date
timestamp[ns]date
2023-05-05 00:00:00
2025-07-14 00:00:00
arxiv_id
stringlengths
10
10
title
stringlengths
8
202
authors
listlengths
1
3.3k
github
stringlengths
0
116
abstract
stringlengths
165
1.92k
2024-05-15T00:00:00
2405.08448
Understanding the performance gap between online and offline alignment algorithms
[ "Yunhao Tang", "Daniel Zhaohan Guo", "Zeyu Zheng", "Daniele Calandriello", "Yuan Cao", "Eugene Tarassov", "Rémi Munos", "Bernardo Ávila Pires", "Michal Valko", "Yong Cheng", "Will Dabney" ]
Reinforcement learning from human feedback (RLHF) is the canonical framework for large language model alignment. However, rising popularity in offline alignment algorithms challenge the need for on-policy sampling in RLHF. Within the context of reward over-optimization, we start with an opening set of experiments that demonstrate the clear advantage of online methods over offline methods. This prompts us to investigate the causes to the performance discrepancy through a series of carefully designed experimental ablations. We show empirically that hypotheses such as offline data coverage and data quality by itself cannot convincingly explain the performance difference. We also find that while offline algorithms train policy to become good at pairwise classification, it is worse at generations; in the meantime the policies trained by online algorithms are good at generations while worse at pairwise classification. This hints at a unique interplay between discriminative and generative capabilities, which is greatly impacted by the sampling process. Lastly, we observe that the performance discrepancy persists for both contrastive and non-contrastive loss functions, and appears not to be addressed by simply scaling up policy networks. Taken together, our study sheds light on the pivotal role of on-policy sampling in AI alignment, and hints at certain fundamental challenges of offline alignment algorithms.
2024-05-15T00:00:00
2405.08317
SpeechGuard: Exploring the Adversarial Robustness of Multimodal Large Language Models
[ "Raghuveer Peri", "Sai Muralidhar Jayanthi", "Srikanth Ronanki", "Anshu Bhatia", "Karel Mundnich", "Saket Dingliwal", "Nilaksh Das", "Zejiang Hou", "Goeric Huybrechts", "Srikanth Vishnubhotla", "Daniel Garcia-Romero", "Sundararajan Srinivasan", "Kyu J Han", "Katrin Kirchhoff" ]
Integrated Speech and Large Language Models (SLMs) that can follow speech instructions and generate relevant text responses have gained popularity lately. However, the safety and robustness of these models remains largely unclear. In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking. Specifically, we design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement. Additionally, we propose countermeasures to thwart such jailbreaking attacks. Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics. Despite safety guardrails, experiments on jailbreaking demonstrate the vulnerability of SLMs to adversarial perturbations and transfer attacks, with average attack success rates of 90% and 10% respectively when evaluated on a dataset of carefully designed harmful questions spanning 12 different toxic categories. However, we demonstrate that our proposed countermeasures reduce the attack success significantly.
2024-05-15T00:00:00
2405.08295
SpeechVerse: A Large-scale Generalizable Audio Language Model
[ "Nilaksh Das", "Saket Dingliwal", "Srikanth Ronanki", "Rohit Paturi", "David Huang", "Prashant Mathur", "Jie Yuan", "Dhanush Bekal", "Xing Niu", "Sai Muralidhar Jayanthi", "Xilai Li", "Karel Mundnich", "Monica Sunkara", "Sundararajan Srinivasan", "Kyu J Han", "Katrin Kirchhoff" ]
Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
2024-05-16T00:00:00
2405.09215
Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model
[ "Wanting Xu", "Yang Liu", "Langping He", "Xucheng Huang", "Ling Jiang" ]
https://github.com/XiaoduoAILab/XmodelVLM
We introduce Xmodel-VLM, a cutting-edge multimodal vision language model. It is designed for efficient deployment on consumer GPU servers. Our work directly confronts a pivotal industry issue by grappling with the prohibitive service costs that hinder the broad adoption of large-scale multimodal systems. Through rigorous training, we have developed a 1B-scale language model from the ground up, employing the LLaVA paradigm for modal alignment. The result, which we call Xmodel-VLM, is a lightweight yet powerful multimodal vision language model. Extensive testing across numerous classic multimodal benchmarks has revealed that despite its smaller size and faster execution, Xmodel-VLM delivers performance comparable to that of larger models. Our model checkpoints and code are publicly available on GitHub at https://github.com/XiaoduoAILab/XmodelVLM.
2024-05-16T00:00:00
2405.09220
ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models
[ "Siwei Wang", "Yifei Shen", "Shi Feng", "Haoran Sun", "Shang-Hua Teng", "Wei Chen" ]
In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.
2024-05-16T00:00:00
2405.09546
BEHAVIOR Vision Suite: Customizable Dataset Generation via Simulation
[ "Yunhao Ge", "Yihe Tang", "Jiashu Xu", "Cem Gokmen", "Chengshu Li", "Wensi Ai", "Benjamin Jose Martinez", "Arman Aydin", "Mona Anvari", "Ayush K Chakravarthy", "Hong-Xing Yu", "Josiah Wong", "Sanjana Srivastava", "Sharon Lee", "Shengxin Zha", "Laurent Itti", "Yunzhu Li", "Roberto Martín-Martín", "Miao Liu", "Pengchuan Zhang", "Ruohan Zhang", "Li Fei-Fei", "Jiajun Wu" ]
https://github.com/behavior-vision-suite/behavior-vision-suite.github.io
The systematic evaluation and understanding of computer vision models under varying conditions require large amounts of data with comprehensive and customized labels, which real-world vision datasets rarely satisfy. While current synthetic data generators offer a promising alternative, particularly for embodied AI tasks, they often fall short for computer vision tasks due to low asset and rendering quality, limited diversity, and unrealistic physical properties. We introduce the BEHAVIOR Vision Suite (BVS), a set of tools and assets to generate fully customized synthetic data for systematic evaluation of computer vision models, based on the newly developed embodied AI benchmark, BEHAVIOR-1K. BVS supports a large number of adjustable parameters at the scene level (e.g., lighting, object placement), the object level (e.g., joint configuration, attributes such as "filled" and "folded"), and the camera level (e.g., field of view, focal length). Researchers can arbitrarily vary these parameters during data generation to perform controlled experiments. We showcase three example application scenarios: systematically evaluating the robustness of models across different continuous axes of domain shift, evaluating scene understanding models on the same set of images, and training and evaluating simulation-to-real transfer for a novel vision task: unary and binary state prediction. Project website: https://behavior-vision-suite.github.io/
2024-05-16T00:00:00
2405.09062
Naturalistic Music Decoding from EEG Data via Latent Diffusion Models
[ "Emilian Postolache", "Natalia Polouliakh", "Hiroaki Kitano", "Akima Connelly", "Emanuele Rodolà", "Taketo Akama" ]
In this article, we explore the potential of using latent diffusion models, a family of powerful generative models, for the task of reconstructing naturalistic music from electroencephalogram (EEG) recordings. Unlike simpler music with limited timbres, such as MIDI-generated tunes or monophonic pieces, the focus here is on intricate music featuring a diverse array of instruments, voices, and effects, rich in harmonics and timbre. This study represents an initial foray into achieving general music reconstruction of high-quality using non-invasive EEG data, employing an end-to-end training approach directly on raw data without the need for manual pre-processing and channel selection. We train our models on the public NMED-T dataset and perform quantitative evaluation proposing neural embedding-based metrics. We additionally perform song classification based on the generated tracks. Our work contributes to the ongoing research in neural decoding and brain-computer interfaces, offering insights into the feasibility of using EEG data for complex auditory information reconstruction.
2024-05-17T00:00:00
2405.09818
Chameleon: Mixed-Modal Early-Fusion Foundation Models
[ "Chameleon Team" ]
We present Chameleon, a family of early-fusion token-based mixed-modal models capable of understanding and generating images and text in any arbitrary sequence. We outline a stable training approach from inception, an alignment recipe, and an architectural parameterization tailored for the early-fusion, token-based, mixed-modal setting. The models are evaluated on a comprehensive range of tasks, including visual question answering, image captioning, text generation, image generation, and long-form mixed modal generation. Chameleon demonstrates broad and general capabilities, including state-of-the-art performance in image captioning tasks, outperforms Llama-2 in text-only tasks while being competitive with models such as Mixtral 8x7B and Gemini-Pro, and performs non-trivial image generation, all in a single model. It also matches or exceeds the performance of much larger models, including Gemini Pro and GPT-4V, according to human judgments on a new long-form mixed-modal generation evaluation, where either the prompt or outputs contain mixed sequences of both images and text. Chameleon marks a significant step forward in a unified modeling of full multimodal documents.
2024-05-17T00:00:00
2405.09673
LoRA Learns Less and Forgets Less
[ "Dan Biderman", "Jose Gonzalez Ortiz", "Jacob Portes", "Mansheej Paul", "Philip Greengard", "Connor Jennings", "Daniel King", "Sam Havens", "Vitaliy Chiley", "Jonathan Frankle", "Cody Blakeney", "John P. Cunningham" ]
Low-Rank Adaptation (LoRA) is a widely-used parameter-efficient finetuning method for large language models. LoRA saves memory by training only low rank perturbations to selected weight matrices. In this work, we compare the performance of LoRA and full finetuning on two target domains, programming and mathematics. We consider both the instruction finetuning (approx100K prompt-response pairs) and continued pretraining (approx10B unstructured tokens) data regimes. Our results show that, in most settings, LoRA substantially underperforms full finetuning. Nevertheless, LoRA exhibits a desirable form of regularization: it better maintains the base model's performance on tasks outside the target domain. We show that LoRA provides stronger regularization compared to common techniques such as weight decay and dropout; it also helps maintain more diverse generations. We show that full finetuning learns perturbations with a rank that is 10-100X greater than typical LoRA configurations, possibly explaining some of the reported gaps. We conclude by proposing best practices for finetuning with LoRA.
2024-05-17T00:00:00
2405.10314
CAT3D: Create Anything in 3D with Multi-View Diffusion Models
[ "Ruiqi Gao", "Aleksander Holynski", "Philipp Henzler", "Arthur Brussee", "Ricardo Martin-Brualla", "Pratul Srinivasan", "Jonathan T. Barron", "Ben Poole" ]
Advances in 3D reconstruction have enabled high-quality 3D capture, but require a user to collect hundreds to thousands of images to create a 3D scene. We present CAT3D, a method for creating anything in 3D by simulating this real-world capture process with a multi-view diffusion model. Given any number of input images and a set of target novel viewpoints, our model generates highly consistent novel views of a scene. These generated views can be used as input to robust 3D reconstruction techniques to produce 3D representations that can be rendered from any viewpoint in real-time. CAT3D can create entire 3D scenes in as little as one minute, and outperforms existing methods for single image and few-view 3D scene creation. See our project page for results and interactive demos at https://cat3d.github.io .
2024-05-17T00:00:00
2405.09798
Many-Shot In-Context Learning in Multimodal Foundation Models
[ "Yixing Jiang", "Jeremy Irvin", "Ji Hun Wang", "Muhammad Ahmed Chaudhry", "Jonathan H. Chen", "Andrew Y. Ng" ]
https://github.com/stanfordmlgroup/ManyICL
Large language models are well-known to be effective at few-shot in-context learning (ICL). Recent advancements in multimodal foundation models have enabled unprecedentedly long context windows, presenting an opportunity to explore their capability to perform ICL with many more demonstrating examples. In this work, we evaluate the performance of multimodal foundation models scaling from few-shot to many-shot ICL. We benchmark GPT-4o and Gemini 1.5 Pro across 10 datasets spanning multiple domains (natural imagery, medical imagery, remote sensing, and molecular imagery) and tasks (multi-class, multi-label, and fine-grained classification). We observe that many-shot ICL, including up to almost 2,000 multimodal demonstrating examples, leads to substantial improvements compared to few-shot (<100 examples) ICL across all of the datasets. Further, Gemini 1.5 Pro performance continues to improve log-linearly up to the maximum number of tested examples on many datasets. Given the high inference costs associated with the long prompts required for many-shot ICL, we also explore the impact of batching multiple queries in a single API call. We show that batching up to 50 queries can lead to performance improvements under zero-shot and many-shot ICL, with substantial gains in the zero-shot setting on multiple datasets, while drastically reducing per-query cost and latency. Finally, we measure ICL data efficiency of the models, or the rate at which the models learn from more demonstrating examples. We find that while GPT-4o and Gemini 1.5 Pro achieve similar zero-shot performance across the datasets, Gemini 1.5 Pro exhibits higher ICL data efficiency than GPT-4o on most datasets. Our results suggest that many-shot ICL could enable users to efficiently adapt multimodal foundation models to new applications and domains. Our codebase is publicly available at https://github.com/stanfordmlgroup/ManyICL .
2024-05-17T00:00:00
2405.09874
Dual3D: Efficient and Consistent Text-to-3D Generation with Dual-mode Multi-view Latent Diffusion
[ "Xinyang Li", "Zhangyu Lai", "Linning Xu", "Jianfei Guo", "Liujuan Cao", "Shengchuan Zhang", "Bo Dai", "Rongrong Ji" ]
We present Dual3D, a novel text-to-3D generation framework that generates high-quality 3D assets from texts in only 1 minute.The key component is a dual-mode multi-view latent diffusion model. Given the noisy multi-view latents, the 2D mode can efficiently denoise them with a single latent denoising network, while the 3D mode can generate a tri-plane neural surface for consistent rendering-based denoising. Most modules for both modes are tuned from a pre-trained text-to-image latent diffusion model to circumvent the expensive cost of training from scratch. To overcome the high rendering cost during inference, we propose the dual-mode toggling inference strategy to use only 1/10 denoising steps with 3D mode, successfully generating a 3D asset in just 10 seconds without sacrificing quality. The texture of the 3D asset can be further enhanced by our efficient texture refinement process in a short time. Extensive experiments demonstrate that our method delivers state-of-the-art performance while significantly reducing generation time. Our project page is available at https://dual3d.github.io
2024-05-17T00:00:00
2405.10320
Toon3D: Seeing Cartoons from a New Perspective
[ "Ethan Weber", "Riley Peterlinz", "Rohan Mathur", "Frederik Warburg", "Alexei A. Efros", "Angjoo Kanazawa" ]
In this work, we recover the underlying 3D structure of non-geometrically consistent scenes. We focus our analysis on hand-drawn images from cartoons and anime. Many cartoons are created by artists without a 3D rendering engine, which means that any new image of a scene is hand-drawn. The hand-drawn images are usually faithful representations of the world, but only in a qualitative sense, since it is difficult for humans to draw multiple perspectives of an object or scene 3D consistently. Nevertheless, people can easily perceive 3D scenes from inconsistent inputs! In this work, we correct for 2D drawing inconsistencies to recover a plausible 3D structure such that the newly warped drawings are consistent with each other. Our pipeline consists of a user-friendly annotation tool, camera pose estimation, and image deformation to recover a dense structure. Our method warps images to obey a perspective camera model, enabling our aligned results to be plugged into novel-view synthesis reconstruction methods to experience cartoons from viewpoints never drawn before. Our project page is https://toon3d.studio/.
2024-05-17T00:00:00
2405.10315
TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction
[ "Yunfan Jiang", "Chen Wang", "Ruohan Zhang", "Jiajun Wu", "Li Fei-Fei" ]
https://github.com/transic-robot/transic
Learning in simulation and transferring the learned policy to the real world has the potential to enable generalist robots. The key challenge of this approach is to address simulation-to-reality (sim-to-real) gaps. Previous methods often require domain-specific knowledge a priori. We argue that a straightforward way to obtain such knowledge is by asking humans to observe and assist robot policy execution in the real world. The robots can then learn from humans to close various sim-to-real gaps. We propose TRANSIC, a data-driven approach to enable successful sim-to-real transfer based on a human-in-the-loop framework. TRANSIC allows humans to augment simulation policies to overcome various unmodeled sim-to-real gaps holistically through intervention and online correction. Residual policies can be learned from human corrections and integrated with simulation policies for autonomous execution. We show that our approach can achieve successful sim-to-real transfer in complex and contact-rich manipulation tasks such as furniture assembly. Through synergistic integration of policies learned in simulation and from humans, TRANSIC is effective as a holistic approach to addressing various, often coexisting sim-to-real gaps. It displays attractive properties such as scaling with human effort. Videos and code are available at https://transic-robot.github.io/
2024-05-17T00:00:00
2405.10300
Grounding DINO 1.5: Advance the "Edge" of Open-Set Object Detection
[ "Tianhe Ren", "Qing Jiang", "Shilong Liu", "Zhaoyang Zeng", "Wenlong Liu", "Han Gao", "Hongjie Huang", "Zhengyu Ma", "Xiaoke Jiang", "Yihao Chen", "Yuda Xiong", "Hao Zhang", "Feng Li", "Peijun Tang", "Kent Yu", "Lei Zhang" ]
https://github.com/IDEA-Research/Grounding-DINO-1.5-API
This paper introduces Grounding DINO 1.5, a suite of advanced open-set object detection models developed by IDEA Research, which aims to advance the "Edge" of open-set object detection. The suite encompasses two models: Grounding DINO 1.5 Pro, a high-performance model designed for stronger generalization capability across a wide range of scenarios, and Grounding DINO 1.5 Edge, an efficient model optimized for faster speed demanded in many applications requiring edge deployment. The Grounding DINO 1.5 Pro model advances its predecessor by scaling up the model architecture, integrating an enhanced vision backbone, and expanding the training dataset to over 20 million images with grounding annotations, thereby achieving a richer semantic understanding. The Grounding DINO 1.5 Edge model, while designed for efficiency with reduced feature scales, maintains robust detection capabilities by being trained on the same comprehensive dataset. Empirical results demonstrate the effectiveness of Grounding DINO 1.5, with the Grounding DINO 1.5 Pro model attaining a 54.3 AP on the COCO detection benchmark and a 55.7 AP on the LVIS-minival zero-shot transfer benchmark, setting new records for open-set object detection. Furthermore, the Grounding DINO 1.5 Edge model, when optimized with TensorRT, achieves a speed of 75.2 FPS while attaining a zero-shot performance of 36.2 AP on the LVIS-minival benchmark, making it more suitable for edge computing scenarios. Model examples and demos with API will be released at https://github.com/IDEA-Research/Grounding-DINO-1.5-API
2024-05-20T00:00:00
2405.10938
Observational Scaling Laws and the Predictability of Language Model Performance
[ "Yangjun Ruan", "Chris J. Maddison", "Tatsunori Hashimoto" ]
Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from ~80 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
2024-05-20T00:00:00
2405.10725
INDUS: Effective and Efficient Language Models for Scientific Applications
[ "Bishwaranjan Bhattacharjee", "Aashka Trivedi", "Masayasu Muraoka", "Muthukumaran Ramasubramanian", "Takuma Udagawa", "Iksha Gurung", "Rong Zhang", "Bharath Dandala", "Rahul Ramachandran", "Manil Maskey", "Kayleen Bugbee", "Mike Little", "Elizabeth Fancher", "Lauren Sanders", "Sylvain Costes", "Sergi Blanco-Cuaresma", "Kelly Lockhart", "Thomas Allen", "Felix Grazes", "Megan Ansdel", "Alberto Accomazzi", "Yousef El-Kurdi", "Davis Wertheimer", "Birgit Pfitzmann", "Cesar Berrospi Ramis", "Michele Dolfi", "Rafael Teixeira de Lima", "Panos Vegenas", "S. Karthik Mukkavilli", "Peter Staar", "Sanaz Vahidinia", "Ryan McGranaghan", "Armin Mehrabian", "Tsendgar Lee" ]
Large language models (LLMs) trained on general domain corpora showed remarkable results on natural language processing (NLP) tasks. However, previous research demonstrated LLMs trained using domain-focused corpora perform better on specialized tasks. Inspired by this pivotal insight, we developed INDUS, a comprehensive suite of LLMs tailored for the Earth science, biology, physics, heliophysics, planetary sciences and astrophysics domains and trained using curated scientific corpora drawn from diverse data sources. The suite of models include: (1) an encoder model trained using domain-specific vocabulary and corpora to address natural language understanding tasks, (2) a contrastive-learning-based general text embedding model trained using a diverse set of datasets drawn from multiple sources to address information retrieval tasks and (3) smaller versions of these models created using knowledge distillation techniques to address applications which have latency or resource constraints. We also created three new scientific benchmark datasets namely, CLIMATE-CHANGE-NER (entity-recognition), NASA-QA (extractive QA) and NASA-IR (IR) to accelerate research in these multi-disciplinary fields. Finally, we show that our models outperform both general-purpose encoders (RoBERTa) and existing domain-specific encoders (SciBERT) on these new tasks as well as existing benchmark tasks in the domains of interest.
2024-05-20T00:00:00
2405.10370
Grounded 3D-LLM with Referent Tokens
[ "Yilun Chen", "Shuai Yang", "Haifeng Huang", "Tai Wang", "Ruiyuan Lyu", "Runsen Xu", "Dahua Lin", "Jiangmiao Pang" ]
https://github.com/groundedSceneLLM/grounded_3d-llm
Prior studies on 3D scene understanding have primarily developed specialized models for specific tasks or required task-specific fine-tuning. In this study, we propose Grounded 3D-LLM, which explores the potential of 3D large multi-modal models (3D LMMs) to consolidate various 3D vision tasks within a unified generative framework. The model uses scene referent tokens as special noun phrases to reference 3D scenes, enabling the handling of sequences that interleave 3D and textual data. It offers a natural approach for translating 3D vision tasks into language formats using task-specific instruction templates. To facilitate the use of referent tokens in subsequent language modeling, we have curated large-scale grounded language datasets that offer finer scene-text correspondence at the phrase level by bootstrapping existing object labels. Subsequently, we introduced Contrastive LAnguage-Scene Pre-training (CLASP) to effectively leverage this data, thereby integrating 3D vision with language models. Our comprehensive evaluation covers open-ended tasks like dense captioning and 3D QA, alongside close-ended tasks such as object detection and language grounding. Experiments across multiple 3D benchmarks reveal the leading performance and the broad applicability of Grounded 3D-LLM. Code and datasets will be released on the project page: https://groundedscenellm.github.io/grounded_3d-llm.github.io.
2024-05-20T00:00:00
2405.10637
Layer-Condensed KV Cache for Efficient Inference of Large Language Models
[ "Haoyi Wu", "Kewei Tu" ]
https://github.com/whyNLP/LCKV
Huge memory consumption has been a major bottleneck for deploying high-throughput large language models in real-world applications. In addition to the large number of parameters, the key-value (KV) cache for the attention mechanism in the transformer architecture consumes a significant amount of memory, especially when the number of layers is large for deep language models. In this paper, we propose a novel method that only computes and caches the KVs of a small number of layers, thus significantly saving memory consumption and improving inference throughput. Our experiments on large language models show that our method achieves up to 26times higher throughput than standard transformers and competitive performance in language modeling and downstream tasks. In addition, our method is orthogonal to existing transformer memory-saving techniques, so it is straightforward to integrate them with our model, achieving further improvement in inference efficiency. Our code is available at https://github.com/whyNLP/LCKV.
2024-05-20T00:00:00
2405.10626
Dynamic data sampler for cross-language transfer learning in large language models
[ "Yudong Li", "Yuhao Feng", "Wen Zhou", "Zhe Zhao", "Linlin Shen", "Cheng Hou", "Xianxu Hou" ]
Large Language Models (LLMs) have gained significant attention in the field of natural language processing (NLP) due to their wide range of applications. However, training LLMs for languages other than English poses significant challenges, due to the difficulty in acquiring large-scale corpus and the requisite computing resources. In this paper, we propose ChatFlow, a cross-language transfer-based LLM, to address these challenges and train large Chinese language models in a cost-effective manner. We employ a mix of Chinese, English, and parallel corpus to continuously train the LLaMA2 model, aiming to align cross-language representations and facilitate the knowledge transfer specifically to the Chinese language model. In addition, we use a dynamic data sampler to progressively transition the model from unsupervised pre-training to supervised fine-tuning. Experimental results demonstrate that our approach accelerates model convergence and achieves superior performance. We evaluate ChatFlow on popular Chinese and English benchmarks, the results indicate that it outperforms other Chinese models post-trained on LLaMA-2-7B.
2024-05-21T00:00:00
2405.11143
OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
[ "Jian Hu", "Xibin Wu", "Weixun Wang", "Xianyu", "Dehao Zhang", "Yu Cao" ]
https://github.com/OpenLLMAI/OpenRLHF
As large language models (LLMs) continue to grow by scaling laws, reinforcement learning from human feedback (RLHF) has gained significant attention due to its outstanding performance. However, unlike pretraining or fine-tuning a single model, scaling reinforcement learning from human feedback (RLHF) for training large language models poses coordination challenges across four models. We present OpenRLHF, an open-source framework enabling efficient RLHF scaling. Unlike existing RLHF frameworks that co-locate four models on the same GPUs, OpenRLHF re-designs scheduling for the models beyond 70B parameters using Ray, vLLM, and DeepSpeed, leveraging improved resource utilization and diverse training approaches. Integrating seamlessly with Hugging Face, OpenRLHF provides an out-of-the-box solution with optimized algorithms and launch scripts, which ensures user-friendliness. OpenRLHF implements RLHF, DPO, rejection sampling, and other alignment techniques. Empowering state-of-the-art LLM development, OpenRLHF's code is available at https://github.com/OpenLLMAI/OpenRLHF.
2024-05-21T00:00:00
2405.11252
Dreamer XL: Towards High-Resolution Text-to-3D Generation via Trajectory Score Matching
[ "Xingyu Miao", "Haoran Duan", "Varun Ojha", "Jun Song", "Tejal Shah", "Yang Long", "Rajiv Ranjan" ]
https://github.com/xingy038/Dreamer-XL
In this work, we propose a novel Trajectory Score Matching (TSM) method that aims to solve the pseudo ground truth inconsistency problem caused by the accumulated error in Interval Score Matching (ISM) when using the Denoising Diffusion Implicit Models (DDIM) inversion process. Unlike ISM which adopts the inversion process of DDIM to calculate on a single path, our TSM method leverages the inversion process of DDIM to generate two paths from the same starting point for calculation. Since both paths start from the same starting point, TSM can reduce the accumulated error compared to ISM, thus alleviating the problem of pseudo ground truth inconsistency. TSM enhances the stability and consistency of the model's generated paths during the distillation process. We demonstrate this experimentally and further show that ISM is a special case of TSM. Furthermore, to optimize the current multi-stage optimization process from high-resolution text to 3D generation, we adopt Stable Diffusion XL for guidance. In response to the issues of abnormal replication and splitting caused by unstable gradients during the 3D Gaussian splatting process when using Stable Diffusion XL, we propose a pixel-by-pixel gradient clipping method. Extensive experiments show that our model significantly surpasses the state-of-the-art models in terms of visual quality and performance. Code: https://github.com/xingy038/Dreamer-XL.
2024-05-21T00:00:00
2405.11473
FIFO-Diffusion: Generating Infinite Videos from Text without Training
[ "Jihwan Kim", "Junoh Kang", "Jinyoung Choi", "Bohyung Han" ]
https://github.com/jjihwan/FIFO-Diffusion_public
We propose a novel inference technique based on a pretrained diffusion model for text-conditional video generation. Our approach, called FIFO-Diffusion, is conceptually capable of generating infinitely long videos without training. This is achieved by iteratively performing diagonal denoising, which concurrently processes a series of consecutive frames with increasing noise levels in a queue; our method dequeues a fully denoised frame at the head while enqueuing a new random noise frame at the tail. However, diagonal denoising is a double-edged sword as the frames near the tail can take advantage of cleaner ones by forward reference but such a strategy induces the discrepancy between training and inference. Hence, we introduce latent partitioning to reduce the training-inference gap and lookahead denoising to leverage the benefit of forward referencing. We have demonstrated the promising results and effectiveness of the proposed methods on existing text-to-video generation baselines.
2024-05-21T00:00:00
2405.12213
Octo: An Open-Source Generalist Robot Policy
[ "Octo Model Team", "Dibya Ghosh", "Homer Walke", "Karl Pertsch", "Kevin Black", "Oier Mees", "Sudeep Dasari", "Joey Hejna", "Tobias Kreiman", "Charles Xu", "Jianlan Luo", "You Liang Tan", "Pannag Sanketi", "Quan Vuong", "Ted Xiao", "Dorsa Sadigh", "Chelsea Finn", "Sergey Levine" ]
https://github.com/octo-models/octo
Large policies pretrained on diverse robot datasets have the potential to transform robotic learning: instead of training new policies from scratch, such generalist robot policies may be finetuned with only a little in-domain data, yet generalize broadly. However, to be widely applicable across a range of robotic learning scenarios, environments, and tasks, such policies need to handle diverse sensors and action spaces, accommodate a variety of commonly used robotic platforms, and finetune readily and efficiently to new domains. In this work, we aim to lay the groundwork for developing open-source, widely applicable, generalist policies for robotic manipulation. As a first step, we introduce Octo, a large transformer-based policy trained on 800k trajectories from the Open X-Embodiment dataset, the largest robot manipulation dataset to date. It can be instructed via language commands or goal images and can be effectively finetuned to robot setups with new sensory inputs and action spaces within a few hours on standard consumer GPUs. In experiments across 9 robotic platforms, we demonstrate that Octo serves as a versatile policy initialization that can be effectively finetuned to new observation and action spaces. We also perform detailed ablations of design decisions for the Octo model, from architecture to training data, to guide future research on building generalist robot models.
2024-05-21T00:00:00
2405.12130
MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
[ "Ting Jiang", "Shaohan Huang", "Shengyue Luo", "Zihan Zhang", "Haizhen Huang", "Furu Wei", "Weiwei Deng", "Feng Sun", "Qi Zhang", "Deqing Wang", "Fuzhen Zhuang" ]
https://github.com/kongds/MoRA
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models. In this paper, we analyze the impact of low-rank updating, as implemented in LoRA. Our findings suggest that the low-rank updating mechanism may limit the ability of LLMs to effectively learn and memorize new knowledge. Inspired by this observation, we propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters. To achieve it, we introduce the corresponding non-parameter operators to reduce the input dimension and increase the output dimension for the square matrix. Furthermore, these operators ensure that the weight can be merged back into LLMs, which makes our method can be deployed like LoRA. We perform a comprehensive evaluation of our method across five tasks: instruction tuning, mathematical reasoning, continual pretraining, memory and pretraining. Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
2024-05-21T00:00:00
2405.12107
Imp: Highly Capable Large Multimodal Models for Mobile Devices
[ "Zhenwei Shao", "Zhou Yu", "Jun Yu", "Xuecheng Ouyang", "Lihao Zheng", "Zhenbiao Gai", "Mingyang Wang", "Jiajun Ding" ]
https://github.com/MILVLG/imp
By harnessing the capabilities of large language models (LLMs), recent large multimodal models (LMMs) have shown remarkable versatility in open-world multimodal understanding. Nevertheless, they are usually parameter-heavy and computation-intensive, thus hindering their applicability in resource-constrained scenarios. To this end, several lightweight LMMs have been proposed successively to maximize the capabilities under constrained scale (e.g., 3B). Despite the encouraging results achieved by these methods, most of them only focus on one or two aspects of the design space, and the key design choices that influence model capability have not yet been thoroughly investigated. In this paper, we conduct a systematic study for lightweight LMMs from the aspects of model architecture, training strategy, and training data. Based on our findings, we obtain Imp -- a family of highly capable LMMs at the 2B-4B scales. Notably, our Imp-3B model steadily outperforms all the existing lightweight LMMs of similar size, and even surpasses the state-of-the-art LMMs at the 13B scale. With low-bit quantization and resolution reduction techniques, our Imp model can be deployed on a Qualcomm Snapdragon 8Gen3 mobile chip with a high inference speed of about 13 tokens/s.
2024-05-21T00:00:00
2405.11157
Towards Modular LLMs by Building and Reusing a Library of LoRAs
[ "Oleksiy Ostapenko", "Zhan Su", "Edoardo Maria Ponti", "Laurent Charlin", "Nicolas Le Roux", "Matheus Pereira", "Lucas Caccia", "Alessandro Sordoni" ]
The growing number of parameter-efficient adaptations of a base large language model (LLM) calls for studying whether we can reuse such trained adapters to improve performance for new tasks. We study how to best build a library of adapters given multi-task data and devise techniques for both zero-shot and supervised task generalization through routing in such library. We benchmark existing approaches to build this library and introduce model-based clustering, MBC, a method that groups tasks based on the similarity of their adapter parameters, indirectly optimizing for transfer across the multi-task dataset. To re-use the library, we present a novel zero-shot routing mechanism, Arrow, which enables dynamic selection of the most relevant adapters for new inputs without the need for retraining. We experiment with several LLMs, such as Phi-2 and Mistral, on a wide array of held-out tasks, verifying that MBC-based adapters and Arrow routing lead to superior generalization to new tasks. We make steps towards creating modular, adaptable LLMs that can match or outperform traditional joint training.
2024-05-21T00:00:00
2405.11582
SLAB: Efficient Transformers with Simplified Linear Attention and Progressive Re-parameterized Batch Normalization
[ "Jialong Guo", "Xinghao Chen", "Yehui Tang", "Yunhe Wang" ]
https://github.com/xinghaochen/SLAB
Transformers have become foundational architectures for both natural language and computer vision tasks. However, the high computational cost makes it quite challenging to deploy on resource-constraint devices. This paper investigates the computational bottleneck modules of efficient transformer, i.e., normalization layers and attention modules. LayerNorm is commonly used in transformer architectures but is not computational friendly due to statistic calculation during inference. However, replacing LayerNorm with more efficient BatchNorm in transformer often leads to inferior performance and collapse in training. To address this problem, we propose a novel method named PRepBN to progressively replace LayerNorm with re-parameterized BatchNorm in training. Moreover, we propose a simplified linear attention (SLA) module that is simple yet effective to achieve strong performance. Extensive experiments on image classification as well as object detection demonstrate the effectiveness of our proposed method. For example, our SLAB-Swin obtains 83.6% top-1 accuracy on ImageNet-1K with 16.2ms latency, which is 2.4ms less than that of Flatten-Swin with 0.1% higher accuracy. We also evaluated our method for language modeling task and obtain comparable performance and lower latency.Codes are publicly available at https://github.com/xinghaochen/SLAB and https://github.com/mindspore-lab/models/tree/master/research/huawei-noah/SLAB.
2024-05-22T00:00:00
2405.12978
Personalized Residuals for Concept-Driven Text-to-Image Generation
[ "Cusuh Ham", "Matthew Fisher", "James Hays", "Nicholas Kolkin", "Yuchen Liu", "Richard Zhang", "Tobias Hinz" ]
We present personalized residuals and localized attention-guided sampling for efficient concept-driven generation using text-to-image diffusion models. Our method first represents concepts by freezing the weights of a pretrained text-conditioned diffusion model and learning low-rank residuals for a small subset of the model's layers. The residual-based approach then directly enables application of our proposed sampling technique, which applies the learned residuals only in areas where the concept is localized via cross-attention and applies the original diffusion weights in all other regions. Localized sampling therefore combines the learned identity of the concept with the existing generative prior of the underlying diffusion model. We show that personalized residuals effectively capture the identity of a concept in ~3 minutes on a single GPU without the use of regularization images and with fewer parameters than previous models, and localized sampling allows using the original model as strong prior for large parts of the image.
2024-05-22T00:00:00
2405.12399
Diffusion for World Modeling: Visual Details Matter in Atari
[ "Eloi Alonso", "Adam Jelley", "Vincent Micheli", "Anssi Kanervisto", "Amos Storkey", "Tim Pearce", "François Fleuret" ]
https://github.com/eloialonso/diamond
World models constitute a promising approach for training reinforcement learning agents in a safe and sample-efficient manner. Recent world models predominantly operate on sequences of discrete latent variables to model environment dynamics. However, this compression into a compact discrete representation may ignore visual details that are important for reinforcement learning. Concurrently, diffusion models have become a dominant approach for image generation, challenging well-established methods modeling discrete latents. Motivated by this paradigm shift, we introduce DIAMOND (DIffusion As a Model Of eNvironment Dreams), a reinforcement learning agent trained in a diffusion world model. We analyze the key design choices that are required to make diffusion suitable for world modeling, and demonstrate how improved visual details can lead to improved agent performance. DIAMOND achieves a mean human normalized score of 1.46 on the competitive Atari 100k benchmark; a new best for agents trained entirely within a world model. To foster future research on diffusion for world modeling, we release our code, agents and playable world models at https://github.com/eloialonso/diamond.
2024-05-22T00:00:00
2405.12250
Your Transformer is Secretly Linear
[ "Anton Razzhigaev", "Matvey Mikhalchuk", "Elizaveta Goncharova", "Nikolai Gerasimenko", "Ivan Oseledets", "Denis Dimitrov", "Andrey Kuznetsov" ]
https://github.com/AIRI-Institute/LLM-Microscope
This paper reveals a novel linear characteristic exclusive to transformer decoders, including models such as GPT, LLaMA, OPT, BLOOM and others. We analyze embedding transformations between sequential layers, uncovering a near-perfect linear relationship (Procrustes similarity score of 0.99). However, linearity decreases when the residual component is removed due to a consistently low output norm of the transformer layer. Our experiments show that removing or linearly approximating some of the most linear blocks of transformers does not affect significantly the loss or model performance. Moreover, in our pretraining experiments on smaller models we introduce a cosine-similarity-based regularization, aimed at reducing layer linearity. This regularization improves performance metrics on benchmarks like Tiny Stories and SuperGLUE and as well successfully decreases the linearity of the models. This study challenges the existing understanding of transformer architectures, suggesting that their operation may be more linear than previously assumed.
2024-05-22T00:00:00
2405.12981
Reducing Transformer Key-Value Cache Size with Cross-Layer Attention
[ "William Brandon", "Mayank Mishra", "Aniruddha Nrusimha", "Rameswar Panda", "Jonathan Ragan Kelly" ]
Key-value (KV) caching plays an essential role in accelerating decoding for transformer-based autoregressive large language models (LLMs). However, the amount of memory required to store the KV cache can become prohibitive at long sequence lengths and large batch sizes. Since the invention of the transformer, two of the most effective interventions discovered for reducing the size of the KV cache have been Multi-Query Attention (MQA) and its generalization, Grouped-Query Attention (GQA). MQA and GQA both modify the design of the attention block so that multiple query heads can share a single key/value head, reducing the number of distinct key/value heads by a large factor while only minimally degrading accuracy. In this paper, we show that it is possible to take Multi-Query Attention a step further by also sharing key and value heads between adjacent layers, yielding a new attention design we call Cross-Layer Attention (CLA). With CLA, we find that it is possible to reduce the size of the KV cache by another 2x while maintaining nearly the same accuracy as unmodified MQA. In experiments training 1B- and 3B-parameter models from scratch, we demonstrate that CLA provides a Pareto improvement over the memory/accuracy tradeoffs which are possible with traditional MQA, enabling inference with longer sequence lengths and larger batch sizes than would otherwise be possible
2024-05-22T00:00:00
2405.12979
OmniGlue: Generalizable Feature Matching with Foundation Model Guidance
[ "Hanwen Jiang", "Arjun Karpur", "Bingyi Cao", "Qixing Huang", "Andre Araujo" ]
https://github.com/google-research/omniglue
The image matching field has been witnessing a continuous emergence of novel learnable feature matching techniques, with ever-improving performance on conventional benchmarks. However, our investigation shows that despite these gains, their potential for real-world applications is restricted by their limited generalization capabilities to novel image domains. In this paper, we introduce OmniGlue, the first learnable image matcher that is designed with generalization as a core principle. OmniGlue leverages broad knowledge from a vision foundation model to guide the feature matching process, boosting generalization to domains not seen at training time. Additionally, we propose a novel keypoint position-guided attention mechanism which disentangles spatial and appearance information, leading to enhanced matching descriptors. We perform comprehensive experiments on a suite of 7 datasets with varied image domains, including scene-level, object-centric and aerial images. OmniGlue's novel components lead to relative gains on unseen domains of 20.9% with respect to a directly comparable reference model, while also outperforming the recent LightGlue method by 9.5% relatively.Code and model can be found at https://hwjiang1510.github.io/OmniGlue
2024-05-22T00:00:00
2405.12970
Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control
[ "Yue Han", "Junwei Zhu", "Keke He", "Xu Chen", "Yanhao Ge", "Wei Li", "Xiangtai Li", "Jiangning Zhang", "Chengjie Wang", "Yong Liu" ]
Current face reenactment and swapping methods mainly rely on GAN frameworks, but recent focus has shifted to pre-trained diffusion models for their superior generation capabilities. However, training these models is resource-intensive, and the results have not yet achieved satisfactory performance levels. To address this issue, we introduce Face-Adapter, an efficient and effective adapter designed for high-precision and high-fidelity face editing for pre-trained diffusion models. We observe that both face reenactment/swapping tasks essentially involve combinations of target structure, ID and attribute. We aim to sufficiently decouple the control of these factors to achieve both tasks in one model. Specifically, our method contains: 1) A Spatial Condition Generator that provides precise landmarks and background; 2) A Plug-and-play Identity Encoder that transfers face embeddings to the text space by a transformer decoder. 3) An Attribute Controller that integrates spatial conditions and detailed attributes. Face-Adapter achieves comparable or even superior performance in terms of motion control precision, ID retention capability, and generation quality compared to fully fine-tuned face reenactment/swapping models. Additionally, Face-Adapter seamlessly integrates with various StableDiffusion models.
2024-05-24T00:00:00
2405.13195
CamViG: Camera Aware Image-to-Video Generation with Multimodal Transformers
[ "Andrew Marmon", "Grant Schindler", "José Lezama", "Dan Kondratyuk", "Bryan Seybold", "Irfan Essa" ]
We extend multimodal transformers to include 3D camera motion as a conditioning signal for the task of video generation. Generative video models are becoming increasingly powerful, thus focusing research efforts on methods of controlling the output of such models. We propose to add virtual 3D camera controls to generative video methods by conditioning generated video on an encoding of three-dimensional camera movement over the course of the generated video. Results demonstrate that we are (1) able to successfully control the camera during video generation, starting from a single frame and a camera signal, and (2) we demonstrate the accuracy of the generated 3D camera paths using traditional computer vision methods.
2024-05-24T00:00:00
2405.14677
RectifID: Personalizing Rectified Flow with Anchored Classifier Guidance
[ "Zhicheng Sun", "Zhenhao Yang", "Yang Jin", "Haozhe Chi", "Kun Xu", "Kun Xu", "Liwei Chen", "Hao Jiang", "Di Zhang", "Yang Song", "Kun Gai", "Yadong Mu" ]
https://github.com/feifeiobama/RectifID
Customizing diffusion models to generate identity-preserving images from user-provided reference images is an intriguing new problem. The prevalent approaches typically require training on extensive domain-specific images to achieve identity preservation, which lacks flexibility across different use cases. To address this issue, we exploit classifier guidance, a training-free technique that steers diffusion models using an existing classifier, for personalized image generation. Our study shows that based on a recent rectified flow framework, the major limitation of vanilla classifier guidance in requiring a special classifier can be resolved with a simple fixed-point solution, allowing flexible personalization with off-the-shelf image discriminators. Moreover, its solving procedure proves to be stable when anchored to a reference flow trajectory, with a convergence guarantee. The derived method is implemented on rectified flow with different off-the-shelf image discriminators, delivering advantageous personalization results for human faces, live subjects, and certain objects. Code is available at https://github.com/feifeiobama/RectifID.
2024-05-24T00:00:00
2405.14598
Visual Echoes: A Simple Unified Transformer for Audio-Visual Generation
[ "Shiqi Yang", "Zhi Zhong", "Mengjie Zhao", "Shusuke Takahashi", "Masato Ishii", "Takashi Shibuya", "Yuki Mitsufuji" ]
In recent years, with the realistic generation results and a wide range of personalized applications, diffusion-based generative models gain huge attention in both visual and audio generation areas. Compared to the considerable advancements of text2image or text2audio generation, research in audio2visual or visual2audio generation has been relatively slow. The recent audio-visual generation methods usually resort to huge large language model or composable diffusion models. Instead of designing another giant model for audio-visual generation, in this paper we take a step back showing a simple and lightweight generative transformer, which is not fully investigated in multi-modal generation, can achieve excellent results on image2audio generation. The transformer operates in the discrete audio and visual Vector-Quantized GAN space, and is trained in the mask denoising manner. After training, the classifier-free guidance could be deployed off-the-shelf achieving better performance, without any extra training or modification. Since the transformer model is modality symmetrical, it could also be directly deployed for audio2image generation and co-generation. In the experiments, we show that our simple method surpasses recent image2audio generation methods. Generated audio samples can be found at https://docs.google.com/presentation/d/1ZtC0SeblKkut4XJcRaDsSTuCRIXB3ypxmSi7HTY3IyQ
2024-05-24T00:00:00
2405.13865
ReVideo: Remake a Video with Motion and Content Control
[ "Chong Mou", "Mingdeng Cao", "Xintao Wang", "Zhaoyang Zhang", "Ying Shan", "Jian Zhang" ]
Despite significant advancements in video generation and editing using diffusion models, achieving accurate and localized video editing remains a substantial challenge. Additionally, most existing video editing methods primarily focus on altering visual content, with limited research dedicated to motion editing. In this paper, we present a novel attempt to Remake a Video (ReVideo) which stands out from existing methods by allowing precise video editing in specific areas through the specification of both content and motion. Content editing is facilitated by modifying the first frame, while the trajectory-based motion control offers an intuitive user interaction experience. ReVideo addresses a new task involving the coupling and training imbalance between content and motion control. To tackle this, we develop a three-stage training strategy that progressively decouples these two aspects from coarse to fine. Furthermore, we propose a spatiotemporal adaptive fusion module to integrate content and motion control across various sampling steps and spatial locations. Extensive experiments demonstrate that our ReVideo has promising performance on several accurate video editing applications, i.e., (1) locally changing video content while keeping the motion constant, (2) keeping content unchanged and customizing new motion trajectories, (3) modifying both content and motion trajectories. Our method can also seamlessly extend these applications to multi-area editing without specific training, demonstrating its flexibility and robustness.
2024-05-24T00:00:00
2405.13800
Dense Connector for MLLMs
[ "Huanjin Yao", "Wenhao Wu", "Taojiannan Yang", "YuXin Song", "Mengxi Zhang", "Haocheng Feng", "Yifan Sun", "Zhiheng Li", "Wanli Ouyang", "Jingdong Wang" ]
https://github.com/HJYao00/DenseConnector
Do we fully leverage the potential of visual encoder in Multimodal Large Language Models (MLLMs)? The recent outstanding performance of MLLMs in multimodal understanding has garnered broad attention from both academia and industry. In the current MLLM rat race, the focus seems to be predominantly on the linguistic side. We witness the rise of larger and higher-quality instruction datasets, as well as the involvement of larger-sized LLMs. Yet, scant attention has been directed towards the visual signals utilized by MLLMs, often assumed to be the final high-level features extracted by a frozen visual encoder. In this paper, we introduce the Dense Connector - a simple, effective, and plug-and-play vision-language connector that significantly enhances existing MLLMs by leveraging multi-layer visual features, with minimal additional computational overhead. Furthermore, our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well. Experimental results across various vision encoders, image resolutions, training dataset scales, varying sizes of LLMs (2.7B->70B), and diverse architectures of MLLMs (e.g., LLaVA and Mini-Gemini) validate the versatility and scalability of our approach, achieving state-of-the-art performance on across 19 image and video benchmarks. We hope that this work will provide valuable experience and serve as a basic module for future MLLM development.
2024-05-24T00:00:00
2405.14867
Improved Distribution Matching Distillation for Fast Image Synthesis
[ "Tianwei Yin", "Michaël Gharbi", "Taesung Park", "Richard Zhang", "Eli Shechtman", "Fredo Durand", "William T. Freeman" ]
Recent approaches have shown promises distilling diffusion models into efficient one-step generators. Among them, Distribution Matching Distillation (DMD) produces one-step generators that match their teacher in distribution, without enforcing a one-to-one correspondence with the sampling trajectories of their teachers. However, to ensure stable training, DMD requires an additional regression loss computed using a large set of noise-image pairs generated by the teacher with many steps of a deterministic sampler. This is costly for large-scale text-to-image synthesis and limits the student's quality, tying it too closely to the teacher's original sampling paths. We introduce DMD2, a set of techniques that lift this limitation and improve DMD training. First, we eliminate the regression loss and the need for expensive dataset construction. We show that the resulting instability is due to the fake critic not estimating the distribution of generated samples accurately and propose a two time-scale update rule as a remedy. Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images. This lets us train the student model on real data, mitigating the imperfect real score estimation from the teacher model, and enhancing quality. Lastly, we modify the training procedure to enable multi-step sampling. We identify and address the training-inference input mismatch problem in this setting, by simulating inference-time generator samples during training time. Taken together, our improvements set new benchmarks in one-step image generation, with FID scores of 1.28 on ImageNet-64x64 and 8.35 on zero-shot COCO 2014, surpassing the original teacher despite a 500X reduction in inference cost. Further, we show our approach can generate megapixel images by distilling SDXL, demonstrating exceptional visual quality among few-step methods.
2024-05-24T00:00:00
2405.14477
LiteVAE: Lightweight and Efficient Variational Autoencoders for Latent Diffusion Models
[ "Seyedmorteza Sadat", "Jakob Buhmann", "Derek Bradley", "Otmar Hilliges", "Romann M. Weber" ]
Advances in latent diffusion models (LDMs) have revolutionized high-resolution image generation, but the design space of the autoencoder that is central to these systems remains underexplored. In this paper, we introduce LiteVAE, a family of autoencoders for LDMs that leverage the 2D discrete wavelet transform to enhance scalability and computational efficiency over standard variational autoencoders (VAEs) with no sacrifice in output quality. We also investigate the training methodologies and the decoder architecture of LiteVAE and propose several enhancements that improve the training dynamics and reconstruction quality. Our base LiteVAE model matches the quality of the established VAEs in current LDMs with a six-fold reduction in encoder parameters, leading to faster training and lower GPU memory requirements, while our larger model outperforms VAEs of comparable complexity across all evaluated metrics (rFID, LPIPS, PSNR, and SSIM).
2024-05-24T00:00:00
2405.14224
DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis
[ "Yao Teng", "Yue Wu", "Han Shi", "Xuefei Ning", "Guohao Dai", "Yu Wang", "Zhenguo Li", "Xihui Liu" ]
https://github.com/tyshiwo1/DiM-DiffusionMamba
Diffusion models have achieved great success in image generation, with the backbone evolving from U-Net to Vision Transformers. However, the computational cost of Transformers is quadratic to the number of tokens, leading to significant challenges when dealing with high-resolution images. In this work, we propose Diffusion Mamba (DiM), which combines the efficiency of Mamba, a sequence model based on State Space Models (SSM), with the expressive power of diffusion models for efficient high-resolution image synthesis. To address the challenge that Mamba cannot generalize to 2D signals, we make several architecture designs including multi-directional scans, learnable padding tokens at the end of each row and column, and lightweight local feature enhancement. Our DiM architecture achieves inference-time efficiency for high-resolution images. In addition, to further improve training efficiency for high-resolution image generation with DiM, we investigate ``weak-to-strong'' training strategy that pretrains DiM on low-resolution images (256times 256) and then finetune it on high-resolution images (512 times 512). We further explore training-free upsampling strategies to enable the model to generate higher-resolution images (e.g., 1024times 1024 and 1536times 1536) without further fine-tuning. Experiments demonstrate the effectiveness and efficiency of our DiM.
2024-05-24T00:00:00
2405.14860
Not All Language Model Features Are Linear
[ "Joshua Engels", "Isaac Liao", "Eric J. Michaud", "Wes Gurnee", "Max Tegmark" ]
Recent work has proposed the linear representation hypothesis: that language models perform computation by manipulating one-dimensional representations of concepts ("features") in activation space. In contrast, we explore whether some language model representations may be inherently multi-dimensional. We begin by developing a rigorous definition of irreducible multi-dimensional features based on whether they can be decomposed into either independent or non-co-occurring lower-dimensional features. Motivated by these definitions, we design a scalable method that uses sparse autoencoders to automatically find multi-dimensional features in GPT-2 and Mistral 7B. These auto-discovered features include strikingly interpretable examples, e.g. circular features representing days of the week and months of the year. We identify tasks where these exact circles are used to solve computational problems involving modular arithmetic in days of the week and months of the year. Finally, we provide evidence that these circular features are indeed the fundamental unit of computation in these tasks with intervention experiments on Mistral 7B and Llama 3 8B, and we find further circular representations by breaking down the hidden states for these tasks into interpretable components.
2024-05-24T00:00:00
2405.14333
DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data
[ "Huajian Xin", "Daya Guo", "Zhihong Shao", "Zhizhou Ren", "Qihao Zhu", "Bo Liu", "Chong Ruan", "Wenda Li", "Xiaodan Liang" ]
Proof assistants like Lean have revolutionized mathematical proof verification, ensuring high accuracy and reliability. Although large language models (LLMs) show promise in mathematical reasoning, their advancement in formal theorem proving is hindered by a lack of training data. To address this issue, we introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems. This approach involves translating natural language problems into formal statements, filtering out low-quality statements, and generating proofs to create synthetic data. After fine-tuning the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs, our model achieved whole-proof generation accuracies of 46.3% with 64 samples and 52% cumulatively on the Lean 4 miniF2F test, surpassing the baseline GPT-4 at 23.0% with 64 samples and a tree search reinforcement learning method at 41.0%. Additionally, our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any. These results demonstrate the potential of leveraging large-scale synthetic data to enhance theorem-proving capabilities in LLMs. Both the synthetic dataset and the model will be made available to facilitate further research in this promising field.
2024-05-24T00:00:00
2405.14857
Semantica: An Adaptable Image-Conditioned Diffusion Model
[ "Manoj Kumar", "Neil Houlsby", "Emiel Hoogeboom" ]
We investigate the task of adapting image generative models to different datasets without finetuneing. To this end, we introduce Semantica, an image-conditioned diffusion model capable of generating images based on the semantics of a conditioning image. Semantica is trained exclusively on web-scale image pairs, that is it receives a random image from a webpage as conditional input and models another random image from the same webpage. Our experiments highlight the expressivity of pretrained image encoders and necessity of semantic-based data filtering in achieving high-quality image generation. Once trained, it can adaptively generate new images from a dataset by simply using images from that dataset as input. We study the transfer properties of Semantica on ImageNet, LSUN Churches, LSUN Bedroom and SUN397.
2024-05-24T00:00:00
2405.13817
Thermodynamic Natural Gradient Descent
[ "Kaelan Donatella", "Samuel Duffield", "Maxwell Aifer", "Denis Melanson", "Gavin Crooks", "Patrick J. Coles" ]
Second-order training methods have better convergence properties than gradient descent but are rarely used in practice for large-scale training due to their computational overhead. This can be viewed as a hardware limitation (imposed by digital computers). Here we show that natural gradient descent (NGD), a second-order method, can have a similar computational complexity per iteration to a first-order method, when employing appropriate hardware. We present a new hybrid digital-analog algorithm for training neural networks that is equivalent to NGD in a certain parameter regime but avoids prohibitively costly linear system solves. Our algorithm exploits the thermodynamic properties of an analog system at equilibrium, and hence requires an analog thermodynamic computer. The training occurs in a hybrid digital-analog loop, where the gradient and Fisher information matrix (or any other positive semi-definite curvature matrix) are calculated at given time intervals while the analog dynamics take place. We numerically demonstrate the superiority of this approach over state-of-the-art digital first- and second-order training methods on classification tasks and language model fine-tuning tasks.
2024-05-24T00:00:00
2405.14129
AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
[ "Fei Zhao", "Taotian Pang", "Chunhui Li", "Zhen Wu", "Junjie Guo", "Shangyu Xing", "Xinyu Dai" ]
https://github.com/AlignGPT-VL/AlignGPT
Multimodal Large Language Models (MLLMs) are widely regarded as crucial in the exploration of Artificial General Intelligence (AGI). The core of MLLMs lies in their capability to achieve cross-modal alignment. To attain this goal, current MLLMs typically follow a two-phase training paradigm: the pre-training phase and the instruction-tuning phase. Despite their success, there are shortcomings in the modeling of alignment capabilities within these models. Firstly, during the pre-training phase, the model usually assumes that all image-text pairs are uniformly aligned, but in fact the degree of alignment between different image-text pairs is inconsistent. Secondly, the instructions currently used for finetuning incorporate a variety of tasks, different tasks's instructions usually require different levels of alignment capabilities, but previous MLLMs overlook these differentiated alignment needs. To tackle these issues, we propose a new multimodal large language model AlignGPT. In the pre-training stage, instead of treating all image-text pairs equally, we assign different levels of alignment capabilities to different image-text pairs. Then, in the instruction-tuning phase, we adaptively combine these different levels of alignment capabilities to meet the dynamic alignment needs of different instructions. Extensive experimental results show that our model achieves competitive performance on 12 benchmarks.
2024-05-24T00:00:00
2405.14105
Distributed Speculative Inference of Large Language Models
[ "Nadav Timor", "Jonathan Mamou", "Daniel Korat", "Moshe Berchansky", "Oren Pereg", "Moshe Wasserblat", "Tomer Galanti", "Michal Gordon", "David Harel" ]
Accelerating the inference of large language models (LLMs) is an important challenge in artificial intelligence. This paper introduces distributed speculative inference (DSI), a novel distributed inference algorithm that is provably faster than speculative inference (SI) [leviathan2023fast, chen2023accelerating, miao2023specinfer] and traditional autoregressive inference (non-SI). Like other SI algorithms, DSI works on frozen LLMs, requiring no training or architectural modifications, and it preserves the target distribution. Prior studies on SI have demonstrated empirical speedups (compared to non-SI) but require a fast and accurate drafter LLM. In practice, off-the-shelf LLMs often do not have matching drafters that are sufficiently fast and accurate. We show a gap: SI gets slower than non-SI when using slower or less accurate drafters. We close this gap by proving that DSI is faster than both SI and non-SI given any drafters. By orchestrating multiple instances of the target and drafters, DSI is not only faster than SI but also supports LLMs that cannot be accelerated with SI. Our simulations show speedups of off-the-shelf LLMs in realistic settings: DSI is 1.29-1.92x faster than SI.
2024-05-24T00:00:00
2405.14866
Tele-Aloha: A Low-budget and High-authenticity Telepresence System Using Sparse RGB Cameras
[ "Hanzhang Tu", "Ruizhi Shao", "Xue Dong", "Shunyuan Zheng", "Hao Zhang", "Lili Chen", "Meili Wang", "Wenyu Li", "Siyan Ma", "Shengping Zhang", "Boyao Zhou", "Yebin Liu" ]
In this paper, we present a low-budget and high-authenticity bidirectional telepresence system, Tele-Aloha, targeting peer-to-peer communication scenarios. Compared to previous systems, Tele-Aloha utilizes only four sparse RGB cameras, one consumer-grade GPU, and one autostereoscopic screen to achieve high-resolution (2048x2048), real-time (30 fps), low-latency (less than 150ms) and robust distant communication. As the core of Tele-Aloha, we propose an efficient novel view synthesis algorithm for upper-body. Firstly, we design a cascaded disparity estimator for obtaining a robust geometry cue. Additionally a neural rasterizer via Gaussian Splatting is introduced to project latent features onto target view and to decode them into a reduced resolution. Further, given the high-quality captured data, we leverage weighted blending mechanism to refine the decoded image into the final resolution of 2K. Exploiting world-leading autostereoscopic display and low-latency iris tracking, users are able to experience a strong three-dimensional sense even without any wearable head-mounted display device. Altogether, our telepresence system demonstrates the sense of co-presence in real-life experiments, inspiring the next generation of communication.
2024-05-24T00:00:00
2405.14871
NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections
[ "Dor Verbin", "Pratul P. Srinivasan", "Peter Hedman", "Ben Mildenhall", "Benjamin Attal", "Richard Szeliski", "Jonathan T. Barron" ]
Neural Radiance Fields (NeRFs) typically struggle to reconstruct and render highly specular objects, whose appearance varies quickly with changes in viewpoint. Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content. Moreover, these techniques rely on large computationally-expensive neural networks to model outgoing radiance, which severely limits optimization and rendering speed. We address these issues with an approach based on ray tracing: instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts reflection rays from these points and traces them through the NeRF representation to render feature vectors which are decoded into color using a small inexpensive network. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing shiny objects, and that it is the only existing NeRF method that can synthesize photorealistic specular appearance and reflections in real-world scenes, while requiring comparable optimization time to current state-of-the-art view synthesis models.
2024-05-24T00:00:00
2405.14847
Neural Directional Encoding for Efficient and Accurate View-Dependent Appearance Modeling
[ "Liwen Wu", "Sai Bi", "Zexiang Xu", "Fujun Luan", "Kai Zhang", "Iliyan Georgiev", "Kalyan Sunkavalli", "Ravi Ramamoorthi" ]
https://github.com/lwwu2/nde
Novel-view synthesis of specular objects like shiny metals or glossy paints remains a significant challenge. Not only the glossy appearance but also global illumination effects, including reflections of other objects in the environment, are critical components to faithfully reproduce a scene. In this paper, we present Neural Directional Encoding (NDE), a view-dependent appearance encoding of neural radiance fields (NeRF) for rendering specular objects. NDE transfers the concept of feature-grid-based spatial encoding to the angular domain, significantly improving the ability to model high-frequency angular signals. In contrast to previous methods that use encoding functions with only angular input, we additionally cone-trace spatial features to obtain a spatially varying directional encoding, which addresses the challenging interreflection effects. Extensive experiments on both synthetic and real datasets show that a NeRF model with NDE (1) outperforms the state of the art on view synthesis of specular objects, and (2) works with small networks to allow fast (real-time) inference. The project webpage and source code are available at: https://lwwu2.github.io/nde/.
2024-05-27T00:00:00
2405.15071
Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization
[ "Boshi Wang", "Xiang Yue", "Yu Su", "Huan Sun" ]
https://github.com/OSU-NLP-Group/GrokkedTransformer
We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.
2024-05-27T00:00:00
2405.15574
Meteor: Mamba-based Traversal of Rationale for Large Language and Vision Models
[ "Byung-Kwan Lee", "Chae Won Kim", "Beomchan Park", "Yong Man Ro" ]
https://github.com/ByungKwanLee/Meteor
The rapid development of large language and vision models (LLVMs) has been driven by advances in visual instruction tuning. Recently, open-source LLVMs have curated high-quality visual instruction tuning datasets and utilized additional vision encoders or multiple computer vision models in order to narrow the performance gap with powerful closed-source LLVMs. These advancements are attributed to multifaceted information required for diverse capabilities, including fundamental image understanding, real-world knowledge about common-sense and non-object concepts (e.g., charts, diagrams, symbols, signs, and math problems), and step-by-step procedures for solving complex questions. Drawing from the multifaceted information, we present a new efficient LLVM, Mamba-based traversal of rationales (Meteor), which leverages multifaceted rationale to enhance understanding and answering capabilities. To embed lengthy rationales containing abundant information, we employ the Mamba architecture, capable of processing sequential data with linear time complexity. We introduce a new concept of traversal of rationale that facilitates efficient embedding of rationale. Subsequently, the backbone multimodal language model (MLM) is trained to generate answers with the aid of rationale. Through these steps, Meteor achieves significant improvements in vision language performances across multiple evaluation benchmarks requiring diverse capabilities, without scaling up the model size or employing additional vision encoders and computer vision models.
2024-05-27T00:00:00
2405.15216
Denoising LM: Pushing the Limits of Error Correction Models for Speech Recognition
[ "Zijin Gu", "Tatiana Likhomanenko", "He Bai", "Erik McDermott", "Ronan Collobert", "Navdeep Jaitly" ]
Language models (LMs) have long been used to improve results of automatic speech recognition (ASR) systems, but they are unaware of the errors that ASR systems make. Error correction models are designed to fix ASR errors, however, they showed little improvement over traditional LMs mainly due to the lack of supervised training data. In this paper, we present Denoising LM (DLM), which is a scaled error correction model trained with vast amounts of synthetic data, significantly exceeding prior attempts meanwhile achieving new state-of-the-art ASR performance. We use text-to-speech (TTS) systems to synthesize audio, which is fed into an ASR system to produce noisy hypotheses, which are then paired with the original texts to train the DLM. DLM has several key ingredients: (i) up-scaled model and data; (ii) usage of multi-speaker TTS systems; (iii) combination of multiple noise augmentation strategies; and (iv) new decoding techniques. With a Transformer-CTC ASR, DLM achieves 1.5% word error rate (WER) on test-clean and 3.3% WER on test-other on Librispeech, which to our knowledge are the best reported numbers in the setting where no external audio data are used and even match self-supervised methods which use external audio data. Furthermore, a single DLM is applicable to different ASRs, and greatly surpassing the performance of conventional LM based beam-search rescoring. These results indicate that properly investigated error correction models have the potential to replace conventional LMs, holding the key to a new level of accuracy in ASR systems.
2024-05-27T00:00:00
2405.15032
Aya 23: Open Weight Releases to Further Multilingual Progress
[ "Viraat Aryabumi", "John Dang", "Dwarak Talupuru", "Saurabh Dash", "David Cairuz", "Hangyu Lin", "Bharat Venkitesh", "Madeline Smith", "Kelly Marchisio", "Sebastian Ruder", "Acyr Locatelli", "Julia Kreutzer", "Nick Frosst", "Phil Blunsom", "Marzieh Fadaee", "Ahmet Üstün", "Sara Hooker" ]
This technical report introduces Aya 23, a family of multilingual language models. Aya 23 builds on the recent release of the Aya model (\"Ust\"un et al., 2024), focusing on pairing a highly performant pre-trained model with the recently released Aya collection (Singh et al., 2024). The result is a powerful multilingual large language model serving 23 languages, expanding state-of-art language modeling capabilities to approximately half of the world's population. The Aya model covered 101 languages whereas Aya 23 is an experiment in depth vs breadth, exploring the impact of allocating more capacity to fewer languages that are included during pre-training. Aya 23 outperforms both previous massively multilingual models like Aya 101 for the languages it covers, as well as widely used models like Gemma, Mistral and Mixtral on an extensive range of discriminative and generative tasks. We release the open weights for both the 8B and 35B models as part of our continued commitment for expanding access to multilingual progress.
2024-05-27T00:00:00
2405.14908
Data Mixing Made Efficient: A Bivariate Scaling Law for Language Model Pretraining
[ "Ce Ge", "Zhijian Ma", "Daoyuan Chen", "Yaliang Li", "Bolin Ding" ]
Large language models exhibit exceptional generalization capabilities, primarily attributed to the utilization of diversely sourced data. However, conventional practices in integrating this diverse data heavily rely on heuristic schemes, lacking theoretical guidance. This research tackles these limitations by investigating strategies based on low-cost proxies for data mixtures, with the aim of streamlining data curation to enhance training efficiency. Specifically, we propose a unified scaling law, termed BiMix, which accurately models the bivariate scaling behaviors of both data quantity and mixing proportions. We conduct systematic experiments and provide empirical evidence for the predictive power and fundamental principles of BiMix. Notably, our findings reveal that entropy-driven training-free data mixtures can achieve comparable or even better performance than more resource-intensive methods. We hope that our quantitative insights can shed light on further judicious research and development in cost-effective language modeling.
2024-05-27T00:00:00
2405.14906
AutoCoder: Enhancing Code Large Language Model with AIEV-Instruct
[ "Bin Lei", "Yuchen Li", "Qiuwu Chen" ]
https://github.com/bin123apple/AutoCoder
We introduce AutoCoder, the first Large Language Model to surpass GPT-4 Turbo (April 2024) and GPT-4o in pass@1 on the Human Eval benchmark test (90.9% vs. 90.2%). In addition, AutoCoder offers a more versatile code interpreter compared to GPT-4 Turbo and GPT-4o. It's code interpreter can install external packages instead of limiting to built-in packages. AutoCoder's training data is a multi-turn dialogue dataset created by a system combining agent interaction and external code execution verification, a method we term \textsc{AIEV-Instruct} (Instruction Tuning with Agent-Interaction and Execution-Verified). Compared to previous large-scale code dataset generation methods, AIEV-Instruct reduces dependence on proprietary large models and provides execution-validated code dataset. The code and the demo video is available in https://github.com/bin123apple/AutoCoder.
2024-05-27T00:00:00
2405.14979
CraftsMan: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
[ "Weiyu Li", "Jiarui Liu", "Rui Chen", "Yixun Liang", "Xuelin Chen", "Ping Tan", "Xiaoxiao Long" ]
https://github.com/wyysf-98/CraftsMan
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
2024-05-27T00:00:00
2405.15613
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
[ "Huy V. Vo", "Vasil Khalidov", "Timothée Darcet", "Théo Moutakanni", "Nikita Smetanin", "Marc Szafraniec", "Hugo Touvron", "Camille Couprie", "Maxime Oquab", "Armand Joulin", "Hervé Jégou", "Patrick Labatut", "Piotr Bojanowski" ]
https://github.com/facebookresearch/ssl-data-curation
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
2024-05-27T00:00:00
2405.15223
iVideoGPT: Interactive VideoGPTs are Scalable World Models
[ "Jialong Wu", "Shaofeng Yin", "Ningya Feng", "Xu He", "Dong Li", "Jianye Hao", "Mingsheng Long" ]
World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making. However, the high demand for interactivity poses challenges in harnessing recent advancements in video generative models for developing world models at scale. This work introduces Interactive VideoGPT (iVideoGPT), a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens, facilitating an interactive experience of agents via next-token prediction. iVideoGPT features a novel compressive tokenization technique that efficiently discretizes high-dimensional visual observations. Leveraging its scalable architecture, we are able to pre-train iVideoGPT on millions of human and robotic manipulation trajectories, establishing a versatile foundation that is adaptable to serve as interactive world models for a wide range of downstream tasks. These include action-conditioned video prediction, visual planning, and model-based reinforcement learning, where iVideoGPT achieves competitive performance compared with state-of-the-art methods. Our work advances the development of interactive general world models, bridging the gap between generative video models and practical model-based reinforcement learning applications.
2024-05-27T00:00:00
2405.15125
HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting
[ "Yuanhao Cai", "Zihao Xiao", "Yixun Liang", "Yulun Zhang", "Xiaokang Yang", "Yaoyao Liu", "Alan Yuille" ]
https://github.com/caiyuanhao1998/HDR-GS
High dynamic range (HDR) novel view synthesis (NVS) aims to create photorealistic images from novel viewpoints using HDR imaging techniques. The rendered HDR images capture a wider range of brightness levels containing more details of the scene than normal low dynamic range (LDR) images. Existing HDR NVS methods are mainly based on NeRF. They suffer from long training time and slow inference speed. In this paper, we propose a new framework, High Dynamic Range Gaussian Splatting (HDR-GS), which can efficiently render novel HDR views and reconstruct LDR images with a user input exposure time. Specifically, we design a Dual Dynamic Range (DDR) Gaussian point cloud model that uses spherical harmonics to fit HDR color and employs an MLP-based tone-mapper to render LDR color. The HDR and LDR colors are then fed into two Parallel Differentiable Rasterization (PDR) processes to reconstruct HDR and LDR views. To establish the data foundation for the research of 3D Gaussian splatting-based methods in HDR NVS, we recalibrate the camera parameters and compute the initial positions for Gaussian point clouds. Experiments demonstrate that our HDR-GS surpasses the state-of-the-art NeRF-based method by 3.84 and 1.91 dB on LDR and HDR NVS while enjoying 1000x inference speed and only requiring 6.3% training time.
2024-05-27T00:00:00
2405.15319
Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training
[ "Wenyu Du", "Tongxu Luo", "Zihan Qiu", "Zeyu Huang", "Yikang Shen", "Reynold Cheng", "Yike Guo", "Jie Fu" ]
https://github.com/tongxuluo/prts
LLMs are computationally expensive to pre-train due to their large scale. Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored. This work identifies three critical textit{O}bstacles: (O1) lack of comprehensive evaluation, (O2) untested viability for scaling, and (O3) lack of empirical guidelines. To tackle O1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting. Our findings reveal that a depthwise stacking operator, called G_{stack}, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into G_{stack} to address O2 and O3. For O2 (untested scalability), our study shows that G_{stack} is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens. For example, compared to a conventionally trained 7B model using 300B tokens, our G_{stack} model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address O3 (lack of empirical guidelines) by formalizing guidelines to determine growth timing and growth factor for G_{stack}, making it practical in general LLM pre-training. We also provide in-depth discussions and comprehensive ablation studies of G_{stack}. Our code and pre-trained model are available at https://llm-stacking.github.io/{https://llm-stacking.github.io/}.
2024-05-27T00:00:00
2405.15738
ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models
[ "Chunjiang Ge", "Sijie Cheng", "Ziming Wang", "Jiale Yuan", "Yuan Gao", "Jun Song", "Shiji Song", "Gao Huang", "Bo Zheng" ]
https://github.com/alibaba/conv-llava
High-resolution Large Multimodal Models (LMMs) encounter the challenges of excessive visual tokens and quadratic visual complexity. Current high-resolution LMMs address the quadratic complexity while still generating excessive visual tokens. However, the redundancy in visual tokens is the key problem as it leads to more substantial compute. To mitigate this issue, we propose ConvLLaVA, which employs ConvNeXt, a hierarchical backbone, as the visual encoder of LMM to replace Vision Transformer (ViT). ConvLLaVA compresses high-resolution images into information-rich visual features, effectively preventing the generation of excessive visual tokens. To enhance the capabilities of ConvLLaVA, we propose two critical optimizations. Since the low-resolution pretrained ConvNeXt underperforms when directly applied on high resolution, we update it to bridge the gap. Moreover, since ConvNeXt's original compression ratio is inadequate for much higher resolution inputs, we train a successive stage to further compress the visual tokens, thereby reducing redundancy. These optimizations enable ConvLLaVA to support inputs of 1536x1536 resolution generating only 576 visual tokens, capable of handling images of arbitrary aspect ratios. Experimental results demonstrate that our method achieves competitive performance with state-of-the-art models on mainstream benchmarks. The ConvLLaVA model series are publicly available at https://github.com/alibaba/conv-llava.
2024-05-27T00:00:00
2405.15682
The Road Less Scheduled
[ "Aaron Defazio", "Xingyu", "Yang", "Harsh Mehta", "Konstantin Mishchenko", "Ahmed Khaled", "Ashok Cutkosky" ]
https://github.com/facebookresearch/schedule_free
Existing learning rate schedules that do not require specification of the optimization stopping step T are greatly out-performed by learning rate schedules that depend on T. We propose an approach that avoids the need for this stopping time by eschewing the use of schedules entirely, while exhibiting state-of-the-art performance compared to schedules across a wide family of problems ranging from convex problems to large-scale deep learning problems. Our Schedule-Free approach introduces no additional hyper-parameters over standard optimizers with momentum. Our method is a direct consequence of a new theory we develop that unifies scheduling and iterate averaging. An open source implementation of our method is available (https://github.com/facebookresearch/schedule_free).
2024-05-28T00:00:00
2405.17430
Matryoshka Multimodal Models
[ "Mu Cai", "Jianwei Yang", "Jianfeng Gao", "Yong Jae Lee" ]
https://github.com/mu-cai/matryoshka-mm
Large Multimodal Models (LMMs) such as LLaVA have shown strong performance in visual-linguistic reasoning. These models first embed images into a fixed large number of visual tokens and then feed them into a Large Language Model (LLM). However, this design causes an excessive number of tokens for dense visual scenarios such as high-resolution images and videos, leading to great inefficiency. While token pruning/merging methods do exist, they produce a single length output for each image and do not afford flexibility in trading off information density v.s. efficiency. Inspired by the concept of Matryoshka Dolls, we propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens that capture information across multiple coarse-to-fine granularities. Our approach offers several unique benefits for LMMs: (1) One can explicitly control the visual granularity per test instance during inference, e.g. , adjusting the number of tokens used to represent an image based on the anticipated complexity or simplicity of the content; (2) M3 provides a framework for analyzing the granularity needed for existing datasets, where we find that COCO-style benchmarks only need around ~9 visual tokens to obtain accuracy similar to that of using all 576 tokens; (3) Our approach provides a foundation to explore the best trade-off between performance and visual token length at sample level, where our investigation reveals that a large gap exists between the oracle upper bound and current fixed-scale representations.
2024-05-28T00:00:00
2405.17247
An Introduction to Vision-Language Modeling
[ "Florian Bordes", "Richard Yuanzhe Pang", "Anurag Ajay", "Alexander C. Li", "Adrien Bardes", "Suzanne Petryk", "Oscar Mañas", "Zhiqiu Lin", "Anas Mahmoud", "Bargav Jayaraman", "Mark Ibrahim", "Melissa Hall", "Yunyang Xiong", "Jonathan Lebensold", "Candace Ross", "Srihari Jayakumar", "Chuan Guo", "Diane Bouchacourt", "Haider Al-Tahan", "Karthik Padthe", "Vasu Sharma", "Hu Xu", "Xiaoqing Ellen Tan", "Megan Richards", "Samuel Lavoie", "Pietro Astolfi", "Reyhane Askari Hemmat", "Jun Chen", "Kushal Tirumala", "Rim Assouel", "Mazda Moayeri", "Arjang Talattof", "Kamalika Chaudhuri", "Zechun Liu", "Xilun Chen", "Quentin Garrido", "Karen Ullrich", "Aishwarya Agrawal", "Kate Saenko", "Asli Celikyilmaz", "Vikas Chandra" ]
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
2024-05-28T00:00:00
2405.16822
Vidu4D: Single Generated Video to High-Fidelity 4D Reconstruction with Dynamic Gaussian Surfels
[ "Yikai Wang", "Xinzhou Wang", "Zilong Chen", "Zhengyi Wang", "Fuchun Sun", "Jun Zhu" ]
https://github.com/yikaiw/vidu4d
Video generative models are receiving particular attention given their ability to generate realistic and imaginative frames. Besides, these models are also observed to exhibit strong 3D consistency, significantly enhancing their potential to act as world simulators. In this work, we present Vidu4D, a novel reconstruction model that excels in accurately reconstructing 4D (i.e., sequential 3D) representations from single generated videos, addressing challenges associated with non-rigidity and frame distortion. This capability is pivotal for creating high-fidelity virtual contents that maintain both spatial and temporal coherence. At the core of Vidu4D is our proposed Dynamic Gaussian Surfels (DGS) technique. DGS optimizes time-varying warping functions to transform Gaussian surfels (surface elements) from a static state to a dynamically warped state. This transformation enables a precise depiction of motion and deformation over time. To preserve the structural integrity of surface-aligned Gaussian surfels, we design the warped-state geometric regularization based on continuous warping fields for estimating normals. Additionally, we learn refinements on rotation and scaling parameters of Gaussian surfels, which greatly alleviates texture flickering during the warping process and enhances the capture of fine-grained appearance details. Vidu4D also contains a novel initialization state that provides a proper start for the warping fields in DGS. Equipping Vidu4D with an existing video generative model, the overall framework demonstrates high-fidelity text-to-4D generation in both appearance and geometry.
2024-05-28T00:00:00
2405.17428
NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models
[ "Chankyu Lee", "Rajarshi Roy", "Mengyao Xu", "Jonathan Raiman", "Mohammad Shoeybi", "Bryan Catanzaro", "Wei Ping" ]
Decoder-only large language model (LLM)-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce the NV-Embed model with a variety of architectural designs and training procedures to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last <EOS> token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For model training, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval datasets into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. Combining these techniques, our NV-Embed model, using only publicly available data, has achieved a record-high score of 69.32, ranking No. 1 on the Massive Text Embedding Benchmark (MTEB) (as of May 24, 2024), with 56 tasks, encompassing retrieval, reranking, classification, clustering, and semantic textual similarity tasks. Notably, our model also attains the highest score of 59.36 on 15 retrieval tasks in the MTEB benchmark (also known as BEIR). We will open-source the model at: https://huggingface.co/nvidia/NV-Embed-v1.
2024-05-28T00:00:00
2405.16852
EM Distillation for One-step Diffusion Models
[ "Sirui Xie", "Zhisheng Xiao", "Diederik P Kingma", "Tingbo Hou", "Ying Nian Wu", "Kevin Patrick Murphy", "Tim Salimans", "Ben Poole", "Ruiqi Gao" ]
While diffusion models can learn complex distributions, sampling requires a computationally expensive iterative process. Existing distillation methods enable efficient sampling, but have notable limitations, such as performance degradation with very few sampling steps, reliance on training data access, or mode-seeking optimization that may fail to capture the full distribution. We propose EM Distillation (EMD), a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of perceptual quality. Our approach is derived through the lens of Expectation-Maximization (EM), where the generator parameters are updated using samples from the joint distribution of the diffusion teacher prior and inferred generator latents. We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process. We further reveal an interesting connection of our method with existing methods that minimize mode-seeking KL. EMD outperforms existing one-step generative methods in terms of FID scores on ImageNet-64 and ImageNet-128, and compares favorably with prior work on distilling text-to-image diffusion models.
2024-05-28T00:00:00
2405.16888
Part123: Part-aware 3D Reconstruction from a Single-view Image
[ "Anran Liu", "Cheng Lin", "Yuan Liu", "Xiaoxiao Long", "Zhiyang Dou", "Hao-Xiang Guo", "Ping Luo", "Wenping Wang" ]
Recently, the emergence of diffusion models has opened up new opportunities for single-view reconstruction. However, all the existing methods represent the target object as a closed mesh devoid of any structural information, thus neglecting the part-based structure, which is crucial for many downstream applications, of the reconstructed shape. Moreover, the generated meshes usually suffer from large noises, unsmooth surfaces, and blurry textures, making it challenging to obtain satisfactory part segments using 3D segmentation techniques. In this paper, we present Part123, a novel framework for part-aware 3D reconstruction from a single-view image. We first use diffusion models to generate multiview-consistent images from a given image, and then leverage Segment Anything Model (SAM), which demonstrates powerful generalization ability on arbitrary objects, to generate multiview segmentation masks. To effectively incorporate 2D part-based information into 3D reconstruction and handle inconsistency, we introduce contrastive learning into a neural rendering framework to learn a part-aware feature space based on the multiview segmentation masks. A clustering-based algorithm is also developed to automatically derive 3D part segmentation results from the reconstructed models. Experiments show that our method can generate 3D models with high-quality segmented parts on various objects. Compared to existing unstructured reconstruction methods, the part-aware 3D models from our method benefit some important applications, including feature-preserving reconstruction, primitive fitting, and 3D shape editing.
2024-05-28T00:00:00
2405.16759
Greedy Growing Enables High-Resolution Pixel-Based Diffusion Models
[ "Cristina N. Vasconcelos", "Abdullah Rashwan Austin Waters", "Trevor Walker", "Keyang Xu", "Jimmy Yan", "Rui Qian", "Shixin Luo", "Zarana Parekh", "Andrew Bunner", "Hongliang Fei", "Roopal Garg", "Mandy Guo", "Ivana Kajic", "Yeqing Li", "Henna Nandwani", "Jordi Pont-Tuset", "Yasumasa Onoe", "Sarah Rosston", "Su Wang", "Wenlei Zhou", "Kevin Swersky", "David J. Fleet", "Jason M. Baldridge", "Oliver Wang" ]
We address the long-standing problem of how to learn effective pixel-based image diffusion models at scale, introducing a remarkably simple greedy growing method for stable training of large-scale, high-resolution models. without the needs for cascaded super-resolution components. The key insight stems from careful pre-training of core components, namely, those responsible for text-to-image alignment {\it vs.} high-resolution rendering. We first demonstrate the benefits of scaling a {\it Shallow UNet}, with no down(up)-sampling enc(dec)oder. Scaling its deep core layers is shown to improve alignment, object structure, and composition. Building on this core model, we propose a greedy algorithm that grows the architecture into high-resolution end-to-end models, while preserving the integrity of the pre-trained representation, stabilizing training, and reducing the need for large high-resolution datasets. This enables a single stage model capable of generating high-resolution images without the need of a super-resolution cascade. Our key results rely on public datasets and show that we are able to train non-cascaded models up to 8B parameters with no further regularization schemes. Vermeer, our full pipeline model trained with internal datasets to produce 1024x1024 images, without cascades, is preferred by 44.0% vs. 21.4% human evaluators over SDXL.
2024-05-28T00:00:00
2405.17258
Trans-LoRA: towards data-free Transferable Parameter Efficient Finetuning
[ "Runqian Wang", "Soumya Ghosh", "David Cox", "Diego Antognini", "Aude Oliva", "Rogerio Feris", "Leonid Karlinsky" ]
Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose Trans-LoRA -- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the data-generating process of the observed task data subset. Training on the resulting synthetic dataset transfers LoRA modules to new models. We show the effectiveness of our approach using both LLama and Gemma model families. Our approach achieves lossless (mostly improved) LoRA transfer between models within and across different base model families, and even between different PEFT methods, on a wide variety of tasks.
2024-05-28T00:00:00
2405.17405
Human4DiT: Free-view Human Video Generation with 4D Diffusion Transformer
[ "Ruizhi Shao", "Youxin Pang", "Zerong Zheng", "Jingxiang Sun", "Yebin Liu" ]
We present a novel approach for generating high-quality, spatio-temporally coherent human videos from a single image under arbitrary viewpoints. Our framework combines the strengths of U-Nets for accurate condition injection and diffusion transformers for capturing global correlations across viewpoints and time. The core is a cascaded 4D transformer architecture that factorizes attention across views, time, and spatial dimensions, enabling efficient modeling of the 4D space. Precise conditioning is achieved by injecting human identity, camera parameters, and temporal signals into the respective transformers. To train this model, we curate a multi-dimensional dataset spanning images, videos, multi-view data and 3D/4D scans, along with a multi-dimensional training strategy. Our approach overcomes the limitations of previous methods based on GAN or UNet-based diffusion models, which struggle with complex motions and viewpoint changes. Through extensive experiments, we demonstrate our method's ability to synthesize realistic, coherent and free-view human videos, paving the way for advanced multimedia applications in areas such as virtual reality and animation. Our project website is https://human4dit.github.io.
2024-05-28T00:00:00
2405.17414
Collaborative Video Diffusion: Consistent Multi-video Generation with Camera Control
[ "Zhengfei Kuang", "Shengqu Cai", "Hao He", "Yinghao Xu", "Hongsheng Li", "Leonidas Guibas", "Gordon Wetzstein" ]
https://github.com/CollaborativeVideoDiffusion/CVD
Research on video generation has recently made tremendous progress, enabling high-quality videos to be generated from text prompts or images. Adding control to the video generation process is an important goal moving forward and recent approaches that condition video generation models on camera trajectories make strides towards it. Yet, it remains challenging to generate a video of the same scene from multiple different camera trajectories. Solutions to this multi-video generation problem could enable large-scale 3D scene generation with editable camera trajectories, among other applications. We introduce collaborative video diffusion (CVD) as an important step towards this vision. The CVD framework includes a novel cross-video synchronization module that promotes consistency between corresponding frames of the same video rendered from different camera poses using an epipolar attention mechanism. Trained on top of a state-of-the-art camera-control module for video generation, CVD generates multiple videos rendered from different camera trajectories with significantly better consistency than baselines, as shown in extensive experiments. Project page: https://collaborativevideodiffusion.github.io/.
2024-05-28T00:00:00
2405.16712
Zamba: A Compact 7B SSM Hybrid Model
[ "Paolo Glorioso", "Quentin Anthony", "Yury Tokpanov", "James Whittington", "Jonathan Pilault", "Adam Ibrahim", "Beren Millidge" ]
In this technical report, we present Zamba, a novel 7B SSM-transformer hybrid model which achieves competitive performance against leading open-weight models at a comparable scale. Zamba is trained on 1T tokens from openly available datasets and is the best non-transformer model at this scale. Zamba pioneers a unique architecture combining a Mamba backbone with a single shared attention module, thus obtaining the benefits of attention at minimal parameter cost. Due to its architecture, Zamba is significantly faster at inference than comparable transformer models and requires substantially less memory for generation of long sequences. Zamba is pretrained in two phases: the first phase is based on existing web datasets, while the second one consists of annealing the model over high-quality instruct and synthetic datasets, and is characterized by a rapid learning rate decay. We open-source the weights and all checkpoints for Zamba, through both phase 1 and annealing phases.
2024-05-28T00:00:00
2405.15757
Looking Backward: Streaming Video-to-Video Translation with Feature Banks
[ "Feng Liang", "Akio Kodaira", "Chenfeng Xu", "Masayoshi Tomizuka", "Kurt Keutzer", "Diana Marculescu" ]
https://github.com/Jeff-LiangF/streamv2v
This paper introduces StreamV2V, a diffusion model that achieves real-time streaming video-to-video (V2V) translation with user prompts. Unlike prior V2V methods using batches to process limited frames, we opt to process frames in a streaming fashion, to support unlimited frames. At the heart of StreamV2V lies a backward-looking principle that relates the present to the past. This is realized by maintaining a feature bank, which archives information from past frames. For incoming frames, StreamV2V extends self-attention to include banked keys and values and directly fuses similar past features into the output. The feature bank is continually updated by merging stored and new features, making it compact but informative. StreamV2V stands out for its adaptability and efficiency, seamlessly integrating with image diffusion models without fine-tuning. It can run 20 FPS on one A100 GPU, being 15x, 46x, 108x, and 158x faster than FlowVid, CoDeF, Rerender, and TokenFlow, respectively. Quantitative metrics and user studies confirm StreamV2V's exceptional ability to maintain temporal consistency.
2024-05-28T00:00:00
2405.17399
Transformers Can Do Arithmetic with the Right Embeddings
[ "Sean McLeish", "Arpit Bansal", "Alex Stein", "Neel Jain", "John Kirchenbauer", "Brian R. Bartoldson", "Bhavya Kailkhura", "Abhinav Bhatele", "Jonas Geiping", "Avi Schwarzschild", "Tom Goldstein" ]
https://github.com/mcleish7/arithmetic
The poor performance of transformers on arithmetic tasks seems to stem in large part from their inability to keep track of the exact position of each digit inside of a large span of digits. We mend this problem by adding an embedding to each digit that encodes its position relative to the start of the number. In addition to the boost these embeddings provide on their own, we show that this fix enables architectural modifications such as input injection and recurrent layers to improve performance even further. With positions resolved, we can study the logical extrapolation ability of transformers. Can they solve arithmetic problems that are larger and more complex than those in their training data? We find that training on only 20 digit numbers with a single GPU for one day, we can reach state-of-the-art performance, achieving up to 99% accuracy on 100 digit addition problems. Finally, we show that these gains in numeracy also unlock improvements on other multi-step reasoning tasks including sorting and multiplication.
2024-05-28T00:00:00
2405.16287
LoGAH: Predicting 774-Million-Parameter Transformers using Graph HyperNetworks with 1/100 Parameters
[ "Xinyu Zhou", "Boris Knyazev", "Alexia Jolicoeur-Martineau", "Jie Fu" ]
https://github.com/Blackzxy/LoGAH
A good initialization of deep learning models is essential since it can help them converge better and faster. However, pretraining large models is unaffordable for many researchers, which makes a desired prediction for initial parameters more necessary nowadays. Graph HyperNetworks (GHNs), one approach to predicting model parameters, have recently shown strong performance in initializing large vision models. Unfortunately, predicting parameters of very wide networks relies on copying small chunks of parameters multiple times and requires an extremely large number of parameters to support full prediction, which greatly hinders its adoption in practice. To address this limitation, we propose LoGAH (Low-rank GrAph Hypernetworks), a GHN with a low-rank parameter decoder that expands to significantly wider networks without requiring as excessive increase of parameters as in previous attempts. LoGAH allows us to predict the parameters of 774-million large neural networks in a memory-efficient manner. We show that vision and language models (i.e., ViT and GPT-2) initialized with LoGAH achieve better performance than those initialized randomly or using existing hypernetworks. Furthermore, we show promising transfer learning results w.r.t. training LoGAH on small datasets and using the predicted parameters to initialize for larger tasks. We provide the codes in https://github.com/Blackzxy/LoGAH .
2024-05-28T00:00:00
2405.16537
I2VEdit: First-Frame-Guided Video Editing via Image-to-Video Diffusion Models
[ "Wenqi Ouyang", "Yi Dong", "Lei Yang", "Jianlou Si", "Xingang Pan" ]
The remarkable generative capabilities of diffusion models have motivated extensive research in both image and video editing. Compared to video editing which faces additional challenges in the time dimension, image editing has witnessed the development of more diverse, high-quality approaches and more capable software like Photoshop. In light of this gap, we introduce a novel and generic solution that extends the applicability of image editing tools to videos by propagating edits from a single frame to the entire video using a pre-trained image-to-video model. Our method, dubbed I2VEdit, adaptively preserves the visual and motion integrity of the source video depending on the extent of the edits, effectively handling global edits, local edits, and moderate shape changes, which existing methods cannot fully achieve. At the core of our method are two main processes: Coarse Motion Extraction to align basic motion patterns with the original video, and Appearance Refinement for precise adjustments using fine-grained attention matching. We also incorporate a skip-interval strategy to mitigate quality degradation from auto-regressive generation across multiple video clips. Experimental results demonstrate our framework's superior performance in fine-grained video editing, proving its capability to produce high-quality, temporally consistent outputs.
2024-05-29T00:00:00
2405.18407
Phased Consistency Model
[ "Fu-Yun Wang", "Zhaoyang Huang", "Alexander William Bergman", "Dazhong Shen", "Peng Gao", "Michael Lingelbach", "Keqiang Sun", "Weikang Bian", "Guanglu Song", "Yu Liu", "Hongsheng Li", "Xiaogang Wang" ]
https://github.com/G-U-N/Phased-Consistency-Model
The consistency model (CM) has recently made significant progress in accelerating the generation of diffusion models. However, its application to high-resolution, text-conditioned image generation in the latent space (a.k.a., LCM) remains unsatisfactory. In this paper, we identify three key flaws in the current design of LCM. We investigate the reasons behind these limitations and propose the Phased Consistency Model (PCM), which generalizes the design space and addresses all identified limitations. Our evaluations demonstrate that PCM significantly outperforms LCM across 1--16 step generation settings. While PCM is specifically designed for multi-step refinement, it achieves even superior or comparable 1-step generation results to previously state-of-the-art specifically designed 1-step methods. Furthermore, we show that PCM's methodology is versatile and applicable to video generation, enabling us to train the state-of-the-art few-step text-to-video generator. More details are available at https://g-u-n.github.io/projects/pcm/.
2024-05-29T00:00:00
2405.18377
LLaMA-NAS: Efficient Neural Architecture Search for Large Language Models
[ "Anthony Sarah", "Sharath Nittur Sridhar", "Maciej Szankin", "Sairam Sundaresan" ]
The abilities of modern large language models (LLMs) in solving natural language processing, complex reasoning, sentiment analysis and other tasks have been extraordinary which has prompted their extensive adoption. Unfortunately, these abilities come with very high memory and computational costs which precludes the use of LLMs on most hardware platforms. To mitigate this, we propose an effective method of finding Pareto-optimal network architectures based on LLaMA2-7B using one-shot NAS. In particular, we fine-tune LLaMA2-7B only once and then apply genetic algorithm-based search to find smaller, less computationally complex network architectures. We show that, for certain standard benchmark tasks, the pre-trained LLaMA2-7B network is unnecessarily large and complex. More specifically, we demonstrate a 1.5x reduction in model size and 1.3x speedup in throughput for certain tasks with negligible drop in accuracy. In addition to finding smaller, higher-performing network architectures, our method does so more effectively and efficiently than certain pruning or sparsification techniques. Finally, we demonstrate how quantization is complementary to our method and that the size and complexity of the networks we find can be further decreased using quantization. We believe that our work provides a way to automatically create LLMs which can be used on less expensive and more readily available hardware platforms.
2024-05-29T00:00:00
2405.18047
2BP: 2-Stage Backpropagation
[ "Christopher Rae", "Joseph K. L. Lee", "James Richings" ]
As Deep Neural Networks (DNNs) grow in size and complexity, they often exceed the memory capacity of a single accelerator, necessitating the sharding of model parameters across multiple accelerators. Pipeline parallelism is a commonly used sharding strategy for training large DNNs. However, current implementations of pipeline parallelism are being unintentionally bottlenecked by the automatic differentiation tools provided by ML frameworks. This paper introduces 2-stage backpropagation (2BP). By splitting the backward propagation step into two separate stages, we can reduce idle compute time. We tested 2BP on various model architectures and pipelining schedules, achieving increases in throughput in all cases. Using 2BP, we were able to achieve a 1.70x increase in throughput compared to traditional methods when training a LLaMa-like transformer with 7 billion parameters across 4 GPUs.
2024-05-29T00:00:00
2405.17991
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
[ "Roy Miles", "Pradyumna Reddy", "Ismail Elezi", "Jiankang Deng" ]
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks. Despite their success, training and fine-tuning these models is still far too computationally and memory intensive. In this paper, we identify and characterise the important components needed for effective model convergence using gradient descent. In doing so we find that the intermediate activations used to implement backpropagation can be excessively compressed without incurring any degradation in performance. This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs. The proposed algorithm simply divides the tokens up into smaller sub-tokens before projecting them onto a fixed 1-dimensional subspace during the forward pass. These features are then coarsely reconstructed during the backward pass to implement the update rules. We confirm the effectiveness of our algorithm as being complimentary to many state-of-the-art PEFT methods on the VTAB-1k fine-tuning benchmark. Furthermore, we outperform QLoRA for fine-tuning LLaMA and show competitive performance against other memory-efficient pre-training methods on the large-scale C4 dataset.
2024-05-29T00:00:00
2405.17976
Yuan 2.0-M32: Mixture of Experts with Attention Router
[ "Shaohua Wu", "Jiangang Luo", "Xi Chen", "Lingjun Li", "Xudong Zhao", "Tong Yu", "Chao Wang", "Yue Wang", "Fei Wang", "Weixu Qiao", "Houbo He", "Zeru Zhang", "Zeyu Sun", "Junxiong Mao", "Chong Shen" ]
https://github.com/IEIT-Yuan/Yuan2.0-M32
Yuan 2.0-M32, with a similar base architecture as Yuan-2.0 2B, uses a mixture-of-experts architecture with 32 experts of which 2 experts are active. A new router network, Attention Router, is proposed and adopted for a more efficient selection of experts, which boosts the accuracy of 3.8% compared to the model with classical router network. Yuan 2.0-M32 is trained with 2000B tokens from scratch, and the training computation consumption is only 9.25% of a dense model at the same parameter scale. Yuan 2.0-M32 demonstrates competitive capability on coding, math, and various domains of expertise, with only 3.7B active parameters of 40B in total, and 7.4 GFlops forward computation per token, both of which are only 1/19 of Llama3-70B. Yuan 2.0-M32 surpass Llama3-70B on MATH and ARC-Challenge benchmark, with accuracy of 55.89 and 95.8 respectively. The models and source codes of Yuan 2.0-M32 are released at Github.
2024-05-29T00:00:00
2405.18426
GFlow: Recovering 4D World from Monocular Video
[ "Shizun Wang", "Xingyi Yang", "Qiuhong Shen", "Zhenxiang Jiang", "Xinchao Wang" ]
Reconstructing 4D scenes from video inputs is a crucial yet challenging task. Conventional methods usually rely on the assumptions of multi-view video inputs, known camera parameters, or static scenes, all of which are typically absent under in-the-wild scenarios. In this paper, we relax all these constraints and tackle a highly ambitious but practical task, which we termed as AnyV4D: we assume only one monocular video is available without any camera parameters as input, and we aim to recover the dynamic 4D world alongside the camera poses. To this end, we introduce GFlow, a new framework that utilizes only 2D priors (depth and optical flow) to lift a video (3D) to a 4D explicit representation, entailing a flow of Gaussian splatting through space and time. GFlow first clusters the scene into still and moving parts, then applies a sequential optimization process that optimizes camera poses and the dynamics of 3D Gaussian points based on 2D priors and scene clustering, ensuring fidelity among neighboring points and smooth movement across frames. Since dynamic scenes always introduce new content, we also propose a new pixel-wise densification strategy for Gaussian points to integrate new visual content. Moreover, GFlow transcends the boundaries of mere 4D reconstruction; it also enables tracking of any points across frames without the need for prior training and segments moving objects from the scene in an unsupervised way. Additionally, the camera poses of each frame can be derived from GFlow, allowing for rendering novel views of a video scene through changing camera pose. By employing the explicit representation, we may readily conduct scene-level or object-level editing as desired, underscoring its versatility and power. Visit our project website at: https://littlepure2333.github.io/GFlow
2024-05-29T00:00:00
2405.18386
Instruct-MusicGen: Unlocking Text-to-Music Editing for Music Language Models via Instruction Tuning
[ "Yixiao Zhang", "Yukara Ikemiya", "Woosung Choi", "Naoki Murata", "Marco A. Martínez-Ramírez", "Liwei Lin", "Gus Xia", "Wei-Hsiang Liao", "Yuki Mitsufuji", "Simon Dixon" ]
Recent advances in text-to-music editing, which employ text queries to modify music (e.g.\ by changing its style or adjusting instrumental components), present unique challenges and opportunities for AI-assisted music creation. Previous approaches in this domain have been constrained by the necessity to train specific editing models from scratch, which is both resource-intensive and inefficient; other research uses large language models to predict edited music, resulting in imprecise audio reconstruction. To Combine the strengths and address these limitations, we introduce Instruct-MusicGen, a novel approach that finetunes a pretrained MusicGen model to efficiently follow editing instructions such as adding, removing, or separating stems. Our approach involves a modification of the original MusicGen architecture by incorporating a text fusion module and an audio fusion module, which allow the model to process instruction texts and audio inputs concurrently and yield the desired edited music. Remarkably, Instruct-MusicGen only introduces 8% new parameters to the original MusicGen model and only trains for 5K steps, yet it achieves superior performance across all tasks compared to existing baselines, and demonstrates performance comparable to the models trained for specific tasks. This advancement not only enhances the efficiency of text-to-music editing but also broadens the applicability of music language models in dynamic music production environments.
2024-05-29T00:00:00
2405.18424
3DitScene: Editing Any Scene via Language-guided Disentangled Gaussian Splatting
[ "Qihang Zhang", "Yinghao Xu", "Chaoyang Wang", "Hsin-Ying Lee", "Gordon Wetzstein", "Bolei Zhou", "Ceyuan Yang" ]
https://github.com/zqh0253/3DitScene
Scene image editing is crucial for entertainment, photography, and advertising design. Existing methods solely focus on either 2D individual object or 3D global scene editing. This results in a lack of a unified approach to effectively control and manipulate scenes at the 3D level with different levels of granularity. In this work, we propose 3DitScene, a novel and unified scene editing framework leveraging language-guided disentangled Gaussian Splatting that enables seamless editing from 2D to 3D, allowing precise control over scene composition and individual objects. We first incorporate 3D Gaussians that are refined through generative priors and optimization techniques. Language features from CLIP then introduce semantics into 3D geometry for object disentanglement. With the disentangled Gaussians, 3DitScene allows for manipulation at both the global and individual levels, revolutionizing creative expression and empowering control over scenes and objects. Experimental results demonstrate the effectiveness and versatility of 3DitScene in scene image editing. Code and online demo can be found at our project homepage: https://zqh0253.github.io/3DitScene/.
2024-05-30T00:00:00
2405.19327
MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series
[ "Ge Zhang", "Scott Qu", "Jiaheng Liu", "Chenchen Zhang", "Chenghua Lin", "Chou Leuang Yu", "Danny Pan", "Esther Cheng", "Jie Liu", "Qunshu Lin", "Raven Yuan", "Tuney Zheng", "Wei Pang", "Xinrun Du", "Yiming Liang", "Yinghao Ma", "Yizhi Li", "Ziyang Ma", "Bill Lin", "Emmanouil Benetos", "Huan Yang", "Junting Zhou", "Kaijing Ma", "Minghao Liu", "Morry Niu", "Noah Wang", "Quehry Que", "Ruibo Liu", "Sine Liu", "Shawn Guo", "Soren Gao", "Wangchunshu Zhou", "Xinyue Zhang", "Yizhi Zhou", "Yubo Wang", "Yuelin Bai", "Yuhan Zhang", "Yuxiang Zhang", "Zenith Wang", "Zhenzhu Yang", "Zijian Zhao", "Jiajun Zhang", "Wanli Ouyang", "Wenhao Huang", "Wenhu Chen" ]
https://github.com/multimodal-art-projection/MAP-NEO
Large Language Models (LLMs) have made great strides in recent years to achieve unprecedented performance across different tasks. However, due to commercial interest, the most competitive models like GPT, Gemini, and Claude have been gated behind proprietary interfaces without disclosing the training details. Recently, many institutions have open-sourced several strong LLMs like LLaMA-3, comparable to existing closed-source LLMs. However, only the model's weights are provided with most details (e.g., intermediate checkpoints, pre-training corpus, and training code, etc.) being undisclosed. To improve the transparency of LLMs, the research community has formed to open-source truly open LLMs (e.g., Pythia, Amber, OLMo), where more details (e.g., pre-training corpus and training code) are being provided. These models have greatly advanced the scientific study of these large models including their strengths, weaknesses, biases and risks. However, we observe that the existing truly open LLMs on reasoning, knowledge, and coding tasks are still inferior to existing state-of-the-art LLMs with similar model sizes. To this end, we open-source MAP-Neo, a highly capable and transparent bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens. Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs. Moreover, we open-source all details to reproduce our MAP-Neo, where the cleaned pre-training corpus, data cleaning pipeline, checkpoints, and well-optimized training/evaluation framework are provided. Finally, we hope our MAP-Neo will enhance and strengthen the open research community and inspire more innovations and creativities to facilitate the further improvements of LLMs.
2024-05-30T00:00:00
2405.18870
LLMs achieve adult human performance on higher-order theory of mind tasks
[ "Winnie Street", "John Oliver Siy", "Geoff Keeling", "Adrien Baranes", "Benjamin Barnett", "Michael McKibben", "Tatenda Kanyere", "Alison Lentz", "Blaise Aguera y Arcas", "Robin I. M. Dunbar" ]
This paper examines the extent to which large language models (LLMs) have developed higher-order theory of mind (ToM); the human ability to reason about multiple mental and emotional states in a recursive manner (e.g. I think that you believe that she knows). This paper builds on prior work by introducing a handwritten test suite -- Multi-Order Theory of Mind Q&A -- and using it to compare the performance of five LLMs to a newly gathered adult human benchmark. We find that GPT-4 and Flan-PaLM reach adult-level and near adult-level performance on ToM tasks overall, and that GPT-4 exceeds adult performance on 6th order inferences. Our results suggest that there is an interplay between model size and finetuning for the realisation of ToM abilities, and that the best-performing LLMs have developed a generalised capacity for ToM. Given the role that higher-order ToM plays in a wide range of cooperative and competitive human behaviours, these findings have significant implications for user-facing LLM applications.
2024-05-30T00:00:00
2405.18750
T2V-Turbo: Breaking the Quality Bottleneck of Video Consistency Model with Mixed Reward Feedback
[ "Jiachen Li", "Weixi Feng", "Tsu-Jui Fu", "Xinyi Wang", "Sugato Basu", "Wenhu Chen", "William Yang Wang" ]
https://github.com/Ji4chenLi/t2v-turbo
Diffusion-based text-to-video (T2V) models have achieved significant success but continue to be hampered by the slow sampling speed of their iterative sampling processes. To address the challenge, consistency models have been proposed to facilitate fast inference, albeit at the cost of sample quality. In this work, we aim to break the quality bottleneck of a video consistency model (VCM) to achieve both fast and high-quality video generation. We introduce T2V-Turbo, which integrates feedback from a mixture of differentiable reward models into the consistency distillation (CD) process of a pre-trained T2V model. Notably, we directly optimize rewards associated with single-step generations that arise naturally from computing the CD loss, effectively bypassing the memory constraints imposed by backpropagating gradients through an iterative sampling process. Remarkably, the 4-step generations from our T2V-Turbo achieve the highest total score on VBench, even surpassing Gen-2 and Pika. We further conduct human evaluations to corroborate the results, validating that the 4-step generations from our T2V-Turbo are preferred over the 50-step DDIM samples from their teacher models, representing more than a tenfold acceleration while improving video generation quality.
2024-05-30T00:00:00
2405.19331
NPGA: Neural Parametric Gaussian Avatars
[ "Simon Giebenhain", "Tobias Kirschstein", "Martin Rünz", "Lourdes Agapito", "Matthias Nießner" ]
The creation of high-fidelity, digital versions of human heads is an important stepping stone in the process of further integrating virtual components into our everyday lives. Constructing such avatars is a challenging research problem, due to a high demand for photo-realism and real-time rendering performance. In this work, we propose Neural Parametric Gaussian Avatars (NPGA), a data-driven approach to create high-fidelity, controllable avatars from multi-view video recordings. We build our method around 3D Gaussian Splatting for its highly efficient rendering and to inherit the topological flexibility of point clouds. In contrast to previous work, we condition our avatars' dynamics on the rich expression space of neural parametric head models (NPHM), instead of mesh-based 3DMMs. To this end, we distill the backward deformation field of our underlying NPHM into forward deformations which are compatible with rasterization-based rendering. All remaining fine-scale, expression-dependent details are learned from the multi-view videos. To increase the representational capacity of our avatars, we augment the canonical Gaussian point cloud using per-primitive latent features which govern its dynamic behavior. To regularize this increased dynamic expressivity, we propose Laplacian terms on the latent features and predicted dynamics. We evaluate our method on the public NeRSemble dataset, demonstrating that NPGA significantly outperforms the previous state-of-the-art avatars on the self-reenactment task by 2.6 PSNR. Furthermore, we demonstrate accurate animation capabilities from real-world monocular videos.
2024-05-30T00:00:00
2405.18503
SoundCTM: Uniting Score-based and Consistency Models for Text-to-Sound Generation
[ "Koichi Saito", "Dongjun Kim", "Takashi Shibuya", "Chieh-Hsin Lai", "Zhi Zhong", "Yuhta Takida", "Yuki Mitsufuji" ]
Sound content is an indispensable element for multimedia works such as video games, music, and films. Recent high-quality diffusion-based sound generation models can serve as valuable tools for the creators. However, despite producing high-quality sounds, these models often suffer from slow inference speeds. This drawback burdens creators, who typically refine their sounds through trial and error to align them with their artistic intentions. To address this issue, we introduce Sound Consistency Trajectory Models (SoundCTM). Our model enables flexible transitioning between high-quality 1-step sound generation and superior sound quality through multi-step generation. This allows creators to initially control sounds with 1-step samples before refining them through multi-step generation. While CTM fundamentally achieves flexible 1-step and multi-step generation, its impressive performance heavily depends on an additional pretrained feature extractor and an adversarial loss, which are expensive to train and not always available in other domains. Thus, we reframe CTM's training framework and introduce a novel feature distance by utilizing the teacher's network for a distillation loss. Additionally, while distilling classifier-free guided trajectories, we train conditional and unconditional student models simultaneously and interpolate between these models during inference. We also propose training-free controllable frameworks for SoundCTM, leveraging its flexible sampling capability. SoundCTM achieves both promising 1-step and multi-step real-time sound generation without using any extra off-the-shelf networks. Furthermore, we demonstrate SoundCTM's capability of controllable sound generation in a training-free manner.
2024-05-30T00:00:00
2405.18515
Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication
[ "Yunuo Chen", "Tianyi Xie", "Zeshun Zong", "Xuan Li", "Feng Gao", "Yin Yang", "Ying Nian Wu", "Chenfanfu Jiang" ]
https://github.com/yunuoch/Atlas3D
Existing diffusion-based text-to-3D generation methods primarily focus on producing visually realistic shapes and appearances, often neglecting the physical constraints necessary for downstream tasks. Generated models frequently fail to maintain balance when placed in physics-based simulations or 3D printed. This balance is crucial for satisfying user design intentions in interactive gaming, embodied AI, and robotics, where stable models are needed for reliable interaction. Additionally, stable models ensure that 3D-printed objects, such as figurines for home decoration, can stand on their own without requiring additional supports. To fill this gap, we introduce Atlas3D, an automatic and easy-to-implement method that enhances existing Score Distillation Sampling (SDS)-based text-to-3D tools. Atlas3D ensures the generation of self-supporting 3D models that adhere to physical laws of stability under gravity, contact, and friction. Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization, serving as either a refinement or a post-processing module for existing frameworks. We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
2024-05-30T00:00:00
2405.18991
EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture
[ "Jiaqi Xu", "Xinyi Zou", "Kunzhe Huang", "Yunkuo Chen", "Bo Liu", "MengLi Cheng", "Xing Shi", "Jun Huang" ]
https://github.com/aigc-apps/EasyAnimate
This paper presents EasyAnimate, an advanced method for video generation that leverages the power of transformer architecture for high-performance outcomes. We have expanded the DiT framework originally designed for 2D image synthesis to accommodate the complexities of 3D video generation by incorporating a motion module block. It is used to capture temporal dynamics, thereby ensuring the production of consistent frames and seamless motion transitions. The motion module can be adapted to various DiT baseline methods to generate video with different styles. It can also generate videos with different frame rates and resolutions during both training and inference phases, suitable for both images and videos. Moreover, we introduce slice VAE, a novel approach to condense the temporal axis, facilitating the generation of long duration videos. Currently, EasyAnimate exhibits the proficiency to generate videos with 144 frames. We provide a holistic ecosystem for video production based on DiT, encompassing aspects such as data pre-processing, VAE training, DiT models training (both the baseline model and LoRA model), and end-to-end video inference. Code is available at: https://github.com/aigc-apps/EasyAnimate. We are continuously working to enhance the performance of our method.
2024-05-30T00:00:00
2405.19107
Offline Regularised Reinforcement Learning for Large Language Models Alignment
[ "Pierre Harvey Richemond", "Yunhao Tang", "Daniel Guo", "Daniele Calandriello", "Mohammad Gheshlaghi Azar", "Rafael Rafailov", "Bernardo Avila Pires", "Eugene Tarassov", "Lucas Spangher", "Will Ellsworth", "Aliaksei Severyn", "Jonathan Mallinson", "Lior Shani", "Gil Shamir", "Rishabh Joshi", "Tianqi Liu", "Remi Munos", "Bilal Piot" ]
The dominant framework for alignment of large language models (LLM), whether through reinforcement learning from human feedback or direct preference optimisation, is to learn from preference data. This involves building datasets where each element is a quadruplet composed of a prompt, two independent responses (completions of the prompt) and a human preference between the two independent responses, yielding a preferred and a dis-preferred response. Such data is typically scarce and expensive to collect. On the other hand, single-trajectory datasets where each element is a triplet composed of a prompt, a response and a human feedback is naturally more abundant. The canonical element of such datasets is for instance an LLM's response to a user's prompt followed by a user's feedback such as a thumbs-up/down. Consequently, in this work, we propose DRO, or Direct Reward Optimisation, as a framework and associated algorithms that do not require pairwise preferences. DRO uses a simple mean-squared objective that can be implemented in various ways. We validate our findings empirically, using T5 encoder-decoder language models, and show DRO's performance over selected baselines such as Kahneman-Tversky Optimization (KTO). Thus, we confirm that DRO is a simple and empirically compelling method for single-trajectory policy optimisation.
2024-05-30T00:00:00
2405.18669
Zipper: A Multi-Tower Decoder Architecture for Fusing Modalities
[ "Vicky Zayats", "Peter Chen", "Melissa Merrari", "Dirk Padfield" ]
Integrating multiple generative foundation models, especially those trained on different modalities, into something greater than the sum of its parts poses significant challenges. Two key hurdles are the availability of aligned data (concepts that contain similar meaning but is expressed differently in different modalities), and effectively leveraging unimodal representations in cross-domain generative tasks, without compromising their original unimodal capabilities. We propose Zipper, a multi-tower decoder architecture that addresses these concerns by using cross-attention to flexibly compose multimodal generative models from independently pre-trained unimodal decoders. In our experiments fusing speech and text modalities, we show the proposed architecture performs very competitively in scenarios with limited aligned text-speech data. We also showcase the flexibility of our model to selectively maintain unimodal (e.g., text-to-text generation) generation performance by freezing the corresponding modal tower (e.g. text). In cross-modal tasks such as automatic speech recognition (ASR) where the output modality is text, we show that freezing the text backbone results in negligible performance degradation. In cross-modal tasks such as text-to-speech generation (TTS) where the output modality is speech, we show that using a pre-trained speech backbone results in superior performance to the baseline.
2024-05-30T00:00:00
2405.19325
Nearest Neighbor Speculative Decoding for LLM Generation and Attribution
[ "Minghan Li", "Xilun Chen", "Ari Holtzman", "Beidi Chen", "Jimmy Lin", "Wen-tau Yih", "Xi Victoria Lin" ]
Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts. In this paper, we introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric language modeling approach that is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources. NEST performs token-level retrieval at each inference step to compute a semi-parametric mixture distribution and identify promising span continuations in a corpus. It then uses an approximate speculative decoding procedure that accepts a prefix of the retrieved span or generates a new token. NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks, surpassing the conventional kNN-LM method and performing competitively with in-context retrieval augmentation. In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
2024-05-30T00:00:00
2405.19320
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
[ "Shicong Cen", "Jincheng Mei", "Katayoon Goshvadi", "Hanjun Dai", "Tong Yang", "Sherry Yang", "Dale Schuurmans", "Yuejie Chi", "Bo Dai" ]
Reinforcement learning from human feedback (RLHF) has demonstrated great promise in aligning large language models (LLMs) with human preference. Depending on the availability of preference data, both online and offline RLHF are active areas of investigation. A key bottleneck is understanding how to incorporate uncertainty estimation in the reward function learned from the preference data for RLHF, regardless of how the preference data is collected. While the principles of optimism or pessimism under uncertainty are well-established in standard reinforcement learning (RL), a practically-implementable and theoretically-grounded form amenable to large language models is not yet available, as standard techniques for constructing confidence intervals become intractable under arbitrary policy parameterizations. In this paper, we introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO) -- which regularizes the maximum-likelihood estimate of the reward function with the corresponding value function, modulated by a sign to indicate whether the optimism or pessimism is chosen. VPO also directly optimizes the policy with implicit reward modeling, and therefore shares a simpler RLHF pipeline similar to direct preference optimization. Theoretical guarantees of VPO are provided for both online and offline settings, matching the rates of their standard RL counterparts. Moreover, experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
2024-05-30T00:00:00
2405.19332
Self-Exploring Language Models: Active Preference Elicitation for Online Alignment
[ "Shenao Zhang", "Donghan Yu", "Hiteshi Sharma", "Ziyi Yang", "Shuohang Wang", "Hany Hassan", "Zhaoran Wang" ]
https://github.com/shenao-zhang/SELM
Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when finetuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at https://github.com/shenao-zhang/SELM.
2024-05-31T00:00:00
2405.20289
DITTO-2: Distilled Diffusion Inference-Time T-Optimization for Music Generation
[ "Zachary Novack", "Julian McAuley", "Taylor Berg-Kirkpatrick", "Nicholas Bryan" ]
Controllable music generation methods are critical for human-centered AI-based music creation, but are currently limited by speed, quality, and control design trade-offs. Diffusion Inference-Time T-optimization (DITTO), in particular, offers state-of-the-art results, but is over 10x slower than real-time, limiting practical use. We propose Distilled Diffusion Inference-Time T -Optimization (or DITTO-2), a new method to speed up inference-time optimization-based control and unlock faster-than-real-time generation for a wide-variety of applications such as music inpainting, outpainting, intensity, melody, and musical structure control. Our method works by (1) distilling a pre-trained diffusion model for fast sampling via an efficient, modified consistency or consistency trajectory distillation process (2) performing inference-time optimization using our distilled model with one-step sampling as an efficient surrogate optimization task and (3) running a final multi-step sampling generation (decoding) using our estimated noise latents for best-quality, fast, controllable generation. Through thorough evaluation, we find our method not only speeds up generation over 10-20x, but simultaneously improves control adherence and generation quality all at once. Furthermore, we apply our approach to a new application of maximizing text adherence (CLAP score) and show we can convert an unconditional diffusion model without text inputs into a model that yields state-of-the-art text control. Sound examples can be found at https://ditto-music.github.io/ditto2/.