date
timestamp[ns]date
2023-05-05 00:00:00
2025-07-11 00:00:00
arxiv_id
stringlengths
10
10
title
stringlengths
8
202
authors
listlengths
1
942
github
stringlengths
0
116
abstract
stringlengths
165
1.92k
2023-11-22T00:00:00
2311.12052
MagicDance: Realistic Human Dance Video Generation with Motions & Facial Expressions Transfer
[ "Di Chang", "Yichun Shi", "Quankai Gao", "Jessica Fu", "Hongyi Xu", "Guoxian Song", "Qing Yan", "Xiao Yang", "Mohammad Soleymani" ]
https://github.com/Boese0601/MagicDance
In this work, we propose MagicDance, a diffusion-based model for 2D human motion and facial expression transfer on challenging human dance videos. Specifically, we aim to generate human dance videos of any target identity driven by novel pose sequences while keeping the identity unchanged. To this end, we propose a two-stage training strategy to disentangle human motions and appearance (e.g., facial expressions, skin tone and dressing), consisting of the pretraining of an appearance-control block and fine-tuning of an appearance-pose-joint-control block over human dance poses of the same dataset. Our novel design enables robust appearance control with temporally consistent upper body, facial attributes, and even background. The model also generalizes well on unseen human identities and complex motion sequences without the need for any fine-tuning with additional data with diverse human attributes by leveraging the prior knowledge of image diffusion models. Moreover, the proposed model is easy to use and can be considered as a plug-in module/extension to Stable Diffusion. We also demonstrate the model's ability for zero-shot 2D animation generation, enabling not only the appearance transfer from one identity to another but also allowing for cartoon-like stylization given only pose inputs. Extensive experiments demonstrate our superior performance on the TikTok dataset.
2023-11-22T00:00:00
2311.12092
Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models
[ "Rohit Gandikota", "Joanna Materzynska", "Tingrui Zhou", "Antonio Torralba", "David Bau" ]
We present a method to create interpretable concept sliders that enable precise control over attributes in image generations from diffusion models. Our approach identifies a low-rank parameter direction corresponding to one concept while minimizing interference with other attributes. A slider is created using a small set of prompts or sample images; thus slider directions can be created for either textual or visual concepts. Concept Sliders are plug-and-play: they can be composed efficiently and continuously modulated, enabling precise control over image generation. In quantitative experiments comparing to previous editing techniques, our sliders exhibit stronger targeted edits with lower interference. We showcase sliders for weather, age, styles, and expressions, as well as slider compositions. We show how sliders can transfer latents from StyleGAN for intuitive editing of visual concepts for which textual description is difficult. We also find that our method can help address persistent quality issues in Stable Diffusion XL including repair of object deformations and fixing distorted hands. Our code, data, and trained sliders are available at https://sliders.baulab.info/
2023-11-22T00:00:00
2311.12454
HierSpeech++: Bridging the Gap between Semantic and Acoustic Representation of Speech by Hierarchical Variational Inference for Zero-shot Speech Synthesis
[ "Sang-Hoon Lee", "Ha-Yeong Choi", "Seung-Bin Kim", "Seong-Whan Lee" ]
https://github.com/sh-lee-prml/HierSpeechpp
Large language models (LLM)-based speech synthesis has been widely adopted in zero-shot speech synthesis. However, they require a large-scale data and possess the same limitations as previous autoregressive speech models, including slow inference speed and lack of robustness. This paper proposes HierSpeech++, a fast and strong zero-shot speech synthesizer for text-to-speech (TTS) and voice conversion (VC). We verified that hierarchical speech synthesis frameworks could significantly improve the robustness and expressiveness of the synthetic speech. Furthermore, we significantly improve the naturalness and speaker similarity of synthetic speech even in zero-shot speech synthesis scenarios. For text-to-speech, we adopt the text-to-vec framework, which generates a self-supervised speech representation and an F0 representation based on text representations and prosody prompts. Then, HierSpeech++ generates speech from the generated vector, F0, and voice prompt. We further introduce a high-efficient speech super-resolution framework from 16 kHz to 48 kHz. The experimental results demonstrated that the hierarchical variational autoencoder could be a strong zero-shot speech synthesizer given that it outperforms LLM-based and diffusion-based models. Moreover, we achieved the first human-level quality zero-shot speech synthesis. Audio samples and source code are available at https://github.com/sh-lee-prml/HierSpeechpp.
2023-11-22T00:00:00
2311.12229
NeuroPrompts: An Adaptive Framework to Optimize Prompts for Text-to-Image Generation
[ "Shachar Rosenman", "Vasudev Lal", "Phillip Howard" ]
Despite impressive recent advances in text-to-image diffusion models, obtaining high-quality images often requires prompt engineering by humans who have developed expertise in using them. In this work, we present NeuroPrompts, an adaptive framework that automatically enhances a user's prompt to improve the quality of generations produced by text-to-image models. Our framework utilizes constrained text decoding with a pre-trained language model that has been adapted to generate prompts similar to those produced by human prompt engineers. This approach enables higher-quality text-to-image generations and provides user control over stylistic features via constraint set specification. We demonstrate the utility of our framework by creating an interactive application for prompt enhancement and image generation using Stable Diffusion. Additionally, we conduct experiments utilizing a large dataset of human-engineered prompts for text-to-image generation and show that our approach automatically produces enhanced prompts that result in superior image quality. We make our code, a screencast video demo and a live demo instance of NeuroPrompts publicly available.
2023-11-22T00:00:00
2311.12024
PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape Prediction
[ "Peng Wang", "Hao Tan", "Sai Bi", "Yinghao Xu", "Fujun Luan", "Kalyan Sunkavalli", "Wenping Wang", "Zexiang Xu", "Kai Zhang" ]
We propose a Pose-Free Large Reconstruction Model (PF-LRM) for reconstructing a 3D object from a few unposed images even with little visual overlap, while simultaneously estimating the relative camera poses in ~1.3 seconds on a single A100 GPU. PF-LRM is a highly scalable method utilizing the self-attention blocks to exchange information between 3D object tokens and 2D image tokens; we predict a coarse point cloud for each view, and then use a differentiable Perspective-n-Point (PnP) solver to obtain camera poses. When trained on a huge amount of multi-view posed data of ~1M objects, PF-LRM shows strong cross-dataset generalization ability, and outperforms baseline methods by a large margin in terms of pose prediction accuracy and 3D reconstruction quality on various unseen evaluation datasets. We also demonstrate our model's applicability in downstream text/image-to-3D task with fast feed-forward inference. Our project website is at: https://totoro97.github.io/pf-lrm .
2023-11-22T00:00:00
2311.12775
SuGaR: Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering
[ "Antoine Guédon", "Vincent Lepetit" ]
We propose a method to allow precise and extremely fast mesh extraction from 3D Gaussian Splatting. Gaussian Splatting has recently become very popular as it yields realistic rendering while being significantly faster to train than NeRFs. It is however challenging to extract a mesh from the millions of tiny 3D gaussians as these gaussians tend to be unorganized after optimization and no method has been proposed so far. Our first key contribution is a regularization term that encourages the gaussians to align well with the surface of the scene. We then introduce a method that exploits this alignment to extract a mesh from the Gaussians using Poisson reconstruction, which is fast, scalable, and preserves details, in contrast to the Marching Cubes algorithm usually applied to extract meshes from Neural SDFs. Finally, we introduce an optional refinement strategy that binds gaussians to the surface of the mesh, and jointly optimizes these Gaussians and the mesh through Gaussian splatting rendering. This enables easy editing, sculpting, rigging, animating, compositing and relighting of the Gaussians using traditional softwares by manipulating the mesh instead of the gaussians themselves. Retrieving such an editable mesh for realistic rendering is done within minutes with our method, compared to hours with the state-of-the-art methods on neural SDFs, while providing a better rendering quality.
2023-11-22T00:00:00
2311.12198
PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics
[ "Tianyi Xie", "Zeshun Zong", "Yuxin Qiu", "Xuan Li", "Yutao Feng", "Yin Yang", "Chenfanfu Jiang" ]
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS^2)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: https://xpandora.github.io/PhysGaussian/
2023-11-23T00:00:00
2311.12983
GAIA: a benchmark for General AI Assistants
[ "Grégoire Mialon", "Clémentine Fourrier", "Craig Swift", "Thomas Wolf", "Yann LeCun", "Thomas Scialom" ]
We introduce GAIA, a benchmark for General AI Assistants that, if solved, would represent a milestone in AI research. GAIA proposes real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency. GAIA questions are conceptually simple for humans yet challenging for most advanced AIs: we show that human respondents obtain 92\% vs. 15\% for GPT-4 equipped with plugins. This notable performance disparity contrasts with the recent trend of LLMs outperforming humans on tasks requiring professional skills in e.g. law or chemistry. GAIA's philosophy departs from the current trend in AI benchmarks suggesting to target tasks that are ever more difficult for humans. We posit that the advent of Artificial General Intelligence (AGI) hinges on a system's capability to exhibit similar robustness as the average human does on such questions. Using GAIA's methodology, we devise 466 questions and their answer. We release our questions while retaining answers to 300 of them to power a leader-board available at https://huggingface.co/gaia-benchmark.
2023-11-23T00:00:00
2311.12908
Diffusion Model Alignment Using Direct Preference Optimization
[ "Bram Wallace", "Meihua Dang", "Rafael Rafailov", "Linqi Zhou", "Aaron Lou", "Senthil Purushwalkam", "Stefano Ermon", "Caiming Xiong", "Shafiq Joty", "Nikhil Naik" ]
Large language models (LLMs) are fine-tuned using human comparison data with Reinforcement Learning from Human Feedback (RLHF) methods to make them better aligned with users' preferences. In contrast to LLMs, human preference learning has not been widely explored in text-to-image diffusion models; the best existing approach is to fine-tune a pretrained model using carefully curated high quality images and captions to improve visual appeal and text alignment. We propose Diffusion-DPO, a method to align diffusion models to human preferences by directly optimizing on human comparison data. Diffusion-DPO is adapted from the recently developed Direct Preference Optimization (DPO), a simpler alternative to RLHF which directly optimizes a policy that best satisfies human preferences under a classification objective. We re-formulate DPO to account for a diffusion model notion of likelihood, utilizing the evidence lower bound to derive a differentiable objective. Using the Pick-a-Pic dataset of 851K crowdsourced pairwise preferences, we fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO. Our fine-tuned base model significantly outperforms both base SDXL-1.0 and the larger SDXL-1.0 model consisting of an additional refinement model in human evaluation, improving visual appeal and prompt alignment. We also develop a variant that uses AI feedback and has comparable performance to training on human preferences, opening the door for scaling of diffusion model alignment methods.
2023-11-23T00:00:00
2311.13231
Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model
[ "Kai Yang", "Jian Tao", "Jiafei Lyu", "Chunjiang Ge", "Jiaxin Chen", "Qimai Li", "Weihan Shen", "Xiaolong Zhu", "Xiu Li" ]
Using reinforcement learning with human feedback (RLHF) has shown significant promise in fine-tuning diffusion models. Previous methods start by training a reward model that aligns with human preferences, then leverage RL techniques to fine-tune the underlying models. However, crafting an efficient reward model demands extensive datasets, optimal architecture, and manual hyperparameter tuning, making the process both time and cost-intensive. The direct preference optimization (DPO) method, effective in fine-tuning large language models, eliminates the necessity for a reward model. However, the extensive GPU memory requirement of the diffusion model's denoising process hinders the direct application of the DPO method. To address this issue, we introduce the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) method to directly fine-tune diffusion models. The theoretical analysis demonstrates that although D3PO omits training a reward model, it effectively functions as the optimal reward model trained using human feedback data to guide the learning process. This approach requires no training of a reward model, proving to be more direct, cost-effective, and minimizing computational overhead. In experiments, our method uses the relative scale of objectives as a proxy for human preference, delivering comparable results to methods using ground-truth rewards. Moreover, D3PO demonstrates the ability to reduce image distortion rates and generate safer images, overcoming challenges lacking robust reward models.
2023-11-23T00:00:00
2311.13384
LucidDreamer: Domain-free Generation of 3D Gaussian Splatting Scenes
[ "Jaeyoung Chung", "Suyoung Lee", "Hyeongjin Nam", "Jaerin Lee", "Kyoung Mu Lee" ]
https://github.com/luciddreamer-cvlab/LucidDreamer
With the widespread usage of VR devices and contents, demands for 3D scene generation techniques become more popular. Existing 3D scene generation models, however, limit the target scene to specific domain, primarily due to their training strategies using 3D scan dataset that is far from the real-world. To address such limitation, we propose LucidDreamer, a domain-free scene generation pipeline by fully leveraging the power of existing large-scale diffusion-based generative model. Our LucidDreamer has two alternate steps: Dreaming and Alignment. First, to generate multi-view consistent images from inputs, we set the point cloud as a geometrical guideline for each image generation. Specifically, we project a portion of point cloud to the desired view and provide the projection as a guidance for inpainting using the generative model. The inpainted images are lifted to 3D space with estimated depth maps, composing a new points. Second, to aggregate the new points into the 3D scene, we propose an aligning algorithm which harmoniously integrates the portions of newly generated 3D scenes. The finally obtained 3D scene serves as initial points for optimizing Gaussian splats. LucidDreamer produces Gaussian splats that are highly-detailed compared to the previous 3D scene generation methods, with no constraint on domain of the target scene.
2023-11-23T00:00:00
2311.13600
ZipLoRA: Any Subject in Any Style by Effectively Merging LoRAs
[ "Viraj Shah", "Nataniel Ruiz", "Forrester Cole", "Erika Lu", "Svetlana Lazebnik", "Yuanzhen Li", "Varun Jampani" ]
Methods for finetuning generative models for concept-driven personalization generally achieve strong results for subject-driven or style-driven generation. Recently, low-rank adaptations (LoRA) have been proposed as a parameter-efficient way of achieving concept-driven personalization. While recent work explores the combination of separate LoRAs to achieve joint generation of learned styles and subjects, existing techniques do not reliably address the problem; they often compromise either subject fidelity or style fidelity. We propose ZipLoRA, a method to cheaply and effectively merge independently trained style and subject LoRAs in order to achieve generation of any user-provided subject in any user-provided style. Experiments on a wide range of subject and style combinations show that ZipLoRA can generate compelling results with meaningful improvements over baselines in subject and style fidelity while preserving the ability to recontextualize. Project page: https://ziplora.github.io
2023-11-23T00:00:00
2311.13141
Diffusion360: Seamless 360 Degree Panoramic Image Generation based on Diffusion Models
[ "Mengyang Feng", "Jinlin Liu", "Miaomiao Cui", "Xuansong Xie" ]
https://github.com/ArcherFMY/SD-T2I-360PanoImage{https:
This is a technical report on the 360-degree panoramic image generation task based on diffusion models. Unlike ordinary 2D images, 360-degree panoramic images capture the entire 360^circtimes 180^circ field of view. So the rightmost and the leftmost sides of the 360 panoramic image should be continued, which is the main challenge in this field. However, the current diffusion pipeline is not appropriate for generating such a seamless 360-degree panoramic image. To this end, we propose a circular blending strategy on both the denoising and VAE decoding stages to maintain the geometry continuity. Based on this, we present two models for Text-to-360-panoramas and Single-Image-to-360-panoramas tasks. The code has been released as an open-source project at https://github.com/ArcherFMY/SD-T2I-360PanoImage{https://github.com/ArcherFMY/SD-T2I-360PanoImage} and https://www.modelscope.cn/models/damo/cv_diffusion_text-to-360panorama-image_generation/summary{ModelScope}
2023-11-23T00:00:00
2311.13435
PG-Video-LLaVA: Pixel Grounding Large Video-Language Models
[ "Shehan Munasinghe", "Rusiru Thushara", "Muhammad Maaz", "Hanoona Abdul Rasheed", "Salman Khan", "Mubarak Shah", "Fahad Khan" ]
https://github.com/mbzuai-oryx/Video-LLaVA
Extending image-based Large Multimodal Models (LMM) to videos is challenging due to the inherent complexity of video data. The recent approaches extending image-based LMM to videos either lack the grounding capabilities (e.g., VideoChat, Video-ChatGPT, Video-LLaMA) or do not utilize the audio-signals for better video understanding (e.g., Video-ChatGPT). Addressing these gaps, we propose Video-LLaVA, the first LMM with pixel-level grounding capability, integrating audio cues by transcribing them into text to enrich video-context understanding. Our framework uses an off-the-shelf tracker and a novel grounding module, enabling it to spatially and temporally localize objects in videos following user instructions. We evaluate Video-LLaVA using video-based generative and question-answering benchmarks and introduce new benchmarks specifically designed to measure prompt-based object grounding performance in videos. Further, we propose the use of Vicuna over GPT-3.5, as utilized in Video-ChatGPT, for video-based conversation benchmarking, ensuring reproducibility of results which is a concern with the proprietary nature of GPT-3.5. Our framework builds on SoTA image-based LLaVA model and extends its advantages to the video domain, delivering promising gains on video-based conversation and grounding tasks. Project Page: https://github.com/mbzuai-oryx/Video-LLaVA
2023-11-23T00:00:00
2311.13073
FusionFrames: Efficient Architectural Aspects for Text-to-Video Generation Pipeline
[ "Vladimir Arkhipkin", "Zein Shaheen", "Viacheslav Vasilev", "Elizaveta Dakhova", "Andrey Kuznetsov", "Denis Dimitrov" ]
Multimedia generation approaches occupy a prominent place in artificial intelligence research. Text-to-image models achieved high-quality results over the last few years. However, video synthesis methods recently started to develop. This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model. The first stage concerns keyframes synthesis to figure the storyline of a video, while the second one is devoted to interpolation frames generation to make movements of the scene and objects smooth. We compare several temporal conditioning approaches for keyframes generation. The results show the advantage of using separate temporal blocks over temporal layers in terms of metrics reflecting video generation quality aspects and human preference. The design of our interpolation model significantly reduces computational costs compared to other masked frame interpolation approaches. Furthermore, we evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores. Finally, we compare our pipeline with existing solutions and achieve top-2 scores overall and top-1 among open-source solutions: CLIPSIM = 0.2976 and FVD = 433.054. Project page: https://ai-forever.github.io/kandinsky-video/
2023-11-23T00:00:00
2311.13601
Visual In-Context Prompting
[ "Feng Li", "Qing Jiang", "Hao Zhang", "Tianhe Ren", "Shilong Liu", "Xueyan Zou", "Huaizhe Xu", "Hongyang Li", "Chunyuan Li", "Jianwei Yang", "Lei Zhang", "Jianfeng Gao" ]
https://github.com/UX-Decoder/DINOv
In-context prompting in large language models (LLMs) has become a prevalent approach to improve zero-shot capabilities, but this idea is less explored in the vision domain. Existing visual prompting methods focus on referring segmentation to segment the most relevant object, falling short of addressing many generic vision tasks like open-set segmentation and detection. In this paper, we introduce a universal visual in-context prompting framework for both tasks. In particular, we build on top of an encoder-decoder architecture, and develop a versatile prompt encoder to support a variety of prompts like strokes, boxes, and points. We further enhance it to take an arbitrary number of reference image segments as the context. Our extensive explorations show that the proposed visual in-context prompting elicits extraordinary referring and generic segmentation capabilities to refer and detect, yielding competitive performance to close-set in-domain datasets and showing promising results on many open-set segmentation datasets. By joint training on COCO and SA-1B, our model achieves 57.7 PQ on COCO and 23.2 PQ on ADE20K. Code will be available at https://github.com/UX-Decoder/DINOv.
2023-12-04T00:00:00
2312.00738
SeaLLMs -- Large Language Models for Southeast Asia
[ "Xuan-Phi Nguyen", "Wenxuan Zhang", "Xin Li", "Mahani Aljunied", "Qingyu Tan", "Liying Cheng", "Guanzheng Chen", "Yue Deng", "Sen Yang", "Chaoqun Liu", "Hang Zhang", "Lidong Bing" ]
Despite the remarkable achievements of large language models (LLMs) in various tasks, there remains a linguistic bias that favors high-resource languages, such as English, often at the expense of low-resource and regional languages. To address this imbalance, we introduce SeaLLMs, an innovative series of language models that specifically focuses on Southeast Asian (SEA) languages. SeaLLMs are built upon the Llama-2 model and further advanced through continued pre-training with an extended vocabulary, specialized instruction and alignment tuning to better capture the intricacies of regional languages. This allows them to respect and reflect local cultural norms, customs, stylistic preferences, and legal considerations. Our comprehensive evaluation demonstrates that SeaLLM-13b models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open-source models. Moreover, they outperform ChatGPT-3.5 in non-Latin languages, such as Thai, Khmer, Lao, and Burmese, by large margins while remaining lightweight and cost-effective to operate.
2023-12-04T00:00:00
2312.00438
Dolphins: Multimodal Language Model for Driving
[ "Yingzi Ma", "Yulong Cao", "Jiachen Sun", "Marco Pavone", "Chaowei Xiao" ]
The quest for fully autonomous vehicles (AVs) capable of navigating complex real-world scenarios with human-like understanding and responsiveness. In this paper, we introduce Dolphins, a novel vision-language model architected to imbibe human-like abilities as a conversational driving assistant. Dolphins is adept at processing multimodal inputs comprising video (or image) data, text instructions, and historical control signals to generate informed outputs corresponding to the provided instructions. Building upon the open-sourced pretrained Vision-Language Model, OpenFlamingo, we first enhance Dolphins's reasoning capabilities through an innovative Grounded Chain of Thought (GCoT) process. Then we tailored Dolphins to the driving domain by constructing driving-specific instruction data and conducting instruction tuning. Through the utilization of the BDD-X dataset, we designed and consolidated four distinct AV tasks into Dolphins to foster a holistic understanding of intricate driving scenarios. As a result, the distinctive features of Dolphins are characterized into two dimensions: (1) the ability to provide a comprehensive understanding of complex and long-tailed open-world driving scenarios and solve a spectrum of AV tasks, and (2) the emergence of human-like capabilities including gradient-free instant adaptation via in-context learning and error recovery via reflection.
2023-12-04T00:00:00
2312.00330
StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter
[ "Gongye Liu", "Menghan Xia", "Yong Zhang", "Haoxin Chen", "Jinbo Xing", "Xintao Wang", "Yujiu Yang", "Ying Shan" ]
https://github.com/GongyeLiu/StyleCrafter
Text-to-video (T2V) models have shown remarkable capabilities in generating diverse videos. However, they struggle to produce user-desired stylized videos due to (i) text's inherent clumsiness in expressing specific styles and (ii) the generally degraded style fidelity. To address these challenges, we introduce StyleCrafter, a generic method that enhances pre-trained T2V models with a style control adapter, enabling video generation in any style by providing a reference image. Considering the scarcity of stylized video datasets, we propose to first train a style control adapter using style-rich image datasets, then transfer the learned stylization ability to video generation through a tailor-made finetuning paradigm. To promote content-style disentanglement, we remove style descriptions from the text prompt and extract style information solely from the reference image using a decoupling learning strategy. Additionally, we design a scale-adaptive fusion module to balance the influences of text-based content features and image-based style features, which helps generalization across various text and style combinations. StyleCrafter efficiently generates high-quality stylized videos that align with the content of the texts and resemble the style of the reference images. Experiments demonstrate that our approach is more flexible and efficient than existing competitors.
2023-12-04T00:00:00
2312.00079
HiFi Tuner: High-Fidelity Subject-Driven Fine-Tuning for Diffusion Models
[ "Zhonghao Wang", "Wei Wei", "Yang Zhao", "Zhisheng Xiao", "Mark Hasegawa-Johnson", "Humphrey Shi", "Tingbo Hou" ]
This paper explores advancements in high-fidelity personalized image generation through the utilization of pre-trained text-to-image diffusion models. While previous approaches have made significant strides in generating versatile scenes based on text descriptions and a few input images, challenges persist in maintaining the subject fidelity within the generated images. In this work, we introduce an innovative algorithm named HiFi Tuner to enhance the appearance preservation of objects during personalized image generation. Our proposed method employs a parameter-efficient fine-tuning framework, comprising a denoising process and a pivotal inversion process. Key enhancements include the utilization of mask guidance, a novel parameter regularization technique, and the incorporation of step-wise subject representations to elevate the sample fidelity. Additionally, we propose a reference-guided generation approach that leverages the pivotal inversion of a reference image to mitigate unwanted subject variations and artifacts. We further extend our method to a novel image editing task: substituting the subject in an image through textual manipulations. Experimental evaluations conducted on the DreamBooth dataset using the Stable Diffusion model showcase promising results. Fine-tuning solely on textual embeddings improves CLIP-T score by 3.6 points and improves DINO score by 9.6 points over Textual Inversion. When fine-tuning all parameters, HiFi Tuner improves CLIP-T score by 1.2 points and improves DINO score by 1.2 points over DreamBooth, establishing a new state of the art.
2023-12-04T00:00:00
2312.00093
GraphDreamer: Compositional 3D Scene Synthesis from Scene Graphs
[ "Gege Gao", "Weiyang Liu", "Anpei Chen", "Andreas Geiger", "Bernhard Schölkopf" ]
https://github.com/GGGHSL/GraphDreamer
As pretrained text-to-image diffusion models become increasingly powerful, recent efforts have been made to distill knowledge from these text-to-image pretrained models for optimizing a text-guided 3D model. Most of the existing methods generate a holistic 3D model from a plain text input. This can be problematic when the text describes a complex scene with multiple objects, because the vectorized text embeddings are inherently unable to capture a complex description with multiple entities and relationships. Holistic 3D modeling of the entire scene further prevents accurate grounding of text entities and concepts. To address this limitation, we propose GraphDreamer, a novel framework to generate compositional 3D scenes from scene graphs, where objects are represented as nodes and their interactions as edges. By exploiting node and edge information in scene graphs, our method makes better use of the pretrained text-to-image diffusion model and is able to fully disentangle different objects without image-level supervision. To facilitate modeling of object-wise relationships, we use signed distance fields as representation and impose a constraint to avoid inter-penetration of objects. To avoid manual scene graph creation, we design a text prompt for ChatGPT to generate scene graphs based on text inputs. We conduct both qualitative and quantitative experiments to validate the effectiveness of GraphDreamer in generating high-fidelity compositional 3D scenes with disentangled object entities.
2023-12-04T00:00:00
2312.00752
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
[ "Albert Gu", "Tri Dao" ]
https://github.com/state-spaces/mamba
Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5times higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.
2023-12-04T00:00:00
2312.00777
VideoBooth: Diffusion-based Video Generation with Image Prompts
[ "Yuming Jiang", "Tianxing Wu", "Shuai Yang", "Chenyang Si", "Dahua Lin", "Yu Qiao", "Chen Change Loy", "Ziwei Liu" ]
Text-driven video generation witnesses rapid progress. However, merely using text prompts is not enough to depict the desired subject appearance that accurately aligns with users' intents, especially for customized content creation. In this paper, we study the task of video generation with image prompts, which provide more accurate and direct content control beyond the text prompts. Specifically, we propose a feed-forward framework VideoBooth, with two dedicated designs: 1) We propose to embed image prompts in a coarse-to-fine manner. Coarse visual embeddings from image encoder provide high-level encodings of image prompts, while fine visual embeddings from the proposed attention injection module provide multi-scale and detailed encoding of image prompts. These two complementary embeddings can faithfully capture the desired appearance. 2) In the attention injection module at fine level, multi-scale image prompts are fed into different cross-frame attention layers as additional keys and values. This extra spatial information refines the details in the first frame and then it is propagated to the remaining frames, which maintains temporal consistency. Extensive experiments demonstrate that VideoBooth achieves state-of-the-art performance in generating customized high-quality videos with subjects specified in image prompts. Notably, VideoBooth is a generalizable framework where a single model works for a wide range of image prompts with feed-forward pass.
2023-12-04T00:00:00
2312.00763
Beyond ChatBots: ExploreLLM for Structured Thoughts and Personalized Model Responses
[ "Xiao Ma", "Swaroop Mishra", "Ariel Liu", "Sophie Su", "Jilin Chen", "Chinmay Kulkarni", "Heng-Tze Cheng", "Quoc Le", "Ed Chi" ]
Large language model (LLM) powered chatbots are primarily text-based today, and impose a large interactional cognitive load, especially for exploratory or sensemaking tasks such as planning a trip or learning about a new city. Because the interaction is textual, users have little scaffolding in the way of structure, informational "scent", or ability to specify high-level preferences or goals. We introduce ExploreLLM that allows users to structure thoughts, help explore different options, navigate through the choices and recommendations, and to more easily steer models to generate more personalized responses. We conduct a user study and show that users find it helpful to use ExploreLLM for exploratory or planning tasks, because it provides a useful schema-like structure to the task, and guides users in planning. The study also suggests that users can more easily personalize responses with high-level preferences with ExploreLLM. Together, ExploreLLM points to a future where users interact with LLMs beyond the form of chatbots, and instead designed to support complex user tasks with a tighter integration between natural language and graphical user interfaces.
2023-12-04T00:00:00
2312.00589
Merlin:Empowering Multimodal LLMs with Foresight Minds
[ "En Yu", "Liang Zhao", "Yana Wei", "Jinrong Yang", "Dongming Wu", "Lingyu Kong", "Haoran Wei", "Tiancai Wang", "Zheng Ge", "Xiangyu Zhang", "Wenbing Tao" ]
Humans possess the remarkable ability to foresee the future to a certain extent based on present observations, a skill we term as foresight minds. However, this capability remains largely under explored within existing Multimodal Large Language Models (MLLMs), hindering their capacity to learn the fundamental principles of how things operate and the intentions behind the observed subjects. To address this issue, we introduce the integration of future modeling into the existing learning frameworks of MLLMs. By utilizing the subject trajectory, a highly structured representation of a consecutive frame sequence, as a learning objective, we aim to bridge the gap between the past and the future. We propose two innovative methods to empower MLLMs with foresight minds, Foresight Pre-Training (FPT) and Foresight Instruction-Tuning (FIT), which are inspired by the modern learning paradigm of LLMs. Specifically, FPT jointly training various tasks centered on trajectories, enabling MLLMs to learn how to attend and predict entire trajectories from a given initial observation. Then, FIT requires MLLMs to first predict trajectories of related objects and then reason about potential future events based on them. Aided by FPT and FIT, we build a novel and unified MLLM named Merlin that supports multi-images input and analysis about potential actions of multiple objects for the future reasoning. Experimental results show Merlin powerful foresight minds with impressive performance on both future reasoning and visual comprehension tasks.
2023-12-04T00:00:00
2312.00575
Instruction-tuning Aligns LLMs to the Human Brain
[ "Khai Loong Aw", "Syrielle Montariol", "Badr AlKhamissi", "Martin Schrimpf", "Antoine Bosselut" ]
Instruction-tuning is a widely adopted method of finetuning that enables large language models (LLMs) to generate output that more closely resembles human responses to natural language queries, in many cases leading to human-level performance on diverse testbeds. However, it remains unclear whether instruction-tuning truly makes LLMs more similar to how humans process language. We investigate the effect of instruction-tuning on LLM-human similarity in two ways: (1) brain alignment, the similarity of LLM internal representations to neural activity in the human language system, and (2) behavioral alignment, the similarity of LLM and human behavior on a reading task. We assess 25 vanilla and instruction-tuned LLMs across three datasets involving humans reading naturalistic stories and sentences. We discover that instruction-tuning generally enhances brain alignment by an average of 6%, but does not have a similar effect on behavioral alignment. To identify the factors underlying LLM-brain alignment, we compute correlations between the brain alignment of LLMs and various model properties, such as model size, various problem-solving abilities, and performance on tasks requiring world knowledge spanning various domains. Notably, we find a strong positive correlation between brain alignment and model size (r = 0.95), as well as performance on tasks requiring world knowledge (r = 0.81). Our results demonstrate that instruction-tuning LLMs improves both world knowledge representations and brain alignment, suggesting that mechanisms that encode world knowledge in LLMs also improve representational alignment to the human brain.
2023-12-04T00:00:00
2312.00164
Towards Accurate Differential Diagnosis with Large Language Models
[ "Daniel McDuff", "Mike Schaekermann", "Tao Tu", "Anil Palepu", "Amy Wang", "Jake Garrison", "Karan Singhal", "Yash Sharma", "Shekoofeh Azizi", "Kavita Kulkarni", "Le Hou", "Yong Cheng", "Yun Liu", "S Sara Mahdavi", "Sushant Prakash", "Anupam Pathak", "Christopher Semturs", "Shwetak Patel", "Dale R Webster", "Ewa Dominowska", "Juraj Gottweis", "Joelle Barral", "Katherine Chou", "Greg S Corrado", "Yossi Matias", "Jake Sunshine", "Alan Karthikesalingam", "Vivek Natarajan" ]
An accurate differential diagnosis (DDx) is a cornerstone of medical care, often reached through an iterative process of interpretation that combines clinical history, physical examination, investigations and procedures. Interactive interfaces powered by Large Language Models (LLMs) present new opportunities to both assist and automate aspects of this process. In this study, we introduce an LLM optimized for diagnostic reasoning, and evaluate its ability to generate a DDx alone or as an aid to clinicians. 20 clinicians evaluated 302 challenging, real-world medical cases sourced from the New England Journal of Medicine (NEJM) case reports. Each case report was read by two clinicians, who were randomized to one of two assistive conditions: either assistance from search engines and standard medical resources, or LLM assistance in addition to these tools. All clinicians provided a baseline, unassisted DDx prior to using the respective assistive tools. Our LLM for DDx exhibited standalone performance that exceeded that of unassisted clinicians (top-10 accuracy 59.1% vs 33.6%, [p = 0.04]). Comparing the two assisted study arms, the DDx quality score was higher for clinicians assisted by our LLM (top-10 accuracy 51.7%) compared to clinicians without its assistance (36.1%) (McNemar's Test: 45.7, p < 0.01) and clinicians with search (44.4%) (4.75, p = 0.03). Further, clinicians assisted by our LLM arrived at more comprehensive differential lists than those without its assistance. Our study suggests that our LLM for DDx has potential to improve clinicians' diagnostic reasoning and accuracy in challenging cases, meriting further real-world evaluation for its ability to empower physicians and widen patients' access to specialist-level expertise.
2023-12-04T00:00:00
2312.00109
Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering
[ "Tao Lu", "Mulin Yu", "Linning Xu", "Yuanbo Xiangli", "Limin Wang", "Dahua Lin", "Bo Dai" ]
Neural rendering methods have significantly advanced photo-realistic 3D scene rendering in various academic and industrial applications. The recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed combining the benefits of both primitive-based representations and volumetric representations. However, it often leads to heavily redundant Gaussians that try to fit every training view, neglecting the underlying scene geometry. Consequently, the resulting model becomes less robust to significant view changes, texture-less area and lighting effects. We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians, and predicts their attributes on-the-fly based on viewing direction and distance within the view frustum. Anchor growing and pruning strategies are developed based on the importance of neural Gaussians to reliably improve the scene coverage. We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering. We also demonstrates an enhanced capability to accommodate scenes with varying levels-of-detail and view-dependent observations, without sacrificing the rendering speed.
2023-12-04T00:00:00
2312.00252
PyNeRF: Pyramidal Neural Radiance Fields
[ "Haithem Turki", "Michael Zollhöfer", "Christian Richardt", "Deva Ramanan" ]
https://github.com/hturki/pynerf
Neural Radiance Fields (NeRFs) can be dramatically accelerated by spatial grid representations. However, they do not explicitly reason about scale and so introduce aliasing artifacts when reconstructing scenes captured at different camera distances. Mip-NeRF and its extensions propose scale-aware renderers that project volumetric frustums rather than point samples but such approaches rely on positional encodings that are not readily compatible with grid methods. We propose a simple modification to grid-based models by training model heads at different spatial grid resolutions. At render time, we simply use coarser grids to render samples that cover larger volumes. Our method can be easily applied to existing accelerated NeRF methods and significantly improves rendering quality (reducing error rates by 20-90% across synthetic and unbounded real-world scenes) while incurring minimal performance overhead (as each model head is quick to evaluate). Compared to Mip-NeRF, we reduce error rates by 20% while training over 60x faster.
2023-12-04T00:00:00
2312.00063
MoMask: Generative Masked Modeling of 3D Human Motions
[ "Chuan Guo", "Yuxuan Mu", "Muhammad Gohar Javed", "Sen Wang", "Li Cheng" ]
https://github.com/EricGuo5513/momask-codes
We introduce MoMask, a novel masked modeling framework for text-driven 3D human motion generation. In MoMask, a hierarchical quantization scheme is employed to represent human motion as multi-layer discrete motion tokens with high-fidelity details. Starting at the base layer, with a sequence of motion tokens obtained by vector quantization, the residual tokens of increasing orders are derived and stored at the subsequent layers of the hierarchy. This is consequently followed by two distinct bidirectional transformers. For the base-layer motion tokens, a Masked Transformer is designated to predict randomly masked motion tokens conditioned on text input at training stage. During generation (i.e. inference) stage, starting from an empty sequence, our Masked Transformer iteratively fills up the missing tokens; Subsequently, a Residual Transformer learns to progressively predict the next-layer tokens based on the results from current layer. Extensive experiments demonstrate that MoMask outperforms the state-of-art methods on the text-to-motion generation task, with an FID of 0.045 (vs e.g. 0.141 of T2M-GPT) on the HumanML3D dataset, and 0.228 (vs 0.514) on KIT-ML, respectively. MoMask can also be seamlessly applied in related tasks without further model fine-tuning, such as text-guided temporal inpainting.
2023-12-04T00:00:00
2312.00375
Text-Guided 3D Face Synthesis -- From Generation to Editing
[ "Yunjie Wu", "Yapeng Meng", "Zhipeng Hu", "Lincheng Li", "Haoqian Wu", "Kun Zhou", "Weiwei Xu", "Xin Yu" ]
Text-guided 3D face synthesis has achieved remarkable results by leveraging text-to-image (T2I) diffusion models. However, most existing works focus solely on the direct generation, ignoring the editing, restricting them from synthesizing customized 3D faces through iterative adjustments. In this paper, we propose a unified text-guided framework from face generation to editing. In the generation stage, we propose a geometry-texture decoupled generation to mitigate the loss of geometric details caused by coupling. Besides, decoupling enables us to utilize the generated geometry as a condition for texture generation, yielding highly geometry-texture aligned results. We further employ a fine-tuned texture diffusion model to enhance texture quality in both RGB and YUV space. In the editing stage, we first employ a pre-trained diffusion model to update facial geometry or texture based on the texts. To enable sequential editing, we introduce a UV domain consistency preservation regularization, preventing unintentional changes to irrelevant facial attributes. Besides, we propose a self-guided consistency weight strategy to improve editing efficacy while preserving consistency. Through comprehensive experiments, we showcase our method's superiority in face synthesis. Project page: https://faceg2e.github.io/.
2023-12-04T00:00:00
2312.00210
DREAM: Diffusion Rectification and Estimation-Adaptive Models
[ "Jinxin Zhou", "Tianyu Ding", "Tianyi Chen", "Jiachen Jiang", "Ilya Zharkov", "Zhihui Zhu", "Luming Liang" ]
We present DREAM, a novel training framework representing Diffusion Rectification and Estimation-Adaptive Models, requiring minimal code changes (just three lines) yet significantly enhancing the alignment of training with sampling in diffusion models. DREAM features two components: diffusion rectification, which adjusts training to reflect the sampling process, and estimation adaptation, which balances perception against distortion. When applied to image super-resolution (SR), DREAM adeptly navigates the tradeoff between minimizing distortion and preserving high image quality. Experiments demonstrate DREAM's superiority over standard diffusion-based SR methods, showing a 2 to 3times faster training convergence and a 10 to 20times reduction in necessary sampling steps to achieve comparable or superior results. We hope DREAM will inspire a rethinking of diffusion model training paradigms.
2023-12-04T00:00:00
2312.00085
X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation
[ "Yiwei Ma", "Yijun Fan", "Jiayi Ji", "Haowei Wang", "Xiaoshuai Sun", "Guannan Jiang", "Annan Shu", "Rongrong Ji" ]
https://github.com/xmu-xiaoma666/X-Dreamer
In recent times, automatic text-to-3D content creation has made significant progress, driven by the development of pretrained 2D diffusion models. Existing text-to-3D methods typically optimize the 3D representation to ensure that the rendered image aligns well with the given text, as evaluated by the pretrained 2D diffusion model. Nevertheless, a substantial domain gap exists between 2D images and 3D assets, primarily attributed to variations in camera-related attributes and the exclusive presence of foreground objects. Consequently, employing 2D diffusion models directly for optimizing 3D representations may lead to suboptimal outcomes. To address this issue, we present X-Dreamer, a novel approach for high-quality text-to-3D content creation that effectively bridges the gap between text-to-2D and text-to-3D synthesis. The key components of X-Dreamer are two innovative designs: Camera-Guided Low-Rank Adaptation (CG-LoRA) and Attention-Mask Alignment (AMA) Loss. CG-LoRA dynamically incorporates camera information into the pretrained diffusion models by employing camera-dependent generation for trainable parameters. This integration enhances the alignment between the generated 3D assets and the camera's perspective. AMA loss guides the attention map of the pretrained diffusion model using the binary mask of the 3D object, prioritizing the creation of the foreground object. This module ensures that the model focuses on generating accurate and detailed foreground objects. Extensive evaluations demonstrate the effectiveness of our proposed method compared to existing text-to-3D approaches. Our project webpage: https://xmuxiaoma666.github.io/Projects/X-Dreamer .
2023-12-04T00:00:00
2312.00451
FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting
[ "Zehao Zhu", "Zhiwen Fan", "Yifan Jiang", "Zhangyang Wang" ]
Novel view synthesis from limited observations remains an important and persistent task. However, high efficiency in existing NeRF-based few-shot view synthesis is often compromised to obtain an accurate 3D representation. To address this challenge, we propose a few-shot view synthesis framework based on 3D Gaussian Splatting that enables real-time and photo-realistic view synthesis with as few as three training views. The proposed method, dubbed FSGS, handles the extremely sparse initialized SfM points with a thoughtfully designed Gaussian Unpooling process. Our method iteratively distributes new Gaussians around the most representative locations, subsequently infilling local details in vacant areas. We also integrate a large-scale pre-trained monocular depth estimator within the Gaussians optimization process, leveraging online augmented views to guide the geometric optimization towards an optimal solution. Starting from sparse points observed from limited input viewpoints, our FSGS can accurately grow into unseen regions, comprehensively covering the scene and boosting the rendering quality of novel views. Overall, FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets, including LLFF, Mip-NeRF360, and Blender. Project website: https://zehaozhu.github.io/FSGS/.
2023-12-05T00:00:00
2312.02120
Magicoder: Source Code Is All You Need
[ "Yuxiang Wei", "Zhe Wang", "Jiawei Liu", "Yifeng Ding", "Lingming Zhang" ]
https://github.com/ise-uiuc/magicoder
We introduce Magicoder, a series of fully open-source (code, weights, and data) Large Language Models (LLMs) for code that significantly closes the gap with top code models while having no more than 7B parameters. Magicoder models are trained on 75K synthetic instruction data using OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets to generate high-quality instruction data for code. Our main motivation is to mitigate the inherent bias of the synthetic data generated by LLMs by empowering them with a wealth of open-source references for the production of more diverse, realistic, and controllable data. The orthogonality of OSS-Instruct and other data generation methods like Evol-Instruct further enables us to build an enhanced MagicoderS. Both Magicoder and MagicoderS substantially outperform state-of-the-art code models with similar or even larger sizes on a wide range of coding benchmarks, including Python text-to-code generation, multilingual coding, and data-science program completion. Notably, MagicoderS-CL-7B based on CodeLlama even surpasses the prominent ChatGPT on HumanEval+ (66.5 vs. 65.9 in pass@1). Overall, OSS-Instruct opens a new direction for low-bias and high-quality instruction tuning using abundant open-source references.
2023-12-05T00:00:00
2312.00849
RLHF-V: Towards Trustworthy MLLMs via Behavior Alignment from Fine-grained Correctional Human Feedback
[ "Tianyu Yu", "Yuan Yao", "Haoye Zhang", "Taiwen He", "Yifeng Han", "Ganqu Cui", "Jinyi Hu", "Zhiyuan Liu", "Hai-Tao Zheng", "Maosong Sun", "Tat-Seng Chua" ]
https://github.com/RLHF-V/RLHF-V
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in multimodal understanding, reasoning, and interaction. However, existing MLLMs prevalently suffer from serious hallucination problems, generating text that is not factually grounded in associated images. The problem makes existing MLLMs untrustworthy and thus impractical in real-world (especially high-stakes) applications. To address the challenge, we present RLHF-V, which enhances MLLM trustworthiness via behavior alignment from fine-grained correctional human feedback. Specifically, RLHF-V collects human preference in the form of segment-level corrections on hallucinations, and performs dense direct preference optimization over the human feedback. Comprehensive experiments on five benchmarks in both automatic and human evaluation show that, RLHF-V can enable substantially more trustworthy MLLM behaviors with promising data and computation efficiency. Remarkably, using 1.4k annotated data samples, RLHF-V significantly reduces the hallucination rate of the base MLLM by 34.8%, outperforming the concurrent LLaVA-RLHF trained on 10k annotated data. The final model achieves state-of-the-art performance in trustworthiness among open-source MLLMs, and shows better robustness than GPT-4V in preventing hallucinations aroused from over-generalization. We open-source our code, model, and data at https://github.com/RLHF-V/RLHF-V.
2023-12-05T00:00:00
2312.01552
The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning
[ "Bill Yuchen Lin", "Abhilasha Ravichander", "Ximing Lu", "Nouha Dziri", "Melanie Sclar", "Khyathi Chandu", "Chandra Bhagavatula", "Yejin Choi" ]
The alignment tuning process of large language models (LLMs) typically involves instruction learning through supervised fine-tuning (SFT) and preference tuning via reinforcement learning from human feedback (RLHF). A recent study, LIMA (Zhou et al. 2023), shows that using merely 1K examples for SFT can achieve significant alignment performance as well, suggesting that the effect of alignment tuning might be "superficial." This raises questions about how exactly the alignment tuning transforms a base LLM. We analyze the effect of alignment tuning by examining the token distribution shift between base LLMs and their aligned counterpart. Our findings reveal that base LLMs and their alignment-tuned versions perform nearly identically in decoding on the majority of token positions. Most distribution shifts occur with stylistic tokens. These direct evidence strongly supports the Superficial Alignment Hypothesis suggested by LIMA. Based on these findings, we rethink the alignment of LLMs by posing the research question: how effectively can we align base LLMs without SFT or RLHF? To address this, we introduce a simple, tuning-free alignment method, URIAL. URIAL achieves effective alignment purely through in-context learning (ICL) with base LLMs, requiring as few as three constant stylistic examples and a system prompt. We conduct a fine-grained and interpretable evaluation on a diverse set of examples, named JUST-EVAL-INSTRUCT. Results demonstrate that base LLMs with URIAL can match or even surpass the performance of LLMs aligned with SFT or SFT+RLHF. We show that the gap between tuning-free and tuning-based alignment methods can be significantly reduced through strategic prompting and ICL. Our findings on the superficial nature of alignment tuning and results with URIAL suggest that deeper analysis and theoretical understanding of alignment is crucial to future LLM research.
2023-12-05T00:00:00
2312.02149
Generative Powers of Ten
[ "Xiaojuan Wang", "Janne Kontkanen", "Brian Curless", "Steve Seitz", "Ira Kemelmacher", "Ben Mildenhall", "Pratul Srinivasan", "Dor Verbin", "Aleksander Holynski" ]
We present a method that uses a text-to-image model to generate consistent content across multiple image scales, enabling extreme semantic zooms into a scene, e.g., ranging from a wide-angle landscape view of a forest to a macro shot of an insect sitting on one of the tree branches. We achieve this through a joint multi-scale diffusion sampling approach that encourages consistency across different scales while preserving the integrity of each individual sampling process. Since each generated scale is guided by a different text prompt, our method enables deeper levels of zoom than traditional super-resolution methods that may struggle to create new contextual structure at vastly different scales. We compare our method qualitatively with alternative techniques in image super-resolution and outpainting, and show that our method is most effective at generating consistent multi-scale content.
2023-12-05T00:00:00
2312.00869
Segment and Caption Anything
[ "Xiaoke Huang", "Jianfeng Wang", "Yansong Tang", "Zheng Zhang", "Han Hu", "Jiwen Lu", "Lijuan Wang", "Zicheng Liu" ]
https://github.com/xk-huang/segment-caption-anything
We propose a method to efficiently equip the Segment Anything Model (SAM) with the ability to generate regional captions. SAM presents strong generalizability to segment anything while is short for semantic understanding. By introducing a lightweight query-based feature mixer, we align the region-specific features with the embedding space of language models for later caption generation. As the number of trainable parameters is small (typically in the order of tens of millions), it costs less computation, less memory usage, and less communication bandwidth, resulting in both fast and scalable training. To address the scarcity problem of regional caption data, we propose to first pre-train our model on objection detection and segmentation tasks. We call this step weak supervision pretraining since the pre-training data only contains category names instead of full-sentence descriptions. The weak supervision pretraining allows us to leverage many publicly available object detection and segmentation datasets. We conduct extensive experiments to demonstrate the superiority of our method and validate each design choice. This work serves as a stepping stone towards scaling up regional captioning data and sheds light on exploring efficient ways to augment SAM with regional semantics. The project page, along with the associated code, can be accessed via the following https://xk-huang.github.io/segment-caption-anything/.
2023-12-05T00:00:00
2312.01663
Customize your NeRF: Adaptive Source Driven 3D Scene Editing via Local-Global Iterative Training
[ "Runze He", "Shaofei Huang", "Xuecheng Nie", "Tianrui Hui", "Luoqi Liu", "Jiao Dai", "Jizhong Han", "Guanbin Li", "Si Liu" ]
In this paper, we target the adaptive source driven 3D scene editing task by proposing a CustomNeRF model that unifies a text description or a reference image as the editing prompt. However, obtaining desired editing results conformed with the editing prompt is nontrivial since there exist two significant challenges, including accurate editing of only foreground regions and multi-view consistency given a single-view reference image. To tackle the first challenge, we propose a Local-Global Iterative Editing (LGIE) training scheme that alternates between foreground region editing and full-image editing, aimed at foreground-only manipulation while preserving the background. For the second challenge, we also design a class-guided regularization that exploits class priors within the generation model to alleviate the inconsistency problem among different views in image-driven editing. Extensive experiments show that our CustomNeRF produces precise editing results under various real scenes for both text- and image-driven settings.
2023-12-05T00:00:00
2312.01531
SANeRF-HQ: Segment Anything for NeRF in High Quality
[ "Yichen Liu", "Benran Hu", "Chi-Keung Tang", "Yu-Wing Tai" ]
Recently, the Segment Anything Model (SAM) has showcased remarkable capabilities of zero-shot segmentation, while NeRF (Neural Radiance Fields) has gained popularity as a method for various 3D problems beyond novel view synthesis. Though there exist initial attempts to incorporate these two methods into 3D segmentation, they face the challenge of accurately and consistently segmenting objects in complex scenarios. In this paper, we introduce the Segment Anything for NeRF in High Quality (SANeRF-HQ) to achieve high quality 3D segmentation of any object in a given scene. SANeRF-HQ utilizes SAM for open-world object segmentation guided by user-supplied prompts, while leveraging NeRF to aggregate information from different viewpoints. To overcome the aforementioned challenges, we employ density field and RGB similarity to enhance the accuracy of segmentation boundary during the aggregation. Emphasizing on segmentation accuracy, we evaluate our method quantitatively on multiple NeRF datasets where high-quality ground-truths are available or manually annotated. SANeRF-HQ shows a significant quality improvement over previous state-of-the-art methods in NeRF object segmentation, provides higher flexibility for object localization, and enables more consistent object segmentation across multiple views. Additional information can be found at https://lyclyc52.github.io/SANeRF-HQ/.
2023-12-05T00:00:00
2312.01407
VideoRF: Rendering Dynamic Radiance Fields as 2D Feature Video Streams
[ "Liao Wang", "Kaixin Yao", "Chengcheng Guo", "Zhirui Zhang", "Qiang Hu", "Jingyi Yu", "Lan Xu", "Minye Wu" ]
Neural Radiance Fields (NeRFs) excel in photorealistically rendering static scenes. However, rendering dynamic, long-duration radiance fields on ubiquitous devices remains challenging, due to data storage and computational constraints. In this paper, we introduce VideoRF, the first approach to enable real-time streaming and rendering of dynamic radiance fields on mobile platforms. At the core is a serialized 2D feature image stream representing the 4D radiance field all in one. We introduce a tailored training scheme directly applied to this 2D domain to impose the temporal and spatial redundancy of the feature image stream. By leveraging the redundancy, we show that the feature image stream can be efficiently compressed by 2D video codecs, which allows us to exploit video hardware accelerators to achieve real-time decoding. On the other hand, based on the feature image stream, we propose a novel rendering pipeline for VideoRF, which has specialized space mappings to query radiance properties efficiently. Paired with a deferred shading model, VideoRF has the capability of real-time rendering on mobile devices thanks to its efficiency. We have developed a real-time interactive player that enables online streaming and rendering of dynamic scenes, offering a seamless and immersive free-viewpoint experience across a range of devices, from desktops to mobile phones.
2023-12-05T00:00:00
2312.02155
GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis
[ "Shunyuan Zheng", "Boyao Zhou", "Ruizhi Shao", "Boning Liu", "Shengping Zhang", "Liqiang Nie", "Yebin Liu" ]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner. The proposed method enables 2K-resolution rendering under a sparse-view camera setting. Unlike the original Gaussian Splatting or neural implicit rendering methods that necessitate per-subject optimizations, we introduce Gaussian parameter maps defined on the source views and regress directly Gaussian Splatting properties for instant novel view synthesis without any fine-tuning or optimization. To this end, we train our Gaussian parameter regression module on a large amount of human scan data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable and experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
2023-12-05T00:00:00
2312.02147
Rejuvenating image-GPT as Strong Visual Representation Learners
[ "Sucheng Ren", "Zeyu Wang", "Hongru Zhu", "Junfei Xiao", "Alan Yuille", "Cihang Xie" ]
https://github.com/OliverRensu/D-iGPT{https:
This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement of D-iGPT is its compelling performance on the ImageNet-1K dataset -- by training on publicly available datasets, D-iGPT achieves 89.5\% top-1 accuracy with a vanilla ViT-Large model. This model also shows strong generalization on the downstream task and robustness on out-of-distribution samples. Code is avaiable at https://github.com/OliverRensu/D-iGPT{https://github.com/OliverRensu/D-iGPT}.
2023-12-05T00:00:00
2312.00886
Nash Learning from Human Feedback
[ "Rémi Munos", "Michal Valko", "Daniele Calandriello", "Mohammad Gheshlaghi Azar", "Mark Rowland", "Daniel Guo", "Yunhao Tang", "Matthieu Geist", "Thomas Mésnard", "Andrea Michi", "Marco Selvi", "Sertan Girgin", "Nikola Momchev", "Olivier Bachem", "Daniel J. Mankowitz", "Doina Precup", "Bilal Piot" ]
Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human preferences. Typically, RLHF involves the initial step of learning a reward model from human feedback, often expressed as preferences between pairs of text generations produced by a pre-trained LLM. Subsequently, the LLM's policy is fine-tuned by optimizing it to maximize the reward model through a reinforcement learning algorithm. However, an inherent limitation of current reward models is their inability to fully represent the richness of human preferences and their dependency on the sampling distribution. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a preference model, which is conditioned on two inputs given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. To demonstrate the effectiveness of our approach, we present experimental results involving the fine-tuning of a LLM for a text summarization task. We believe NLHF offers a compelling avenue for preference learning and policy optimization with the potential of advancing the field of aligning LLMs with human preferences.
2023-12-05T00:00:00
2312.02142
Object Recognition as Next Token Prediction
[ "Kaiyu Yue", "Bor-Chun Chen", "Jonas Geiping", "Hengduo Li", "Tom Goldstein", "Ser-Nam Lim" ]
https://github.com/kaiyuyue/nxtp
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
2023-12-05T00:00:00
2312.01532
Using Large Language Models to Accelerate Communication for Users with Severe Motor Impairments
[ "Shanqing Cai", "Subhashini Venugopalan", "Katie Seaver", "Xiang Xiao", "Katrin Tomanek", "Sri Jalasutram", "Meredith Ringel Morris", "Shaun Kane", "Ajit Narayanan", "Robert L. MacDonald", "Emily Kornman", "Daniel Vance", "Blair Casey", "Steve M. Gleason", "Philip Q. Nelson", "Michael P. Brenner" ]
Finding ways to accelerate text input for individuals with profound motor impairments has been a long-standing area of research. Closing the speed gap for augmentative and alternative communication (AAC) devices such as eye-tracking keyboards is important for improving the quality of life for such individuals. Recent advances in neural networks of natural language pose new opportunities for re-thinking strategies and user interfaces for enhanced text-entry for AAC users. In this paper, we present SpeakFaster, consisting of large language models (LLMs) and a co-designed user interface for text entry in a highly-abbreviated form, allowing saving 57% more motor actions than traditional predictive keyboards in offline simulation. A pilot study with 19 non-AAC participants typing on a mobile device by hand demonstrated gains in motor savings in line with the offline simulation, while introducing relatively small effects on overall typing speed. Lab and field testing on two eye-gaze typing users with amyotrophic lateral sclerosis (ALS) demonstrated text-entry rates 29-60% faster than traditional baselines, due to significant saving of expensive keystrokes achieved through phrase and word predictions from context-aware LLMs. These findings provide a strong foundation for further exploration of substantially-accelerated text communication for motor-impaired users and demonstrate a direction for applying LLMs to text-based user interfaces.
2023-12-05T00:00:00
2312.01279
TextGenSHAP: Scalable Post-hoc Explanations in Text Generation with Long Documents
[ "James Enouen", "Hootan Nakhost", "Sayna Ebrahimi", "Sercan O Arik", "Yan Liu", "Tomas Pfister" ]
Large language models (LLMs) have attracted huge interest in practical applications given their increasingly accurate responses and coherent reasoning abilities. Given their nature as black-boxes using complex reasoning processes on their inputs, it is inevitable that the demand for scalable and faithful explanations for LLMs' generated content will continue to grow. There have been major developments in the explainability of neural network models over the past decade. Among them, post-hoc explainability methods, especially Shapley values, have proven effective for interpreting deep learning models. However, there are major challenges in scaling up Shapley values for LLMs, particularly when dealing with long input contexts containing thousands of tokens and autoregressively generated output sequences. Furthermore, it is often unclear how to effectively utilize generated explanations to improve the performance of LLMs. In this paper, we introduce TextGenSHAP, an efficient post-hoc explanation method incorporating LM-specific techniques. We demonstrate that this leads to significant increases in speed compared to conventional Shapley value computations, reducing processing times from hours to minutes for token-level explanations, and to just seconds for document-level explanations. In addition, we demonstrate how real-time Shapley values can be utilized in two important scenarios, providing better understanding of long-document question answering by localizing important words and sentences; and improving existing document retrieval systems through enhancing the accuracy of selected passages and ultimately the final responses.
2023-12-05T00:00:00
2312.00845
VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models
[ "Hyeonho Jeong", "Geon Yeong Park", "Jong Chul Ye" ]
Text-to-video diffusion models have advanced video generation significantly. However, customizing these models to generate videos with tailored motions presents a substantial challenge. In specific, they encounter hurdles in (a) accurately reproducing motion from a target video, and (b) creating diverse visual variations. For example, straightforward extensions of static image customization methods to video often lead to intricate entanglements of appearance and motion data. To tackle this, here we present the Video Motion Customization (VMC) framework, a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models. Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference. The diffusion process then preserves low-frequency motion trajectories while mitigating high-frequency motion-unrelated noise in image space. We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts. Our codes, data and the project demo can be found at https://video-motion-customization.github.io
2023-12-05T00:00:00
2312.02139
DiffiT: Diffusion Vision Transformers for Image Generation
[ "Ali Hatamizadeh", "Jiaming Song", "Guilin Liu", "Jan Kautz", "Arash Vahdat" ]
https://github.com/NVlabs/DiffiT
Diffusion models with their powerful expressivity and high sample quality have enabled many new applications and use-cases in various domains. For sample generation, these models rely on a denoising neural network that generates images by iterative denoising. Yet, the role of denoising network architecture is not well-studied with most efforts relying on convolutional residual U-Nets. In this paper, we study the effectiveness of vision transformers in diffusion-based generative learning. Specifically, we propose a new model, denoted as Diffusion Vision Transformers (DiffiT), which consists of a hybrid hierarchical architecture with a U-shaped encoder and decoder. We introduce a novel time-dependent self-attention module that allows attention layers to adapt their behavior at different stages of the denoising process in an efficient manner. We also introduce latent DiffiT which consists of transformer model with the proposed self-attention layers, for high-resolution image generation. Our results show that DiffiT is surprisingly effective in generating high-fidelity images, and it achieves state-of-the-art (SOTA) benchmarks on a variety of class-conditional and unconditional synthesis tasks. In the latent space, DiffiT achieves a new SOTA FID score of 1.73 on ImageNet-256 dataset. Repository: https://github.com/NVlabs/DiffiT
2023-12-05T00:00:00
2312.02133
Style Aligned Image Generation via Shared Attention
[ "Amir Hertz", "Andrey Voynov", "Shlomi Fruchter", "Daniel Cohen-Or" ]
Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.
2023-12-05T00:00:00
2312.02116
GIVT: Generative Infinite-Vocabulary Transformers
[ "Michael Tschannen", "Cian Eastwood", "Fabian Mentzer" ]
We introduce generative infinite-vocabulary transformers (GIVT) which generate vector sequences with real-valued entries, instead of discrete tokens from a finite vocabulary. To this end, we propose two surprisingly simple modifications to decoder-only transformers: 1) at the input, we replace the finite-vocabulary lookup table with a linear projection of the input vectors; and 2) at the output, we replace the logits prediction (usually mapped to a categorical distribution) with the parameters of a multivariate Gaussian mixture model. Inspired by the image-generation paradigm of VQ-GAN and MaskGIT, where transformers are used to model the discrete latent sequences of a VQ-VAE, we use GIVT to model the unquantized real-valued latent sequences of a VAE. When applying GIVT to class-conditional image generation with iterative masked modeling, we show competitive results with MaskGIT, while our approach outperforms both VQ-GAN and MaskGIT when using it for causal modeling. Finally, we obtain competitive results outside of image generation when applying our approach to panoptic segmentation and depth estimation with a VAE-based variant of the UViM framework.
2023-12-05T00:00:00
2312.01409
Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models
[ "Shengqu Cai", "Duygu Ceylan", "Matheus Gadelha", "Chun-Hao Paul Huang", "Tuanfeng Yang Wang", "Gordon Wetzstein" ]
Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos, however, is a tedious manual process, which can be automated by emerging text-to-video diffusion models. Despite great promise, video diffusion models are difficult to control, hindering a user to apply their own creativity rather than amplifying it. To address this challenge, we present a novel approach that combines the controllability of dynamic 3D meshes with the expressivity and editability of emerging diffusion models. For this purpose, our approach takes an animated, low-fidelity rendered mesh as input and injects the ground truth correspondence information obtained from the dynamic mesh into various stages of a pre-trained text-to-image generation model to output high-quality and temporally consistent frames. We demonstrate our approach on various examples where motion can be obtained by animating rigged assets or changing the camera path.
2023-12-05T00:00:00
2312.02135
Fast View Synthesis of Casual Videos
[ "Yao-Chih Lee", "Zhoutong Zhang", "Kevin Blackburn-Matzen", "Simon Niklaus", "Jianming Zhang", "Jia-Bin Huang", "Feng Liu" ]
Novel view synthesis from an in-the-wild video is difficult due to challenges like scene dynamics and lack of parallax. While existing methods have shown promising results with implicit neural radiance fields, they are slow to train and render. This paper revisits explicit video representations to synthesize high-quality novel views from a monocular video efficiently. We treat static and dynamic video content separately. Specifically, we build a global static scene model using an extended plane-based scene representation to synthesize temporally coherent novel video. Our plane-based scene representation is augmented with spherical harmonics and displacement maps to capture view-dependent effects and model non-planar complex surface geometry. We opt to represent the dynamic content as per-frame point clouds for efficiency. While such representations are inconsistency-prone, minor temporal inconsistencies are perceptually masked due to motion. We develop a method to quickly estimate such a hybrid video representation and render novel views in real time. Our experiments show that our method can render high-quality novel views from an in-the-wild video with comparable quality to state-of-the-art methods while being 100x faster in training and enabling real-time rendering.
2023-12-05T00:00:00
2312.00860
Segment Any 3D Gaussians
[ "Jiazhong Cen", "Jiemin Fang", "Chen Yang", "Lingxi Xie", "Xiaopeng Zhang", "Wei Shen", "Qi Tian" ]
Interactive 3D segmentation in radiance fields is an appealing task since its importance in 3D scene understanding and manipulation. However, existing methods face challenges in either achieving fine-grained, multi-granularity segmentation or contending with substantial computational overhead, inhibiting real-time interaction. In this paper, we introduce Segment Any 3D GAussians (SAGA), a novel 3D interactive segmentation approach that seamlessly blends a 2D segmentation foundation model with 3D Gaussian Splatting (3DGS), a recent breakthrough of radiance fields. SAGA efficiently embeds multi-granularity 2D segmentation results generated by the segmentation foundation model into 3D Gaussian point features through well-designed contrastive training. Evaluation on existing benchmarks demonstrates that SAGA can achieve competitive performance with state-of-the-art methods. Moreover, SAGA achieves multi-granularity segmentation and accommodates various prompts, including points, scribbles, and 2D masks. Notably, SAGA can finish the 3D segmentation within milliseconds, achieving nearly 1000x acceleration compared to previous SOTA. The project page is at https://jumpat.github.io/SAGA.
2023-12-05T00:00:00
2312.00858
DeepCache: Accelerating Diffusion Models for Free
[ "Xinyin Ma", "Gongfan Fang", "Xinchao Wang" ]
https://github.com/horseee/DeepCache
Diffusion models have recently gained unprecedented attention in the field of image synthesis due to their remarkable generative capabilities. Notwithstanding their prowess, these models often incur substantial computational costs, primarily attributed to the sequential denoising process and cumbersome model size. Traditional methods for compressing diffusion models typically involve extensive retraining, presenting cost and feasibility challenges. In this paper, we introduce DeepCache, a novel training-free paradigm that accelerates diffusion models from the perspective of model architecture. DeepCache capitalizes on the inherent temporal redundancy observed in the sequential denoising steps of diffusion models, which caches and retrieves features across adjacent denoising stages, thereby curtailing redundant computations. Utilizing the property of the U-Net, we reuse the high-level features while updating the low-level features in a very cheap way. This innovative strategy, in turn, enables a speedup factor of 2.3times for Stable Diffusion v1.5 with only a 0.05 decline in CLIP Score, and 4.1times for LDM-4-G with a slight decrease of 0.22 in FID on ImageNet. Our experiments also demonstrate DeepCache's superiority over existing pruning and distillation methods that necessitate retraining and its compatibility with current sampling techniques. Furthermore, we find that under the same throughput, DeepCache effectively achieves comparable or even marginally improved results with DDIM or PLMS. The code is available at https://github.com/horseee/DeepCache
2023-12-05T00:00:00
2312.02087
VideoSwap: Customized Video Subject Swapping with Interactive Semantic Point Correspondence
[ "Yuchao Gu", "Yipin Zhou", "Bichen Wu", "Licheng Yu", "Jia-Wei Liu", "Rui Zhao", "Jay Zhangjie Wu", "David Junhao Zhang", "Mike Zheng Shou", "Kevin Tang" ]
Current diffusion-based video editing primarily focuses on structure-preserved editing by utilizing various dense correspondences to ensure temporal consistency and motion alignment. However, these approaches are often ineffective when the target edit involves a shape change. To embark on video editing with shape change, we explore customized video subject swapping in this work, where we aim to replace the main subject in a source video with a target subject having a distinct identity and potentially different shape. In contrast to previous methods that rely on dense correspondences, we introduce the VideoSwap framework that exploits semantic point correspondences, inspired by our observation that only a small number of semantic points are necessary to align the subject's motion trajectory and modify its shape. We also introduce various user-point interactions (\eg, removing points and dragging points) to address various semantic point correspondence. Extensive experiments demonstrate state-of-the-art video subject swapping results across a variety of real-world videos.
2023-12-06T00:00:00
2312.02663
FaceStudio: Put Your Face Everywhere in Seconds
[ "Yuxuan Yan", "Chi Zhang", "Rui Wang", "Pei Cheng", "Gang Yu", "Bin Fu" ]
https://github.com/xyynafc/FaceStudio
This study investigates identity-preserving image synthesis, an intriguing task in image generation that seeks to maintain a subject's identity while adding a personalized, stylistic touch. Traditional methods, such as Textual Inversion and DreamBooth, have made strides in custom image creation, but they come with significant drawbacks. These include the need for extensive resources and time for fine-tuning, as well as the requirement for multiple reference images. To overcome these challenges, our research introduces a novel approach to identity-preserving synthesis, with a particular focus on human images. Our model leverages a direct feed-forward mechanism, circumventing the need for intensive fine-tuning, thereby facilitating quick and efficient image generation. Central to our innovation is a hybrid guidance framework, which combines stylized images, facial images, and textual prompts to guide the image generation process. This unique combination enables our model to produce a variety of applications, such as artistic portraits and identity-blended images. Our experimental results, including both qualitative and quantitative evaluations, demonstrate the superiority of our method over existing baseline models and previous works, particularly in its remarkable efficiency and ability to preserve the subject's identity with high fidelity.
2023-12-06T00:00:00
2312.02238
X-Adapter: Adding Universal Compatibility of Plugins for Upgraded Diffusion Model
[ "Lingmin Ran", "Xiaodong Cun", "JiaWei Liu", "Rui Zhao", "Song Zijie", "Xintao Wang", "Jussi Keppo", "Mike Zheng Shou" ]
We introduce X-Adapter, a universal upgrader to enable the pretrained plug-and-play modules (e.g., ControlNet, LoRA) to work directly with the upgraded text-to-image diffusion model (e.g., SDXL) without further retraining. We achieve this goal by training an additional network to control the frozen upgraded model with the new text-image data pairs. In detail, X-Adapter keeps a frozen copy of the old model to preserve the connectors of different plugins. Additionally, X-Adapter adds trainable mapping layers that bridge the decoders from models of different versions for feature remapping. The remapped features will be used as guidance for the upgraded model. To enhance the guidance ability of X-Adapter, we employ a null-text training strategy for the upgraded model. After training, we also introduce a two-stage denoising strategy to align the initial latents of X-Adapter and the upgraded model. Thanks to our strategies, X-Adapter demonstrates universal compatibility with various plugins and also enables plugins of different versions to work together, thereby expanding the functionalities of diffusion community. To verify the effectiveness of the proposed method, we conduct extensive experiments and the results show that X-Adapter may facilitate wider application in the upgraded foundational diffusion model.
2023-12-06T00:00:00
2312.02974
Describing Differences in Image Sets with Natural Language
[ "Lisa Dunlap", "Yuhui Zhang", "Xiaohan Wang", "Ruiqi Zhong", "Trevor Darrell", "Jacob Steinhardt", "Joseph E. Gonzalez", "Serena Yeung-Levy" ]
How do two sets of images differ? Discerning set-level differences is crucial for understanding model behaviors and analyzing datasets, yet manually sifting through thousands of images is impractical. To aid in this discovery process, we explore the task of automatically describing the differences between two sets of images, which we term Set Difference Captioning. This task takes in image sets D_A and D_B, and outputs a description that is more often true on D_A than D_B. We outline a two-stage approach that first proposes candidate difference descriptions from image sets and then re-ranks the candidates by checking how well they can differentiate the two sets. We introduce VisDiff, which first captions the images and prompts a language model to propose candidate descriptions, then re-ranks these descriptions using CLIP. To evaluate VisDiff, we collect VisDiffBench, a dataset with 187 paired image sets with ground truth difference descriptions. We apply VisDiff to various domains, such as comparing datasets (e.g., ImageNet vs. ImageNetV2), comparing classification models (e.g., zero-shot CLIP vs. supervised ResNet), summarizing model failure modes (supervised ResNet), characterizing differences between generative models (e.g., StableDiffusionV1 and V2), and discovering what makes images memorable. Using VisDiff, we are able to find interesting and previously unknown differences in datasets and models, demonstrating its utility in revealing nuanced insights.
2023-12-06T00:00:00
2312.02928
LivePhoto: Real Image Animation with Text-guided Motion Control
[ "Xi Chen", "Zhiheng Liu", "Mengting Chen", "Yutong Feng", "Yu Liu", "Yujun Shen", "Hengshuang Zhao" ]
Despite the recent progress in text-to-video generation, existing studies usually overlook the issue that only spatial contents but not temporal motions in synthesized videos are under the control of text. Towards such a challenge, this work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions. We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input. We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions. In particular, considering the facts that (1) text can only describe motions roughly (e.g., regardless of the moving speed) and (2) text may include both content and motion descriptions, we introduce a motion intensity estimation module as well as a text re-weighting module to reduce the ambiguity of text-to-motion mapping. Empirical evidence suggests that our approach is capable of well decoding motion-related textual instructions into videos, such as actions, camera movements, or even conjuring new contents from thin air (e.g., pouring water into an empty glass). Interestingly, thanks to the proposed intensity learning mechanism, our system offers users an additional control signal (i.e., the motion intensity) besides text for video customization.
2023-12-06T00:00:00
2312.02919
Fine-grained Controllable Video Generation via Object Appearance and Context
[ "Hsin-Ping Huang", "Yu-Chuan Su", "Deqing Sun", "Lu Jiang", "Xuhui Jia", "Yukun Zhu", "Ming-Hsuan Yang" ]
Text-to-video generation has shown promising results. However, by taking only natural languages as input, users often face difficulties in providing detailed information to precisely control the model's output. In this work, we propose fine-grained controllable video generation (FACTOR) to achieve detailed control. Specifically, FACTOR aims to control objects' appearances and context, including their location and category, in conjunction with the text prompt. To achieve detailed control, we propose a unified framework to jointly inject control signals into the existing text-to-video model. Our model consists of a joint encoder and adaptive cross-attention layers. By optimizing the encoder and the inserted layer, we adapt the model to generate videos that are aligned with both text prompts and fine-grained control. Compared to existing methods relying on dense control signals such as edge maps, we provide a more intuitive and user-friendly interface to allow object-level fine-grained control. Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users. Extensive experiments on standard benchmark datasets and user-provided inputs validate that our model obtains a 70% improvement in controllability metrics over competitive baselines.
2023-12-06T00:00:00
2312.02980
GPT4Point: A Unified Framework for Point-Language Understanding and Generation
[ "Zhangyang Qi", "Ye Fang", "Zeyi Sun", "Xiaoyang Wu", "Tong Wu", "Jiaqi Wang", "Dahua Lin", "Hengshuang Zhao" ]
Multimodal Large Language Models (MLLMs) have excelled in 2D image-text comprehension and image generation, but their understanding of the 3D world is notably deficient, limiting progress in 3D language understanding and generation. To solve this problem, we introduce GPT4Point, an innovative groundbreaking point-language multimodal model designed specifically for unified 3D object understanding and generation within the MLLM framework. GPT4Point as a powerful 3D MLLM seamlessly can execute a variety of point-text reference tasks such as point-cloud captioning and Q&A. Additionally, GPT4Point is equipped with advanced capabilities for controllable 3D generation, it can get high-quality results through a low-quality point-text feature maintaining the geometric shapes and colors. To support the expansive needs of 3D object-text pairs, we develop Pyramid-XL, a point-language dataset annotation engine. It constructs a large-scale database over 1M objects of varied text granularity levels from the Objaverse-XL dataset, essential for training GPT4Point. A comprehensive benchmark has been proposed to evaluate 3D point-language understanding capabilities. In extensive evaluations, GPT4Point has demonstrated superior performance in understanding and generation.
2023-12-06T00:00:00
2312.02179
Training Chain-of-Thought via Latent-Variable Inference
[ "Du Phan", "Matthew D. Hoffman", "David Dohan", "Sholto Douglas", "Tuan Anh Le", "Aaron Parisi", "Pavel Sountsov", "Charles Sutton", "Sharad Vikram", "Rif A. Saurous" ]
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a ``chain-of-thought'' (CoT) prompt. One can also improve LLMs' performance on a specific task by supervised fine-tuning, i.e., by using gradient ascent on some tunable parameters to maximize the average log-likelihood of correct answers from a labeled training set. Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers; these rationales are expensive to produce by hand. Instead, we propose a fine-tuning strategy that tries to maximize the marginal log-likelihood of generating a correct answer using CoT prompting, approximately averaging over all possible rationales. The core challenge is sampling from the posterior over rationales conditioned on the correct answer; we address it using a simple Markov-chain Monte Carlo (MCMC) expectation-maximization (EM) algorithm inspired by the self-taught reasoner (STaR), memoized wake-sleep, Markovian score climbing, and persistent contrastive divergence. This algorithm also admits a novel control-variate technique that drives the variance of our gradient estimates to zero as the model improves. Applying our technique to GSM8K and the tasks in BIG-Bench Hard, we find that this MCMC-EM fine-tuning technique typically improves the model's accuracy on held-out examples more than STaR or prompt-tuning with or without CoT.
2023-12-06T00:00:00
2312.02201
ImageDream: Image-Prompt Multi-view Diffusion for 3D Generation
[ "Peng Wang", "Yichun Shi" ]
https://github.com/bytedance/ImageDream
We introduce "ImageDream," an innovative image-prompt, multi-view diffusion model for 3D object generation. ImageDream stands out for its ability to produce 3D models of higher quality compared to existing state-of-the-art, image-conditioned methods. Our approach utilizes a canonical camera coordination for the objects in images, improving visual geometry accuracy. The model is designed with various levels of control at each block inside the diffusion model based on the input image, where global control shapes the overall object layout and local control fine-tunes the image details. The effectiveness of ImageDream is demonstrated through extensive evaluations using a standard prompt list. For more information, visit our project page at https://Image-Dream.github.io.
2023-12-06T00:00:00
2312.02189
StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D
[ "Pengsheng Guo", "Hans Hao", "Adam Caccavale", "Zhongzheng Ren", "Edward Zhang", "Qi Shan", "Aditya Sankar", "Alexander G. Schwing", "Alex Colburn", "Fangchang Ma" ]
In the realm of text-to-3D generation, utilizing 2D diffusion models through score distillation sampling (SDS) frequently leads to issues such as blurred appearances and multi-faced geometry, primarily due to the intrinsically noisy nature of the SDS loss. Our analysis identifies the core of these challenges as the interaction among noise levels in the 2D diffusion process, the architecture of the diffusion network, and the 3D model representation. To overcome these limitations, we present StableDreamer, a methodology incorporating three advances. First, inspired by InstructNeRF2NeRF, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss. This finding provides a novel tool to debug SDS, which we use to show the impact of time-annealing noise levels on reducing multi-faced geometries. Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition. Based on this observation, StableDreamer introduces a two-stage training strategy that effectively combines these aspects, resulting in high-fidelity 3D models. Third, we adopt an anisotropic 3D Gaussians representation, replacing Neural Radiance Fields (NeRFs), to enhance the overall quality, reduce memory usage during training, and accelerate rendering speeds, and better capture semi-transparent objects. StableDreamer reduces multi-face geometries, generates fine details, and converges stably.
2023-12-06T00:00:00
2312.02949
LLaVA-Grounding: Grounded Visual Chat with Large Multimodal Models
[ "Hao Zhang", "Hongyang Li", "Feng Li", "Tianhe Ren", "Xueyan Zou", "Shilong Liu", "Shijia Huang", "Jianfeng Gao", "Lei Zhang", "Chunyuan Li", "Jianwei Yang" ]
https://github.com/UX-Decoder/LLaVA-Grounding
With the recent significant advancements in large multi-modal models (LMMs), the importance of their grounding capability in visual chat is increasingly recognized. Despite recent efforts to enable LMMs to support grounding, their capabilities for grounding and chat are usually separate, and their chat performance drops dramatically when asked to ground. The problem is the lack of a dataset for grounded visual chat (GVC). Existing grounding datasets only contain short captions. To address this issue, we have created GVC data that allows for the combination of grounding and chat capabilities. To better evaluate the GVC capabilities, we have introduced a benchmark called Grounding-Bench. Additionally, we have proposed a model design that can support GVC and various types of visual prompts by connecting segmentation models with language models. Experimental results demonstrate that our model outperforms other LMMs on Grounding-Bench. Furthermore, our model achieves competitive performance on classic grounding benchmarks like RefCOCO/+/g and Flickr30K Entities. Our code will be released at https://github.com/UX-Decoder/LLaVA-Grounding .
2023-12-06T00:00:00
2312.02931
WhisBERT: Multimodal Text-Audio Language Modeling on 100M Words
[ "Lukas Wolf", "Klemen Kotar", "Greta Tuckute", "Eghbal Hosseini", "Tamar Regev", "Ethan Wilcox", "Alex Warstadt" ]
Training on multiple modalities of input can augment the capabilities of a language model. Here, we ask whether such a training regime can improve the quality and efficiency of these systems as well. We focus on text--audio and introduce Whisbert, which is inspired by the text--image approach of FLAVA singh_flava_2022. In accordance with Babylm warstadt2023papers guidelines, we pretrain Whisbert on a dataset comprising only 100 million words plus their corresponding speech from the word-aligned version of the People's Speech dataset galvez_peoples_2021. To assess the impact of multimodality, we compare versions of the model that are trained on text only and on both audio and text simultaneously. We find that while Whisbert is able to perform well on multimodal masked modeling and surpasses the Babylm baselines in most benchmark tasks, it struggles to optimize its complex objective and outperform its text-only Whisbert baseline.
2023-12-06T00:00:00
2312.02969
Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models
[ "Xinyu Zhang", "Sebastian Hofstätter", "Patrick Lewis", "Raphael Tang", "Jimmy Lin" ]
Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.
2023-12-06T00:00:00
2312.02206
Axiomatic Preference Modeling for Longform Question Answering
[ "Corby Rosset", "Guoqing Zheng", "Victor Dibia", "Ahmed Awadallah", "Paul Bennett" ]
The remarkable abilities of large language models (LLMs) like GPT-4 partially stem from post-training processes like Reinforcement Learning from Human Feedback (RLHF) involving human preferences encoded in a reward model. However, these reward models (RMs) often lack direct knowledge of why, or under what principles, the preferences annotations were made. In this study, we identify principles that guide RMs to better align with human preferences, and then develop an axiomatic framework to generate a rich variety of preference signals to uphold them. We use these axiomatic signals to train a model for scoring answers to longform questions. Our approach yields a Preference Model with only about 220M parameters that agrees with gold human-annotated preference labels more often than GPT-4. The contributions of this work include: training a standalone preference model that can score human- and LLM-generated answers on the same scale; developing an axiomatic framework for generating training data pairs tailored to certain principles; and showing that a small amount of axiomatic signals can help small models outperform GPT-4 in preference scoring. We release our model on huggingface: https://huggingface.co/corbyrosset/axiomatic_preference_model
2023-12-06T00:00:00
2312.02696
Analyzing and Improving the Training Dynamics of Diffusion Models
[ "Tero Karras", "Miika Aittala", "Jaakko Lehtinen", "Janne Hellsten", "Timo Aila", "Samuli Laine" ]
Diffusion models currently dominate the field of data-driven image synthesis with their unparalleled scaling to large datasets. In this paper, we identify and rectify several causes for uneven and ineffective training in the popular ADM diffusion model architecture, without altering its high-level structure. Observing uncontrolled magnitude changes and imbalances in both the network activations and weights over the course of training, we redesign the network layers to preserve activation, weight, and update magnitudes on expectation. We find that systematic application of this philosophy eliminates the observed drifts and imbalances, resulting in considerably better networks at equal computational complexity. Our modifications improve the previous record FID of 2.41 in ImageNet-512 synthesis to 1.81, achieved using fast deterministic sampling. As an independent contribution, we present a method for setting the exponential moving average (EMA) parameters post-hoc, i.e., after completing the training run. This allows precise tuning of EMA length without the cost of performing several training runs, and reveals its surprising interactions with network architecture, training time, and guidance.
2023-12-06T00:00:00
2312.02432
Orthogonal Adaptation for Modular Customization of Diffusion Models
[ "Ryan Po", "Guandao Yang", "Kfir Aberman", "Gordon Wetzstein" ]
Customization techniques for text-to-image models have paved the way for a wide range of previously unattainable applications, enabling the generation of specific concepts across diverse contexts and styles. While existing methods facilitate high-fidelity customization for individual concepts or a limited, pre-defined set of them, they fall short of achieving scalability, where a single model can seamlessly render countless concepts. In this paper, we address a new problem called Modular Customization, with the goal of efficiently merging customized models that were fine-tuned independently for individual concepts. This allows the merged model to jointly synthesize concepts in one image without compromising fidelity or incurring any additional computational costs. To address this problem, we introduce Orthogonal Adaptation, a method designed to encourage the customized models, which do not have access to each other during fine-tuning, to have orthogonal residual weights. This ensures that during inference time, the customized models can be summed with minimal interference. Our proposed method is both simple and versatile, applicable to nearly all optimizable weights in the model architecture. Through an extensive set of quantitative and qualitative evaluations, our method consistently outperforms relevant baselines in terms of efficiency and identity preservation, demonstrating a significant leap toward scalable customization of diffusion models.
2023-12-06T00:00:00
2312.02216
DragVideo: Interactive Drag-style Video Editing
[ "Yufan Deng", "Ruida Wang", "Yuhao Zhang", "Yu-Wing Tai", "Chi-Keung Tang" ]
https://github.com/rickyskywalker/dragvideo-official
Editing visual content on videos remains a formidable challenge with two main issues: 1) direct and easy user control to produce 2) natural editing results without unsightly distortion and artifacts after changing shape, expression and layout. Inspired by DragGAN, a recent image-based drag-style editing technique, we address above issues by proposing DragVideo, where a similar drag-style user interaction is adopted to edit video content while maintaining temporal consistency. Empowered by recent diffusion models as in DragDiffusion, DragVideo contains the novel Drag-on-Video U-Net (DoVe) editing method, which optimizes diffused video latents generated by video U-Net to achieve the desired control. Specifically, we use Sample-specific LoRA fine-tuning and Mutual Self-Attention control to ensure faithful reconstruction of video from the DoVe method. We also present a series of testing examples for drag-style video editing and conduct extensive experiments across a wide array of challenging editing tasks, such as motion editing, skeleton editing, etc, underscoring DragVideo's versatility and generality. Our codes including the DragVideo web user interface will be released.
2023-12-06T00:00:00
2312.02772
Generating Fine-Grained Human Motions Using ChatGPT-Refined Descriptions
[ "Xu Shi", "Chuanchen Luo", "Junran Peng", "Hongwen Zhang", "Yunlian Sun" ]
Recently, significant progress has been made in text-based motion generation, enabling the generation of diverse and high-quality human motions that conform to textual descriptions. However, it remains challenging to generate fine-grained or stylized motions due to the lack of datasets annotated with detailed textual descriptions. By adopting a divide-and-conquer strategy, we propose a new framework named Fine-Grained Human Motion Diffusion Model (FG-MDM) for human motion generation. Specifically, we first parse previous vague textual annotation into fine-grained description of different body parts by leveraging a large language model (GPT-3.5). We then use these fine-grained descriptions to guide a transformer-based diffusion model. FG-MDM can generate fine-grained and stylized motions even outside of the distribution of the training data. Our experimental results demonstrate the superiority of FG-MDM over previous methods, especially the strong generalization capability. We will release our fine-grained textual annotations for HumanML3D and KIT.
2023-12-06T00:00:00
2312.02981
ReconFusion: 3D Reconstruction with Diffusion Priors
[ "Rundi Wu", "Ben Mildenhall", "Philipp Henzler", "Keunhong Park", "Ruiqi Gao", "Daniel Watson", "Pratul P. Srinivasan", "Dor Verbin", "Jonathan T. Barron", "Ben Poole", "Aleksander Holynski" ]
3D reconstruction methods such as Neural Radiance Fields (NeRFs) excel at rendering photorealistic novel views of complex scenes. However, recovering a high-quality NeRF typically requires tens to hundreds of input images, resulting in a time-consuming capture process. We present ReconFusion to reconstruct real-world scenes using only a few photos. Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets, which regularizes a NeRF-based 3D reconstruction pipeline at novel camera poses beyond those captured by the set of input images. Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions. We perform an extensive evaluation across various real-world datasets, including forward-facing and 360-degree scenes, demonstrating significant performance improvements over previous few-view NeRF reconstruction approaches.
2023-12-06T00:00:00
2312.02970
Alchemist: Parametric Control of Material Properties with Diffusion Models
[ "Prafull Sharma", "Varun Jampani", "Yuanzhen Li", "Xuhui Jia", "Dmitry Lagun", "Fredo Durand", "William T. Freeman", "Mark Matthews" ]
We propose a method to control material attributes of objects like roughness, metallic, albedo, and transparency in real images. Our method capitalizes on the generative prior of text-to-image models known for photorealism, employing a scalar value and instructions to alter low-level material properties. Addressing the lack of datasets with controlled material attributes, we generated an object-centric synthetic dataset with physically-based materials. Fine-tuning a modified pre-trained text-to-image model on this synthetic dataset enables us to edit material properties in real-world images while preserving all other attributes. We show the potential application of our model to material edited NeRFs.
2023-12-06T00:00:00
2312.02963
MVHumanNet: A Large-scale Dataset of Multi-view Daily Dressing Human Captures
[ "Zhangyang Xiong", "Chenghong Li", "Kenkun Liu", "Hongjie Liao", "Jianqiao Hu", "Junyi Zhu", "Shuliang Ning", "Lingteng Qiu", "Chongjie Wang", "Shijie Wang", "Shuguang Cui", "Xiaoguang Han" ]
In this era, the success of large language models and text-to-image models can be attributed to the driving force of large-scale datasets. However, in the realm of 3D vision, while remarkable progress has been made with models trained on large-scale synthetic and real-captured object data like Objaverse and MVImgNet, a similar level of progress has not been observed in the domain of human-centric tasks partially due to the lack of a large-scale human dataset. Existing datasets of high-fidelity 3D human capture continue to be mid-sized due to the significant challenges in acquiring large-scale high-quality 3D human data. To bridge this gap, we present MVHumanNet, a dataset that comprises multi-view human action sequences of 4,500 human identities. The primary focus of our work is on collecting human data that features a large number of diverse identities and everyday clothing using a multi-view human capture system, which facilitates easily scalable data collection. Our dataset contains 9,000 daily outfits, 60,000 motion sequences and 645 million frames with extensive annotations, including human masks, camera parameters, 2D and 3D keypoints, SMPL/SMPLX parameters, and corresponding textual descriptions. To explore the potential of MVHumanNet in various 2D and 3D visual tasks, we conducted pilot studies on view-consistent action recognition, human NeRF reconstruction, text-driven view-unconstrained human image generation, as well as 2D view-unconstrained human image and 3D avatar generation. Extensive experiments demonstrate the performance improvements and effective applications enabled by the scale provided by MVHumanNet. As the current largest-scale 3D human dataset, we hope that the release of MVHumanNet data with annotations will foster further innovations in the domain of 3D human-centric tasks at scale.
2023-12-12T00:00:00
2312.06550
LLM360: Towards Fully Transparent Open-Source LLMs
[ "Zhengzhong Liu", "Aurick Qiao", "Willie Neiswanger", "Hongyi Wang", "Bowen Tan", "Tianhua Tao", "Junbo Li", "Yuqi Wang", "Suqi Sun", "Omkar Pangarkar", "Richard Fan", "Yi Gu", "Victor Miller", "Yonghao Zhuang", "Guowei He", "Haonan Li", "Fajri Koto", "Liping Tang", "Nikhil Ranjan", "Zhiqiang Shen", "Xuguang Ren", "Roberto Iriondo", "Cun Mu", "Zhiting Hu", "Mark Schulze", "Preslav Nakov", "Tim Baldwin", "Eric P. Xing" ]
The recent surge in open-source Large Language Models (LLMs), such as LLaMA, Falcon, and Mistral, provides diverse options for AI practitioners and researchers. However, most LLMs have only released partial artifacts, such as the final model weights or inference code, and technical reports increasingly limit their scope to high-level design choices and surface statistics. These choices hinder progress in the field by degrading transparency into the training of LLMs and forcing teams to rediscover many details in the training process. We present LLM360, an initiative to fully open-source LLMs, which advocates for all training code and data, model checkpoints, and intermediate results to be made available to the community. The goal of LLM360 is to support open and collaborative AI research by making the end-to-end LLM training process transparent and reproducible by everyone. As a first step of LLM360, we release two 7B parameter LLMs pre-trained from scratch, Amber and CrystalCoder, including their training code, data, intermediate checkpoints, and analyses (at https://www.llm360.ai). We are committed to continually pushing the boundaries of LLMs through this open-source effort. More large-scale and stronger models are underway and will be released in the future.
2023-12-12T00:00:00
2312.06655
Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D Prior
[ "Fangfu Liu", "Diankun Wu", "Yi Wei", "Yongming Rao", "Yueqi Duan" ]
https://github.com/liuff19/Sherpa3D
Recently, 3D content creation from text prompts has demonstrated remarkable progress by utilizing 2D and 3D diffusion models. While 3D diffusion models ensure great multi-view consistency, their ability to generate high-quality and diverse 3D assets is hindered by the limited 3D data. In contrast, 2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data. However, 2D lifting methods suffer from inherent view-agnostic ambiguity thereby leading to serious multi-face Janus issues, where text prompts fail to provide sufficient guidance to learn coherent 3D results. Instead of retraining a costly viewpoint-aware model, we study how to fully exploit easily accessible coarse 3D knowledge to enhance the prompts and guide 2D lifting optimization for refinement. In this paper, we propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously. Specifically, we design a pair of guiding strategies derived from the coarse 3D prior generated by the 3D diffusion model: a structural guidance for geometric fidelity and a semantic guidance for 3D coherence. Employing the two types of guidance, the 2D diffusion model enriches the 3D content with diversified and high-quality results. Extensive experiments show the superiority of our Sherpa3D over the state-of-the-art text-to-3D methods in terms of quality and 3D consistency.
2023-12-12T00:00:00
2312.06585
Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
[ "Avi Singh", "John D. Co-Reyes", "Rishabh Agarwal", "Ankesh Anand", "Piyush Patil", "Peter J. Liu", "James Harrison", "Jaehoon Lee", "Kelvin Xu", "Aaron Parisi", "Abhishek Kumar", "Alex Alemi", "Alex Rizkowsky", "Azade Nova", "Ben Adlam", "Bernd Bohnet", "Hanie Sedghi", "Igor Mordatch", "Isabelle Simpson", "Izzeddin Gur", "Jasper Snoek", "Jeffrey Pennington", "Jiri Hron", "Kathleen Kenealy", "Kevin Swersky", "Kshiteej Mahajan", "Laura Culp", "Lechao Xiao", "Maxwell L. Bileschi", "Noah Constant", "Roman Novak", "Rosanne Liu", "Tris Warkentin", "Yundi Qian", "Ethan Dyer", "Behnam Neyshabur", "Jascha Sohl-Dickstein", "Noah Fiedel" ]
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often limited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST^{EM}, where we (1) generate samples from the model and filter them using binary feedback, (2) fine-tune the model on these samples, and (3) repeat this process a few times. Testing on advanced MATH reasoning and APPS coding benchmarks using PaLM-2 models, we find that ReST^{EM} scales favorably with model size and significantly surpasses fine-tuning only on human data. Overall, our findings suggest self-training with feedback can substantially reduce dependence on human-generated data.
2023-12-12T00:00:00
2312.06109
Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models
[ "Haoran Wei", "Lingyu Kong", "Jinyue Chen", "Liang Zhao", "Zheng Ge", "Jinrong Yang", "Jianjian Sun", "Chunrui Han", "Xiangyu Zhang" ]
Modern Large Vision-Language Models (LVLMs) enjoy the same vision vocabulary -- CLIP, which can cover most common vision tasks. However, for some special vision task that needs dense and fine-grained vision perception, e.g., document-level OCR or chart understanding, especially in non-English scenarios, the CLIP-style vocabulary may encounter low efficiency in tokenizing the vision knowledge and even suffer out-of-vocabulary problem. Accordingly, we propose Vary, an efficient and effective method to scale up the vision vocabulary of LVLMs. The procedures of Vary are naturally divided into two folds: the generation and integration of a new vision vocabulary. In the first phase, we devise a vocabulary network along with a tiny decoder-only transformer to produce the desired vocabulary via autoregression. In the next, we scale up the vanilla vision vocabulary by merging the new one with the original one (CLIP), enabling the LVLMs can quickly garner new features. Compared to the popular BLIP-2, MiniGPT4, and LLaVA, Vary can maintain its vanilla capabilities while enjoying more excellent fine-grained perception and understanding ability. Specifically, Vary is competent in new document parsing features (OCR or markdown conversion) while achieving 78.2% ANLS in DocVQA and 36.2% in MMVet. Our code will be publicly available on the homepage.
2023-12-12T00:00:00
2312.06662
Photorealistic Video Generation with Diffusion Models
[ "Agrim Gupta", "Lijun Yu", "Kihyuk Sohn", "Xiuye Gu", "Meera Hahn", "Li Fei-Fei", "Irfan Essa", "Lu Jiang", "José Lezama" ]
We present W.A.L.T, a transformer-based approach for photorealistic video generation via diffusion modeling. Our approach has two key design decisions. First, we use a causal encoder to jointly compress images and videos within a unified latent space, enabling training and generation across modalities. Second, for memory and training efficiency, we use a window attention architecture tailored for joint spatial and spatiotemporal generative modeling. Taken together these design decisions enable us to achieve state-of-the-art performance on established video (UCF-101 and Kinetics-600) and image (ImageNet) generation benchmarks without using classifier free guidance. Finally, we also train a cascade of three models for the task of text-to-video generation consisting of a base latent video diffusion model, and two video super-resolution diffusion models to generate videos of 512 times 896 resolution at 8 frames per second.
2023-12-12T00:00:00
2312.05708
Context Tuning for Retrieval Augmented Generation
[ "Raviteja Anantha", "Tharun Bethi", "Danil Vodianik", "Srinivas Chappidi" ]
Large language models (LLMs) have the remarkable ability to solve new tasks with just a few examples, but they need access to the right tools. Retrieval Augmented Generation (RAG) addresses this problem by retrieving a list of relevant tools for a given task. However, RAG's tool retrieval step requires all the required information to be explicitly present in the query. This is a limitation, as semantic search, the widely adopted tool retrieval method, can fail when the query is incomplete or lacks context. To address this limitation, we propose Context Tuning for RAG, which employs a smart context retrieval system to fetch relevant information that improves both tool retrieval and plan generation. Our lightweight context retrieval model uses numerical, categorical, and habitual usage signals to retrieve and rank context items. Our empirical results demonstrate that context tuning significantly enhances semantic search, achieving a 3.5-fold and 1.5-fold improvement in Recall@K for context retrieval and tool retrieval tasks respectively, and resulting in an 11.6% increase in LLM-based planner accuracy. Additionally, we show that our proposed lightweight model using Reciprocal Rank Fusion (RRF) with LambdaMART outperforms GPT-4 based retrieval. Moreover, we observe context augmentation at plan generation, even after tool retrieval, reduces hallucination.
2023-12-12T00:00:00
2312.06571
From Text to Motion: Grounding GPT-4 in a Humanoid Robot "Alter3"
[ "Takahide Yoshida", "Atsushi Masumori", "Takashi Ikegami" ]
We report the development of Alter3, a humanoid robot capable of generating spontaneous motion using a Large Language Model (LLM), specifically GPT-4. This achievement was realized by integrating GPT-4 into our proprietary android, Alter3, thereby effectively grounding the LLM with Alter's bodily movement. Typically, low-level robot control is hardware-dependent and falls outside the scope of LLM corpora, presenting challenges for direct LLM-based robot control. However, in the case of humanoid robots like Alter3, direct control is feasible by mapping the linguistic expressions of human actions onto the robot's body through program code. Remarkably, this approach enables Alter3 to adopt various poses, such as a 'selfie' stance or 'pretending to be a ghost,' and generate sequences of actions over time without explicit programming for each body part. This demonstrates the robot's zero-shot learning capabilities. Additionally, verbal feedback can adjust poses, obviating the need for fine-tuning. A video of Alter3's generated motions is available at https://tnoinkwms.github.io/ALTER-LLM/
2023-12-12T00:00:00
2312.05431
Efficient Quantization Strategies for Latent Diffusion Models
[ "Yuewei Yang", "Xiaoliang Dai", "Jialiang Wang", "Peizhao Zhang", "Hongbo Zhang" ]
Latent Diffusion Models (LDMs) capture the dynamic evolution of latent variables over time, blending patterns and multimodality in a generative system. Despite the proficiency of LDM in various applications, such as text-to-image generation, facilitated by robust text encoders and a variational autoencoder, the critical need to deploy large generative models on edge devices compels a search for more compact yet effective alternatives. Post Training Quantization (PTQ), a method to compress the operational size of deep learning models, encounters challenges when applied to LDM due to temporal and structural complexities. This study proposes a quantization strategy that efficiently quantize LDMs, leveraging Signal-to-Quantization-Noise Ratio (SQNR) as a pivotal metric for evaluation. By treating the quantization discrepancy as relative noise and identifying sensitive part(s) of a model, we propose an efficient quantization approach encompassing both global and local strategies. The global quantization process mitigates relative quantization noise by initiating higher-precision quantization on sensitive blocks, while local treatments address specific challenges in quantization-sensitive and time-sensitive modules. The outcomes of our experiments reveal that the implementation of both global and local treatments yields a highly efficient and effective Post Training Quantization (PTQ) of LDMs.
2023-12-12T00:00:00
2312.06351
Evaluation of Large Language Models for Decision Making in Autonomous Driving
[ "Kotaro Tanahashi", "Yuichi Inoue", "Yu Yamaguchi", "Hidetatsu Yaginuma", "Daiki Shiotsuka", "Hiroyuki Shimatani", "Kohei Iwamasa", "Yoshiaki Inoue", "Takafumi Yamaguchi", "Koki Igari", "Tsukasa Horinouchi", "Kento Tokuhiro", "Yugo Tokuchi", "Shunsuke Aoki" ]
Various methods have been proposed for utilizing Large Language Models (LLMs) in autonomous driving. One strategy of using LLMs for autonomous driving involves inputting surrounding objects as text prompts to the LLMs, along with their coordinate and velocity information, and then outputting the subsequent movements of the vehicle. When using LLMs for such purposes, capabilities such as spatial recognition and planning are essential. In particular, two foundational capabilities are required: (1) spatial-aware decision making, which is the ability to recognize space from coordinate information and make decisions to avoid collisions, and (2) the ability to adhere to traffic rules. However, quantitative research has not been conducted on how accurately different types of LLMs can handle these problems. In this study, we quantitatively evaluated these two abilities of LLMs in the context of autonomous driving. Furthermore, to conduct a Proof of Concept (POC) for the feasibility of implementing these abilities in actual vehicles, we developed a system that uses LLMs to drive a vehicle.
2023-12-12T00:00:00
2312.05491
Using Captum to Explain Generative Language Models
[ "Vivek Miglani", "Aobo Yang", "Aram H. Markosyan", "Diego Garcia-Olano", "Narine Kokhlikyan" ]
Captum is a comprehensive library for model explainability in PyTorch, offering a range of methods from the interpretability literature to enhance users' understanding of PyTorch models. In this paper, we introduce new features in Captum that are specifically designed to analyze the behavior of generative language models. We provide an overview of the available functionalities and example applications of their potential for understanding learned associations within generative language models.
2023-12-12T00:00:00
2312.06134
Order Matters in the Presence of Dataset Imbalance for Multilingual Learning
[ "Dami Choi", "Derrick Xin", "Hamid Dadkhahi", "Justin Gilmer", "Ankush Garg", "Orhan Firat", "Chih-Kuan Yeh", "Andrew M. Dai", "Behrooz Ghorbani" ]
In this paper, we empirically study the optimization dynamics of multi-task learning, particularly focusing on those that govern a collection of tasks with significant data imbalance. We present a simple yet effective method of pre-training on high-resource tasks, followed by fine-tuning on a mixture of high/low-resource tasks. We provide a thorough empirical study and analysis of this method's benefits showing that it achieves consistent improvements relative to the performance trade-off profile of standard static weighting. We analyze under what data regimes this method is applicable and show its improvements empirically in neural machine translation (NMT) and multi-lingual language modeling.
2023-12-12T00:00:00
2312.06353
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes
[ "Zhen Qin", "Daoyuan Chen", "Bingchen Qian", "Bolin Ding", "Yaliang Li", "Shuiguang Deng" ]
Pre-trained large language models (LLMs) require fine-tuning to improve their responsiveness to natural language instructions. Federated learning (FL) offers a way to perform fine-tuning using the abundant data on end devices without compromising data privacy. Most existing federated fine-tuning methods for LLMs rely on parameter-efficient fine-tuning techniques, which may not reach the performance heights possible with full-parameter tuning. However, the communication overhead associated with full-parameter tuning is prohibitively high for both servers and clients. This work introduces FedKSeed, a novel approach that employs zeroth-order optimization (ZOO) with a set of random seeds. It enables federated full-parameter tuning of billion-sized LLMs directly on devices. Our method significantly reduces transmission requirements between the server and clients to just a few scalar gradients and random seeds, amounting to only a few thousand bytes. Building on this, we develop a strategy to assess the significance of ZOO perturbations for FL, allowing for probability-differentiated seed sampling. This prioritizes perturbations that have a greater impact on model accuracy. Experiments across six scenarios with different LLMs, datasets and data partitions demonstrate that our approach outperforms existing federated LLM fine-tuning methods in terms of both communication efficiency and new task generalization.
2023-12-12T00:00:00
2312.05605
TCNCA: Temporal Convolution Network with Chunked Attention for Scalable Sequence Processing
[ "Aleksandar Terzic", "Michael Hersche", "Geethan Karunaratne", "Luca Benini", "Abu Sebastian", "Abbas Rahimi" ]
MEGA is a recent transformer-based architecture, which utilizes a linear recurrent operator whose parallel computation, based on the FFT, scales as O(LlogL), with L being the sequence length. We build upon their approach by replacing the linear recurrence with a special temporal convolutional network which permits larger receptive field size with shallower networks, and reduces the computational complexity to O(L). The resulting model is called TCNCA, a Temporal Convolutional Network with Chunked Attention. We evaluate TCNCA on EnWik8 language modeling, long-range-arena (LRA) sequence classification, as well as a synthetic reasoning benchmark associative recall. On EnWik8, TCNCA outperforms MEGA, reaching a lower loss with 1.37times/1.24times faster forward/backward pass during training. The dilated convolutions used in TCNCA are consistently and significantly faster operations than the FFT-based parallelized recurrence in GPUs, making them a scalable candidate for handling very large sequence lengths: they are up to 7.07times/2.86times faster in the forward/backward pass for sequences up to 131k. Further on LRA, TCNCA achieves, on average, 1.28times speed-up during inference with similar accuracy to what MEGA achieves. On associative recall, we find that even a simplified version of TCNCA, without excessive multiplicative and additive interactions, remains superior or competitive to MEGA on a range of sequence lengths and vocabulary sizes.
2023-12-12T00:00:00
2312.06149
Unlocking Anticipatory Text Generation: A Constrained Approach for Faithful Decoding with Large Language Models
[ "Lifu Tu", "Semih Yavuz", "Jin Qu", "Jiacheng Xu", "Rui Meng", "Caiming Xiong", "Yingbo Zhou" ]
Large Language Models (LLMs) have demonstrated a powerful ability for text generation. However, achieving optimal results with a given prompt or instruction can be challenging, especially for billion-sized models. Additionally, undesired behaviors such as toxicity or hallucinations can manifest. While much larger models (e.g., ChatGPT) may demonstrate strength in mitigating these issues, there is still no guarantee of complete prevention. In this work, we propose formalizing text generation as a future-constrained generation problem to minimize undesirable behaviors and enforce faithfulness to instructions. The estimation of future constraint satisfaction, accomplished using LLMs, guides the text generation process. Our extensive experiments demonstrate the effectiveness of the proposed approach across three distinct text generation tasks: keyword-constrained generation (Lin et al., 2020), toxicity reduction (Gehman et al., 2020), and factual correctness in question-answering (Gao et al., 2023).
2023-12-13T00:00:00
2312.07537
FreeInit: Bridging Initialization Gap in Video Diffusion Models
[ "Tianxing Wu", "Chenyang Si", "Yuming Jiang", "Ziqi Huang", "Ziwei Liu" ]
https://github.com/TianxingWu/FreeInit
Though diffusion-based video generation has witnessed rapid progress, the inference results of existing models still exhibit unsatisfactory temporal consistency and unnatural dynamics. In this paper, we delve deep into the noise initialization of video diffusion models, and discover an implicit training-inference gap that attributes to the unsatisfactory inference quality. Our key findings are: 1) the spatial-temporal frequency distribution of the initial latent at inference is intrinsically different from that for training, and 2) the denoising process is significantly influenced by the low-frequency components of the initial noise. Motivated by these observations, we propose a concise yet effective inference sampling strategy, FreeInit, which significantly improves temporal consistency of videos generated by diffusion models. Through iteratively refining the spatial-temporal low-frequency components of the initial latent during inference, FreeInit is able to compensate the initialization gap between training and inference, thus effectively improving the subject appearance and temporal consistency of generation results. Extensive experiments demonstrate that FreeInit consistently enhances the generation results of various text-to-video generation models without additional training.
2023-12-13T00:00:00
2312.07536
FreeControl: Training-Free Spatial Control of Any Text-to-Image Diffusion Model with Any Condition
[ "Sicheng Mo", "Fangzhou Mu", "Kuan Heng Lin", "Yanli Liu", "Bochen Guan", "Yin Li", "Bolei Zhou" ]
https://github.com/genforce/freecontrol
Recent approaches such as ControlNet offer users fine-grained spatial control over text-to-image (T2I) diffusion models. However, auxiliary modules have to be trained for each type of spatial condition, model architecture, and checkpoint, putting them at odds with the diverse intents and preferences a human designer would like to convey to the AI models during the content creation process. In this work, we present FreeControl, a training-free approach for controllable T2I generation that supports multiple conditions, architectures, and checkpoints simultaneously. FreeControl designs structure guidance to facilitate the structure alignment with a guidance image, and appearance guidance to enable the appearance sharing between images generated using the same seed. Extensive qualitative and quantitative experiments demonstrate the superior performance of FreeControl across a variety of pre-trained T2I models. In particular, FreeControl facilitates convenient training-free control over many different architectures and checkpoints, allows the challenging input conditions on which most of the existing training-free methods fail, and achieves competitive synthesis quality with training-based approaches.
2023-12-13T00:00:00
2312.07409
DiffMorpher: Unleashing the Capability of Diffusion Models for Image Morphing
[ "Kaiwen Zhang", "Yifan Zhou", "Xudong Xu", "Xingang Pan", "Bo Dai" ]
https://github.com/Kevin-thu/DiffMorpher
Diffusion models have achieved remarkable image generation quality surpassing previous generative models. However, a notable limitation of diffusion models, in comparison to GANs, is their difficulty in smoothly interpolating between two image samples, due to their highly unstructured latent space. Such a smooth interpolation is intriguing as it naturally serves as a solution for the image morphing task with many applications. In this work, we present DiffMorpher, the first approach enabling smooth and natural image interpolation using diffusion models. Our key idea is to capture the semantics of the two images by fitting two LoRAs to them respectively, and interpolate between both the LoRA parameters and the latent noises to ensure a smooth semantic transition, where correspondence automatically emerges without the need for annotation. In addition, we propose an attention interpolation and injection technique and a new sampling schedule to further enhance the smoothness between consecutive images. Extensive experiments demonstrate that DiffMorpher achieves starkly better image morphing effects than previous methods across a variety of object categories, bridging a critical functional gap that distinguished diffusion models from GANs.
2023-12-13T00:00:00
2312.06971
CCM: Adding Conditional Controls to Text-to-Image Consistency Models
[ "Jie Xiao", "Kai Zhu", "Han Zhang", "Zhiheng Liu", "Yujun Shen", "Yu Liu", "Xueyang Fu", "Zheng-Jun Zha" ]
Consistency Models (CMs) have showed a promise in creating visual content efficiently and with high quality. However, the way to add new conditional controls to the pretrained CMs has not been explored. In this technical report, we consider alternative strategies for adding ControlNet-like conditional control to CMs and present three significant findings. 1) ControlNet trained for diffusion models (DMs) can be directly applied to CMs for high-level semantic controls but struggles with low-level detail and realism control. 2) CMs serve as an independent class of generative models, based on which ControlNet can be trained from scratch using Consistency Training proposed by Song et al. 3) A lightweight adapter can be jointly optimized under multiple conditions through Consistency Training, allowing for the swift transfer of DMs-based ControlNet to CMs. We study these three solutions across various conditional controls, including edge, depth, human pose, low-resolution image and masked image with text-to-image latent consistency models.
2023-12-13T00:00:00
2312.07046
Rethinking Compression: Reduced Order Modelling of Latent Features in Large Language Models
[ "Arnav Chavan", "Nahush Lele", "Deepak Gupta" ]
Due to the substantial scale of Large Language Models (LLMs), the direct application of conventional compression methodologies proves impractical. The computational demands associated with even minimal gradient updates present challenges, particularly on consumer-grade hardware. This paper introduces an innovative approach for the parametric and practical compression of LLMs based on reduced order modelling, which entails low-rank decomposition within the feature space and re-parameterization in the weight space. Notably, this compression technique operates in a layer-wise manner, obviating the need for a GPU device and enabling the compression of billion-scale models within stringent constraints of both memory and time. Our method represents a significant advancement in model compression by leveraging matrix decomposition, demonstrating superior efficacy compared to the prevailing state-of-the-art structured pruning method.
2023-12-13T00:00:00
2312.06742
Honeybee: Locality-enhanced Projector for Multimodal LLM
[ "Junbum Cha", "Wooyoung Kang", "Jonghwan Mun", "Byungseok Roh" ]
https://github.com/kakaobrain/honeybee
In Multimodal Large Language Models (MLLMs), a visual projector plays a crucial role in bridging pre-trained vision encoders with LLMs, enabling profound visual understanding while harnessing the LLMs' robust capabilities. Despite the importance of the visual projector, it has been relatively less explored. In this study, we first identify two essential projector properties: (i) flexibility in managing the number of visual tokens, crucial for MLLMs' overall efficiency, and (ii) preservation of local context from visual features, vital for spatial understanding. Based on these findings, we propose a novel projector design that is both flexible and locality-enhanced, effectively satisfying the two desirable properties. Additionally, we present comprehensive strategies to effectively utilize multiple and multifaceted instruction datasets. Through extensive experiments, we examine the impact of individual design choices. Finally, our proposed MLLM, Honeybee, remarkably outperforms previous state-of-the-art methods across various benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench, achieving significantly higher efficiency. Code and models are available at https://github.com/kakaobrain/honeybee.
2023-12-13T00:00:00
2312.07532
Interfacing Foundation Models' Embeddings
[ "Xueyan Zou", "Linjie Li", "Jianfeng Wang", "Jianwei Yang", "Mingyu Ding", "Zhengyuan Yang", "Feng Li", "Hao Zhang", "Shilong Liu", "Arul Aravinthan", "Yong Jae Lee", "Lijuan Wang" ]
https://github.com/UX-Decoder/FIND
We present FIND, a generalized interface for aligning foundation models' embeddings. As shown in teaser figure, a lightweight transformer interface without tuning any foundation model weights is enough for a unified image (segmentation) and dataset-level (retrieval) understanding. The proposed interface has the following favorable attributes: (1) Generalizable. It applies to various tasks spanning retrieval, segmentation, etc., under the same architecture and weights. (2) Prototypable. Different tasks are able to be implemented through prototyping attention masks and embedding types. (3) Extendable. The proposed interface is adaptive to new tasks, and new models. (4) Interleavable. With the benefit of multi-task multi-modal training, the proposed interface creates an interleaved shared embedding space. In light of the interleaved embedding space, we introduce the FIND-Bench, which introduces new training and evaluation annotations to the COCO dataset for interleave segmentation and retrieval. Our approach achieves state-of-the-art performance on FIND-Bench and competitive performance on standard retrieval and segmentation settings. The training, evaluation, and demo code as well as the dataset have been released at https://github.com/UX-Decoder/FIND.
2023-12-13T00:00:00
2312.07533
VILA: On Pre-training for Visual Language Models
[ "Ji Lin", "Hongxu Yin", "Wei Ping", "Yao Lu", "Pavlo Molchanov", "Andrew Tao", "Huizi Mao", "Jan Kautz", "Mohammad Shoeybi", "Song Han" ]
Visual language models (VLMs) rapidly progressed with the recent success of large language models. There have been growing efforts on visual instruction tuning to extend the LLM with visual inputs, but lacks an in-depth study of the visual language pre-training process, where the model learns to perform joint modeling on both modalities. In this work, we examine the design options for VLM pre-training by augmenting LLM towards VLM through step-by-step controllable comparisons. We introduce three main findings: (1) freezing LLMs during pre-training can achieve decent zero-shot performance, but lack in-context learning capability, which requires unfreezing the LLM; (2) interleaved pre-training data is beneficial whereas image-text pairs alone are not optimal; (3) re-blending text-only instruction data to image-text data during instruction fine-tuning not only remedies the degradation of text-only tasks, but also boosts VLM task accuracy. With an enhanced pre-training recipe we build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models, e.g., LLaVA-1.5, across main benchmarks without bells and whistles. Multi-modal pre-training also helps unveil appealing properties of VILA, including multi-image reasoning, enhanced in-context learning, and better world knowledge.
2023-12-13T00:00:00
2312.07000
Alignment for Honesty
[ "Yuqing Yang", "Ethan Chern", "Xipeng Qiu", "Graham Neubig", "Pengfei Liu" ]
https://github.com/GAIR-NLP/alignment-for-honesty
Recent research has made significant strides in applying alignment techniques to enhance the helpfulness and harmlessness of large language models (LLMs) in accordance with human intentions. In this paper, we argue for the importance of alignment for honesty, ensuring that LLMs proactively refuse to answer questions when they lack knowledge, while still not being overly conservative. However, a pivotal aspect of alignment for honesty involves discerning the limits of an LLM's knowledge, which is far from straightforward. This challenge demands comprehensive solutions in terms of metric development, benchmark creation, and training methodologies. In this paper, we address these challenges by first establishing a precise problem definition and defining ``honesty'' inspired by the Analects of Confucius. This serves as a cornerstone for developing metrics that effectively measure an LLM's honesty by quantifying its progress post-alignment. Furthermore, we introduce a flexible training framework which is further instantiated by several efficient fine-tuning techniques that emphasize honesty without sacrificing performance on other tasks. Our extensive experiments reveal that these aligned models show a marked increase in honesty, as indicated by our proposed metrics. We open-source a wealth of resources to facilitate future research at https://github.com/GAIR-NLP/alignment-for-honesty, including honesty-aligned models, training and evaluation datasets for honesty alignment, concept glossary, as well as all relevant source code.