multimodal Agents
[ "Chen Henry Wu", "Jing Yu Koh", "Ruslan Salakhutdinov", "Daniel Fried", "Aditi Raghunathan" ]
https://github.com/ChenWu98/agent-attack
Vision-enabled language models (VLMs) are now used to build autonomous multimodal agents capable of taking actions in real environments. In this paper, we show that multimodal agents raise new safety risks, even though attacking agents is more challenging than prior attacks due to limited access to and knowledge about the environment. Our attacks use adversarial text strings to guide gradient-based perturbation over one trigger image in the environment: (1) our captioner attack attacks white-box captioners if they are used to process images into captions as additional inputs to the VLM; (2) our CLIP attack attacks a set of CLIP models jointly, which can transfer to proprietary VLMs. To evaluate the attacks, we curated VisualWebArena-Adv, a set of adversarial tasks based on VisualWebArena, an environment for web-based multimodal agent tasks. Within an L-infinity norm of 16/256 on a single image, the captioner attack can make a captioner-augmented GPT-4V agent execute the adversarial goals with a 75% success rate. When we remove the captioner or use GPT-4V to generate its own captions, the CLIP attack can achieve success rates of 21% and 43%, respectively. Experiments on agents based on other VLMs, such as Gemini-1.5, Claude-3, and GPT-4o, show interesting differences in their robustness. Further analysis reveals several key factors contributing to the attack's success, and we also discuss the implications for defenses as well. Project page: https://chenwu.io/attack-agent Code and data: https://github.com/ChenWu98/agent-attack
2024-06-19T00:00:00
2406.12831
VIA: A Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
[ "Jing Gu", "Yuwei Fang", "Ivan Skorokhodov", "Peter Wonka", "Xinya Du", "Sergey Tulyakov", "Xin Eric Wang" ]
Video editing stands as a cornerstone of digital media, from entertainment and education to professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistency edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal VIdeo Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, the foundation of VIA is a novel test-time editing adaptation method, which adapts a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that adapts consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potentials for advanced video editing tasks over long video sequences.
2024-06-19T00:00:00
2406.12050
Learn Beyond The Answer: Training Language Models with Reflection for Mathematical Reasoning
[ "Zhihan Zhang", "Zhenwen Liang", "Wenhao Yu", "Dian Yu", "Mengzhao Jia", "Dong Yu", "Meng Jiang" ]
Supervised fine-tuning enhances the problem-solving abilities of language models across various mathematical reasoning tasks. To maximize such benefits, existing research focuses on broadening the training set with various data augmentation techniques, which is effective for standard single-round question-answering settings. Our work introduces a novel technique aimed at cultivating a deeper understanding of the training problems at hand, enhancing performance not only in standard settings but also in more complex scenarios that require reflective thinking. Specifically, we propose reflective augmentation, a method that embeds problem reflection into each training instance. It trains the model to consider alternative perspectives and engage with abstractions and analogies, thereby fostering a thorough comprehension through reflective reasoning. Extensive experiments validate the achievement of our aim, underscoring the unique advantages of our method and its complementary nature relative to existing augmentation techniques.
2024-06-19T00:00:00
2406.12274
SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models
[ "Somnath Banerjee", "Soham Tripathy", "Sayan Layek", "Shanu Kumar", "Animesh Mukherjee", "Rima Hazra" ]
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms, increasing the likelihood of generating unsafe content. In addition, incorporating new knowledge through editing techniques to language models can further compromise safety. To address these issues, we propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy for generating safe responses to user queries. SafeInfer comprises two phases: the safety amplification phase, which employs safe demonstration examples to adjust the model's hidden states and increase the likelihood of safer outputs, and the safety-guided decoding phase, which influences token selection based on safety-optimized distributions, ensuring the generated content complies with ethical guidelines. Further, we present HarmEval, a novel benchmark for extensive safety evaluations, designed to address potential misuse scenarios in accordance with the policies of leading AI tech giants.
2024-06-19T00:00:00
2406.11801
Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations
[ "Rima Hazra", "Sayan Layek", "Somnath Banerjee", "Soujanya Poria" ]
Ensuring the safe alignment of large language models (LLMs) with human values is critical as they become integral to applications like translation and question answering. Current alignment methods struggle with dynamic user intentions and complex objectives, making models vulnerable to generating harmful content. We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal to avoid harmful content and Safety Alignment to promote safe responses. Additionally, we present NoIntentEdit, a dataset highlighting edit instances that could compromise model safety if used unintentionally. Our experiments show that Safety Arithmetic significantly improves safety measures, reduces over-safety, and maintains model utility, outperforming existing methods in ensuring safe content generation.
2024-06-19T00:00:00
2406.12673
Estimating Knowledge in Large Language Models Without Generating a Single Token
[ "Daniela Gottesman", "Mor Geva" ]
To evaluate knowledge in large language models (LLMs), current methods query the model and then evaluate its generated responses. In this work, we ask whether evaluation can be done before the model has generated any text. Concretely, is it possible to estimate how knowledgeable a model is about a certain entity, only from its internal computation? We study this question with two tasks: given a subject entity, the goal is to predict (a) the ability of the model to answer common questions about the entity, and (b) the factuality of responses generated by the model about the entity. Experiments with a variety of LLMs show that KEEN, a simple probe trained over internal subject representations, succeeds at both tasks - strongly correlating with both the QA accuracy of the model per-subject and FActScore, a recent factuality metric in open-ended generation. Moreover, KEEN naturally aligns with the model's hedging behavior and faithfully reflects changes in the model's knowledge after fine-tuning. Lastly, we show a more interpretable yet equally performant variant of KEEN, which highlights a small set of tokens that correlates with the model's lack of knowledge. Being simple and lightweight, KEEN can be leveraged to identify gaps and clusters of entity knowledge in LLMs, and guide decisions such as augmenting queries with retrieval.
2024-06-19T00:00:00
2406.12042
Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models
[ "Alireza Ganjdanesh", "Reza Shirkavand", "Shangqian Gao", "Heng Huang" ]
Text-to-image (T2I) diffusion models have demonstrated impressive image generation capabilities. Still, their computational intensity prohibits resource-constrained organizations from deploying T2I models after fine-tuning them on their internal target data. While pruning techniques offer a potential solution to reduce the computational burden of T2I models, static pruning methods use the same pruned model for all input prompts, overlooking the varying capacity requirements of different prompts. Dynamic pruning addresses this issue by utilizing a separate sub-network for each prompt, but it prevents batch parallelism on GPUs. To overcome these limitations, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel prompt-based pruning method designed for T2I diffusion models. Central to our approach is a prompt router model, which learns to determine the required capacity for an input text prompt and routes it to an architecture code, given a total desired compute budget for prompts. Each architecture code represents a specialized model tailored to the prompts assigned to it, and the number of codes is a hyperparameter. We train the prompt router and architecture codes using contrastive learning, ensuring that similar prompts are mapped to nearby codes. Further, we employ optimal transport to prevent the codes from collapsing into a single one. We demonstrate APTP's effectiveness by pruning Stable Diffusion (SD) V2.1 using CC3M and COCO as target datasets. APTP outperforms the single-model pruning baselines in terms of FID, CLIP, and CMMD scores. Our analysis of the clusters learned by APTP reveals they are semantically meaningful. We also show that APTP can automatically discover previously empirically found challenging prompts for SD, e.g., prompts for generating text images, assigning them to higher capacity codes.
2024-06-19T00:00:00
2406.12303
Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment
[ "Yiheng Li", "Heyang Jiang", "Akio Kodaira", "Masayoshi Tomizuka", "Kurt Keutzer", "Chenfeng Xu" ]
In this paper, we point out suboptimal noise-data mapping leads to slow training of diffusion models. During diffusion training, current methods diffuse each image across the entire noise space, resulting in a mixture of all images at every point in the noise layer. We emphasize that this random mixture of noise-data mapping complicates the optimization of the denoising function in diffusion models. Drawing inspiration from the immiscible phenomenon in physics, we propose Immiscible Diffusion, a simple and effective method to improve the random mixture of noise-data mapping. In physics, miscibility can vary according to various intermolecular forces. Thus, immiscibility means that the mixing of the molecular sources is distinguishable. Inspired by this, we propose an assignment-then-diffusion training strategy. Specifically, prior to diffusing the image data into noise, we assign diffusion target noise for the image data by minimizing the total image-noise pair distance in a mini-batch. The assignment functions analogously to external forces to separate the diffuse-able areas of images, thus mitigating the inherent difficulties in diffusion training. Our approach is remarkably simple, requiring only one line of code to restrict the diffuse-able area for each image while preserving the Gaussian distribution of noise. This ensures that each image is projected only to nearby noise. To address the high complexity of the assignment algorithm, we employ a quantized-assignment method to reduce the computational overhead to a negligible level. Experiments demonstrate that our method achieve up to 3x faster training for consistency models and DDIM on the CIFAR dataset, and up to 1.3x faster on CelebA datasets for consistency models. Besides, we conduct thorough analysis about the Immiscible Diffusion, which sheds lights on how it improves diffusion training speed while improving the fidelity.
2024-06-19T00:00:00
2406.11909
Mixture-of-Subspaces in Low-Rank Adaptation
[ "Taiqiang Wu", "Jiahao Wang", "Zhe Zhao", "Ngai Wong" ]
https://github.com/wutaiqiang/MoSLoRA{github
In this paper, we introduce a subspace-inspired Low-Rank Adaptation (LoRA) method, which is computationally efficient, easy to implement, and readily applicable to large language, multimodal, and diffusion models. Initially, we equivalently decompose the weights of LoRA into two subspaces, and find that simply mixing them can enhance performance. To study such a phenomenon, we revisit it through a fine-grained subspace lens, showing that such modification is equivalent to employing a fixed mixer to fuse the subspaces. To be more flexible, we jointly learn the mixer with the original LoRA weights, and term the method Mixture-of-Subspaces LoRA (MoSLoRA). MoSLoRA consistently outperforms LoRA on tasks in different modalities, including commonsense reasoning, visual instruction tuning, and subject-driven text-to-image generation, demonstrating its effectiveness and robustness. Codes are available at https://github.com/wutaiqiang/MoSLoRA{github}.
2024-06-19T00:00:00
2406.11431
Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization
[ "Wenkai Yang", "Shiqi Shen", "Guangyao Shen", "Zhi Gong", "Yankai Lin" ]
Superalignment, where humans are weak supervisors of superhuman models, has become an important and widely discussed issue in the current era of rapid development of Large Language Models (LLMs). The recent work preliminarily studies this problem by using weak models to supervise strong models. It discovers that weakly supervised strong students can consistently outperform weak teachers towards the alignment target, leading to a weak-to-strong generalization phenomenon. However, we are concerned that behind such a promising phenomenon, whether there exists an issue of weak-to-strong deception, where strong models may deceive weak models by exhibiting well-aligned in areas known to weak models but producing misaligned behaviors in cases weak models do not know. We then take an initial step towards exploring this security issue in a specific but realistic multi-objective alignment case, where there may be some alignment targets conflicting with each other (e.g., helpfulness v.s. harmlessness). Such a conflict is likely to cause strong models to deceive weak models in one alignment dimension to gain high reward in other alignment dimension. Our experiments on both the reward modeling task and the preference optimization scenario indicate: (1) the weak-to-strong deception exists; (2) the deception phenomenon may intensify as the capability gap between weak and strong models increases. We also discuss potential solutions and find bootstrapping with an intermediate model can mitigate the deception to some extent. Our work highlights the urgent need to pay more attention to the true reliability of superalignment.
2024-06-20T00:00:00
2406.11612
Long Code Arena: a Set of Benchmarks for Long-Context Code Models
[ "Egor Bogomolov", "Aleksandra Eliseeva", "Timur Galimzyanov", "Evgeniy Glukhov", "Anton Shapkin", "Maria Tigina", "Yaroslav Golubev", "Alexander Kovrigin", "Arie van Deursen", "Maliheh Izadi", "Timofey Bryksin" ]
Nowadays, the fields of code and natural language processing are evolving rapidly. In particular, models become better at processing long context windows - supported context sizes have increased by orders of magnitude over the last few years. However, there is a shortage of benchmarks for code processing that go beyond a single file of context, while the most popular ones are limited to a single method. With this work, we aim to close this gap by introducing Long Code Arena, a suite of six benchmarks for code processing tasks that require project-wide context. These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization. For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions based on popular LLMs to showcase the usage of the dataset and to simplify adoption by other researchers. We publish the benchmark page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub for all the datasets, and link to the GitHub repository with baselines: https://huggingface.co/spaces/JetBrains-Research/long-code-arena.
2024-06-20T00:00:00
2406.11230
Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models
[ "Hengyi Wang", "Haizhou Shi", "Shiwei Tan", "Weiyi Qin", "Wenyuan Wang", "Tunyu Zhang", "Akshay Nambi", "Tanuja Ganu", "Hao Wang" ]
https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack
Multimodal Large Language Models (MLLMs) have shown significant promise in various applications, leading to broad interest from researchers and practitioners alike. However, a comprehensive evaluation of their long-context capabilities remains underexplored. To address these gaps, we introduce the MultiModal Needle-in-a-haystack (MMNeedle) benchmark, specifically designed to assess the long-context capabilities of MLLMs. Besides multi-image input, we employ image stitching to further increase the input context length, and develop a protocol to automatically generate labels for sub-image level retrieval. Essentially, MMNeedle evaluates MLLMs by stress-testing their capability to locate a target sub-image (needle) within a set of images (haystack) based on textual instructions and descriptions of image contents. This setup necessitates an advanced understanding of extensive visual contexts and effective information retrieval within long-context image inputs. With this benchmark, we evaluate state-of-the-art MLLMs, encompassing both API-based and open-source models. The findings reveal that GPT-4o consistently surpasses other models in long-context scenarios, but suffers from hallucination problems in negative samples, i.e., when needles are not in the haystacks. Our comprehensive long-context evaluation of MLLMs also sheds lights on the considerable performance gap between API-based and open-source models. All the code, data, and instructions required to reproduce the main results are available at https://github.com/Wang-ML-Lab/multimodal-needle-in-a-haystack.
2024-06-20T00:00:00
2406.12649
Probabilistic Conceptual Explainers: Trustworthy Conceptual Explanations for Vision Foundation Models
[ "Hengyi Wang", "Shiwei Tan", "Hao Wang" ]
Vision transformers (ViTs) have emerged as a significant area of focus, particularly for their capacity to be jointly trained with large language models and to serve as robust vision foundation models. Yet, the development of trustworthy explanation methods for ViTs has lagged, particularly in the context of post-hoc interpretations of ViT predictions. Existing sub-image selection approaches, such as feature-attribution and conceptual models, fall short in this regard. This paper proposes five desiderata for explaining ViTs -- faithfulness, stability, sparsity, multi-level structure, and parsimony -- and demonstrates the inadequacy of current methods in meeting these criteria comprehensively. We introduce a variational Bayesian explanation framework, dubbed ProbAbilistic Concept Explainers (PACE), which models the distributions of patch embeddings to provide trustworthy post-hoc conceptual explanations. Our qualitative analysis reveals the distributions of patch-level concepts, elucidating the effectiveness of ViTs by modeling the joint distribution of patch embeddings and ViT's predictions. Moreover, these patch-level explanations bridge the gap between image-level and dataset-level explanations, thus completing the multi-level structure of PACE. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that PACE surpasses state-of-the-art methods in terms of the defined desiderata.
2024-06-20T00:00:00
2406.12034
Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
[ "Junmo Kang", "Leonid Karlinsky", "Hongyin Luo", "Zhen Wang", "Jacob Hansen", "James Glass", "David Cox", "Rameswar Panda", "Rogerio Feris", "Alan Ritter" ]
We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts, named MiXSE (MiXture of Self-specialized Experts). Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data, each equipped with a shared base LLM and incorporating self-optimized routing. This allows for dynamic and capability-specific handling of various target tasks, enhancing overall capabilities, without extensive human-labeled data and added parameters. Our empirical results reveal that specializing LLMs may exhibit potential trade-offs in performances on non-specialized tasks. On the other hand, our Self-MoE demonstrates substantial improvements over the base LLM across diverse benchmarks such as knowledge, reasoning, math, and coding. It also consistently outperforms other methods, including instance merging and weight merging, while offering better flexibility and interpretability by design with semantic experts and routing. Our findings highlight the critical role of modularity and the potential of self-improvement in achieving efficient, scalable, and adaptable systems.
2024-06-20T00:00:00
2406.11139
Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance
[ "Somnath Banerjee", "Avik Halder", "Rajarshi Mandal", "Sayan Layek", "Ian Soboroff", "Rima Hazra", "Animesh Mukherjee" ]
The integration of pretrained language models (PLMs) like BERT and GPT has revolutionized NLP, particularly for English, but it has also created linguistic imbalances. This paper strategically identifies the need for linguistic equity by examining several knowledge editing techniques in multilingual contexts. We evaluate the performance of models such as Mistral, TowerInstruct, OpenHathi, Tamil-Llama, and Kan-Llama across languages including English, German, French, Italian, Spanish, Hindi, Tamil, and Kannada. Our research identifies significant discrepancies in normal and merged models concerning cross-lingual consistency. We employ strategies like 'each language for itself' (ELFI) and 'each language for others' (ELFO) to stress-test these models. Our findings demonstrate the potential for LLMs to overcome linguistic barriers, laying the groundwork for future research in achieving linguistic inclusivity in AI technologies.
2024-06-20T00:00:00
2406.12209
Interface Design for Self-Supervised Speech Models
[ "Yi-Jen Shih", "David Harwath" ]
Self-supervised speech (SSL) models have recently become widely adopted for many downstream speech processing tasks. The general usage pattern is to employ SSL models as feature extractors, and then train a downstream prediction head to solve a specific task. However, different layers of SSL models have been shown to capture different types of information, and the methods of combining them are not well studied. To this end, we extend the general framework for SSL model utilization by proposing the interface that connects the upstream and downstream. Under this view, the dominant technique of combining features via a layerwise weighted sum can be regarded as a specific interface. We propose several alternative interface designs and demonstrate that the weighted sum interface is suboptimal for many tasks. In particular, we show that a convolutional interface whose depth scales logarithmically with the depth of the upstream model consistently outperforms many other interface designs.
2024-06-20T00:00:00
2406.11614
Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces
[ "Yihuai Hong", "Lei Yu", "Shauli Ravfogel", "Haiqin Yang", "Mor Geva" ]
https://github.com/yihuaihong/ConceptVectors
The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance for mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general methodology for eliciting directions in the parameter space (termed "concept vectors") that encode concrete concepts, and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors, while directly ablating these vectors demonstrably removes the associated knowledge from the LLMs and significantly reduces their susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parametric-based evaluations. To support this, we release our code and benchmark at https://github.com/yihuaihong/ConceptVectors.
2024-06-20T00:00:00
2406.11715
Measuring memorization in RLHF for code completion
[ "Aneesh Pappu", "Billy Porter", "Ilia Shumailov", "Jamie Hayes" ]
Reinforcement learning with human feedback (RLHF) has become the dominant method to align large models to user preferences. Unlike fine-tuning, for which there are many studies regarding training data memorization, it is not clear how memorization is affected by or introduced in the RLHF alignment process. Understanding this relationship is important as real user data may be collected and used to align large models; if user data is memorized during RLHF and later regurgitated, this could raise privacy concerns. In this work, we analyze how training data memorization can surface and propagate through each phase of RLHF. We focus our study on code completion models, as code completion is one of the most popular use cases for large language models. We find that RLHF significantly decreases the chance that data used for reward modeling and reinforcement learning is memorized, in comparison to aligning via directly fine-tuning on this data, but that examples already memorized during the fine-tuning stage of RLHF, will, in the majority of cases, remain memorized after RLHF.
2024-06-21T00:00:00
2406.14491
Instruction Pre-Training: Language Models are Supervised Multitask Learners
[ "Daixuan Cheng", "Yuxian Gu", "Shaohan Huang", "Junyu Bi", "Minlie Huang", "Furu Wei" ]
https://github.com/microsoft/LMOps
Unsupervised multitask pre-training has been the critical method behind the recent success of language models (LMs). However, supervised multitask learning still holds significant promise, as scaling it in the post-training stage trends towards better generalization. In this paper, we explore supervised multitask pre-training by proposing Instruction Pre-Training, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train LMs. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training. In pre-training from scratch, Instruction Pre-Training not only consistently enhances pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, Instruction Pre-Training enables Llama3-8B to be comparable to or even outperform Llama3-70B. Our model, code, and data are available at https://github.com/microsoft/LMOps.
2024-06-21T00:00:00
2406.11927
REPOEXEC: Evaluate Code Generation with a Repository-Level Executable Benchmark
[ "Nam Le Hai", "Dung Manh Nguyen", "Nghi D. Q. Bui" ]
https://github.com/FSoft-AI4Code/RepoExec
The ability of CodeLLMs to generate executable and functionally correct code at the repository-level scale remains largely unexplored. We introduce RepoExec, a novel benchmark for evaluating code generation at the repository-level scale. RepoExec focuses on three main aspects: executability, functional correctness through automated test case generation with high coverage rate, and carefully crafted cross-file contexts to accurately generate code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuned models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. We also introduce a new instruction-tuned dataset that focuses on code dependencies and demonstrate that CodeLLMs fine-tuned on our dataset have a better capability to leverage these dependencies effectively. RepoExec aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios. The dataset and source code can be found at~https://github.com/FSoft-AI4Code/RepoExec.
2024-06-21T00:00:00
2406.11896
DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning
[ "Hao Bai", "Yifei Zhou", "Mert Cemri", "Jiayi Pan", "Alane Suhr", "Sergey Levine", "Aviral Kumar" ]
Training corpuses for vision language models (VLMs) typically lack sufficient amounts of decision-centric data. This renders off-the-shelf VLMs sub-optimal for decision-making tasks such as in-the-wild device control through graphical user interfaces (GUIs). While training with static demonstrations has shown some promise, we show that such methods fall short for controlling real GUIs due to their failure to deal with real-world stochasticity and non-stationarity not captured in static observational data. This paper introduces a novel autonomous RL approach, called DigiRL, for training in-the-wild device control agents through fine-tuning a pre-trained VLM in two stages: offline RL to initialize the model, followed by offline-to-online RL. To do this, we build a scalable and parallelizable Android learning environment equipped with a VLM-based evaluator and develop a simple yet effective RL approach for learning in this domain. Our approach runs advantage-weighted RL with advantage estimators enhanced to account for stochasticity along with an automatic curriculum for deriving maximal learning signal. We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild (AitW) dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute improvement -- from 17.7 to 67.2% success rate -- over supervised fine-tuning with static human demonstration data. These results significantly surpass not only the prior best agents, including AppAgent with GPT-4V (8.3% success rate) and the 17B CogAgent trained with AitW data (38.5%), but also the prior best autonomous RL approach based on filtered behavior cloning (57.8%), thereby establishing a new state-of-the-art for digital agents for in-the-wild device control.
2024-06-21T00:00:00
2406.14130
ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning
[ "Zhongjie Duan", "Wenmeng Zhou", "Cen Chen", "Yaliang Li", "Weining Qian" ]
Recently, advancements in video synthesis have attracted significant attention. Video synthesis models such as AnimateDiff and Stable Video Diffusion have demonstrated the practical applicability of diffusion models in creating dynamic visual content. The emergence of SORA has further spotlighted the potential of video generation technologies. Nonetheless, the extension of video lengths has been constrained by the limitations in computational resources. Most existing video synthesis models can only generate short video clips. In this paper, we propose a novel post-tuning methodology for video synthesis models, called ExVideo. This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations while incurring lower training expenditures. In particular, we design extension strategies across common temporal model architectures respectively, including 3D convolution, temporal attention, and positional embedding. To evaluate the efficacy of our proposed post-tuning approach, we conduct extension training on the Stable Video Diffusion model. Our approach augments the model's capacity to generate up to 5times its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos. Importantly, the substantial increase in video length doesn't compromise the model's innate generalization capabilities, and the model showcases its advantages in generating videos of diverse styles and resolutions. We will release the source code and the enhanced model publicly.
2024-06-21T00:00:00
2406.12045
τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains
[ "Shunyu Yao", "Noah Shinn", "Pedram Razavi", "Karthik Narasimhan" ]
Existing benchmarks do not test language agents on their interaction with human users or ability to follow domain-specific rules, both of which are vital for deploying them in real world applications. We propose tau-bench, a benchmark emulating dynamic conversations between a user (simulated by language models) and a language agent provided with domain-specific API tools and policy guidelines. We employ an efficient and faithful evaluation process that compares the database state at the end of a conversation with the annotated goal state. We also propose a new metric (pass^k) to evaluate the reliability of agent behavior over multiple trials. Our experiments show that even state-of-the-art function calling agents (like gpt-4o) succeed on <50% of the tasks, and are quite inconsistent (pass^8 <25% in retail). Our findings point to the need for methods that can improve the ability of agents to act consistently and follow rules reliably.
2024-06-21T00:00:00
2406.13923
PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
[ "Junjie Wang", "Yin Zhang", "Yatai Ji", "Yuxiang Zhang", "Chunyang Jiang", "Yubo Wang", "Kang Zhu", "Zekun Wang", "Tiezhen Wang", "Wenhao Huang", "Jie Fu", "Bei Chen", "Qunshu Lin", "Minghao Liu", "Ge Zhang", "Wenhu Chen" ]
Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
2024-06-21T00:00:00
2406.14544
Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs
[ "Yuxuan Qiao", "Haodong Duan", "Xinyu Fang", "Junming Yang", "Lin Chen", "Songyang Zhang", "Jiaqi Wang", "Dahua Lin", "Kai Chen" ]
https://github.com/SparksJoe/Prism
Vision Language Models (VLMs) demonstrate remarkable proficiency in addressing a wide array of visual questions, which requires strong perception and reasoning faculties. Assessing these two competencies independently is crucial for model refinement, despite the inherent difficulty due to the intertwined nature of seeing and reasoning in existing VLMs. To tackle this issue, we present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving. Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information using a Large Language Model (LLM). This modular design enables the systematic comparison and assessment of both proprietary and open-source VLM for their perception and reasoning strengths. Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks. By combining a streamlined VLM focused on perception with a powerful LLM tailored for reasoning, Prism achieves superior results in general vision-language tasks while substantially cutting down on training and operational expenses. Quantitative evaluations show that Prism, when configured with a vanilla 2B LLaVA and freely accessible GPT-3.5, delivers performance on par with VLMs 10 times larger on the rigorous multimodal benchmark MMStar. The project is released at: https://github.com/SparksJoe/Prism.
2024-06-21T00:00:00
2406.14515
MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding
[ "Xinyu Fang", "Kangrui Mao", "Haodong Duan", "Xiangyu Zhao", "Yining Li", "Dahua Lin", "Kai Chen" ]
https://github.com/open-compass/VLMEvalKit
The advent of large vision-language models (LVLMs) has spurred research into their applications in multi-modal contexts, particularly in video understanding. Traditional VideoQA benchmarks, despite providing quantitative metrics, often fail to encompass the full spectrum of video content and inadequately assess models' temporal comprehension. To address these limitations, we introduce MMBench-Video, a quantitative benchmark designed to rigorously evaluate LVLMs' proficiency in video understanding. MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases. The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy. We employ GPT-4 for automated assessment, demonstrating superior accuracy and robustness over earlier LLM-based evaluations. Utilizing MMBench-Video, we have conducted comprehensive evaluations that include both proprietary and open-source LVLMs for images and videos. MMBench-Video stands as a valuable resource for the research community, facilitating improved evaluation of LVLMs and catalyzing progress in the field of video understanding. The evalutation code of MMBench-Video will be integrated into VLMEvalKit: https://github.com/open-compass/VLMEvalKit.
2024-06-21T00:00:00
2406.14562
Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities
[ "Sachit Menon", "Richard Zemel", "Carl Vondrick" ]
When presented with questions involving visual thinking, humans naturally switch reasoning modalities, often forming mental images or drawing visual aids. Large language models have shown promising results in arithmetic and symbolic reasoning by expressing intermediate reasoning in text as a chain of thought, yet struggle to extend this capability to answer text queries that are easily solved by visual reasoning, even with extensive multimodal pretraining. We introduce a simple method, whiteboard-of-thought prompting, to unlock the visual reasoning capabilities of multimodal large language models across modalities. Whiteboard-of-thought prompting provides multimodal large language models with a metaphorical `whiteboard' to draw out reasoning steps as images, then returns these images back to the model for further processing. We find this can be accomplished with no demonstrations or specialized modules, instead leveraging models' existing ability to write code with libraries such as Matplotlib and Turtle. This simple approach shows state-of-the-art results on four difficult natural language tasks that involve visual and spatial reasoning. We identify multiple settings where GPT-4o using chain-of-thought fails dramatically, including more than one where it achieves 0% accuracy, while whiteboard-of-thought enables up to 92% accuracy in these same settings. We present a detailed exploration of where the technique succeeds as well as its sources of error.
2024-06-21T00:00:00
2406.11817
Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level
[ "Jie Liu", "Zhanhui Zhou", "Jiaheng Liu", "Xingyuan Bu", "Chao Yang", "Han-Sen Zhong", "Wanli Ouyang" ]
Direct Preference Optimization (DPO), a standard method for aligning language models with human preferences, is traditionally applied to offline preferences. Recent studies show that DPO benefits from iterative training with online preferences labeled by a trained reward model. In this work, we identify a pitfall of vanilla iterative DPO - improved response quality can lead to increased verbosity. To address this, we introduce iterative length-regularized DPO (iLR-DPO) to penalize response length. Our empirical results show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 without increasing verbosity. Specifically, our 7B model achieves a 50.5% length-controlled win rate against GPT-4 Preview on AlpacaEval 2.0, and excels across standard benchmarks including MT-Bench, Arena-Hard and OpenLLM Leaderboard. These results demonstrate the effectiveness of iterative DPO in aligning language models with human feedback.
2024-06-21T00:00:00
2406.12925
GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks
[ "Ihor Stepanov", "Mykhailo Shtopko" ]
Information extraction tasks require both accurate, efficient, and generalisable models. Classical supervised deep learning approaches can achieve the required performance, but they need large datasets and are limited in their ability to adapt to different tasks. On the other hand, large language models (LLMs) demonstrate good generalization, meaning that they can adapt to many different tasks based on user requests. However, LLMs are computationally expensive and tend to fail to generate structured outputs. In this article, we will introduce a new kind of GLiNER model that can be used for various information extraction tasks while being a small encoder model. Our model achieved SoTA performance on zero-shot NER benchmarks and leading performance on question-answering, summarization and relation extraction tasks. Additionally, in this article, we will cover experimental results on self-learning approaches for named entity recognition using GLiNER models.
2024-06-21T00:00:00
2406.14347
nabla^2DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials
[ "Kuzma Khrabrov", "Anton Ber", "Artem Tsypin", "Konstantin Ushenin", "Egor Rumiantsev", "Alexander Telepov", "Dmitry Protasov", "Ilya Shenbin", "Anton Alekseev", "Mikhail Shirokikh", "Sergey Nikolenko", "Elena Tutubalina", "Artur Kadurin" ]
Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science. However, high computational complexity limits the scalability of their applications. Neural network potentials (NNPs) are a promising alternative to quantum chemistry methods, but they require large and diverse datasets for training. This work presents a new dataset and benchmark called nabla^2DFT that is based on the nablaDFT. It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models. The dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap matrices, and a wavefunction object. All calculations were performed at the DFT level (omegaB97X-D/def2-SVP) for each conformation. Moreover, nabla^2DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules. We also introduce a novel benchmark for evaluating NNPs in molecular property prediction, Hamiltonian prediction, and conformational optimization tasks. Finally, we propose an extendable framework for training NNPs and implement 10 models within it.
2024-06-21T00:00:00
2406.11410
HARE: HumAn pRiors, a key to small language model Efficiency
[ "Lingyun Zhang", "Bin jin", "Gaojian Ge", "Lunhui Liu", "Xuewen Shen", "Mingyong Wu", "Houqian Zhang", "Yongneng Jiang", "Shiqi Chen", "Shi Pu" ]
Human priors play a crucial role in efficiently utilizing data in deep learning. However, with the development of large language models (LLMs), there is an increasing emphasis on scaling both model size and data volume, which often diminishes the importance of human priors in data construction. Influenced by these trends, existing Small Language Models (SLMs) mainly rely on web-scraped large-scale training data, neglecting the proper incorporation of human priors. This oversight limits the training efficiency of language models in resource-constrained settings. In this paper, we propose a principle to leverage human priors for data construction. This principle emphasizes achieving high-performance SLMs by training on a concise dataset that accommodates both semantic diversity and data quality consistency, while avoiding benchmark data leakage. Following this principle, we train an SLM named HARE-1.1B. Extensive experiments on large-scale benchmark datasets demonstrate that HARE-1.1B performs favorably against state-of-the-art SLMs, validating the effectiveness of the proposed principle. Additionally, this provides new insights into efficient language model training in resource-constrained environments from the view of human priors.
2024-06-21T00:00:00
2406.14539
Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps
[ "Nikita Starodubcev", "Mikhail Khoroshikh", "Artem Babenko", "Dmitry Baranchuk" ]
Diffusion distillation represents a highly promising direction for achieving faithful text-to-image generation in a few sampling steps. However, despite recent successes, existing distilled models still do not provide the full spectrum of diffusion abilities, such as real image inversion, which enables many precise image manipulation methods. This work aims to enrich distilled text-to-image diffusion models with the ability to effectively encode real images into their latent space. To this end, we introduce invertible Consistency Distillation (iCD), a generalized consistency distillation framework that facilitates both high-quality image synthesis and accurate image encoding in only 3-4 inference steps. Though the inversion problem for text-to-image diffusion models gets exacerbated by high classifier-free guidance scales, we notice that dynamic guidance significantly reduces reconstruction errors without noticeable degradation in generation performance. As a result, we demonstrate that iCD equipped with dynamic guidance may serve as a highly effective tool for zero-shot text-guided image editing, competing with more expensive state-of-the-art alternatives.
2024-06-21T00:00:00
2406.14319
LiveMind: Low-latency Large Language Models with Simultaneous Inference
[ "Chuangtao Chen", "Grace Li Zhang", "Xunzhao Yin", "Cheng Zhuo", "Ulf Schlichtmann", "Bing Li" ]
In this paper, we introduce a novel low-latency inference framework for large language models (LLMs) inference which enables LLMs to perform inferences with incomplete prompts. By reallocating computational processes to prompt input phase, we achieve a substantial reduction in latency, thereby significantly enhancing the interactive experience for users of LLMs. The framework adeptly manages the visibility of the streaming prompt to the model, allowing it to infer from incomplete prompts or await additional prompts. Compared with traditional inference methods that utilize complete prompts, our approach demonstrates an average reduction of 59% in response latency on the MMLU-Pro dataset, while maintaining comparable accuracy. Additionally, our framework facilitates collaborative inference and output across different models. By employing an LLM for inference and a small language model (SLM) for output, we achieve an average 68% reduction in response latency, alongside a 5.5% improvement in accuracy on the MMLU-Pro dataset compared with the SLM baseline. For long prompts exceeding 20 sentences, the response latency can be reduced by up to 93%.
2024-06-21T00:00:00
2406.13542
Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models
[ "Guanting Dong", "Keming Lu", "Chengpeng Li", "Tingyu Xia", "Bowen Yu", "Chang Zhou", "Jingren Zhou" ]
https://github.com/QwenLM/AutoIF
One core capability of large language models (LLMs) is to follow natural language instructions. However, the issue of automatically constructing high-quality training data to enhance the complex instruction-following abilities of LLMs without manual annotation remains unresolved. In this paper, we introduce AutoIF, the first scalable and reliable method for automatically generating instruction-following training data. AutoIF transforms the validation of instruction-following data quality into code verification, requiring LLMs to generate instructions, the corresponding code to check the correctness of the instruction responses, and unit test samples to verify the code's correctness. Then, execution feedback-based rejection sampling can generate data for Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) training. AutoIF achieves significant improvements across three training algorithms, SFT, Offline DPO, and Online DPO, when applied to the top open-source LLMs, Qwen2 and LLaMA3, in self-alignment and strong-to-weak distillation settings. Our code is publicly available at https://github.com/QwenLM/AutoIF.
2024-06-21T00:00:00
2406.13621
Improving Visual Commonsense in Language Models via Multiple Image Generation
[ "Guy Yariv", "Idan Schwartz", "Yossi Adi", "Sagie Benaim" ]
https://github.com/guyyariv/vLMIG
Commonsense reasoning is fundamentally based on multimodal knowledge. However, existing large language models (LLMs) are primarily trained using textual data only, limiting their ability to incorporate essential visual information. In contrast, Visual Language Models, which excel at visually-oriented tasks, often fail at non-visual tasks such as basic commonsense reasoning. This divergence highlights a critical challenge - the integration of robust visual understanding with foundational text-based language reasoning. To this end, we introduce a method aimed at enhancing LLMs' visual commonsense. Specifically, our method generates multiple images based on the input text prompt and integrates these into the model's decision-making process by mixing their prediction probabilities. To facilitate multimodal grounded language modeling, we employ a late-fusion layer that combines the projected visual features with the output of a pre-trained LLM conditioned on text only. This late-fusion layer enables predictions based on comprehensive image-text knowledge as well as text only when this is required. We evaluate our approach using several visual commonsense reasoning tasks together with traditional NLP tasks, including common sense reasoning and reading comprehension. Our experimental results demonstrate significant superiority over existing baselines. When applied to recent state-of-the-art LLMs (e.g., Llama3), we observe improvements not only in visual common sense but also in traditional NLP benchmarks. Code and models are available under https://github.com/guyyariv/vLMIG.
2024-06-21T00:00:00
2406.10601
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing
[ "Denis Bobkov", "Vadim Titov", "Aibek Alanov", "Dmitry Vetrov" ]
https://github.com/AIRI-Institute/StyleFeatureEditor
The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.
2024-06-21T00:00:00
2406.13663
Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation
[ "Jirui Qi", "Gabriele Sarti", "Raquel Fernández", "Arianna Bisazza" ]
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.
2024-06-21T00:00:00
2406.12618
From Insights to Actions: The Impact of Interpretability and Analysis Research on NLP
[ "Marius Mosbach", "Vagrant Gautam", "Tomás Vergara-Browne", "Dietrich Klakow", "Mor Geva" ]
Interpretability and analysis (IA) research is a growing subfield within NLP with the goal of developing a deeper understanding of the behavior or inner workings of NLP systems and methods. Despite growing interest in the subfield, a commonly voiced criticism is that it lacks actionable insights and therefore has little impact on NLP. In this paper, we seek to quantify the impact of IA research on the broader field of NLP. We approach this with a mixed-methods analysis of: (1) a citation graph of 185K+ papers built from all papers published at ACL and EMNLP conferences from 2018 to 2023, and (2) a survey of 138 members of the NLP community. Our quantitative results show that IA work is well-cited outside of IA, and central in the NLP citation graph. Through qualitative analysis of survey responses and manual annotation of 556 papers, we find that NLP researchers build on findings from IA work and perceive it is important for progress in NLP, multiple subfields, and rely on its findings and terminology for their own work. Many novel methods are proposed based on IA findings and highly influenced by them, but highly influential non-IA work cites IA findings without being driven by them. We end by summarizing what is missing in IA work today and provide a call to action, to pave the way for a more impactful future of IA research.
2024-06-21T00:00:00
2406.14563
Model Merging and Safety Alignment: One Bad Model Spoils the Bunch
[ "Hasan Abed Al Kader Hammoud", "Umberto Michieli", "Fabio Pizzati", "Philip Torr", "Adel Bibi", "Bernard Ghanem", "Mete Ozay" ]
Merging Large Language Models (LLMs) is a cost-effective technique for combining multiple expert LLMs into a single versatile model, retaining the expertise of the original ones. However, current approaches often overlook the importance of safety alignment during merging, leading to highly misaligned models. This work investigates the effects of model merging on alignment. We evaluate several popular model merging techniques, demonstrating that existing methods do not only transfer domain expertise but also propagate misalignment. We propose a simple two-step approach to address this problem: (i) generating synthetic safety and domain-specific data, and (ii) incorporating these generated data into the optimization process of existing data-aware model merging techniques. This allows us to treat alignment as a skill that can be maximized in the resulting merged LLM. Our experiments illustrate the effectiveness of integrating alignment-related data during merging, resulting in models that excel in both domain expertise and alignment.
2024-06-21T00:00:00
2406.13735
StableSemantics: A Synthetic Language-Vision Dataset of Semantic Representations in Naturalistic Images
[ "Rushikesh Zawar", "Shaurya Dewan", "Andrew F. Luo", "Margaret M. Henderson", "Michael J. Tarr", "Leila Wehbe" ]
Understanding the semantics of visual scenes is a fundamental challenge in Computer Vision. A key aspect of this challenge is that objects sharing similar semantic meanings or functions can exhibit striking visual differences, making accurate identification and categorization difficult. Recent advancements in text-to-image frameworks have led to models that implicitly capture natural scene statistics. These frameworks account for the visual variability of objects, as well as complex object co-occurrences and sources of noise such as diverse lighting conditions. By leveraging large-scale datasets and cross-attention conditioning, these models generate detailed and contextually rich scene representations. This capability opens new avenues for improving object recognition and scene understanding in varied and challenging environments. Our work presents StableSemantics, a dataset comprising 224 thousand human-curated prompts, processed natural language captions, over 2 million synthetic images, and 10 million attention maps corresponding to individual noun chunks. We explicitly leverage human-generated prompts that correspond to visually interesting stable diffusion generations, provide 10 generations per phrase, and extract cross-attention maps for each image. We explore the semantic distribution of generated images, examine the distribution of objects within images, and benchmark captioning and open vocabulary segmentation methods on our data. To the best of our knowledge, we are the first to release a diffusion dataset with semantic attributions. We expect our proposed dataset to catalyze advances in visual semantic understanding and provide a foundation for developing more sophisticated and effective visual models. Website: https://stablesemantics.github.io/StableSemantics
2024-06-21T00:00:00
2406.11289
A Systematic Survey of Text Summarization: From Statistical Methods to Large Language Models
[ "Haopeng Zhang", "Philip S. Yu", "Jiawei Zhang" ]
Text summarization research has undergone several significant transformations with the advent of deep neural networks, pre-trained language models (PLMs), and recent large language models (LLMs). This survey thus provides a comprehensive review of the research progress and evolution in text summarization through the lens of these paradigm shifts. It is organized into two main parts: (1) a detailed overview of datasets, evaluation metrics, and summarization methods before the LLM era, encompassing traditional statistical methods, deep learning approaches, and PLM fine-tuning techniques, and (2) the first detailed examination of recent advancements in benchmarking, modeling, and evaluating summarization in the LLM era. By synthesizing existing literature and presenting a cohesive overview, this survey also discusses research trends, open challenges, and proposes promising research directions in summarization, aiming to guide researchers through the evolving landscape of summarization research.
2024-06-21T00:00:00
2406.13099
Sampling 3D Gaussian Scenes in Seconds with Latent Diffusion Models
[ "Paul Henderson", "Melonie de Almeida", "Daniela Ivanova", "Titas Anciukevičius" ]
We present a latent diffusion model over 3D scenes, that can be trained using only 2D image data. To achieve this, we first design an autoencoder that maps multi-view images to 3D Gaussian splats, and simultaneously builds a compressed latent representation of these splats. Then, we train a multi-view diffusion model over the latent space to learn an efficient generative model. This pipeline does not require object masks nor depths, and is suitable for complex scenes with arbitrary camera positions. We conduct careful experiments on two large-scale datasets of complex real-world scenes -- MVImgNet and RealEstate10K. We show that our approach enables generating 3D scenes in as little as 0.2 seconds, either from scratch, from a single input view, or from sparse input views. It produces diverse and high-quality results while running an order of magnitude faster than non-latent diffusion models and earlier NeRF-based generative models
2024-06-24T00:00:00
2406.14393
Jailbreaking as a Reward Misspecification Problem
[ "Zhihui Xie", "Jiahui Gao", "Lei Li", "Zhenguo Li", "Qi Liu", "Lingpeng Kong" ]
The widespread adoption of large language models (LLMs) has raised concerns about their safety and reliability, particularly regarding their vulnerability to adversarial attacks. In this paper, we propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process. We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness and robustness in detecting harmful backdoor prompts. Building upon these insights, we present ReMiss, a system for automated red teaming that generates adversarial prompts against various target aligned LLMs. ReMiss achieves state-of-the-art attack success rates on the AdvBench benchmark while preserving the human readability of the generated prompts. Detailed analysis highlights the unique advantages brought by the proposed reward misspecification objective compared to previous methods.
2024-06-24T00:00:00
2406.14835
ToVo: Toxicity Taxonomy via Voting
[ "Tinh Son Luong", "Thanh-Thien Le", "Thang Viet Doan", "Linh Ngo Van", "Thien Huu Nguyen", "Diep Thi-Ngoc Nguyen" ]
Existing toxic detection models face significant limitations, such as lack of transparency, customization, and reproducibility. These challenges stem from the closed-source nature of their training data and the paucity of explanations for their evaluation mechanism. To address these issues, we propose a dataset creation mechanism that integrates voting and chain-of-thought processes, producing a high-quality open-source dataset for toxic content detection. Our methodology ensures diverse classification metrics for each sample and includes both classification scores and explanatory reasoning for the classifications. We utilize the dataset created through our proposed mechanism to train our model, which is then compared against existing widely-used detectors. Our approach not only enhances transparency and customizability but also facilitates better fine-tuning for specific use cases. This work contributes a robust framework for developing toxic content detection models, emphasizing openness and adaptability, thus paving the way for more effective and user-specific content moderation solutions.
2024-06-24T00:00:00
2406.14805
How Well Do LLMs Represent Values Across Cultures? Empirical Analysis of LLM Responses Based on Hofstede Cultural Dimensions
[ "Julia Kharchenko", "Tanya Roosta", "Aman Chadha", "Chirag Shah" ]
Large Language Models (LLMs) attempt to imitate human behavior by responding to humans in a way that pleases them, including by adhering to their values. However, humans come from diverse cultures with different values. It is critical to understand whether LLMs showcase different values to the user based on the stereotypical values of a user's known country. We prompt different LLMs with a series of advice requests based on 5 Hofstede Cultural Dimensions -- a quantifiable way of representing the values of a country. Throughout each prompt, we incorporate personas representing 36 different countries and, separately, languages predominantly tied to each country to analyze the consistency in the LLMs' cultural understanding. Through our analysis of the responses, we found that LLMs can differentiate between one side of a value and another, as well as understand that countries have differing values, but will not always uphold the values when giving advice, and fail to understand the need to answer differently based on different cultural values. Rooted in these findings, we present recommendations for training value-aligned and culturally sensitive LLMs. More importantly, the methodology and the framework developed here can help further understand and mitigate culture and language alignment issues with LLMs.
2024-06-24T00:00:00
2406.15319
LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs
[ "Ziyan Jiang", "Xueguang Ma", "Wenhu Chen" ]
In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the `needle' unit. In contrast, the readers only need to extract answers from the short retrieved units. Such an imbalanced `heavy' retriever and `light' reader design can lead to sub-optimal performance. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a `long retriever' and a `long reader'. LongRAG processes the entire Wikipedia into 4K-token units, which is 30x longer than before. By increasing the unit size, we significantly reduce the total units from 22M to 700K. This significantly lowers the burden of retriever, which leads to a remarkable retrieval score: answer recall@1=71% on NQ (previously 52%) and answer recall@2=72% (previously 47%) on HotpotQA (full-wiki). Then we feed the top-k retrieved units (approx 30K tokens) to an existing long-context LLM to perform zero-shot answer extraction. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ, which is the best known result. LongRAG also achieves 64.3% on HotpotQA (full-wiki), which is on par of the SoTA model. Our study offers insights into the future roadmap for combining RAG with long-context LLMs.
2024-06-24T00:00:00
2406.15252
MantisScore: Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation
[ "Xuan He", "Dongfu Jiang", "Ge Zhang", "Max Ku", "Achint Soni", "Sherman Siu", "Haonan Chen", "Abhranil Chandra", "Ziyan Jiang", "Aaran Arulraj", "Kai Wang", "Quy Duc Do", "Yuansheng Ni", "Bohan Lyu", "Yaswanth Narsupalli", "Rongqi Fan", "Zhiheng Lyu", "Yuchen Lin", "Wenhu Chen" ]
The recent years have witnessed great advances in video generation. However, the development of automatic video metrics is lagging significantly behind. None of the existing metric is able to provide reliable scores over generated videos. The main barrier is the lack of large-scale human-annotated dataset. In this paper, we release VideoFeedback, the first large-scale dataset containing human-provided multi-aspect score over 37.6K synthesized videos from 11 existing video generative models. We train MantisScore (initialized from Mantis) based on VideoFeedback to enable automatic video quality assessment. Experiments show that the Spearman correlation between MantisScore and humans can reach 77.1 on VideoFeedback-test, beating the prior best metrics by about 50 points. Further result on other held-out EvalCrafter, GenAI-Bench, and VBench show that MantisScore has consistently much higher correlation with human judges than other metrics. Due to these results, we believe MantisScore can serve as a great proxy for human raters to (1) rate different video models to track progress (2) simulate fine-grained human feedback in Reinforcement Learning with Human Feedback (RLHF) to improve current video generation models.
2024-06-24T00:00:00
2406.15193
Reward Steering with Evolutionary Heuristics for Decoding-time Alignment
[ "Chia-Yu Hung", "Navonil Majumder", "Ambuj Mehrish", "Soujanya Poria" ]
The widespread applicability and increasing omnipresence of LLMs have instigated a need to align LLM responses to user and stakeholder preferences. Many preference optimization approaches have been proposed that fine-tune LLM parameters to achieve good alignment. However, such parameter tuning is known to interfere with model performance on many tasks. Moreover, keeping up with shifting user preferences is tricky in such a situation. Decoding-time alignment with reward model guidance solves these issues at the cost of increased inference time. However, most of such methods fail to strike the right balance between exploration and exploitation of reward -- often due to the conflated formulation of these two aspects - to give well-aligned responses. To remedy this we decouple these two aspects and implement them in an evolutionary fashion: exploration is enforced by decoding from mutated instructions and exploitation is represented as the periodic replacement of poorly-rewarded generations with well-rewarded ones. Empirical evidences indicate that this strategy outperforms many preference optimization and decode-time alignment approaches on two widely accepted alignment benchmarks AlpacaEval 2 and MT-Bench. Our implementation will be available at: https://darwin-alignment.github.io.
2024-06-24T00:00:00
2406.14599
Stylebreeder: Exploring and Democratizing Artistic Styles through Text-to-Image Models
[ "Matthew Zheng", "Enis Simsar", "Hidir Yesiltepe", "Federico Tombari", "Joel Simon", "Pinar Yanardag" ]
Text-to-image models are becoming increasingly popular, revolutionizing the landscape of digital art creation by enabling highly detailed and creative visual content generation. These models have been widely employed across various domains, particularly in art generation, where they facilitate a broad spectrum of creative expression and democratize access to artistic creation. In this paper, we introduce STYLEBREEDER, a comprehensive dataset of 6.8M images and 1.8M prompts generated by 95K users on Artbreeder, a platform that has emerged as a significant hub for creative exploration with over 13M users. We introduce a series of tasks with this dataset aimed at identifying diverse artistic styles, generating personalized content, and recommending styles based on user interests. By documenting unique, user-generated styles that transcend conventional categories like 'cyberpunk' or 'Picasso,' we explore the potential for unique, crowd-sourced styles that could provide deep insights into the collective creative psyche of users worldwide. We also evaluate different personalization methods to enhance artistic expression and introduce a style atlas, making these models available in LoRA format for public use. Our research demonstrates the potential of text-to-image diffusion models to uncover and promote unique artistic expressions, further democratizing AI in art and fostering a more diverse and inclusive artistic community. The dataset, code and models are available at https://stylebreeder.github.io under a Public Domain (CC0) license.
2024-06-24T00:00:00
2406.12624
Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
[ "Aman Singh Thakur", "Kartik Choudhary", "Venkat Srinik Ramayapally", "Sankaran Vaidyanathan", "Dieuwke Hupkes" ]
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges. We leverage TriviaQA as a benchmark for assessing objective knowledge reasoning of LLMs and evaluate them alongside human annotations which we found to have a high inter-annotator agreement. Our study includes 9 judge models and 9 exam taker models -- both base and instruction-tuned. We assess the judge model's alignment across different model sizes, families, and judge prompts. Among other results, our research rediscovers the importance of using Cohen's kappa as a metric of alignment as opposed to simple percent agreement, showing that judges with high percent agreement can still assign vastly different scores. We find that both Llama-3 70B and GPT-4 Turbo have an excellent alignment with humans, but in terms of ranking exam taker models, they are outperformed by both JudgeLM-7B and the lexical judge Contains, which have up to 34 points lower human alignment. Through error analysis and various other studies, including the effects of instruction length and leniency bias, we hope to provide valuable lessons for using LLMs as judges in the future.
2024-06-24T00:00:00
2406.14035
Two Giraffes in a Dirt Field: Using Game Play to Investigate Situation Modelling in Large Multimodal Models
[ "Sherzod Hakimov", "Yerkezhan Abdullayeva", "Kushal Koshti", "Antonia Schmidt", "Yan Weiser", "Anne Beyer", "David Schlangen" ]
While the situation has improved for text-only models, it again seems to be the case currently that multimodal (text and image) models develop faster than ways to evaluate them. In this paper, we bring a recently developed evaluation paradigm from text models to multimodal models, namely evaluation through the goal-oriented game (self) play, complementing reference-based and preference-based evaluation. Specifically, we define games that challenge a model's capability to represent a situation from visual information and align such representations through dialogue. We find that the largest closed models perform rather well on the games that we define, while even the best open-weight models struggle with them. On further analysis, we find that the exceptional deep captioning capabilities of the largest models drive some of the performance. There is still room to grow for both kinds of models, ensuring the continued relevance of the benchmark.
2024-06-24T00:00:00
2406.15275
Cognitive Map for Language Models: Optimal Planning via Verbally Representing the World Model
[ "Doyoung Kim", "Jongwon Lee", "Jinho Park", "Minjoon Seo" ]
Language models have demonstrated impressive capabilities across various natural language processing tasks, yet they struggle with planning tasks requiring multi-step simulations. Inspired by human cognitive processes, this paper investigates the optimal planning power of language models that can construct a cognitive map of a given environment. Our experiments demonstrate that cognitive map significantly enhances the performance of both optimal and reachable planning generation ability in the Gridworld path planning task. We observe that our method showcases two key characteristics similar to human cognition: generalization of its planning ability to extrapolated environments and rapid adaptation with limited training data. We hope our findings in the Gridworld task provide insights into modeling human cognitive processes in language models, potentially leading to the development of more advanced and robust systems that better resemble human cognition.
2024-06-24T00:00:00
2406.12056
Learning Molecular Representation in a Cell
[ "Gang Liu", "Srijit Seal", "John Arevalo", "Zhenwen Liang", "Anne E. Carpenter", "Meng Jiang", "Shantanu Singh" ]
Predicting drug efficacy and safety in vivo requires information on biological responses (e.g., cell morphology and gene expression) to small molecule perturbations. However, current molecular representation learning methods do not provide a comprehensive view of cell states under these perturbations and struggle to remove noise, hindering model generalization. We introduce the Information Alignment (InfoAlign) approach to learn molecular representations through the information bottleneck method in cells. We integrate molecules and cellular response data as nodes into a context graph, connecting them with weighted edges based on chemical, biological, and computational criteria. For each molecule in a training batch, InfoAlign optimizes the encoder's latent representation with a minimality objective to discard redundant structural information. A sufficiency objective decodes the representation to align with different feature spaces from the molecule's neighborhood in the context graph. We demonstrate that the proposed sufficiency objective for alignment is tighter than existing encoder-based contrastive methods. Empirically, we validate representations from InfoAlign in two downstream tasks: molecular property prediction against up to 19 baseline methods across four datasets, plus zero-shot molecule-morphology matching.
2024-06-24T00:00:00
2406.11403
Multimodal Structured Generation: CVPR's 2nd MMFM Challenge Technical Report
[ "Franz Louis Cesista" ]
https://github.com/leloykun/MMFM-Challenge
Multimodal Foundation Models (MMFMs) have shown remarkable performance on various computer vision and natural language processing tasks. However, their performance on particular tasks such as document understanding is still limited. They also require more compute, time, and engineering resources to finetune and deploy compared to traditional, unimodal models. In this report, we present Multimodal Structured Generation, a general framework which constrains the output logits of frozen MMFMs to force them to reason before responding with structured outputs that downstream APIs can parse and use. We provide a detailed account of our approach, including the technical details, theoretical discussions, and final evaluation results in the 2nd Multimodal Foundation Models Challenge hosted by the Computer Vision and Pattern Recognition (CVPR) conference. Our approach achieved the second highest score in the hidden test set for Phase 2 and third highest overall. This shows the method's ability to generalize to unseen tasks. And that simple engineering can beat expensive & complicated modelling steps as we first discussed in our paper, Retrieval Augmented Structured Generation: Business Document Information Extraction as Tool Use. All of our scripts, deployment steps, and evaluation results can be accessed in https://github.com/leloykun/MMFM-Challenge
2024-06-24T00:00:00
2406.15349
NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking
[ "Daniel Dauner", "Marcel Hallgarten", "Tianyu Li", "Xinshuo Weng", "Zhiyu Huang", "Zetong Yang", "Hongyang Li", "Igor Gilitschenski", "Boris Ivanovic", "Marco Pavone", "Andreas Geiger", "Kashyap Chitta" ]
https://github.com/autonomousvision/navsim
Benchmarking vision-based driving policies is challenging. On one hand, open-loop evaluation with real data is easy, but these results do not reflect closed-loop performance. On the other, closed-loop evaluation is possible in simulation, but is hard to scale due to its significant computational demands. Further, the simulators available today exhibit a large domain gap to real data. This has resulted in an inability to draw clear conclusions from the rapidly growing body of research on end-to-end autonomous driving. In this paper, we present NAVSIM, a middle ground between these evaluation paradigms, where we use large datasets in combination with a non-reactive simulator to enable large-scale real-world benchmarking. Specifically, we gather simulation-based metrics, such as progress and time to collision, by unrolling bird's eye view abstractions of the test scenes for a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other. As we demonstrate empirically, this decoupling allows open-loop metric computation while being better aligned with closed-loop evaluations than traditional displacement errors. NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights. On a large set of challenging scenarios, we observe that simple methods with moderate compute requirements such as TransFuser can match recent large-scale end-to-end driving architectures such as UniAD. Our modular framework can potentially be extended with new datasets, data curation strategies, and metrics, and will be continually maintained to host future challenges. Our code is available at https://github.com/autonomousvision/navsim.
2024-06-24T00:00:00
2406.13457
EvTexture: Event-driven Texture Enhancement for Video Super-Resolution
[ "Dachun Kai", "Jiayao Lu", "Yueyi Zhang", "Xiaoyan Sun" ]
https://github.com/DachunKai/EvTexture
Event-based vision has drawn increasing attention due to its unique characteristics, such as high temporal resolution and high dynamic range. It has been used in video super-resolution (VSR) recently to enhance the flow estimation and temporal alignment. Rather than for motion learning, we propose in this paper the first VSR method that utilizes event signals for texture enhancement. Our method, called EvTexture, leverages high-frequency details of events to better recover texture regions in VSR. In our EvTexture, a new texture enhancement branch is presented. We further introduce an iterative texture enhancement module to progressively explore the high-temporal-resolution event information for texture restoration. This allows for gradual refinement of texture regions across multiple iterations, leading to more accurate and rich high-resolution details. Experimental results show that our EvTexture achieves state-of-the-art performance on four datasets. For the Vid4 dataset with rich textures, our method can get up to 4.67dB gain compared with recent event-based methods. Code: https://github.com/DachunKai/EvTexture.
2024-06-24T00:00:00
2406.14972
A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems
[ "Florin Cuconasu", "Giovanni Trappolini", "Nicola Tonellotto", "Fabrizio Silvestri" ]
Retrieval Augmented Generation (RAG) represents a significant advancement in artificial intelligence combining a retrieval phase with a generative phase, with the latter typically being powered by large language models (LLMs). The current common practices in RAG involve using "instructed" LLMs, which are fine-tuned with supervised training to enhance their ability to follow instructions and are aligned with human preferences using state-of-the-art techniques. Contrary to popular belief, our study demonstrates that base models outperform their instructed counterparts in RAG tasks by 20% on average under our experimental settings. This finding challenges the prevailing assumptions about the superiority of instructed LLMs in RAG applications. Further investigations reveal a more nuanced situation, questioning fundamental aspects of RAG and suggesting the need for broader discussions on the topic; or, as Fromm would have it, "Seldom is a glance at the statistics enough to understand the meaning of the figures".
2024-06-24T00:00:00
2406.14938
Towards Retrieval Augmented Generation over Large Video Libraries
[ "Yannis Tevissen", "Khalil Guetari", "Frédéric Petitpont" ]
Video content creators need efficient tools to repurpose content, a task that often requires complex manual or automated searches. Crafting a new video from large video libraries remains a challenge. In this paper we introduce the task of Video Library Question Answering (VLQA) through an interoperable architecture that applies Retrieval Augmented Generation (RAG) to video libraries. We propose a system that uses large language models (LLMs) to generate search queries, retrieving relevant video moments indexed by speech and visual metadata. An answer generation module then integrates user queries with this metadata to produce responses with specific video timestamps. This approach shows promise in multimedia content retrieval, and AI-assisted video content creation.
2024-06-24T00:00:00
2406.13393
Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images
[ "Haruo Fujiwara", "Yusuke Mukuta", "Tatsuya Harada" ]
We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality.
2024-06-24T00:00:00
2406.12564
Low-Resource Machine Translation through the Lens of Personalized Federated Learning
[ "Viktor Moskvoretskii", "Nazarii Tupitsa", "Chris Biemann", "Samuel Horváth", "Eduard Gorbunov", "Irina Nikishina" ]
https://github.com/VityaVitalich/MeritFed
We present a new approach based on the Personalized Federated Learning algorithm MeritFed that can be applied to Natural Language Tasks with heterogeneous data. We evaluate it on the Low-Resource Machine Translation task, using the dataset from the Large-Scale Multilingual Machine Translation Shared Task (Small Track #2) and the subset of Sami languages from the multilingual benchmark for Finno-Ugric languages. In addition to its effectiveness, MeritFed is also highly interpretable, as it can be applied to track the impact of each language used for training. Our analysis reveals that target dataset size affects weight distribution across auxiliary languages, that unrelated languages do not interfere with the training, and auxiliary optimizer parameters have minimal impact. Our approach is easy to apply with a few lines of code, and we provide scripts for reproducing the experiments at https://github.com/VityaVitalich/MeritFed
2024-06-24T00:00:00
2406.14213
Complexity of Symbolic Representation in Working Memory of Transformer Correlates with the Complexity of a Task
[ "Alsu Sagirova", "Mikhail Burtsev" ]
Even though Transformers are extensively used for Natural Language Processing tasks, especially for machine translation, they lack an explicit memory to store key concepts of processed texts. This paper explores the properties of the content of symbolic working memory added to the Transformer model decoder. Such working memory enhances the quality of model predictions in machine translation task and works as a neural-symbolic representation of information that is important for the model to make correct translations. The study of memory content revealed that translated text keywords are stored in the working memory, pointing to the relevance of memory content to the processed text. Also, the diversity of tokens and parts of speech stored in memory correlates with the complexity of the corpora for machine translation task.
2024-06-24T00:00:00
2406.14764
RE-AdaptIR: Improving Information Retrieval through Reverse Engineered Adaptation
[ "William Fleshman", "Benjamin Van Durme" ]
Large language models (LLMs) fine-tuned for text-retrieval have demonstrated state-of-the-art results across several information retrieval (IR) benchmarks. However, supervised training for improving these models requires numerous labeled examples, which are generally unavailable or expensive to acquire. In this work, we explore the effectiveness of extending reverse engineered adaptation to the context of information retrieval (RE-AdaptIR). We use RE-AdaptIR to improve LLM-based IR models using only unlabeled data. We demonstrate improved performance both in training domains as well as zero-shot in domains where the models have seen no queries. We analyze performance changes in various fine-tuning scenarios and offer findings of immediate use to practitioners.
2024-06-24T00:00:00
2406.14783
Evaluating RAG-Fusion with RAGElo: an Automated Elo-based Framework
[ "Zackary Rackauckas", "Arthur Câmara", "Jakub Zavrel" ]
Challenges in the automated evaluation of Retrieval-Augmented Generation (RAG) Question-Answering (QA) systems include hallucination problems in domain-specific knowledge and the lack of gold standard benchmarks for company internal tasks. This results in difficulties in evaluating RAG variations, like RAG-Fusion (RAGF), in the context of a product QA task at Infineon Technologies. To solve these problems, we propose a comprehensive evaluation framework, which leverages Large Language Models (LLMs) to generate large datasets of synthetic queries based on real user queries and in-domain documents, uses LLM-as-a-judge to rate retrieved documents and answers, evaluates the quality of answers, and ranks different variants of Retrieval-Augmented Generation (RAG) agents with RAGElo's automated Elo-based competition. LLM-as-a-judge rating of a random sample of synthetic queries shows a moderate, positive correlation with domain expert scoring in relevance, accuracy, completeness, and precision. While RAGF outperformed RAG in Elo score, a significance analysis against expert annotations also shows that RAGF significantly outperforms RAG in completeness, but underperforms in precision. In addition, Infineon's RAGF assistant demonstrated slightly higher performance in document relevance based on MRR@5 scores. We find that RAGElo positively aligns with the preferences of human annotators, though due caution is still required. Finally, RAGF's approach leads to more complete answers based on expert annotations and better answers overall based on RAGElo's evaluation criteria.
2024-06-24T00:00:00
2406.13527
4K4DGen: Panoramic 4D Generation at 4K Resolution
[ "Renjie Li", "Panwang Pan", "Bangbang Yang", "Dejia Xu", "Shijie Zhou", "Xuanyang Zhang", "Zeming Li", "Achuta Kadambi", "Zhangyang Wang", "Zhiwen Fan" ]
The blooming of virtual reality and augmented reality (VR/AR) technologies has driven an increasing demand for the creation of high-quality, immersive, and dynamic environments. However, existing generative techniques either focus solely on dynamic objects or perform outpainting from a single perspective image, failing to meet the needs of VR/AR applications. In this work, we tackle the challenging task of elevating a single panorama to an immersive 4D experience. For the first time, we demonstrate the capability to generate omnidirectional dynamic scenes with 360-degree views at 4K resolution, thereby providing an immersive user experience. Our method introduces a pipeline that facilitates natural scene animations and optimizes a set of 4D Gaussians using efficient splatting techniques for real-time exploration. To overcome the lack of scene-scale annotated 4D data and models, especially in panoramic formats, we propose a novel Panoramic Denoiser that adapts generic 2D diffusion priors to animate consistently in 360-degree images, transforming them into panoramic videos with dynamic scenes at targeted regions. Subsequently, we elevate the panoramic video into a 4D immersive environment while preserving spatial and temporal consistency. By transferring prior knowledge from 2D models in the perspective domain to the panoramic domain and the 4D lifting with spatial appearance and geometry regularization, we achieve high-quality Panorama-to-4D generation at a resolution of (4096 times 2048) for the first time. See the project website at https://4k4dgen.github.io.
2024-06-24T00:00:00
2406.11617
DELLA-Merging: Reducing Interference in Model Merging through Magnitude-Based Sampling
[ "Pala Tej Deep", "Rishabh Bhardwaj", "Soujanya Poria" ]
https://github.com/declare-lab/della
With the proliferation of domain-specific models, model merging has emerged as a set of techniques that combine the capabilities of multiple models into one that can multitask without the cost of additional training. In this paper, we propose a new model merging technique, Drop and rEscaLe via sampLing with mAgnitude (DELLA-Merging), that employs a novel pruning technique, MAGPRUNE, which shows significant advantages over DARE and TIES. MAGPRUNE first ranks the parameters in order of their magnitude and assigns higher dropout probabilities (p) to parameters with lower ranks corresponding to lower magnitudes. To approximate the original embeddings, MAGPRUNE employs a rescaling operation on the parameters that survive the random dropping by 1/(1 - p). On three different expert models considered for merging (LM, Math, Code) and corresponding benchmark datasets (AlpacaEval, GSM8K, MBPP), DELLA shows an average improvement of 2.4 points over baseline methods employing delta parameter pruning (an improvement of 3.6 points over TIES, 1.2 points over DARE), and 11.1 points over the no-pruning baseline (TA). We release the source code at: https://github.com/declare-lab/della.
2024-06-24T00:00:00
2406.11654
Ruby Teaming: Improving Quality Diversity Search with Memory for Automated Red Teaming
[ "Vernon Toh Yan Han", "Rishabh Bhardwaj", "Soujanya Poria" ]
We propose Ruby Teaming, a method that improves on Rainbow Teaming by including a memory cache as its third dimension. The memory dimension provides cues to the mutator to yield better-quality prompts, both in terms of attack success rate (ASR) and quality diversity. The prompt archive generated by Ruby Teaming has an ASR of 74%, which is 20% higher than the baseline. In terms of quality diversity, Ruby Teaming outperforms Rainbow Teaming by 6% and 3% on Shannon's Evenness Index (SEI) and Simpson's Diversity Index (SDI), respectively.
2024-06-24T00:00:00
2406.13236
Data Contamination Can Cross Language Barriers
[ "Feng Yao", "Yufan Zhuang", "Zihao Sun", "Sunan Xu", "Animesh Kumar", "Jingbo Shang" ]
https://github.com/ShangDataLab/Deep-Contam
The opacity in developing large language models (LLMs) is raising growing concerns about the potential contamination of public benchmarks in the pre-training data. Existing contamination detection methods are typically based on the text overlap between training and evaluation data, which can be too superficial to reflect deeper forms of contamination. In this paper, we first present a cross-lingual form of contamination that inflates LLMs' performance while evading current detection methods, deliberately injected by overfitting LLMs on the translated versions of benchmark test sets. Then, we propose generalization-based approaches to unmask such deeply concealed contamination. Specifically, we examine the LLM's performance change after modifying the original benchmark by replacing the false answer choices with correct ones from other questions. Contaminated models can hardly generalize to such easier situations, where the false choices can be not even wrong, as all choices are correct in their memorization. Experimental results demonstrate that cross-lingual contamination can easily fool existing detection methods, but not ours. In addition, we discuss the potential utilization of cross-lingual contamination in interpreting LLMs' working mechanisms and in post-training LLMs for enhanced multilingual capabilities. The code and dataset we use can be obtained from https://github.com/ShangDataLab/Deep-Contam.
2024-06-24T00:00:00
2406.14596
ICAL: Continual Learning of Multimodal Agents by Transforming Trajectories into Actionable Insights
[ "Gabriel Sarch", "Lawrence Jang", "Michael J. Tarr", "William W. Cohen", "Kenneth Marino", "Katerina Fragkiadaki" ]
Large-scale generative language and vision-language models (LLMs and VLMs) excel in few-shot in-context learning for decision making and instruction following. However, they require high-quality exemplar demonstrations to be included in their context window. In this work, we ask: Can LLMs and VLMs generate their own prompt examples from generic, sub-optimal demonstrations? We propose In-Context Abstraction Learning (ICAL), a method that builds a memory of multimodal experience insights from sub-optimal demonstrations and human feedback. Given a noisy demonstration in a new domain, VLMs abstract the trajectory into a general program by fixing inefficient actions and annotating cognitive abstractions: task relationships, object state changes, temporal subgoals, and task construals. These abstractions are refined and adapted interactively through human feedback while the agent attempts to execute the trajectory in a similar environment. The resulting abstractions, when used as exemplars in the prompt, significantly improve decision-making in retrieval-augmented LLM and VLM agents. Our ICAL agent surpasses the state-of-the-art in dialogue-based instruction following in TEACh, multimodal web agents in VisualWebArena, and action anticipation in Ego4D. In TEACh, we achieve a 12.6% improvement in goal-condition success. In VisualWebArena, our task success rate improves over the SOTA from 14.3% to 22.7%. In Ego4D action forecasting, we improve over few-shot GPT-4V and remain competitive with supervised models. We show finetuning our retrieval-augmented in-context agent yields additional improvements. Our approach significantly reduces reliance on expert-crafted examples and consistently outperforms in-context learning from action plans that lack such insights.
2024-06-24T00:00:00
2406.15877
BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions
[ "Terry Yue Zhuo", "Minh Chien Vu", "Jenny Chim", "Han Hu", "Wenhao Yu", "Ratnadira Widyasari", "Imam Nur Bani Yusuf", "Haolan Zhan", "Junda He", "Indraneil Paul", "Simon Brunner", "Chen Gong", "Thong Hoang", "Armel Randy Zebaze", "Xiaoheng Hong", "Wen-Ding Li", "Jean Kaddour", "Ming Xu", "Zhihan Zhang", "Prateek Yadav", "Naman Jain", "Alex Gu", "Zhoujun Cheng", "Jiawei Liu", "Qian Liu", "Zijian Wang", "David Lo", "Binyuan Hui", "Niklas Muennighoff", "Daniel Fried", "Xiaoning Du", "Harm de Vries", "Leandro Von Werra" ]
Automated software engineering has been greatly empowered by the recent advances in Large Language Models (LLMs) for programming. While current benchmarks have shown that LLMs can perform various software engineering tasks like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks. Solving challenging and practical programming tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs. To assess how well LLMs can solve challenging and practical programming tasks, we introduce Bench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained programming tasks. To evaluate LLMs rigorously, each programming task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of Bench, Benchi, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
2024-06-25T00:00:00
2406.16260
Video-Infinity: Distributed Long Video Generation
[ "Zhenxiong Tan", "Xingyi Yang", "Songhua Liu", "Xinchao Wang" ]
Diffusion models have recently achieved remarkable results for video generation. Despite the encouraging performances, the generated videos are typically constrained to a small number of frames, resulting in clips lasting merely a few seconds. The primary challenges in producing longer videos include the substantial memory requirements and the extended processing time required on a single GPU. A straightforward solution would be to split the workload across multiple GPUs, which, however, leads to two issues: (1) ensuring all GPUs communicate effectively to share timing and context information, and (2) modifying existing video diffusion models, which are usually trained on short sequences, to create longer videos without additional training. To tackle these, in this paper we introduce Video-Infinity, a distributed inference pipeline that enables parallel processing across multiple GPUs for long-form video generation. Specifically, we propose two coherent mechanisms: Clip parallelism and Dual-scope attention. Clip parallelism optimizes the gathering and sharing of context information across GPUs which minimizes communication overhead, while Dual-scope attention modulates the temporal self-attention to balance local and global contexts efficiently across the devices. Together, the two mechanisms join forces to distribute the workload and enable the fast generation of long videos. Under an 8 x Nvidia 6000 Ada GPU (48G) setup, our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.
2024-06-25T00:00:00
2406.16338
VideoHallucer: Evaluating Intrinsic and Extrinsic Hallucinations in Large Video-Language Models
[ "Yuxuan Wang", "Yueqian Wang", "Dongyan Zhao", "Cihang Xie", "Zilong Zheng" ]
Recent advancements in Multimodal Large Language Models (MLLMs) have extended their capabilities to video understanding. Yet, these models are often plagued by "hallucinations", where irrelevant or nonsensical content is generated, deviating from the actual video context. This work introduces VideoHallucer, the first comprehensive benchmark for hallucination detection in large video-language models (LVLMs). VideoHallucer categorizes hallucinations into two main types: intrinsic and extrinsic, offering further subcategories for detailed analysis, including object-relation, temporal, semantic detail, extrinsic factual, and extrinsic non-factual hallucinations. We adopt an adversarial binary VideoQA method for comprehensive evaluation, where pairs of basic and hallucinated questions are crafted strategically. By evaluating eleven LVLMs on VideoHallucer, we reveal that i) the majority of current models exhibit significant issues with hallucinations; ii) while scaling datasets and parameters improves models' ability to detect basic visual cues and counterfactuals, it provides limited benefit for detecting extrinsic factual hallucinations; iii) existing models are more adept at detecting facts than identifying hallucinations. As a byproduct, these analyses further instruct the development of our self-PEP framework, achieving an average of 5.38% improvement in hallucination resistance across all model architectures.
2024-06-25T00:00:00
2406.16758
Towards Fast Multilingual LLM Inference: Speculative Decoding and Specialized Drafters
[ "Euiin Yi", "Taehyeon Kim", "Hongseok Jeung", "Du-Seong Chang", "Se-Young Yun" ]
Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications. However, the deployment of these models is constrained by high inference time in multilingual settings. To mitigate this challenge, this paper explores a training recipe of an assistant model in speculative decoding, which are leveraged to draft and-then its future tokens are verified by the target LLM. We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup of inference time compared to the previous methods. We validate these models across various languages in inference time, out-of-domain speedup, and GPT-4o evaluation.
2024-06-25T00:00:00
2406.16855
DreamBench++: A Human-Aligned Benchmark for Personalized Image Generation
[ "Yuang Peng", "Yuxin Cui", "Haomiao Tang", "Zekun Qi", "Runpei Dong", "Jing Bai", "Chunrui Han", "Zheng Ge", "Xiangyu Zhang", "Shu-Tao Xia" ]
Personalized image generation holds great promise in assisting humans in everyday work and life due to its impressive function in creatively generating personalized content. However, current evaluations either are automated but misalign with humans or require human evaluations that are time-consuming and expensive. In this work, we present DreamBench++, a human-aligned benchmark automated by advanced multimodal GPT models. Specifically, we systematically design the prompts to let GPT be both human-aligned and self-aligned, empowered with task reinforcement. Further, we construct a comprehensive dataset comprising diverse images and prompts. By benchmarking 7 modern generative models, we demonstrate that DreamBench++ results in significantly more human-aligned evaluation, helping boost the community with innovative findings.
2024-06-25T00:00:00
2406.14833
Efficient Continual Pre-training by Mitigating the Stability Gap
[ "Yiduo Guo", "Jie Fu", "Huishuai Zhang", "Dongyan Zhao", "Yikang Shen" ]
Continual pre-training has increasingly become the predominant approach for adapting Large Language Models (LLMs) to new domains. This process involves updating the pre-trained LLM with a corpus from a new domain, resulting in a shift in the training distribution. To study the behavior of LLMs during this shift, we measured the model's performance throughout the continual pre-training process. we observed a temporary performance drop at the beginning, followed by a recovery phase, a phenomenon known as the "stability gap," previously noted in vision models classifying new classes. To address this issue and enhance LLM performance within a fixed compute budget, we propose three effective strategies: (1) Continually pre-training the LLM on a subset with a proper size for multiple epochs, resulting in faster performance recovery than pre-training the LLM on a large corpus in a single epoch; (2) Pre-training the LLM only on high-quality sub-corpus, which rapidly boosts domain performance; and (3) Using a data mixture similar to the pre-training data to reduce distribution gap. We conduct various experiments on Llama-family models to validate the effectiveness of our strategies in both medical continual pre-training and instruction tuning. For example, our strategies improve the average medical task performance of the OpenLlama-3B model from 36.2% to 40.7% with only 40% of the original training budget and enhance the average general task performance without causing forgetting. Furthermore, we apply our strategies to the Llama-3-8B model. The resulting model, Llama-3-Physician, achieves the best medical performance among current open-source models, and performs comparably to or even better than GPT-4 on several medical benchmarks. We release our models at https://huggingface.co/YiDuo1999/Llama-3-Physician-8B-Instruct.
2024-06-25T00:00:00
2406.16852
Long Context Transfer from Language to Vision
[ "Peiyuan Zhang", "Kaichen Zhang", "Bo Li", "Guangtao Zeng", "Jingkang Yang", "Yuanhan Zhang", "Ziyue Wang", "Haoran Tan", "Chunyuan Li", "Ziwei Liu" ]
https://github.com/EvolvingLMMs-Lab/LongVA
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos. Many works address this by reducing the number of visual tokens using visual resamplers. Alternatively, in this paper, we approach this problem from the perspective of the language model. By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training. We call this phenomenon long context transfer and carefully ablate its properties. To effectively measure LMMs' ability to generalize to long contexts in the vision modality, we develop V-NIAH (Visual Needle-In-A-Haystack), a purely synthetic long vision benchmark inspired by the language model's NIAH test. Our proposed Long Video Assistant (LongVA) can process 2000 frames or over 200K visual tokens without additional complexities. With its extended context length, LongVA achieves state-of-the-art performance on Video-MME among 7B-scale models by densely sampling more input frames. Our work is open-sourced at https://github.com/EvolvingLMMs-Lab/LongVA.
2024-06-25T00:00:00
2406.16235
Preference Tuning For Toxicity Mitigation Generalizes Across Languages
[ "Xiaochen Li", "Zheng-Xin Yong", "Stephen H. Bach" ]
Detoxifying multilingual Large Language Models (LLMs) has become crucial due to their increasing global use. In this work, we explore zero-shot cross-lingual generalization of preference tuning in detoxifying LLMs. Unlike previous studies that show limited cross-lingual generalization for other safety tasks, we demonstrate that Direct Preference Optimization (DPO) training with only English data can significantly reduce toxicity in multilingual open-ended generations. For example, the probability of mGPT-1.3B generating toxic continuations drops from 46.8% to 3.9% across 17 different languages after training. Our results also extend to other multilingual LLMs, such as BLOOM, Llama3, and Aya-23. Using mechanistic interpretability tools like causal intervention and activation analysis, we identified the dual multilinguality property of MLP layers in LLMs, which explains the cross-lingual generalization of DPO. Finally, we show that bilingual sentence retrieval can predict the cross-lingual transferability of DPO preference tuning.
2024-06-25T00:00:00
2406.16690
Scaling Laws for Linear Complexity Language Models
[ "Xuyang Shen", "Dong Li", "Ruitao Leng", "Zhen Qin", "Weigao Sun", "Yiran Zhong" ]
The interest in linear complexity models for large language models is on the rise, although their scaling capacity remains uncertain. In this study, we present the scaling laws for linear complexity language models to establish a foundation for their scalability. Specifically, we examine the scaling behaviors of three efficient linear architectures. These include TNL, a linear attention model with data-independent decay; HGRN2, a linear RNN with data-dependent decay; and cosFormer2, a linear attention model without decay. We also include LLaMA as a baseline architecture for softmax attention for comparison. These models were trained with six variants, ranging from 70M to 7B parameters on a 300B-token corpus, and evaluated with a total of 1,376 intermediate checkpoints on various downstream tasks. These tasks include validation loss, commonsense reasoning, and information retrieval and generation. The study reveals that existing linear complexity language models exhibit similar scaling capabilities as conventional transformer-based models while also demonstrating superior linguistic proficiency and knowledge retention.
2024-06-25T00:00:00
2406.16768
WARP: On the Benefits of Weight Averaged Rewarded Policies
[ "Alexandre Ramé", "Johan Ferret", "Nino Vieillard", "Robert Dadashi", "Léonard Hussenot", "Pierre-Louis Cedoz", "Pier Giuseppe Sessa", "Sertan Girgin", "Arthur Douillard", "Olivier Bachem" ]
Reinforcement learning from human feedback (RLHF) aligns large language models (LLMs) by encouraging their generations to have high rewards, using a reward model trained on human preferences. To prevent the forgetting of pre-trained knowledge, RLHF usually incorporates a KL regularization; this forces the policy to remain close to its supervised fine-tuned initialization, though it hinders the reward optimization. To tackle the trade-off between KL and reward, in this paper we introduce a novel alignment strategy named Weight Averaged Rewarded Policies (WARP). WARP merges policies in the weight space at three distinct stages. First, it uses the exponential moving average of the policy as a dynamic anchor in the KL regularization. Second, it applies spherical interpolation to merge independently fine-tuned policies into a new enhanced one. Third, it linearly interpolates between this merged model and the initialization, to recover features from pre-training. This procedure is then applied iteratively, with each iteration's final model used as an advanced initialization for the next, progressively refining the KL-reward Pareto front, achieving superior rewards at fixed KL. Experiments with GEMMA policies validate that WARP improves their quality and alignment, outperforming other open-source LLMs.
2024-06-25T00:00:00
2406.14540
IRASim: Learning Interactive Real-Robot Action Simulators
[ "Fangqi Zhu", "Hongtao Wu", "Song Guo", "Yuxiao Liu", "Chilam Cheang", "Tao Kong" ]
Scalable robot learning in the real world is limited by the cost and safety issues of real robots. In addition, rolling out robot trajectories in the real world can be time-consuming and labor-intensive. In this paper, we propose to learn an interactive real-robot action simulator as an alternative. We introduce a novel method, IRASim, which leverages the power of generative models to generate extremely realistic videos of a robot arm that executes a given action trajectory, starting from an initial given frame. To validate the effectiveness of our method, we create a new benchmark, IRASim Benchmark, based on three real-robot datasets and perform extensive experiments on the benchmark. Results show that IRASim outperforms all the baseline methods and is more preferable in human evaluations. We hope that IRASim can serve as an effective and scalable approach to enhance robot learning in the real world. To promote research for generative real-robot action simulators, we open-source code, benchmark, and checkpoints at https: //gen-irasim.github.io.
2024-06-25T00:00:00
2406.16815
ClotheDreamer: Text-Guided Garment Generation with 3D Gaussians
[ "Yufei Liu", "Junshu Tang", "Chu Zheng", "Shijie Zhang", "Jinkun Hao", "Junwei Zhu", "Dongjin Huang" ]
High-fidelity 3D garment synthesis from text is desirable yet challenging for digital avatar creation. Recent diffusion-based approaches via Score Distillation Sampling (SDS) have enabled new possibilities but either intricately couple with human body or struggle to reuse. We introduce ClotheDreamer, a 3D Gaussian-based method for generating wearable, production-ready 3D garment assets from text prompts. We propose a novel representation Disentangled Clothe Gaussian Splatting (DCGS) to enable separate optimization. DCGS represents clothed avatar as one Gaussian model but freezes body Gaussian splats. To enhance quality and completeness, we incorporate bidirectional SDS to supervise clothed avatar and garment RGBD renderings respectively with pose conditions and propose a new pruning strategy for loose clothing. Our approach can also support custom clothing templates as input. Benefiting from our design, the synthetic 3D garment can be easily applied to virtual try-on and support physically accurate animation. Extensive experiments showcase our method's superior and competitive performance. Our project page is at https://ggxxii.github.io/clothedreamer.
2024-06-25T00:00:00
2406.15704
video-SALMONN: Speech-Enhanced Audio-Visual Large Language Models
[ "Guangzhi Sun", "Wenyi Yu", "Changli Tang", "Xianzhao Chen", "Tian Tan", "Wei Li", "Lu Lu", "Zejun Ma", "Yuxuan Wang", "Chao Zhang" ]
https://github.com/bytedance/SALMONN
Speech understanding as an element of the more generic video understanding using audio-visual large language models (av-LLMs) is a crucial yet understudied aspect. This paper proposes video-SALMONN, a single end-to-end av-LLM for video processing, which can understand not only visual frame sequences, audio events and music, but speech as well. To obtain fine-grained temporal information required by speech understanding, while keeping efficient for other video elements, this paper proposes a novel multi-resolution causal Q-Former (MRC Q-Former) structure to connect pre-trained audio-visual encoders and the backbone large language model. Moreover, dedicated training approaches including the diversity loss and the unpaired audio-visual mixed training scheme are proposed to avoid frames or modality dominance. On the introduced speech-audio-visual evaluation benchmark, video-SALMONN achieves more than 25\% absolute accuracy improvements on the video-QA task and over 30\% absolute accuracy improvements on audio-visual QA tasks with human speech. In addition, video-SALMONN demonstrates remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other av-LLMs. Our training code and model checkpoints are available at \url{https://github.com/bytedance/SALMONN/}.
2024-06-25T00:00:00
2406.15927
Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs
[ "Jannik Kossen", "Jiatong Han", "Muhammed Razzak", "Lisa Schut", "Shreshth Malik", "Yarin Gal" ]
We propose semantic entropy probes (SEPs), a cheap and reliable method for uncertainty quantification in Large Language Models (LLMs). Hallucinations, which are plausible-sounding but factually incorrect and arbitrary model generations, present a major challenge to the practical adoption of LLMs. Recent work by Farquhar et al. (2024) proposes semantic entropy (SE), which can detect hallucinations by estimating uncertainty in the space semantic meaning for a set of model generations. However, the 5-to-10-fold increase in computation cost associated with SE computation hinders practical adoption. To address this, we propose SEPs, which directly approximate SE from the hidden states of a single generation. SEPs are simple to train and do not require sampling multiple model generations at test time, reducing the overhead of semantic uncertainty quantification to almost zero. We show that SEPs retain high performance for hallucination detection and generalize better to out-of-distribution data than previous probing methods that directly predict model accuracy. Our results across models and tasks suggest that model hidden states capture SE, and our ablation studies give further insights into the token positions and model layers for which this is the case.
2024-06-25T00:00:00
2406.16860
Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs
[ "Shengbang Tong", "Ellis Brown", "Penghao Wu", "Sanghyun Woo", "Manoj Middepogu", "Sai Charitha Akula", "Jihan Yang", "Shusheng Yang", "Adithya Iyer", "Xichen Pan", "Austin Wang", "Rob Fergus", "Yann LeCun", "Saining Xie" ]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures -- self-supervised, strongly supervised, or combinations thereof -- based on experiments with over 20 vision encoders. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks, and introduce a new vision-centric benchmark, CV-Bench. To further improve visual grounding, we propose the Spatial Vision Aggregator (SVA), a dynamic and spatially-aware connector that integrates high-resolution vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of data source balancing and distribution ratio. Collectively, Cambrian-1 not only achieves state-of-the-art performance but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.
2024-06-25T00:00:00
2406.16772
OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
[ "Zhen Huang", "Zengzhi Wang", "Shijie Xia", "Pengfei Liu" ]
https://github.com/GAIR-NLP/OlympicArena
In this report, we pose the following question: Who is the most intelligent AI model to date, as measured by the OlympicArena (an Olympic-level, multi-discipline, multi-modal benchmark for superintelligent AI)? We specifically focus on the most recently released models: Claude-3.5-Sonnet, Gemini-1.5-Pro, and GPT-4o. For the first time, we propose using an Olympic medal Table approach to rank AI models based on their comprehensive performance across various disciplines. Empirical results reveal: (1) Claude-3.5-Sonnet shows highly competitive overall performance over GPT-4o, even surpassing GPT-4o on a few subjects (i.e., Physics, Chemistry, and Biology). (2) Gemini-1.5-Pro and GPT-4V are ranked consecutively just behind GPT-4o and Claude-3.5-Sonnet, but with a clear performance gap between them. (3) The performance of AI models from the open-source community significantly lags behind these proprietary models. (4) The performance of these models on this benchmark has been less than satisfactory, indicating that we still have a long way to go before achieving superintelligence. We remain committed to continuously tracking and evaluating the performance of the latest powerful models on this benchmark (available at https://github.com/GAIR-NLP/OlympicArena).
2024-06-25T00:00:00
2406.16048
Evaluating D-MERIT of Partial-annotation on Information Retrieval
[ "Royi Rassin", "Yaron Fairstein", "Oren Kalinsky", "Guy Kushilevitz", "Nachshon Cohen", "Alexander Libov", "Yoav Goldberg" ]
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
2024-06-25T00:00:00
2406.14051
How Many Parameters Does it Take to Change a Light Bulb? Evaluating Performance in Self-Play of Conversational Games as a Function of Model Characteristics
[ "Nidhir Bhavsar", "Jonathan Jordan", "Sherzod Hakimov", "David Schlangen" ]
What makes a good Large Language Model (LLM)? That it performs well on the relevant benchmarks -- which hopefully measure, with some validity, the presence of capabilities that are also challenged in real application. But what makes the model perform well? What gives a model its abilities? We take a recently introduced type of benchmark that is meant to challenge capabilities in a goal-directed, agentive context through self-play of conversational games, and analyse how performance develops as a function of model characteristics like number of parameters, or type of training. We find that while there is a clear relationship between number of parameters and performance, there is still a wide spread of performance points within a given size bracket, which is to be accounted for by training parameters such as fine-tuning data quality and method. From a more practical angle, we also find a certain degree of unpredictability about performance across access methods, possible due to unexposed sampling parameters, and a, very welcome, performance stability against at least moderate weight quantisation during inference.
2024-06-25T00:00:00
2406.16714
AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models
[ "Jiale Cheng", "Yida Lu", "Xiaotao Gu", "Pei Ke", "Xiao Liu", "Yuxiao Dong", "Hongning Wang", "Jie Tang", "Minlie Huang" ]
https://github.com/thu-coai/AutoDetect
Although Large Language Models (LLMs) are becoming increasingly powerful, they still exhibit significant but subtle weaknesses, such as mistakes in instruction-following or coding tasks. As these unexpected errors could lead to severe consequences in practical deployments, it is crucial to investigate the limitations within LLMs systematically. Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies, while manual inspections are costly and not scalable. In this paper, we introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks. Inspired by the educational assessment process that measures students' learning outcomes, AutoDetect consists of three LLM-powered agents: Examiner, Questioner, and Assessor. The collaboration among these three agents is designed to realize comprehensive and in-depth weakness identification. Our framework demonstrates significant success in uncovering flaws, with an identification success rate exceeding 30% in prominent models such as ChatGPT and Claude. More importantly, these identified weaknesses can guide specific model improvements, proving more effective than untargeted data augmentation methods like Self-Instruct. Our approach has led to substantial enhancements in popular LLMs, including the Llama series and Mistral-7b, boosting their performance by over 10% across several benchmarks. Code and data are publicly available at https://github.com/thu-coai/AutoDetect.
2024-06-25T00:00:00
2406.16747
Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers
[ "Chao Lou", "Zixia Jia", "Zilong Zheng", "Kewei Tu" ]
Accommodating long sequences efficiently in autoregressive Transformers, especially within an extended context window, poses significant challenges due to the quadratic computational complexity and substantial KV memory requirements inherent in self-attention mechanisms. In this work, we introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome these computational and memory obstacles while maintaining performance. Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query, thereby enabling gradient-based optimization. As a result, SPARSEK Attention offers linear time complexity and constant memory footprint during generation. Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods and provides significant speed improvements during both training and inference, particularly in language modeling and downstream tasks. Furthermore, our method can be seamlessly integrated into pre-trained Large Language Models (LLMs) with minimal fine-tuning, offering a practical solution for effectively managing long-range dependencies in diverse applications.
2024-06-25T00:00:00
2406.15718
Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models
[ "Xinrong Zhang", "Yingfa Chen", "Shengding Hu", "Xu Han", "Zihang Xu", "Yuanwei Xu", "Weilin Zhao", "Maosong Sun", "Zhiyuan Liu" ]
As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while it is generating responses. To overcome these limitations, we adapt existing LLMs to duplex models so that these LLMs can listen for users while generating output and dynamically adjust themselves to provide users with instant feedback. % such as in response to interruptions. Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to pseudo-simultaneously process these slices. Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions. Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released.