repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
pypot/scikit-learn
examples/bicluster/bicluster_newsgroups.py
162
7103
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. Output:: Vectorizing... Coclustering... Done in 9.53s. V-measure: 0.4455 MiniBatchKMeans... Done in 12.00s. V-measure: 0.3309 Best biclusters: ---------------- bicluster 0 : 1951 documents, 4373 words categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment bicluster 1 : 1165 documents, 3304 words categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage bicluster 2 : 2219 documents, 2830 words categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package bicluster 3 : 1860 documents, 2745 words categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes bicluster 4 : 12 documents, 155 words categories : 100% rec.sport.hockey words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved """ from __future__ import print_function print(__doc__) from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] weight = X[rows[:, np.newaxis], cols].sum() cut = (X[row_complement[:, np.newaxis], cols].sum() + X[rows[:, np.newaxis], col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
GJL/flink
flink-python/pyflink/table/table.py
4
32961
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import warnings from py4j.java_gateway import get_method from pyflink.java_gateway import get_gateway from pyflink.table.serializers import ArrowSerializer from pyflink.table.table_schema import TableSchema from pyflink.table.types import create_arrow_schema from pyflink.table.utils import tz_convert_from_internal from pyflink.util.utils import to_jarray from pyflink.util.utils import to_j_explain_detail_arr __all__ = ['Table', 'GroupedTable', 'GroupWindowedTable', 'OverWindowedTable', 'WindowGroupedTable'] class Table(object): """ A :class:`~pyflink.table.Table` is the core component of the Table API. Similar to how the batch and streaming APIs have DataSet and DataStream, the Table API is built around :class:`~pyflink.table.Table`. Use the methods of :class:`~pyflink.table.Table` to transform data. Example: :: >>> env = StreamExecutionEnvironment.get_execution_environment() >>> env.set_parallelism(1) >>> t_env = StreamTableEnvironment.create(env) >>> ... >>> t_env.register_table_source("source", ...) >>> t = t_env.scan("source") >>> t.select(...) >>> ... >>> t_env.register_table_sink("result", ...) >>> t.insert_into("result") >>> t_env.execute("table_job") Operations such as :func:`~pyflink.table.Table.join`, :func:`~pyflink.table.Table.select`, :func:`~pyflink.table.Table.where` and :func:`~pyflink.table.Table.group_by` take arguments in an expression string. Please refer to the documentation for the expression syntax. """ def __init__(self, j_table): self._j_table = j_table def select(self, fields): """ Performs a selection operation. Similar to a SQL SELECT statement. The field expressions can contain complex expressions. Example: :: >>> tab.select("key, value + 'hello'") :param fields: Expression string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.select(fields)) def alias(self, field, *fields): """ Renames the fields of the expression result. Use this to disambiguate fields before joining to operations. Example: :: >>> tab.alias("a", "b") :param field: Field alias. :type field: str :param fields: Additional field aliases. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ gateway = get_gateway() extra_fields = to_jarray(gateway.jvm.String, fields) return Table(get_method(self._j_table, "as")(field, extra_fields)) def filter(self, predicate): """ Filters out elements that don't pass the filter predicate. Similar to a SQL WHERE clause. Example: :: >>> tab.filter("name = 'Fred'") :param predicate: Predicate expression string. :type predicate: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.filter(predicate)) def where(self, predicate): """ Filters out elements that don't pass the filter predicate. Similar to a SQL WHERE clause. Example: :: >>> tab.where("name = 'Fred'") :param predicate: Predicate expression string. :type predicate: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.where(predicate)) def group_by(self, fields): """ Groups the elements on some grouping keys. Use this before a selection with aggregations to perform the aggregation on a per-group basis. Similar to a SQL GROUP BY statement. Example: :: >>> tab.group_by("key").select("key, value.avg") :param fields: Group keys. :type fields: str :return: The grouped table. :rtype: pyflink.table.GroupedTable """ return GroupedTable(self._j_table.groupBy(fields)) def distinct(self): """ Removes duplicate values and returns only distinct (different) values. Example: :: >>> tab.select("key, value").distinct() :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.distinct()) def join(self, right, join_predicate=None): """ Joins two :class:`~pyflink.table.Table`. Similar to a SQL join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. You can use where and select clauses after a join to further specify the behaviour of the join. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment` . Example: :: >>> left.join(right).where("a = b && c > 3").select("a, b, d") >>> left.join(right, "a = b") :param right: Right table. :type right: pyflink.table.Table :param join_predicate: Optional, the join predicate expression string. :type join_predicate: str :return: The result table. :rtype: pyflink.table.Table """ if join_predicate is not None: return Table(self._j_table.join(right._j_table, join_predicate)) else: return Table(self._j_table.join(right._j_table)) def left_outer_join(self, right, join_predicate=None): """ Joins two :class:`~pyflink.table.Table`. Similar to a SQL left outer join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment` and its :class:`~pyflink.table.TableConfig` must have null check enabled (default). Example: :: >>> left.left_outer_join(right).select("a, b, d") >>> left.left_outer_join(right, "a = b").select("a, b, d") :param right: Right table. :type right: pyflink.table.Table :param join_predicate: Optional, the join predicate expression string. :type join_predicate: str :return: The result table. :rtype: pyflink.table.Table """ if join_predicate is None: return Table(self._j_table.leftOuterJoin(right._j_table)) else: return Table(self._j_table.leftOuterJoin(right._j_table, join_predicate)) def right_outer_join(self, right, join_predicate): """ Joins two :class:`~pyflink.table.Table`. Similar to a SQL right outer join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment` and its :class:`~pyflink.table.TableConfig` must have null check enabled (default). Example: :: >>> left.right_outer_join(right, "a = b").select("a, b, d") :param right: Right table. :type right: pyflink.table.Table :param join_predicate: The join predicate expression string. :type join_predicate: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.rightOuterJoin(right._j_table, join_predicate)) def full_outer_join(self, right, join_predicate): """ Joins two :class:`~pyflink.table.Table`. Similar to a SQL full outer join. The fields of the two joined operations must not overlap, use :func:`~pyflink.table.Table.alias` to rename fields if necessary. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment` and its :class:`~pyflink.table.TableConfig` must have null check enabled (default). Example: :: >>> left.full_outer_join(right, "a = b").select("a, b, d") :param right: Right table. :type right: pyflink.table.Table :param join_predicate: The join predicate expression string. :type join_predicate: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.fullOuterJoin(right._j_table, join_predicate)) def join_lateral(self, table_function_call, join_predicate=None): """ Joins this Table with an user-defined TableFunction. This join is similar to a SQL inner join but works with a table function. Each row of the table is joined with the rows produced by the table function. Example: :: >>> t_env.register_java_function("split", "java.table.function.class.name") >>> tab.join_lateral("split(text, ' ') as (b)", "a = b") :param table_function_call: An expression representing a table function call. :type table_function_call: str :param join_predicate: Optional, The join predicate expression string, join ON TRUE if not exist. :type join_predicate: str :return: The result Table. :rtype: pyflink.table.Table """ if join_predicate is None: return Table(self._j_table.joinLateral(table_function_call)) else: return Table(self._j_table.joinLateral(table_function_call, join_predicate)) def left_outer_join_lateral(self, table_function_call, join_predicate=None): """ Joins this Table with an user-defined TableFunction. This join is similar to a SQL left outer join but works with a table function. Each row of the table is joined with all rows produced by the table function. If the join does not produce any row, the outer row is padded with nulls. Example: :: >>> t_env.register_java_function("split", "java.table.function.class.name") >>> tab.left_outer_join_lateral("split(text, ' ') as (b)") :param table_function_call: An expression representing a table function call. :type table_function_call: str :param join_predicate: Optional, The join predicate expression string, join ON TRUE if not exist. :type join_predicate: str :return: The result Table. :rtype: pyflink.table.Table """ if join_predicate is None: return Table(self._j_table.leftOuterJoinLateral(table_function_call)) else: return Table(self._j_table.leftOuterJoinLateral(table_function_call, join_predicate)) def minus(self, right): """ Minus of two :class:`~pyflink.table.Table` with duplicate records removed. Similar to a SQL EXCEPT clause. Minus returns records from the left table that do not exist in the right table. Duplicate records in the left table are returned exactly once, i.e., duplicates are removed. Both tables must have identical field types. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment`. Example: :: >>> left.minus(right) :param right: Right table. :type right: pyflink.table.Table :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.minus(right._j_table)) def minus_all(self, right): """ Minus of two :class:`~pyflink.table.Table`. Similar to a SQL EXCEPT ALL. Similar to a SQL EXCEPT ALL clause. MinusAll returns the records that do not exist in the right table. A record that is present n times in the left table and m times in the right table is returned (n - m) times, i.e., as many duplicates as are present in the right table are removed. Both tables must have identical field types. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment`. Example: :: >>> left.minus_all(right) :param right: Right table. :type right: pyflink.table.Table :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.minusAll(right._j_table)) def union(self, right): """ Unions two :class:`~pyflink.table.Table` with duplicate records removed. Similar to a SQL UNION. The fields of the two union operations must fully overlap. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment`. Example: :: >>> left.union(right) :param right: Right table. :type right: pyflink.table.Table :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.union(right._j_table)) def union_all(self, right): """ Unions two :class:`~pyflink.table.Table`. Similar to a SQL UNION ALL. The fields of the two union operations must fully overlap. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment`. Example: :: >>> left.union_all(right) :param right: Right table. :type right: pyflink.table.Table :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.unionAll(right._j_table)) def intersect(self, right): """ Intersects two :class:`~pyflink.table.Table` with duplicate records removed. Intersect returns records that exist in both tables. If a record is present in one or both tables more than once, it is returned just once, i.e., the resulting table has no duplicate records. Similar to a SQL INTERSECT. The fields of the two intersect operations must fully overlap. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment`. Example: :: >>> left.intersect(right) :param right: Right table. :type right: pyflink.table.Table :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.intersect(right._j_table)) def intersect_all(self, right): """ Intersects two :class:`~pyflink.table.Table`. IntersectAll returns records that exist in both tables. If a record is present in both tables more than once, it is returned as many times as it is present in both tables, i.e., the resulting table might have duplicate records. Similar to an SQL INTERSECT ALL. The fields of the two intersect operations must fully overlap. .. note:: Both tables must be bound to the same :class:`~pyflink.table.TableEnvironment`. Example: :: >>> left.intersect_all(right) :param right: Right table. :type right: pyflink.table.Table :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.intersectAll(right._j_table)) def order_by(self, fields): """ Sorts the given :class:`~pyflink.table.Table`. Similar to SQL ORDER BY. The resulting Table is sorted globally sorted across all parallel partitions. Example: :: >>> tab.order_by("name.desc") :param fields: Order fields expression string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.orderBy(fields)) def offset(self, offset): """ Limits a sorted result from an offset position. Similar to a SQL OFFSET clause. Offset is technically part of the Order By operator and thus must be preceded by it. :func:`~pyflink.table.Table.offset` can be combined with a subsequent :func:`~pyflink.table.Table.fetch` call to return n rows after skipping the first o rows. Example: :: # skips the first 3 rows and returns all following rows. >>> tab.order_by("name.desc").offset(3) # skips the first 10 rows and returns the next 5 rows. >>> tab.order_by("name.desc").offset(10).fetch(5) :param offset: Number of records to skip. :type offset: int :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.offset(offset)) def fetch(self, fetch): """ Limits a sorted result to the first n rows. Similar to a SQL FETCH clause. Fetch is technically part of the Order By operator and thus must be preceded by it. :func:`~pyflink.table.Table.offset` can be combined with a preceding :func:`~pyflink.table.Table.fetch` call to return n rows after skipping the first o rows. Example: Returns the first 3 records. :: >>> tab.order_by("name.desc").fetch(3) Skips the first 10 rows and returns the next 5 rows. :: >>> tab.order_by("name.desc").offset(10).fetch(5) :param fetch: The number of records to return. Fetch must be >= 0. :type fetch: int :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.fetch(fetch)) def window(self, window): """ Defines group window on the records of a table. A group window groups the records of a table by assigning them to windows defined by a time or row interval. For streaming tables of infinite size, grouping into windows is required to define finite groups on which group-based aggregates can be computed. For batch tables of finite size, windowing essentially provides shortcuts for time-based groupBy. .. note:: Computing windowed aggregates on a streaming table is only a parallel operation if additional grouping attributes are added to the :func:`~pyflink.table.GroupWindowedTable.group_by` clause. If the :func:`~pyflink.table.GroupWindowedTable.group_by` only references a GroupWindow alias, the streamed table will be processed by a single task, i.e., with parallelism 1. Example: :: >>> tab.window(Tumble.over("10.minutes").on("rowtime").alias("w")) \\ ... .group_by("w") \\ ... .select("a.sum as a, w.start as b, w.end as c, w.rowtime as d") :param window: A :class:`~pyflink.table.window.GroupWindow` created from :class:`~pyflink.table.window.Tumble`, :class:`~pyflink.table.window.Session` or :class:`~pyflink.table.window.Slide`. :type window: pyflink.table.window.GroupWindow :return: A group windowed table. :rtype: GroupWindowedTable """ return GroupWindowedTable(self._j_table.window(window._java_window)) def over_window(self, *over_windows): """ Defines over-windows on the records of a table. An over-window defines for each record an interval of records over which aggregation functions can be computed. Example: :: >>> table.window(Over.partition_by("c").order_by("rowTime") \\ ... .preceding("10.seconds").alias("ow")) \\ ... .select("c, b.count over ow, e.sum over ow") .. note:: Computing over window aggregates on a streaming table is only a parallel operation if the window is partitioned. Otherwise, the whole stream will be processed by a single task, i.e., with parallelism 1. .. note:: Over-windows for batch tables are currently not supported. :param over_windows: over windows created from :class:`~pyflink.table.window.Over`. :type over_windows: pyflink.table.window.OverWindow :return: A over windowed table. :rtype: pyflink.table.OverWindowedTable """ gateway = get_gateway() window_array = to_jarray(gateway.jvm.OverWindow, [item._java_over_window for item in over_windows]) return OverWindowedTable(self._j_table.window(window_array)) def add_columns(self, fields): """ Adds additional columns. Similar to a SQL SELECT statement. The field expressions can contain complex expressions, but can not contain aggregations. It will throw an exception if the added fields already exist. Example: :: >>> tab.add_columns("a + 1 as a1, concat(b, 'sunny') as b1") :param fields: Column list string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.addColumns(fields)) def add_or_replace_columns(self, fields): """ Adds additional columns. Similar to a SQL SELECT statement. The field expressions can contain complex expressions, but can not contain aggregations. Existing fields will be replaced if add columns name is the same as the existing column name. Moreover, if the added fields have duplicate field name, then the last one is used. Example: :: >>> tab.add_or_replace_columns("a + 1 as a1, concat(b, 'sunny') as b1") :param fields: Column list string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.addOrReplaceColumns(fields)) def rename_columns(self, fields): """ Renames existing columns. Similar to a field alias statement. The field expressions should be alias expressions, and only the existing fields can be renamed. Example: :: >>> tab.rename_columns("a as a1, b as b1") :param fields: Column list string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.renameColumns(fields)) def drop_columns(self, fields): """ Drops existing columns. The field expressions should be field reference expressions. Example: :: >>> tab.drop_columns("a, b") :param fields: Column list string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.dropColumns(fields)) def insert_into(self, table_path): """ Writes the :class:`~pyflink.table.Table` to a :class:`~pyflink.table.TableSink` that was registered under the specified name. For the path resolution algorithm see :func:`~TableEnvironment.use_database`. Example: :: >>> tab.insert_into("sink") :param table_path: The path of the registered :class:`~pyflink.table.TableSink` to which the :class:`~pyflink.table.Table` is written. :type table_path: str .. note:: Deprecated in 1.11. Use :func:`execute_insert` for single sink, use :class:`TableTableEnvironment`#:func:`create_statement_set` for multiple sinks. """ warnings.warn("Deprecated in 1.11. Use execute_insert for single sink, " "use TableTableEnvironment#create_statement_set for multiple sinks.", DeprecationWarning) self._j_table.insertInto(table_path) def to_pandas(self): """ Converts the table to a pandas DataFrame. Example: :: >>> pdf = pd.DataFrame(np.random.rand(1000, 2)) >>> table = table_env.from_pandas(pdf, ["a", "b"]) >>> table.filter("a > 0.5").to_pandas() :return: the result pandas DataFrame. """ gateway = get_gateway() max_arrow_batch_size = self._j_table.getTableEnvironment().getConfig().getConfiguration()\ .getInteger(gateway.jvm.org.apache.flink.python.PythonOptions.MAX_ARROW_BATCH_SIZE) batches = gateway.jvm.org.apache.flink.table.runtime.arrow.ArrowUtils\ .collectAsPandasDataFrame(self._j_table, max_arrow_batch_size) if batches.hasNext(): import pytz timezone = pytz.timezone( self._j_table.getTableEnvironment().getConfig().getLocalTimeZone().getId()) serializer = ArrowSerializer( create_arrow_schema(self.get_schema().get_field_names(), self.get_schema().get_field_data_types()), self.get_schema().to_row_data_type(), timezone) import pyarrow as pa table = pa.Table.from_batches(serializer.load_from_iterator(batches)) pdf = table.to_pandas() schema = self.get_schema() for field_name in schema.get_field_names(): pdf[field_name] = tz_convert_from_internal( pdf[field_name], schema.get_field_data_type(field_name), timezone) return pdf else: import pandas as pd return pd.DataFrame.from_records([], columns=self.get_schema().get_field_names()) def get_schema(self): """ Returns the :class:`~pyflink.table.TableSchema` of this table. :return: The schema of this table. :rtype: pyflink.table.TableSchema """ return TableSchema(j_table_schema=self._j_table.getSchema()) def print_schema(self): """ Prints the schema of this table to the console in a tree format. """ self._j_table.printSchema() def execute_insert(self, table_path, overwrite=False): """ Writes the :class:`~pyflink.table.Table` to a :class:`~pyflink.table.TableSink` that was registered under the specified name, and then execute the insert operation. For the path resolution algorithm see :func:`~TableEnvironment.use_database`. Example: :: >>> tab.execute_insert("sink") :param table_path: The path of the registered :class:`~pyflink.table.TableSink` to which the :class:`~pyflink.table.Table` is written. :type table_path: str :param overwrite: The flag that indicates whether the insert should overwrite existing data or not. :type overwrite: bool :return: The table result. """ # TODO convert java TableResult to python TableResult once FLINK-17303 is finished self._j_table.executeInsert(table_path, overwrite) def execute(self): """ Collects the contents of the current table local client. Example: :: >>> tab.execute() :return: The content of the table. """ # TODO convert java TableResult to python TableResult once FLINK-17303 is finished self._j_table.execute() def explain(self, *extra_details): """ Returns the AST of this table and the execution plan. :param extra_details: The extra explain details which the explain result should include, e.g. estimated cost, changelog mode for streaming :type extra_details: tuple[ExplainDetail] (variable-length arguments of ExplainDetail) :return: The statement for which the AST and execution plan will be returned. :rtype: str """ j_extra_details = to_j_explain_detail_arr(extra_details) return self._j_table.explain(j_extra_details) def __str__(self): return self._j_table.toString() class GroupedTable(object): """ A table that has been grouped on a set of grouping keys. """ def __init__(self, java_table): self._j_table = java_table def select(self, fields): """ Performs a selection operation on a grouped table. Similar to an SQL SELECT statement. The field expressions can contain complex expressions and aggregations. Example: :: >>> tab.group_by("key").select("key, value.avg + ' The average' as average") :param fields: Expression string that contains group keys and aggregate function calls. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.select(fields)) class GroupWindowedTable(object): """ A table that has been windowed for :class:`~pyflink.table.GroupWindow`. """ def __init__(self, java_group_windowed_table): self._j_table = java_group_windowed_table def group_by(self, fields): """ Groups the elements by a mandatory window and one or more optional grouping attributes. The window is specified by referring to its alias. If no additional grouping attribute is specified and if the input is a streaming table, the aggregation will be performed by a single task, i.e., with parallelism 1. Aggregations are performed per group and defined by a subsequent :func:`~pyflink.table.WindowGroupedTable.select` clause similar to SQL SELECT-GROUP-BY query. Example: :: >>> tab.window(group_window.alias("w")).group_by("w, key").select("key, value.avg") :param fields: Group keys. :type fields: str :return: A window grouped table. :rtype: pyflink.table.WindowGroupedTable """ return WindowGroupedTable(self._j_table.groupBy(fields)) class WindowGroupedTable(object): """ A table that has been windowed and grouped for :class:`~pyflink.table.window.GroupWindow`. """ def __init__(self, java_window_grouped_table): self._j_table = java_window_grouped_table def select(self, fields): """ Performs a selection operation on a window grouped table. Similar to an SQL SELECT statement. The field expressions can contain complex expressions and aggregations. Example: :: >>> window_grouped_table.select("key, window.start, value.avg as valavg") :param fields: Expression string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.select(fields)) class OverWindowedTable(object): """ A table that has been windowed for :class:`~pyflink.table.window.OverWindow`. Unlike group windows, which are specified in the GROUP BY clause, over windows do not collapse rows. Instead over window aggregates compute an aggregate for each input row over a range of its neighboring rows. """ def __init__(self, java_over_windowed_table): self._j_table = java_over_windowed_table def select(self, fields): """ Performs a selection operation on a over windowed table. Similar to an SQL SELECT statement. The field expressions can contain complex expressions and aggregations. Example: :: >>> over_windowed_table.select("c, b.count over ow, e.sum over ow") :param fields: Expression string. :type fields: str :return: The result table. :rtype: pyflink.table.Table """ return Table(self._j_table.select(fields))
apache-2.0
zihua/scikit-learn
sklearn/decomposition/dict_learning.py
42
46134
""" Dictionary learning """ from __future__ import print_function # Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import sys import itertools from math import sqrt, ceil import numpy as np from scipy import linalg from numpy.lib.stride_tricks import as_strided from ..base import BaseEstimator, TransformerMixin from ..externals.joblib import Parallel, delayed, cpu_count from ..externals.six.moves import zip from ..utils import (check_array, check_random_state, gen_even_slices, gen_batches, _get_n_jobs) from ..utils.extmath import randomized_svd, row_norms from ..utils.validation import check_is_fitted from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars def _sparse_encode(X, dictionary, gram, cov=None, algorithm='lasso_lars', regularization=None, copy_cov=True, init=None, max_iter=1000, check_input=True, verbose=0): """Generic sparse coding Each column of the result is the solution to a Lasso problem. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows. gram: None | array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' gram can be None if method is 'threshold'. cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary * X' algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than regularization from the projection dictionary * data' regularization : int | float The regularization parameter. It corresponds to alpha when algorithm is 'lasso_lars', 'lasso_cd' or 'threshold'. Otherwise it corresponds to n_nonzero_coefs. init: array of shape (n_samples, n_components) Initialization value of the sparse code. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. check_input: boolean, optional If False, the input arrays X and dictionary will not be checked. verbose: int Controls the verbosity; the higher, the more messages. Defaults to 0. Returns ------- code: array of shape (n_components, n_features) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape if cov is None and algorithm != 'lasso_cd': # overwriting cov is safe copy_cov = False cov = np.dot(dictionary, X.T) if algorithm == 'lasso_lars': alpha = float(regularization) / n_features # account for scaling try: err_mgt = np.seterr(all='ignore') # Not passing in verbose=max(0, verbose-1) because Lars.fit already # corrects the verbosity level. lasso_lars = LassoLars(alpha=alpha, fit_intercept=False, verbose=verbose, normalize=False, precompute=gram, fit_path=False) lasso_lars.fit(dictionary.T, X.T, Xy=cov) new_code = lasso_lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'lasso_cd': alpha = float(regularization) / n_features # account for scaling # TODO: Make verbosity argument for Lasso? # sklearn.linear_model.coordinate_descent.enet_path has a verbosity # argument that we could pass in from Lasso. clf = Lasso(alpha=alpha, fit_intercept=False, normalize=False, precompute=gram, max_iter=max_iter, warm_start=True) clf.coef_ = init clf.fit(dictionary.T, X.T, check_input=check_input) new_code = clf.coef_ elif algorithm == 'lars': try: err_mgt = np.seterr(all='ignore') # Not passing in verbose=max(0, verbose-1) because Lars.fit already # corrects the verbosity level. lars = Lars(fit_intercept=False, verbose=verbose, normalize=False, precompute=gram, n_nonzero_coefs=int(regularization), fit_path=False) lars.fit(dictionary.T, X.T, Xy=cov) new_code = lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'threshold': new_code = ((np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T) elif algorithm == 'omp': # TODO: Should verbose argument be passed to this? new_code = orthogonal_mp_gram( Gram=gram, Xy=cov, n_nonzero_coefs=int(regularization), tol=None, norms_squared=row_norms(X, squared=True), copy_Xy=copy_cov).T else: raise ValueError('Sparse coding method must be "lasso_lars" ' '"lasso_cd", "lasso", "threshold" or "omp", got %s.' % algorithm) return new_code # XXX : could be moved to the linear_model module def sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=1, check_input=True, verbose=0): """Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. gram: array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary' * X algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' n_nonzero_coefs: int, 0.1 * n_features by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. alpha: float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. init: array of shape (n_samples, n_components) Initialization value of the sparse codes. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. n_jobs: int, optional Number of parallel jobs to run. check_input: boolean, optional If False, the input arrays X and dictionary will not be checked. verbose : int, optional Controls the verbosity; the higher, the more messages. Defaults to 0. Returns ------- code: array of shape (n_samples, n_components) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if check_input: if algorithm == 'lasso_cd': dictionary = check_array(dictionary, order='C', dtype='float64') X = check_array(X, order='C', dtype='float64') else: dictionary = check_array(dictionary) X = check_array(X) n_samples, n_features = X.shape n_components = dictionary.shape[0] if gram is None and algorithm != 'threshold': gram = np.dot(dictionary, dictionary.T) if cov is None and algorithm != 'lasso_cd': copy_cov = False cov = np.dot(dictionary, X.T) if algorithm in ('lars', 'omp'): regularization = n_nonzero_coefs if regularization is None: regularization = min(max(n_features / 10, 1), n_components) else: regularization = alpha if regularization is None: regularization = 1. if n_jobs == 1 or algorithm == 'threshold': code = _sparse_encode(X, dictionary, gram, cov=cov, algorithm=algorithm, regularization=regularization, copy_cov=copy_cov, init=init, max_iter=max_iter, check_input=False, verbose=verbose) # This ensure that dimensionality of code is always 2, # consistant with the case n_jobs > 1 if code.ndim == 1: code = code[np.newaxis, :] return code # Enter parallel code block code = np.empty((n_samples, n_components)) slices = list(gen_even_slices(n_samples, _get_n_jobs(n_jobs))) code_views = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_sparse_encode)( X[this_slice], dictionary, gram, cov[:, this_slice] if cov is not None else None, algorithm, regularization=regularization, copy_cov=copy_cov, init=init[this_slice] if init is not None else None, max_iter=max_iter, check_input=False) for this_slice in slices) for this_slice, this_view in zip(slices, code_views): code[this_slice] = this_view return code def _update_dict(dictionary, Y, code, verbose=False, return_r2=False, random_state=None): """Update the dense dictionary factor in place. Parameters ---------- dictionary: array of shape (n_features, n_components) Value of the dictionary at the previous iteration. Y: array of shape (n_features, n_samples) Data matrix. code: array of shape (n_components, n_samples) Sparse coding of the data against which to optimize the dictionary. verbose: Degree of output the procedure will print. return_r2: bool Whether to compute and return the residual sum of squares corresponding to the computed solution. random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- dictionary: array of shape (n_features, n_components) Updated dictionary. """ n_components = len(code) n_samples = Y.shape[0] random_state = check_random_state(random_state) # Residuals, computed 'in-place' for efficiency R = -np.dot(dictionary, code) R += Y R = np.asfortranarray(R) ger, = linalg.get_blas_funcs(('ger',), (dictionary, code)) for k in range(n_components): # R <- 1.0 * U_k * V_k^T + R R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) dictionary[:, k] = np.dot(R, code[k, :].T) # Scale k'th atom atom_norm_square = np.dot(dictionary[:, k], dictionary[:, k]) if atom_norm_square < 1e-20: if verbose == 1: sys.stdout.write("+") sys.stdout.flush() elif verbose: print("Adding new random atom") dictionary[:, k] = random_state.randn(n_samples) # Setting corresponding coefs to 0 code[k, :] = 0.0 dictionary[:, k] /= sqrt(np.dot(dictionary[:, k], dictionary[:, k])) else: dictionary[:, k] /= sqrt(atom_norm_square) # R <- -1.0 * U_k * V_k^T + R R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) if return_r2: R **= 2 # R is fortran-ordered. For numpy version < 1.6, sum does not # follow the quick striding first, and is thus inefficient on # fortran ordered data. We take a flat view of the data with no # striding R = as_strided(R, shape=(R.size, ), strides=(R.dtype.itemsize,)) R = np.sum(R) return dictionary, R return dictionary def dict_learning(X, n_components, alpha, max_iter=100, tol=1e-8, method='lars', n_jobs=1, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components: int, Number of dictionary atoms to extract. alpha: int, Sparsity controlling parameter. max_iter: int, Maximum number of iterations to perform. tol: float, Tolerance for the stopping condition. method: {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. n_jobs: int, Number of parallel jobs to run, or -1 to autodetect. dict_init: array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. code_init: array of shape (n_samples, n_components), Initial value for the sparse code for warm restart scenarios. callback: Callable that gets invoked every five iterations. verbose: Degree of output the procedure will print. random_state: int or RandomState Pseudo number generator state used for random sampling. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code: array of shape (n_samples, n_components) The sparse code factor in the matrix factorization. dictionary: array of shape (n_components, n_features), The dictionary factor in the matrix factorization. errors: array Vector of errors at each iteration. n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to True. See also -------- dict_learning_online DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ('lars', 'cd'): raise ValueError('Coding method %r not supported as a fit algorithm.' % method) method = 'lasso_' + method t0 = time.time() # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init the code and the dictionary with SVD of Y if code_init is not None and dict_init is not None: code = np.array(code_init, order='F') # Don't copy V, it will happen below dictionary = dict_init else: code, S, dictionary = linalg.svd(X, full_matrices=False) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: # True even if n_components=None code = code[:, :n_components] dictionary = dictionary[:n_components, :] else: code = np.c_[code, np.zeros((len(code), n_components - r))] dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] # Fortran-order dict, as we are going to access its row vectors dictionary = np.array(dictionary, order='F') residuals = 0 errors = [] current_cost = np.nan if verbose == 1: print('[dict_learning]', end=' ') # If max_iter is 0, number of iterations returned should be zero ii = -1 for ii in range(max_iter): dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: print("Iteration % 3i " "(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)" % (ii, dt, dt / 60, current_cost)) # Update code code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha, init=code, n_jobs=n_jobs) # Update dictionary dictionary, residuals = _update_dict(dictionary.T, X.T, code.T, verbose=verbose, return_r2=True, random_state=random_state) dictionary = dictionary.T # Cost function current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code)) errors.append(current_cost) if ii > 0: dE = errors[-2] - errors[-1] # assert(dE >= -tol * errors[-1]) if dE < tol * errors[-1]: if verbose == 1: # A line return print("") elif verbose: print("--- Convergence reached after %d iterations" % ii) break if ii % 5 == 0 and callback is not None: callback(locals()) if return_n_iter: return code, dictionary, errors, ii + 1 else: return code, dictionary, errors def dict_learning_online(X, n_components=2, alpha=1, n_iter=100, return_code=True, dict_init=None, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=1, method='lars', iter_offset=0, random_state=None, return_inner_stats=False, inner_stats=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem online. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-batches by slicing the input data. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components : int, Number of dictionary atoms to extract. alpha : float, Sparsity controlling parameter. n_iter : int, Number of iterations to perform. return_code : boolean, Whether to also return the code U or just the dictionary V. dict_init : array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. callback : Callable that gets invoked every five iterations. batch_size : int, The number of samples to take in each batch. verbose : Degree of output the procedure will print. shuffle : boolean, Whether to shuffle the data before splitting it in batches. n_jobs : int, Number of parallel jobs to run, or -1 to autodetect. method : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. iter_offset : int, default 0 Number of previous iterations completed on the dictionary used for initialization. random_state : int or RandomState Pseudo number generator state used for random sampling. return_inner_stats : boolean, optional Return the inner statistics A (dictionary covariance) and B (data approximation). Useful to restart the algorithm in an online setting. If return_inner_stats is True, return_code is ignored inner_stats : tuple of (A, B) ndarrays Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is useful in online settings, to avoid loosing the history of the evolution. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code : array of shape (n_samples, n_components), the sparse code (only returned if `return_code=True`) dictionary : array of shape (n_components, n_features), the solutions to the dictionary learning problem n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to `True`. See also -------- dict_learning DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if n_components is None: n_components = X.shape[1] if method not in ('lars', 'cd'): raise ValueError('Coding method not supported as a fit algorithm.') method = 'lasso_' + method t0 = time.time() n_samples, n_features = X.shape # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init V with SVD of X if dict_init is not None: dictionary = dict_init else: _, S, dictionary = randomized_svd(X, n_components, random_state=random_state) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: dictionary = dictionary[:n_components, :] else: dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] if verbose == 1: print('[dict_learning]', end=' ') if shuffle: X_train = X.copy() random_state.shuffle(X_train) else: X_train = X dictionary = check_array(dictionary.T, order='F', dtype=np.float64, copy=False) X_train = check_array(X_train, order='C', dtype=np.float64, copy=False) batches = gen_batches(n_samples, batch_size) batches = itertools.cycle(batches) # The covariance of the dictionary if inner_stats is None: A = np.zeros((n_components, n_components)) # The data approximation B = np.zeros((n_features, n_components)) else: A = inner_stats[0].copy() B = inner_stats[1].copy() # If n_iter is zero, we need to return zero. ii = iter_offset - 1 for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches): this_X = X_train[batch] dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: if verbose > 10 or ii % ceil(100. / verbose) == 0: print ("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)" % (ii, dt, dt / 60)) this_code = sparse_encode(this_X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs).T # Update the auxiliary variables if ii < batch_size - 1: theta = float((ii + 1) * batch_size) else: theta = float(batch_size ** 2 + ii + 1 - batch_size) beta = (theta + 1 - batch_size) / (theta + 1) A *= beta A += np.dot(this_code, this_code.T) B *= beta B += np.dot(this_X.T, this_code.T) # Update dictionary dictionary = _update_dict(dictionary, B, A, verbose=verbose, random_state=random_state) # XXX: Can the residuals be of any use? # Maybe we need a stopping criteria based on the amount of # modification in the dictionary if callback is not None: callback(locals()) if return_inner_stats: if return_n_iter: return dictionary.T, (A, B), ii - iter_offset + 1 else: return dictionary.T, (A, B) if return_code: if verbose > 1: print('Learning code...', end=' ') elif verbose == 1: print('|', end=' ') code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs, check_input=False) if verbose > 1: dt = (time.time() - t0) print('done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60)) if return_n_iter: return code, dictionary.T, ii - iter_offset + 1 else: return code, dictionary.T if return_n_iter: return dictionary.T, ii - iter_offset + 1 else: return dictionary.T class SparseCodingMixin(TransformerMixin): """Sparse coding mixin""" def _set_sparse_coding_params(self, n_components, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self.n_components = n_components self.transform_algorithm = transform_algorithm self.transform_n_nonzero_coefs = transform_n_nonzero_coefs self.transform_alpha = transform_alpha self.split_sign = split_sign self.n_jobs = n_jobs def transform(self, X, y=None): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'components_') # XXX : kwargs is not documented X = check_array(X) n_samples, n_features = X.shape code = sparse_encode( X, self.components_, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=self.transform_alpha, n_jobs=self.n_jobs) if self.split_sign: # feature vector is split into a positive and negative side n_samples, n_features = code.shape split_code = np.empty((n_samples, 2 * n_features)) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = -np.minimum(code, 0) code = split_code return code class SparseCoder(BaseEstimator, SparseCodingMixin): """Sparse coding Finds a sparse representation of data against a fixed, precomputed dictionary. Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- dictionary : array, [n_components, n_features] The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run Attributes ---------- components_ : array, [n_components, n_features] The unchanged dictionary atoms See also -------- DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA sparse_encode """ def __init__(self, dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self._set_sparse_coding_params(dictionary.shape[0], transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.components_ = dictionary def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self class DictionaryLearning(BaseEstimator, SparseCodingMixin): """Dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter max_iter : int, maximum number of iterations to perform tol : float, tolerance for numerical error fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. .. versionadded:: 0.17 *cd* coordinate descent method to improve speed. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` .. versionadded:: 0.17 *lasso_cd* coordinate descent method to improve speed. transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run code_init : array of shape (n_samples, n_components), initial value for the code, for warm restart dict_init : array of shape (n_components, n_features), initial values for the dictionary, for warm restart verbose : degree of verbosity of the printed output random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] dictionary atoms extracted from the data error_ : array vector of errors at each iteration n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, max_iter=1000, tol=1e-8, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.max_iter = max_iter self.tol = tol self.fit_algorithm = fit_algorithm self.code_init = code_init self.dict_init = dict_init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self: object Returns the object itself """ random_state = check_random_state(self.random_state) X = check_array(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components V, U, E, self.n_iter_ = dict_learning( X, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=random_state, return_n_iter=True) self.components_ = U self.error_ = E return self class MiniBatchDictionaryLearning(BaseEstimator, SparseCodingMixin): """Mini-batch dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios verbose : degree of verbosity of the printed output batch_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] components extracted from the data inner_stats_ : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid loosing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, n_iter=1000, fit_algorithm='lars', n_jobs=1, batch_size=3, shuffle=True, dict_init=None, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.n_iter = n_iter self.fit_algorithm = fit_algorithm self.dict_init = dict_init self.verbose = verbose self.shuffle = shuffle self.batch_size = batch_size self.split_sign = split_sign self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = check_array(X) U, (A, B), self.n_iter_ = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=self.dict_init, batch_size=self.batch_size, shuffle=self.shuffle, verbose=self.verbose, random_state=random_state, return_inner_stats=True, return_n_iter=True) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = self.n_iter return self def partial_fit(self, X, y=None, iter_offset=None): """Updates the model using the data in X as a mini-batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. iter_offset: integer, optional The number of iteration on data batches that has been performed before this call to partial_fit. This is optional: if no number is passed, the memory of the object is used. Returns ------- self : object Returns the instance itself. """ if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) X = check_array(X) if hasattr(self, 'components_'): dict_init = self.components_ else: dict_init = self.dict_init inner_stats = getattr(self, 'inner_stats_', None) if iter_offset is None: iter_offset = getattr(self, 'iter_offset_', 0) U, (A, B) = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=dict_init, batch_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state_, return_inner_stats=True, inner_stats=inner_stats) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = iter_offset + self.n_iter return self
bsd-3-clause
ARudiuk/mne-python
tutorials/plot_sensors_decoding.py
5
3140
""" ========================== Decoding sensor space data ========================== Decoding, a.k.a MVPA or supervised machine learning applied to MEG data in sensor space. Here the classifier is applied to every time point. """ import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score from sklearn.cross_validation import StratifiedKFold import mne from mne.datasets import sample from mne.decoding import TimeDecoding, GeneralizationAcrossTime data_path = sample.data_path() plt.close('all') ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.filter(2, None, method='iir') # replace baselining with high-pass events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True, reject=dict(grad=4000e-13, eog=150e-6)) epochs_list = [epochs[k] for k in event_id] mne.epochs.equalize_epoch_counts(epochs_list) data_picks = mne.pick_types(epochs.info, meg=True, exclude='bads') ############################################################################### # Temporal decoding # ----------------- # # We'll use the default classifer for a binary classification problem # which is a linear Support Vector Machine (SVM). td = TimeDecoding(predict_mode='cross-validation', n_jobs=1) # Fit td.fit(epochs) # Compute accuracy td.score(epochs) # Plot scores across time td.plot(title='Sensor space decoding') ############################################################################### # Generalization Across Time # -------------------------- # # Here we'll use a stratified cross-validation scheme. # make response vector y = np.zeros(len(epochs.events), dtype=int) y[epochs.events[:, 2] == 3] = 1 cv = StratifiedKFold(y=y) # do a stratified cross-validation # define the GeneralizationAcrossTime object gat = GeneralizationAcrossTime(predict_mode='cross-validation', n_jobs=1, cv=cv, scorer=roc_auc_score) # fit and score gat.fit(epochs, y=y) gat.score(epochs) # let's visualize now gat.plot() gat.plot_diagonal() ############################################################################### # Exercise # -------- # - Can you improve the performance using full epochs and a common spatial # pattern (CSP) used by most BCI systems? # - Explore other datasets from MNE (e.g. Face dataset from SPM to predict # Face vs. Scrambled) # # Have a look at the example # :ref:`sphx_glr_auto_examples_decoding_plot_decoding_csp_space.py`
bsd-3-clause
skearnes/pylearn2
pylearn2/scripts/datasets/browse_small_norb.py
4
6492
#!/usr/bin/env python import sys, argparse, pickle import numpy from matplotlib import pyplot from pylearn2.datasets import norb def main(): def parse_args(): parser = argparse.ArgumentParser( description="Browser for SmallNORB dataset.") parser.add_argument('--which_set', default='train', help="'train', 'test', or the path to a .pkl file") parser.add_argument('--zca', default=None, help=("if --which_set points to a .pkl " "file storing a ZCA-preprocessed " "NORB dataset, you can optionally " "enter the preprocessor's .pkl " "file path here to undo the " "ZCA'ing for visualization " "purposes.")) return parser.parse_args() def get_data(args): if args.which_set in ('train', 'test'): dataset = norb.SmallNORB(args.which_set, True) else: with open(args.which_set) as norb_file: dataset = pickle.load(norb_file) if len(dataset.y.shape) < 2 or dataset.y.shape[1] == 1: print("This viewer does not support NORB datasets that " "only have classification labels.") sys.exit(1) if args.zca is not None: with open(args.zca) as zca_file: zca = pickle.load(zca_file) dataset.X = zca.inverse(dataset.X) num_examples = dataset.X.shape[0] topo_shape = ((num_examples, ) + tuple(dataset.view_converter.shape)) assert topo_shape[-1] == 1 topo_shape = topo_shape[:-1] values = dataset.X.reshape(topo_shape) labels = numpy.array(dataset.y, 'int') return values, labels, dataset.which_set args = parse_args() values, labels, which_set = get_data(args) # For programming convenience, internally remap the instance labels to be # 0-4, and the azimuth labels to be 0-17. The user will still only see the # original, unmodified label values. instance_index = norb.SmallNORB.label_type_to_index['instance'] def remap_instances(which_set, labels): if which_set == 'train': new_to_old_instance = [4, 6, 7, 8, 9] elif which_set == 'test': new_to_old_instance = [0, 1, 2, 3, 5] num_instances = len(new_to_old_instance) old_to_new_instance = numpy.ndarray(10, 'int') old_to_new_instance.fill(-1) old_to_new_instance[new_to_old_instance] = numpy.arange(num_instances) instance_slice = numpy.index_exp[:, instance_index] old_instances = labels[instance_slice] new_instances = old_to_new_instance[old_instances] labels[instance_slice] = new_instances azimuth_index = norb.SmallNORB.label_type_to_index['azimuth'] azimuth_slice = numpy.index_exp[:, azimuth_index] labels[azimuth_slice] = labels[azimuth_slice] / 2 return new_to_old_instance new_to_old_instance = remap_instances(which_set, labels) def get_new_azimuth_degrees(scalar_label): return 20 * scalar_label # Maps a label vector to the corresponding index in <values> num_labels_by_type = numpy.array(norb.SmallNORB.num_labels_by_type, 'int') num_labels_by_type[instance_index] = len(new_to_old_instance) label_to_index = numpy.ndarray(num_labels_by_type, 'int') label_to_index.fill(-1) for i, label in enumerate(labels): label_to_index[tuple(label)] = i assert not numpy.any(label_to_index == -1) # all elements have been set figure, axes = pyplot.subplots(1, 2, squeeze=True) figure.canvas.set_window_title('Small NORB dataset (%sing set)' % which_set) # shift subplots down to make more room for the text figure.subplots_adjust(bottom=0.05) num_label_types = len(norb.SmallNORB.num_labels_by_type) current_labels = numpy.zeros(num_label_types, 'int') current_label_type = [0, ] label_text = figure.suptitle("title text", x=0.1, horizontalalignment="left") def redraw(redraw_text, redraw_images): if redraw_text: cl = current_labels lines = [ 'category: %s' % norb.SmallNORB.get_category(cl[0]), 'instance: %d' % new_to_old_instance[cl[1]], 'elevation: %d' % norb.SmallNORB.get_elevation_degrees(cl[2]), 'azimuth: %d' % get_new_azimuth_degrees(cl[3]), 'lighting: %d' % cl[4]] lt = current_label_type[0] lines[lt] = '==> ' + lines[lt] text = ('Up/down arrows choose label, left/right arrows change it' '\n\n' + '\n'.join(lines)) label_text.set_text(text) if redraw_images: index = label_to_index[tuple(current_labels)] image_pair = values[index, :, :, :] for i in range(2): axes[i].imshow(image_pair[i, :, :], cmap='gray') figure.canvas.draw() def on_key_press(event): def add_mod(arg, step, size): return (arg + size + step) % size def incr_label_type(step): current_label_type[0] = add_mod(current_label_type[0], step, num_label_types) def incr_label(step): lt = current_label_type[0] num_labels = num_labels_by_type[lt] current_labels[lt] = add_mod(current_labels[lt], step, num_labels) if event.key == 'up': incr_label_type(-1) redraw(True, False) elif event.key == 'down': incr_label_type(1) redraw(True, False) elif event.key == 'left': incr_label(-1) redraw(True, True) elif event.key == 'right': incr_label(1) redraw(True, True) elif event.key == 'q': sys.exit(0) figure.canvas.mpl_connect('key_press_event', on_key_press) redraw(True, True) pyplot.show() if __name__ == '__main__': main()
bsd-3-clause
madjelan/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
251
1895
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] plt.plot(x_plot, f(x_plot), label="ground truth") plt.scatter(x, y, label="training points") for degree in [3, 4, 5]: model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
MJuddBooth/pandas
pandas/core/indexes/numeric.py
2
14865
import warnings import numpy as np from pandas._libs import index as libindex import pandas.compat as compat from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( is_bool, is_bool_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_integer_dtype, is_scalar, needs_i8_conversion, pandas_dtype) import pandas.core.dtypes.concat as _concat from pandas.core.dtypes.missing import isna from pandas.core import algorithms import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, InvalidIndexError, _index_shared_docs) from pandas.core.ops import get_op_result_name _num_index_shared_docs = dict() class NumericIndex(Index): """ Provide numeric type operations This is an abstract class """ _is_numeric_dtype = True def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=None): if fastpath is not None: warnings.warn("The 'fastpath' keyword is deprecated, and will be " "removed in a future version.", FutureWarning, stacklevel=2) if fastpath: return cls._simple_new(data, name=name) # is_scalar, generators handled in coerce_to_ndarray data = cls._coerce_to_ndarray(data) if issubclass(data.dtype.type, compat.string_types): cls._string_data_error(data) if copy or not is_dtype_equal(data.dtype, cls._default_dtype): subarr = np.array(data, dtype=cls._default_dtype, copy=copy) cls._assert_safe_casting(data, subarr) else: subarr = data if name is None and hasattr(data, 'name'): name = data.name return cls._simple_new(subarr, name=name) @Appender(_index_shared_docs['_maybe_cast_slice_bound']) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ['ix', 'loc', 'getitem', None] # we will try to coerce to integers return self._maybe_cast_indexer(label) @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is not None and not self._can_hold_na: # Ensure we are not returning an Int64Index with float data: return self._shallow_copy_with_infer(values=values, **kwargs) return (super(NumericIndex, self)._shallow_copy(values=values, **kwargs)) def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ if is_bool(value) or is_bool_dtype(value): # force conversion to object # so we don't lose the bools raise TypeError return value def _convert_tolerance(self, tolerance, target): tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'target index size') if not np.issubdtype(tolerance.dtype, np.number): if tolerance.ndim > 0: raise ValueError(('tolerance argument for %s must contain ' 'numeric elements if it is list type') % (type(self).__name__,)) else: raise ValueError(('tolerance argument for %s must be numeric ' 'if it is a scalar: %r') % (type(self).__name__, tolerance)) return tolerance @classmethod def _assert_safe_casting(cls, data, subarr): """ Subclasses need to override this only if the process of casting data from some accepted dtype to the internal dtype(s) bears the risk of truncation (e.g. float to int). """ pass def _concat_same_dtype(self, indexes, name): return _concat._concat_index_same_dtype(indexes).rename(name) @property def is_all_dates(self): """ Checks that all the labels are datetime objects """ return False @Appender(Index.insert.__doc__) def insert(self, loc, item): # treat NA values as nans: if is_scalar(item) and isna(item): item = self._na_value return super(NumericIndex, self).insert(loc, item) _num_index_shared_docs['class_descr'] = """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. %(klass)s is a special case of `Index` with purely %(ltype)s labels. %(extra)s Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: %(dtype)s) copy : bool Make a copy of input ndarray name : object Name to be stored in the index Attributes ---------- None Methods ------- None See Also -------- Index : The base pandas Index type. Notes ----- An Index instance can **only** contain hashable objects. """ _int64_descr_args = dict( klass='Int64Index', ltype='integer', dtype='int64', extra='' ) class IntegerIndex(NumericIndex): """ This is an abstract class for Int64Index, UInt64Index. """ def __contains__(self, key): """ Check if key is a float and has a decimal. If it has, return False. """ hash(key) try: if is_float(key) and int(key) != key: return False return key in self._engine except (OverflowError, TypeError, ValueError): return False class Int64Index(IntegerIndex): __doc__ = _num_index_shared_docs['class_descr'] % _int64_descr_args _typ = 'int64index' _can_hold_na = False _engine_type = libindex.Int64Engine _default_dtype = np.int64 @property def inferred_type(self): """Always 'integer' for ``Int64Index``""" return 'integer' @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # don't coerce ilocs to integers if kind != 'iloc': key = self._maybe_cast_indexer(key) return (super(Int64Index, self) ._convert_scalar_indexer(key, kind=kind)) def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Int64Index(joined, name=name) @classmethod def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as ints. """ if not issubclass(data.dtype.type, np.signedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast') Int64Index._add_numeric_methods() Int64Index._add_logical_methods() _uint64_descr_args = dict( klass='UInt64Index', ltype='unsigned integer', dtype='uint64', extra='' ) class UInt64Index(IntegerIndex): __doc__ = _num_index_shared_docs['class_descr'] % _uint64_descr_args _typ = 'uint64index' _can_hold_na = False _engine_type = libindex.UInt64Engine _default_dtype = np.uint64 @property def inferred_type(self): """Always 'integer' for ``UInt64Index``""" return 'integer' @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('u8') @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # don't coerce ilocs to integers if kind != 'iloc': key = self._maybe_cast_indexer(key) return (super(UInt64Index, self) ._convert_scalar_indexer(key, kind=kind)) @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. keyarr = com.asarray_tuplesafe(keyarr) if is_integer_dtype(keyarr): return com.asarray_tuplesafe(keyarr, dtype=np.uint64) return keyarr @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): # Cast the indexer to uint64 if possible so # that the values returned from indexing are # also uint64. if keyarr.is_integer(): return keyarr.astype(np.uint64) return keyarr def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return UInt64Index(joined, name=name) @classmethod def _assert_safe_casting(cls, data, subarr): """ Ensure incoming data can be represented as uints. """ if not issubclass(data.dtype.type, np.unsignedinteger): if not np.array_equal(data, subarr): raise TypeError('Unsafe NumPy casting, you must ' 'explicitly cast') UInt64Index._add_numeric_methods() UInt64Index._add_logical_methods() _float64_descr_args = dict( klass='Float64Index', dtype='float64', ltype='float', extra='' ) class Float64Index(NumericIndex): __doc__ = _num_index_shared_docs['class_descr'] % _float64_descr_args _typ = 'float64index' _engine_type = libindex.Float64Engine _default_dtype = np.float64 @property def inferred_type(self): """Always 'floating' for ``Float64Index``""" return 'floating' @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if needs_i8_conversion(dtype): msg = ('Cannot convert Float64Index to dtype {dtype}; integer ' 'values are required for conversion').format(dtype=dtype) raise TypeError(msg) elif (is_integer_dtype(dtype) and not is_extension_array_dtype(dtype)) and self.hasnans: # TODO(jreback); this can change once we have an EA Index type # GH 13149 raise ValueError('Cannot convert NA to integer') return super(Float64Index, self).astype(dtype, copy=copy) @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) return key @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): # if we are not a slice, then we are done if not isinstance(key, slice): return key if kind == 'iloc': return super(Float64Index, self)._convert_slice_indexer(key, kind=kind) # translate to locations return self.slice_indexer(key.start, key.stop, key.step, kind=kind) def _format_native_types(self, na_rep='', float_format=None, decimal='.', quoting=None, **kwargs): from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter(self.values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False) return formatter.get_result_as_array() def get_value(self, series, key): """ we always want to get an index value, never a value """ if not is_scalar(key): raise InvalidIndexError k = com.values_from_object(key) loc = self.get_loc(k) new_values = com.values_from_object(series)[loc] return new_values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self is other: return True if not isinstance(other, Index): return False # need to compare nans locations and make sure that they are the same # since nans don't compare equal this is a bit tricky try: if not isinstance(other, Float64Index): other = self._constructor(other) if (not is_dtype_equal(self.dtype, other.dtype) or self.shape != other.shape): return False left, right = self._ndarray_values, other._ndarray_values return ((left == right) | (self._isnan & other._isnan)).all() except (TypeError, ValueError): return False def __contains__(self, other): if super(Float64Index, self).__contains__(other): return True try: # if other is a sequence this throws a ValueError return np.isnan(other) and self.hasnans except ValueError: try: return len(other) <= 1 and ibase._try_get_item(other) in self except TypeError: pass except TypeError: pass return False @Appender(_index_shared_docs['get_loc']) def get_loc(self, key, method=None, tolerance=None): try: if np.all(np.isnan(key)) or is_bool(key): nan_idxs = self._nan_idxs try: return nan_idxs.item() except (ValueError, IndexError): # should only need to catch ValueError here but on numpy # 1.7 .item() can raise IndexError when NaNs are present if not len(nan_idxs): raise KeyError(key) return nan_idxs except (TypeError, NotImplementedError): pass return super(Float64Index, self).get_loc(key, method=method, tolerance=tolerance) @cache_readonly def is_unique(self): return super(Float64Index, self).is_unique and self._nan_idxs.size < 2 @Appender(Index.isin.__doc__) def isin(self, values, level=None): if level is not None: self._validate_index_level(level) return algorithms.isin(np.array(self), values) Float64Index._add_numeric_methods() Float64Index._add_logical_methods_disabled()
bsd-3-clause
DTMilodowski/EOlab
src/potentialAGB_Indonesia_app.py
1
6377
import numpy as np import os import sys import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt import prepare_EOlab_layers as EO sys.path.append('/home/dmilodow/DataStore_DTM/FOREST2020/PotentialBiomass/src') import geospatial_utility_tools as geo # Get perceptionally uniform colourmaps sys.path.append('/home/dmilodow/DataStore_DTM/FOREST2020/EOdata/EO_data_processing/src/plot_EO_data/colormap/') import colormaps as cmaps plt.register_cmap(name='viridis', cmap=cmaps.viridis) plt.register_cmap(name='inferno', cmap=cmaps.inferno) plt.register_cmap(name='plasma', cmap=cmaps.plasma) plt.register_cmap(name='magma', cmap=cmaps.magma) plt.set_cmap(cmaps.viridis) plt.figure(1, facecolor='White',figsize=[2, 1]) plt.show() DATADIR = '/disk/scratch/local.2/southeast_asia_PFB/' SAVEDIR = '/home/dmilodow/DataStore_DTM/EOlaboratory/EOlab/IndonesiaPotentialAGB/v1.0/' NetCDF_file = 'southeast_asia_PFB_mean_WorldClim2.nc' ds,geoTrans = EO.load_NetCDF(DATADIR+NetCDF_file,lat_var = 'lat', lon_var = 'lon') resampling_scalar = 3. vars = ['AGB_mean','AGBpot_mean','forests'] dataset, geoTrans = EO.resample_dataset(ds,geoTrans,vars,resampling_scalar) # sequestration potential is defined by pixels with positive potential biomass that # are not already forests dataset['seqpot_mean'] = dataset['AGBpot_mean']-dataset['AGB_mean'] dataset['seqpot_mean'][dataset['forests']==1] = 0. dataset['seqpot_mean'][dataset['seqpot_mean']<0] = 0. dataset['seqpot_mean'][dataset['AGB_mean']==-9999] = -9999. dataset['forests'][dataset['forests']!=1] = -9999. vars = ['AGB_mean','AGBpot_mean','seqpot_mean','forests'] cmaps = ['viridis','viridis','plasma','viridis'] ulims = [200.,200.,100.,1.] llims = [0.,0.,0.,0.] axis_labels = ['AGB$_{obs}$ / Mg(C) ha$^{-1}$', 'AGB$_{potential}$ / Mg(C) ha$^{-1}$', 'Sequestration potential / Mg(C) ha$^{-1}$', 'Forest mask (1 = Forest)'] for vv in range(0,len(vars)): print vars[vv] file_prefix = SAVEDIR + 'se_asia_' + vars[vv] # delete existing dataset if present if 'se_asia_'+vars[vv]+'_data.tif' in os.listdir(SAVEDIR): os.system("rm %s" % (SAVEDIR+'se_asia_'+vars[vv]+'_data.tif')) if 'se_asia_'+vars[vv]+'_display.tif' in os.listdir(SAVEDIR): os.system("rm %s" % (SAVEDIR+'se_asia_'+vars[vv]+'_display.tif')) EO.write_array_to_display_layer_GeoTiff(dataset[vars[vv]], geoTrans, file_prefix, cmaps[vv], ulims[vv], llims[vv]) EO.plot_legend(cmaps[vv],ulims[vv],llims[vv],axis_labels[vv], file_prefix) rows, cols = dataset[vars[0]].shape latitude = np.arange(geoTrans[3],rows*geoTrans[5]+geoTrans[3],geoTrans[5]) longitude = np.arange(geoTrans[0],cols*geoTrans[1]+geoTrans[0],geoTrans[1]) areas = geo.calculate_cell_area_array(latitude,longitude, area_scalar = 1./10.**4,cell_centred=False) # loop through the variables, multiplying by cell areas to give values in Mg for vv in range(0,len(vars)): print vars[vv] if 'se_asia_'+vars[vv]+'_total_data.tif' in os.listdir(SAVEDIR): os.system("rm %s" % (SAVEDIR+'se_asia_'+vars[vv]+'_total_data.tif')) file_prefix = SAVEDIR + 'se_asia_' + vars[vv] + '_total' out_array = dataset[vars[vv]] * areas out_array[dataset[vars[vv]]==-9999]=-9999 EO.write_array_to_data_layer_GeoTiff(out_array, geoTrans, file_prefix) out_array=None # Also want to write cell areas to file. However, as this will be compared against other layers, need to carry across # nodata values areas_out = areas.copy() areas_out[np.asarray(dataset[vars[0]])==-9999] = -9999 if 'se_asia_cell_areas_data.tif' in os.listdir(SAVEDIR): os.system("rm %s" % (SAVEDIR+'se_asia_cell_areas_data.tif')) area_file_prefix = SAVEDIR + 'se_asia_cell_areas' EO.write_array_to_data_layer_GeoTiff(areas_out, geoTrans, area_file_prefix) """ # Finally, we also want to write quantitative display layers for the maximum and minimum biomass, # potential biomass and sequestration potential so that we can define uncertainy boundaries. NetCDF_file = 'indonesia_PFB_lower.nc' ds,geoTrans = EO.load_NetCDF(DATADIR+NetCDF_file,lat_var = 'lat', lon_var = 'lon') resampling_scalar = 3. vars = ['AGB_lower','AGBpot_lower','forests'] dataset, geoTrans = EO.resample_dataset(ds,geoTrans,vars,resampling_scalar) # sequestration potential is defined by pixels with positive potential biomass that # are not already forests dataset['seqpot_lower'] = dataset['AGBpot_lower']-dataset['AGB_lower'] dataset['seqpot_lower'][dataset['AGB_lower']==-9999] = -9999. dataset['seqpot_lower'][dataset['forests']==1] = 0. dataset['seqpot_lower'][dataset['seqpot_lower']<0] = 0. dataset['forests'][dataset['forests']!=1] = -9999. vars = ['AGB_lower','AGBpot_lower','seqpot_lower'] for vv in range(0,len(vars)): print vars[vv] if 'indonesia_'+vars[vv]+'_total_data.tif' in os.listdir(SAVEDIR): os.system("rm %s" % (SAVEDIR+'indonesia_'+vars[vv]+'_total_data.tif')) file_prefix = SAVEDIR + 'indonesia_' + vars[vv] + '_total_data' out_array = dataset[vars[vv]] * areas out_array[dataset[vars[vv]]==-9999]=-9999 EO.write_array_to_data_layer_GeoTiff(out_array, geoTrans, file_prefix) out_array=None NetCDF_file = 'indonesia_PFB_upper.nc' ds,geoTrans = EO.load_NetCDF(DATADIR+NetCDF_file,lat_var = 'lat', lon_var = 'lon') resampling_scalar = 3. vars = ['AGB_upper','AGBpot_upper','forests'] dataset, geoTrans = EO.resample_dataset(ds,geoTrans,vars,resampling_scalar) # sequestration potential is defined by pixels with positive potential biomass that # are not already forests dataset['seqpot_upper'] = dataset['AGBpot_upper']-dataset['AGB_upper'] dataset['seqpot_upper'][dataset['AGB_upper']==-9999] = -9999. dataset['seqpot_upper'][dataset['forests']==1] = 0. dataset['seqpot_upper'][dataset['seqpot_upper']<0] = 0. dataset['forests'][dataset['forests']!=1] = -9999. vars = ['AGB_upper','AGBpot_upper','seqpot_upper'] for vv in range(0,len(vars)): print vars[vv] if 'indonesia_'+vars[vv]+'_total_data.tif' in os.listdir(SAVEDIR): os.system("rm %s" % (SAVEDIR+'indonesia_'+vars[vv]+'_total_data.tif')) file_prefix = SAVEDIR + 'indonesia_' + vars[vv] + '_total_data' out_array = dataset[vars[vv]] * areas out_array[dataset[vars[vv]]==-9999]=-9999 EO.write_array_to_data_layer_GeoTiff(out_array, geoTrans, file_prefix) out_array=None """
gpl-3.0
MatthieuBizien/scikit-learn
sklearn/linear_model/logistic.py
7
67572
""" Logistic Regression """ # Author: Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Manoj Kumar <[email protected]> # Lars Buitinck # Simon Wu <[email protected]> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from .sag import sag_solver from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils import check_random_state from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, softmax, squared_norm) from ..utils.extmath import row_norms from ..utils.optimize import newton_cg from ..utils.validation import check_X_y from ..exceptions import DataConversionWarning from ..exceptions import NotFittedError from ..utils.fixes import expit from ..utils.multiclass import check_classification_targets from ..externals.joblib import Parallel, delayed from ..model_selection import check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. Returns ------- w : ndarray, shape (n_features,) Coefficient vector without the intercept weight (w[-1]) if the intercept should be fit. Unchanged otherwise. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Unchanged. yz : float y * np.dot(X, w). """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c yz = y * z return w, c, yz def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(n_samples) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the gradient and the Hessian, in the case of a logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return grad, hessp def _check_solver_option(solver, multi_class, penalty, dual): if solver not in ['liblinear', 'newton-cg', 'lbfgs', 'sag']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg, lbfgs and sag solvers, got %s" % solver) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class should be either multinomial or " "ovr, got %s" % multi_class) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s does not support " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("Solver %s supports only l2 penalties, " "got %s penalty." % (solver, penalty)) if dual: raise ValueError("Solver %s supports only " "dual=False, got dual=%s" % (solver, dual)) def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=False, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr', random_state=None, check_input=True, max_squared_sum=None, sample_weight=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. Useless for liblinear solver. copy : bool, default False Whether or not to produce a copy of the data. A copy is not required anymore. This parameter is deprecated and will be removed in 0.19. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solvers. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. n_iter : array, shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if copy: warnings.warn("A copy is not required anymore. The 'copy' parameter " "is deprecated and will be removed in 0.19.", DeprecationWarning) if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) _check_solver_option(solver, multi_class, penalty, dual) # Preprocessing. if check_input or copy: X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) check_consistent_length(X, y) _, n_features = X.shape classes = np.unique(y) random_state = check_random_state(random_state) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples if sample_weight is not None: sample_weight = np.array(sample_weight, dtype=np.float64, order='C') check_consistent_length(y, sample_weight) else: sample_weight = np.ones(X.shape[0]) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "balanced", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict) or multi_class == 'multinomial': class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = np.array([-1, 1]) mask = (y == pos_class) y_bin = np.ones(y.shape, dtype=np.float64) y_bin[~mask] = -1. # for compute_class_weight # 'auto' is deprecated and will be removed in 0.19 if class_weight in ("auto", "balanced"): class_weight_ = compute_class_weight(class_weight, mask_classes, y_bin) sample_weight *= class_weight_[le.fit_transform(y_bin)] else: if solver != 'sag': lbin = LabelBinarizer() Y_multi = lbin.fit_transform(y) if Y_multi.shape[1] == 1: Y_multi = np.hstack([1 - Y_multi, Y_multi]) else: # SAG multinomial solver needs LabelEncoder, not LabelBinarizer le = LabelEncoder() Y_multi = le.fit_transform(y) w0 = np.zeros((classes.size, n_features + int(fit_intercept)), order='F') if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_classes = classes.size if n_classes == 2: n_classes = 1 if (coef.shape[0] != n_classes or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. if solver in ['lbfgs', 'newton-cg']: w0 = w0.ravel() target = Y_multi if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess warm_start_sag = {'coef': w0.T} else: target = y_bin if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess warm_start_sag = {'coef': np.expand_dims(w0, axis=1)} coefs = list() n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") try: n_iter_i = info['nit'] - 1 except: n_iter_i = info['funcalls'] - 1 elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0, n_iter_i = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, n_iter_i, = _fit_liblinear( X, target, C, fit_intercept, intercept_scaling, None, penalty, dual, verbose, max_iter, tol, random_state, sample_weight=sample_weight) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() elif solver == 'sag': if multi_class == 'multinomial': target = target.astype(np.float64) loss = 'multinomial' else: loss = 'log' w0, n_iter_i, warm_start_sag = sag_solver( X, target, sample_weight, loss, 1. / C, max_iter, tol, verbose, random_state, False, max_squared_sum, warm_start_sag) else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg', 'sag'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0.copy()) n_iter[i] = n_iter_i return coefs, np.array(Cs), n_iter # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, intercept_scaling=1., multi_class='ovr', random_state=None, max_squared_sum=None, sample_weight=None): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solver. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. n_iter : array, shape(n_cs,) Actual number of iteration for each Cs. """ _check_solver_option(solver, multi_class, penalty, dual) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] if sample_weight is not None: sample_weight = sample_weight[train] coefs, Cs, n_iter = logistic_regression_path( X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling, random_state=random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) log_reg = LogisticRegression(fit_intercept=fit_intercept) # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test = np.ones(y_test.shape, dtype=np.float64) y_test[~mask] = -1. # To deal with object dtypes, we need to convert into an array of floats. y_test = check_array(y_test, dtype=np.float64, ensure_2d=False) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores), n_iter class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross- entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- penalty : str, 'l1' or 'l2', default: 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. dual : bool, default: False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, default: 1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', default: None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 *class_weight='balanced'* instead of deprecated *class_weight='auto'*. max_iter : int, default: 100 Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, default: None The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'}, default: 'liblinear' Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg', 'sag' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float, default: 1e-4 Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'}, default: 'ovr' Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'newton-cg', 'sag' and 'lbfgs' solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. verbose : int, default: 0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. warm_start : bool, default: False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. .. versionadded:: 0.17 *warm_start* to support *lbfgs*, *newton-cg*, *sag* solvers. n_jobs : int, default: 1 Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : array, shape (n_classes,) or (1, ) Actual number of iterations for all classes. If binary or multinomial, it returns only 1 element. For liblinear solver, only the maximum number of iteration across all classes is given. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose self.warm_start = warm_start self.n_jobs = n_jobs def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. .. versionadded:: 0.17 *sample_weight* support to LogisticRegression. Returns ------- self : object Returns self. """ if not isinstance(self.C, numbers.Number) or self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") check_classification_targets(y) self.classes_ = np.unique(y) n_samples, n_features = X.shape _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if self.solver == 'liblinear': self.coef_, self.intercept_, n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, sample_weight=sample_weight) self.n_iter_ = np.array([n_iter_]) return self if self.solver == 'sag': max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] if self.warm_start: warm_start_coef = getattr(self, 'coef_', None) else: warm_start_coef = None if warm_start_coef is not None and self.fit_intercept: warm_start_coef = np.append(warm_start_coef, self.intercept_[:, np.newaxis], axis=1) self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] warm_start_coef = [warm_start_coef] if warm_start_coef is None: warm_start_coef = [None] * n_classes path_func = delayed(logistic_regression_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, copy=False, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight, check_input=False, random_state=self.random_state, coef=warm_start_coef_, max_squared_sum=max_squared_sum, sample_weight=sample_weight) for (class_, warm_start_coef_) in zip(classes_, warm_start_coef)) fold_coefs_, _, n_iter_ = zip(*fold_coefs_) self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0] if self.multi_class == 'multinomial': self.coef_ = fold_coefs_[0][0] else: self.coef_ = np.asarray(fold_coefs_) self.coef_ = self.coef_.reshape(n_classes, n_features + int(self.fit_intercept)) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ if not hasattr(self, "coef_"): raise NotFittedError("Call fit before prediction") calculate_ovr = self.coef_.shape[0] == 1 or self.multi_class == "ovr" if calculate_ovr: return super(LogisticRegression, self)._predict_proba_lr(X) else: return softmax(self.decision_function(X), copy=False) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to be faster for high-dimensional dense data. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 class_weight == 'balanced' cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.model_selection` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'} Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg', 'sag' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. - 'liblinear' might be slower in LogisticRegressionCV because it does not handle warm-starting. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the 'liblinear', 'sag' and 'lbfgs' solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'newton-cg', 'sag' and 'lbfgs' solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \ ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs) Actual number of iterations for all classes, folds and Cs. In the binary or multinomial cases, the first dimension is equal to 1. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr', random_state=None): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class self.random_state = random_state def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") if self.solver == 'sag': max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None check_classification_targets(y) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = check_cv(self.cv, y, classifier=True) folds = list(cv.split(X, y)) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight in ['balanced', 'auto']): # 'auto' is deprecated and will be removed in 0.19 raise ValueError("class_weight provided should be a " "dict or 'balanced'") # compute the class weights for the entire dataset y if self.class_weight in ("auto", "balanced"): classes = np.unique(y) class_weight = compute_class_weight(self.class_weight, classes, y) class_weight = dict(zip(classes, class_weight)) else: class_weight = self.class_weight path_func = delayed(_log_reg_scoring_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling, random_state=self.random_state, max_squared_sum=max_squared_sum, sample_weight=sample_weight ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores, n_iter_ = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] self.n_iter_ = np.reshape(n_iter_, (1, len(folds), len(self.Cs_))) else: coefs_paths, Cs, scores, n_iter_ = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.n_iter_ = np.reshape(n_iter_, (n_classes, len(folds), len(self.Cs_))) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, penalty=self.penalty, copy=False, class_weight=class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1), random_state=self.random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([coefs_paths[i][best_indices[i]] for i in range(len(folds))], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
akrherz/dep
scripts/switchgrass/mlra_percent_slopes_conv.py
2
1884
"""Print out the percentage of slopes converted.""" from pandas.io.sql import read_sql from pyiem.util import get_dbconn LABELS = { 36: "Slopes > 3% to Switchgrass", 37: "Slopes > 6% to Switchgrass", 38: "Slopes > 10% to Switchgrass", } def main(argv): """Go Main Go""" mlra_id = int(argv[1]) pgconn = get_dbconn("idep") mlraxref = read_sql( """ select distinct mlra_id, mlra_name from mlra """, pgconn, index_col="mlra_id", ) print("%s," % (mlraxref.at[mlra_id, "mlra_name"],), end="") for col, scenario in enumerate(range(36, 39)): df = read_sql( """ with myhucs as ( SELECT huc_12 from huc12 where scenario = 0 and mlra_id = %s ) select fpath, f.huc_12 from flowpaths f, myhucs h WHERE f.scenario = 0 and f.huc_12 = h.huc_12 """, pgconn, params=(mlra_id,), index_col=None, ) if df.empty: print() continue hits = 0 for _, row in df.iterrows(): prj = ("/prj/%s/%s/%s_%s.prj") % ( row["huc_12"][:8], row["huc_12"][8:], row["huc_12"], row["fpath"], ) prj2 = "/i/%s/%s" % (scenario, prj) if open(prj2).read().find("SWITCHGRASS.rot") > 0: hits += 1 print("%.2f," % (hits / float(len(df.index)) * 100.0,), end="") print() if __name__ == "__main__": for mlraid in [ 106, 107, 108, 109, 121, 137, 150, 155, 166, 175, 176, 177, 178, 179, 181, 182, 186, 187, 188, 196, 197, 204, 205, ]: main([None, mlraid])
mit
bavardage/statsmodels
statsmodels/examples/ex_kernel_semilinear_dgp.py
3
4916
# -*- coding: utf-8 -*- """ Created on Sun Jan 06 09:50:54 2013 Author: Josef Perktold """ if __name__ == '__main__': import numpy as np import matplotlib.pyplot as plt #from statsmodels.nonparametric.api import KernelReg import statsmodels.sandbox.nonparametric.kernel_extras as smke import statsmodels.sandbox.nonparametric.dgp_examples as dgp class UnivariateFunc1a(dgp.UnivariateFunc1): def het_scale(self, x): return 0.5 seed = np.random.randint(999999) #seed = 430973 #seed = 47829 seed = 648456 #good seed for het_scale = 0.5 print seed np.random.seed(seed) nobs, k_vars = 300, 3 x = np.random.uniform(-2, 2, size=(nobs, k_vars)) xb = x.sum(1) / 3 #beta = [1,1,1] k_vars_lin = 2 x2 = np.random.uniform(-2, 2, size=(nobs, k_vars_lin)) funcs = [#dgp.UnivariateFanGijbels1(), #dgp.UnivariateFanGijbels2(), #dgp.UnivariateFanGijbels1EU(), #dgp.UnivariateFanGijbels2(distr_x=stats.uniform(-2, 4)) UnivariateFunc1a(x=xb) ] res = [] fig = plt.figure() for i,func in enumerate(funcs): #f = func() f = func y = f.y + x2.sum(1) model = smke.SemiLinear(y, x2, x, 'ccc', k_vars_lin) mean, mfx = model.fit() ax = fig.add_subplot(1, 1, i+1) f.plot(ax=ax) xb_est = np.dot(model.exog, model.b) sortidx = np.argsort(xb_est) #f.x) ax.plot(f.x[sortidx], mean[sortidx], 'o', color='r', lw=2, label='est. mean') # ax.plot(f.x, mean0, color='g', lw=2, label='est. mean') ax.legend(loc='upper left') res.append((model, mean, mfx)) print 'beta', model.b print 'scale - est', (y - (xb_est+mean)).std() print 'scale - dgp realised, true', (y - (f.y_true + x2.sum(1))).std(), \ 2 * f.het_scale(1) fittedvalues = xb_est + mean resid = np.squeeze(model.endog) - fittedvalues print 'corrcoef(fittedvalues, resid)', np.corrcoef(fittedvalues, resid)[0,1] print 'variance of components, var and as fraction of var(y)' print 'fitted values', fittedvalues.var(), fittedvalues.var() / y.var() print 'linear ', xb_est.var(), xb_est.var() / y.var() print 'nonparametric', mean.var(), mean.var() / y.var() print 'residual ', resid.var(), resid.var() / y.var() print '\ncovariance decomposition fraction of var(y)' print np.cov(fittedvalues, resid) / model.endog.var(ddof=1) print 'sum', (np.cov(fittedvalues, resid) / model.endog.var(ddof=1)).sum() print '\ncovariance decomposition, xb, m, resid as fraction of var(y)' print np.cov(np.column_stack((xb_est, mean, resid)), rowvar=False) / model.endog.var(ddof=1) fig.suptitle('Kernel Regression') fig.show() alpha = 0.7 fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(f.x[sortidx], f.y[sortidx], 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.x[sortidx], f.y_true[sortidx], 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(f.x[sortidx], mean[sortidx], 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') sortidx = np.argsort(xb_est + mean) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(f.x[sortidx], y[sortidx], 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.x[sortidx], f.y_true[sortidx], 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(f.x[sortidx], (xb_est + mean)[sortidx], 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') ax.set_title('Semilinear Model - observed and total fitted') fig = plt.figure() # ax = fig.add_subplot(1, 2, 1) # ax.plot(f.x, f.y, 'o', color='b', lw=2, alpha=alpha, label='observed') # ax.plot(f.x, f.y_true, 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') # ax.plot(f.x, mean, 'o', color='r', lw=2, alpha=alpha, label='est. mean') # ax.legend(loc='upper left') sortidx0 = np.argsort(xb) ax = fig.add_subplot(1, 2, 1) ax.plot(f.y[sortidx0], 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.y_true[sortidx0], 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(mean[sortidx0], 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') ax.set_title('Single Index Model (sorted by true xb)') ax = fig.add_subplot(1, 2, 2) ax.plot(y - xb_est, 'o', color='b', lw=2, alpha=alpha, label='observed') ax.plot(f.y_true, 'o', color='g', lw=2, alpha=alpha, label='dgp. mean') ax.plot(mean, 'o', color='r', lw=2, alpha=alpha, label='est. mean') ax.legend(loc='upper left') ax.set_title('Single Index Model (nonparametric)') plt.figure() plt.plot(y, xb_est+mean, '.') plt.title('observed versus fitted values') plt.show()
bsd-3-clause
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/scipy/signal/fir_filter_design.py
16
20091
"""Functions for FIR filter design.""" from __future__ import division, print_function, absolute_import from math import ceil, log import numpy as np from numpy.fft import irfft from scipy.special import sinc from . import sigtools __all__ = ['kaiser_beta', 'kaiser_atten', 'kaiserord', 'firwin', 'firwin2', 'remez'] # Some notes on function parameters: # # `cutoff` and `width` are given as a numbers between 0 and 1. These # are relative frequencies, expressed as a fraction of the Nyquist rate. # For example, if the Nyquist rate is 2KHz, then width=0.15 is a width # of 300 Hz. # # The `order` of a FIR filter is one less than the number of taps. # This is a potential source of confusion, so in the following code, # we will always use the number of taps as the parameterization of # the 'size' of the filter. The "number of taps" means the number # of coefficients, which is the same as the length of the impulse # response of the filter. def kaiser_beta(a): """Compute the Kaiser parameter `beta`, given the attenuation `a`. Parameters ---------- a : float The desired attenuation in the stopband and maximum ripple in the passband, in dB. This should be a *positive* number. Returns ------- beta : float The `beta` parameter to be used in the formula for a Kaiser window. References ---------- Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476. """ if a > 50: beta = 0.1102 * (a - 8.7) elif a > 21: beta = 0.5842 * (a - 21) ** 0.4 + 0.07886 * (a - 21) else: beta = 0.0 return beta def kaiser_atten(numtaps, width): """Compute the attenuation of a Kaiser FIR filter. Given the number of taps `N` and the transition width `width`, compute the attenuation `a` in dB, given by Kaiser's formula: a = 2.285 * (N - 1) * pi * width + 7.95 Parameters ---------- N : int The number of taps in the FIR filter. width : float The desired width of the transition region between passband and stopband (or, in general, at any discontinuity) for the filter. Returns ------- a : float The attenuation of the ripple, in dB. See Also -------- kaiserord, kaiser_beta """ a = 2.285 * (numtaps - 1) * np.pi * width + 7.95 return a def kaiserord(ripple, width): """ Design a Kaiser window to limit ripple and width of transition region. Parameters ---------- ripple : float Positive number specifying maximum ripple in passband (dB) and minimum ripple in stopband. width : float Width of transition region (normalized so that 1 corresponds to pi radians / sample). Returns ------- numtaps : int The length of the kaiser window. beta : float The beta parameter for the kaiser window. See Also -------- kaiser_beta, kaiser_atten Notes ----- There are several ways to obtain the Kaiser window: - ``signal.kaiser(numtaps, beta, sym=0)`` - ``signal.get_window(beta, numtaps)`` - ``signal.get_window(('kaiser', beta), numtaps)`` The empirical equations discovered by Kaiser are used. References ---------- Oppenheim, Schafer, "Discrete-Time Signal Processing", p.475-476. """ A = abs(ripple) # in case somebody is confused as to what's meant if A < 8: # Formula for N is not valid in this range. raise ValueError("Requested maximum ripple attentuation %f is too " "small for the Kaiser formula." % A) beta = kaiser_beta(A) # Kaiser's formula (as given in Oppenheim and Schafer) is for the filter # order, so we have to add 1 to get the number of taps. numtaps = (A - 7.95) / 2.285 / (np.pi * width) + 1 return int(ceil(numtaps)), beta def firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True, scale=True, nyq=1.0): """ FIR filter design using the window method. This function computes the coefficients of a finite impulse response filter. The filter will have linear phase; it will be Type I if `numtaps` is odd and Type II if `numtaps` is even. Type II filters always have zero response at the Nyquist rate, so a ValueError exception is raised if firwin is called with `numtaps` even and having a passband whose right end is at the Nyquist rate. Parameters ---------- numtaps : int Length of the filter (number of coefficients, i.e. the filter order + 1). `numtaps` must be even if a passband includes the Nyquist frequency. cutoff : float or 1D array_like Cutoff frequency of filter (expressed in the same units as `nyq`) OR an array of cutoff frequencies (that is, band edges). In the latter case, the frequencies in `cutoff` should be positive and monotonically increasing between 0 and `nyq`. The values 0 and `nyq` must not be included in `cutoff`. width : float or None If `width` is not None, then assume it is the approximate width of the transition region (expressed in the same units as `nyq`) for use in Kaiser FIR filter design. In this case, the `window` argument is ignored. window : string or tuple of string and parameter values Desired window to use. See `scipy.signal.get_window` for a list of windows and required parameters. pass_zero : bool If True, the gain at the frequency 0 (i.e. the "DC gain") is 1. Otherwise the DC gain is 0. scale : bool Set to True to scale the coefficients so that the frequency response is exactly unity at a certain frequency. That frequency is either: - 0 (DC) if the first passband starts at 0 (i.e. pass_zero is True) - `nyq` (the Nyquist rate) if the first passband ends at `nyq` (i.e the filter is a single band highpass filter); center of first passband otherwise nyq : float Nyquist frequency. Each frequency in `cutoff` must be between 0 and `nyq`. Returns ------- h : (numtaps,) ndarray Coefficients of length `numtaps` FIR filter. Raises ------ ValueError If any value in `cutoff` is less than or equal to 0 or greater than or equal to `nyq`, if the values in `cutoff` are not strictly monotonically increasing, or if `numtaps` is even but a passband includes the Nyquist frequency. See also -------- scipy.signal.firwin2 Examples -------- Low-pass from 0 to f:: >>> from scipy import signal >>> signal.firwin(numtaps, f) Use a specific window function:: >>> signal.firwin(numtaps, f, window='nuttall') High-pass ('stop' from 0 to f):: >>> signal.firwin(numtaps, f, pass_zero=False) Band-pass:: >>> signal.firwin(numtaps, [f1, f2], pass_zero=False) Band-stop:: >>> signal.firwin(numtaps, [f1, f2]) Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):: >>> signal.firwin(numtaps, [f1, f2, f3, f4]) Multi-band (passbands are [f1, f2] and [f3,f4]):: >>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False) """ # The major enhancements to this function added in November 2010 were # developed by Tom Krauss (see ticket #902). cutoff = np.atleast_1d(cutoff) / float(nyq) # Check for invalid input. if cutoff.ndim > 1: raise ValueError("The cutoff argument must be at most " "one-dimensional.") if cutoff.size == 0: raise ValueError("At least one cutoff frequency must be given.") if cutoff.min() <= 0 or cutoff.max() >= 1: raise ValueError("Invalid cutoff frequency: frequencies must be " "greater than 0 and less than nyq.") if np.any(np.diff(cutoff) <= 0): raise ValueError("Invalid cutoff frequencies: the frequencies " "must be strictly increasing.") if width is not None: # A width was given. Find the beta parameter of the Kaiser window # and set `window`. This overrides the value of `window` passed in. atten = kaiser_atten(numtaps, float(width) / nyq) beta = kaiser_beta(atten) window = ('kaiser', beta) pass_nyquist = bool(cutoff.size & 1) ^ pass_zero if pass_nyquist and numtaps % 2 == 0: raise ValueError("A filter with an even number of coefficients must " "have zero response at the Nyquist rate.") # Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff # is even, and each pair in cutoff corresponds to passband. cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist)) # `bands` is a 2D array; each row gives the left and right edges of # a passband. bands = cutoff.reshape(-1, 2) # Build up the coefficients. alpha = 0.5 * (numtaps - 1) m = np.arange(0, numtaps) - alpha h = 0 for left, right in bands: h += right * sinc(right * m) h -= left * sinc(left * m) # Get and apply the window function. from .signaltools import get_window win = get_window(window, numtaps, fftbins=False) h *= win # Now handle scaling if desired. if scale: # Get the first passband. left, right = bands[0] if left == 0: scale_frequency = 0.0 elif right == 1: scale_frequency = 1.0 else: scale_frequency = 0.5 * (left + right) c = np.cos(np.pi * m * scale_frequency) s = np.sum(h * c) h /= s return h # Original version of firwin2 from scipy ticket #457, submitted by "tash". # # Rewritten by Warren Weckesser, 2010. def firwin2(numtaps, freq, gain, nfreqs=None, window='hamming', nyq=1.0, antisymmetric=False): """ FIR filter design using the window method. From the given frequencies `freq` and corresponding gains `gain`, this function constructs an FIR filter with linear phase and (approximately) the given frequency response. Parameters ---------- numtaps : int The number of taps in the FIR filter. `numtaps` must be less than `nfreqs`. freq : array_like, 1D The frequency sampling points. Typically 0.0 to 1.0 with 1.0 being Nyquist. The Nyquist frequency can be redefined with the argument `nyq`. The values in `freq` must be nondecreasing. A value can be repeated once to implement a discontinuity. The first value in `freq` must be 0, and the last value must be `nyq`. gain : array_like The filter gains at the frequency sampling points. Certain constraints to gain values, depending on the filter type, are applied, see Notes for details. nfreqs : int, optional The size of the interpolation mesh used to construct the filter. For most efficient behavior, this should be a power of 2 plus 1 (e.g, 129, 257, etc). The default is one more than the smallest power of 2 that is not less than `numtaps`. `nfreqs` must be greater than `numtaps`. window : string or (string, float) or float, or None, optional Window function to use. Default is "hamming". See `scipy.signal.get_window` for the complete list of possible values. If None, no window function is applied. nyq : float Nyquist frequency. Each frequency in `freq` must be between 0 and `nyq` (inclusive). antisymmetric : bool Whether resulting impulse response is symmetric/antisymmetric. See Notes for more details. Returns ------- taps : ndarray The filter coefficients of the FIR filter, as a 1-D array of length `numtaps`. See also -------- scipy.signal.firwin Notes ----- From the given set of frequencies and gains, the desired response is constructed in the frequency domain. The inverse FFT is applied to the desired response to create the associated convolution kernel, and the first `numtaps` coefficients of this kernel, scaled by `window`, are returned. The FIR filter will have linear phase. The type of filter is determined by the value of 'numtaps` and `antisymmetric` flag. There are four possible combinations: - odd `numtaps`, `antisymmetric` is False, type I filter is produced - even `numtaps`, `antisymmetric` is False, type II filter is produced - odd `numtaps`, `antisymmetric` is True, type III filter is produced - even `numtaps`, `antisymmetric` is True, type IV filter is produced Magnitude response of all but type I filters are subjects to following constraints: - type II -- zero at the Nyquist frequency - type III -- zero at zero and Nyquist frequencies - type IV -- zero at zero frequency .. versionadded:: 0.9.0 References ---------- .. [1] Oppenheim, A. V. and Schafer, R. W., "Discrete-Time Signal Processing", Prentice-Hall, Englewood Cliffs, New Jersey (1989). (See, for example, Section 7.4.) .. [2] Smith, Steven W., "The Scientist and Engineer's Guide to Digital Signal Processing", Ch. 17. http://www.dspguide.com/ch17/1.htm Examples -------- A lowpass FIR filter with a response that is 1 on [0.0, 0.5], and that decreases linearly on [0.5, 1.0] from 1 to 0: >>> from scipy import signal >>> taps = signal.firwin2(150, [0.0, 0.5, 1.0], [1.0, 1.0, 0.0]) >>> print(taps[72:78]) [-0.02286961 -0.06362756 0.57310236 0.57310236 -0.06362756 -0.02286961] """ if len(freq) != len(gain): raise ValueError('freq and gain must be of same length.') if nfreqs is not None and numtaps >= nfreqs: raise ValueError(('ntaps must be less than nfreqs, but firwin2 was ' 'called with ntaps=%d and nfreqs=%s') % (numtaps, nfreqs)) if freq[0] != 0 or freq[-1] != nyq: raise ValueError('freq must start with 0 and end with `nyq`.') d = np.diff(freq) if (d < 0).any(): raise ValueError('The values in freq must be nondecreasing.') d2 = d[:-1] + d[1:] if (d2 == 0).any(): raise ValueError('A value in freq must not occur more than twice.') if antisymmetric: if numtaps % 2 == 0: ftype = 4 else: ftype = 3 else: if numtaps % 2 == 0: ftype = 2 else: ftype = 1 if ftype == 2 and gain[-1] != 0.0: raise ValueError("A Type II filter must have zero gain at the Nyquist rate.") elif ftype == 3 and (gain[0] != 0.0 or gain[-1] != 0.0): raise ValueError("A Type III filter must have zero gain at zero and Nyquist rates.") elif ftype == 4 and gain[0] != 0.0: raise ValueError("A Type IV filter must have zero gain at zero rate.") if nfreqs is None: nfreqs = 1 + 2 ** int(ceil(log(numtaps, 2))) # Tweak any repeated values in freq so that interp works. eps = np.finfo(float).eps for k in range(len(freq)): if k < len(freq) - 1 and freq[k] == freq[k + 1]: freq[k] = freq[k] - eps freq[k + 1] = freq[k + 1] + eps # Linearly interpolate the desired response on a uniform mesh `x`. x = np.linspace(0.0, nyq, nfreqs) fx = np.interp(x, freq, gain) # Adjust the phases of the coefficients so that the first `ntaps` of the # inverse FFT are the desired filter coefficients. shift = np.exp(-(numtaps - 1) / 2. * 1.j * np.pi * x / nyq) if ftype > 2: shift *= 1j fx2 = fx * shift # Use irfft to compute the inverse FFT. out_full = irfft(fx2) if window is not None: # Create the window to apply to the filter coefficients. from .signaltools import get_window wind = get_window(window, numtaps, fftbins=False) else: wind = 1 # Keep only the first `numtaps` coefficients in `out`, and multiply by # the window. out = out_full[:numtaps] * wind if ftype == 3: out[out.size // 2] = 0.0 return out def remez(numtaps, bands, desired, weight=None, Hz=1, type='bandpass', maxiter=25, grid_density=16): """ Calculate the minimax optimal filter using the Remez exchange algorithm. Calculate the filter-coefficients for the finite impulse response (FIR) filter whose transfer function minimizes the maximum error between the desired gain and the realized gain in the specified frequency bands using the Remez exchange algorithm. Parameters ---------- numtaps : int The desired number of taps in the filter. The number of taps is the number of terms in the filter, or the filter order plus one. bands : array_like A monotonic sequence containing the band edges in Hz. All elements must be non-negative and less than half the sampling frequency as given by `Hz`. desired : array_like A sequence half the size of bands containing the desired gain in each of the specified bands. weight : array_like, optional A relative weighting to give to each band region. The length of `weight` has to be half the length of `bands`. Hz : scalar, optional The sampling frequency in Hz. Default is 1. type : {'bandpass', 'differentiator', 'hilbert'}, optional The type of filter: 'bandpass' : flat response in bands. This is the default. 'differentiator' : frequency proportional response in bands. 'hilbert' : filter with odd symmetry, that is, type III (for even order) or type IV (for odd order) linear phase filters. maxiter : int, optional Maximum number of iterations of the algorithm. Default is 25. grid_density : int, optional Grid density. The dense grid used in `remez` is of size ``(numtaps + 1) * grid_density``. Default is 16. Returns ------- out : ndarray A rank-1 array containing the coefficients of the optimal (in a minimax sense) filter. See Also -------- freqz : Compute the frequency response of a digital filter. References ---------- .. [1] J. H. McClellan and T. W. Parks, "A unified approach to the design of optimum FIR linear phase digital filters", IEEE Trans. Circuit Theory, vol. CT-20, pp. 697-701, 1973. .. [2] J. H. McClellan, T. W. Parks and L. R. Rabiner, "A Computer Program for Designing Optimum FIR Linear Phase Digital Filters", IEEE Trans. Audio Electroacoust., vol. AU-21, pp. 506-525, 1973. Examples -------- We want to construct a filter with a passband at 0.2-0.4 Hz, and stop bands at 0-0.1 Hz and 0.45-0.5 Hz. Note that this means that the behavior in the frequency ranges between those bands is unspecified and may overshoot. >>> from scipy import signal >>> bpass = signal.remez(72, [0, 0.1, 0.2, 0.4, 0.45, 0.5], [0, 1, 0]) >>> freq, response = signal.freqz(bpass) >>> ampl = np.abs(response) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(111) >>> ax1.semilogy(freq/(2*np.pi), ampl, 'b-') # freq in Hz >>> plt.show() """ # Convert type try: tnum = {'bandpass': 1, 'differentiator': 2, 'hilbert': 3}[type] except KeyError: raise ValueError("Type must be 'bandpass', 'differentiator', " "or 'hilbert'") # Convert weight if weight is None: weight = [1] * len(desired) bands = np.asarray(bands).copy() return sigtools._remez(numtaps, bands, desired, weight, tnum, Hz, maxiter, grid_density)
agpl-3.0
yask123/scikit-learn
sklearn/cluster/spectral.py
233
18153
# -*- coding: utf-8 -*- """Algorithms for spectral clustering""" # Author: Gael Varoquaux [email protected] # Brian Cheung # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from ..base import BaseEstimator, ClusterMixin from ..utils import check_random_state, as_float_array from ..utils.validation import check_array from ..utils.extmath import norm from ..metrics.pairwise import pairwise_kernels from ..neighbors import kneighbors_graph from ..manifold import spectral_embedding from .k_means_ import k_means def discretize(vectors, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None): """Search for a partition matrix (clustering) which is closest to the eigenvector embedding. Parameters ---------- vectors : array-like, shape: (n_samples, n_clusters) The embedding space of the samples. copy : boolean, optional, default: True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, optional, default: 30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, optional, default: 30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state: int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the of the rotation matrix Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ from scipy.sparse import csc_matrix from scipy.linalg import LinAlgError random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / norm(vectors[:, i])) \ * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components)) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) svd_restarts += 1 except LinAlgError: print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if ((abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max)): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError('SVD did not converge') return labels def spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10, eigen_tol=0.0, assign_labels='kmeans'): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- affinity : array-like or sparse matrix, shape: (n_samples, n_samples) The affinity matrix describing the relationship of the samples to embed. **Must be symmetric**. Possible examples: - adjacency matrix of a graph, - heat kernel of the pairwise distance matrix of the samples, - symmetric k-nearest neighbours connectivity matrix of the samples. n_clusters : integer, optional Number of clusters to extract. n_components : integer, optional, default is n_clusters Number of eigen vectors to use for the spectral embedding eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. See the 'Multiclass spectral clustering' paper referenced below for more details on the discretization approach. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ------ The graph should contain only one connect component, elsewhere the results make little sense. This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering. """ if assign_labels not in ('kmeans', 'discretize'): raise ValueError("The 'assign_labels' parameter should be " "'kmeans' or 'discretize', but '%s' was given" % assign_labels) random_state = check_random_state(random_state) n_components = n_clusters if n_components is None else n_components maps = spectral_embedding(affinity, n_components=n_components, eigen_solver=eigen_solver, random_state=random_state, eigen_tol=eigen_tol, drop_first=False) if assign_labels == 'kmeans': _, labels, _ = k_means(maps, n_clusters, random_state=random_state, n_init=n_init) else: labels = discretize(maps, random_state=random_state) return labels class SpectralClustering(BaseEstimator, ClusterMixin): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF) kernel of the euclidean distanced ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, using ``precomputed``, a user-provided affinity matrix can be used. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- n_clusters : integer, optional The dimension of the projection subspace. affinity : string, array-like or callable, default 'rbf' If a string, this may be one of 'nearest_neighbors', 'precomputed', 'rbf' or one of the kernels supported by `sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. gamma : float Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for ``affinity='nearest_neighbors'``. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. n_neighbors : integer Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. kernel_params : dictionary of string to any, optional Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. Attributes ---------- affinity_matrix_ : array-like, shape (n_samples, n_samples) Affinity matrix used for clustering. Available only if after calling ``fit``. labels_ : Labels of each point Notes ----- If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:: np.exp(- X ** 2 / (2. * delta ** 2)) Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1., affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None): self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def fit(self, X, y=None): """Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) OR, if affinity==`precomputed`, a precomputed affinity matrix of shape (n_samples, n_samples) """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) if X.shape[0] == X.shape[1] and self.affinity != "precomputed": warnings.warn("The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``.") if self.affinity == 'nearest_neighbors': connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == 'precomputed': self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity, filter_params=True, **params) random_state = check_random_state(self.random_state) self.labels_ = spectral_clustering(self.affinity_matrix_, n_clusters=self.n_clusters, eigen_solver=self.eigen_solver, random_state=random_state, n_init=self.n_init, eigen_tol=self.eigen_tol, assign_labels=self.assign_labels) return self @property def _pairwise(self): return self.affinity == "precomputed"
bsd-3-clause
jiajunshen/partsNet
pnet/sgd_svm_classification_layer.py
1
1784
from __future__ import division, print_function, absolute_import __author__ = 'jiajunshen' from pnet.layer import SupervisedLayer from pnet.layer import Layer import numpy as np import amitgroup as ag from sklearn.svm import LinearSVC from sklearn import cross_validation from sklearn import linear_model @Layer.register('sgd-svm-classification-layer') class SGDSVMClassificationLayer(SupervisedLayer): def __init__(self, settings={}): self._settings = settings self._svm = None @property def trained(self): return self._svm is not None @property def classifier(self): return True def extract(self,X): Xflat = X.reshape((X.shape[0], -1)) return self._svm.predict(Xflat) def train(self, X, Y, OriginalX=None): Xflat = X.reshape((X.shape[0], -1)) #self._svm = linear_model.SGDClassifier(loss = "hinge",penalty = 'l2', n_iter=20, shuffle=True,verbose = False, # learning_rate = "constant", eta0 = 0.01, random_state = 0) self._svm = clf = linear_model.SGDClassifier(alpha=0.01, loss = "log",penalty = 'l2', n_iter=2000, shuffle=True,verbose = False, learning_rate = "optimal", eta0 = 0.0, epsilon=0.1, random_state = None, warm_start=False, power_t=0.5, l1_ratio=1.0, fit_intercept=True) self._svm.fit(Xflat, Y) print(np.mean(self._svm.predict(Xflat) == Y)) def save_to_dict(self): d = {} d['svm'] = self._svm d['settings'] = self._settings return d @classmethod def load_from_dict(cls, d): obj = cls() obj._settings = d['settings'] obj._svm = d['svm'] return obj
bsd-3-clause
LiaoPan/scikit-learn
sklearn/feature_extraction/tests/test_image.py
205
10378
# Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import scipy as sp from scipy import ndimage from nose.tools import assert_equal, assert_true from numpy.testing import assert_raises from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, extract_patches) from sklearn.utils.graph import connected_components def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert_equal(grad_x.nnz, grad_y.nnz) # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal(grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]) def test_grid_to_graph(): #Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert_true(connected_components(A)[0] == 2) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert_true(connected_components(A)[0] == 1) # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert_true(A.dtype == np.bool) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert_true(A.dtype == np.int) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float) assert_true(A.dtype == np.float) def test_connect_regions(): lena = sp.misc.lena() for thr in (50, 150): mask = lena > thr graph = img_to_graph(lena, mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def test_connect_regions_with_grid(): lena = sp.misc.lena() mask = lena > 50 graph = grid_to_graph(*lena.shape, mask=mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) mask = lena > 150 graph = grid_to_graph(*lena.shape, mask=mask, dtype=None) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def _downsampled_lena(): lena = sp.misc.lena().astype(np.float32) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = lena.astype(np.float) lena /= 16.0 return lena def _orange_lena(lena=None): lena = _downsampled_lena() if lena is None else lena lena_color = np.zeros(lena.shape + (3,)) lena_color[:, :, 0] = 256 - lena lena_color[:, :, 1] = 256 - lena / 2 lena_color[:, :, 2] = 256 - lena / 4 return lena_color def _make_images(lena=None): lena = _downsampled_lena() if lena is None else lena # make a collection of lenas images = np.zeros((3,) + lena.shape) images[0] = lena images[1] = lena + 1 images[2] = lena + 2 return images downsampled_lena = _downsampled_lena() orange_lena = _orange_lena(downsampled_lena) lena_collection = _make_images(downsampled_lena) def test_extract_patches_all(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_all_color(): lena = orange_lena i_h, i_w = lena.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_all_rect(): lena = downsampled_lena lena = lena[:, 32:97] i_h, i_w = lena.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_max_patches(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w), max_patches=100) assert_equal(patches.shape, (100, p_h, p_w)) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(lena, (p_h, p_w), max_patches=0.5) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=2.0) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=-1.0) def test_reconstruct_patches_perfect(): lena = downsampled_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_reconstruct_patches_perfect_color(): lena = orange_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_patch_extractor_fit(): lenas = lena_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert_true(extr == extr.fit(lenas)) def test_patch_extractor_max_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(lenas) * max_patches extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) max_patches = 0.5 expected_n_patches = len(lenas) * int((i_h - p_h + 1) * (i_w - p_w + 1) * max_patches) extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_max_patches_default(): lenas = lena_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(lenas) assert_equal(patches.shape, (len(lenas) * 100, 12, 12)) def test_patch_extractor_all_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_color(): lenas = _make_images(orange_lena) i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for (image_shape, patch_size, patch_step, expected_view, last_patch) in zip(image_shapes, patch_sizes, patch_steps, expected_views, last_patches): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = extract_patches(image, patch_shape=patch_size, extraction_step=patch_step) ndim = len(image_shape) assert_true(patches.shape[:ndim] == expected_view) last_patch_slices = [slice(i, i + j, None) for i, j in zip(last_patch, patch_size)] assert_true((patches[[slice(-1, None, None)] * ndim] == image[last_patch_slices].squeeze()).all()) def test_extract_patches_square(): # test same patch size for all dimensions lena = downsampled_lena i_h, i_w = lena.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = extract_patches(lena, patch_shape=p) assert_true(patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(ValueError, extract_patches_2d, x, (4, 1)) assert_raises(ValueError, extract_patches_2d, x, (1, 4))
bsd-3-clause
mirestrepo/voxels-at-lems
super3d/boxm2_update_and_refine_super3d.py
1
8572
# THIS IS /helicopter_providence/middletown_3_29_11/site2_planes/boxm2_1/boxm2_update_and_refine_scene.py import boxm2_batch,os; import sys; import optparse; import time; #import matplotlib.pyplot as plt; boxm2_batch.register_processes(); boxm2_batch.register_datatypes(); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string import random #Parse inputs parser = optparse.OptionParser(description='Update BOXM2 Scene without refinement 0'); parser.add_option('--model_dir', action="store", dest="model_dir"); parser.add_option('--boxm2_dir', action="store", dest="boxm2_dir"); parser.add_option('--imgs_dir', action="store", dest="imgs_dir"); parser.add_option('--cams_dir', action="store", dest="cams_dir"); parser.add_option('--NI', action="store", dest="NI", type='int'); parser.add_option('--NJ', action="store", dest="NJ", type='int'); parser.add_option('--repeat', action="store", dest="repeat", type='int'); options, args = parser.parse_args() model_dir = options.model_dir; boxm2_dir = options.boxm2_dir; imgs_dir = options.imgs_dir; cams_dir = options.cams_dir; NI = options.NI; NJ = options.NJ repeat = options.repeat; if not os.path.isdir(boxm2_dir + '/'): print "Invalid Site Dir" sys.exit(-1); if not os.path.isdir(imgs_dir): print "Invalid Image Dir" sys.exit(-1); if not os.path.isdir(cams_dir): print "Invalid Cams Dir" sys.exit(-1); expected_img_dir = boxm2_dir + "/expectedImgs_" + str(repeat) if not os.path.isdir(expected_img_dir + '/'): os.mkdir(expected_img_dir + '/'); print("Loading a Scene"); boxm2_batch.init_process("boxm2LoadSceneProcess"); boxm2_batch.set_input_string(0, boxm2_dir + "/scene.xml"); boxm2_batch.run_process(); (scene_id, scene_type) = boxm2_batch.commit_output(0); scene = dbvalue(scene_id, scene_type); print("Create Main Cache"); boxm2_batch.init_process("boxm2CreateCacheProcess"); boxm2_batch.set_input_from_db(0,scene); boxm2_batch.set_input_string(1,"lru"); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); cache = dbvalue(id, type); print("Init Manager"); boxm2_batch.init_process("boclInitManagerProcess"); boxm2_batch.run_process(); (id, type) = boxm2_batch.commit_output(0); mgr = dbvalue(id, type); print("Get Gpu Device"); boxm2_batch.init_process("boclGetDeviceProcess"); boxm2_batch.set_input_string(0,"gpu1") boxm2_batch.set_input_from_db(1,mgr) boxm2_batch.run_process(); (id, type) = boxm2_batch.commit_output(0); device = dbvalue(id, type); print("Create Gpu Cache"); boxm2_batch.init_process("boxm2CreateOpenclCacheProcess"); boxm2_batch.set_input_from_db(0,device) boxm2_batch.set_input_from_db(1,scene) boxm2_batch.run_process(); (id, type) = boxm2_batch.commit_output(0); openclcache = dbvalue(id, type); frames=[66,182,180,236,222,252,68,10,240,108,4,190,270,134,30,278,268,136,228,20,200,106,208,58,264,88,152,118,224,146,154,142,122,138,256,212,266,100,64,12,170,204,74,198,114,150,160,176,82,54,254,32,260,80,238,92,220,194,158,26,90,110,124,206,184,232,14,132,166,276,178,192,274,164,116,210,156,282,8,94,214,104,56,40,48,102,216,72,126,60,96,52,218,120,174,98,172,50,84,246,186,36,202,86,258,28,144,0,248,70,230,162,140,44,280,250,272,128,2,262,226,6,34,168,148,46,188,76,24,16,130,38,112,242,18,22,234]; test_frames=[244,196,62,78,42]; print 'STARTING UPDATE' iter = 0; for i in frames: print 'ITERATION %d' % iter iter = iter+1; camera_fname = cams_dir+"/camera%(#)05d.txt"%{"#":i} image_fname = imgs_dir+"/frames_%(#)05d.tif"%{"#":i} exp_fname= expected_img_dir+ "/frame_%(#)05d.tiff"%{"#":i}; boxm2_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm2_batch.set_input_string(0,camera_fname); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); cam = dbvalue(id,type); boxm2_batch.init_process("vilLoadImageViewProcess"); boxm2_batch.set_input_string(0,image_fname); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); img = dbvalue(id,type); print("Update"); boxm2_batch.init_process("boxm2OclUpdateProcess"); boxm2_batch.set_input_from_db(0,device); boxm2_batch.set_input_from_db(1,scene); boxm2_batch.set_input_from_db(2,openclcache); boxm2_batch.set_input_from_db(3,cam); boxm2_batch.set_input_from_db(4,img); boxm2_batch.set_input_string(5,""); boxm2_batch.run_process(); if((iter)% 18==0): print("\t----------------------WE ARE REFINING!--------------------------"); boxm2_batch.init_process("boxm2OclRefineProcess"); boxm2_batch.set_input_from_db(0,device); boxm2_batch.set_input_from_db(1,scene); boxm2_batch.set_input_from_db(2,openclcache); boxm2_batch.set_input_float(3, 0.3); #0.25 * (repeat+1) ); # originally set to .3 boxm2_batch.run_process(); print("Render"); boxm2_batch.init_process("boxm2OclRenderExpectedImageProcess"); boxm2_batch.set_input_from_db(0,device); boxm2_batch.set_input_from_db(1,scene); boxm2_batch.set_input_from_db(2,openclcache); boxm2_batch.set_input_from_db(3,cam); boxm2_batch.set_input_unsigned(4,NI); boxm2_batch.set_input_unsigned(5,NJ); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); exp_img = dbvalue(id,type); boxm2_batch.init_process("vilSaveImageViewProcess"); boxm2_batch.set_input_from_db(0,exp_img); boxm2_batch.set_input_string(1,exp_fname); boxm2_batch.run_process(); boxm2_batch.remove_data(exp_img.id) boxm2_batch.remove_data(img.id) boxm2_batch.remove_data(cam.id) print("Write Main Cache"); boxm2_batch.init_process("boxm2WriteCacheProcess"); boxm2_batch.set_input_from_db(0,cache); boxm2_batch.run_process(); nadir_cam_fname=cams_dir+ "/camera_nadir.txt" for test_img_idx in test_frames : prediction_cam_fname= cams_dir+"/camera%(#)05d.txt"%{"#":test_img_idx}; # Render the the predicted image boxm2_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm2_batch.set_input_string(0,prediction_cam_fname); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); prediction_cam = dbvalue(id,type); print("Render"); boxm2_batch.init_process("boxm2OclRenderExpectedImageProcess"); boxm2_batch.set_input_from_db(0,device); boxm2_batch.set_input_from_db(1,scene); boxm2_batch.set_input_from_db(2,openclcache); boxm2_batch.set_input_from_db(3,prediction_cam); boxm2_batch.set_input_unsigned(4,NI); boxm2_batch.set_input_unsigned(5,NJ); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); exp_img = dbvalue(id,type); (id,type) = boxm2_batch.commit_output(1); vis_img = dbvalue(id,type); boxm2_batch.init_process("vilSaveImageViewProcess"); boxm2_batch.set_input_from_db(0,exp_img); boxm2_batch.set_input_string(1,expected_img_dir+ "/predicted_img_%(#)05d.tiff"%{"#":test_img_idx}); boxm2_batch.run_process(); boxm2_batch.init_process("vilSaveImageViewProcess"); boxm2_batch.set_input_from_db(0,vis_img); boxm2_batch.set_input_string(1,expected_img_dir+ "/predicted_img_mask_%(#)05d.tiff"%{"#":test_img_idx}); boxm2_batch.run_process(); # Render the depth/variance image boxm2_batch.init_process("vpglLoadPerspectiveCameraProcess"); boxm2_batch.set_input_string(0,nadir_cam_fname); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); nadir_cam = dbvalue(id,type); boxm2_batch.init_process("boxm2OclRenderExpectedDepthProcess") boxm2_batch.set_input_from_db(0,device); boxm2_batch.set_input_from_db(1,scene); boxm2_batch.set_input_from_db(2,openclcache); boxm2_batch.set_input_from_db(3,nadir_cam); boxm2_batch.set_input_unsigned(4,NI); boxm2_batch.set_input_unsigned(5,NJ); boxm2_batch.run_process(); (id,type) = boxm2_batch.commit_output(0); exp_depth_img = dbvalue(id,type); (id,type) = boxm2_batch.commit_output(1); exp_var_img = dbvalue(id,type); boxm2_batch.init_process("vilSaveImageViewProcess"); boxm2_batch.set_input_from_db(0, exp_depth_img); boxm2_batch.set_input_string(1, expected_img_dir+ "/exepected_depth.tiff"); boxm2_batch.run_process(); boxm2_batch.init_process("vilSaveImageViewProcess"); boxm2_batch.set_input_from_db(0, exp_var_img); boxm2_batch.set_input_string(1, expected_img_dir+ "/exepected_var.tiff"); boxm2_batch.run_process(); print 'DONE'
bsd-2-clause
flaviovdf/pyksc
src/trend-learner-scripts/summarize_results.py
1
1835
#-*- coding: utf8 from __future__ import division, print_function from pyksc import dist from sklearn.metrics import f1_score from sklearn.metrics import classification_report import glob import numpy as np import os import plac def main(tseries_fpath, base_folder): folders = glob.glob(os.path.join(base_folder, 'fold-*')) num_folders = len(folders) cluster_mapping = [] C_base = np.loadtxt(os.path.join(folders[0], 'ksc/cents.dat')) for i in xrange(num_folders): Ci = np.loadtxt(os.path.join(folders[i], 'ksc/cents.dat')) dists = dist.dist_all(Ci, C_base, rolling=True)[0] closest = dists.argmin(axis=1) cluster_mapping.append({}) for k in xrange(Ci.shape[0]): cluster_mapping[i][k] = closest[k] y_true_all = [] y_pred_all = [] for i in xrange(num_folders): y_true = np.loadtxt(os.path.join(folders[i], 'ksc/test_assign.dat')) y_pred = np.loadtxt(os.path.join(folders[i], \ 'cls-res-fitted-50/pred.dat')) for j in xrange(y_true.shape[0]): y_true[j] = cluster_mapping[i][y_true[j]] if y_pred[j] != -1: y_pred[j] = cluster_mapping[i][y_pred[j]] y_true_all.extend(y_true) y_pred_all.extend(y_pred) y_pred_all = np.asarray(y_pred_all) y_true_all = np.asarray(y_true_all) report = classification_report(y_true_all, y_pred_all) valid = y_pred_all != -1 print() print('Using the centroids from folder: ', folders[0]) print('Micro Aggregation of Folds:') print('%.3f fract of videos were not classified' % (sum(~valid) / y_pred_all.shape[0])) print() print(classification_report(y_true_all[valid], y_pred_all[valid])) if __name__ == '__main__': plac.call(main)
bsd-3-clause
harlowja/networkx
examples/multigraph/chess_masters.py
54
5146
#!/usr/bin/env python """ An example of the MultiDiGraph clas The function chess_pgn_graph reads a collection of chess matches stored in the specified PGN file (PGN ="Portable Game Notation") Here the (compressed) default file --- chess_masters_WCC.pgn.bz2 --- contains all 685 World Chess Championship matches from 1886 - 1985. (data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php) The chess_pgn_graph() function returns a MultiDiGraph with multiple edges. Each node is the last name of a chess master. Each edge is directed from white to black and contains selected game info. The key statement in chess_pgn_graph below is G.add_edge(white, black, game_info) where game_info is a dict describing each game. """ # Copyright (C) 2006-2010 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx # tag names specifying what game info should be # stored in the dict on each digraph edge game_details=["Event", "Date", "Result", "ECO", "Site"] def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"): """Read chess games in pgn format in pgn_file. Filenames ending in .gz or .bz2 will be uncompressed. Return the MultiDiGraph of players connected by a chess game. Edges contain game data in a dict. """ import bz2 G=nx.MultiDiGraph() game={} datafile = bz2.BZ2File(pgn_file) lines = (line.decode().rstrip('\r\n') for line in datafile) for line in lines: if line.startswith('['): tag,value=line[1:-1].split(' ',1) game[str(tag)]=value.strip('"') else: # empty line after tag set indicates # we finished reading game info if game: white=game.pop('White') black=game.pop('Black') G.add_edge(white, black, **game) game={} return G if __name__ == '__main__': import networkx as nx G=chess_pgn_graph() ngames=G.number_of_edges() nplayers=G.number_of_nodes() print("Loaded %d chess games between %d players\n"\ % (ngames,nplayers)) # identify connected components # of the undirected version Gcc=list(nx.connected_component_subgraphs(G.to_undirected())) if len(Gcc)>1: print("Note the disconnected component consisting of:") print(Gcc[1].nodes()) # find all games with B97 opening (as described in ECO) openings=set([game_info['ECO'] for (white,black,game_info) in G.edges(data=True)]) print("\nFrom a total of %d different openings,"%len(openings)) print('the following games used the Sicilian opening') print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n') for (white,black,game_info) in G.edges(data=True): if game_info['ECO']=='B97': print(white,"vs",black) for k,v in game_info.items(): print(" ",k,": ",v) print("\n") try: import matplotlib.pyplot as plt except ImportError: import sys print("Matplotlib needed for drawing. Skipping") sys.exit(0) # make new undirected graph H without multi-edges H=nx.Graph(G) # edge width is proportional number of games played edgewidth=[] for (u,v,d) in H.edges(data=True): edgewidth.append(len(G.get_edge_data(u,v))) # node size is proportional to number of games won wins=dict.fromkeys(G.nodes(),0.0) for (u,v,d) in G.edges(data=True): r=d['Result'].split('-') if r[0]=='1': wins[u]+=1.0 elif r[0]=='1/2': wins[u]+=0.5 wins[v]+=0.5 else: wins[v]+=1.0 try: pos=nx.graphviz_layout(H) except: pos=nx.spring_layout(H,iterations=20) plt.rcParams['text.usetex'] = False plt.figure(figsize=(8,8)) nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m') nodesize=[wins[v]*50 for v in H] nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4) nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k') nx.draw_networkx_labels(H,pos,fontsize=14) font = {'fontname' : 'Helvetica', 'color' : 'k', 'fontweight' : 'bold', 'fontsize' : 14} plt.title("World Chess Championship Games: 1886 - 1985", font) # change font and write text (using data coordinates) font = {'fontname' : 'Helvetica', 'color' : 'r', 'fontweight' : 'bold', 'fontsize' : 14} plt.text(0.5, 0.97, "edge width = # games played", horizontalalignment='center', transform=plt.gca().transAxes) plt.text(0.5, 0.94, "node size = # games won", horizontalalignment='center', transform=plt.gca().transAxes) plt.axis('off') plt.savefig("chess_masters.png",dpi=75) print("Wrote chess_masters.png") plt.show() # display
bsd-3-clause
YinongLong/scikit-learn
sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
davebrent/consyn
consyn/cli/show.py
1
4218
# -*- coding: utf-8 -*- # Copyright (C) 2014, David Poulter # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import unicode_literals import collections import click import matplotlib.pyplot as plt import numpy from . import configurator from ..base import Pipeline from ..concatenators import concatenator from ..ext import Analyser from ..ext import UnitLoader from ..models import MediaFile from ..models import Unit from ..utils import UnitGenerator FEATURES = len(Analyser()) TICK_COLOR = "#b9b9b9" GRID_COLOR = "#003902" WAVE_COLOR = "#00e399" ONSET_COLOR = "#d20000" FIGURE_COLOR = "#373737" BACK_COLOR = "#000000" def samps_to_secs(samples, samplerate): return float(samples) / samplerate @click.command("show", short_help="Show a mediafile and its onsets.") @click.option("--hopsize", default=1024, help="Hopsize used to read samples.") @click.argument("mediafile") @configurator def command(config, mediafile, hopsize): mediafile = MediaFile.by_id_or_name(config.session, mediafile) pipeline = Pipeline([ UnitGenerator(mediafile, config.session), UnitLoader( hopsize=hopsize, key=lambda state: state["unit"].mediafile.path), concatenator("clip", mediafile), list ]) results = pipeline.run() results = results[0] duration = float(results["buffer"].shape[1]) time = numpy.linspace(0, samps_to_secs(duration, mediafile.samplerate), num=duration) figure, axes = plt.subplots( mediafile.channels, sharex=True, sharey=True, subplot_kw={ "xlim": [0, samps_to_secs(duration, mediafile.samplerate)], "ylim": [-1, 1] } ) # Features figure_feats, axes_feats = plt.subplots(len(FEATURES), sharex=True) features_all = collections.defaultdict(list) timings = [] for unit in mediafile.units.order_by(Unit.position) \ .filter(Unit.channel == 0): for feature in FEATURES: features_all[feature].append(unit.features[feature]) timings.append(unit.position) for index, key in enumerate(features_all): axes_feats[index].plot(timings, features_all[key], color=WAVE_COLOR) axes_feats[index].set_axisbelow(True) axes_feats[index].patch.set_facecolor(BACK_COLOR) for label in axes_feats[index].get_xticklabels(): label.set_color(TICK_COLOR) label.set_fontsize(1) for label in axes_feats[index].get_yticklabels(): label.set_color(TICK_COLOR) label.set_fontsize(1) # Buffer if not isinstance(axes, collections.Iterable): axes = [axes] for index, ax in enumerate(axes): ax.grid(True, color=GRID_COLOR, linestyle="solid") ax.set_axisbelow(True) for label in ax.get_xticklabels(): label.set_color(TICK_COLOR) label.set_fontsize(9) for label in ax.get_yticklabels(): label.set_color(TICK_COLOR) label.set_fontsize(9) ax.patch.set_facecolor(BACK_COLOR) ax.plot(time, results["buffer"][index], color=WAVE_COLOR) for unit in mediafile.units: position = samps_to_secs(unit.position, mediafile.samplerate) position = position if position != 0 else 0.003 if unit.channel == index: ax.axvline(x=position, color=ONSET_COLOR) figure.patch.set_facecolor(FIGURE_COLOR) figure.set_tight_layout(True) figure_feats.set_facecolor(FIGURE_COLOR) figure_feats.set_tight_layout(True) plt.show()
gpl-3.0
rilutham/HAC-DM
src/Segmentation.py
1
3537
#!/usr/bin/python # -*- coding: utf-8 -*- """Segmentation.py @author: rilutham """ from PyQt4 import QtGui import pandas as pd from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram, fcluster from scipy.stats import itemfreq #from sklearn.metrics import silhouette_score class Segmentation(QtGui.QWidget): ''' Apply Hierarchical Agglomerative Clustering ''' def __init__(self, data): ''' Constructor ''' super(Segmentation, self).__init__() # Data which is use for distance measure self.data = data self.n_cols = len(self.data.columns) n_rows = len(self.data.index) self.dist_data = self.data.ix[:, 1:self.n_cols] self.label = self.data.ix[0:n_rows, 0:1] # Label for dendrogram self.dendro_label = [] for i in range(n_rows): self.dendro_label.append(self.label.values[i][0]) self.df_result_data = None # Call initial methods self.count_distance() self.do_segmentation() def count_distance(self): ''' Count distance beetwen object using jaccard distance ''' self.row_dist = pd.DataFrame(squareform(pdist(self.dist_data, metric='jaccard'))) self.row_dist = self.row_dist.fillna(0) def do_segmentation(self): ''' Apply Complete Linkage method and generate dendrogram ''' # Cluster using complete linkage self.row_clusters = linkage(self.row_dist, method='complete') self.df_result_data = self.data # Generate cluster index self.cluster_index = fcluster(self.row_clusters, t=2, criterion='maxclust') # Generate dendrogram and labels dendrogram(self.row_clusters, labels=self.dendro_label, \ leaf_font_size=9, leaf_rotation=90) # Add new column (cluster_index) to result data self.df_result_data['ID_Segmen'] = self.cluster_index self.n_cluster = "Jumlah segmen yang terbentuk: {0}".format(max(self.cluster_index)) freq_of_cluster = dict(itemfreq(self.cluster_index)) self.summary_list = [] for key, val in freq_of_cluster.items(): isi = "Segmen ke-{0}: {1} pelanggan".format(key, val) self.summary_list.append(isi) # Silhouette #a = silhouette_score(self.row_dist, self.df_result_data['ID_Segmen'], metric="precomputed") def refresh_result_data(self, treshold): ''' Generate dendrogram with new treshold ''' # Generate dendrogram and labels dendrogram(self.row_clusters, color_threshold=treshold, labels=self.dendro_label, \ leaf_font_size=9, leaf_rotation=90) self.df_result_data = self.data # Generate cluster index self.cluster_index = fcluster(self.row_clusters, t=treshold, criterion='distance') # Add new column (cluster_index) to result data self.df_result_data['ID_Segmen'] = self.cluster_index freq_of_cluster = dict(itemfreq(self.cluster_index)) self.summary_list = [] for key, val in freq_of_cluster.items(): isi = "Segmen ke-{0}: {1} pelanggan".format(key, val) self.summary_list.append(isi) self.n_cluster = "Jumlah segmen yang terbentuk: {0}".format(max(self.cluster_index)) # Silhouette #a = silhouette_score(self.row_dist, self.df_result_data['ID_Segmen'], metric="precomputed")
mit
mrshu/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
5
1363
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. """ print __doc__ import numpy as np import pylab as pl from sklearn import svm # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = pl.plot(xx, yy, 'k-', label='no weights') h1 = pl.plot(xx, wyy, 'k--', label='with weights') pl.scatter(X[:, 0], X[:, 1], c=y, cmap=pl.cm.Paired) pl.legend() pl.axis('tight') pl.show()
bsd-3-clause
fyffyt/scikit-learn
sklearn/metrics/cluster/bicluster.py
359
2797
from __future__ import division import numpy as np from sklearn.utils.linear_assignment_ import linear_assignment from sklearn.utils.validation import check_consistent_length, check_array __all__ = ["consensus_score"] def _check_rows_and_columns(a, b): """Unpacks the row and column arrays and checks their shape.""" check_consistent_length(*a) check_consistent_length(*b) checks = lambda x: check_array(x, ensure_2d=False) a_rows, a_cols = map(checks, a) b_rows, b_cols = map(checks, b) return a_rows, a_cols, b_rows, b_cols def _jaccard(a_rows, a_cols, b_rows, b_cols): """Jaccard coefficient on the elements of the two biclusters.""" intersection = ((a_rows * b_rows).sum() * (a_cols * b_cols).sum()) a_size = a_rows.sum() * a_cols.sum() b_size = b_rows.sum() * b_cols.sum() return intersection / (a_size + b_size - intersection) def _pairwise_similarity(a, b, similarity): """Computes pairwise similarity matrix. result[i, j] is the Jaccard coefficient of a's bicluster i and b's bicluster j. """ a_rows, a_cols, b_rows, b_cols = _check_rows_and_columns(a, b) n_a = a_rows.shape[0] n_b = b_rows.shape[0] result = np.array(list(list(similarity(a_rows[i], a_cols[i], b_rows[j], b_cols[j]) for j in range(n_b)) for i in range(n_a))) return result def consensus_score(a, b, similarity="jaccard"): """The similarity of two sets of biclusters. Similarity between individual biclusters is computed. Then the best matching between sets is found using the Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set. Read more in the :ref:`User Guide <biclustering>`. Parameters ---------- a : (rows, columns) Tuple of row and column indicators for a set of biclusters. b : (rows, columns) Another set of biclusters like ``a``. similarity : string or function, optional, default: "jaccard" May be the string "jaccard" to use the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d indicator vector: (a_rows, a_columns, b_rows, b_columns). References ---------- * Hochreiter, Bodenhofer, et. al., 2010. `FABIA: factor analysis for bicluster acquisition <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/>`__. """ if similarity == "jaccard": similarity = _jaccard matrix = _pairwise_similarity(a, b, similarity) indices = linear_assignment(1. - matrix) n_a = len(a[0]) n_b = len(b[0]) return matrix[indices[:, 0], indices[:, 1]].sum() / max(n_a, n_b)
bsd-3-clause
numenta-archive/htmresearch
projects/capybara/supervised_baseline/v1_no_sequences/plot_results.py
9
3714
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import argparse import os import pandas as pd from sklearn.metrics import (classification_report, confusion_matrix, accuracy_score) from baseline_utils import predictions_vote from plot_utils import (plot_confusion_matrix, plot_train_history, plot_classification_report, plot_predictions) if __name__ == '__main__': # Path to CSV files (training history and predictions) parser = argparse.ArgumentParser() parser.add_argument('--vote_window', '-v', dest='vote_window', type=int, default=11) parser.add_argument('--input_dir', '-i', dest='input_dir', type=str, default='results') parser.add_argument('--output_dir', '-o', dest='output_dir',type=str, default='plots') options = parser.parse_args() vote_window = options.vote_window input_dir = options.input_dir output_dir = options.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) train_history_path = os.path.join(input_dir, 'train_history.csv') predictions_path = os.path.join(input_dir, 'predictions.csv') # Training history df = pd.read_csv(train_history_path) epochs = range(len(df.epoch.values)) acc = df.acc.values loss = df.loss.values output_file = os.path.join(output_dir, 'train_history.html') plot_train_history(epochs, acc, loss, output_file) print 'Plot saved:', output_file # Predictions df = pd.read_csv(predictions_path) t = df.t.values X_values = df.scalar_value.values y_true = df.y_true.values y_pred = df.y_pred.values if vote_window > 0: y_pred = predictions_vote(y_pred, vote_window) # Accuracy acc = accuracy_score(y_true, y_pred) print 'Accuracy on test set:', acc label_list = sorted(df.y_true.unique()) # Plot normalized confusion matrix cnf_matrix = confusion_matrix(y_true, y_pred) output_file = os.path.join(output_dir, 'confusion_matrix.png') _ = plot_confusion_matrix(cnf_matrix, output_file, classes=label_list, normalize=True, title='Confusion matrix (accuracy=%.2f)' % acc) print 'Plot saved:', output_file # Classification report (F1 score, etc.) clf_report = classification_report(y_true, y_pred) output_file = os.path.join(output_dir, 'classification_report.png') plot_classification_report(clf_report, output_file) print 'Plot saved:', output_file # Plot predictions output_file = os.path.join(output_dir, 'predictions.html') title = 'Predictions (accuracy=%s)' % acc plot_predictions(t, X_values, y_true, y_pred, output_file, title) print 'Plot saved:', output_file
agpl-3.0
OxfordSKA/bda
scripts/process_results.py
1
2529
#!venv/bin/python import pyfits import aplpy import matplotlib.pyplot as plt from os.path import join import os.path import numpy def plot_scaling(target, weighting): root_dir = 'bda_results' obs_length = [5, 10, 30, 60, 120] types = { 'default': '_', 'noisy_default': '_noisy_', 'bda': '_bda_', 'noisy_bda': '_noisy_bda_', 'expanded_bda': '_bda_expanded_bda_', 'noisy_expanded_bda': '_noisy_bda_expanded_bda_' } results = { 'default': numpy.zeros(len(obs_length)), 'noisy_default': numpy.zeros(len(obs_length)), 'bda': numpy.zeros(len(obs_length)), 'noisy_bda': numpy.zeros(len(obs_length)), 'expanded_bda': numpy.zeros(len(obs_length)), 'noisy_expanded_bda': numpy.zeros(len(obs_length)), 'noise': numpy.zeros(len(obs_length)) } for i, t in enumerate(obs_length): sim_dir = 'SIM_%04is' % t for type_key in types: type = types[type_key] model_file = 'calibrated%sMODEL_DATA_%s_%s.fits' % \ (type, target, weighting) model_file = join(root_dir, sim_dir, model_file) calibrated_file = 'calibrated%sCORRECTED_DATA_%s_%s.fits' % \ (type, target, weighting) calibrated_file = join(root_dir, sim_dir, calibrated_file) print model_file, os.path.isfile(model_file) print calibrated_file, os.path.isfile(calibrated_file) model = pyfits.getdata(model_file) calibrated = pyfits.getdata(calibrated_file) diff = calibrated - model results[type_key][i] = numpy.std(diff) noise_file = 'model_ref_DATA_%s_%s.fits' % (target, weighting) noise_file = join(root_dir, sim_dir, noise_file) noise = pyfits.getdata(noise_file) results['noise'][i] = numpy.std(noise) print '' for k in results: print k, results[k] ax = plt.gca() # ax.set_yscale('log', nonposy='clip') # ax.set_xscale('log', nonposy='clip') # ax.plot(obs_length, results['noise'], '.-') ax.plot(obs_length, results['expanded_bda'], 'b-') ax.plot(obs_length, results['noisy_expanded_bda'], 'r-') # ax.plot(obs_length, results['default'], 'gx-') # ax.plot(obs_length, results['bda'], 'g-') if __name__ == '__main__': fig = plt.figure(figsize=(6.5, 5.0)) ax = fig.add_subplot(111) plot_scaling('1', 'n') plot_scaling('0', 'n') plt.show()
bsd-3-clause
yunque/sms-tools
lectures/06-Harmonic-model/plots-code/carnatic-spectrum.py
22
1042
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/carnatic.wav') pin = 1.4*fs w = np.blackman(1601) N = 4096 hM1 = int(math.floor((w.size+1)/2)) hM2 = int(math.floor(w.size/2)) x1 = x[pin-hM1:pin+hM2] mX, pX = DFT.dftAnal(x1, w, N) plt.figure(1, figsize=(9, 7)) plt.subplot(311) plt.plot(np.arange(-hM1, hM2)/float(fs), x1, lw=1.5) plt.axis([-hM1/float(fs), hM2/float(fs), min(x1), max(x1)]) plt.title('x (carnatic.wav)') plt.subplot(3,1,2) plt.plot(fs*np.arange(mX.size)/float(N), mX, 'r', lw=1.5) plt.axis([0,fs/4,-100,max(mX)]) plt.title ('mX') plt.subplot(3,1,3) plt.plot(fs*np.arange(pX.size)/float(N), pX, 'c', lw=1.5) plt.axis([0,fs/4,min(pX),27]) plt.title ('pX') plt.tight_layout() plt.savefig('carnatic-spectrum.png') plt.show()
agpl-3.0
quheng/scikit-learn
examples/applications/plot_species_distribution_modeling.py
254
7434
""" ============================= Species distribution modeling ============================= Modeling species' geographic distributions is an important problem in conservation biology. In this example we model the geographic distribution of two south american mammals given past observations and 14 environmental variables. Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density estimation problem and use the `OneClassSVM` provided by the package `sklearn.svm` as our modeling tool. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from __future__ import print_function from time import time import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.base import Bunch from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn import svm, metrics # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False print(__doc__) def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid): """Create a bunch with information about a particular organism This will use the test/train record arrays to extract the data specific to the given species name. """ bunch = Bunch(name=' '.join(species_name.split("_")[:2])) species_name = species_name.encode('ascii') points = dict(test=test, train=train) for label, pts in points.items(): # choose points associated with the desired species pts = pts[pts['species'] == species_name] bunch['pts_%s' % label] = pts # determine coverage values for each of the training & testing points ix = np.searchsorted(xgrid, pts['dd long']) iy = np.searchsorted(ygrid, pts['dd lat']) bunch['cov_%s' % label] = coverages[:, -iy, ix].T return bunch def plot_species_distribution(species=("bradypus_variegatus_0", "microryzomys_minutus_0")): """ Plot the species distribution. """ if len(species) > 2: print("Note: when more than two species are provided," " only the first two will be used") t0 = time() # Load the compressed data data = fetch_species_distributions() # Set up the data grid xgrid, ygrid = construct_grids(data) # The grid in x,y coordinates X, Y = np.meshgrid(xgrid, ygrid[::-1]) # create a bunch for each species BV_bunch = create_species_bunch(species[0], data.train, data.test, data.coverages, xgrid, ygrid) MM_bunch = create_species_bunch(species[1], data.train, data.test, data.coverages, xgrid, ygrid) # background points (grid coordinates) for evaluation np.random.seed(13) background_points = np.c_[np.random.randint(low=0, high=data.Ny, size=10000), np.random.randint(low=0, high=data.Nx, size=10000)].T # We'll make use of the fact that coverages[6] has measurements at all # land points. This will help us decide between land and water. land_reference = data.coverages[6] # Fit, predict, and plot for each species. for i, species in enumerate([BV_bunch, MM_bunch]): print("_" * 80) print("Modeling distribution of species '%s'" % species.name) # Standardize features mean = species.cov_train.mean(axis=0) std = species.cov_train.std(axis=0) train_cover_std = (species.cov_train - mean) / std # Fit OneClassSVM print(" - fit OneClassSVM ... ", end='') clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5) clf.fit(train_cover_std) print("done.") # Plot map of South America plt.subplot(1, 2, i + 1) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) print(" - predict species distribution") # Predict species distribution using the training data Z = np.ones((data.Ny, data.Nx), dtype=np.float64) # We'll predict only for the land points. idx = np.where(land_reference > -9999) coverages_land = data.coverages[:, idx[0], idx[1]].T pred = clf.decision_function((coverages_land - mean) / std)[:, 0] Z *= pred.min() Z[idx[0], idx[1]] = pred levels = np.linspace(Z.min(), Z.max(), 25) Z[land_reference == -9999] = -9999 # plot contours of the prediction plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) plt.colorbar(format='%.2f') # scatter training/testing points plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'], s=2 ** 2, c='black', marker='^', label='train') plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'], s=2 ** 2, c='black', marker='x', label='test') plt.legend() plt.title(species.name) plt.axis('equal') # Compute AUC with regards to background points pred_background = Z[background_points[0], background_points[1]] pred_test = clf.decision_function((species.cov_test - mean) / std)[:, 0] scores = np.r_[pred_test, pred_background] y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)] fpr, tpr, thresholds = metrics.roc_curve(y, scores) roc_auc = metrics.auc(fpr, tpr) plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right") print("\n Area under the ROC curve : %f" % roc_auc) print("\ntime elapsed: %.2fs" % (time() - t0)) plot_species_distribution() plt.show()
bsd-3-clause
agutieda/QuantEcon.py
examples/eigenvec.py
7
1239
""" Filename: eigenvec.py Authors: Tom Sargent and John Stachurski. Illustrates eigenvectors. """ import matplotlib.pyplot as plt import numpy as np from scipy.linalg import eig A = ((1, 2), (2, 1)) A = np.array(A) evals, evecs = eig(A) evecs = evecs[:, 0], evecs[:, 1] fig, ax = plt.subplots() # Set the axes through the origin for spine in ['left', 'bottom']: ax.spines[spine].set_position('zero') for spine in ['right', 'top']: ax.spines[spine].set_color('none') ax.grid(alpha=0.4) xmin, xmax = -3, 3 ymin, ymax = -3, 3 ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) # ax.set_xticks(()) # ax.set_yticks(()) # Plot each eigenvector for v in evecs: ax.annotate('', xy=v, xytext=(0, 0), arrowprops=dict(facecolor='blue', shrink=0, alpha=0.6, width=0.5)) # Plot the image of each eigenvector for v in evecs: v = np.dot(A, v) ax.annotate('', xy=v, xytext=(0, 0), arrowprops=dict(facecolor='red', shrink=0, alpha=0.6, width=0.5)) # Plot the lines they run through x = np.linspace(xmin, xmax, 3) for v in evecs: a = v[1] / v[0] ax.plot(x, a * x, 'b-', lw=0.4) plt.show()
bsd-3-clause
IndraVikas/scikit-learn
examples/ensemble/plot_gradient_boosting_regularization.py
355
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
anntzer/scikit-learn
examples/semi_supervised/plot_self_training_varying_threshold.py
13
4072
""" ============================================= Effect of varying threshold for self-training ============================================= This example illustrates the effect of a varying threshold on self-training. The `breast_cancer` dataset is loaded, and labels are deleted such that only 50 out of 569 samples have labels. A `SelfTrainingClassifier` is fitted on this dataset, with varying thresholds. The upper graph shows the amount of labeled samples that the classifier has available by the end of fit, and the accuracy of the classifier. The lower graph shows the last iteration in which a sample was labeled. All values are cross validated with 3 folds. At low thresholds (in [0.4, 0.5]), the classifier learns from samples that were labeled with a low confidence. These low-confidence samples are likely have incorrect predicted labels, and as a result, fitting on these incorrect labels produces a poor accuracy. Note that the classifier labels almost all of the samples, and only takes one iteration. For very high thresholds (in [0.9, 1)) we observe that the classifier does not augment its dataset (the amount of self-labeled samples is 0). As a result, the accuracy achieved with a threshold of 0.9999 is the same as a normal supervised classifier would achieve. The optimal accuracy lies in between both of these extremes at a threshold of around 0.7. """ print(__doc__) # Authors: Oliver Rausch <[email protected]> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.semi_supervised import SelfTrainingClassifier from sklearn.metrics import accuracy_score from sklearn.utils import shuffle n_splits = 3 X, y = datasets.load_breast_cancer(return_X_y=True) X, y = shuffle(X, y, random_state=42) y_true = y.copy() y[50:] = -1 total_samples = y.shape[0] base_classifier = SVC(probability=True, gamma=0.001, random_state=42) x_values = np.arange(0.4, 1.05, 0.05) x_values = np.append(x_values, 0.99999) scores = np.empty((x_values.shape[0], n_splits)) amount_labeled = np.empty((x_values.shape[0], n_splits)) amount_iterations = np.empty((x_values.shape[0], n_splits)) for (i, threshold) in enumerate(x_values): self_training_clf = SelfTrainingClassifier(base_classifier, threshold=threshold) # We need manual cross validation so that we don't treat -1 as a separate # class when computing accuracy skfolds = StratifiedKFold(n_splits=n_splits) for fold, (train_index, test_index) in enumerate(skfolds.split(X, y)): X_train = X[train_index] y_train = y[train_index] X_test = X[test_index] y_test = y[test_index] y_test_true = y_true[test_index] self_training_clf.fit(X_train, y_train) # The amount of labeled samples that at the end of fitting amount_labeled[i, fold] = total_samples - np.unique( self_training_clf.labeled_iter_, return_counts=True)[1][0] # The last iteration the classifier labeled a sample in amount_iterations[i, fold] = np.max(self_training_clf.labeled_iter_) y_pred = self_training_clf.predict(X_test) scores[i, fold] = accuracy_score(y_test_true, y_pred) ax1 = plt.subplot(211) ax1.errorbar(x_values, scores.mean(axis=1), yerr=scores.std(axis=1), capsize=2, color='b') ax1.set_ylabel('Accuracy', color='b') ax1.tick_params('y', colors='b') ax2 = ax1.twinx() ax2.errorbar(x_values, amount_labeled.mean(axis=1), yerr=amount_labeled.std(axis=1), capsize=2, color='g') ax2.set_ylim(bottom=0) ax2.set_ylabel('Amount of labeled samples', color='g') ax2.tick_params('y', colors='g') ax3 = plt.subplot(212, sharex=ax1) ax3.errorbar(x_values, amount_iterations.mean(axis=1), yerr=amount_iterations.std(axis=1), capsize=2, color='b') ax3.set_ylim(bottom=0) ax3.set_ylabel('Amount of iterations') ax3.set_xlabel('Threshold') plt.show()
bsd-3-clause
sekikn/incubator-airflow
tests/providers/apache/pinot/hooks/test_pinot.py
3
9856
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import io import os import subprocess import unittest from unittest import mock import pytest from airflow.exceptions import AirflowException from airflow.providers.apache.pinot.hooks.pinot import PinotAdminHook, PinotDbApiHook class TestPinotAdminHook(unittest.TestCase): def setUp(self): super().setUp() self.conn = conn = mock.MagicMock() self.conn.host = 'host' self.conn.port = '1000' self.conn.extra_dejson = {'cmd_path': './pinot-admin.sh'} class PinotAdminHookTest(PinotAdminHook): def get_connection(self, conn_id): return conn self.db_hook = PinotAdminHookTest() @mock.patch('airflow.providers.apache.pinot.hooks.pinot.PinotAdminHook.run_cli') def test_add_schema(self, mock_run_cli): params = ["schema_file", False] self.db_hook.add_schema(*params) mock_run_cli.assert_called_once_with( [ 'AddSchema', '-controllerHost', self.conn.host, '-controllerPort', self.conn.port, '-schemaFile', params[0], ] ) @mock.patch('airflow.providers.apache.pinot.hooks.pinot.PinotAdminHook.run_cli') def test_add_table(self, mock_run_cli): params = ["config_file", False] self.db_hook.add_table(*params) mock_run_cli.assert_called_once_with( [ 'AddTable', '-controllerHost', self.conn.host, '-controllerPort', self.conn.port, '-filePath', params[0], ] ) @mock.patch('airflow.providers.apache.pinot.hooks.pinot.PinotAdminHook.run_cli') def test_create_segment(self, mock_run_cli): params = { "generator_config_file": "a", "data_dir": "b", "segment_format": "c", "out_dir": "d", "overwrite": True, "table_name": "e", "segment_name": "f", "time_column_name": "g", "schema_file": "h", "reader_config_file": "i", "enable_star_tree_index": False, "star_tree_index_spec_file": "j", "hll_size": 9, "hll_columns": "k", "hll_suffix": "l", "num_threads": 8, "post_creation_verification": True, "retry": 7, } self.db_hook.create_segment(**params) mock_run_cli.assert_called_once_with( [ 'CreateSegment', '-generatorConfigFile', params["generator_config_file"], '-dataDir', params["data_dir"], '-format', params["segment_format"], '-outDir', params["out_dir"], '-overwrite', params["overwrite"], '-tableName', params["table_name"], '-segmentName', params["segment_name"], '-timeColumnName', params["time_column_name"], '-schemaFile', params["schema_file"], '-readerConfigFile', params["reader_config_file"], '-starTreeIndexSpecFile', params["star_tree_index_spec_file"], '-hllSize', params["hll_size"], '-hllColumns', params["hll_columns"], '-hllSuffix', params["hll_suffix"], '-numThreads', params["num_threads"], '-postCreationVerification', params["post_creation_verification"], '-retry', params["retry"], ] ) @mock.patch('airflow.providers.apache.pinot.hooks.pinot.PinotAdminHook.run_cli') def test_upload_segment(self, mock_run_cli): params = ["segment_dir", False] self.db_hook.upload_segment(*params) mock_run_cli.assert_called_once_with( [ 'UploadSegment', '-controllerHost', self.conn.host, '-controllerPort', self.conn.port, '-segmentDir', params[0], ] ) @mock.patch('subprocess.Popen') def test_run_cli_success(self, mock_popen): mock_proc = mock.MagicMock() mock_proc.returncode = 0 mock_proc.stdout = io.BytesIO(b'') mock_popen.return_value = mock_proc params = ["foo", "bar", "baz"] self.db_hook.run_cli(params) params.insert(0, self.conn.extra_dejson.get('cmd_path')) mock_popen.assert_called_once_with( params, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, close_fds=True, env=None ) @mock.patch('subprocess.Popen') def test_run_cli_failure_error_message(self, mock_popen): msg = b"Exception caught" mock_proc = mock.MagicMock() mock_proc.returncode = 0 mock_proc.stdout = io.BytesIO(msg) mock_popen.return_value = mock_proc params = ["foo", "bar", "baz"] with self.assertRaises(AirflowException, msg=msg): self.db_hook.run_cli(params) params.insert(0, self.conn.extra_dejson.get('cmd_path')) mock_popen.assert_called_once_with( params, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, close_fds=True, env=None ) @mock.patch('subprocess.Popen') def test_run_cli_failure_status_code(self, mock_popen): mock_proc = mock.MagicMock() mock_proc.returncode = 1 mock_proc.stdout = io.BytesIO(b'') mock_popen.return_value = mock_proc self.db_hook.pinot_admin_system_exit = True params = ["foo", "bar", "baz"] with self.assertRaises(AirflowException): self.db_hook.run_cli(params) params.insert(0, self.conn.extra_dejson.get('cmd_path')) env = os.environ.copy() env.update({"JAVA_OPTS": "-Dpinot.admin.system.exit=true "}) mock_popen.assert_called_once_with( params, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, close_fds=True, env=env ) class TestPinotDbApiHook(unittest.TestCase): def setUp(self): super().setUp() self.conn = conn = mock.MagicMock() self.conn.host = 'host' self.conn.port = '1000' self.conn.conn_type = 'http' self.conn.extra_dejson = {'endpoint': 'query/sql'} self.cur = mock.MagicMock() self.conn.cursor.return_value = self.cur self.conn.__enter__.return_value = self.cur self.conn.__exit__.return_value = None class TestPinotDBApiHook(PinotDbApiHook): def get_conn(self): return conn def get_connection(self, conn_id): return conn self.db_hook = TestPinotDBApiHook def test_get_uri(self): """ Test on getting a pinot connection uri """ db_hook = self.db_hook() self.assertEqual(db_hook.get_uri(), 'http://host:1000/query/sql') def test_get_conn(self): """ Test on getting a pinot connection """ conn = self.db_hook().get_conn() self.assertEqual(conn.host, 'host') self.assertEqual(conn.port, '1000') self.assertEqual(conn.conn_type, 'http') self.assertEqual(conn.extra_dejson.get('endpoint'), 'query/sql') def test_get_records(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchall.return_value = result_sets self.assertEqual(result_sets, self.db_hook().get_records(statement)) def test_get_first(self): statement = 'SQL' result_sets = [('row1',), ('row2',)] self.cur.fetchone.return_value = result_sets[0] self.assertEqual(result_sets[0], self.db_hook().get_first(statement)) def test_get_pandas_df(self): statement = 'SQL' column = 'col' result_sets = [('row1',), ('row2',)] self.cur.description = [(column,)] self.cur.fetchall.return_value = result_sets df = self.db_hook().get_pandas_df(statement) self.assertEqual(column, df.columns[0]) for i in range(len(result_sets)): # pylint: disable=consider-using-enumerate self.assertEqual(result_sets[i][0], df.values.tolist()[i][0]) class TestPinotDbApiHookIntegration(unittest.TestCase): @pytest.mark.integration("pinot") @mock.patch.dict('os.environ', AIRFLOW_CONN_PINOT_BROKER_DEFAULT="pinot://pinot:8000/") def test_should_return_records(self): hook = PinotDbApiHook() sql = "select playerName from baseballStats ORDER BY playerName limit 5" records = hook.get_records(sql) self.assertEqual([["A. Harry"], ["A. Harry"], ["Aaron"], ["Aaron Albert"], ["Aaron Albert"]], records)
apache-2.0
yuchenhou/elephant
elephant/main.py
1
2126
import json import os import numpy import pandas import seaborn import sklearn from matplotlib import pyplot from elephant.estimator import Estimator def evaluate(data_set_name, layer_size, n_hidden_layers): with open(os.path.join('../specs', data_set_name + '.json')) as specs_file: specs = json.load(specs_file) data_set = pandas.read_csv(os.path.join('../resources', specs['file']), sep=specs['separator'], engine=specs['engine']) print(data_set.head()) with open(os.path.join(os.path.dirname(__file__), 'neural-net.json')) as config_file: config = json.load(config_file) x = data_set.ix[:, :2].values estimator = Estimator(x, config, layer_size, n_hidden_layers) y = data_set.ix[:, 2].values.reshape(-1, 1) if specs['scaling']: y = sklearn.preprocessing.MaxAbsScaler().fit_transform(numpy.log(y)) return estimator.estimate(y, config['batch_size'], specs['test_size'], specs['metric']) def experiment(data_set_name, layer_size, hidden_layer_count, trial_count, ): errors = [] for trial in range(trial_count): errors.append(evaluate(data_set_name, layer_size, hidden_layer_count, )) errors = numpy.array(errors) print(errors.mean(), errors.std()) return errors.mean() def grid_search(): MSEs = [] layer_sizes = [1, 2, 4, 8, ] hidden_layer_counts = [1, 2, 4, 8, ] for layer_size in layer_sizes: MSEs.append( [experiment('airport', layer_size, hidden_layer_count, 1) for hidden_layer_count in hidden_layer_counts]) mses = pandas.DataFrame(numpy.array(MSEs), layer_sizes, hidden_layer_counts) print(mses) axes = seaborn.heatmap(mses, annot=True, ) axes.set_ylabel('layer sizes') axes.set_xlabel('hidden layer count') pyplot.savefig('../resources/heat-map') def main(): # grid_search() experiment('movie-tweeting', 2, 2, 1, ) if __name__ == '__main__': recommendation_data = ['movie-lens-100k', 'movie-lens-1m', 'e-pinions', 'movie-tweeting', ] graph_data = ['airport', 'collaboration', 'congress', 'forum', ] main()
mit
pnedunuri/scikit-learn
examples/exercises/plot_cv_digits.py
232
1206
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn import cross_validation, datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure(1, figsize=(4, 3)) plt.clf() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
ricket1978/ggplot
ggplot/geoms/geom_line.py
12
1405
from __future__ import (absolute_import, division, print_function, unicode_literals) import sys from .geom import geom class geom_line(geom): DEFAULT_AES = {'color': 'black', 'alpha': None, 'linetype': 'solid', 'size': 1.0} REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity'} _aes_renames = {'size': 'linewidth', 'linetype': 'linestyle'} _units = {'alpha', 'color', 'linestyle'} def __init__(self, *args, **kwargs): super(geom_line, self).__init__(*args, **kwargs) self._warning_printed = False def _plot_unit(self, pinfo, ax): if 'linewidth' in pinfo and isinstance(pinfo['linewidth'], list): # ggplot also supports aes(size=...) but the current mathplotlib # is not. See https://github.com/matplotlib/matplotlib/issues/2658 pinfo['linewidth'] = 4 if not self._warning_printed: msg = "'geom_line()' currenty does not support the mapping of " +\ "size ('aes(size=<var>'), using size=4 as a replacement.\n" +\ "Use 'geom_line(size=x)' to set the size for the whole line.\n" sys.stderr.write(msg) self._warning_printed = True pinfo = self.sort_by_x(pinfo) x = pinfo.pop('x') y = pinfo.pop('y') ax.plot(x, y, **pinfo)
bsd-2-clause
lenovor/scikit-learn
sklearn/svm/tests/test_bounds.py
280
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
Pymatteo/QtNMR
fftscripttest.py
1
3229
import numpy as np import matplotlib matplotlib.use('qt5agg') import matplotlib.pyplot as plt # This variable controll the streght of the exponential apodization # ## change it as needed, experiemnt before... (1000 is often good)#### LB=1000 ##################################################################### self.dat.setLB(LB) def isint(value): try: int(value) return True except ValueError: return False def find_nearest(array,value,np): idx = np.abs(array-value).argmin() return idx np.set_printoptions(precision=5) filelist = utils.filelist(self.dat.getFilename()[0]) #print(filelist) folder = self.dat.getFilename()[0].rsplit('/',1)[0] folder = folder.replace("\\", "/") signal_max=[0,''] spectra_list=[] for ii in filelist: if isint(ii.split('/')[-1].split('.')[-2]): print(ii) spectra_list = spectra_list + [ii] print(spectra_list) for ii in spectra_list: self.loadFile((ii,'*.tnt')) integral, magnitude_integral = self.dat.find_phcorr_int() # print(integral, magnitude_integral) if magnitude_integral[0] > signal_max[0]: signal_max=[magnitude_integral[0],ii] #print('signalmax',signal_max) self.loadFile((signal_max[1],'*.tnt')) self.echo_find() selection=self.dat.getSelection() self.save_selection() echo_center=(selection[1]-selection[0])/2+selection[0] spectrum=np.zeros(self.dat.get1dpoints()) frequencies=np.zeros(self.dat.get1dpoints()) print('##############') print('initilize fft sum') print('##############') for ii in spectra_list: print(ii) self.loadFile((ii,'*.tnt')) self.load_selection() self.dat.auto_phase() self.dat.setShifter(echo_center) self.dat.left_shift(True) self.dat.zerofill() self.exp_apodization() self.dat.fourier(True) spectrum_temp=self.dat.getData()[0].real frequencies_temp=(self.dat.getXaxis()+int(ii.split('/')[-1].split('.')[-2])*1e3)/1e6 if ii == spectra_list[0]: frequencies=frequencies_temp spectrum=spectrum_temp else: if (frequencies_temp[0] < np.amin(frequencies)) or (frequencies_temp[0] > np.amax(frequencies)): print('too wide data separation') else: # print(find_nearest(frequencies,frequencies_temp[0],np)) # print(frequencies_temp.size) # print(frequencies.size) trailing_zeros=find_nearest(frequencies,frequencies_temp[0],np)+frequencies_temp.size-frequencies.size leading_zeros=trailing_zeros-frequencies_temp.size+frequencies.size print(trailing_zeros) frequencies=np.append(frequencies,frequencies_temp[-trailing_zeros:]) spectrum=np.append(spectrum,np.zeros(trailing_zeros)) spectrum_temp=np.append(np.zeros(leading_zeros),spectrum_temp) spectrum=spectrum+spectrum_temp print(frequencies_temp.size) print(frequencies.size) print(spectrum.size) spectrum=np.column_stack((frequencies,spectrum)) np.savetxt(folder+'/spectrum_fftsum_'+folder.rsplit('/',1)[1]+'.dat', spectrum, delimiter=' ') plt.ion() plt.clf() fig=plt.figure(1) plt.plot(spectrum[:,0], spectrum[:,1]) plt.xlabel('Frequency (MHz)') plt.ylabel('Intensity') plt.title("Spectrum "+folder.rsplit('/',1)[1]) plt.ioff()
gpl-3.0
DavC95/algotrading_sandbox
algotrade_sandbox-1.0/algotrade_sandbox.py
1
5150
#!/usr/local/bin/python3 import numpy as np import pandas as pd import os,sys import shutil import time from matplotlib import pyplot as plt from urllib.request import urlretrieve import xml.etree.ElementTree as ET __init_cap=0 __s_universe=[] __positions_array={} __close_matrix=pd.DataFrame() __curr_epoch=0 __portfolio_value=[] def define_environment(stock_universe,initial_capital,API_key_alphavantage,Full=False,granularity="DAILY"): #data retrieval print("\nDOWNLOADING STOCK DATA ...\n") global __init_cap,__s_universe,__positions_array,__portfolio_value __init_cap=initial_capital __portfolio_value.append(__init_cap) __s_universe=stock_universe shutil.rmtree("csv_files") os.makedirs("csv_files") for i in stock_universe: try: if Full==False and granularity=="DAILY": url_addr="https://www.alphavantage.co/query?function=TIME_SERIES_"+granularity+"&symbol="+str(i)+"&apikey=" + API_key_alphavantage+ "&datatype=csv" elif Full==True and granularity=="DAILY": url_addr="https://www.alphavantage.co/query?function=TIME_SERIES_"+granularity+"&symbol="+str(i)+"&apikey="+API_key_alphavantage+ "&datatype=csv"+"&outputsize=full" if granularity=="INTRADAY_1_MINUTE": url_addr="https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY"+"&symbol="+str(i)+"&apikey="+API_key_alphavantage + "&datatype=csv"+"&outputsize=full"+"&interval=1min" urlretrieve(url_addr,"csv_files/"+str(i)+".csv") print(str(i)+" DATA SUCCESSFULLY DOWNLOADED") except: print("\nError downloading data: check internet connection") print("\n") __hist_closing_matrix() def __hist_closing_matrix(): df_final=pd.DataFrame() global __s_universe global __close_matrix for j in __s_universe: try: df=pd.read_csv("csv_files/"+str(j)+".csv") df_final[str(j)]=df["close"] except: print("\nDATA NOT VALID: CHECK THE CSV FILE FOR ALPHAVANTAGE TROUBLESHOOTING INFO") sys.exit() df_final["TIMESTAMP"]=df["timestamp"] __close_matrix=df_final def plot_stocks(arr_stocks): plt.style.use("dark_background") for j in arr_stocks: plt.plot(__close_matrix[j]) #plt.xticks(np.linspace(0,len(__close_matrix["TIMESTAMP"]),10)) plt.xlabel("Time") plt.legend() #plt.grid() plt.show() def summary(): print("------"*int(len(__s_universe)/2)+"DATA SUMMARY"+"------"*int(len(__s_universe)/2)) print("DATA FROM: "+ __close_matrix["TIMESTAMP"].iloc[-1] +" TO: "+ __close_matrix["TIMESTAMP"].iloc[0]) print("\n") print(" "*int(len(__s_universe)+1)+"DATA HEAD\n") print(__close_matrix.head(20)) print("----------"*int(len(__s_universe)+1)) print(" "*int(len(__s_universe)+1)+"DATA DESCRIPTION\n") print(__close_matrix.describe()) def start_backtest(trade_algo): global __curr_epoch global __positions_array global __s_universe for i in __s_universe: __positions_array[i]=0 print("\n-------- STARTING TRADING ---------") for i in range(0,len(__close_matrix)): trade_algo() eval_portfolio() __curr_epoch+=1 def curr_price(stock_n): res=__close_matrix.iloc[::-1] return res[str(stock_n)].iloc[__curr_epoch] def __eval_positions(): global __s_universe global __positions_array port_value={} for i in __s_universe: port_value[i]=(__positions_array[i]*curr_price(i)) return port_value def buy(stock_name,quantity_curr): global __positions_array global __close_matrix global __s_universe global __init_cap __positions_array[stock_name]+=int(quantity_curr/curr_price(stock_name)) __init_cap-=int(quantity_curr/curr_price(stock_name))*curr_price(stock_name) print("BUYING "+ str("%.6s" % stock_name)+ " AT " + str("%.2f" % curr_price(stock_name)) + " CURRENT CASH: "+str("%.2f" % np.round(__init_cap,2)) +" PORTFOLIO VALUE: " + str(__portfolio_value[-1])+ " CURRENT POSITIONS: " + str(__eval_positions())) def sell(stock_name,quantity_curr): global __positions_array global __close_matrix global __s_universe global __init_cap __positions_array[stock_name]-=int(quantity_curr/curr_price(stock_name)) __init_cap+=int(quantity_curr/curr_price(stock_name))*curr_price(stock_name) print("SELLING "+ str("%.6s" % stock_name)+ " AT " + str("%.2f" % curr_price(stock_name)) +" CURRENT CASH: "+str("%.2f" % np.round(__init_cap,2)) + " PORTFOLIO VALUE: " + str(__portfolio_value[-1]) + " CURRENT POSITIONS: " + str(__eval_positions())) def get_time_series(stck_nam): return __close_matrix[stck_nam] def eval_portfolio(): global __portfolio_value __portfolio_value.append(__init_cap+sum([__eval_positions()[i] for i in __s_universe])) def portfolio_performance(): plt.style.use("dark_background") plt.plot(__portfolio_value) plt.title("PORTFOLIO PERFORMANCE: " + __close_matrix["TIMESTAMP"].iloc[-1] +" - "+ __close_matrix["TIMESTAMP"].iloc[0]) plt.show()
mit
jart/tensorflow
tensorflow/contrib/factorization/python/ops/gmm_test.py
41
8716
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ops.gmm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.factorization.python.ops import gmm as gmm_lib from tensorflow.contrib.learn.python.learn.estimators import kmeans from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed as random_seed_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import queue_runner class GMMTest(test.TestCase): def input_fn(self, batch_size=None, points=None): batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] def _fn(): x = constant_op.constant(points) if batch_size == num_points: return x, None indices = random_ops.random_uniform(constant_op.constant([batch_size]), minval=0, maxval=num_points-1, dtype=dtypes.int32, seed=10) return array_ops.gather(x, indices), None return _fn def setUp(self): np.random.seed(3) random_seed_lib.set_random_seed(2) self.num_centers = 2 self.num_dims = 2 self.num_points = 4000 self.batch_size = self.num_points self.true_centers = self.make_random_centers(self.num_centers, self.num_dims) self.points, self.assignments = self.make_random_points( self.true_centers, self.num_points) # Use initial means from kmeans (just like scikit-learn does). clusterer = kmeans.KMeansClustering(num_clusters=self.num_centers) clusterer.fit(input_fn=lambda: (constant_op.constant(self.points), None), steps=30) self.initial_means = clusterer.clusters() @staticmethod def make_random_centers(num_centers, num_dims): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * 500) @staticmethod def make_random_points(centers, num_points): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * 20) points = centers[assignments] + offsets return (points, assignments) def test_weights(self): """Tests the shape of the weights.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) weights = gmm.weights() self.assertAllEqual(list(weights.shape), [self.num_centers]) def test_clusters(self): """Tests the shape of the clusters.""" gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=0) clusters = gmm.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters='random', random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=1) score1 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) gmm.fit(input_fn=self.input_fn(), steps=10) score2 = gmm.score(input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertLess(score1, score2) def test_infer(self): gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, random_seed=4, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=60) clusters = gmm.clusters() # Make a small test set num_points = 40 points, true_assignments = self.make_random_points(clusters, num_points) assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=num_points)): assignments.append(item) assignments = np.ravel(assignments) self.assertAllEqual(true_assignments, assignments) def _compare_with_sklearn(self, cov_type): # sklearn version. iterations = 40 np.random.seed(5) sklearn_assignments = np.asarray([0, 0, 1, 0, 0, 0, 1, 0, 0, 1]) sklearn_means = np.asarray([[144.83417719, 254.20130341], [274.38754816, 353.16074346]]) sklearn_covs = np.asarray([[[395.0081194, -4.50389512], [-4.50389512, 408.27543989]], [[385.17484203, -31.27834935], [-31.27834935, 391.74249925]]]) # skflow version. gmm = gmm_lib.GMM(self.num_centers, initial_clusters=self.initial_means, covariance_type=cov_type, config=run_config.RunConfig(tf_random_seed=2)) gmm.fit(input_fn=self.input_fn(), steps=iterations) points = self.points[:10, :] skflow_assignments = [] for item in gmm.predict_assignments( input_fn=self.input_fn(points=points, batch_size=10)): skflow_assignments.append(item) self.assertAllClose(sklearn_assignments, np.ravel(skflow_assignments).astype(int)) self.assertAllClose(sklearn_means, gmm.clusters()) if cov_type == 'full': self.assertAllClose(sklearn_covs, gmm.covariances(), rtol=0.01) else: for d in [0, 1]: self.assertAllClose( np.diag(sklearn_covs[d]), gmm.covariances()[d, :], rtol=0.01) def test_compare_full(self): self._compare_with_sklearn('full') def test_compare_diag(self): self._compare_with_sklearn('diag') def test_random_input_large(self): # sklearn version. iterations = 5 # that should be enough to know whether this diverges np.random.seed(5) num_classes = 20 x = np.array([[np.random.random() for _ in range(100)] for _ in range(num_classes)], dtype=np.float32) # skflow version. gmm = gmm_lib.GMM(num_classes, covariance_type='full', config=run_config.RunConfig(tf_random_seed=2)) def get_input_fn(x): def input_fn(): return constant_op.constant(x.astype(np.float32)), None return input_fn gmm.fit(input_fn=get_input_fn(x), steps=iterations) self.assertFalse(np.isnan(gmm.clusters()).any()) class GMMTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue(capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): gmm = gmm_lib.GMM(2, covariance_type='diag') gmm.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
Neuroschemata/jerk_snap_crackle_pop
jerk_snap_crackle_pop/load_inputs_targets.py
2
6537
import os from collections import deque import numpy as np import pandas as pd # "T_max" and "features" are both hard-coded for now # T_max = 1849=43*43 allows us to map the inputs onto a square grid # so as to formulate the problem via an image recognition analogy T_max = 43**2 features = ['x', 'y', 'v_x', 'v_y', 'accl_x', 'accl_y','jerk_x',\ 'jerk_y','snap_x','snap_y','crak_x','crak_y','pop_x','pop_y'] num_channels = len(features) def _load_trip_features(trip_data,features=features,T_max=T_max): """ Load preprocessed data ("trip_data") from a single trip.""" df = pd.read_pickle(trip_data) trip_features = df[features].values.transpose() # make sure there are no NaNs assert(not np.any(np.isnan(trip_features))) assert(not np.any(np.isinf(trip_features))) # "standardize" data by subtracting mean & re-scaling by std. deviation trip_features = trip_features - np.mean(trip_features, axis=0) trip_features = trip_features / np.std(trip_features, axis=0) # replace any NaNs (that may be caused by previous division) with zeros trip_features = np.nan_to_num(trip_features) # get final x,y coordinates of trip x_T,y_T = trip_features[(0,1),-1] # fix the shape of the data so that all inputs have length T_max fit_size= np.zeros((trip_features.shape[0], T_max-trip_features.shape[1])).astype(trip_features.dtype) # freeze the x,y coordinates for all t>data.shape[1] fit_size[0]=x_T*np.ones((1,fit_size.shape[1])).astype(fit_size.dtype) fit_size[1]=y_T*np.ones((1,fit_size.shape[1])).astype(fit_size.dtype) trip_features = np.concatenate((trip_features, fit_size),axis=1) return trip_features.reshape((1, trip_features.shape[0], trip_features.shape[1])) def add_features_to_driver(drvr_data_loc, runtime_configuration, split_data=True): """ Collate trip_features associated with a given driver.""" train_val_ratio = runtime_configuration['train_val_ratio'] assert(train_val_ratio[0]+train_val_ratio[1]==1) driver_feats = deque([]) for fname in os.listdir(drvr_data_loc): if os.path.isfile(os.path.join(drvr_data_loc, fname)): driver_feats.append( _load_trip_features(os.path.join(drvr_data_loc, fname))) # driver_feats contains K objects of shape (1,num_channels,T_max) # D_i will be numpy array of shape (K,num_channels,T_max) # associated with all K trips made by driver i D_i = np.concatenate(driver_feats) drvr_IDs = np.ones(D_i.shape[0]) * int(os.path.basename(drvr_data_loc)) if split_data: splitoff = int(np.floor(train_val_ratio[0] * drvr_IDs.shape[0])) return dict(train_with=dict(D_i=D_i[:splitoff], drvr_IDs=drvr_IDs[:splitoff]), val_with=dict(D_i=D_i[splitoff:], drvr_IDs=drvr_IDs[splitoff:])) else: return dict(D_i=D_i, drvr_IDs=drvr_IDs) def _finalize_data(all_training_targets, all_val_targets): unique_val_targets = np.unique(all_val_targets) cloned_training_targets, cloned_val_targets = \ np.copy(all_training_targets), np.copy(all_val_targets) for lbl in range(unique_val_targets.shape[0]): cloned_training_targets[all_training_targets == unique_val_targets[lbl]] = lbl cloned_val_targets[all_val_targets == unique_val_targets[lbl]] = lbl return cloned_training_targets, cloned_val_targets, unique_val_targets def set_inputs_n_targets(data_logs, runtime_configuration): """ Prepare complete network-ready inputs.""" trips_per_drvr = 200 # ugh! TODO:remove hard-coding for trips_per_drvr drivers_dir = data_logs['data_location'] training_ratio=runtime_configuration['train_val_ratio'][0] drvr_list = [drvr for drvr in os.listdir(drivers_dir) if os.path.isdir(os.path.join(drivers_dir, drvr))] packaged_data = dict(train_with=dict(allDs=None,drvr_IDs=None), val_with=dict(allDs=None,drvr_IDs=None)) # TODO: add num_channels, T_max as parameters passed to the function num_training_trips = int(np.floor(training_ratio * trips_per_drvr)) num_val_trips = int(trips_per_drvr - num_training_trips) total_train_samples = len(drvr_list) * num_training_trips total_val_samples = len(drvr_list) * num_val_trips assert(total_train_samples + total_val_samples == trips_per_drvr * len(drvr_list)) # create helper functions for slicing to aid in splitting the inputs into # training and validation sets bunch_train_trips = \ lambda k: slice(k * num_training_trips, (k + 1) * num_training_trips) bunch_val_trips = \ lambda k: slice(k * num_val_trips, (k + 1) * num_val_trips) # initialize data structures for inputs and targets all_training_inputs = np.zeros(shape=(total_train_samples,num_channels,T_max), dtype=np.float16) all_training_targets = np.zeros(shape=(total_train_samples), dtype=np.int16) all_val_inputs = np.zeros(shape=(total_val_samples,num_channels,T_max), dtype=np.float16) all_val_targets = np.zeros(shape=(total_val_samples), dtype=np.int16) # populate data structures for inputs and targets for i, drvr in enumerate(drvr_list): driver_feats = add_features_to_driver(os.path.join(drivers_dir, drvr),\ runtime_configuration) all_training_inputs[bunch_train_trips(i)] =\ driver_feats['train_with']['D_i'].astype(all_training_inputs.dtype) all_training_targets[bunch_train_trips(i)]=\ driver_feats['train_with']['drvr_IDs'].astype(all_training_targets.dtype) all_val_inputs[bunch_val_trips(i)] =\ driver_feats['val_with']['D_i'].astype(all_val_inputs.dtype) all_val_targets[bunch_val_trips(i)] =\ driver_feats['val_with']['drvr_IDs'].astype(all_val_targets.dtype) print('{0} % of drivers processed ...'.format(np.round(100.0*(i+1)/len(drvr_list)))) # package inputs and targets into a dictionary packaged_data['train_with']['allDs']=all_training_inputs packaged_data['val_with']['allDs']=all_val_inputs packaged_data['train_with']['drvr_IDs'], \ packaged_data['val_with']['drvr_IDs'], \ packaged_data['class_labels'] \ = _finalize_data(all_training_targets, all_val_targets) return packaged_data
lgpl-3.0
adamnovak/hgvm-graph-bakeoff-evaluations
scripts/plotVariantsDistances.py
6
16857
#!/usr/bin/env python2.7 """ Make some figures for the .tsv output of computeVariantsDistances.py """ import argparse, sys, os, os.path, random, subprocess, shutil, itertools, glob import doctest, re, json, collections, time, timeit, string, math, copy from collections import defaultdict from Bio.Phylo.TreeConstruction import _DistanceMatrix, DistanceTreeConstructor from Bio import Phylo import matplotlib matplotlib.use('Agg') import pylab import networkx as nx from collections import defaultdict from toillib import robust_makedirs from callVariants import alignment_sample_tag, alignment_region_tag, alignment_graph_tag, run from callVariants import graph_path, sample_vg_path, g1k_vg_path, graph_path from evaluateVariantCalls import defaultdict_set from computeVariantsDistances import vcf_dist_header, read_tsv, write_tsv # Set up the plot parameters # Include both versions of the 1kg SNPs graph name # copied from plotVariantComparison.sh PLOT_PARAMS = [ "--categories", "snp1kg", "snp1000g", "haplo1kg", "sbg", "cactus", "camel", "curoverse", "debruijn-k31", "debruijn-k63", "level1", "level2", "level3", "prg", "refonly", "simons", "trivial", "vglr", "haplo1kg30", "haplo1kg50", "shifted1kg", "gatk3", "platypus", "g1kvcf", "freebayes", "samtools", "snp1kg_af001", "snp1kg_af010", "snp1kg_af100", "snp1kg_kp", "haplo1kg30_af001", "haplo1kg30_af010", "haplo1kg30_af100", "haplo1kg50_af001", "haplo1kg50_af010", "haplo1kg50_af100", "platinum", "freebayes_g", "snp1kg_norm", "snp1kg_plat", "--category_labels ", "1KG", "1KG", "\"1KG Haplo\"", "7BG", "Cactus", "Camel", "Curoverse", "\"De Bruijn 31\"", "\"De Bruijn 63\"", "Level1", "Level2", "Level3", "PRG", "Primary", "SGDP", "Unmerged", "VGLR", "\"1KG Haplo 30\"", "\"1KG Haplo 50\"", "Scrambled", "GATK3", "Platypus", "\"1000 Genomes\"", "FreeBayes", "Samtools", "\"1KG .001\"", "\"1KG .010\"", "\"1KG .100\"", "\"1KG UF\"", "\"1KG Hap30 .001\"", "\"1KG Hap30 .010\"", "\"1KG Hap30 .100\"", "\"1KG Hap50 .001\"", "\"1KG Hap50 .010\"", "\"1KG Hap50 .100\"", "Platinum", "\"Freebayes VG\"", "\"1KG Norm\"", "\"1KG Plat\"", "--colors", "\"#fb9a99\"", "\"#fb9a99\"", "\"#fdbf6f\"", "\"#b15928\"", "\"#1f78b4\"", "\"#33a02c\"", "\"#a6cee3\"", "\"#e31a1c\"", "\"#ff7f00\"", "\"#FF0000\"", "\"#00FF00\"", "\"#0000FF\"", "\"#6a3d9a\"", "\"#000000\"", "\"#b2df8a\"", "\"#b1b300\"", "\"#cab2d6\"", "\"#00FF00\"", "\"#0000FF\"", "\"#FF0000\"", "\"#25BBD4\"", "\"#9E7C72\"", "\"#cab2d6\"", "\"#FF00FF\"", "\"#2F4F4F\"", "\"#C71585\"", "\"#663399\"", "\"#F4A460\"", "\"#FA8072\"", "\"#556B2F\"", "\"#DEB887\"", "\"#800000\"", "\"#6A5ACD\"", "\"#C71585\"", "\"#FF6347\"", "\"#119911\"", "\"#b1b300\"", "\"#fb4a44\"", "\"#fabf1f\"", "--font_size 20 --dpi 90"] def name_map(): """ make a dictionary from the list above """ i = PLOT_PARAMS.index("--categories") j = PLOT_PARAMS.index("--category_labels ") names = dict() for k in range(i + 1, j): if PLOT_PARAMS[k][0:2] == "--": break names[PLOT_PARAMS[i + k]] = PLOT_PARAMS[j + k].replace("\"", "") # hack in sample-<name> and base-<name> maps keys = [k for k in names.keys()] for key in keys: names["base-{}".format(key)] = "Base {}".format(names[key]) names["sample-{}".format(key)] = "Sample {}".format(names[key]) return names def parse_args(args): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) # General options parser.add_argument("comp_dir", type=str, help="directory of comparison output written by computeVariantsDistances.py") parser.add_argument("--skip", type=str, default=None, help="comma separated list of skip words to pass to plotHeatMap.py") parser.add_argument("--top", action="store_true", help="print some zoom-ins too") parser.add_argument("--range", help="distance range to plot on either side of max f1 pr dot", type=float, default=0.1) args = args[1:] return parser.parse_args(args) def plot_kmer_comp(tsv_path, options): """ take a kmer compare table and make a jaccard boxplot for the first column and a recall / precision ploot for the 2nd and third column """ out_dir = os.path.join(options.comp_dir, "comp_plots") robust_makedirs(out_dir) out_name = os.path.basename(os.path.splitext(tsv_path)[0]) out_base_path = os.path.join(out_dir, out_name) sample = out_name.split("-")[-1].upper() region = out_name.split("-")[-2].upper() params = " ".join(PLOT_PARAMS) # jaccard boxplot jac_tsv = out_base_path + "_jac.tsv" awkstr = '''awk '{if (NR!=1) print $1 "\t" $2}' ''' run("{} {} > {}".format(awkstr, tsv_path, jac_tsv)) jac_png = out_base_path + "_jac.png" run("scripts/boxplot.py {} --save {} --title \"{} KMER Set Jaccard\" --x_label \"Graph\" --y_label \"Jaccard Index\" --x_sideways {}".format(jac_tsv, jac_png, region, params)) # precision recall scatter plot acc_tsv = out_base_path + "_acc.tsv" awkstr = '''awk '{if (NR!=1) print $1 "\t" $4 "\t" $3}' ''' run("{} {} > {}".format(awkstr, tsv_path, acc_tsv)) acc_png = out_base_path + "_acc.png" run("scripts/scatter.py {} --save {} --title \"{} KMER Set Accuracy\" --x_label \"Recall\" --y_label \"Precision\" --width 12 --height 9 --lines {}".format(acc_tsv, acc_png, region, params)) def make_max_f1_tsv(acc_tsv_path, f1_tsv_path, f1_pr_tsv_path, f1_qual_tsv_path, options): """ flatten precision-recall tsv into single best f1 entry per graph """ def f1(p, r): return 0 if p + r == 0 else 2. * ((p * r) / (p + r)) max_f1 = defaultdict(int) max_pr = dict() max_qual = dict() with open(acc_tsv_path) as f: pr_file = [line for line in f] for i, line in enumerate(pr_file): toks = line.split() try: name, recall, precision, qual = toks[0], float(toks[1]), float(toks[2]), float(toks[3]) max_f1[name] = max(f1(precision, recall), max_f1[name]) if max_f1[name] == f1(precision, recall): max_pr[name] = (precision, recall, i) max_qual[name] = qual except: pass with open(f1_tsv_path, "w") as f1_file: for name, f1_score in max_f1.items(): f1_file.write("{}\t{}\n".format(name, f1_score)) with open(f1_pr_tsv_path, "w") as f1_pr_file: for name, pr_score in max_pr.items(): best_f1_line = pr_file[pr_score[2]] best_recall, best_precision = float(best_f1_line.split()[1]), float(best_f1_line.split()[2]) for i in range(0, len(pr_file)): line = pr_file[i] toks = line.split() if toks[0] == name: recall, precision = float(toks[1]), float(toks[2]) if abs(recall - best_recall) <= options.range and abs(precision - best_precision) <= options.range: f1_pr_file.write("{}\t{}\t{}\n".format(name, recall, precision)) with open(f1_qual_tsv_path, "w") as f1_qual_file: for name, qual_score in max_qual.items(): f1_qual_file.write("{}\t{}\n".format(name, qual_score)) def plot_vcf_comp(tsv_path, options): """ take the big vcf compare table and make precision_recall plots for all the categories""" out_dir = os.path.join(options.comp_dir, "comp_plots") robust_makedirs(out_dir) out_name = os.path.basename(os.path.splitext(tsv_path)[0]) sample = out_name.split("-")[-1].upper() region = out_name.split("-")[-2].upper() def out_base_path(tag, label, extension): bd = tag if extension != ".tsv" else "tsv" ret = os.path.join(out_dir, bd, "-".join(out_name.split("-")[:-1]) + "-{}-{}-".format(sample, tag) + region) + "_" + label + extension robust_makedirs(os.path.dirname(ret)) return ret params = " ".join(PLOT_PARAMS) # precision recall scatter plot header = vcf_dist_header(options) # strip qual header = header[:-1] for i in range(len(header) / 2): prec_idx = 2 * i rec_idx = prec_idx + 1 qual_idx = len(header) print prec_idx, header[prec_idx], rec_idx, header[rec_idx] ptoks = header[prec_idx].split("-") rtoks = header[rec_idx].split("-") assert ptoks[1] == "Precision" assert rtoks[1] == "Recall" assert ptoks[:1] == rtoks[:1] comp_cat = ptoks[0] if comp_cat not in ["TOT", "SNP", "INDEL"]: continue label = header[prec_idx].replace("Precision", "acc") acc_tsv = out_base_path("pr", label, ".tsv") print "Make {} tsv with cols {} {}".format(label, rec_idx, prec_idx) # +1 to convert to awk 1-base coordinates. +1 again since header doesnt include row_label col awkcmd = '''if (NR!=1) print $1 "\t" ${} "\t" ${} "\t" ${}'''.format(rec_idx + 2, prec_idx + 2, qual_idx + 2) awkstr = "awk \'{" + awkcmd + "}\'" run("{} {} > {}".format(awkstr, tsv_path, acc_tsv)) acc_png = out_base_path("pr", label, ".png") title = sample.upper() + " " if comp_cat == "TOT": title += " Total Accuracy" else: title += " {} Accuracy".format(comp_cat.title()) if region == "TOTAL": title += ", all regions" else: title += ", {}".format(region) cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x -0.01 --max_x 1.01 --min_y -0.01 --max_y 1.01".format(acc_tsv, acc_png, title, params) print cmd os.system(cmd) #flatten to max f1 tsv and plot as bars f1_tsv = out_base_path("f1bar", label, ".tsv") f1_png = out_base_path("f1bar", label, ".png") f1_pr_tsv = out_base_path("f1pr", label, ".tsv") f1_pr_png = out_base_path("f1pr", label, ".png") f1_qual_tsv = out_base_path("f1qual", label, ".tsv") f1_qual_png = out_base_path("f1qual", label, ".png") make_max_f1_tsv(acc_tsv, f1_tsv, f1_pr_tsv, f1_qual_tsv, options) cmd = "scripts/barchart.py {} --ascending --no_n --save {} --title \"{}\" --x_sideways --x_label \"Graph\" --y_label \"Max F1\" {}".format(f1_tsv, f1_png, title, params) print cmd os.system(cmd) cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5".format(f1_pr_tsv, f1_pr_png, title, params) print cmd os.system(cmd) cmd = "scripts/barchart.py {} --ascending --no_n --save {} --title \"{}\" --x_sideways --x_label \"Graph\" --y_label \"Quality for Max F1\" {}".format(f1_qual_tsv, f1_qual_png, title, params) print cmd os.system(cmd) if options.top is True: # top 20 cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x 0.798 --max_x 1.002 --min_y 0.798 --max_y 1.002".format(acc_tsv, acc_png.replace(".png", "_top20.png"), title, params) print cmd os.system(cmd) # top 20 cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 11 --height 5.5 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x 0.796 --max_x 1.004 --min_y 0.796 --max_y 1.004".format(acc_tsv, acc_png.replace(".png", "_top20_inset.png"), title, params) print cmd os.system(cmd) # top 40 cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x 0.596 --max_x 1.004 --min_y 0.596 --max_y 1.004".format(acc_tsv, acc_png.replace(".png", "_top40.png"), title, params) print cmd os.system(cmd) # top .5 bar cmd = "scripts/barchart.py {} --ascending --no_n --save {} --title \"{}\" --x_sideways --x_label \"Graph\" --y_label \"Max F1\" {} --min 0.5".format(f1_tsv, f1_png.replace(".png", "_top50.png"), title, params) print cmd os.system(cmd) # top .6 bar cmd = "scripts/barchart.py {} --ascending --no_n --save {} --title \"{}\" --x_sideways --x_label \"Graph\" --y_label \"Max F1\" {} --min 0.6".format(f1_tsv, f1_png.replace(".png", "_top60.png"), title, params) print cmd os.system(cmd) # top .7 bar cmd = "scripts/barchart.py {} --ascending --no_n --save {} --title \"{}\" --x_sideways --x_label \"Graph\" --y_label \"Max F1\" {} --min 0.7".format(f1_tsv, f1_png.replace(".png", "_top70.png"), title, params) print cmd os.system(cmd) # top .85 bar cmd = "scripts/barchart.py {} --ascending --no_n --save {} --title \"{}\" --x_sideways --x_label \"Graph\" --y_label \"Max F1\" {} --min 0.85".format(f1_tsv, f1_png.replace(".png", "_top85.png"), title, params) print cmd os.system(cmd) # top .25 f1pr scatter cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x 0.746 --max_x 1.004 --min_y 0.746 --max_y 1.004".format(f1_pr_tsv, f1_pr_png.replace(".png", "_top25.png"), title, params) print cmd os.system(cmd) # top .50 f1pr scatter cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x 0.496 --max_x 1.004 --min_y 0.496 --max_y 1.004".format(f1_pr_tsv, f1_pr_png.replace(".png", "_top50.png"), title, params) print cmd os.system(cmd) # top .65 f1pr scatter cmd = "scripts/scatter.py {} --save {} --title \"{}\" --x_label \"Recall\" --y_label \"Precision\" --width 18 --height 9 {} --lines --no_n --line_width 1.5 --marker_size 5 --min_x 0.646 --max_x 1.004 --min_y 0.646 --max_y 1.004".format(f1_pr_tsv, f1_pr_png.replace(".png", "_top65.png"), title, params) print cmd os.system(cmd) def plot_heatmap(tsv, options): """ make a heatmap """ out_dir = os.path.join(options.comp_dir, "heatmaps") robust_makedirs(out_dir) mat, col_names, row_names, row_label = read_tsv(tsv) names = name_map() for i in range(len(col_names)): if col_names[i] in names: col_names[i] = names[col_names[i]] for i in range(len(row_names)): if row_names[i] in names: row_names[i] = names[row_names[i]] if "_rename" in tsv: return fix_tsv = tsv.replace(".tsv", "_rename.tsv") write_tsv(fix_tsv, mat, col_names, row_names, row_label) out_hm = os.path.join(out_dir, os.path.basename(tsv).replace(".tsv", ".pdf")) ph_opts = "--skip {}".format(options.skip) if options.skip is not None else "" cmd = "scripts/plotHeatmap.py {} {} {}".format(fix_tsv, out_hm, ph_opts) print cmd os.system(cmd) cmd = "scripts/plotHeatmap.py {} {} {} --log_scale".format(fix_tsv, out_hm.replace(".pdf", "_log.pdf"), ph_opts) print cmd os.system(cmd) def main(args): options = parse_args(args) # look through tsvs in comp_tables for tsv in glob.glob(os.path.join(options.comp_dir, "comp_tables", "*.tsv")): if "hm" in os.path.basename(tsv).split("-"): plot_heatmap(tsv, options) elif "kmer" in os.path.basename(tsv).split("-"): plot_kmer_comp(tsv, options) elif "vcf" in os.path.basename(tsv).split("-") or "sompy" in tsv.split("-") \ or "happy" in tsv.split("-") or "vcfeval" in tsv.split("-"): plot_vcf_comp(tsv, options) if __name__ == "__main__" : sys.exit(main(sys.argv))
mit
mattgiguere/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
NumCosmo/NumCosmo
examples/example_hiprim.py
1
2535
#!/usr/bin/env python try: import gi gi.require_version('NumCosmo', '1.0') gi.require_version('NumCosmoMath', '1.0') except: pass import math import numpy as np import matplotlib.pyplot as plt from gi.repository import GObject from gi.repository import NumCosmo as Nc from gi.repository import NumCosmoMath as Ncm from py_hiprim_example import PyHIPrimExample # # Initializing the library objects, this must be called before # any other library function. # Ncm.cfg_init () # # Script parameters # # maximum multipole lmax = 2500 # # Creating a new instance of PyHIPrimExample # prim = PyHIPrimExample () print ("# As = ", prim.props.As) print ("# P (k = 1) = ", prim.SA_powspec_k (1.0)) print ("# (a, b, c) = ( ", prim.props.a, ", ", prim.props.b, ", ", prim.props.c, " )") # # New CLASS backend precision object # Let's also increase k_per_decade_primordial since we are # dealing with a modified spectrum. # cbe_prec = Nc.CBEPrecision.new () cbe_prec.props.k_per_decade_primordial = 50.0 cbe_prec.props.tight_coupling_approximation = 0 # # New CLASS backend object # cbe = Nc.CBE.prec_new (cbe_prec) Bcbe = Nc.HIPertBoltzmannCBE.full_new (cbe) Bcbe.set_TT_lmax (lmax) # Setting which CMB data to use Bcbe.set_target_Cls (Nc.DataCMBDataType.TT) # Setting if the lensed Cl's are going to be used or not. Bcbe.set_lensed_Cls (True) # # New homogeneous and isotropic cosmological model NcHICosmoDEXcdm # cosmo = Nc.HICosmo.new_from_name (Nc.HICosmo, "NcHICosmoDEXcdm") cosmo.omega_x2omega_k () cosmo.param_set_by_name ("Omegak", 0.0) # # New homogeneous and isotropic reionization object # reion = Nc.HIReionCamb.new () # # Adding submodels to the main cosmological model. # cosmo.add_submodel (reion) cosmo.add_submodel (prim) # # Preparing the Class backend object # Bcbe.prepare (cosmo) Cls1 = Ncm.Vector.new (lmax + 1) Cls2 = Ncm.Vector.new (lmax + 1) Bcbe.get_TT_Cls (Cls1) prim.props.a = 0 Bcbe.prepare (cosmo) Bcbe.get_TT_Cls (Cls2) Cls1_a = Cls1.dup_array () Cls2_a = Cls2.dup_array () Cls1_a = np.array (Cls1_a[2:]) Cls2_a = np.array (Cls2_a[2:]) ell = np.array (list(range(2, lmax + 1))) Cls1_a = ell * (ell + 1.0) * Cls1_a Cls2_a = ell * (ell + 1.0) * Cls2_a # # Ploting the TT angular power spcetrum # plt.title (r'Modified and non-modified $C_\ell$') plt.xscale('log') plt.plot (ell, Cls1_a, 'r', label="Modified") plt.plot (ell, Cls2_a, 'b--', label="Non-modified") plt.xlabel(r'$\ell$') plt.ylabel(r'$C_\ell$') plt.legend(loc=2) plt.savefig ("hiprim_Cls.svg") plt.clf ()
gpl-3.0
chrisburr/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
brainiak/brainiak
brainiak/funcalign/fastsrm.py
2
65510
"""Fast Shared Response Model (FastSRM) The implementation is based on the following publications: .. [Richard2019] "Fast Shared Response Model for fMRI data" H. Richard, L. Martin, A. Pinho, J. Pillow, B. Thirion, 2019 https://arxiv.org/pdf/1909.12537.pdf """ # Author: Hugo Richard import hashlib import logging import os import numpy as np import scipy from joblib import Parallel, delayed from brainiak.funcalign.srm import DetSRM from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError import uuid __all__ = [ "FastSRM", ] logger = logging.getLogger(__name__) def get_shape(path): """Get shape of saved np array Parameters ---------- path: str path to np array """ f = open(path, "rb") version = np.lib.format.read_magic(f) shape, fortran_order, dtype = np.lib.format._read_array_header(f, version) f.close() return shape def safe_load(data): """If data is an array returns data else returns np.load(data)""" if isinstance(data, np.ndarray): return data else: return np.load(data) def safe_encode(img): if isinstance(img, np.ndarray): name = hashlib.md5(img.tostring()).hexdigest() else: name = hashlib.md5(img.encode()).hexdigest() return name def assert_non_empty_list(input_list, list_name): """ Check that input list is not empty Parameters ---------- input_list: list list_name: str Name of the list """ if len(input_list) == 0: raise ValueError("%s is a list of length 0 which is not valid" % list_name) def assert_array_2axis(array, name_array): """Check that input is an np array with 2 axes Parameters ---------- array: np array name_array: str Name of the array """ if not isinstance(array, np.ndarray): raise ValueError("%s should be of type " "np.ndarray but is of type %s" % (name_array, type(array))) if len(array.shape) != 2: raise ValueError("%s must have exactly 2 axes " "but has %i axes" % (name_array, len(array.shape))) def assert_valid_index(indexes, max_value, name_indexes): """ Check that indexes are between 0 and max_value and number of indexes is less than max_value """ for i, ind_i in enumerate(indexes): if ind_i < 0 or ind_i >= max_value: raise ValueError("Index %i of %s has value %i " "whereas value should be between 0 and %i" % (i, name_indexes, ind_i, max_value - 1)) def _check_imgs_list(imgs): """ Checks that imgs is a non empty list of elements of the same type Parameters ---------- imgs : list """ # Check the list is non empty assert_non_empty_list(imgs, "imgs") # Check that all input have same type for i in range(len(imgs)): if not isinstance(imgs[i], type(imgs[0])): raise ValueError("imgs[%i] has type %s whereas " "imgs[%i] has type %s. " "This is inconsistent." % (i, type(imgs[i]), 0, type(imgs[0]))) def _check_imgs_list_list(imgs): """ Check input images if they are list of list of arrays Parameters ---------- imgs : list of list of array of shape [n_voxels, n_components] imgs is a list of list of arrays where element i, j of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i collected during session j. n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 Returns ------- shapes: array Shape of input images """ n_subjects = len(imgs) # Check that the number of session is not 0 assert_non_empty_list(imgs[0], "imgs[%i]" % 0) # Check that the number of sessions is the same for all subjects n_sessions = None for i in range(len(imgs)): if n_sessions is None: n_sessions = len(imgs[i]) if n_sessions != len(imgs[i]): raise ValueError("imgs[%i] has length %i whereas imgs[%i] " "has length %i. All subjects should have " "the same number of sessions." % (i, len(imgs[i]), 0, len(imgs[0]))) shapes = np.zeros((n_subjects, n_sessions, 2)) # Run array-level checks for i in range(len(imgs)): for j in range(len(imgs[i])): assert_array_2axis(imgs[i][j], "imgs[%i][%i]" % (i, j)) shapes[i, j, :] = imgs[i][j].shape return shapes def _check_imgs_list_array(imgs): """ Check input images if they are list of arrays. In this case returned images are a list of list of arrays where element i,j of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i collected during session j. Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] imgs is a list of arrays where element i of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i (number of sessions is implicitly 1) n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 Returns ------- shapes: array Shape of input images new_imgs: list of list of array of shape [n_voxels, n_components] """ n_subjects = len(imgs) n_sessions = 1 shapes = np.zeros((n_subjects, n_sessions, 2)) new_imgs = [] for i in range(len(imgs)): assert_array_2axis(imgs[i], "imgs[%i]" % i) shapes[i, 0, :] = imgs[i].shape new_imgs.append([imgs[i]]) return new_imgs, shapes def _check_imgs_array(imgs): """Check input image if it is an array Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_voxels, n_timeframes] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 Returns ------- shapes : array Shape of input images """ assert_array_2axis(imgs, "imgs") n_subjects, n_sessions = imgs.shape shapes = np.zeros((n_subjects, n_sessions, 2)) for i in range(n_subjects): for j in range(n_sessions): if not (isinstance(imgs[i, j], str) or isinstance( imgs[i, j], np.str_) or isinstance(imgs[i, j], np.str)): raise ValueError("imgs[%i, %i] is stored using " "type %s which is not a str" % (i, j, type(imgs[i, j]))) shapes[i, j, :] = get_shape(imgs[i, j]) return shapes def _check_shapes_components(n_components, n_timeframes): """Check that n_timeframes is greater than number of components""" def _check_shapes_atlas_compatibility(n_voxels, n_timeframes, n_components=None, atlas_shape=None): if n_components is not None: if np.sum(n_timeframes) < n_components: raise ValueError("Total number of timeframes is shorter than " "number of components (%i < %i)" % (np.sum(n_timeframes), n_components)) if atlas_shape is not None: n_supervoxels, n_atlas_voxels = atlas_shape if n_atlas_voxels != n_voxels: raise ValueError( "Number of voxels in the atlas is not the same " "as the number of voxels in input data (%i != %i)" % (n_atlas_voxels, n_voxels)) def _check_shapes(shapes, n_components=None, atlas_shape=None, ignore_nsubjects=False): """Check that number of voxels is the same for each subjects. Number of timeframes can vary between sessions but must be consistent across subjects Parameters ---------- shapes : array of shape (n_subjects, n_sessions, 2) Array of shapes of input images """ n_subjects, n_sessions, _ = shapes.shape if n_subjects <= 1 and not ignore_nsubjects: raise ValueError("The number of subjects should be greater than 1") n_timeframes_list = [None] * n_sessions n_voxels = None for n in range(n_subjects): for m in range(n_sessions): if n_timeframes_list[m] is None: n_timeframes_list[m] = shapes[n, m, 1] if n_voxels is None: n_voxels = shapes[m, n, 0] if n_timeframes_list[m] != shapes[n, m, 1]: raise ValueError("Subject %i Session %i does not have the " "same number of timeframes " "as Subject %i Session %i" % (n, m, 0, m)) if n_voxels != shapes[n, m, 0]: raise ValueError("Subject %i Session %i" " does not have the same number of voxels as " "Subject %i Session %i." % (n, m, 0, 0)) _check_shapes_atlas_compatibility(n_voxels, np.sum(n_timeframes_list), n_components, atlas_shape) def check_atlas(atlas, n_components=None): """ Check input atlas Parameters ---------- atlas : array, shape=[n_supervoxels, n_voxels] or array, shape=[n_voxels] or str or None Probabilistic or deterministic atlas on which to project the data Deterministic atlas is an array of shape [n_voxels,] where values range from 1 to n_supervoxels. Voxels labelled 0 will be ignored. If atlas is a str the corresponding array is loaded with numpy.load and expected shape is (n_voxels,) for a deterministic atlas and (n_supervoxels, n_voxels) for a probabilistic atlas. n_components : int Number of timecourses of the shared coordinates Returns ------- shape : array or None atlas shape """ if atlas is None: return None if not (isinstance(atlas, np.ndarray) or isinstance(atlas, str) or isinstance(atlas, np.str_) or isinstance(atlas, np.str)): raise ValueError("Atlas is stored using " "type %s which is neither np.ndarray or str" % type(atlas)) if isinstance(atlas, np.ndarray): shape = atlas.shape else: shape = get_shape(atlas) if len(shape) == 1: # We have a deterministic atlas atlas_array = safe_load(atlas) n_voxels = atlas_array.shape[0] n_supervoxels = len(np.unique(atlas_array)) - 1 shape = (n_supervoxels, n_voxels) elif len(shape) != 2: raise ValueError( "Atlas has %i axes. It should have either 1 or 2 axes." % len(shape)) n_supervoxels, n_voxels = shape if n_supervoxels > n_voxels: raise ValueError("Number of regions in the atlas is bigger than " "the number of voxels (%i > %i)" % (n_supervoxels, n_voxels)) if n_components is not None: if n_supervoxels < n_components: raise ValueError("Number of regions in the atlas is " "lower than the number of components " "(%i < %i)" % (n_supervoxels, n_components)) return shape def check_imgs(imgs, n_components=None, atlas_shape=None, ignore_nsubjects=False): """ Check input images Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_voxels, n_timeframes] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i collected during session j. imgs can also be a list of arrays where element i of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i (number of sessions is implicitly 1) Returns ------- reshaped_input: bool True if input had to be reshaped to match the n_subjects, n_sessions input new_imgs: list of list of array or np array input imgs reshaped if it is a list of arrays so that it becomes a list of list of arrays shapes: array Shape of input images """ reshaped_input = False new_imgs = imgs if isinstance(imgs, list): _check_imgs_list(imgs) if isinstance(imgs[0], list): shapes = _check_imgs_list_list(imgs) elif isinstance(imgs[0], np.ndarray): new_imgs, shapes = _check_imgs_list_array(imgs) reshaped_input = True else: raise ValueError( "Since imgs is a list, it should be a list of list " "of arrays or a list of arrays but imgs[0] has type %s" % type(imgs[0])) elif isinstance(imgs, np.ndarray): shapes = _check_imgs_array(imgs) else: raise ValueError( "Input imgs should either be a list or an array but has type %s" % type(imgs)) _check_shapes(shapes, n_components, atlas_shape, ignore_nsubjects) return reshaped_input, new_imgs, shapes def check_indexes(indexes, name): if not (indexes is None or isinstance(indexes, list) or isinstance(indexes, np.ndarray)): raise ValueError( "%s should be either a list, an array or None but received type %s" % (name, type(indexes))) def _check_shared_response_list_of_list(shared_response, n_components, input_shapes): # Check that shared_response is indeed a list of list of arrays n_subjects = len(shared_response) n_sessions = None for i in range(len(shared_response)): if not isinstance(shared_response[i], list): raise ValueError("shared_response[0] is a list but " "shared_response[%i] is not a list " "this is incompatible." % i) assert_non_empty_list(shared_response[i], "shared_response[%i]" % i) if n_sessions is None: n_sessions = len(shared_response[i]) elif n_sessions != len(shared_response[i]): raise ValueError( "shared_response[%i] has len %i whereas " "shared_response[0] has len %i. They should " "have same length" % (i, len(shared_response[i]), len(shared_response[0]))) for j in range(len(shared_response[i])): assert_array_2axis(shared_response[i][j], "shared_response[%i][%i]" % (i, j)) return _check_shared_response_list_sessions([ np.mean([shared_response[i][j] for i in range(n_subjects)], axis=0) for j in range(n_sessions) ], n_components, input_shapes) def _check_shared_response_list_sessions(shared_response, n_components, input_shapes): for j in range(len(shared_response)): assert_array_2axis(shared_response[j], "shared_response[%i]" % j) if input_shapes is not None: if shared_response[j].shape[1] != input_shapes[0][j][1]: raise ValueError( "Number of timeframes in input images during " "session %i does not match the number of " "timeframes during session %i " "of shared_response (%i != %i)" % (j, j, shared_response[j].shape[1], input_shapes[0, j, 1])) if n_components is not None: if shared_response[j].shape[0] != n_components: raise ValueError( "Number of components in " "shared_response during session %i is " "different than " "the number of components of the model (%i != %i)" % (j, shared_response[j].shape[0], n_components)) return shared_response def _check_shared_response_list_subjects(shared_response, n_components, input_shapes): for i in range(len(shared_response)): assert_array_2axis(shared_response[i], "shared_response[%i]" % i) return _check_shared_response_array(np.mean(shared_response, axis=0), n_components, input_shapes) def _check_shared_response_array(shared_response, n_components, input_shapes): assert_array_2axis(shared_response, "shared_response") if input_shapes is None: new_input_shapes = None else: n_subjects, n_sessions, _ = input_shapes.shape new_input_shapes = np.zeros((n_subjects, 1, 2)) new_input_shapes[:, 0, 0] = input_shapes[:, 0, 0] new_input_shapes[:, 0, 1] = np.sum(input_shapes[:, :, 1], axis=1) return _check_shared_response_list_sessions([shared_response], n_components, new_input_shapes) def check_shared_response(shared_response, aggregate="mean", n_components=None, input_shapes=None): """ Check that shared response has valid input and turn it into a session-wise shared response Returns ------- added_session: bool True if an artificial sessions was added to match the list of session input type for shared_response reshaped_shared_response: list of arrays shared response (reshaped to match the list of session input) """ # Depending on aggregate and shape of input we infer what to do if isinstance(shared_response, list): assert_non_empty_list(shared_response, "shared_response") if isinstance(shared_response[0], list): if aggregate == "mean": raise ValueError("self.aggregate has value 'mean' but " "shared response is a list of list. This is " "incompatible") return False, _check_shared_response_list_of_list( shared_response, n_components, input_shapes) elif isinstance(shared_response[0], np.ndarray): if aggregate == "mean": return False, _check_shared_response_list_sessions( shared_response, n_components, input_shapes) else: return True, _check_shared_response_list_subjects( shared_response, n_components, input_shapes) else: raise ValueError("shared_response is a list but " "shared_response[0] is neither a list " "or an array. This is invalid.") elif isinstance(shared_response, np.ndarray): return True, _check_shared_response_array(shared_response, n_components, input_shapes) else: raise ValueError("shared_response should be either " "a list or an array but is of type %s" % type(shared_response)) def create_temp_dir(temp_dir): """ This check whether temp_dir exists and creates dir otherwise """ if temp_dir is None: return None if not os.path.exists(temp_dir): os.makedirs(temp_dir) else: raise ValueError("Path %s already exists. " "When a model is used, filesystem should be cleaned " "by using the .clean() method" % temp_dir) def reduce_data_single(subject_index, session_index, img, atlas=None, inv_atlas=None, low_ram=False, temp_dir=None): """Reduce data using given atlas Parameters ---------- subject_index : int session_index : int img : str or array path to data. Data are loaded with numpy.load and expected shape is (n_voxels, n_timeframes) n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 img can also be an array of shape (n_voxels, n_timeframes) atlas : array, shape=[n_supervoxels, n_voxels] or [n_voxels] or None Probabilistic or deterministic atlas on which to project the data Deterministic atlas is an array of shape [n_voxels,] where values range from 1 to n_supervoxels. Voxels labelled 0 will be ignored. inv_atlas : array, shape=[n_voxels, n_supervoxels] or None Pseudo inverse of the atlas (only for probabilistic atlases) temp_dir : str or None path to dir where temporary results are stored if None temporary results will be stored in memory. This can results in memory errors when the number of subjects and / or sessions is large low_ram : bool if True and temp_dir is not None, reduced_data will be saved on disk this increases the number of IO but reduces memory complexity when the number of subject and number of sessions are large Returns ------- reduced_data : array, shape=[n_timeframes, n_supervoxels] reduced data """ # Here we return to the conventions of the paper data = safe_load(img).T n_timeframes, n_voxels = data.shape # Here we check that input is normalized if (np.max(np.abs(np.mean(data, axis=0))) > 1e-6 or np.max(np.abs(np.var(data, axis=0) - 1))) > 1e-6: ValueError("Data in imgs[%i, %i] does not have 0 mean and unit \ variance. If you are using NiftiMasker to mask your data \ (nilearn) please use standardize=True." % (subject_index, session_index)) if inv_atlas is None and atlas is not None: atlas_values = np.unique(atlas) if 0 in atlas_values: atlas_values = atlas_values[1:] reduced_data = np.array( [np.mean(data[:, atlas == c], axis=1) for c in atlas_values]).T elif inv_atlas is not None and atlas is None: # this means that it is a probabilistic atlas reduced_data = data.dot(inv_atlas) else: reduced_data = data if low_ram: name = safe_encode(img) path = os.path.join(temp_dir, "reduced_data_" + name) np.save(path, reduced_data) return path + ".npy" else: return reduced_data def reduce_data(imgs, atlas, n_jobs=1, low_ram=False, temp_dir=None): """Reduce data using given atlas. Work done in parallel across subjects. Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_timeframes, n_voxels] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i collected during session j. imgs can also be a list of arrays where element i of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i (number of sessions is implicitly 1) atlas : array, shape=[n_supervoxels, n_voxels] or array, shape=[n_voxels] or None Probabilistic or deterministic atlas on which to project the data Deterministic atlas is an array of shape [n_voxels,] where values range from 1 to n_supervoxels. Voxels labelled 0 will be ignored. n_jobs : integer, optional, default=1 The number of CPUs to use to do the computation. -1 means all CPUs, -2 all CPUs but one, and so on. temp_dir : str or None path to dir where temporary results are stored if None temporary results will be stored in memory. This can results in memory errors when the number of subjects and / or sessions is large low_ram : bool if True and temp_dir is not None, reduced_data will be saved on disk this increases the number of IO but reduces memory complexity when the number of subject and/or sessions is large Returns ------- reduced_data_list : array of str, shape=[n_subjects, n_sessions] or array, shape=[n_subjects, n_sessions, n_timeframes, n_supervoxels] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_timeframes, n_supervoxels] or Element i, j of the array is the data in array of shape=[n_timeframes, n_supervoxels] n_timeframes and n_supervoxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 """ if atlas is None: A = None A_inv = None else: loaded_atlas = safe_load(atlas) if len(loaded_atlas.shape) == 2: A = None A_inv = loaded_atlas.T.dot( np.linalg.inv(loaded_atlas.dot(loaded_atlas.T))) else: A = loaded_atlas A_inv = None n_subjects = len(imgs) n_sessions = len(imgs[0]) reduced_data_list = Parallel(n_jobs=n_jobs)( delayed(reduce_data_single)(i, j, imgs[i][j], atlas=A, inv_atlas=A_inv, low_ram=low_ram, temp_dir=temp_dir) for i in range(n_subjects) for j in range(n_sessions)) if low_ram: reduced_data_list = np.reshape(reduced_data_list, (n_subjects, n_sessions)) else: if len(np.array(reduced_data_list).shape) == 1: reduced_data_list = np.reshape(reduced_data_list, (n_subjects, n_sessions)) else: n_timeframes, n_supervoxels = np.array(reduced_data_list).shape[1:] reduced_data_list = np.reshape( reduced_data_list, (n_subjects, n_sessions, n_timeframes, n_supervoxels)) return reduced_data_list def _reduced_space_compute_shared_response(reduced_data_list, reduced_basis_list, n_components=50): """Compute shared response with basis fixed in reduced space Parameters ---------- reduced_data_list : array of str, shape=[n_subjects, n_sessions] or array, shape=[n_subjects, n_sessions, n_timeframes, n_supervoxels] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_timeframes, n_supervoxels] or Element i, j of the array is the data in array of shape=[n_timeframes, n_supervoxels] n_timeframes and n_supervoxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 reduced_basis_list : None or list of array, element i has shape=[n_components, n_supervoxels] each subject's reduced basis if None the basis will be generated on the fly n_components : int or None number of components Returns ------- shared_response_list : list of array, element i has shape=[n_timeframes, n_components] shared response, element i is the shared response during session i """ n_subjects, n_sessions = reduced_data_list.shape[:2] s = [None] * n_sessions # This is just to check that all subjects have same number of # timeframes in a given session for n in range(n_subjects): for m in range(n_sessions): data_nm = safe_load(reduced_data_list[n][m]) n_timeframes, n_supervoxels = data_nm.shape if reduced_basis_list is None: reduced_basis_list = [] for subject in range(n_subjects): q = np.eye(n_components, n_supervoxels) reduced_basis_list.append(q) basis_n = reduced_basis_list[n] if s[m] is None: s[m] = data_nm.dot(basis_n.T) else: s[m] = s[m] + data_nm.dot(basis_n.T) for m in range(n_sessions): s[m] = s[m] / float(n_subjects) return s def _compute_and_save_corr_mat(img, shared_response, temp_dir): """computes correlation matrix and stores it Parameters ---------- img : str path to data. Data are loaded with numpy.load and expected shape is [n_timeframes, n_voxels] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 shared_response : array, shape=[n_timeframes, n_components] shared response """ data = safe_load(img).T name = safe_encode(img) path = os.path.join(temp_dir, "corr_mat_" + name) np.save(path, shared_response.T.dot(data)) def _compute_and_save_subject_basis(subject_number, sessions, temp_dir): """computes correlation matrix for all sessions Parameters ---------- subject_number: int Number that identifies the subject. Basis will be stored in [temp_dir]/basis_[subject_number].npy sessions : array of str Element i of the array is a path to the data collected during session i. Data are loaded with numpy.load and expected shape is [n_timeframes, n_voxels] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance temp_dir : str or None path to dir where temporary results are stored if None temporary results will be stored in memory. This can results in memory errors when the number of subjects and / or sessions is large Returns ------- basis: array, shape=[n_component, n_voxels] or str basis of subject [subject_number] or path to this basis """ corr_mat = None for session in sessions: name = safe_encode(session) path = os.path.join(temp_dir, "corr_mat_" + name + ".npy") if corr_mat is None: corr_mat = np.load(path) else: corr_mat += np.load(path) os.remove(path) basis_i = _compute_subject_basis(corr_mat) path = os.path.join(temp_dir, "basis_%i" % subject_number) np.save(path, basis_i) return path + ".npy" def _compute_subject_basis(corr_mat): """From correlation matrix between shared response and subject data, Finds subject's basis Parameters ---------- corr_mat: array, shape=[n_component, n_voxels] or shape=[n_components, n_supervoxels] correlation matrix between shared response and subject data or subject reduced data element k, v is given by S.T.dot(X_i) where S is the shared response and X_i the data of subject i. Returns ------- basis: array, shape=[n_components, n_voxels] or shape=[n_components, n_supervoxels] basis of subject or reduced_basis of subject """ # The perturbation is only here to be # consistent with current implementation # of DetSRM. perturbation = np.zeros(corr_mat.shape) np.fill_diagonal(perturbation, 0.001) U, _, V = scipy.linalg.svd(corr_mat + perturbation, full_matrices=False) return U.dot(V) def fast_srm(reduced_data_list, n_iter=10, n_components=None, low_ram=False, seed=0): """Computes shared response and basis in reduced space Parameters ---------- reduced_data_list : array, shape=[n_subjects, n_sessions] or array, shape=[n_subjects, n_sessions, n_timeframes, n_supervoxels] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_timeframes, n_supervoxels] or Element i, j of the array is the data in array of shape=[n_timeframes, n_supervoxels] n_timeframes and n_supervoxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 n_iter : int Number of iterations performed n_components : int or None number of components Returns ------- shared_response_list : list of array, element i has shape=[n_timeframes, n_components] shared response, element i is the shared response during session i """ if low_ram: return lowram_srm(reduced_data_list, n_iter, n_components) else: # We need to switch data to DetSRM format # Indeed in DetSRM all sessions are concatenated. # Whereas in FastSRM multiple sessions are supported. n_subjects, n_sessions = reduced_data_list.shape[:2] # We store the correspondence between timeframes and session timeframes_slices = [] current_j = 0 for j in range(n_sessions): timeframes_slices.append( slice(current_j, current_j + len(reduced_data_list[0, j]))) current_j += len(reduced_data_list[0][j]) # Now we can concatenate everything X = [ np.concatenate(reduced_data_list[i], axis=0).T for i in range(n_subjects) ] srm = DetSRM(n_iter=n_iter, features=n_components, rand_seed=seed) srm.fit(X) # SRM gives a list of data projected in shared space # we get the shared response by averaging those concatenated_s = np.mean(srm.transform(X), axis=0).T # Let us return the shared response sliced by sessions return [concatenated_s[i] for i in timeframes_slices] def lowram_srm(reduced_data_list, n_iter=10, n_components=None): """Computes shared response and basis in reduced space Parameters ---------- reduced_data_list : array of str, shape=[n_subjects, n_sessions] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_timeframes, n_supervoxels] n_timeframes and n_supervoxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 n_iter : int Number of iterations performed n_components : int or None number of components Returns ------- shared_response_list : list of array, element i has shape=[n_timeframes, n_components] shared response, element i is the shared response during session i """ n_subjects, n_sessions = reduced_data_list.shape[:2] shared_response = _reduced_space_compute_shared_response( reduced_data_list, None, n_components) reduced_basis = [None] * n_subjects for _ in range(n_iter): for n in range(n_subjects): cov = None for m in range(n_sessions): data_nm = np.load(reduced_data_list[n, m]) if cov is None: cov = shared_response[m].T.dot(data_nm) else: cov += shared_response[m].T.dot(data_nm) reduced_basis[n] = _compute_subject_basis(cov) shared_response = _reduced_space_compute_shared_response( reduced_data_list, reduced_basis, n_components) return shared_response def _compute_basis_subject_online(sessions, shared_response_list): """Computes subject's basis with shared response fixed Parameters ---------- sessions : array of str Element i of the array is a path to the data collected during session i. Data are loaded with numpy.load and expected shape is [n_timeframes, n_voxels] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 shared_response_list : list of array, element i has shape=[n_timeframes, n_components] shared response, element i is the shared response during session i Returns ------- basis: array, shape=[n_components, n_voxels] basis """ basis_i = None i = 0 for session in sessions: data = safe_load(session).T if basis_i is None: basis_i = shared_response_list[i].T.dot(data) else: basis_i += shared_response_list[i].T.dot(data) i += 1 del data return _compute_subject_basis(basis_i) def _compute_shared_response_online_single(subjects, basis_list, temp_dir, subjects_indexes, aggregate): """Computes shared response during one session with basis fixed Parameters ---------- subjects : array of str Element i of the array is a path to the data of subject i. Data are loaded with numpy.load and expected shape is [n_timeframes, n_voxels] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 basis_list : None or list of array, element i has shape=[n_components, n_voxels] basis of all subjects, element i is the basis of subject i temp_dir : None or str path to basis folder where file basis_%i.npy contains the basis of subject i subjects_indexes : list of int or None list of indexes corresponding to the subjects to use to compute shared response aggregate: str or None, default="mean" if "mean": returns the mean shared response S from all subjects if None: returns the subject-specific response in shared space S_i Returns ------- shared_response : array, shape=[n_timeframes, n_components] or list shared response """ n = 0 if aggregate == "mean": shared_response = None if aggregate is None: shared_response = [] for k, i in enumerate(subjects_indexes): subject = subjects[k] # Transpose to be consistent with paper data = safe_load(subject).T if temp_dir is None: basis_i = basis_list[i] else: basis_i = np.load(os.path.join(temp_dir, "basis_%i.npy" % i)) if aggregate == "mean": if shared_response is None: shared_response = data.dot(basis_i.T) else: shared_response += data.dot(basis_i.T) n += 1 if aggregate is None: shared_response.append(data.dot(basis_i.T)) if aggregate is None: return shared_response if aggregate == "mean": return shared_response / float(n) def _compute_shared_response_online(imgs, basis_list, temp_dir, n_jobs, subjects_indexes, aggregate): """Computes shared response with basis fixed Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] Element i, j of the array is a path to the data of subject i collected during session j. Data are loaded with numpy.load and expected shape is [n_timeframes, n_voxels] n_timeframes and n_voxels are assumed to be the same across subjects n_timeframes can vary across sessions Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j of the array is a numpy array of shape [n_voxels, n_timeframes] that contains the data of subject i collected during session j. basis_list : None or list of array, element i has shape=[n_components, n_voxels] basis of all subjects, element i is the basis of subject i temp_dir : None or str path to basis folder where file basis_%i.npy contains the basis of subject i n_jobs : integer, optional, default=1 The number of CPUs to use to do the computation. -1 means all CPUs, -2 all CPUs but one, and so on. subjects_indexes : list or None list of indexes corresponding to the subjects to use to compute shared response aggregate: str or None, default="mean" if "mean": returns the mean shared response S from all subjects if None: returns the subject-specific response in shared space S_i Returns ------- shared_response_list : list of array or list of list of array shared response, element i is the shared response during session i or element i, j is the shared response of subject i during session j """ n_subjects = len(subjects_indexes) n_sessions = len(imgs[0]) shared_response_list = Parallel(n_jobs=n_jobs)( delayed(_compute_shared_response_online_single) ([imgs[i][j] for i in range(n_subjects)], basis_list, temp_dir, subjects_indexes, aggregate) for j in range(n_sessions)) if aggregate is None: shared_response_list = [[ shared_response_list[j][i].T for j in range(n_sessions) ] for i in range(n_subjects)] if aggregate == "mean": shared_response_list = [ shared_response_list[j].T for j in range(n_sessions) ] return shared_response_list class FastSRM(BaseEstimator, TransformerMixin): """SRM decomposition using a very low amount of memory and \ computational power thanks to the use of an atlas \ as described in [Richard2019]_. Given multi-subject data, factorize it as a shared response S \ among all subjects and an orthogonal transform (basis) W per subject: .. math:: X_i \\approx W_i S, \\forall i=1 \\dots N Parameters ---------- atlas : array, shape=[n_supervoxels, n_voxels] or array,\ shape=[n_voxels] or str or None, default=None Probabilistic or deterministic atlas on which to project the data. \ Deterministic atlas is an array of shape [n_voxels,] \ where values range from 1 \ to n_supervoxels. Voxels labelled 0 will be ignored. If atlas is a str the \ corresponding array is loaded with numpy.load and expected shape \ is (n_voxels,) for a deterministic atlas and \ (n_supervoxels, n_voxels) for a probabilistic atlas. n_components : int Number of timecourses of the shared coordinates n_iter : int Number of iterations to perform temp_dir : str or None Path to dir where temporary results are stored. If None \ temporary results will be stored in memory. This can results in memory \ errors when the number of subjects and/or sessions is large low_ram : bool If True and temp_dir is not None, reduced_data will be saved on \ disk. This increases the number of IO but reduces memory complexity when \ the number of subject and/or sessions is large seed : int Seed used for random sampling. n_jobs : int, optional, default=1 The number of CPUs to use to do the computation. \ -1 means all CPUs, -2 all CPUs but one, and so on. verbose : bool or "warn" If True, logs are enabled. If False, logs are disabled. \ If "warn" only warnings are printed. aggregate: str or None, default="mean" If "mean", shared_response is the mean shared response \ from all subjects. If None, shared_response contains all \ subject-specific responses in shared space Attributes ---------- `basis_list`: list of array, element i has \ shape=[n_components, n_voxels] or list of str - if basis is a list of array, element i is the basis of subject i - if basis is a list of str, element i is the path to the basis \ of subject i that is loaded with np.load yielding an array of \ shape [n_components, n_voxels]. Note that any call to the clean method erases this attribute Note ----- **References:** H. Richard, L. Martin, A. Pinho, J. Pillow, B. Thirion, 2019: \ Fast shared response model for fMRI data (https://arxiv.org/pdf/1909.12537.pdf) """ def __init__(self, atlas=None, n_components=20, n_iter=100, temp_dir=None, low_ram=False, seed=None, n_jobs=1, verbose="warn", aggregate="mean"): self.seed = seed self.n_jobs = n_jobs self.verbose = verbose self.n_components = n_components self.n_iter = n_iter self.atlas = atlas if aggregate is not None and aggregate != "mean": raise ValueError("aggregate can have only value mean or None") self.aggregate = aggregate self.basis_list = None if temp_dir is None: if self.verbose == "warn" or self.verbose is True: logger.warning("temp_dir has value None. " "All basis (spatial maps) and reconstructed " "data will therefore be kept in memory." "This can lead to memory errors when the " "number of subjects " "and/or sessions is large.") self.temp_dir = None self.low_ram = False if temp_dir is not None: self.temp_dir = os.path.join(temp_dir, "fastsrm" + str(uuid.uuid4())) self.low_ram = low_ram def clean(self): """This erases temporary files and basis_list attribute to \ free memory. This method should be called when fitted model \ is not needed anymore. """ if self.temp_dir is not None: if os.path.exists(self.temp_dir): for root, dirs, files in os.walk(self.temp_dir, topdown=False): for name in files: os.remove(os.path.join(root, name)) os.rmdir(self.temp_dir) if self.basis_list is not None: self.basis_list is None def fit(self, imgs): """Computes basis across subjects from input imgs Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] or \ list of list of arrays or list of arrays Element i, j of the array is a path to the data of subject i \ collected during session j. Data are loaded with numpy.load and expected \ shape is [n_voxels, n_timeframes] n_timeframes and n_voxels are assumed \ to be the same across subjects n_timeframes can vary across sessions. \ Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i collected during session j. imgs can also be a list of arrays where element i \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i (number of sessions is implicitly 1) Returns ------- self : object Returns the instance itself. Contains attributes listed \ at the object level. """ atlas_shape = check_atlas(self.atlas, self.n_components) reshaped_input, imgs, shapes = check_imgs( imgs, n_components=self.n_components, atlas_shape=atlas_shape) self.clean() create_temp_dir(self.temp_dir) if self.verbose is True: logger.info("[FastSRM.fit] Reducing data") reduced_data = reduce_data(imgs, atlas=self.atlas, n_jobs=self.n_jobs, low_ram=self.low_ram, temp_dir=self.temp_dir) if self.verbose is True: logger.info("[FastSRM.fit] Finds shared " "response using reduced data") shared_response_list = fast_srm(reduced_data, n_iter=self.n_iter, n_components=self.n_components, low_ram=self.low_ram, seed=self.seed) if self.verbose is True: logger.info("[FastSRM.fit] Finds basis using " "full data and shared response") if self.n_jobs == 1: basis = [] for i, sessions in enumerate(imgs): basis_i = _compute_basis_subject_online( sessions, shared_response_list) if self.temp_dir is None: basis.append(basis_i) else: path = os.path.join(self.temp_dir, "basis_%i" % i) np.save(path, basis_i) basis.append(path + ".npy") del basis_i else: if self.temp_dir is None: basis = Parallel(n_jobs=self.n_jobs)( delayed(_compute_basis_subject_online)( sessions, shared_response_list) for sessions in imgs) else: Parallel(n_jobs=self.n_jobs)( delayed(_compute_and_save_corr_mat)( imgs[i][j], shared_response_list[j], self.temp_dir) for j in range(len(imgs[0])) for i in range(len(imgs))) basis = Parallel(n_jobs=self.n_jobs)( delayed(_compute_and_save_subject_basis)(i, sessions, self.temp_dir) for i, sessions in enumerate(imgs)) self.basis_list = basis return self def fit_transform(self, imgs, subjects_indexes=None): """Computes basis across subjects and shared response from input imgs return shared response. Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] or \ list of list of arrays or list of arrays Element i, j of the array is a path to the data of subject i \ collected during session j. Data are loaded with numpy.load and expected \ shape is [n_voxels, n_timeframes] n_timeframes and n_voxels are assumed \ to be the same across subjects n_timeframes can vary across sessions. \ Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i collected during session j. imgs can also be a list of arrays where element i \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i (number of sessions is implicitly 1) subjects_indexes : list or None: if None imgs[i] will be transformed using basis_list[i]. \ Otherwise imgs[i] will be transformed using basis_list[subjects_index[i]] Returns -------- shared_response : list of arrays, list of list of arrays or array - if imgs is a list of array and self.aggregate="mean": shared \ response is an array of shape (n_components, n_timeframes) - if imgs is a list of array and self.aggregate=None: shared \ response is a list of array, element i is the projection of data of \ subject i in shared space. - if imgs is an array or a list of list of array and \ self.aggregate="mean": shared response is a list of array, \ element j is the shared response during session j - if imgs is an array or a list of list of array and \ self.aggregate=None: shared response is a list of list of array, \ element i, j is the projection of data of subject i collected \ during session j in shared space. """ self.fit(imgs) return self.transform(imgs, subjects_indexes=subjects_indexes) def transform(self, imgs, subjects_indexes=None): """From data in imgs and basis from training data, computes shared response. Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] or \ list of list of arrays or list of arrays Element i, j of the array is a path to the data of subject i \ collected during session j. Data are loaded with numpy.load and expected \ shape is [n_voxels, n_timeframes] n_timeframes and n_voxels are assumed \ to be the same across subjects n_timeframes can vary across sessions. \ Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i collected during session j. imgs can also be a list of arrays where element i \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i (number of sessions is implicitly 1) subjects_indexes : list or None: if None imgs[i] will be transformed using basis_list[i]. \ Otherwise imgs[i] will be transformed using basis[subjects_index[i]] Returns -------- shared_response : list of arrays, list of list of arrays or array - if imgs is a list of array and self.aggregate="mean": shared \ response is an array of shape (n_components, n_timeframes) - if imgs is a list of array and self.aggregate=None: shared \ response is a list of array, element i is the projection of data of \ subject i in shared space. - if imgs is an array or a list of list of array and \ self.aggregate="mean": shared response is a list of array, \ element j is the shared response during session j - if imgs is an array or a list of list of array and \ self.aggregate=None: shared response is a list of list of array, \ element i, j is the projection of data of subject i collected \ during session j in shared space. """ aggregate = self.aggregate if self.basis_list is None: raise NotFittedError("The model fit has not been run yet.") atlas_shape = check_atlas(self.atlas, self.n_components) reshaped_input, imgs, shapes = check_imgs( imgs, n_components=self.n_components, atlas_shape=atlas_shape, ignore_nsubjects=True) check_indexes(subjects_indexes, "subjects_indexes") if subjects_indexes is None: subjects_indexes = np.arange(len(imgs)) else: subjects_indexes = np.array(subjects_indexes) # Transform specific checks if len(subjects_indexes) < len(imgs): raise ValueError("Input data imgs has len %i whereas " "subject_indexes has len %i. " "The number of basis used to compute " "the shared response should be equal " "to the number of subjects in imgs" % (len(imgs), len(subjects_indexes))) assert_valid_index(subjects_indexes, len(self.basis_list), "subjects_indexes") shared_response = _compute_shared_response_online( imgs, self.basis_list, self.temp_dir, self.n_jobs, subjects_indexes, aggregate) # If shared response has only 1 session we need to reshape it if reshaped_input: if aggregate == "mean": shared_response = shared_response[0] if aggregate is None: shared_response = [ shared_response[i][0] for i in range(len(subjects_indexes)) ] return shared_response def inverse_transform( self, shared_response, subjects_indexes=None, sessions_indexes=None, ): """From shared response and basis from training data reconstruct subject's data Parameters ---------- shared_response : list of arrays, list of list of arrays or array - if imgs is a list of array and self.aggregate="mean": shared \ response is an array of shape (n_components, n_timeframes) - if imgs is a list of array and self.aggregate=None: shared \ response is a list of array, element i is the projection of data of \ subject i in shared space. - if imgs is an array or a list of list of array and \ self.aggregate="mean": shared response is a list of array, \ element j is the shared response during session j - if imgs is an array or a list of list of array and \ self.aggregate=None: shared response is a list of list of array, \ element i, j is the projection of data of subject i collected \ during session j in shared space. subjects_indexes : list or None if None reconstructs data of all subjects used during train. \ Otherwise reconstructs data of subjects specified by subjects_indexes. sessions_indexes : list or None if None reconstructs data of all sessions. \ Otherwise uses reconstructs data of sessions specified by sessions_indexes. Returns ------- reconstructed_data: list of list of arrays or list of arrays - if reconstructed_data is a list of list : element i, j is \ the reconstructed data for subject subjects_indexes[i] and \ session sessions_indexes[j] as an np array of shape n_voxels, \ n_timeframes - if reconstructed_data is a list : element i is the \ reconstructed data for subject \ subject_indexes[i] as an np array of shape n_voxels, n_timeframes """ added_session, shared = check_shared_response( shared_response, self.aggregate, n_components=self.n_components) n_subjects = len(self.basis_list) n_sessions = len(shared) for j in range(n_sessions): assert_array_2axis(shared[j], "shared_response[%i]" % j) check_indexes(subjects_indexes, "subjects_indexes") check_indexes(sessions_indexes, "sessions_indexes") if subjects_indexes is None: subjects_indexes = np.arange(n_subjects) else: subjects_indexes = np.array(subjects_indexes) assert_valid_index(subjects_indexes, n_subjects, "subjects_indexes") if sessions_indexes is None: sessions_indexes = np.arange(len(shared)) else: sessions_indexes = np.array(sessions_indexes) assert_valid_index(sessions_indexes, n_sessions, "sessions_indexes") data = [] for i in subjects_indexes: data_ = [] basis_i = safe_load(self.basis_list[i]) if added_session: data.append(basis_i.T.dot(shared[0])) else: for j in sessions_indexes: data_.append(basis_i.T.dot(shared[j])) data.append(data_) return data def add_subjects(self, imgs, shared_response): """ Add subjects to the current fit. Each new basis will be \ appended at the end of the list of basis (which can \ be accessed using self.basis) Parameters ---------- imgs : array of str, shape=[n_subjects, n_sessions] or \ list of list of arrays or list of arrays Element i, j of the array is a path to the data of subject i \ collected during session j. Data are loaded with numpy.load and expected \ shape is [n_voxels, n_timeframes] n_timeframes and n_voxels are assumed \ to be the same across subjects n_timeframes can vary across sessions. \ Each voxel's timecourse is assumed to have mean 0 and variance 1 imgs can also be a list of list of arrays where element i, j \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i collected during session j. imgs can also be a list of arrays where element i \ of the array is a numpy array of shape [n_voxels, n_timeframes] \ that contains the data of subject i (number of sessions is implicitly 1) shared_response : list of arrays, list of list of arrays or array - if imgs is a list of array and self.aggregate="mean": shared \ response is an array of shape (n_components, n_timeframes) - if imgs is a list of array and self.aggregate=None: shared \ response is a list of array, element i is the projection of data of \ subject i in shared space. - if imgs is an array or a list of list of array and \ self.aggregate="mean": shared response is a list of array, \ element j is the shared response during session j - if imgs is an array or a list of list of array and \ self.aggregate=None: shared response is a list of list of array, \ element i, j is the projection of data of subject i collected \ during session j in shared space. """ atlas_shape = check_atlas(self.atlas, self.n_components) reshaped_input, imgs, shapes = check_imgs( imgs, n_components=self.n_components, atlas_shape=atlas_shape, ignore_nsubjects=True) _, shared_response_list = check_shared_response( shared_response, n_components=self.n_components, aggregate=self.aggregate, input_shapes=shapes) # we need to transpose shared_response_list to be consistent with # other functions shared_response_list = [ shared_response_list[j].T for j in range(len(shared_response_list)) ] if self.n_jobs == 1: basis = [] for i, sessions in enumerate(imgs): basis_i = _compute_basis_subject_online( sessions, shared_response_list) if self.temp_dir is None: basis.append(basis_i) else: path = os.path.join( self.temp_dir, "basis_%i" % (len(self.basis_list) + i)) np.save(path, basis_i) basis.append(path + ".npy") del basis_i else: if self.temp_dir is None: basis = Parallel(n_jobs=self.n_jobs)( delayed(_compute_basis_subject_online)( sessions, shared_response_list) for sessions in imgs) else: Parallel(n_jobs=self.n_jobs)( delayed(_compute_and_save_corr_mat)( imgs[i][j], shared_response_list[j], self.temp_dir) for j in range(len(imgs[0])) for i in range(len(imgs))) basis = Parallel(n_jobs=self.n_jobs)( delayed(_compute_and_save_subject_basis)( len(self.basis_list) + i, sessions, self.temp_dir) for i, sessions in enumerate(imgs)) self.basis_list += basis
apache-2.0
mbayon/TFG-MachineLearning
vbig/lib/python2.7/site-packages/sklearn/linear_model/tests/test_omp.py
76
7752
# Author: Vlad Niculae # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
mit
shopkeep/aws_etl_tools
tests/test_redshift_ingest_integration.py
1
4561
import os import csv import unittest from importlib import reload import pandas as pd import boto3 from aws_etl_tools.mock_s3_connection import MockS3Connection from aws_etl_tools import config from aws_etl_tools.redshift_ingest import * from tests import test_helper class TestRedshiftIngestIntegration(unittest.TestCase): TARGET_TABLE = 'public.testing_channels' AUDIT_TABLE = config.REDSHIFT_INGEST_AUDIT_TABLE EXPECTED_COUNT_OF_AUDIT_FIELDS = 5 S3_BUCKET_NAME = test_helper.S3_TEST_BUCKET_NAME TARGET_DATABASE = test_helper.BasicRedshiftButActuallyPostgres() DESTINATION = RedshiftTable( database=TARGET_DATABASE, target_table=TARGET_TABLE, upsert_uniqueness_key=('id',) ) def setUp(self): self.TARGET_DATABASE.execute(""" CREATE TABLE %s ( id integer PRIMARY KEY, value varchar(20) )""" % self.TARGET_TABLE ) test_helper.set_default_s3_base_path() def tearDown(self): self.TARGET_DATABASE.execute("""DROP TABLE %s""" % self.TARGET_TABLE) self.TARGET_DATABASE.execute("""TRUNCATE TABLE %s""" % self.AUDIT_TABLE) test_helper.clear_temp_directory() def assert_data_in_target(self): actual_target_data = self.TARGET_DATABASE.fetch("""select * from {0}""".format(self.TARGET_TABLE)) expected_target_data = [(5, 'funzies'), (7, 'sadzies')] self.assertEqual(actual_target_data, expected_target_data) def assert_audit_row_created(self): audit_row = self.TARGET_DATABASE.fetch("""select * from {0} order by loaded_at desc""".format(self.AUDIT_TABLE))[0] actual_count_of_audit_fields = len(audit_row) self.assertEqual(actual_count_of_audit_fields, self.EXPECTED_COUNT_OF_AUDIT_FIELDS) @MockS3Connection(bucket=S3_BUCKET_NAME) def test_in_memory_data_to_redshift(self): source_data = [[5, 'funzies'], [7, 'sadzies']] from_in_memory(source_data, self.DESTINATION) self.assert_data_in_target() self.assert_audit_row_created() @MockS3Connection(bucket=S3_BUCKET_NAME) def test_dataframe_to_redshift(self): source_dataframe = pd.DataFrame( [(5, 'funzies'), (7, 'sadzies')], columns=['one', 'two'], index=['alpha', 'beta'] ) from_dataframe(source_dataframe, self.DESTINATION) self.assert_data_in_target() self.assert_audit_row_created() @MockS3Connection(bucket=S3_BUCKET_NAME) def test_postgres_query_to_redshift(self): source_db = test_helper.BasicPostgres() source_query = """ SELECT 5 AS number, 'funzies' AS category UNION SELECT 7, 'sadzies' """ from_postgres_query(source_db, source_query, self.DESTINATION) self.assert_data_in_target() self.assert_audit_row_created() @MockS3Connection(bucket=S3_BUCKET_NAME) def test_local_file_to_redshift(self): file_contents = '5,funzies\n7,sadzies\n' file_path = os.path.join(config.LOCAL_TEMP_DIRECTORY, 'csv_data.csv') with open(file_path, 'w') as file_writer: file_writer.write(file_contents) from_local_file(file_path, self.DESTINATION) self.assert_data_in_target() self.assert_audit_row_created() @MockS3Connection(bucket=S3_BUCKET_NAME) def test_s3_path_to_redshift(self): file_contents = '5,funzies\n7,sadzies\n' s3_bucket_name = test_helper.S3_TEST_BUCKET_NAME s3_key_name = 'namespaced/file/here.csv' s3 = boto3.resource('s3') s3.Object(s3_bucket_name, s3_key_name).put(Body=file_contents) full_s3_path = 's3://' + s3_bucket_name + '/' + s3_key_name from_s3_path(full_s3_path, self.DESTINATION) self.assert_data_in_target() self.assert_audit_row_created() @MockS3Connection(bucket=S3_BUCKET_NAME) def test_manifest_to_redshift_raises_value_error(self): '''This cannot be integration tested because Postgres cannot trivially be made to handle manifest files.''' expected_exception_args = ('Postgres cannot handle manifests like redshift. Sorry.',) manifest_dict = { "entries": [{"url": 's3://this/doesnt/matter.manifest', "mandatory": True}] } with self.assertRaises(ValueError) as exception_context_manager: from_manifest(manifest_dict, self.DESTINATION) self.assertEqual(exception_context_manager.exception.args, expected_exception_args)
apache-2.0
chen0031/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_fltkagg.py
69
20839
""" A backend for FLTK Copyright: Gregory Lielens, Free Field Technologies SA and John D. Hunter 2004 This code is released under the matplotlib license """ from __future__ import division import os, sys, math import fltk as Fltk from backend_agg import FigureCanvasAgg import os.path import matplotlib from matplotlib import rcParams, verbose from matplotlib.cbook import is_string_like from matplotlib.backend_bases import \ RendererBase, GraphicsContextBase, FigureManagerBase, FigureCanvasBase,\ NavigationToolbar2, cursors from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf import matplotlib.windowing as windowing from matplotlib.widgets import SubplotTool import thread,time Fl_running=thread.allocate_lock() def Fltk_run_interactive(): global Fl_running if Fl_running.acquire(0): while True: Fltk.Fl.check() time.sleep(0.005) else: print "fl loop already running" # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 cursord= { cursors.HAND: Fltk.FL_CURSOR_HAND, cursors.POINTER: Fltk.FL_CURSOR_ARROW, cursors.SELECT_REGION: Fltk.FL_CURSOR_CROSS, cursors.MOVE: Fltk.FL_CURSOR_MOVE } special_key={ Fltk.FL_Shift_R:'shift', Fltk.FL_Shift_L:'shift', Fltk.FL_Control_R:'control', Fltk.FL_Control_L:'control', Fltk.FL_Control_R:'control', Fltk.FL_Control_L:'control', 65515:'win', 65516:'win', } def error_msg_fltk(msg, parent=None): Fltk.fl_message(msg) def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw() def ishow(): """ Show all the figures and enter the fltk mainloop in another thread This allows to keep hand in interractive python session Warning: does not work under windows This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.show() if show._needmain: thread.start_new_thread(Fltk_run_interactive,()) show._needmain = False def show(): """ Show all the figures and enter the fltk mainloop This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.show() #mainloop, if an fltk program exist no need to call that #threaded (and interractive) version if show._needmain: Fltk.Fl.run() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) window = Fltk.Fl_Double_Window(10,10,30,30) canvas = FigureCanvasFltkAgg(figure) window.end() window.show() window.make_current() figManager = FigureManagerFltkAgg(canvas, num, window) if matplotlib.is_interactive(): figManager.show() return figManager class FltkCanvas(Fltk.Fl_Widget): def __init__(self,x,y,w,h,l,source): Fltk.Fl_Widget.__init__(self, 0, 0, w, h, "canvas") self._source=source self._oldsize=(None,None) self._draw_overlay = False self._button = None self._key = None def draw(self): newsize=(self.w(),self.h()) if(self._oldsize !=newsize): self._oldsize =newsize self._source.resize(newsize) self._source.draw() t1,t2,w,h = self._source.figure.bbox.bounds Fltk.fl_draw_image(self._source.buffer_rgba(0,0),0,0,int(w),int(h),4,0) self.redraw() def blit(self,bbox=None): if bbox is None: t1,t2,w,h = self._source.figure.bbox.bounds else: t1o,t2o,wo,ho = self._source.figure.bbox.bounds t1,t2,w,h = bbox.bounds x,y=int(t1),int(t2) Fltk.fl_draw_image(self._source.buffer_rgba(x,y),x,y,int(w),int(h),4,int(wo)*4) #self.redraw() def handle(self, event): x=Fltk.Fl.event_x() y=Fltk.Fl.event_y() yf=self._source.figure.bbox.height() - y if event == Fltk.FL_FOCUS or event == Fltk.FL_UNFOCUS: return 1 elif event == Fltk.FL_KEYDOWN: ikey= Fltk.Fl.event_key() if(ikey<=255): self._key=chr(ikey) else: try: self._key=special_key[ikey] except: self._key=None FigureCanvasBase.key_press_event(self._source, self._key) return 1 elif event == Fltk.FL_KEYUP: FigureCanvasBase.key_release_event(self._source, self._key) self._key=None elif event == Fltk.FL_PUSH: self.window().make_current() if Fltk.Fl.event_button1(): self._button = 1 elif Fltk.Fl.event_button2(): self._button = 2 elif Fltk.Fl.event_button3(): self._button = 3 else: self._button = None if self._draw_overlay: self._oldx=x self._oldy=y if Fltk.Fl.event_clicks(): FigureCanvasBase.button_press_event(self._source, x, yf, self._button) return 1 else: FigureCanvasBase.button_press_event(self._source, x, yf, self._button) return 1 elif event == Fltk.FL_ENTER: self.take_focus() return 1 elif event == Fltk.FL_LEAVE: return 1 elif event == Fltk.FL_MOVE: FigureCanvasBase.motion_notify_event(self._source, x, yf) return 1 elif event == Fltk.FL_DRAG: self.window().make_current() if self._draw_overlay: self._dx=Fltk.Fl.event_x()-self._oldx self._dy=Fltk.Fl.event_y()-self._oldy Fltk.fl_overlay_rect(self._oldx,self._oldy,self._dx,self._dy) FigureCanvasBase.motion_notify_event(self._source, x, yf) return 1 elif event == Fltk.FL_RELEASE: self.window().make_current() if self._draw_overlay: Fltk.fl_overlay_clear() FigureCanvasBase.button_release_event(self._source, x, yf, self._button) self._button = None return 1 return 0 class FigureCanvasFltkAgg(FigureCanvasAgg): def __init__(self, figure): FigureCanvasAgg.__init__(self,figure) t1,t2,w,h = self.figure.bbox.bounds w, h = int(w), int(h) self.canvas=FltkCanvas(0, 0, w, h, "canvas",self) #self.draw() def resize(self,size): w, h = size # compute desired figure size in inches dpival = self.figure.dpi.get() winch = w/dpival hinch = h/dpival self.figure.set_size_inches(winch,hinch) def draw(self): FigureCanvasAgg.draw(self) self.canvas.redraw() def blit(self,bbox): self.canvas.blit(bbox) show = draw def widget(self): return self.canvas def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ def destroy_figure(ptr,figman): figman.window.hide() Gcf.destroy(figman._num) class FigureManagerFltkAgg(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The fltk.Toolbar window : The fltk.Window """ def __init__(self, canvas, num, window): FigureManagerBase.__init__(self, canvas, num) #Fltk container window t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self.window = window self.window.size(w,h+30) self.window_title="Figure %d" % num self.window.label(self.window_title) self.window.size_range(350,200) self.window.callback(destroy_figure,self) self.canvas = canvas self._num = num if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbar( canvas, self ) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2FltkAgg( canvas, self ) else: self.toolbar = None self.window.add_resizable(canvas.widget()) if self.toolbar: self.window.add(self.toolbar.widget()) self.toolbar.update() self.window.show() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) def resize(self, event): width, height = event.width, event.height self.toolbar.configure(width=width) # , height=height) def show(self): _focus = windowing.FocusManager() self.canvas.draw() self.window.redraw() def set_window_title(self, title): self.window_title=title self.window.label(title) class AxisMenu: def __init__(self, toolbar): self.toolbar=toolbar self._naxes = toolbar.naxes self._mbutton = Fltk.Fl_Menu_Button(0,0,50,10,"Axes") self._mbutton.add("Select All",0,select_all,self,0) self._mbutton.add("Invert All",0,invert_all,self,Fltk.FL_MENU_DIVIDER) self._axis_txt=[] self._axis_var=[] for i in range(self._naxes): self._axis_txt.append("Axis %d" % (i+1)) self._mbutton.add(self._axis_txt[i],0,set_active,self,Fltk.FL_MENU_TOGGLE) for i in range(self._naxes): self._axis_var.append(self._mbutton.find_item(self._axis_txt[i])) self._axis_var[i].set() def adjust(self, naxes): if self._naxes < naxes: for i in range(self._naxes, naxes): self._axis_txt.append("Axis %d" % (i+1)) self._mbutton.add(self._axis_txt[i],0,set_active,self,Fltk.FL_MENU_TOGGLE) for i in range(self._naxes, naxes): self._axis_var.append(self._mbutton.find_item(self._axis_txt[i])) self._axis_var[i].set() elif self._naxes > naxes: for i in range(self._naxes-1, naxes-1, -1): self._mbutton.remove(i+2) if(naxes): self._axis_var=self._axis_var[:naxes-1] self._axis_txt=self._axis_txt[:naxes-1] else: self._axis_var=[] self._axis_txt=[] self._naxes = naxes set_active(0,self) def widget(self): return self._mbutton def get_indices(self): a = [i for i in range(len(self._axis_var)) if self._axis_var[i].value()] return a def set_active(ptr,amenu): amenu.toolbar.set_active(amenu.get_indices()) def invert_all(ptr,amenu): for a in amenu._axis_var: if not a.value(): a.set() set_active(ptr,amenu) def select_all(ptr,amenu): for a in amenu._axis_var: a.set() set_active(ptr,amenu) class FLTKButton: def __init__(self, text, file, command,argument,type="classic"): file = os.path.join(rcParams['datapath'], 'images', file) self.im = Fltk.Fl_PNM_Image(file) size=26 if type=="repeat": self.b = Fltk.Fl_Repeat_Button(0,0,size,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="classic": self.b = Fltk.Fl_Button(0,0,size,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="light": self.b = Fltk.Fl_Light_Button(0,0,size+20,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="pushed": self.b = Fltk.Fl_Button(0,0,size,10) self.b.box(Fltk.FL_UP_BOX) self.b.down_box(Fltk.FL_DOWN_BOX) self.b.type(Fltk.FL_TOGGLE_BUTTON) self.tooltiptext=text+" " self.b.tooltip(self.tooltiptext) self.b.callback(command,argument) self.b.image(self.im) self.b.deimage(self.im) self.type=type def widget(self): return self.b class NavigationToolbar: """ Public attriubutes canvas - the FigureCanvas (FigureCanvasFltkAgg = customised fltk.Widget) """ def __init__(self, canvas, figman): #xmin, xmax = canvas.figure.bbox.intervalx().get_bounds() #height, width = 50, xmax-xmin self.canvas = canvas self.figman = figman Fltk.Fl_File_Icon.load_system_icons() self._fc = Fltk.Fl_File_Chooser( ".", "*", Fltk.Fl_File_Chooser.CREATE, "Save Figure" ) self._fc.hide() t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self._group = Fltk.Fl_Pack(0,h+2,1000,26) self._group.type(Fltk.FL_HORIZONTAL) self._axes=self.canvas.figure.axes self.naxes = len(self._axes) self.omenu = AxisMenu( toolbar=self) self.bLeft = FLTKButton( text="Left", file="stock_left.ppm", command=pan,argument=(self,1,'x'),type="repeat") self.bRight = FLTKButton( text="Right", file="stock_right.ppm", command=pan,argument=(self,-1,'x'),type="repeat") self.bZoomInX = FLTKButton( text="ZoomInX",file="stock_zoom-in.ppm", command=zoom,argument=(self,1,'x'),type="repeat") self.bZoomOutX = FLTKButton( text="ZoomOutX", file="stock_zoom-out.ppm", command=zoom, argument=(self,-1,'x'),type="repeat") self.bUp = FLTKButton( text="Up", file="stock_up.ppm", command=pan,argument=(self,1,'y'),type="repeat") self.bDown = FLTKButton( text="Down", file="stock_down.ppm", command=pan,argument=(self,-1,'y'),type="repeat") self.bZoomInY = FLTKButton( text="ZoomInY", file="stock_zoom-in.ppm", command=zoom,argument=(self,1,'y'),type="repeat") self.bZoomOutY = FLTKButton( text="ZoomOutY",file="stock_zoom-out.ppm", command=zoom, argument=(self,-1,'y'),type="repeat") self.bSave = FLTKButton( text="Save", file="stock_save_as.ppm", command=save_figure, argument=self) self._group.end() def widget(self): return self._group def close(self): Gcf.destroy(self.figman._num) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): self._axes = self.canvas.figure.axes naxes = len(self._axes) self.omenu.adjust(naxes) def pan(ptr, arg): base,direction,axe=arg for a in base._active: if(axe=='x'): a.panx(direction) else: a.pany(direction) base.figman.show() def zoom(ptr, arg): base,direction,axe=arg for a in base._active: if(axe=='x'): a.zoomx(direction) else: a.zoomy(direction) base.figman.show() def save_figure(ptr,base): filetypes = base.canvas.get_supported_filetypes() default_filetype = base.canvas.get_default_filetype() sorted_filetypes = filetypes.items() sorted_filetypes.sort() selected_filter = 0 filters = [] for i, (ext, name) in enumerate(sorted_filetypes): filter = '%s (*.%s)' % (name, ext) filters.append(filter) if ext == default_filetype: selected_filter = i filters = '\t'.join(filters) file_chooser=base._fc file_chooser.filter(filters) file_chooser.filter_value(selected_filter) file_chooser.show() while file_chooser.visible() : Fltk.Fl.wait() fname=None if(file_chooser.count() and file_chooser.value(0) != None): fname="" (status,fname)=Fltk.fl_filename_absolute(fname, 1024, file_chooser.value(0)) if fname is None: # Cancel return #start from last directory lastDir = os.path.dirname(fname) file_chooser.directory(lastDir) format = sorted_filetypes[file_chooser.filter_value()][0] try: base.canvas.print_figure(fname, format=format) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) error_msg_fltk(msg) class NavigationToolbar2FltkAgg(NavigationToolbar2): """ Public attriubutes canvas - the FigureCanvas figman - the Figure manager """ def __init__(self, canvas, figman): self.canvas = canvas self.figman = figman NavigationToolbar2.__init__(self, canvas) self.pan_selected=False self.zoom_selected=False def set_cursor(self, cursor): Fltk.fl_cursor(cursord[cursor],Fltk.FL_BLACK,Fltk.FL_WHITE) def dynamic_update(self): self.canvas.draw() def pan(self,*args): self.pan_selected=not self.pan_selected self.zoom_selected = False self.canvas.canvas._draw_overlay= False if self.pan_selected: self.bPan.widget().value(1) else: self.bPan.widget().value(0) if self.zoom_selected: self.bZoom.widget().value(1) else: self.bZoom.widget().value(0) NavigationToolbar2.pan(self,args) def zoom(self,*args): self.zoom_selected=not self.zoom_selected self.canvas.canvas._draw_overlay=self.zoom_selected self.pan_selected = False if self.pan_selected: self.bPan.widget().value(1) else: self.bPan.widget().value(0) if self.zoom_selected: self.bZoom.widget().value(1) else: self.bZoom.widget().value(0) NavigationToolbar2.zoom(self,args) def configure_subplots(self,*args): window = Fltk.Fl_Double_Window(100,100,480,240) toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasFltkAgg(toolfig) window.end() toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) window.show() canvas.show() def _init_toolbar(self): Fltk.Fl_File_Icon.load_system_icons() self._fc = Fltk.Fl_File_Chooser( ".", "*", Fltk.Fl_File_Chooser.CREATE, "Save Figure" ) self._fc.hide() t1,t2,w,h = self.canvas.figure.bbox.bounds w, h = int(w), int(h) self._group = Fltk.Fl_Pack(0,h+2,1000,26) self._group.type(Fltk.FL_HORIZONTAL) self._axes=self.canvas.figure.axes self.naxes = len(self._axes) self.omenu = AxisMenu( toolbar=self) self.bHome = FLTKButton( text="Home", file="home.ppm", command=self.home,argument=self) self.bBack = FLTKButton( text="Back", file="back.ppm", command=self.back,argument=self) self.bForward = FLTKButton( text="Forward", file="forward.ppm", command=self.forward,argument=self) self.bPan = FLTKButton( text="Pan/Zoom",file="move.ppm", command=self.pan,argument=self,type="pushed") self.bZoom = FLTKButton( text="Zoom to rectangle",file="zoom_to_rect.ppm", command=self.zoom,argument=self,type="pushed") self.bsubplot = FLTKButton( text="Configure Subplots", file="subplots.ppm", command = self.configure_subplots,argument=self,type="pushed") self.bSave = FLTKButton( text="Save", file="filesave.ppm", command=save_figure, argument=self) self._group.end() self.message = Fltk.Fl_Output(0,0,w,8) self._group.add_resizable(self.message) self.update() def widget(self): return self._group def close(self): Gcf.destroy(self.figman._num) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): self._axes = self.canvas.figure.axes naxes = len(self._axes) self.omenu.adjust(naxes) NavigationToolbar2.update(self) def set_message(self, s): self.message.value(s) FigureManager = FigureManagerFltkAgg
agpl-3.0
netortik/yandex-tank
setup.py
1
3156
from setuptools import setup, find_packages setup( name='yandextank', version='1.11.2', description='a performance measurement tool', longer_description=''' Yandex.Tank is a performance measurement and load testing automatization tool. It uses other load generators such as JMeter, ab or phantom inside of it for load generation and provides a common configuration system for them and analytic tools for the results they produce. ''', maintainer='Alexey Lavrenuke (load testing)', maintainer_email='[email protected]', url='http://yandex.github.io/yandex-tank/', namespace_packages=["yandextank", "yandextank.plugins"], packages=find_packages(exclude=["tests", "tmp", "docs", "data"]), install_requires=[ 'cryptography>=2.2.1', 'pyopenssl==18.0.0', 'psutil>=1.2.1', 'requests>=2.5.1', 'paramiko>=1.16.0', 'pandas>=0.23.3', 'numpy>=1.13.3', 'future>=0.16.0', 'pip>=8.1.2', 'pyyaml>=3.12', 'cerberus==1.2', 'influxdb>=5.0.0', 'netort==0.2.8' ], setup_requires=[ ], tests_require=[ 'pytest', 'pytest-runner', 'flake8', ], license='LGPLv2', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+)', 'Operating System :: POSIX', 'Topic :: Software Development :: Quality Assurance', 'Topic :: Software Development :: Testing', 'Topic :: Software Development :: Testing :: Traffic Generation', 'Programming Language :: Python :: 2', ], entry_points={ 'console_scripts': [ 'yandex-tank = yandextank.core.cli:main', 'yandex-tank-check-ssh = yandextank.common.util:check_ssh_connection', 'tank-postloader = yandextank.plugins.DataUploader.cli:post_loader', 'tank-docs-gen = yandextank.validator.docs_gen:main' ], }, package_data={ 'yandextank.api': ['config/*'], 'yandextank.core': ['config/*'], 'yandextank.aggregator': ['config/*'], 'yandextank.plugins.Android': ['binary/*', 'config/*'], 'yandextank.plugins.Autostop': ['config/*'], 'yandextank.plugins.Bfg': ['config/*'], 'yandextank.plugins.Console': ['config/*'], 'yandextank.plugins.DataUploader': ['config/*'], 'yandextank.plugins.Influx': ['config/*'], 'yandextank.plugins.JMeter': ['config/*'], 'yandextank.plugins.JsonReport': ['config/*'], 'yandextank.plugins.Pandora': ['config/*'], 'yandextank.plugins.Phantom': ['config/*'], 'yandextank.plugins.RCAssert': ['config/*'], 'yandextank.plugins.ResourceCheck': ['config/*'], 'yandextank.plugins.ShellExec': ['config/*'], 'yandextank.plugins.ShootExec': ['config/*'], 'yandextank.plugins.Telegraf': ['config/*'] }, use_2to3=False, )
lgpl-2.1
hsiaoyi0504/scikit-learn
examples/covariance/plot_sparse_cov.py
300
5078
""" ====================================== Sparse inverse covariance estimation ====================================== Using the GraphLasso estimator to learn a covariance and sparse precision from a small number of samples. To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covariance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the precision matrix. To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series. Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and as a result its inverse --the empirical precision matrix-- is very far from the ground truth. If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot. As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal, but the off-diagonal structure is lost. The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding ground truth value, as can be seen on the figure. Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of values of the empirical precision is not displayed. The alpha parameter of the GraphLasso setting the sparsity of the model is set by internal cross-validation in the GraphLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in the neighborhood of the maximum. """ print(__doc__) # author: Gael Varoquaux <[email protected]> # License: BSD 3 clause # Copyright: INRIA import numpy as np from scipy import linalg from sklearn.datasets import make_sparse_spd_matrix from sklearn.covariance import GraphLassoCV, ledoit_wolf import matplotlib.pyplot as plt ############################################################################## # Generate the data n_samples = 60 n_features = 20 prng = np.random.RandomState(1) prec = make_sparse_spd_matrix(n_features, alpha=.98, smallest_coef=.4, largest_coef=.7, random_state=prng) cov = linalg.inv(prec) d = np.sqrt(np.diag(cov)) cov /= d cov /= d[:, np.newaxis] prec *= d prec *= d[:, np.newaxis] X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples) X -= X.mean(axis=0) X /= X.std(axis=0) ############################################################################## # Estimate the covariance emp_cov = np.dot(X.T, X) / n_samples model = GraphLassoCV() model.fit(X) cov_ = model.covariance_ prec_ = model.precision_ lw_cov_, _ = ledoit_wolf(X) lw_prec_ = linalg.inv(lw_cov_) ############################################################################## # Plot the results plt.figure(figsize=(10, 6)) plt.subplots_adjust(left=0.02, right=0.98) # plot the covariances covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_), ('GraphLasso', cov_), ('True', cov)] vmax = cov_.max() for i, (name, this_cov) in enumerate(covs): plt.subplot(2, 4, i + 1) plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s covariance' % name) # plot the precisions precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_), ('GraphLasso', prec_), ('True', prec)] vmax = .9 * prec_.max() for i, (name, this_prec) in enumerate(precs): ax = plt.subplot(2, 4, i + 5) plt.imshow(np.ma.masked_equal(this_prec, 0), interpolation='nearest', vmin=-vmax, vmax=vmax, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.title('%s precision' % name) ax.set_axis_bgcolor('.7') # plot the model selection metric plt.figure(figsize=(4, 3)) plt.axes([.2, .15, .75, .7]) plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-') plt.axvline(model.alpha_, color='.5') plt.title('Model selection') plt.ylabel('Cross-validation score') plt.xlabel('alpha') plt.show()
bsd-3-clause
0asa/scikit-learn
sklearn/neighbors/base.py
4
25065
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..utils.validation import NotFittedError from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': with np.errstate(divide='ignore'): dist = 1. / dist return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data The new point. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to point, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") X = check_array(X, accept_sparse='csr') if n_neighbors is None: n_neighbors = self.n_neighbors if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again j = np.arange(neigh_ind.shape[0])[:, None] neigh_ind = neigh_ind[j, np.argsort(dist[j, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': return np.sqrt(dist[j, neigh_ind]), neigh_ind else: return dist[j, neigh_ind], neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = self._tree.query(X, n_neighbors, return_distance=return_distance) return result else: raise ValueError("internal: _fit_method not recognized") def kneighbors_graph(self, X, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if n_neighbors is None: n_neighbors = self.n_neighbors n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones((n_samples1, n_neighbors)) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': data, ind = self.kneighbors(X, n_neighbors + 1, return_distance=True) A_data, A_ind = data[:, 1:], ind[:, 1:] else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) return csr_matrix((A_data.ravel(), A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, last dimension same as that of fit data The new point or points radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the euclidean distances to each point, only present if return_distance=True. ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.radius_neighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 1.5, 0.5]]...), array([[1, 2]]...) The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") X = check_array(X, accept_sparse='csr') if radius is None: radius = self.radius if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = [np.where(d < radius)[0] for d in dist] # if there are the same number of neighbors for each point, # we can do a normal array. Otherwise, we return an object # array with elements that are numpy arrays try: neigh_ind = np.asarray(neigh_ind, dtype=int) dtype_F = float except ValueError: neigh_ind = np.asarray(neigh_ind, dtype='object') dtype_F = object if return_distance: if self.effective_metric_ == 'euclidean': dist = np.array([np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)], dtype=dtype_F) else: dist = np.array([d[neigh_ind[i]] for i, d in enumerate(dist)], dtype=dtype_F) return dist, neigh_ind else: return neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: ind, dist = results return dist, ind else: return results else: raise ValueError("internal: _fit_method not recognized") def radius_neighbors_graph(self, X, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features] Sample data radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if radius is None: radius = self.radius n_samples1 = X.shape[0] n_samples2 = self._fit_X.shape[0] # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
bsd-3-clause
godrayz/trading-with-python
cookbook/workingWithDatesAndTime.py
77
1551
# -*- coding: utf-8 -*- """ Created on Sun Oct 16 17:45:02 2011 @author: jev """ import time import datetime as dt from pandas import * from pandas.core import datetools # basic functions print 'Epoch start: %s' % time.asctime(time.gmtime(0)) print 'Seconds from epoch: %.2f' % time.time() today = dt.date.today() print type(today) print 'Today is %s' % today.strftime('%Y.%m.%d') # parse datetime d = dt.datetime.strptime('20120803 21:59:59',"%Y%m%d %H:%M:%S") # time deltas someDate = dt.date(2011,8,1) delta = today - someDate print 'Delta :', delta # calculate difference in dates delta = dt.timedelta(days=20) print 'Today-delta=', today-delta t = dt.datetime(*time.strptime('3/30/2004',"%m/%d/%Y")[0:5]) # the '*' operator unpacks the tuple, producing the argument list. print t # print every 3d wednesday of the month for month in xrange(1,13): t = dt.date(2013,month,1)+datetools.relativedelta(months=1) offset = datetools.Week(weekday=4) if t.weekday()<>4: t_new = t+3*offset else: t_new = t+2*offset t_new = t_new-datetools.relativedelta(days=30) print t_new.strftime("%B, %d %Y (%A)") #rng = DateRange(t, t+datetools.YearEnd()) #print rng # create a range of times start = dt.datetime(2012,8,1)+datetools.relativedelta(hours=9,minutes=30) end = dt.datetime(2012,8,1)+datetools.relativedelta(hours=22) rng = date_range(start,end,freq='30min') for r in rng: print r.strftime("%Y%m%d %H:%M:%S")
bsd-3-clause
wjfwzzc/Kaggle_Script
word2vec_nlp_tutorial/process/word_vectors.py
1
2123
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import generators from __future__ import nested_scopes from __future__ import print_function from __future__ import unicode_literals from __future__ import with_statement import gensim import keras.preprocessing.text import nltk import numpy import pandas import data import process word_vec_dim = 300 def build_word2vec(): sentences = [] for row in data.train_df['review'].append(data.unlabeled_df['review']): sentences_df = pandas.DataFrame(nltk.sent_tokenize(row.decode('utf-8').strip()), columns=['sentence']) sentences_df = process.raw_to_words(sentences_df, 'sentence') sentences += sentences_df['sentence'].tolist() model = gensim.models.Word2Vec(sentences, size=word_vec_dim, window=10, min_count=1, workers=1, seed=process.seed) return model # word2vec = build_word2vec() word2vec = gensim.models.Word2Vec.load_word2vec_format('./process/300features_10contexts.bin', binary=True) word2vec.init_sims(replace=True) del data.unlabeled_df train_df = process.raw_to_texts(data.train_df, 'review', dictionary=word2vec.vocab) del data.train_df test_df = process.raw_to_texts(data.test_df, 'review', dictionary=word2vec.vocab) del data.test_df sequence_tokenizer = keras.preprocessing.text.Tokenizer() sequence_tokenizer.fit_on_texts(line.encode('utf-8') for line in train_df['review'].values) max_features = len(sequence_tokenizer.word_index) train = process.texts_to_sequences(train_df, 'review', sequence_tokenizer, maxlen=2500) del train_df test = process.texts_to_sequences(test_df, 'review', sequence_tokenizer, maxlen=2500) del test_df weights = numpy.zeros((max_features + 1, word_vec_dim)) for word, index in sequence_tokenizer.word_index.items(): # if index <= max_features and word in word2vec.vocab: # weights[index, :] = word2vec[word] if word in word2vec.vocab: weights[index, :] = word2vec[word] else: weights[index, :] = numpy.random.uniform(-0.25, 0.25, word_vec_dim) del word2vec del sequence_tokenizer
mit
TheSumitGogia/insight
scripts/backend/draw/structs.py
1
18954
import numpy as np from sklearn.cluster import AgglomerativeClustering as hcluster import matplotlib.pyplot as plt from matplotlib.patches import Ellipse from collections import deque import argparse from scipy.spatial.distance import pdist def draw(datas, names): plt.ion() figure, axes = plt.subplots(1, len(datas), sharey=True) if len(datas) == 1: axes = [axes] def draw_ellipse(axes, max_level, cluster): max_level = max_level x = 0.5 * (cluster.data[0] + cluster.data[1]) rng = cluster.data[1] - cluster.data[0] if max_level > 1: y = .25 + (cluster.level - 1) * 1.5 / (max_level - 1) height = 1.5 / (max_level - 1) else: y = 1 height = .75 ell = Ellipse(xy=[x,y], width=rng, height=height, angle=0) axes.add_artist(ell) ell.set_clip_box(axes.bbox) ell.set_alpha(0.5) ell.set_facecolor([0, 0, 1.0]) return ell for i in range(len(datas)): tree = ClusterTree(datas[i]) clusters = tree.clusters max_level = tree.max_level ax = axes[i] ax.set_title(names[i]) offset, length = [1], [2.0] rng = np.max(datas[i]) - np.min(datas[i]) ax.hlines(0.1, 0, rng) ax.set_xlim([0, rng]) ax.set_ylim([0, 2.0]) ax.eventplot(datas[i].copy(), lineoffsets=offset, linelengths=length, orientation='horizontal', colors='b') ax.get_yaxis().set_visible(False) for cid in clusters: cluster = clusters[cid] ellipse = draw_ellipse(ax, max_level, cluster) plt.draw() def draw_tree(tree, prop): plt.ion() figure, axes = plt.subplots() axes = [axes] trees = [tree] def draw_ellipse(axes, max_level, cluster): max_level = max_level x = 0.5 * (cluster.data[0] + cluster.data[1]) rng = cluster.data[1] - cluster.data[0] if max_level > 1: y = .25 + (cluster.level - 1) * 1.5 / (max_level - 1) height = 1.5 / (max_level - 1) else: y = 1 height = .75 ell = Ellipse(xy=[x,y], width=rng, height=height, angle=0) axes.add_artist(ell) ell.set_clip_box(axes.bbox) ell.set_alpha(0.5) ell.set_facecolor([0, 0, 1.0]) return ell for i in range(len(trees)): tree = trees[i] data = tree.get_data() clusters = tree.clusters max_level = tree.max_level ax = axes[i] ax.set_title(prop) offset, length = [1], [2.0] rng = np.max(data) - np.min(data) ax.hlines(0.1, 0, rng) ax.set_xlim([0, rng]) ax.set_ylim([0, 2.0]) ax.eventplot(data.copy(), lineoffsets=offset, linelengths=length, orientation='horizontal', colors='b') ax.get_yaxis().set_visible(False) for cid in clusters: cluster = clusters[cid] ellipse = draw_ellipse(ax, max_level, cluster) plt.draw() class Cluster: def __init__(self, id, left, right, parent=None, data=None, range=None, count=None): self.id = id self.left = left self.right = right self.data = data self.range = range self.count = count self.parent = parent self.items = None class ClusterTree: def __init__(self, data): # NOTE: assumes data is 1-d numpy array pos = data.argsort() data = data[pos] data = data.reshape(data.shape[0], 1) drange = data[-1,0] - data[0,0] dcount = data.shape[0] # run clustering # clusterer = hcluster(compute_full_tree=True) clusterer = hcluster(compute_full_tree=True, linkage='complete') clusterer.fit(data) hc_children = clusterer.children_ # setup leaf clusters clusters = {i: Cluster(i, None, None, data=(data[i, 0], data[i, 0]), count=1, range=0) for i in range(data.shape[0])} leaves = {} # setup tree if drange != 0: minrange = 1 for idx in range(hc_children.shape[0]): children = hc_children[idx] lc, rc = clusters[children[0]], clusters[children[1]] check = 0 if lc.data[-1] < rc.data[0] else 1 left_child, right_child = clusters[children[check]], clusters[children[1-check]] id = idx + data.shape[0] cluster = Cluster(id, left_child, right_child) cluster.data = (min(left_child.data), max(right_child.data)) cluster.range = (cluster.data[-1] - cluster.data[0]) / (drange) if cluster.range < minrange: minrange = cluster.range cluster.count = left_child.count + right_child.count left_child.parent = cluster right_child.parent = cluster clusters[id] = cluster for id in clusters: cluster = clusters[id] leaf = (cluster.count == 1) while (cluster.parent is not None and cluster.parent.range == 0): cluster = cluster.parent clusters[id] = cluster if cluster.range == 0 and cluster.parent is not None and cluster.parent.range != 0: if cluster.items is None: cluster.items = set() if leaf: leaves[id] = cluster cluster.items.add(id) cids = clusters.keys() for id in cids: cluster = clusters[id] if cluster.id != id: del clusters[id] elif cluster.range == 0: cluster.left, cluster.right = None, None for id in clusters: cluster = clusters[id] if cluster.range == 0: if minrange < 0.1: cluster.range = minrange else: cluster.range = 1e-4 cluster.count = cluster.count * 1.0 / dcount else: big_cluster = Cluster(data.shape[0], None, None, data=(data[0,0], data[0,0]), count=data.shape[0], range=1e-4) big_cluster.items = set(range(data.shape[0])) for i in range(data.shape[0]): leaves[i] = big_cluster clusters = {data.shape[0]: big_cluster} # setup leaf levels for lid in leaves: lcluster = leaves[lid] lcluster.level = 1 # compute all tree levels computed = set([leaves[lid].id for lid in leaves.keys()]) for lid in leaves: cluster = leaves[lid] while (cluster is not None and \ ((cluster.data[0] == cluster.data[1]) or \ (cluster.right.id in computed and cluster.left.id in computed))): if (cluster.id not in computed): cluster.level = max(cluster.right.level, cluster.left.level) + 1 computed.add(cluster.id) cluster = cluster.parent del computed # set tree state variables biggest, max_level = 0, 0 for id in clusters: if id > biggest: biggest = id if clusters[id].level > max_level: max_level = clusters[id].level self.data = data self.root = clusters[biggest] self.max_level = max_level self.clusters = clusters self.leaves = leaves self.__dindex = pos self.__findex = np.argsort(pos) self.__drange = drange self.__dcount = dcount def translate(self, id): return self.__findex[id] def get_leaf(self, id): return self.clusters[id] def get_data(self): return self.data.copy() def get_top(self, numLevels): clusters = [] toAdd = deque([self.root]) while len(toAdd) > 0: cluster = queue.popleft() if cluster.level > self.max_level - numLevels: clusters.append(cluster) toAdd.append(cluster.left) toAdd.append(cluster.right) return reversed(clusters) def get_children(self, cluster): """ O(n) operation for getting items in cluster """ queue = deque([cluster]) children = set() while len(queue) > 0: cluster = queue.popleft() if cluster.left is None and cluster.right is None: children.update(cluster.items) continue if cluster.left is not None: queue.append(cluster.left) if cluster.right is not None: queue.append(cluster.right) interim = np.array(list(children)) children = set(self.__dindex[interim].tolist()) return children def trace(self, ancestor, child): cluster = child trace = [] while cluster is not None: trace.append(cluster) if ancestor == cluster: return trace cluster = cluster.parent return False def contains(self, container, cluster): current = cluster while current is not None: if container == current: return True current = current.parent return False class NCluster: def __init__(self, id, left, right, data=None, parent=None, range=None, count=None): self.id = id self.left = left self.right = right self.data = data # data indices, NOTE: a bit memory intensive self.range = range self.count = count self.parent = parent class NClusterTree: def __diameter(self, data): distances = pdist(data, 'euclidean') if distances.shape[0] == 0: return 0 else: diameter = np.max(distances) return diameter def __compute_distances(self, data): distances = pdist(data, 'euclidean') self.__distances = distances def __init__(self, data): drange = self.__diameter(data) dcount = data.shape[0] # run clustering clusterer = hcluster(compute_full_tree=True) clusterer.fit(data.copy()) hc_children = clusterer.children_ # setup leaf clusters clusters = {i: Cluster(i, None, None, data=np.array([data[i, :]]), count=1, range=0) for i in range(data.shape[0])} leaves = {} # setup tree if drange != 0: minrange = 1 for idx in range(hc_children.shape[0]): children = hc_children[idx] left_child, right_child = clusters[children[0]], clusters[children[1]] id = idx + data.shape[0] cluster = Cluster(id, left_child, right_child) cluster.data = np.vstack((left_child.data, right_child.data)) cluster.range = self.__diameter(cluster.data) / (drange) if cluster.range < minrange: minrange = cluster.range cluster.count = left_child.count + right_child.count left_child.parent = cluster right_child.parent = cluster clusters[id] = cluster for id in clusters: cluster = clusters[id] leaf = (cluster.count == 1) while (cluster.parent is not None and cluster.parent.range == 0): cluster = cluster.parent clusters[id] = cluster if cluster.range == 0 and cluster.parent is not None and cluster.parent.range != 0: if cluster.items is None: cluster.items = set() if leaf: leaves[id] = cluster cluster.items.add(id) # clear "clusters" from original leaves # set true leaves children to empty cids = clusters.keys() for id in cids: cluster = clusters[id] if cluster.id != id: del clusters[id] elif cluster.range == 0: cluster.left, cluster.right = None, None for id in clusters: cluster = clusters[id] if cluster.range == 0: if minrange < 0.1: cluster.range = minrange else: cluster.range = 1e-4 cluster.count = cluster.count * 1.0 / dcount else: big_cluster = Cluster(data.shape[0], None, None, data=np.array(data[0, :]), count=data.shape[0], range=1e-4) big_cluster.items = set(range(data.shape[0])) for i in range(data.shape[0]): leaves[i] = big_cluster clusters = {data.shape[0]: big_cluster} # setup leaf levels for lid in leaves: lcluster = leaves[lid] lcluster.level = 1 # compute all tree levels computed = set([leaves[lid].id for lid in leaves.keys()]) for lid in leaves: cluster = leaves[lid] while (cluster is not None and (cluster.right is None or cluster.right.id in computed) and (cluster.left is None or cluster.left.id in computed)): if (cluster.id not in computed): cluster.level = max(cluster.right.level, cluster.left.level) + 1 computed.add(cluster.id) cluster = cluster.parent del computed # set tree state variables biggest, max_level = 0, 0 test_cl = leaves[0] while (test_cl.parent is not None): test_cl = test_cl.parent self.root = test_cl self.max_level = test_cl.level self.data = data self.clusters = clusters self.leaves = leaves self.__drange = drange self.__dcount = dcount def translate(self, id): return id def get_top(self, numLevels): clusters = [] toAdd = deque([self.root]) while len(toAdd) > 0: cluster = toAdd.popleft() if cluster.level > self.max_level - numLevels: clusters.append(cluster) if cluster.left is not None: toAdd.append(cluster.left) if cluster.right is not None: toAdd.append(cluster.right) clusters.reverse() return clusters def get_leaf(self, id): return self.leaves[id] def get_data(self): return self.data.copy() def get_children(self, cluster): """ O(n) operation for getting items in cluster """ queue = deque([cluster]) children = set() while len(queue) > 0: cluster = queue.popleft() if cluster.left is None and cluster.right is None: children.update(cluster.items) continue if cluster.left is not None: queue.append(cluster.left) if cluster.right is not None: queue.append(cluster.right) return children def trace(self, ancestor, child): cluster = child trace = [] while cluster is not None: trace.append(cluster) if ancestor == cluster: return trace cluster = cluster.parent return False def contains(self, container, cluster): current = cluster while current is not None: if container == current: return True current = current.parent return False def ctree_test(clust_str, var_str, space_str, rng, num_samples): from data import UniformMixture as um def gen_data(clust_str, var_str, space_str, rng, num_samples): size_map = {'s': 1, 'm': 3, 'l': 5} var_map = {'s': 1, 'm': 3, 'l': 5} space_map = {'s': 1, 'm': 3, 'l': 5} sizes = [[size_map[c] for c in clust] for clust in clust_str.split('-')] sizes = [sum(csizes) for csizes in sizes] spaces = [[space_map[c] for c in clust] for clust in space_str.split('-')] spaces = [sum(cspaces) for cspaces in spaces] variances = [[var_map[c] for c in clust] for clust in var_str.split('-')] variances = [sum(cvars) for cvars in variances] total_space = sum(spaces) + sum(variances) total_size = sum(sizes) ranges, probs = [], [] tspace = 0 for i in range(len(variances)): space, var, size = spaces[i], variances[i], sizes[i] tspace += space start = (tspace * 1.0 / total_space) * rng end = start + var * 1.0 / total_space * rng slot = (start, end) tspace += var prob = size * 1.0 / total_size ranges.append(slot); probs.append(prob) dist = um(ranges, probs) data = dist.sample(num_samples) return data def draw_ellipse(axes, cluster): x = 0.5 * (cluster.data[0] + cluster.data[1]) rng = cluster.data[1] - cluster.data[0] y = .25 + (cluster.level - 1) * 1.5 / (max_level - 1) height = 1.5 / (max_level - 1) ell = Ellipse(xy=[x,y], width=rng, height=height, angle=0) axes.add_artist(ell) ell.set_clip_box(axes.bbox) ell.set_alpha(0.5) ell.set_facecolor([0, 0, 1.0]) data = gen_data(clust_str, var_str, space_str, rng, num_samples) ct = ClusterTree(data) max_level, clusters = ct.max_level, ct.clusters fig, ax = plt.subplots() offset, length = [1], [2.0] plt.hlines(0.1, 0, rng) plt.xlim([0, rng]) plt.ylim([0, 2.0]) ev = plt.eventplot(data, lineoffsets=offset, linelengths=length, orientation='horizontal', colors='b') ax.get_yaxis().set_visible(False) for cluster in clusters: draw_ellipse(ax, clusters[cluster]) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser(description="Test Cluster Tree") parser.add_argument('-n', '--samples', nargs=1,required=True,type=int,help='number of samples') parser.add_argument('-r', '--range', nargs=1,required=True,type=int,help='max data value') parser.add_argument('-s', '--sizes', nargs=1,required=True,type=str,help='cluster size string') parser.add_argument('-p', '--spaces', nargs=1,required=True,type=str,help='spaces between clusters') parser.add_argument('-v', '--variances', nargs=1,required=True,type=str,help='spaces for clusters') args = vars(parser.parse_args()) samples = args['samples'][0] rng = args['range'][0] sizes = args['sizes'][0] spaces = args['spaces'][0] variances = args['variances'][0] ctree_test(sizes, variances, spaces, rng, samples)
mit
ARM-software/astc-encoder
Test/astc_test_result_plot.py
1
12791
#!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # ----------------------------------------------------------------------------- # Copyright 2020-2021 Arm Limited # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # ----------------------------------------------------------------------------- """ The ``astc_test_result_plot.py`` script consolidates all current sets of reference results into a single graphical plot. """ import re import os import sys import numpy as np import matplotlib.pyplot as plt import testlib.resultset as trs from collections import defaultdict as ddict def find_reference_results(): """ Scrape the Test/Images directory for result CSV files and return an mapping of the result sets. Returns: Returns a three deep tree of dictionaries, with the final dict pointing at a `ResultSet` object. The hierarchy is: imageSet => quality => encoder => result """ scriptDir = os.path.dirname(__file__) imageDir = os.path.join(scriptDir, "Images") # Pattern for extracting useful data from the CSV file name filePat = re.compile(r"astc_reference-(.+)_(.+)_results\.csv") # Build a three level dictionary we can write into results = ddict(lambda: ddict(lambda: ddict())) # Final all CSVs, load them and store them in the dict tree for root, dirs, files in os.walk(imageDir): for name in files: match = filePat.match(name) if match: fullPath = os.path.join(root, name) encoder = match.group(1) quality = match.group(2) imageSet = os.path.basename(root) if imageSet != "Kodak": continue testRef = trs.ResultSet(imageSet) testRef.load_from_file(fullPath) results[imageSet][quality]["ref-%s" % encoder] = testRef return results def get_series(results, tgtEncoder, tgtQuality, resFilter=lambda x: True): psnrData = [] mtsData = [] marker = [] records = [] for imageSet, iResults in results.items(): for quality, qResults in iResults.items(): if quality != tgtQuality: continue for encoder, eResults in qResults.items(): if encoder != tgtEncoder: continue for record in eResults.records: if resFilter(record): records.append(record) psnrData.append(record.psnr) mtsData.append(record.cRate) if "ldr-xy" in record.name: marker.append('$N$') elif "ldr-l" in record.name: marker.append('$G$') elif "ldr" in record.name: marker.append('$L$') elif "hdr" in record.name: marker.append('$H$') else: marker.append('$?$') return mtsData, psnrData, marker, records def get_series_rel(results, refEncoder, refQuality, tgtEncoder, tgtQuality, resFilter=lambda x: True): mts1, psnr1, marker1, rec1 = get_series(results, tgtEncoder, tgtQuality, resFilter) if refEncoder is None: refEncoder = tgtEncoder if refQuality is None: refQuality = tgtQuality mts2, psnr2, marker2, rec2 = get_series(results, refEncoder, refQuality, resFilter) mtsm = [x/mts2[i] for i, x in enumerate(mts1)] psnrm = [x - psnr2[i] for i, x in enumerate(psnr1)] return mtsm, psnrm, marker1, rec1 def get_human_eq_name(encoder, quality): parts = encoder.split("-") if len(parts) == 2: return "astcenc %s -%s" % (parts[1], quality) else: return "astcenc-%s %s -%s" % (parts[2], parts[1], quality) def get_human_e_name(encoder): parts = encoder.split("-") if len(parts) == 2: return "astcenc %s" % parts[1] else: return "astcenc-%s %s" % (parts[2], parts[1]) def get_human_q_name(quality): return "-%s" % quality def plot(results, chartRows, chartCols, blockSizes, relative, pivotEncoder, pivotQuality, fileName, limits): fig, axs = plt.subplots(nrows=len(chartRows), ncols=len(chartCols), sharex=True, sharey=True, figsize=(15, 8.43)) for a in fig.axes: a.tick_params( axis="x", which="both", bottom=True, top=False, labelbottom=True) a.tick_params( axis="y", which="both", left=True, right=False, labelleft=True) for i, row in enumerate(chartRows): for j, col in enumerate(chartCols): if row == "fastest" and (("1.7" in col) or ("2.0" in col)): if len(chartCols) == 1: fig.delaxes(axs[i]) else: fig.delaxes(axs[i][j]) continue if len(chartRows) == 1 and len(chartCols) == 1: ax = axs elif len(chartCols) == 1: ax = axs[i] else: ax = axs[i, j] title = get_human_eq_name(col, row) if not relative: ax.set_title(title, y=0.97, backgroundcolor="white") ax.set_xlabel('Coding performance (MTex/s)') ax.set_ylabel('PSNR (dB)') else: if pivotEncoder and pivotQuality: tag = get_human_eq_name(pivotEncoder, pivotQuality) elif pivotEncoder: tag = get_human_e_name(pivotEncoder) else: assert(pivotQuality) tag = get_human_q_name(pivotQuality) ax.set_title("%s vs. %s" % (title, tag), y=0.97, backgroundcolor="white") ax.set_xlabel('Performance scaling') ax.set_ylabel('PSNR delta (dB)') for k, series in enumerate(blockSizes): fn = lambda x: x.blkSz == series if not relative: x, y, m, r = get_series(results, col, row, fn) else: x, y, m, r = get_series_rel(results, pivotEncoder, pivotQuality, col, row, fn) color = None label = "%s blocks" % series for xp, yp, mp in zip(x, y, m): ax.scatter([xp],[yp], s=16, marker=mp, color="C%u" % k, label=label) label = None if i == 0 and j == 0: ax.legend(loc="lower right") for i, row in enumerate(chartRows): for j, col in enumerate(chartCols): if len(chartRows) == 1 and len(chartCols) == 1: ax = axs elif len(chartCols) == 1: ax = axs[i] else: ax = axs[i, j] ax.grid(ls=':') if not relative: ax.set_xlim(left=0, right=limits[0]) else: ax.set_xlim(left=1, right=limits[0]) fig.tight_layout() fig.savefig(fileName) def main(): """ The main function. Returns: int: The process return code. """ absoluteXLimit = 60 charts = [ # -------------------------------------------------------- # Latest in stable series charts [ # Relative scores ["thorough", "medium", "fast"], ["ref-2.5-avx2", "ref-3.0-avx2"], ["4x4", "6x6", "8x8"], True, "ref-1.7", None, "relative-stable-series.png", (None, None) ], [ # Absolute scores ["thorough", "medium", "fast"], ["ref-1.7", "ref-2.5-avx2", "ref-3.0-avx2"], ["4x4", "6x6", "8x8"], False, None, None, "absolute-stable-series.png", (absoluteXLimit, None) ], # -------------------------------------------------------- # Latest 2.x vs 1.7 release charts [ # Relative scores ["thorough", "medium", "fast", "fastest"], ["ref-2.5-avx2"], ["4x4", "6x6", "8x8"], True, "ref-1.7", None, "relative-2.x-vs-1.x.png", (None, None) ], [ # Absolute scores ["thorough", "medium", "fast", "fastest"], ["ref-1.7", "ref-2.5-avx2"], ["4x4", "6x6", "8x8"], False, None, None, "absolute-2.x-vs-1.x.png", (absoluteXLimit, None) ], [ # Relative ISAs of latest ["thorough", "medium", "fast", "fastest"], ["ref-2.5-sse4.1", "ref-2.5-avx2"], ["4x4", "6x6", "8x8"], True, "ref-2.5-sse2", None, "relative-2.x-isa.png", (None, None) ], [ # Relative quality of latest ["medium", "fast", "fastest"], ["ref-2.5-avx2"], ["4x4", "6x6", "8x8"], True, None, "thorough", "relative-2.x-quality.png", (None, None) ], # -------------------------------------------------------- # Latest 3.x vs 2.5 release charts [ # Relative scores ["thorough", "medium", "fast", "fastest"], ["ref-3.0-avx2"], ["4x4", "6x6", "8x8"], True, "ref-2.5-avx2", None, "relative-3.x-vs-2.x.png", (None, None) ], [ # Absolute scores ["thorough", "medium", "fast", "fastest"], ["ref-2.5-avx2", "ref-3.0-avx2"], ["4x4", "6x6", "8x8"], False, None, None, "absolute-3.x-vs-2.x.png", (absoluteXLimit, None) ], [ # Relative ISAs of latest ["thorough", "medium", "fast", "fastest"], ["ref-3.0-sse4.1", "ref-3.0-avx2"], ["4x4", "6x6", "8x8"], True, "ref-3.0-sse2", None, "relative-3.x-isa.png", (None, None) ], [ # Relative quality of latest ["medium", "fast", "fastest"], ["ref-3.0-avx2"], ["4x4", "6x6", "8x8"], True, None, "thorough", "relative-3.x-quality.png", (None, None) ], # -------------------------------------------------------- # Latest 3.x vs 2.5 release charts [ # Relative scores ["thorough", "medium", "fast", "fastest"], ["ref-main-avx2"], ["4x4", "6x6", "8x8"], True, "ref-3.0-avx2", None, "relative-main-vs-3.x.png", (None, None), 1 ], [ # Relative scores ["thorough", "medium", "fast"], ["ref-main-avx2"], ["4x4", "6x6", "8x8"], True, "ref-1.7", None, "relative-main-vs-1.x.png", (None, None), 1 ], ] results = find_reference_results() # Force select is triggered by adding a trailing entry to the argument list # of the charts that you want rendered; designed for debugging use cases maxIndex = 0 expectedLength = 8 for chart in charts: maxIndex = max(maxIndex, len(chart)) for chart in charts: # If force select is enabled then only keep the forced ones if len(chart) != maxIndex: print("Skipping %s" % chart[6]) continue else: print("Generating %s" % chart[6]) # If force select is enabled then strip the dummy force option if maxIndex != expectedLength: chart = chart[:expectedLength] plot(results, *chart) return 0 if __name__ == "__main__": sys.exit(main())
apache-2.0
mjgrav2001/scikit-learn
sklearn/metrics/regression.py
175
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
alexlee-gk/visual_dynamics
visual_dynamics/utils/rl_util.py
1
11060
from __future__ import division, print_function import time import matplotlib.animation as manimation import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np from visual_dynamics.envs.env_spec import EnvSpec from visual_dynamics.utils import iter_util from visual_dynamics.utils.container import ImageDataContainer from visual_dynamics.gui.grid_image_visualizer import GridImageVisualizer def split_observations(observations): curr_observations = [observations_[:-1] for observations_ in observations] next_observations = [observations_[1:] for observations_ in observations] return curr_observations, next_observations def discount_return(rewards, gamma): return np.dot(rewards, gamma ** np.arange(len(rewards))) def discount_returns(rewards, gamma): return [discount_return(rewards_, gamma) for rewards_ in rewards] class FeaturePredictorServoingImageVisualizer(object): def __init__(self, predictor, visualize=1, window_title=None): self.predictor = predictor self.visualize = visualize if visualize: rows, cols = 1, 3 labels = [predictor.input_names[0], predictor.input_names[0] + ' next', predictor.input_names[0] + ' target'] if visualize > 1: feature_names = iter_util.flatten_tree(predictor.feature_name) next_feature_names = iter_util.flatten_tree(predictor.next_feature_name) assert len(feature_names) == len(next_feature_names) rows += len(feature_names) cols += 1 labels.insert(2, '') for feature_name, next_feature_name in zip(feature_names, next_feature_names): labels += [feature_name, feature_name + ' next', next_feature_name, feature_name + ' target'] fig = plt.figure(figsize=(4 * cols, 4 * rows), frameon=False, tight_layout=True) if window_title is None: try: window_title = predictor.solvers[-1].snapshot_prefix except IndexError: window_title = predictor.name fig.canvas.set_window_title(window_title) gs = gridspec.GridSpec(1, 1) self.image_visualizer = GridImageVisualizer(fig, gs[0], rows * cols, rows=rows, cols=cols, labels=labels) plt.show(block=False) else: self.image_visualizer = None def update(self, image, next_image, target_image, action): if self.visualize: vis_images = [image, next_image, target_image] vis_images = list(*self.predictor.preprocess([np.array(vis_images)])) if self.visualize == 1: vis_features = vis_images else: feature = self.predictor.feature([image]) feature_next = self.predictor.feature([next_image]) feature_next_pred = self.predictor.next_feature([image, action]) feature_target = self.predictor.feature([target_image]) # put all features into a flattened list vis_features = [feature, feature_next, feature_next_pred, feature_target] vis_features = [vis_features[icol][irow] for irow in range(self.image_visualizer.rows - 1) for icol in range(self.image_visualizer.cols)] vis_images.insert(2, None) vis_features = vis_images + vis_features self.image_visualizer.update(vis_features) def do_rollouts(env, pol, num_trajs, num_steps, target_distance=0, output_dir=None, image_visualizer=None, record_file=None, verbose=False, gamma=0.9, seeds=None, reset_states=None, cv2_record_file=None, image_transformer=None, ret_rewards_only=False, close_env=False): """ image_transformer is for the returned observations and for cv2's video writer """ random_state = np.random.get_state() if reset_states is None: reset_states = [None] * num_trajs else: num_trajs = min(num_trajs, len(reset_states)) if output_dir: container = ImageDataContainer(output_dir, 'x') container.reserve(list(env.observation_space.spaces.keys()) + ['state'], (num_trajs, num_steps + 1)) container.reserve(['action', 'reward'], (num_trajs, num_steps)) container.add_info(environment_config=env.get_config()) container.add_info(env_spec_config=EnvSpec(env.action_space, env.observation_space).get_config()) container.add_info(policy_config=pol.get_config()) else: container = None if record_file: if image_visualizer is None: raise ValueError('image_visualizer cannot be None for recording') FFMpegWriter = manimation.writers['ffmpeg'] writer = FFMpegWriter(fps=1.0 / env.dt) fig = plt.gcf() writer.setup(fig, record_file, fig.dpi) if cv2_record_file: import cv2 fourcc = cv2.VideoWriter_fourcc(*'X264') image_shape = env.observation_space.spaces['image'].shape[:2] if image_transformer: image_shape = image_transformer.preprocess_shape(image_shape) video_writer = cv2.VideoWriter(cv2_record_file, fourcc, 1.0 / env.dt, image_shape[:2][::-1]) def preprocess_image(obs): if image_transformer: if isinstance(obs, dict): obs = dict(obs) for name, maybe_image in obs.items(): if name.endswith('image'): obs[name] = image_transformer.preprocess(maybe_image) else: obs = image_transformer.preprocess(obs) return obs start_time = time.time() if verbose: errors_header_format = '{:>30}{:>15}' errors_row_format = '{:>30}{:>15.4f}' print(errors_header_format.format('(traj_iter, step_iter)', 'reward')) if ret_rewards_only: rewards = [] else: states, observations, actions, rewards = [], [], [], [] frame_iter = 0 done = False for traj_iter, state in enumerate(reset_states): if verbose: print('=' * 45) if seeds is not None and len(seeds) > traj_iter: np.random.seed(seed=seeds[traj_iter]) if ret_rewards_only: rewards_ = [] else: states_, observations_, actions_, rewards_ = [], [], [], [] obs = env.reset(state) frame_iter += 1 if state is None: state = env.get_state() if target_distance: raise NotImplementedError for step_iter in range(num_steps): try: if not ret_rewards_only: observations_.append(preprocess_image(obs)) states_.append(state) if container: container.add_datum(traj_iter, step_iter, state=state, **obs) if cv2_record_file: vis_image = obs['image'].copy() vis_image = cv2.cvtColor(vis_image, cv2.COLOR_RGB2BGR) vis_image = image_transformer.preprocess(vis_image) video_writer.write(vis_image) action = pol.act(obs) prev_obs = obs obs, reward, episode_done, _ = env.step(action) # action is updated in-place if needed frame_iter += 1 if verbose: print(errors_row_format.format(str((traj_iter, step_iter)), reward)) prev_state, state = state, env.get_state() if not ret_rewards_only: actions_.append(action) rewards_.append(reward) if step_iter == (num_steps - 1) or episode_done: if not ret_rewards_only: observations_.append(preprocess_image(obs)) states_.append(state) if container: container.add_datum(traj_iter, step_iter, action=action, reward=reward) if step_iter == (num_steps - 1) or episode_done: container.add_datum(traj_iter, step_iter + 1, state=state, **obs) if step_iter == (num_steps - 1) or episode_done: if cv2_record_file: vis_image = obs['image'].copy() vis_image = cv2.cvtColor(vis_image, cv2.COLOR_RGB2BGR) vis_image = image_transformer.preprocess(vis_image) video_writer.write(vis_image) if image_visualizer: env.render() image = prev_obs['image'] next_image = obs['image'] target_image = obs['target_image'] try: import tkinter except ImportError: import Tkinter as tkinter try: image_visualizer.update(image, next_image, target_image, action) if record_file: writer.grab_frame() except tkinter.TclError: done = True if done or episode_done: break except KeyboardInterrupt: break if verbose: print('-' * 45) print(errors_row_format.format('discounted return', discount_return(rewards_, gamma))) print(errors_row_format.format('return', discount_return(rewards_, 1.0))) if not ret_rewards_only: states.append(states_) observations.append(observations_) actions.append(actions_) rewards.append(rewards_) if done: break if cv2_record_file: video_writer.release() if verbose: print('=' * 45) print(errors_row_format.format('mean discounted return', np.mean(discount_returns(rewards, gamma)))) print(errors_row_format.format('mean return', np.mean(discount_returns(rewards, 1.0)))) else: discounted_returns = discount_returns(rewards, gamma) print('mean discounted return: %.4f (%.4f)' % (np.mean(discounted_returns), np.std(discounted_returns) / np.sqrt(len(discounted_returns)))) returns = discount_returns(rewards, 1.0) print('mean return: %.4f (%.4f)' % (np.mean(returns), np.std(returns) / np.sqrt(len(returns)))) if close_env: env.close() if record_file: writer.finish() if container: container.close() end_time = time.time() if verbose: print("average FPS: {}".format(frame_iter / (end_time - start_time))) np.random.set_state(random_state) if ret_rewards_only: return rewards else: return states, observations, actions, rewards
mit
akionakamura/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
hlin117/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
84
7866
# Important note for the deprecation cleaning of 0.20 : # All the function and classes of this file have been deprecated in 0.18. # When you remove this file please also remove the related files # - 'sklearn/mixture/dpgmm.py' # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_gmm.py' import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.utils.testing import assert_warns_message, ignore_warnings from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.mixture.dpgmm import digamma, gammaln from sklearn.mixture.dpgmm import wishart_log_det, wishart_logz np.seterr(all='warn') @ignore_warnings(category=DeprecationWarning) def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) @ignore_warnings(category=DeprecationWarning) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_digamma(): assert_warns_message(DeprecationWarning, "The function digamma is" " deprecated in 0.18 and will be removed in 0.20. " "Use scipy.special.digamma instead.", digamma, 3) @ignore_warnings(category=DeprecationWarning) def test_gammaln(): assert_warns_message(DeprecationWarning, "The function gammaln" " is deprecated in 0.18 and will be removed" " in 0.20. Use scipy.special.gammaln instead.", gammaln, 3) @ignore_warnings(category=DeprecationWarning) def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) result = assert_warns_message(DeprecationWarning, "The function " "log_normalize is deprecated in 0.18 and" " will be removed in 0.20.", log_normalize, a) assert np.allclose(v, result, rtol=0.01) @ignore_warnings(category=DeprecationWarning) def test_wishart_log_det(): a = np.array([0.1, 0.8, 0.01, 0.09]) b = np.array([0.2, 0.7, 0.05, 0.1]) assert_warns_message(DeprecationWarning, "The function " "wishart_log_det is deprecated in 0.18 and" " will be removed in 0.20.", wishart_log_det, a, b, 2, 4) @ignore_warnings(category=DeprecationWarning) def test_wishart_logz(): assert_warns_message(DeprecationWarning, "The function " "wishart_logz is deprecated in 0.18 and " "will be removed in 0.20.", wishart_logz, 3, np.identity(3), 1, 3) @ignore_warnings(category=DeprecationWarning) def test_DPGMM_deprecation(): assert_warns_message( DeprecationWarning, "The `DPGMM` class is not working correctly and " "it's better to use `sklearn.mixture.BayesianGaussianMixture` class " "with parameter `weight_concentration_prior_type='dirichlet_process'` " "instead. DPGMM is deprecated in 0.18 and will be removed in 0.20.", DPGMM) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp def test_VBGMM_deprecation(): assert_warns_message( DeprecationWarning, "The `VBGMM` class is not working correctly and " "it's better to use `sklearn.mixture.BayesianGaussianMixture` class " "with parameter `weight_concentration_prior_type=" "'dirichlet_distribution'` instead. VBGMM is deprecated " "in 0.18 and will be removed in 0.20.", VBGMM) class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp def test_vbgmm_no_modify_alpha(): alpha = 2. n_components = 3 X, y = make_blobs(random_state=1) vbgmm = VBGMM(n_components=n_components, alpha=alpha, n_iter=1) assert_equal(vbgmm.alpha, alpha) assert_equal(vbgmm.fit(X).alpha_, float(alpha) / n_components)
bsd-3-clause
fzalkow/scikit-learn
sklearn/ensemble/forest.py
176
62555
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..utils.validation import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score fuction.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree def _parallel_helper(obj, methodname, *args, **kwargs): """Private helper to workaround Python 2 pickle limitations""" return getattr(obj, methodname)(*args, **kwargs) class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start: # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False) tree.set_params(random_state=random_state.randint(MAX_INT)) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before `feature_importances_`.") all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('auto', 'balanced', 'balanced_subsample', 'subsample', 'auto') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.class_weight == "subsample": warn("class_weight='subsample' is deprecated and will be removed in 0.18." " It was replaced by class_weight='balanced_subsample' " "using the balanced strategy.", DeprecationWarning) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight not in ['subsample', 'balanced_subsample'] or not self.bootstrap): if self.class_weight == 'subsample': class_weight = 'auto' elif self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight with warnings.catch_warnings(): if class_weight == "auto": warnings.simplefilter('ignore', DeprecationWarning) expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. Note: this parameter is tree-specific. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. Note: this parameter is tree-specific. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. Note: this parameter is tree-specific. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. Note: this parameter is tree-specific. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. Note: this parameter is tree-specific. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. Note: this parameter is tree-specific. bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. Note: this parameter is tree-specific. oob_score : bool Whether to use out-of-bag samples to estimate the generalization error. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : int Number of trees in the forest. max_depth : int The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples in newly created leaves. A split is discarded if after the split, one of the leaves would contain less then ``min_samples_leaf`` samples. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, accept_sparse=['csc'], ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
cxhernandez/msmbuilder
msmbuilder/project_templates/tica/tica-sample-coordinate-plot.py
9
1174
"""Plot the result of sampling a tICA coordinate {{header}} """ # ? include "plot_header.template" # ? from "plot_macros.template" import xdg_open with context import numpy as np import seaborn as sns from matplotlib import pyplot as plt from msmbuilder.io import load_trajs, load_generic sns.set_style('ticks') colors = sns.color_palette() ## Load meta, ttrajs = load_trajs('ttrajs') txx = np.concatenate(list(ttrajs.values())) inds = load_generic("tica-dimension-0-inds.pickl") straj = [] for traj_i, frame_i in inds: straj += [ttrajs[traj_i][frame_i, :]] straj = np.asarray(straj) ## Overlay sampled trajectory on histogram def plot_sampled_traj(ax): ax.hexbin(txx[:, 0], txx[:, 1], cmap='magma_r', mincnt=1, bins='log', alpha=0.8, ) ax.plot(straj[:, 0], straj[:, 1], 'o-', label='Sampled') ax.set_xlabel("tIC 1", fontsize=16) ax.set_ylabel("tIC 2", fontsize=16) ax.legend(loc='best') ## Plot fig, ax = plt.subplots(figsize=(7, 5)) plot_sampled_traj(ax) fig.tight_layout() fig.savefig('tica-dimension-0-heatmap.pdf') # {{xdg_open('tica-dimension-0-heatmap.pdf')}}
lgpl-2.1
lpouillo/execo-g5k-tools
tutorial/draw_mpi_bench.py
1
2005
#!/usr/bin/env python import optparse, os, re, fileinput def draw_results(result_dir, plotfile): import matplotlib if plotfile: matplotlib.use('Agg') import matplotlib.pyplot as plt data = {} # dict: key = cluster, value = dict: key = problem size, value = tuple([n_cores], [times]) filename_re = re.compile("^cluster-(\w+)-n_core-(\d+)-size-(\w+)\.out$") time_re = re.compile(" Time in seconds =\s*(\S+)") for fname in os.listdir(result_dir): mo = filename_re.match(fname) if mo: cluster = mo.group(1) n_core = int(mo.group(2)) size = mo.group(3) t = None for line in fileinput.input(result_dir + "/" + fname): mo2 = time_re.match(line) if mo2: t = float(mo2.group(1)) if cluster not in data: data[cluster] = {} if size not in data[cluster]: data[cluster][size] = [] data[cluster][size].append((n_core, t)) for i, cluster in enumerate(data): plt.figure() plt.title(cluster) plt.xlabel('num cores') plt.ylabel('completion time') for size in data[cluster]: data[cluster][size].sort(cmp = lambda e, f: cmp(e[0], f[0])) plt.plot([ d[0] for d in data[cluster][size] ], [ d[1] for d in data[cluster][size] ], label = "size %s" % (size,)) plt.legend() if plotfile: plt.savefig(re.sub('(\.\w+$)', '_%i\\1' % i, plotfile)) if not plotfile: plt.show() if __name__ == "__main__": parser = optparse.OptionParser(usage = "%prog [options] <dir>") parser.add_option("-f", dest="plotfile", default = None, help="write plot to image file") (options, args) = parser.parse_args() if len(args) != 1: parser.error("incorrect number of arguments") result_dir = args[0] draw_results(result_dir, options.plotfile)
gpl-3.0
assad2012/ggplot
ggplot/tests/test_stat_calculate_methods.py
12
2240
from __future__ import (absolute_import, division, print_function, unicode_literals) from nose.tools import (assert_equal, assert_is, assert_is_not, assert_raises) import pandas as pd from ggplot import * from ggplot.utils.exceptions import GgplotError from . import cleanup @cleanup def test_stat_bin(): # stat_bin needs the 'x' aesthetic to be numeric or a categorical # and should complain if given anything else class unknown(object): pass x = [unknown()] * 3 y = [1, 2, 3] df = pd.DataFrame({'x': x, 'y': y}) gg = ggplot(aes(x='x', y='y'), df) with assert_raises(GgplotError): print(gg + stat_bin()) @cleanup def test_stat_abline(): # slope and intercept function should return values # of the same length def fn_xy(x, y): return [1, 2] def fn_xy2(x, y): return [1, 2, 3] gg = ggplot(aes(x='wt', y='mpg'), mtcars) # same length, no problem print(gg + stat_abline(slope=fn_xy, intercept=fn_xy)) with assert_raises(GgplotError): print(gg + stat_abline(slope=fn_xy, intercept=fn_xy2)) @cleanup def test_stat_vhabline_functions(): def fn_x(x): return 1 def fn_y(y): return 1 def fn_xy(x, y): return 1 gg = ggplot(aes(x='wt'), mtcars) # needs y aesthetic with assert_raises(GgplotError): print(gg + stat_abline(slope=fn_xy)) # needs y aesthetic with assert_raises(GgplotError): print(gg + stat_abline(intercept=fn_xy)) gg = ggplot(aes(x='wt', y='mpg'), mtcars) # Functions with 2 args, no problem print(gg + stat_abline(slope=fn_xy, intercept=fn_xy)) # slope function should take 2 args with assert_raises(GgplotError): print(gg + stat_abline(slope=fn_x, intercept=fn_xy)) # intercept function should take 2 args with assert_raises(GgplotError): print(gg + stat_abline(slope=fn_xy, intercept=fn_y)) # intercept function should take 1 arg with assert_raises(GgplotError): print(gg + stat_vline(xintercept=fn_xy)) # intercept function should take 1 arg with assert_raises(GgplotError): print(gg + stat_hline(yintercept=fn_xy))
bsd-2-clause
RPGOne/scikit-learn
benchmarks/bench_sparsify.py
323
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
smsolivier/VEF
tex/paper/perm_dl.py
1
1821
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt import sys sys.path.append('../../code') import ld as LD from exactDiff import exactDiff from hidespines import * ''' compare the permuations of linear representation in diffusion limit ''' if (len(sys.argv) > 1): outfile = sys.argv[1:] else: outfile = None Nruns = 15 eps = np.logspace(-3, 0, Nruns) tol = 1e-10 def getIt(eps, opt, gauss): N = 50 N *= 15 xb = 10 x0 = np.linspace(0, xb, N+1) Sigmat = lambda x: 1 Sigmaa = lambda x: .1 q = lambda x: 1 n = 8 it = np.zeros(len(eps)) diff = np.zeros(len(eps)) for i in range(len(eps)): sol = LD.Eddington(x0, n, lambda x: eps[i], lambda x: 1/eps[i], lambda x, mu: eps[i], OPT=opt, GAUSS=gauss) x, phi, it[i] = sol.sourceIteration(tol, maxIter=200) phi_ex = exactDiff(eps[i], 1/eps[i], eps[i], xb) diff[i] = np.linalg.norm(phi - phi_ex(x), 2)/np.linalg.norm(phi_ex(x), 2) return diff, it diff0, it0 = getIt(eps, 3, 1) diff1, it1 = getIt(eps, 2, 1) # diff01, it01 = getIt(eps, 0, 1) # diff11, it11 = getIt(eps, 1, 1) # diff20, it20 = getIt(eps, 2, 0) # diff21, it21 = getIt(eps, 2, 1) plt.figure() plt.loglog(eps, it0, '-o', clip_on=False, label='Flat') plt.loglog(eps, it1, '-*', clip_on=False, label='van Leer') plt.xlabel(r'$\epsilon$', fontsize=18) plt.ylabel('Number of Iterations', fontsize=18) plt.legend(loc='best', frameon=False) hidespines(plt.gca()) if (outfile != None): plt.savefig(outfile[0]) plt.figure() plt.loglog(eps, diff0, '-o', clip_on=False, label='Flat') plt.loglog(eps, diff1, '-*', clip_on=False, label='van Leer') plt.xlabel(r'$\epsilon$', fontsize=18) plt.ylabel('Error', fontsize=18) plt.legend(loc='best', frameon=False) hidespines(plt.gca()) if (outfile != None): plt.savefig(outfile[1]) else: plt.show()
mit
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/mpl_toolkits/axisartist/grid_helper_curvelinear.py
1
25266
""" An experimental support for curvilinear grid. """ from itertools import chain from grid_finder import GridFinder from axislines import \ AxisArtistHelper, GridHelperBase from axis_artist import AxisArtist from matplotlib.transforms import Affine2D, IdentityTransform import numpy as np from matplotlib.path import Path class FixedAxisArtistHelper(AxisArtistHelper.Fixed): """ Helper class for a fixed axis. """ def __init__(self, grid_helper, side, nth_coord_ticks=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FixedAxisArtistHelper, self).__init__( \ loc=side, ) self.grid_helper = grid_helper if nth_coord_ticks is None: nth_coord_ticks = self.nth_coord self.nth_coord_ticks = nth_coord_ticks self.side = side def update_lim(self, axes): self.grid_helper.update_lim(axes) def change_tick_coord(self, coord_number=None): if coord_number is None: self.nth_coord_ticks = 1 - self.nth_coord_ticks elif coord_number in [0, 1]: self.nth_coord_ticks = coord_number else: raise Exception("wrong coord number") def get_tick_transform(self, axes): return axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label""" g = self.grid_helper ti1 = g.get_tick_iterator(self.nth_coord_ticks, self.side) ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True) #ti2 = g.get_tick_iterator(1-self.nth_coord_ticks, self.side, minor=True) return chain(ti1, ti2), iter([]) class FloatingAxisArtistHelper(AxisArtistHelper.Floating): def __init__(self, grid_helper, nth_coord, value, axis_direction=None): """ nth_coord = along which coordinate value varies. nth_coord = 0 -> x axis, nth_coord = 1 -> y axis """ super(FloatingAxisArtistHelper, self).__init__(nth_coord, value, ) self.value = value self.grid_helper = grid_helper self._extremes = None, None self._get_line_path = None # a method that returns a Path. self._line_num_points = 100 # number of points to create a line def set_extremes(self, e1, e2): self._extremes = e1, e2 def update_lim(self, axes): self.grid_helper.update_lim(axes) x1, x2 = axes.get_xlim() y1, y2 = axes.get_ylim() grid_finder = self.grid_helper.grid_finder extremes = grid_finder.extreme_finder(grid_finder.inv_transform_xy, x1, y1, x2, y2) extremes = list(extremes) e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: if e1 is not None: extremes[2] = max(e1, extremes[2]) if e2 is not None: extremes[3] = min(e2, extremes[3]) elif self.nth_coord == 1: if e1 is not None: extremes[0] = max(e1, extremes[0]) if e2 is not None: extremes[1] = min(e2, extremes[1]) grid_info = dict() lon_min, lon_max, lat_min, lat_max = extremes lon_levs, lon_n, lon_factor = \ grid_finder.grid_locator1(lon_min, lon_max) lat_levs, lat_n, lat_factor = \ grid_finder.grid_locator2(lat_min, lat_max) grid_info["extremes"] = extremes grid_info["lon_info"] = lon_levs, lon_n, lon_factor grid_info["lat_info"] = lat_levs, lat_n, lat_factor grid_info["lon_labels"] = grid_finder.tick_formatter1("bottom", lon_factor, lon_levs) grid_info["lat_labels"] = grid_finder.tick_formatter2("bottom", lat_factor, lat_levs) grid_finder = self.grid_helper.grid_finder #e1, e2 = self._extremes # ranges of other coordinates if self.nth_coord == 0: xx0 = np.linspace(self.value, self.value, self._line_num_points) yy0 = np.linspace(extremes[2], extremes[3], self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) elif self.nth_coord == 1: xx0 = np.linspace(extremes[0], extremes[1], self._line_num_points) yy0 = np.linspace(self.value, self.value, self._line_num_points) xx, yy = grid_finder.transform_xy(xx0, yy0) grid_info["line_xy"] = xx, yy self.grid_info = grid_info def get_axislabel_transform(self, axes): return Affine2D() #axes.transData def get_axislabel_pos_angle(self, axes): extremes = self.grid_info["extremes"] if self.nth_coord == 0: xx0 = self.value yy0 = (extremes[2]+extremes[3])/2. dxx, dyy = 0., abs(extremes[2]-extremes[3])/1000. elif self.nth_coord == 1: xx0 = (extremes[0]+extremes[1])/2. yy0 = self.value dxx, dyy = abs(extremes[0]-extremes[1])/1000., 0. grid_finder = self.grid_helper.grid_finder xx1, yy1 = grid_finder.transform_xy([xx0], [yy0]) trans_passingthrough_point = axes.transData + axes.transAxes.inverted() p = trans_passingthrough_point.transform_point([xx1[0], yy1[0]]) if (0. <= p[0] <= 1.) and (0. <= p[1] <= 1.): xx1c, yy1c = axes.transData.transform_point([xx1[0], yy1[0]]) xx2, yy2 = grid_finder.transform_xy([xx0+dxx], [yy0+dyy]) xx2c, yy2c = axes.transData.transform_point([xx2[0], yy2[0]]) return (xx1c, yy1c), np.arctan2(yy2c-yy1c, xx2c-xx1c)/np.pi*180. else: return None, None def get_tick_transform(self, axes): return IdentityTransform() #axes.transData def get_tick_iterators(self, axes): """tick_loc, tick_angle, tick_label, (optionally) tick_label""" grid_finder = self.grid_helper.grid_finder lat_levs, lat_n, lat_factor = self.grid_info["lat_info"] lat_levs = np.asarray(lat_levs) if lat_factor is not None: yy0 = lat_levs / lat_factor dy = 0.01 / lat_factor else: yy0 = lat_levs dy = 0.01 lon_levs, lon_n, lon_factor = self.grid_info["lon_info"] lon_levs = np.asarray(lon_levs) if lon_factor is not None: xx0 = lon_levs / lon_factor dx = 0.01 / lon_factor else: xx0 = lon_levs dx = 0.01 e0, e1 = sorted(self._extremes) if e0 is None: e0 = -np.inf if e1 is None: e1 = np.inf if self.nth_coord == 0: mask = (e0 <= yy0) & (yy0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] yy0 = yy0[mask] elif self.nth_coord == 1: mask = (e0 <= xx0) & (xx0 <= e1) #xx0, yy0 = xx0[mask], yy0[mask] xx0 = xx0[mask] def transform_xy(x, y): x1, y1 = grid_finder.transform_xy(x, y) x2y2 = axes.transData.transform(np.array([x1, y1]).transpose()) x2, y2 = x2y2.transpose() return x2, y2 # find angles if self.nth_coord == 0: xx0 = np.empty_like(yy0) xx0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx1a, yy1a = transform_xy(xx00, yy0) xx1b, yy1b = transform_xy(xx00+dx, yy0) xx2a, yy2a = transform_xy(xx0, yy0) xx2b, yy2b = transform_xy(xx0, yy0+dy) labels = self.grid_info["lat_labels"] labels = [l for l, m in zip(labels, mask) if m] elif self.nth_coord == 1: yy0 = np.empty_like(xx0) yy0.fill(self.value) xx1, yy1 = transform_xy(xx0, yy0) xx1a, yy1a = transform_xy(xx0, yy0) xx1b, yy1b = transform_xy(xx0, yy0+dy) xx00 = xx0.copy() xx00[xx0+dx>e1] -= dx xx2a, yy2a = transform_xy(xx00, yy0) xx2b, yy2b = transform_xy(xx00+dx, yy0) labels = self.grid_info["lon_labels"] labels = [l for l, m in zip(labels, mask) if m] def f1(): dd = np.arctan2(yy1b-yy1a, xx1b-xx1a) # angle normal dd2 = np.arctan2(yy2b-yy2a, xx2b-xx2a) # angle tangent mm = ((yy1b-yy1a)==0.) & ((xx1b-xx1a)==0.) # mask where dd1 is not defined dd[mm] = dd2[mm]+3.14159/2. #dd = np.arctan2(yy2-yy1, xx2-xx1) # angle normal #dd2 = np.arctan2(yy3-yy1, xx3-xx1) # angle tangent #mm = ((yy2-yy1)==0.) & ((xx2-xx1)==0.) # mask where dd1 is not defined #dd[mm] = dd2[mm]+3.14159/2. #dd += 3.14159 #dd = np.arctan2(xx2-xx1, angle_tangent-yy1) trans_tick = self.get_tick_transform(axes) tr2ax = trans_tick + axes.transAxes.inverted() for x, y, d, d2, lab in zip(xx1, yy1, dd, dd2, labels): c2 = tr2ax.transform_point((x, y)) delta=0.00001 if (0. -delta<= c2[0] <= 1.+delta) and \ (0. -delta<= c2[1] <= 1.+delta): d1 = d/3.14159*180. d2 = d2/3.14159*180. yield [x, y], d1, d2, lab return f1(), iter([]) def get_line_transform(self, axes): return axes.transData def get_line(self, axes): self.update_lim(axes) x, y = self.grid_info["line_xy"] if self._get_line_path is None: return Path(zip(x, y)) else: return self._get_line_path(axes, x, y) class GridHelperCurveLinear(GridHelperBase): def __init__(self, aux_trans, extreme_finder=None, grid_locator1=None, grid_locator2=None, tick_formatter1=None, tick_formatter2=None): """ aux_trans : a transform from the source (curved) coordinate to target (rectilinear) coordinate. An instance of MPL's Transform (inverse transform should be defined) or a tuple of two callable objects which defines the transform and its inverse. The callables need take two arguments of array of source coordinates and should return two target coordinates: e.g. x2, y2 = trans(x1, y1) """ super(GridHelperCurveLinear, self).__init__() self.grid_info = None self._old_values = None #self._grid_params = dict() self._aux_trans = aux_trans self.grid_finder = GridFinder(aux_trans, extreme_finder, grid_locator1, grid_locator2, tick_formatter1, tick_formatter2) def update_grid_finder(self, aux_trans=None, **kw): if aux_trans is not None: self.grid_finder.update_transform(aux_trans) self.grid_finder.update(**kw) self.invalidate() def _update(self, x1, x2, y1, y2): "bbox in 0-based image coordinates" # update wcsgrid if self.valid() and self._old_values == (x1, x2, y1, y2): return self._update_grid(x1, y1, x2, y2) self._old_values = (x1, x2, y1, y2) self._force_update = False def new_fixed_axis(self, loc, nth_coord=None, axis_direction=None, offset=None, axes=None): if axes is None: axes = self.axes if axis_direction is None: axis_direction = loc _helper = FixedAxisArtistHelper(self, loc, #nth_coord, nth_coord_ticks=nth_coord, ) axisline = AxisArtist(axes, _helper, axis_direction=axis_direction) return axisline def new_floating_axis(self, nth_coord, value, axes=None, axis_direction="bottom" ): if axes is None: axes = self.axes _helper = FloatingAxisArtistHelper( \ self, nth_coord, value, axis_direction) axisline = AxisArtist(axes, _helper) #_helper = FloatingAxisArtistHelper(self, nth_coord, # value, # label_direction=label_direction, # ) #axisline = AxisArtistFloating(axes, _helper, # axis_direction=axis_direction) axisline.line.set_clip_on(True) axisline.line.set_clip_box(axisline.axes.bbox) #axisline.major_ticklabels.set_visible(True) #axisline.minor_ticklabels.set_visible(False) #axisline.major_ticklabels.set_rotate_along_line(True) #axisline.set_rotate_label_along_line(True) return axisline def _update_grid(self, x1, y1, x2, y2): self.grid_info = self.grid_finder.get_grid_info(x1, y1, x2, y2) def get_gridlines(self): grid_lines = [] for gl in self.grid_info["lat"]["lines"]: grid_lines.extend(gl) for gl in self.grid_info["lon"]["lines"]: grid_lines.extend(gl) return grid_lines def get_tick_iterator(self, nth_coord, axis_side, minor=False): #axisnr = dict(left=0, bottom=1, right=2, top=3)[axis_side] angle_tangent = dict(left=90, right=90, bottom=0, top=0)[axis_side] #angle = [0, 90, 180, 270][axisnr] lon_or_lat = ["lon", "lat"][nth_coord] if not minor: # major ticks def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, l else: def f(): for (xy, a), l in zip(self.grid_info[lon_or_lat]["tick_locs"][axis_side], self.grid_info[lon_or_lat]["tick_labels"][axis_side]): angle_normal = a yield xy, angle_normal, angle_tangent, "" #for xy, a, l in self.grid_info[lon_or_lat]["ticks"][axis_side]: # yield xy, a, "" return f() def test3(): import numpy as np from matplotlib.transforms import Transform from matplotlib.path import Path class MyTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new Aitoff transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Aitoff space. """ Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y-x), 1) transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return MyTransformInv(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class MyTransformInv(Transform): input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, ll): x = ll[:, 0:1] y = ll[:, 1:2] return np.concatenate((x, y+x), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return MyTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() tr = MyTransform(1) grid_helper = GridHelperCurveLinear(tr) from mpl_toolkits.axes_grid1.parasite_axes import host_subplot_class_factory from axislines import Axes SubplotHost = host_subplot_class_factory(Axes) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) fig.add_subplot(ax1) ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") ax1.parasites.append(ax2) ax2.plot([3, 6], [5.0, 10.]) ax1.set_aspect(1.) ax1.set_xlim(0, 10) ax1.set_ylim(0, 10) ax1.grid(True) plt.draw() def curvelinear_test2(fig): """ polar projection, but in a rectangular box. """ global ax1 import numpy as np import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost, \ ParasiteAxesAuxTrans import matplotlib.cbook as cbook # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(5) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) # make ticklabels of right and top axis visible. ax1.axis["right"].major_ticklabels.set_visible(True) ax1.axis["top"].major_ticklabels.set_visible(True) # let right axis shows ticklabels for 1st coordinate (angle) ax1.axis["right"].get_helper().nth_coord_ticks=0 # let bottom axis shows ticklabels for 2nd coordinate (radius) ax1.axis["bottom"].get_helper().nth_coord_ticks=1 fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 60, axes=ax1) axis.label.set_text("Test") axis.label.set_visible(True) #axis._extremes = 2, 10 #axis.label.set_text("Test") #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.get_helper()._extremes=2, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1) #axis.major_ticklabels.set_visible(False) #axis.major_ticks.set_visible(False) axis.label.set_text("Test 2") axis.get_helper()._extremes=-180, 90 # A parasite axes with given transform ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # note that ax2.transData == tr + ax1.transData # Anthing you draw in ax2 will match the ticks and grids of ax1. ax1.parasites.append(ax2) intp = cbook.simple_linear_interpolation ax2.plot(intp(np.array([0, 30]), 50), intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) def curvelinear_test3(fig): """ polar projection, but in a rectangular box. """ global ax1, axis import numpy as np import angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axes_grid.parasite_axes import SubplotHost # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(12) # Find a grid values appropriate for the coordinate (degree, # minute, second). tick_formatter1 = angle_helper.FormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) for axis in ax1.axis.itervalues(): axis.set_visible(False) fig.add_subplot(ax1) grid_helper = ax1.get_grid_helper() ax1.axis["lat1"] = axis = grid_helper.new_floating_axis(0, 130, axes=ax1, axis_direction="left" ) axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 grid_helper = ax1.get_grid_helper() ax1.axis["lat2"] = axis = grid_helper.new_floating_axis(0, 50, axes=ax1, axis_direction="right") axis.label.set_text("Test") axis.label.set_visible(True) axis.get_helper()._extremes=0.001, 10 ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 10, axes=ax1, axis_direction="bottom") axis.label.set_text("Test 2") axis.get_helper()._extremes= 50, 130 axis.major_ticklabels.set_axis_direction("top") axis.label.set_axis_direction("top") grid_helper.grid_finder.grid_locator1.den = 5 grid_helper.grid_finder.grid_locator2._nbins = 5 # # A parasite axes with given transform # ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # # note that ax2.transData == tr + ax1.transData # # Anthing you draw in ax2 will match the ticks and grids of ax1. # ax1.parasites.append(ax2) # intp = cbook.simple_linear_interpolation # ax2.plot(intp(np.array([0, 30]), 50), # intp(np.array([10., 10.]), 50)) ax1.set_aspect(1.) ax1.set_xlim(-5, 12) ax1.set_ylim(-5, 10) ax1.grid(True) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1, figsize=(5, 5)) fig.clf() #test3() #curvelinear_test2(fig) curvelinear_test3(fig) #plt.draw() plt.show()
gpl-2.0
hsiaoyi0504/scikit-learn
examples/cluster/plot_affinity_propagation.py
349
2304
""" ================================================= Demo of affinity propagation clustering algorithm ================================================= Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 """ print(__doc__) from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0) ############################################################################## # Compute Affinity Propagation af = AffinityPropagation(preference=-50).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean')) ############################################################################## # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.close('all') plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
jm-begon/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
he7d3r/revscoring
revscoring/scoring/models/__init__.py
2
1442
""" This module contains a collection of models that implement a simple function: :func:`~revscoring.Model.score`. Currently, all models are a subclass of :class:`revscoring.scoring.models.Learned` which means that they also implement :meth:`~revscoring.scoring.models.Learned.train` and :meth:`~revscoring.scoring.models.Learned.cross_validate`. Gradient Boosting +++++++++++++++++ .. automodule:: revscoring.scoring.models.gradient_boosting Naive Bayes +++++++++++ .. automodule:: revscoring.scoring.models.naive_bayes Linear Regression +++++++++++++++++ .. automodule:: revscoring.scoring.models.linear Support Vector ++++++++++++++ .. automodule:: revscoring.scoring.models.svc Random Forest +++++++++++++ .. automodule:: revscoring.scoring.models.random_forest Abstract classes ++++++++++++++++ .. automodule:: revscoring.scoring.models.model SciKit Learn-based models +++++++++++++++++++++++++ .. automodule:: revscoring.scoring.models.sklearn """ from .gradient_boosting import GradientBoosting from .linear import LogisticRegression from .model import Classifier, Learned, open_file from .naive_bayes import BernoulliNB, GaussianNB, MultinomialNB, NaiveBayes from .random_forest import RandomForest from .svc import RBFSVC, SVC, LinearSVC __all__ = [ Learned, Classifier, open_file, SVC, LinearSVC, RBFSVC, NaiveBayes, GaussianNB, MultinomialNB, BernoulliNB, RandomForest, GradientBoosting, LogisticRegression ]
mit
sumspr/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
18padx08/PPTex
PPTexEnv_x86_64/lib/python2.7/site-packages/matplotlib/container.py
11
3370
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib.cbook as cbook class Container(tuple): """ Base class for containers. """ def __repr__(self): return "<Container object of %d artists>" % (len(self)) def __new__(cls, *kl, **kwargs): return tuple.__new__(cls, kl[0]) def __init__(self, kl, label=None): self.eventson = False # fire events only if eventson self._oid = 0 # an observer id self._propobservers = {} # a dict from oids to funcs self._remove_method = None self.set_label(label) def set_remove_method(self, f): self._remove_method = f def remove(self): for c in self: c.remove() if self._remove_method: self._remove_method(self) def __getstate__(self): d = self.__dict__.copy() # remove the unpicklable remove method, this will get re-added on load # (by the axes) if the artist lives on an axes. d['_remove_method'] = None return d def get_label(self): """ Get the label used for this artist in the legend. """ return self._label def set_label(self, s): """ Set the label to *s* for auto legend. ACCEPTS: string or anything printable with '%s' conversion. """ if s is not None: self._label = '%s' % (s, ) else: self._label = None self.pchanged() def add_callback(self, func): """ Adds a callback function that will be called whenever one of the :class:`Artist`'s properties changes. Returns an *id* that is useful for removing the callback with :meth:`remove_callback` later. """ oid = self._oid self._propobservers[oid] = func self._oid += 1 return oid def remove_callback(self, oid): """ Remove a callback based on its *id*. .. seealso:: :meth:`add_callback` For adding callbacks """ try: del self._propobservers[oid] except KeyError: pass def pchanged(self): """ Fire an event when property changed, calling all of the registered callbacks. """ for oid, func in list(six.iteritems(self._propobservers)): func(self) def get_children(self): return list(cbook.flatten(self)) class BarContainer(Container): def __init__(self, patches, errorbar=None, **kwargs): self.patches = patches self.errorbar = errorbar Container.__init__(self, patches, **kwargs) class ErrorbarContainer(Container): def __init__(self, lines, has_xerr=False, has_yerr=False, **kwargs): self.lines = lines self.has_xerr = has_xerr self.has_yerr = has_yerr Container.__init__(self, lines, **kwargs) class StemContainer(Container): def __init__(self, markerline_stemlines_baseline, **kwargs): markerline, stemlines, baseline = markerline_stemlines_baseline self.markerline = markerline self.stemlines = stemlines self.baseline = baseline Container.__init__(self, markerline_stemlines_baseline, **kwargs)
mit
Ziqi-Li/bknqgis
pandas/pandas/tests/io/parser/test_read_fwf.py
2
16032
# -*- coding: utf-8 -*- """ Tests the 'read_fwf' function in parsers.py. This test suite is independent of the others because the engine is set to 'python-fwf' internally. """ from datetime import datetime import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame from pandas import compat from pandas.compat import StringIO, BytesIO from pandas.io.parsers import read_csv, read_fwf, EmptyDataError class TestFwfParsing(object): def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = read_csv(StringIO(data_expected), engine='python', header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From Thomas Kluyver: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assert_raises_regex(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assert_raises_regex(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_BytesIO_input(self): if not compat.PY3: pytest.skip( "Bytes-related test - only needs to work on Python 3") result = read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) def test_fwf_colspecs_is_list_or_tuple(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ with tm.assert_raises_regex(TypeError, 'column specifications must ' 'be a list or tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(data), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ with tm.assert_raises_regex(TypeError, 'Each column specification ' 'must be.+'): read_fwf(StringIO(data), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] assert len(res) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" # noqa df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: pytest.skip("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = np.array([[1, 2., 4], [5, np.nan, 10.]]) df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = np.array([[1, 2334., 5], [10, 13, 10]]) df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_bool_header_arg(self): # see gh-6114 data = """\ MyColumn a b a b""" for arg in [True, False]: with pytest.raises(TypeError): read_fwf(StringIO(data), header=arg) def test_full_file(self): # File with all values test = """index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo""" colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = """index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34""" colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = """ Account Name Balance CreditLimit AccountCreated 101 Keanu Reeves 9315.45 10000.00 1/17/1998 312 Gerard Butler 90.00 1000.00 8/6/2003 868 Jennifer Love Hewitt 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 Bill Murray 789.65 5000.00 2/5/2007 """.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = """ Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 Gerard Butler 90.00 1000.00 8/6/2003 868 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 Bill Murray 789.65 """.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = """ Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 Gerard Butler 90.00 1000.00 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 Bill Murray 789.65 """.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r""" col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~Keanu Reeves 33+++122.33\\\bar.........Gerard Butler ++44~~~~12.01 baz~~Jennifer Love Hewitt ~~55 11+++foo++++Jada Pinkett-Smith ..66++++++.03~~~bar Bill Murray """.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=' +~.\\') tm.assert_frame_equal(expected, read_fwf(StringIO(test), delimiter=' +~.\\')) def test_variable_width_unicode(self): if not compat.PY3: pytest.skip( 'Bytes-related test - only needs to work on Python 3') test = """ שלום שלום ום שלל של ום """.strip('\r\n') expected = read_fwf(BytesIO(test.encode('utf8')), colspecs=[(0, 4), (5, 9)], header=None, encoding='utf8') tm.assert_frame_equal(expected, read_fwf( BytesIO(test.encode('utf8')), header=None, encoding='utf8')) def test_dtype(self): data = """ a b c 1 2 3.2 3 4 5.2 """ colspecs = [(0, 5), (5, 10), (10, None)] result = pd.read_fwf(StringIO(data), colspecs=colspecs) expected = pd.DataFrame({ 'a': [1, 3], 'b': [2, 4], 'c': [3.2, 5.2]}, columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) expected['a'] = expected['a'].astype('float64') expected['b'] = expected['b'].astype(str) expected['c'] = expected['c'].astype('int32') result = pd.read_fwf(StringIO(data), colspecs=colspecs, dtype={'a': 'float64', 'b': str, 'c': 'int32'}) tm.assert_frame_equal(result, expected) def test_skiprows_inference(self): # GH11256 test = """ Text contained in the file header DataCol1 DataCol2 0.0 1.0 101.6 956.1 """.strip() expected = read_csv(StringIO(test), skiprows=2, delim_whitespace=True) tm.assert_frame_equal(expected, read_fwf( StringIO(test), skiprows=2)) def test_skiprows_by_index_inference(self): test = """ To be skipped Not To Be Skipped Once more to be skipped 123 34 8 123 456 78 9 456 """.strip() expected = read_csv(StringIO(test), skiprows=[0, 2], delim_whitespace=True) tm.assert_frame_equal(expected, read_fwf( StringIO(test), skiprows=[0, 2])) def test_skiprows_inference_empty(self): test = """ AA BBB C 12 345 6 78 901 2 """.strip() with pytest.raises(EmptyDataError): read_fwf(StringIO(test), skiprows=3) def test_whitespace_preservation(self): # Addresses Issue #16772 data_expected = """ a ,bbb cc,dd """ expected = read_csv(StringIO(data_expected), header=None) test_data = """ a bbb ccdd """ result = read_fwf(StringIO(test_data), widths=[3, 3], header=None, skiprows=[0], delimiter="\n\t") tm.assert_frame_equal(result, expected) def test_default_delimiter(self): data_expected = """ a,bbb cc,dd""" expected = read_csv(StringIO(data_expected), header=None) test_data = """ a \tbbb cc\tdd """ result = read_fwf(StringIO(test_data), widths=[3, 3], header=None, skiprows=[0]) tm.assert_frame_equal(result, expected)
gpl-2.0
NERC-CEH/ecomaps
ecomaps/lib/wmsvizMetadataImageBuilder.py
1
5595
""" Creates the metadata caption for figures in the style used by WMSViz. Based on code originally in figure_builder. @author rwilkinson """ import logging import time from cStringIO import StringIO try: from PIL import Image except: import Image from matplotlib.figure import Figure from matplotlib.backends.backend_cairo import FigureCanvasCairo as FigureCanvas from matplotlib.backends.backend_cairo import RendererCairo as Renderer from matplotlib.transforms import Bbox from matplotlib.patches import Rectangle from pylons import config import ecomaps.lib.image_util as image_util log = logging.getLogger(__name__) metadataFont = {'weight':'normal', 'family':'sans-serif', 'size':'12'} titleFont = {'weight':'normal', 'family':'sans-serif', 'size':'16'} borderColor = 'grey' class WmsvizMetadataImageBuilder(object): def __init__(self, params): pass def getFigureSpacings(self): """Returns the vertical spaces between the components of a figure. """ return (30, 0, 0) def buildMetadataImage(self, layerInfoList, width): """ Creates the metadata caption for figures in the style used by WMSViz. """ self.metadataItems = self._buildMetadataItems(layerInfoList) self.width = width width=self.width;height=1600;dpi=100;transparent=False figsize=(width / float(dpi), height / float(dpi)) fig = Figure(figsize=figsize, dpi=dpi, facecolor='w', frameon=(not transparent)) axes = fig.add_axes([0.04, 0.04, 0.92, 0.92], frameon=True,xticks=[], yticks=[]) renderer = Renderer(fig.dpi) title, titleHeight = self._drawTitleToAxes(axes, renderer) txt, textHeight = self._drawMetadataTextToAxes(axes, renderer, self.metadataItems) # fit the axis round the text pos = axes.get_position() newpos = Bbox( [[pos.x0, pos.y1 - (titleHeight + textHeight) / height], [pos.x1, pos.y1]] ) axes.set_position(newpos ) # position the text below the title newAxisHeight = (newpos.y1 - newpos.y0) * height txt.set_position( (0.02, 0.98 - (titleHeight/newAxisHeight) )) for loc, spine in axes.spines.iteritems(): spine.set_edgecolor(borderColor) # Draw heading box headingBoxHeight = titleHeight - 1 axes.add_patch(Rectangle((0, 1.0 - (headingBoxHeight/newAxisHeight)), 1, (headingBoxHeight/newAxisHeight), facecolor=borderColor, fill = True, linewidth=0)) # reduce the figure height originalHeight = fig.get_figheight() pos = axes.get_position() topBound = 20 / float(dpi) textHeight = (pos.y1 - pos.y0) * originalHeight newHeight = topBound * 2 + textHeight # work out the new proportions for the figure border = topBound / float(newHeight) newpos = Bbox( [[pos.x0, border], [pos.x1, 1 - border]] ) axes.set_position(newpos ) fig.set_figheight(newHeight) return image_util.figureToImage(fig) def _drawMetadataTextToAxes(self, axes, renderer, metadataItems): ''' Draws the metadata text to the axes @param axes: the axes to draw the text on @type axes: matplotlib.axes.Axes @param renderer: the matplotlib renderer to evaluate the text size @param metadataItems: a list of metadata items to get the text form @return: the text object, the total metadata text height in pixels ''' lines = self.metadataItems text = '\n'.join(lines) txt = axes.text(0.02, 0.98 ,text, fontdict=metadataFont, horizontalalignment='left', verticalalignment='top',) extent = txt.get_window_extent(renderer) textHeight = (extent.y1 - extent.y0 + 10) return txt, textHeight def _drawTitleToAxes(self, axes, renderer): ''' Draws the metadata tile text onto the axes @return: the text object, the height of the title text in pixels ''' titleText = self._getTitleText() title = axes.text(0.02,0.98,titleText, fontdict=titleFont, horizontalalignment='left', verticalalignment='top',) extent = title.get_window_extent(renderer) titleHeight = (extent.y1 - extent.y0 + 8) return title, titleHeight def _getTitleText(self): titleText = "Plot Metadata:" additionalText = config.get('additional_figure_text', '') if additionalText != "": if additionalText.find('<date>') > 0: timeString = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) additionalText = additionalText.replace("<date>", timeString) titleText += " %s" % (additionalText,) return titleText def _buildMetadataItems(self, layerInfoList): items = [] for i in range(len(layerInfoList)): li = layerInfoList[i] j = i + 1 items.append("%s:endpoint = %s layerName = %s" % (j, li.endpoint, li.layerName)) items.append("%s:params = %s" % (j, li.params)) return items
gpl-2.0
jelugbo/hebs_master
docs/en_us/developers/source/conf.py
30
6955
# -*- coding: utf-8 -*- # pylint: disable=C0103 # pylint: disable=W0622 # pylint: disable=W0212 # pylint: disable=W0613 import sys, os from path import path on_rtd = os.environ.get('READTHEDOCS', None) == 'True' sys.path.append('../../../../') from docs.shared.conf import * # Add any paths that contain templates here, relative to this directory. templates_path.append('source/_templates') # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path.append('source/_static') if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. root = path('../../../..').abspath() sys.path.insert(0, root) sys.path.append(root / "common/djangoapps") sys.path.append(root / "common/lib") sys.path.append(root / "common/lib/capa") sys.path.append(root / "common/lib/chem") sys.path.append(root / "common/lib/sandbox-packages") sys.path.append(root / "common/lib/xmodule") sys.path.append(root / "common/lib/opaque_keys") sys.path.append(root / "lms/djangoapps") sys.path.append(root / "lms/lib") sys.path.append(root / "cms/djangoapps") sys.path.append(root / "cms/lib") sys.path.insert(0, os.path.abspath(os.path.normpath(os.path.dirname(__file__) + '/../../../'))) sys.path.append('.') # django configuration - careful here if on_rtd: os.environ['DJANGO_SETTINGS_MODULE'] = 'lms' else: os.environ['DJANGO_SETTINGS_MODULE'] = 'lms.envs.test' # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinxcontrib.napoleon'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['build'] # Output file base name for HTML help builder. htmlhelp_basename = 'edXDocs' project = u'edX Platform Developer Documentation' copyright = u'2014, edX' # --- Mock modules ------------------------------------------------------------ # Mock all the modules that the readthedocs build can't import class Mock(object): def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return Mock() @classmethod def __getattr__(cls, name): if name in ('__file__', '__path__'): return '/dev/null' elif name[0] == name[0].upper(): mockType = type(name, (), {}) mockType.__module__ = __name__ return mockType else: return Mock() # The list of modules and submodules that we know give RTD trouble. # Make sure you've tried including the relevant package in # docs/share/requirements.txt before adding to this list. MOCK_MODULES = [ 'bson', 'bson.errors', 'bson.objectid', 'dateutil', 'dateutil.parser', 'fs', 'fs.errors', 'fs.osfs', 'lazy', 'mako', 'mako.template', 'matplotlib', 'matplotlib.pyplot', 'mock', 'numpy', 'oauthlib', 'oauthlib.oauth1', 'oauthlib.oauth1.rfc5849', 'PIL', 'pymongo', 'pyparsing', 'pysrt', 'requests', 'scipy.interpolate', 'scipy.constants', 'scipy.optimize', 'yaml', 'webob', 'webob.multidict', ] if on_rtd: for mod_name in MOCK_MODULES: sys.modules[mod_name] = Mock() # ----------------------------------------------------------------------------- # from http://djangosnippets.org/snippets/2533/ # autogenerate models definitions import inspect import types from HTMLParser import HTMLParser def force_unicode(s, encoding='utf-8', strings_only=False, errors='strict'): """ Similar to smart_unicode, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects. """ if strings_only and isinstance(s, (types.NoneType, int)): return s if not isinstance(s, basestring,): if hasattr(s, '__unicode__'): s = unicode(s) else: s = unicode(str(s), encoding, errors) elif not isinstance(s, unicode): s = unicode(s, encoding, errors) return s class MLStripper(HTMLParser): def __init__(self): self.reset() self.fed = [] def handle_data(self, d): self.fed.append(d) def get_data(self): return ''.join(self.fed) def strip_tags(html): s = MLStripper() s.feed(html) return s.get_data() def process_docstring(app, what, name, obj, options, lines): """Autodoc django models""" # This causes import errors if left outside the function from django.db import models # If you want extract docs from django forms: # from django import forms # from django.forms.models import BaseInlineFormSet # Only look at objects that inherit from Django's base MODEL class if inspect.isclass(obj) and issubclass(obj, models.Model): # Grab the field list from the meta class fields = obj._meta._fields() for field in fields: # Decode and strip any html out of the field's help text help_text = strip_tags(force_unicode(field.help_text)) # Decode and capitalize the verbose name, for use if there isn't # any help text verbose_name = force_unicode(field.verbose_name).capitalize() if help_text: # Add the model field to the end of the docstring as a param # using the help text as the description lines.append(u':param %s: %s' % (field.attname, help_text)) else: # Add the model field to the end of the docstring as a param # using the verbose name as the description lines.append(u':param %s: %s' % (field.attname, verbose_name)) # Add the field's type to the docstring lines.append(u':type %s: %s' % (field.attname, type(field).__name__)) return lines def setup(app): """Setup docsting processors""" #Register the docstring processor with sphinx app.connect('autodoc-process-docstring', process_docstring)
agpl-3.0
Myasuka/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
nre-aachen/GeMpy
gempy/DataManagement.py
1
66518
from __future__ import division import os from os import path import sys # This is for sphenix to find the packages sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) import copy import numpy as np import pandas as pn from gempy import theanograf import theano class InputData(object): """ -DOCS NOT UPDATED- Class to import the raw data of the model and set data classifications into formations and series Args: extent (list): [x_min, x_max, y_min, y_max, z_min, z_max] Resolution ((Optional[list])): [nx, ny, nz]. Defaults to 50 path_i: Path to the data bases of interfaces. Default os.getcwd(), path_f: Path to the data bases of foliations. Default os.getcwd() Attributes: extent(list): [x_min, x_max, y_min, y_max, z_min, z_max] resolution ((Optional[list])): [nx, ny, nz] Foliations(pandas.core.frame.DataFrame): Pandas data frame with the foliations data Interfaces(pandas.core.frame.DataFrame): Pandas data frame with the interfaces data formations(numpy.ndarray): Dictionary that contains the name of the formations series(pandas.core.frame.DataFrame): Pandas data frame which contains every formation within each series """ # TODO: Data management using pandas, find an easy way to add values # TODO: Probably at some point I will have to make an static and dynamic data classes def __init__(self, extent, resolution=[50, 50, 50], path_i=None, path_f=None, **kwargs): # Set extent and resolution self.extent = np.array(extent) self.resolution = np.array(resolution) self.n_faults = 0 # TODO choose the default source of data. So far only csv # Create the pandas dataframes # if we dont read a csv we create an empty dataframe with the columns that have to be filled self.foliations = pn.DataFrame(columns=['X', 'Y', 'Z', 'dip', 'azimuth', 'polarity', 'formation', 'series', 'X_std', 'Y_std', 'Z_std', 'dip_std', 'azimuth_std']) self.interfaces = pn.DataFrame(columns=['X', 'Y', 'Z', 'formation', 'series', 'X_std', 'Y_std', 'Z_std']) if path_f or path_i: self.import_data(path_i=path_i, path_f=path_f) # DEP- self._set_formations() # If not provided set default series self.series = self.set_series() # DEP- self.set_formation_number() # Compute gradients given azimuth and dips to plot data self.calculate_gradient() # Create default grid object. TODO: (Is this necessary now?) self.grid = self.set_grid(extent=None, resolution=None, grid_type="regular_3D", **kwargs) def import_data(self, path_i, path_f, **kwargs): """ Args: path_i: path_f: **kwargs: Returns: """ if path_f: self.foliations = self.load_data_csv(data_type="foliations", path=path_f, **kwargs) assert set(['X', 'Y', 'Z', 'dip', 'azimuth', 'polarity', 'formation']).issubset(self.foliations.columns), \ "One or more columns do not match with the expected values " + str(self.foliations.columns) if path_i: self.interfaces = self.load_data_csv(data_type="interfaces", path=path_i, **kwargs) assert set(['X', 'Y', 'Z', 'formation']).issubset(self.interfaces.columns), \ "One or more columns do not match with the expected values " + str(self.interfaces.columns) def _set_formations(self): """ -DEPRECATED- Function to import the formations that will be used later on. By default all the formations in the tables are chosen. Returns: pandas.core.frame.DataFrame: Data frame with the raw data """ try: # foliations may or may not be in all formations so we need to use interfaces self.formations = self.interfaces["formation"].unique() # TODO: Trying to make this more elegant? # for el in self.formations: # for check in self.formations: # assert (el not in check or el == check), "One of the formations name contains other" \ # " string. Please rename." + str(el) + " in " + str( # check) # TODO: Add the possibility to change the name in pandas directly # (adding just a 1 in the contained string) except AttributeError: pass def calculate_gradient(self): """ Calculate the gradient vector of module 1 given dip and azimuth to be able to plot the foliations Returns: self.foliations: extra columns with components xyz of the unity vector. """ self.foliations['G_x'] = np.sin(np.deg2rad(self.foliations["dip"].astype('float'))) * \ np.sin(np.deg2rad(self.foliations["azimuth"].astype('float'))) * \ self.foliations["polarity"].astype('float') self.foliations['G_y'] = np.sin(np.deg2rad(self.foliations["dip"].astype('float'))) * \ np.cos(np.deg2rad(self.foliations["azimuth"].astype('float'))) *\ self.foliations["polarity"].astype('float') self.foliations['G_z'] = np.cos(np.deg2rad(self.foliations["dip"].astype('float'))) *\ self.foliations["polarity"].astype('float') # DEP? def create_grid(self, extent=None, resolution=None, grid_type="regular_3D", **kwargs): """ Method to initialize the class grid. So far is really simple and only has the regular grid type Args: grid_type (str): regular_3D or regular_2D (I am not even sure if regular 2D still working) **kwargs: Arbitrary keyword arguments. Returns: self.grid(GeMpy_core.grid): Object that contain different grids """ if not extent: extent = self.extent if not resolution: resolution = self.resolution return self.GridClass(extent, resolution, grid_type=grid_type, **kwargs) def set_grid(self, new_grid=None, extent=None, resolution=None, grid_type="regular_3D", **kwargs): """ Method to initialize the class new_grid. So far is really simple and only has the regular new_grid type Args: grid_type (str): regular_3D or regular_2D (I am not even sure if regular 2D still working) **kwargs: Arbitrary keyword arguments. Returns: self.new_grid(GeMpy_core.new_grid): Object that contain different grids """ if new_grid is not None: assert new_grid.shape[1] is 3 and len(new_grid.shape) is 2, 'The shape of new grid must be (n,3) where n is' \ 'the number of points of the grid' self.grid.grid = new_grid else: if not extent: extent = self.extent if not resolution: resolution = self.resolution return self.GridClass(extent, resolution, grid_type=grid_type, **kwargs) def data_to_pickle(self, path=False): if not path: path = './geo_data' import pickle with open(path+'.pickle', 'wb') as f: # Pickle the 'data' dictionary using the highest protocol available. pickle.dump(self, f, pickle.HIGHEST_PROTOCOL) def get_raw_data(self, itype='all'): """ Method that returns the interfaces and foliations pandas Dataframes. Can return both at the same time or only one of the two Args: itype: input data type, either 'foliations', 'interfaces' or 'all' for both. Returns: pandas.core.frame.DataFrame: Data frame with the raw data """ import pandas as pn if itype == 'foliations': raw_data = self.foliations elif itype == 'interfaces': raw_data = self.interfaces elif itype == 'all': raw_data = pn.concat([self.interfaces, self.foliations], keys=['interfaces', 'foliations']) return raw_data def i_open_set_data(self, itype="foliations"): """ Method to have interactive pandas tables in jupyter notebooks. The idea is to use this method to interact with the table and i_close_set_data to recompute the parameters that depend on the changes made. I did not find a easier solution than calling two different methods. Args: itype: input data type, either 'foliations' or 'interfaces' Returns: pandas.core.frame.DataFrame: Data frame with the changed data on real time """ # if the data frame is empty the interactive table is bugged. Therefore I create a default raw when the method # is called if self.foliations.empty: self.foliations = pn.DataFrame( np.array([0., 0., 0., 0., 0., 1., 'Default Formation', 'Default series']).reshape(1, 8), columns=['X', 'Y', 'Z', 'dip', 'azimuth', 'polarity', 'formation', 'series']).\ convert_objects(convert_numeric=True) if self.interfaces.empty: self.interfaces = pn.DataFrame( np.array([0, 0, 0, 'Default Formation', 'Default series']).reshape(1, 5), columns=['X', 'Y', 'Z', 'formation', 'series']).convert_objects(convert_numeric=True) # TODO leave qgrid as a dependency since in the end I did not change the code of the package import qgrid # Setting some options qgrid.nbinstall(overwrite=True) qgrid.set_defaults(show_toolbar=True) assert itype is 'foliations' or itype is 'interfaces', 'itype must be either foliations or interfaces' import warnings warnings.warn('Remember to call i_close_set_data after the editing.') # We kind of set the show grid to a variable so we can close it afterwards self.pandas_frame = qgrid.show_grid(self.get_raw_data(itype=itype)) # TODO set def i_close_set_data(self): """ Method to have interactive pandas tables in jupyter notebooks. The idea is to use this method to interact with the table and i_close_set_data to recompute the parameters that depend on the changes made. I did not find a easier solution than calling two different methods. Args: itype: input data type, either 'foliations' or 'interfaces' Returns: pandas.core.frame.DataFrame: Data frame with the changed data on real time """ # We close it to guarantee that after this method it is not possible further modifications self.pandas_frame.close() # -DEP- self._set_formations() # -DEP- self.set_formation_number() # Set parameters self.series = self.set_series() self.calculate_gradient() @staticmethod def load_data_csv(data_type, path=os.getcwd(), **kwargs): """ Method to load either interface or foliations data csv files. Normally this is in which GeoModeller exports it Args: data_type (str): 'interfaces' or 'foliations' path (str): path to the files. Default os.getcwd() **kwargs: Arbitrary keyword arguments. Returns: pandas.core.frame.DataFrame: Data frame with the raw data """ # TODO: in case that the columns have a different name specify in pandas which columns are interfaces / # coordinates, dips and so on. # TODO: use pandas to read any format file not only csv if data_type == "foliations": return pn.read_csv(path, **kwargs) elif data_type == 'interfaces': return pn.read_csv(path, **kwargs) else: raise NameError('Data type not understood. Try interfaces or foliations') # TODO if we load different data the Interpolator parameters must be also updated. Prob call gradients and # series def set_interfaces(self, interf_Dataframe, append=False): """ Method to change or append a Dataframe to interfaces in place. Args: interf_Dataframe: pandas.core.frame.DataFrame with the data append: Bool: if you want to append the new data frame or substitute it """ assert set(['X', 'Y', 'Z', 'formation']).issubset(interf_Dataframe.columns), \ "One or more columns do not match with the expected values " + str(interf_Dataframe.columns) if append: self.interfaces = self.interfaces.append(interf_Dataframe) else: self.interfaces = interf_Dataframe self._set_formations() self.set_series() #self.set_formation_number() self.interfaces.reset_index(drop=True, inplace=True) def set_foliations(self, foliat_Dataframe, append=False): """ Method to change or append a Dataframe to foliations in place. Args: interf_Dataframe: pandas.core.frame.DataFrame with the data append: Bool: if you want to append the new data frame or substitute it """ assert set(['X', 'Y', 'Z', 'dip', 'azimuth', 'polarity', 'formation']).issubset( foliat_Dataframe.columns), "One or more columns do not match with the expected values " +\ str(foliat_Dataframe.columns) if append: self.foliations = self.foliations.append(foliat_Dataframe) else: self.foliations = foliat_Dataframe self._set_formations() self.set_series() #self.set_formation_number() self.calculate_gradient() self.foliations.reset_index(drop=True, inplace=True) def set_series(self, series_distribution=None, order=None): """ Method to define the different series of the project Args: series_distribution (dict): with the name of the serie as key and the name of the formations as values. order(Optional[list]): order of the series by default takes the dictionary keys which until python 3.6 are random. This is important to set the erosion relations between the different series Returns: self.series: A pandas DataFrame with the series and formations relations self.interfaces: one extra column with the given series self.foliations: one extra column with the given series """ if series_distribution is None: # set to default series # TODO see if some of the formations have already a series and not overwrite _series = {"Default serie": self.interfaces["formation"].unique()} else: assert type(series_distribution) is dict, "series_distribution must be a dictionary, " \ "see Docstring for more information" # TODO if self.series exist already maybe we should append instead of overwrite _series = series_distribution # The order of the series is very important since it dictates which one is on top of the stratigraphic pile # If it is not given we take the dictionaries keys. NOTICE that until python 3.6 these keys are pretty much # random if not order: order = _series.keys() # TODO assert len order is equal to len of the dictionary # We create a dataframe with the links _series = pn.DataFrame(data=_series, columns=order) # Now we fill the column series in the interfaces and foliations tables with the correspondant series and # assigned number to the series self.interfaces["series"] = [(i == _series).sum().argmax() for i in self.interfaces["formation"]] self.interfaces["order_series"] = [(i == _series).sum().as_matrix().argmax() + 1 for i in self.interfaces["formation"]] self.foliations["series"] = [(i == _series).sum().argmax() for i in self.foliations["formation"]] self.foliations["order_series"] = [(i == _series).sum().as_matrix().argmax() + 1 for i in self.foliations["formation"]] # We sort the series altough is only important for the computation (we will do it again just before computing) self.interfaces.sort_values(by='order_series', inplace=True) self.foliations.sort_values(by='order_series', inplace=True) # Save the dataframe in a property self.series = _series # Set default faults faults_series = [] for i in self.series.columns: if ('fault' in i or 'Fault' in i) and 'Default' not in i: faults_series.append(i) self.set_faults(faults_series) self.reset_indices() return _series def set_faults(self, series_name): """ Args: series_name(list or array_like): Returns: """ if not len(series_name) == 0: self.interfaces['isFault'] = self.interfaces['series'].isin(series_name) self.foliations['isFault'] = self.foliations['series'].isin(series_name) self.n_faults = len(series_name) def set_formation_number(self, formation_order): """ Set a unique number to each formation. NOTE: this method is getting deprecated since the user does not need to know it and also now the numbers must be set in the order of the series as well. Therefore this method has been moved to the interpolator class as preprocessing Returns: Column in the interfaces and foliations dataframes """ try: ip_addresses = formation_order ip_dict = dict(zip(ip_addresses, range(1, len(ip_addresses)+1))) self.interfaces['formation number'] = self.interfaces['formation'].replace(ip_dict) self.foliations['formation number'] = self.foliations['formation'].replace(ip_dict) except ValueError: pass def reset_indices(self): """ Resets dataframe indices for foliations and interfaces. Returns: Nothing """ self.interfaces.reset_index(inplace=True, drop=True) self.foliations.reset_index(inplace=True, drop=True) def interface_modify(self, index, **kwargs): """ Allows modification of the x,y and/or z-coordinates of an interface at specified dataframe index. Args: index: dataframe index of the foliation point **kwargs: X, Y, Z (int or float) Returns: Nothing """ for key in kwargs: self.interfaces.ix[index, str(key)] = kwargs[key] def interface_add(self, **kwargs): """ Adds interface to dataframe. Args: **kwargs: X, Y, Z, formation, labels, order_series, series Returns: Nothing """ l = len(self.interfaces) for key in kwargs: self.interfaces.ix[l, str(key)] = kwargs[key] def interface_drop(self, index): """ Drops interface from dataframe identified by index Args: index: dataframe index Returns: Nothing """ self.interfaces.drop(index, inplace=True) def foliation_modify(self, index, **kwargs): """ Allows modification of foliation data at specified dataframe index. Args: index: dataframe index of the foliation point **kwargs: G_x, G_y, G_z, X, Y, Z, azimuth, dip, formation, labels, order_series, polarity Returns: Nothing """ for key in kwargs: self.foliations.ix[index, str(key)] = kwargs[key] def foliation_add(self, **kwargs): """ Adds foliation to dataframe. Args: **kwargs: G_x, G_y, G_z, X, Y, Z, azimuth, dip, formation, labels, order_series, polarity, series Returns: Nothing """ l = len(self.foliations) for key in kwargs: self.foliations.ix[l, str(key)] = kwargs[key] def foliations_drop(self, index): """ Drops foliation from dataframe identified by index Args: index: dataframe index Returns: Nothing """ self.foliations.drop(index, inplace=True) def get_formation_number(self): pn_series = self.interfaces.groupby('formation number').formation.unique() ip_addresses = {} for e, i in enumerate(pn_series): ip_addresses[i[0]] = e + 1 ip_addresses['DefaultBasement'] = 0 return ip_addresses # TODO think where this function should go def read_vox(self, path): """ read vox from geomodeller and transform it to gempy format Returns: numpy.array: block model """ geo_res = pn.read_csv(path) geo_res = geo_res.iloc[9:] #ip_addresses = geo_res['nx 50'].unique() # geo_data.interfaces["formation"].unique() ip_dict = self.get_formation_number() geo_res_num = geo_res.iloc[:, 0].replace(ip_dict) block_geomodeller = np.ravel(geo_res_num.as_matrix().reshape( self.resolution[0], self.resolution[1], self.resolution[2], order='C').T) return block_geomodeller class GridClass(object): """ -DOCS NOT UPDATED- Class with set of functions to generate grids Args: extent (list): [x_min, x_max, y_min, y_max, z_min, z_max] resolution (list): [nx, ny, nz]. grid_type(str): Type of grid. So far only regular 3D is implemented """ def __init__(self, extent, resolution, grid_type="regular_3D"): self._grid_ext = extent self._grid_res = resolution if grid_type == "regular_3D": self.grid = self.create_regular_grid_3d() elif grid_type == "regular_2D": self.grid = self.create_regular_grid_2d() else: print("Wrong type") def create_regular_grid_3d(self): """ Method to create a 3D regular grid where is interpolated Returns: numpy.ndarray: Unraveled 3D numpy array where every row correspond to the xyz coordinates of a regular grid """ g = np.meshgrid( np.linspace(self._grid_ext[0], self._grid_ext[1], self._grid_res[0], dtype="float32"), np.linspace(self._grid_ext[2], self._grid_ext[3], self._grid_res[1], dtype="float32"), np.linspace(self._grid_ext[4], self._grid_ext[5], self._grid_res[2], dtype="float32"), indexing="ij" ) # self.grid = np.vstack(map(np.ravel, g)).T.astype("float32") return np.vstack(map(np.ravel, g)).T.astype("float32") # DEP! class InterpolatorClass(object): """ -DOCS NOT UPDATED- Class which contain all needed methods to perform potential field implicit modelling in theano Args: _data(GeMpy_core.DataManagement): All values of a DataManagement object _grid(GeMpy_core.grid): A grid object **kwargs: Arbitrary keyword arguments. Keyword Args: verbose(int): Level of verbosity during the execution of the functions (up to 5). Default 0 """ def __init__(self, _data_scaled, _grid_scaled=None, *args, **kwargs): # verbose is a list of strings. See theanograph verbose = kwargs.get('verbose', [0]) # -DEP-rescaling_factor = kwargs.get('rescaling_factor', None) # Here we can change the dtype for stability and GPU vs CPU dtype = kwargs.get('dtype', 'float32') self.dtype = dtype range_var = kwargs.get('range_var', None) # Drift grade u_grade = kwargs.get('u_grade', [2, 2]) # We hide the scaled copy of DataManagement object from the user. The scaling happens in gempy what is a # bit weird. Maybe at some point I should bring the function to this module self._data_scaled = _data_scaled # In case someone wants to provide a grid otherwise we extract it from the DataManagement object. if not _grid_scaled: self._grid_scaled = _data_scaled.grid else: self._grid_scaled = _grid_scaled # Importing the theano graph. The methods of this object generate different parts of graph. # See theanograf doc self.tg = theanograf.TheanoGraph_pro(dtype=dtype, verbose=verbose,) # Sorting data in case the user provides it unordered self.order_table() # Setting theano parameters self.set_theano_shared_parameteres(range_var=range_var) # Extracting data from the pandas dataframe to numpy array in the required form for the theano function self.data_prep(u_grade=u_grade) # Avoid crashing my pc import theano if theano.config.optimizer != 'fast_run': assert self.tg.grid_val_T.get_value().shape[0] * \ np.math.factorial(len(self.tg.len_series_i.get_value())) < 2e7, \ 'The grid is too big for the number of potential fields. Reduce the grid or change the' \ 'optimization flag to fast run' def set_formation_number(self): """ Set a unique number to each formation. NOTE: this method is getting deprecated since the user does not need to know it and also now the numbers must be set in the order of the series as well. Therefore this method has been moved to the interpolator class as preprocessing Returns: Column in the interfaces and foliations dataframes """ try: ip_addresses = self._data_scaled.interfaces["formation"].unique() ip_dict = dict(zip(ip_addresses, range(1, len(ip_addresses) + 1))) self._data_scaled.interfaces['formation number'] = self._data_scaled.interfaces['formation'].replace(ip_dict) self._data_scaled.foliations['formation number'] = self._data_scaled.foliations['formation'].replace(ip_dict) except ValueError: pass def order_table(self): """ First we sort the dataframes by the series age. Then we set a unique number for every formation and resort the formations. All inplace """ # We order the pandas table by series self._data_scaled.interfaces.sort_values(by=['order_series'], # , 'formation number'], ascending=True, kind='mergesort', inplace=True) self._data_scaled.foliations.sort_values(by=['order_series'], # , 'formation number'], ascending=True, kind='mergesort', inplace=True) # Give formation number if not 'formation number' in self._data_scaled.interfaces.columns: print('I am here') self.set_formation_number() # We order the pandas table by formation (also by series in case something weird happened) self._data_scaled.interfaces.sort_values(by=['order_series', 'formation number'], ascending=True, kind='mergesort', inplace=True) self._data_scaled.foliations.sort_values(by=['order_series', 'formation number'], ascending=True, kind='mergesort', inplace=True) # Pandas dataframe set an index to every row when the dataframe is created. Sorting the table does not reset # the index. For some of the methods (pn.drop) we have to apply afterwards we need to reset these indeces self._data_scaled.interfaces.reset_index(drop=True, inplace=True) def data_prep(self, **kwargs): """ Ideally this method will extract the data from the pandas dataframes to individual numpy arrays to be input of the theano function. However since some of the shared parameters are function of these arrays shape I also set them here Returns: idl (list): List of arrays which are the input for the theano function: - numpy.array: dips_position - numpy.array: dip_angles - numpy.array: azimuth - numpy.array: polarity - numpy.array: ref_layer_points - numpy.array: rest_layer_points """ u_grade = kwargs.get('u_grade', None) # ================== # Extracting lengths # ================== # Array containing the size of every formation. Interfaces len_interfaces = np.asarray( [np.sum(self._data_scaled.interfaces['formation number'] == i) for i in self._data_scaled.interfaces['formation number'].unique()]) # Size of every layer in rests. SHARED (for theano) len_rest_form = (len_interfaces - 1) self.tg.number_of_points_per_formation_T.set_value(len_rest_form) # Position of the first point of every layer ref_position = np.insert(len_interfaces[:-1], 0, 0).cumsum() # Drop the reference points using pandas indeces to get just the rest_layers array pandas_rest_layer_points = self._data_scaled.interfaces.drop(ref_position) self.pandas_rest_layer_points = pandas_rest_layer_points # TODO: do I need this? PYTHON # DEP- because per series the foliations do not belong to a formation but to the whole series # len_foliations = np.asarray( # [np.sum(self._data_scaled.foliations['formation number'] == i) # for i in self._data_scaled.foliations['formation number'].unique()]) # -DEP- I think this was just a kind of print to know what was going on #self.pandas_rest = pandas_rest_layer_points # Array containing the size of every series. Interfaces. len_series_i = np.asarray( [np.sum(pandas_rest_layer_points['order_series'] == i) for i in pandas_rest_layer_points['order_series'].unique()]) # Cumulative length of the series. We add the 0 at the beginning and set the shared value. SHARED self.tg.len_series_i.set_value(np.insert(len_series_i, 0, 0).cumsum()) # Array containing the size of every series. Foliations. len_series_f = np.asarray( [np.sum(self._data_scaled.foliations['order_series'] == i) for i in self._data_scaled.foliations['order_series'].unique()]) # Cumulative length of the series. We add the 0 at the beginning and set the shared value. SHARED self.tg.len_series_f.set_value(np.insert(len_series_f, 0, 0).cumsum()) # ========================= # Choosing Universal drifts # ========================= if u_grade is None: u_grade = np.zeros_like(len_series_i) u_grade[len_series_i > 12] = 9 u_grade[(len_series_i > 6) & (len_series_i < 12)] = 3 print(u_grade) # it seems I have to pass list instead array_like that is weird self.tg.u_grade_T.set_value(list(u_grade)) # ================ # Prepare Matrices # ================ # Rest layers matrix # PYTHON VAR rest_layer_points = pandas_rest_layer_points[['X', 'Y', 'Z']].as_matrix() # TODO delete # -DEP- Again i was just a check point # self.rest_layer_points = rest_layer_points # Ref layers matrix #VAR # Calculation of the ref matrix and tile. Iloc works with the row number # Here we extract the reference points aux_1 = self._data_scaled.interfaces.iloc[ref_position][['X', 'Y', 'Z']].as_matrix() # We initialize the matrix ref_layer_points = np.zeros((0, 3)) # TODO I hate loop it has to be a better way # Tiling very reference points as many times as rest of the points we have for e, i in enumerate(len_interfaces): ref_layer_points = np.vstack((ref_layer_points, np.tile(aux_1[e], (i - 1, 1)))) # -DEP- was just a check point #self.ref_layer_points = ref_layer_points # Check no reference points in rest points (at least in coor x) assert not any(aux_1[:, 0]) in rest_layer_points[:, 0], \ 'A reference point is in the rest list point. Check you do ' \ 'not have duplicated values in your dataframes' # Foliations, this ones I tile them inside theano. PYTHON VAR dips_position = self._data_scaled.foliations[['X', 'Y', 'Z']].as_matrix() dip_angles = self._data_scaled.foliations["dip"].as_matrix() azimuth = self._data_scaled.foliations["azimuth"].as_matrix() polarity = self._data_scaled.foliations["polarity"].as_matrix() # Set all in a list casting them in the chosen dtype idl = [np.cast[self.dtype](xs) for xs in (dips_position, dip_angles, azimuth, polarity, ref_layer_points, rest_layer_points)] return idl def set_theano_shared_parameteres(self, **kwargs): """ Here we create most of the kriging parameters. The user can pass them as kwargs otherwise we pick the default values from the DataManagement info. The share variables are set in place. All the parameters here are independent of the input data so this function only has to be called if you change the extent or grid or if you want to change one the kriging parameters. Args: _data_rescaled: DataManagement object _grid_rescaled: Grid object Keyword Args: u_grade (int): Drift grade. Default to 2. range_var (float): Range of the variogram. Default 3D diagonal of the extent c_o (float): Covariance at lag 0. Default range_var ** 2 / 14 / 3. See my paper when I write it nugget_effect (flaot): Nugget effect of foliations. Default to 0.01 """ # Kwargs u_grade = kwargs.get('u_grade', 2) range_var = kwargs.get('range_var', None) c_o = kwargs.get('c_o', None) nugget_effect = kwargs.get('nugget_effect', 0.01) # -DEP- Now I rescale the data so we do not need this # rescaling_factor = kwargs.get('rescaling_factor', None) # Default range if not range_var: range_var = np.sqrt((self._data_scaled.extent[0] - self._data_scaled.extent[1]) ** 2 + (self._data_scaled.extent[2] - self._data_scaled.extent[3]) ** 2 + (self._data_scaled.extent[4] - self._data_scaled.extent[5]) ** 2) # Default covariance at 0 if not c_o: c_o = range_var ** 2 / 14 / 3 # Asserting that the drift grade is in this range # assert (0 <= all(u_grade) <= 2) # Creating the drift matrix. TODO find the official name of this matrix? _universal_matrix = np.vstack((self._grid_scaled.grid.T, (self._grid_scaled.grid ** 2).T, self._grid_scaled.grid[:, 0] * self._grid_scaled.grid[:, 1], self._grid_scaled.grid[:, 0] * self._grid_scaled.grid[:, 2], self._grid_scaled.grid[:, 1] * self._grid_scaled.grid[:, 2])) # Setting shared variables # Range self.tg.a_T.set_value(np.cast[self.dtype](range_var)) # Covariance at 0 self.tg.c_o_T.set_value(np.cast[self.dtype](c_o)) # Foliations nugget effect self.tg.nugget_effect_grad_T.set_value(np.cast[self.dtype](nugget_effect)) # TODO change the drift to the same style I have the faults so I do not need to do this # # Drift grade # if u_grade == 0: # self.tg.u_grade_T.set_value(u_grade) # else: # self.tg.u_grade_T.set_value(u_grade) # TODO: To be sure what is the mathematical meaning of this -> It seems that nothing # TODO Deprecated # self.tg.c_resc.set_value(1) # Just grid. I add a small number to avoid problems with the origin point self.tg.grid_val_T.set_value(np.cast[self.dtype](self._grid_scaled.grid + 10e-6)) # Universal grid self.tg.universal_grid_matrix_T.set_value(np.cast[self.dtype](_universal_matrix + 1e-10)) # Initialization of the block model self.tg.final_block.set_value(np.zeros((1, self._grid_scaled.grid.shape[0]), dtype='float32')) # Initialization of the boolean array that represent the areas of the block model to be computed in the # following series #self.tg.yet_simulated.set_value(np.ones((_grid_rescaled.grid.shape[0]), dtype='int')) # Unique number assigned to each lithology #self.tg.n_formation.set_value(np.insert(_data_rescaled.interfaces['formation number'].unique(), # 0, 0)[::-1]) self.tg.n_formation.set_value(self._data_scaled.interfaces['formation number'].unique()) # Number of formations per series. The function is not pretty but the result is quite clear self.tg.n_formations_per_serie.set_value( np.insert(self._data_scaled.interfaces.groupby('order_series').formation.nunique().values.cumsum(), 0, 0)) def get_kriging_parameters(self, verbose=0): # range print('range', self.tg.a_T.get_value(), self.tg.a_T.get_value() * self._data_scaled.rescaling_factor) # Number of drift equations print('Number of drift equations', self.tg.u_grade_T.get_value()) # Covariance at 0 print('Covariance at 0', self.tg.c_o_T.get_value()) # Foliations nugget effect print('Foliations nugget effect', self.tg.nugget_effect_grad_T.get_value()) if verbose > 0: # Input data shapes # Lenght of the interfaces series print('Length of the interfaces series', self.tg.len_series_i.get_value()) # Length of the foliations series print('Length of the foliations series', self.tg.len_series_f.get_value()) # Number of formation print('Number of formations', self.tg.n_formation.get_value()) # Number of formations per series print('Number of formations per series', self.tg.n_formations_per_serie.get_value()) # Number of points per formation print('Number of points per formation (rest)', self.tg.number_of_points_per_formation_T.get_value()) class InterpolatorInput: def __init__(self, geo_data, compile_theano=True, compute_all=True, u_grade=None, rescaling_factor=None, **kwargs): # TODO add all options before compilation in here. Basically this is n_faults, n_layers, verbose, dtype, and \ # only block or all assert isinstance(geo_data, InputData), 'You need to pass a InputData object' # Here we can change the dtype for stability and GPU vs CPU self.dtype = kwargs.get('dtype', 'float32') #self.in_data = self.rescale_data(geo_data, rescaling_factor=rescaling_factor) # Set some parameters. TODO posibly this should go in kwargs self.u_grade = u_grade # This two properties get set calling rescale data self.rescaling_factor = None self.centers = None self.extent_rescaled = None # Rescaling self.data = self.rescale_data(geo_data, rescaling_factor=rescaling_factor) # Creating interpolator class with all the precompilation options self.interpolator = self.set_interpolator(**kwargs) if compile_theano: self.th_fn = self.compile_th_fn(compute_all=compute_all) # DEP all options since it goes in set_interpolator def compile_th_fn(self, compute_all=True, dtype=None, u_grade=None, **kwargs): """ Args: geo_data: **kwargs: Returns: """ # Choosing float precision for the computation if not dtype: if theano.config.device == 'gpu': dtype = 'float32' else: dtype = 'float64' # We make a rescaled version of geo_data for stability reasons #data_interp = self.set_interpolator(geo_data, dtype=dtype) # This are the shared parameters and the compilation of the function. This will be hidden as well at some point input_data_T = self.interpolator.tg.input_parameters_list() # This prepares the user data to the theano function # input_data_P = data_interp.interpolator.data_prep(u_grade=u_grade) # then we compile we have to pass the number of formations that are faults!! th_fn = theano.function(input_data_T, self.interpolator.tg.whole_block_model(self.data.n_faults, compute_all=compute_all), on_unused_input='ignore', allow_input_downcast=False, profile=False) return th_fn def rescale_data(self, geo_data, rescaling_factor=None): """ Rescale the data of a DataManagement object between 0 and 1 due to stability problem of the float32. Args: geo_data: DataManagement object with the real scale data rescaling_factor(float): factor of the rescaling. Default to maximum distance in one the axis Returns: """ # TODO split this function in compute rescaling factor and rescale z max_coord = pn.concat( [geo_data.foliations, geo_data.interfaces]).max()[['X', 'Y', 'Z']] min_coord = pn.concat( [geo_data.foliations, geo_data.interfaces]).min()[['X', 'Y', 'Z']] if not rescaling_factor: rescaling_factor = 2 * np.max(max_coord - min_coord) centers = (max_coord + min_coord) / 2 new_coord_interfaces = (geo_data.interfaces[['X', 'Y', 'Z']] - centers) / rescaling_factor + 0.5001 new_coord_foliations = (geo_data.foliations[['X', 'Y', 'Z']] - centers) / rescaling_factor + 0.5001 try: geo_data.interfaces[['X_std', 'Y_std', 'Z_std']] = (geo_data.interfaces[ ['X_std', 'Y_std', 'Z_std']]) / rescaling_factor geo_data.foliations[['X_std', 'Y_std', 'Z_std']] = (geo_data.foliations[ ['X_std', 'Y_std', 'Z_std']]) / rescaling_factor except KeyError: pass new_coord_extent = (geo_data.extent - np.repeat(centers, 2)) / rescaling_factor + 0.5001 geo_data_rescaled = copy.deepcopy(geo_data) geo_data_rescaled.interfaces[['X', 'Y', 'Z']] = new_coord_interfaces geo_data_rescaled.foliations[['X', 'Y', 'Z']] = new_coord_foliations geo_data_rescaled.extent = new_coord_extent.as_matrix() geo_data_rescaled.grid.grid = (geo_data.grid.grid - centers.as_matrix()) / rescaling_factor + 0.5001 self.rescaling_factor = rescaling_factor geo_data_rescaled.rescaling_factor = rescaling_factor self.centers = centers self.extent_rescaled = new_coord_extent return geo_data_rescaled # DEP? def set_airbore_plane(self, z, res_grav): # Rescale z z_res = (z-self.centers[2])/self.rescaling_factor + 0.5001 # Create xy meshgrid xy = np.meshgrid(np.linspace(self.extent_rescaled.iloc[0], self.extent_rescaled.iloc[1], res_grav[0]), np.linspace(self.extent_rescaled.iloc[2], self.extent_rescaled.iloc[3], res_grav[1])) z = np.ones(res_grav[0]*res_grav[1])*z_res # Transformation xy_ravel = np.vstack(map(np.ravel, xy)) airborne_plane = np.vstack((xy_ravel, z)).T.astype(self.dtype) return airborne_plane def set_interpolator(self, geo_data = None, *args, **kwargs): """ Method to initialize the class interpolator. All the constant parameters for the interpolation can be passed as args, otherwise they will take the default value (TODO: documentation of the dafault values) Args: *args: Variable length argument list **kwargs: Arbitrary keyword arguments. Keyword Args: range_var: Range of the variogram. Default None c_o: Covariance at 0. Default None nugget_effect: Nugget effect of the gradients. Default 0.01 u_grade: Grade of the polynomial used in the universal part of the Kriging. Default 2 rescaling_factor: Magic factor that multiplies the covariances). Default 2 Returns: self.Interpolator (GeMpy_core.Interpolator): Object to perform the potential field method self.Plot(GeMpy_core.PlotData): Object to visualize data and results. It gets updated. """ if 'u_grade' in kwargs: compile_theano = True range_var = kwargs.get('range_var', None) rescaling_factor = kwargs.get('rescaling_factor', None) #DEP? #if not getattr(geo_data, 'grid', None): # set_grid(geo_data) if geo_data: geo_data_in = self.rescale_data(geo_data, rescaling_factor=rescaling_factor) self.data = geo_data_in else: geo_data_in = self.data # First creation if not getattr(self, 'interpolator', None): print('I am in the setting') interpolator = self.InterpolatorClass(geo_data_in, geo_data_in.grid, *args, **kwargs) # Update else: print('I am in update') self.interpolator._data_scaled = geo_data_in self.interpolator._grid_scaled = geo_data_in.grid self.interpolator.order_table() self.interpolator.set_theano_shared_parameteres(range_var=range_var) interpolator = None return interpolator def update_interpolator(self, geo_data=None, *args, **kwargs): """ Update variables without compiling the theano function Args: geo_data: *args: **kwargs: Returns: """ if 'u_grade' in kwargs: compile_theano = True range_var = kwargs.get('range_var', None) rescaling_factor = kwargs.get('rescaling_factor', None) if geo_data: geo_data_in = self.rescale_data(geo_data, rescaling_factor=rescaling_factor) self.data = geo_data_in else: geo_data_in = self.data print('I am in update') self.interpolator._data_scaled = geo_data_in self.interpolator._grid_scaled = geo_data_in.grid self.interpolator.order_table() self.interpolator.set_theano_shared_parameteres(range_var=range_var) def get_input_data(self, u_grade=None): if not u_grade: u_grade = self.u_grade return self.interpolator.data_prep(u_grade=u_grade) class InterpolatorClass(object): """ -DOCS NOT UPDATED- Class which contain all needed methods to perform potential field implicit modelling in theano Args: _data(GeMpy_core.DataManagement): All values of a DataManagement object _grid(GeMpy_core.grid): A grid object **kwargs: Arbitrary keyword arguments. Keyword Args: verbose(int): Level of verbosity during the execution of the functions (up to 5). Default 0 """ def __init__(self, _data_scaled, _grid_scaled=None, *args, **kwargs): # verbose is a list of strings. See theanograph verbose = kwargs.get('verbose', [0]) # -DEP-rescaling_factor = kwargs.get('rescaling_factor', None) # Here we can change the dtype for stability and GPU vs CPU dtype = kwargs.get('dtype', 'float32') self.dtype = dtype print(self.dtype) range_var = kwargs.get('range_var', None) # Drift grade u_grade = kwargs.get('u_grade', [2, 2]) # We hide the scaled copy of DataManagement object from the user. The scaling happens in gempy what is a # bit weird. Maybe at some point I should bring the function to this module self._data_scaled = _data_scaled # In case someone wants to provide a grid otherwise we extract it from the DataManagement object. if not _grid_scaled: self._grid_scaled = _data_scaled.grid else: self._grid_scaled = _grid_scaled # Importing the theano graph. The methods of this object generate different parts of graph. # See theanograf doc self.tg = theanograf.TheanoGraph_pro(dtype=dtype, verbose=verbose,) # Sorting data in case the user provides it unordered self.order_table() # Setting theano parameters self.set_theano_shared_parameteres(range_var=range_var) # Extracting data from the pandas dataframe to numpy array in the required form for the theano function self.data_prep(u_grade=u_grade) # Avoid crashing my pc import theano if theano.config.optimizer != 'fast_run': assert self.tg.grid_val_T.get_value().shape[0] * \ np.math.factorial(len(self.tg.len_series_i.get_value())) < 2e7, \ 'The grid is too big for the number of potential fields. Reduce the grid or change the' \ 'optimization flag to fast run' def set_formation_number(self): """ Set a unique number to each formation. NOTE: this method is getting deprecated since the user does not need to know it and also now the numbers must be set in the order of the series as well. Therefore this method has been moved to the interpolator class as preprocessing Returns: Column in the interfaces and foliations dataframes """ try: ip_addresses = self._data_scaled.interfaces["formation"].unique() ip_dict = dict(zip(ip_addresses, range(1, len(ip_addresses) + 1))) self._data_scaled.interfaces['formation number'] = self._data_scaled.interfaces['formation'].replace(ip_dict) self._data_scaled.foliations['formation number'] = self._data_scaled.foliations['formation'].replace(ip_dict) except ValueError: pass def order_table(self): """ First we sort the dataframes by the series age. Then we set a unique number for every formation and resort the formations. All inplace """ # We order the pandas table by series self._data_scaled.interfaces.sort_values(by=['order_series'], # , 'formation number'], ascending=True, kind='mergesort', inplace=True) self._data_scaled.foliations.sort_values(by=['order_series'], # , 'formation number'], ascending=True, kind='mergesort', inplace=True) # Give formation number if not 'formation number' in self._data_scaled.interfaces.columns: print('I am here') self.set_formation_number() # We order the pandas table by formation (also by series in case something weird happened) self._data_scaled.interfaces.sort_values(by=['order_series', 'formation number'], ascending=True, kind='mergesort', inplace=True) self._data_scaled.foliations.sort_values(by=['order_series', 'formation number'], ascending=True, kind='mergesort', inplace=True) # Pandas dataframe set an index to every row when the dataframe is created. Sorting the table does not reset # the index. For some of the methods (pn.drop) we have to apply afterwards we need to reset these indeces self._data_scaled.interfaces.reset_index(drop=True, inplace=True) def data_prep(self, **kwargs): """ Ideally this method will extract the data from the pandas dataframes to individual numpy arrays to be input of the theano function. However since some of the shared parameters are function of these arrays shape I also set them here Returns: idl (list): List of arrays which are the input for the theano function: - numpy.array: dips_position - numpy.array: dip_angles - numpy.array: azimuth - numpy.array: polarity - numpy.array: ref_layer_points - numpy.array: rest_layer_points """ u_grade = kwargs.get('u_grade', None) # ================== # Extracting lengths # ================== # Array containing the size of every formation. Interfaces len_interfaces = np.asarray( [np.sum(self._data_scaled.interfaces['formation number'] == i) for i in self._data_scaled.interfaces['formation number'].unique()]) # Size of every layer in rests. SHARED (for theano) len_rest_form = (len_interfaces - 1) self.tg.number_of_points_per_formation_T.set_value(len_rest_form) # Position of the first point of every layer ref_position = np.insert(len_interfaces[:-1], 0, 0).cumsum() # Drop the reference points using pandas indeces to get just the rest_layers array pandas_rest_layer_points = self._data_scaled.interfaces.drop(ref_position) self.pandas_rest_layer_points = pandas_rest_layer_points # TODO: do I need this? PYTHON # DEP- because per series the foliations do not belong to a formation but to the whole series # len_foliations = np.asarray( # [np.sum(self._data_scaled.foliations['formation number'] == i) # for i in self._data_scaled.foliations['formation number'].unique()]) # -DEP- I think this was just a kind of print to know what was going on #self.pandas_rest = pandas_rest_layer_points # Array containing the size of every series. Interfaces. len_series_i = np.asarray( [np.sum(pandas_rest_layer_points['order_series'] == i) for i in pandas_rest_layer_points['order_series'].unique()]) # Cumulative length of the series. We add the 0 at the beginning and set the shared value. SHARED self.tg.len_series_i.set_value(np.insert(len_series_i, 0, 0).cumsum()) # Array containing the size of every series. Foliations. len_series_f = np.asarray( [np.sum(self._data_scaled.foliations['order_series'] == i) for i in self._data_scaled.foliations['order_series'].unique()]) # Cumulative length of the series. We add the 0 at the beginning and set the shared value. SHARED self.tg.len_series_f.set_value(np.insert(len_series_f, 0, 0).cumsum()) # ========================= # Choosing Universal drifts # ========================= if u_grade is None: u_grade = np.zeros_like(len_series_i) u_grade[len_series_i > 12] = 9 u_grade[(len_series_i > 6) & (len_series_i < 12)] = 3 print(u_grade) # it seems I have to pass list instead array_like that is weird self.tg.u_grade_T.set_value(list(u_grade)) # ================ # Prepare Matrices # ================ # Rest layers matrix # PYTHON VAR rest_layer_points = pandas_rest_layer_points[['X', 'Y', 'Z']].as_matrix() # TODO delete # -DEP- Again i was just a check point # self.rest_layer_points = rest_layer_points # Ref layers matrix #VAR # Calculation of the ref matrix and tile. Iloc works with the row number # Here we extract the reference points aux_1 = self._data_scaled.interfaces.iloc[ref_position][['X', 'Y', 'Z']].as_matrix() # We initialize the matrix ref_layer_points = np.zeros((0, 3)) # TODO I hate loop it has to be a better way # Tiling very reference points as many times as rest of the points we have for e, i in enumerate(len_interfaces): ref_layer_points = np.vstack((ref_layer_points, np.tile(aux_1[e], (i - 1, 1)))) # -DEP- was just a check point self.ref_layer_points = ref_layer_points # Check no reference points in rest points (at least in coor x) assert not any(aux_1[:, 0]) in rest_layer_points[:, 0], \ 'A reference point is in the rest list point. Check you do ' \ 'not have duplicated values in your dataframes' # Foliations, this ones I tile them inside theano. PYTHON VAR dips_position = self._data_scaled.foliations[['X', 'Y', 'Z']].as_matrix() dip_angles = self._data_scaled.foliations["dip"].as_matrix() azimuth = self._data_scaled.foliations["azimuth"].as_matrix() polarity = self._data_scaled.foliations["polarity"].as_matrix() # Set all in a list casting them in the chosen dtype idl = [np.cast[self.dtype](xs) for xs in (dips_position, dip_angles, azimuth, polarity, ref_layer_points, rest_layer_points)] return idl def set_theano_shared_parameteres(self, **kwargs): """ Here we create most of the kriging parameters. The user can pass them as kwargs otherwise we pick the default values from the DataManagement info. The share variables are set in place. All the parameters here are independent of the input data so this function only has to be called if you change the extent or grid or if you want to change one the kriging parameters. Args: _data_rescaled: DataManagement object _grid_rescaled: Grid object Keyword Args: u_grade (int): Drift grade. Default to 2. range_var (float): Range of the variogram. Default 3D diagonal of the extent c_o (float): Covariance at lag 0. Default range_var ** 2 / 14 / 3. See my paper when I write it nugget_effect (flaot): Nugget effect of foliations. Default to 0.01 """ # Kwargs u_grade = kwargs.get('u_grade', 2) range_var = kwargs.get('range_var', None) c_o = kwargs.get('c_o', None) nugget_effect = kwargs.get('nugget_effect', 0.01) # DEP # compute_all = kwargs.get('compute_all', True) # -DEP- Now I rescale the data so we do not need this # rescaling_factor = kwargs.get('rescaling_factor', None) # Default range if not range_var: range_var = np.sqrt((self._data_scaled.extent[0] - self._data_scaled.extent[1]) ** 2 + (self._data_scaled.extent[2] - self._data_scaled.extent[3]) ** 2 + (self._data_scaled.extent[4] - self._data_scaled.extent[5]) ** 2) # Default covariance at 0 if not c_o: c_o = range_var ** 2 / 14 / 3 # Asserting that the drift grade is in this range # assert (0 <= all(u_grade) <= 2) # Creating the drift matrix. TODO find the official name of this matrix? _universal_matrix = np.vstack((self._grid_scaled.grid.T, (self._grid_scaled.grid ** 2).T, self._grid_scaled.grid[:, 0] * self._grid_scaled.grid[:, 1], self._grid_scaled.grid[:, 0] * self._grid_scaled.grid[:, 2], self._grid_scaled.grid[:, 1] * self._grid_scaled.grid[:, 2])) # Setting shared variables # Range self.tg.a_T.set_value(np.cast[self.dtype](range_var)) # Covariance at 0 self.tg.c_o_T.set_value(np.cast[self.dtype](c_o)) # Foliations nugget effect self.tg.nugget_effect_grad_T.set_value(np.cast[self.dtype](nugget_effect)) # TODO change the drift to the same style I have the faults so I do not need to do this # # Drift grade # if u_grade == 0: # self.tg.u_grade_T.set_value(u_grade) # else: # self.tg.u_grade_T.set_value(u_grade) # TODO: To be sure what is the mathematical meaning of this -> It seems that nothing # TODO Deprecated # self.tg.c_resc.set_value(1) # Just grid. I add a small number to avoid problems with the origin point self.tg.grid_val_T.set_value(np.cast[self.dtype](self._grid_scaled.grid + 10e-6)) # Universal grid self.tg.universal_grid_matrix_T.set_value(np.cast[self.dtype](_universal_matrix + 1e-10)) # Initialization of the block model self.tg.final_block.set_value(np.zeros((1, self._grid_scaled.grid.shape[0]), dtype='float32')) # Initialization of the boolean array that represent the areas of the block model to be computed in the # following series #self.tg.yet_simulated.set_value(np.ones((_grid_rescaled.grid.shape[0]), dtype='int')) # Unique number assigned to each lithology #self.tg.n_formation.set_value(np.insert(_data_rescaled.interfaces['formation number'].unique(), # 0, 0)[::-1]) self.tg.n_formation.set_value(self._data_scaled.interfaces['formation number'].unique()) # Number of formations per series. The function is not pretty but the result is quite clear self.tg.n_formations_per_serie.set_value( np.insert(self._data_scaled.interfaces.groupby('order_series').formation.nunique().values.cumsum(), 0, 0)) def get_kriging_parameters(self, verbose=0): # range print('range', self.tg.a_T.get_value(), self.tg.a_T.get_value() * self._data_scaled.rescaling_factor) # Number of drift equations print('Number of drift equations', self.tg.u_grade_T.get_value()) # Covariance at 0 print('Covariance at 0', self.tg.c_o_T.get_value()) # Foliations nugget effect print('Foliations nugget effect', self.tg.nugget_effect_grad_T.get_value()) if verbose > 0: # Input data shapes # Lenght of the interfaces series print('Length of the interfaces series', self.tg.len_series_i.get_value()) # Length of the foliations series print('Length of the foliations series', self.tg.len_series_f.get_value()) # Number of formation print('Number of formations', self.tg.n_formation.get_value()) # Number of formations per series print('Number of formations per series', self.tg.n_formations_per_serie.get_value()) # Number of points per formation print('Number of points per formation (rest)', self.tg.number_of_points_per_formation_T.get_value())
mit
pmeier82/spikeval
spikeval/plot/plot_cluster.py
1
3106
# -*- coding: utf-8 -*- # # spikeval - plot.plot_cluster.py # # Philipp Meier <pmeier82 at googlemail dot com> # 2012-08-27 # """scatter plot for cluster data""" __docformat__ = 'restructuredtext' __all__ = ['cluster'] ##---IMPORTS from matplotlib.patches import Ellipse from .common import COLOURS, gen_fig ##---FUNCTION def cluster(data, data_dim=(0, 1), plot_mean=True, colours=None, title=None, xlabel=None, ylabel=None): """plot a set of clusters with different colors each :type data: object :param data: Preferably a dictionary with ndarray entries. :type data_dim: tuple :param data_dim: A 2-tuple giving the dimension (entries per datapoint/ columns) to use for the scatter plot of the cluster. Default=(0,1) :type plot_mean: bool or float :param plot_mean: If False, do nothing. If True or positive integer, plot the cluster means with a strong cross, if positive float, additionally plot a unit circle of that radius (makes sense for prewhitened pca data), thus interpreting the value as the std of the cluster. Default=True :type colours: list :param colours: List of colors in any matplotlib conform colour representation. Default=None :type title: str :param title: A title for the plot. No title if None or ''. :type xlabel: str :param xlabel: A label for the x-axis. No label if None or ''. :type ylabel: str :param ylabel: A label for the y-axis. No label if None or ''. :rtype: matplotlib.figure.Figure """ # init and checks col_lst = colours or COLOURS fig = gen_fig() ax = fig.add_subplot(111) if not isinstance(data, dict): data = {'0': data} # str(0) ?? # plot single cluster members col_idx = 0 for k in sorted(data.keys()): ax.plot( data[k][:, data_dim[0]], data[k][:, data_dim[1]], marker='.', lw=0, c=col_lst[col_idx % len(col_lst)]) col_idx += 1 # plot cluster means if plot_mean is not False: col_idx = 0 for k in sorted(data.keys()): mean_k = data[k][:, data_dim].mean(axis=0) ax.plot( [mean_k[0]], [mean_k[1]], lw=0, marker='x', mfc=col_lst[col_idx % len(col_lst)], ms=10, mew=1, mec='k') # plot density estimates if plot_mean is not True: ax.add_artist( Ellipse( xy=mean_k, width=plot_mean * 2, height=plot_mean * 2, facecolor='none', edgecolor=col_lst[col_idx % len(col_lst)])) col_idx += 1 # fancy stuff if title is not None: ax.set_title(title) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) # return return fig ##---MAIN if __name__ == '__main__': pass
mit
lkilcommons/atmodweb
atmodweb/atmodbackend.py
1
64472
import sys import os import random import matplotlib.widgets as widgets import matplotlib.axes #Main imports import numpy as np #import pandas as pd import sys, pdb, textwrap, itertools import datetime #sys.path.append('/home/liamk/mirror/Projects/geospacepy') #import special_datetime, lmk_utils, satplottools #Datetime conversion class from matplotlib.figure import Figure import matplotlib as mpl import textwrap #for __str__ of ModelRun from mpl_toolkits.basemap import Basemap from matplotlib import ticker from matplotlib.colors import Normalize, LogNorm import msispy from collections import OrderedDict import logging logging.basicConfig(level=logging.INFO) try: from cStringIO import StringIO except ModuleNotFoundError: from io import StringIO class RangeCheckOD(OrderedDict): """ OrderedDict subclass that ensures that keys that are numerical are within a certain range """ def __init__(self,allowed_range_peer=None): super(RangeCheckOD,self).__init__() self.log = logging.getLogger(self.__class__.__name__) self.allowed_range = dict() #allow on-the-fly copy of allowed range values from another object self.allowed_range_peer = allowed_range_peer def type_sanitize(self,key,val): """Check that the value is of the same general type as the previous value""" oldval = self[key] for t in [list,dict,float,int,str]: if isinstance(oldval,t) and not isinstance(val,t): self.log.debug("Old value for %s was a %s, and %s is not...leaving old value" % (key,str(t),str(val))) return oldval else: return val return val def range_correct(self,key,val): """Check that the value about to be set at key, is within the specified allowed_range for that key""" if isinstance(val,np.ndarray): outrange = np.logical_or(val < float(self.allowed_range[key][0]),val > float(self.allowed_range[key][1])) val[outrange] = np.nan #if np.flatnonzero(outrange).shape[0] > 1: #self.log.debug("%d values were out of range for key %s allowed_range=(%.3f-%.3f)" %(np.flatnonzero(outrange).shape[0], # key,self.allowed_range[key][0],self.allowed_range[key][1])) #else: #self.log.debug("No values were out of range for key %s" % (key)) elif isinstance(val,list): for k in range(len(val)): v = val[k] if v > self.allowed_range[key][1]: self.log.warn("Attempting to set %dth element of key %s to a value greater than allowed [%s]. setting to max allowed [%s]" % (k, key,str(v),str(self.allowed_range[key][1]))) val[k] = self.allowed_range[key][1] elif v < self.allowed_range[key][0]: self.log.warn("Attempting to set %dth element of key %s to a value greater than allowed [%s] set to min allowed [%s]" % (k, key,str(v),str(self.allowed_range[key][0]))) val[k] = self.allowed_range[key][0] elif v >= self.allowed_range[key][0] and v <= self.allowed_range[key][1]: pass else: raise RuntimeError("Nonsensical value in range_correct for index %d of %s: %s, allowed range is %s" % (int(k),key,str(val),str(self.allowed_range[key]))) else: #assume it's a scalar value if val > self.allowed_range[key][1]: self.log.warn("Attempting to set key %s to a value greater than allowed [%s],setting to max allowed [%s]" % (key,str(val),str(self.allowed_range[key][1]))) val = self.allowed_range[key][1] elif val < self.allowed_range[key][0]: self.log.warn("Attempting to set key %s to a value greater than allowed [%s],setting to min allowed [%s]" % (key,str(val),str(self.allowed_range[key][0]))) val = self.allowed_range[key][0] elif val >= self.allowed_range[key][0] and val <= self.allowed_range[key][1]: pass else: raise RuntimeError("Nonsensical value in range_correct for %s: %s, allowed values: %s" % (key,str(val),str(self.allowed_range[key]))) return val def __setitem__(self,key,val): """Check that we obey the allowed_range""" if key in self: val = self.type_sanitize(key,val) if self.allowed_range_peer is not None: self.allowed_range = getattr(self.allowed_range_peer,'allowed_range') if key not in self.allowed_range: pass #self.log.warn("ON SETTING %s has no allowed_range. Skipping range check" %(key)) else: val = self.range_correct(key,val) OrderedDict.__setitem__(self,key,val) def __getitem__(self,key): item = OrderedDict.__getitem__(self,key) #if key not in self.allowed_range: #self.log.warn("ON GETTING %s has no allowed_range." %(key)) return item def copyasdict(self): newdict = dict() for key in self: newdict[key]=OrderedDict.__getitem__(self,key) return newdict def __call__(self): pass class ModelRunOD(RangeCheckOD): """ Range Checking OrderedDict subclass for storing values for variables and drivers. It also stores an additional dict of units for each driver, and allowed values for each driver """ def __init__(self): super(ModelRunOD,self).__init__() self.log = logging.getLogger(self.__class__.__name__) self.descriptions = dict() self.units = dict() def __setitem__(self,key,val): """Check that we obey the allowed_range""" RangeCheckOD.__setitem__(self,key,val) if key not in self.units: self.units[key]=None # self.log.warn("ON SETTING %s has no units. Setting to None" %(key)) if key not in self.descriptions: self.descriptions[key]=None # self.log.warn("ON SETTING %s has no description. Setting to None" %(key)) def __getitem__(self,key): item = RangeCheckOD.__getitem__(self,key) #if key not in self.allowed_range: # self.log.warn("ON GETTING %s has no allowed_range." %(key)) #if key not in self.descriptions: # self.log.warn("ON GETTING %s has no description." %(key)) #if key not in self.units: # self.log.warn("ON GETTING %s has no units." %(key)) return item class ModelRunDriversOD(ModelRunOD): def __init__(self): super(ModelRunDriversOD,self).__init__() self.awesome = True class ModelRunVariablesOD(ModelRunOD): def __init__(self): super(ModelRunVariablesOD,self).__init__() #Add functionality for variable limits self.lims = RangeCheckOD(allowed_range_peer=self) self._lims = RangeCheckOD(allowed_range_peer=self) #allowed_range_peer links allowed_range dictionaries in lims to main allowed_range self.npts = dict() class ModelRun(object): """ The ModelRun class is a generic class for individual calls to atmospheric models. The idea is to have individual model classes subclass this one, and add their specific run code to the 'populate method'. **The assumptions are:** * All atmospheric models take as input latitude, longitude and altitude * User will want data on a 2-d rectangular grid or as column arrays **The parameters used:** * **xkey** - string or None The key into vars,lims, and npts for the variable that represents the 1st dimension of the desired output (x-axis) * **ykey** - string or None The key into vars,lims, and npts for the variable that represents the 2nd dimension of the desired output (y-axis) * **vars** - an OrderedDict (Ordered because it's possible user will always want to iterate in a predetermined order over it's keys) #. The keys of vars are the names of the data stored in it's values. #. vars always starts with keys 'Latitude','Longitude', and 'Altitude' * **lims** - an OrderedDict The range [smallest,largest] of a particular variable that will be used determine: #. The range of values of the independant variables (i.e. Latitude, Longitude or Altitude) the model will generate results format #. The range of values the user could expect a particular output variable to have (i.e to set axes bounds) * **npts** - an OrderedDict #. The number of distinct values between the associated lims of particular input variable that will be passed to the model i.e. (how the grid of input locations will be shaped and how big it will be) * **drivers** - a Dictionary Additional inputs that will be passed to the model (using **self.drivers in the model call). Inititialized to empty, set via the subclass Subclass best practices: * In the subclass __init__ method, after calling the superclass **__init__** method, the user should: * Set any keys in the self.drivers dict that will then be passed a keyword arguments to the model wrapper * In the populate method, after calling the superclass **populate** method, the user should: * Call the model using the flattened latitude, longitude, and altitude arrays prepared in the superclass method, and pass the drivers dict as keyword arguments. **Example for horizontal wind model subclass:** .. code-block:: python def __init__(self): #This syntax allows for multiple inheritance, #we don't use it, but it's good practice to use this #instead of ModelRun.__init__() super(HWMRun,self).__init__() #ap - float # daily AP magnetic index self.drivers['dt']=datetime.datetime(2000,6,21,12,0,0) self.drivers['ap']=None def populate(): super(HWMRun,self).populate() self.winds,self.drivers = hwmpy.hwm(self.flatlat,self.flatlon,self.flatalt,**self.drivers) #Now add all the zonal and meridional winds to the dictionary for w in self.winds: self.vars[w] = self.winds[w] #Now make everything into the appropriate shape, if were #expecting grids. Otherwise make everything into a column vector if self.shape is None: self.shape = (self.npts,1) for v in self.vars: self.vars[v] = np.reshape(self.vars[v],self.shape) if v not in ['Latitude','Longitude','Altitude']: self.lims[v] = [np.nanmin(self.vars[v].flatten()),np.nanmax(self.vars[v].flatten())] **Operation works like this:** * Assume that we have a model run subclass call MyModel * Assume we have an instance of MyModel called mm #. User (or calling method) decides that they want: * To plot a GLOBAL grid at an altitude of 110km that is Latitude (50 pts) vs. Longitude (75 pts) vs. Model output #. They set mm.npts['Latitude']=50 and mm.npts['Longitude']=75 to tell the object what the size of the grid is #. They call mm.set_x('Latitude'), and mm.set_y('Longitude') to set which dimensions correspond to which variables #. Since the model also requires an altitude value, they must set mm.vars['Altitude']=110 #. Since they want the grid to be global they set mm.lims['Latitude']=[-90.,90.] and mm.lims['Longitude']=[-180.,180.] #. Then they call mm.populate() to call the model for their desired grid **Calling:** * Getting a value from the ModelRun instance as if it were a dictionary i.e. mm['Latitude'], returns data,limits for the variable 'Latitude'. Handles differencing any non position variables with another ModelRun instance at mm.peer if mm.peer is not None **Peering:** * the peer parameter can be set to another ModelRun instance to return difference between variables in two runs TODO: Document peering """ def __init__(self): #Attributes which control how we do gridding #if only one is > 1, then we do vectors # self.modelname = None self.log = logging.getLogger(self.__class__.__name__) #Determines grid shape self.xkey = None self.ykey = None #the cannocical 'vars' dictionary, which has #keys which are used to populate the combobox widgets, self.vars = ModelRunVariablesOD() self.vars['Latitude']=None self.vars['Longitude']=None self.vars['Altitude']=None #if two are > 1, then we do a grid self.vars.npts['Latitude']=1 self.vars.npts['Longitude']=1 self.vars.npts['Altitude']=1 #Also set up allowed_ranges, so that we can't accidently #set latitude to be 100 or longitude to be -1000 self.vars.allowed_range['Latitude'] = [-90.,90.] self.vars.allowed_range['Longitude'] = [-180.,180.] self.vars.allowed_range['Altitude'] = [0.,1500.] #Set up the initial ranges for data grid generation self.vars.lims['Latitude']=[-90.,90.] self.vars.lims['Longitude']=[-180.,180.] self.vars.lims['Altitude']=[0.,400.] #the _lims dictionary is very similar to the lims, but it is NOT TO BE MODIFIED #by any outside objects. It records the max and min values of every variable and is #set when the finalize method is called. The reason it is included at all is so that #if the user (or another method) changes the lims, we can revert back to something if they #want that. for k in self.vars.lims: self.vars._lims[k] = self.vars.lims[k] #WTF is this???? #self.vars.allowed_range[k] = self.vars.lims[k] #The units dictionary simply holds the unit for a variable self.vars.units['Latitude'] = 'deg' self.vars.units['Longitude'] = 'deg' self.vars.units['Altitude'] = 'km' #The drivers dictionary take input about whatever solar wind parameters drive the model #These must be either scalars (floats) or lists. #The keys to this dict must be keyword argument names in the model call self.drivers = ModelRunDriversOD() self.log.debug("Class of drivers dict is %s" % (self.drivers.__class__.__name__)) self.shape = None #Tells how to produce gridded output, defaults (if None) to use column vectors self.totalpts = None #Tells how many total points self.peer = None #Can be either None, or another ModelRun, allows for comparing two runs def autoscale_all_lims(self): for key in self.vars.lims: self.autoscale_lims(key) def autoscale_lims(self,key): if key in self.vars.lims and key in self.vars._lims: self.log.info("Restoring original bounds (was %s, now %s) for %s" % (str(self.vars.lims[key]),str(self.vars._lims[key]),key)) self.vars.lims[key] = self.vars._lims[key] else: raise ValueError("Key %s is not a valid model run variable" % (key)) def hold_constant(self,key): """Holds an ephem variable constant by ensuring it's npts is 1s""" self.log.info("Holding %s constant" % (key)) if key in ['Latitude','Longitude','Altitude']: self.vars.npts[key] = 1 else: raise RuntimeError('Cannot hold %s constant, not a variable!'%(key)) def set_x(self,key): """Sets an emphem variable as x""" self.log.info("X is now %s" % (key)) if key in ['Latitude','Longitude','Altitude']: self.xkey = key else: raise RuntimeError('Cannot set %s as x, not a variable!'%(key)) def set_y(self,key): """Sets an emphem variable as y""" self.log.info("Y is now %s" % (key)) if key in ['Latitude','Longitude','Altitude']: self.ykey = key else: raise RuntimeError('Cannot set %s as y, not a variable!'%(key)) def add_compound_var(self,varname,expr,description=None,units=None): """ Create a compound variable that incorporates other variables Inputs: expr, str: A (python) mathematical expression involving the keys of other variables defined in self.vars. Those variables must have been defined before you add a compound variable involving them. lims, tup or list: (min,max) for plots of the variable allowed_range, tup or list: (min possible value,max possible value) #--Not yet added-- #Optional arugments: # Arbitrary key-value pairs which can also be used to specify named # constants (i.e. mu0=4*np.pi*1e-7 for the permittivity of free space) """ self.log.info('Begining addition of compound variable %s with expression %s' % (varname,expr)) #Sanitize the expression #If we need numpy expressions universal_locals = {} if 'np.' in expr: universal_locals['np'] = np #Build up a list of local variables for when we eval the compound variable eval_locals = OrderedDict() #Make default descriptions and units strings unitstr = expr descstr = expr #Parse starting with the longest variable names, #this prevents names in the expression which contain other variables #i.e. N2 will be parsed out before N vars_by_longest_first = [key for key in self.vars.keys()] vars_by_longest_first = sorted(vars_by_longest_first, key=lambda a: len(a)) parsed_expr = expr for var in vars_by_longest_first: if var in parsed_expr: eval_locals[var]=self.vars[var] #Will be an np array #Replace the string representing the variable in the expression with #the value of the unit/decription of the that variable #i.e. O2/N2 -> [#/cm^3/#/cm^3] and [Molecular Oxygen Number Density/Molecular Nitrogen Number Density] unitstr = unitstr.replace(var,self.vars.units[var]) descstr = descstr.replace(var,self.vars.descriptions[var]) parsed_expr.replace(var,'') #It's possible for a variable not to have an allowed_range. If any are missing, then default to no allowed range #for the compound variable do_allowed_range = all([hasattr(varRangeCheckOD,'allowed_range') for varRangeCheckOD in [self.vars[key] for key in eval_locals]]) if do_allowed_range: #Evaluate the expression on all possible combinations of limits/ranges and pick #the smallest/largest to be the limits/ranges for the compound variable indcombos = itertools.combinations_with_replacement((0,1),len(eval_locals.keys())) range_results = [] for combo in indcombos: lim_locals,range_locals = dict(),dict() for var,cind in zip(eval_locals.keys(),combo): range_locals[var] = self.vars.allowed_range[var][cind] if do_allowed_range: range_results.update(universal_locals) range_results.append(eval(expr,range_locals)) self.log.debug('Among vars %s combo %s resulted in \nlimit result: %s\nrange result: %s' % (str(eval_locals.keys()), str(combo),str(lim_results[-1]),'none' if not do_allowed_range else str(range_results[-1]))) #Check for NaN values in result eval_locals.update(universal_locals) compounddata = eval(expr,eval_locals) compoundnnan = np.count_nonzero(np.logical_not(np.isfinite(compounddata))) if compoundnnan > 0: self.log.warn('Warning %d/%d NaN outputs were found in output from formula %s' % (compoundnnan,len(compounddata),expr)) self.vars[varname] = compounddata self.vars.units[varname] = unitstr if units is None else units self.vars.descriptions[varname] = descstr if description is None else description self.vars.lims[varname] = [np.nanmin(compounddata),np.nanmax(compounddata)] self.vars._lims[varname] = [np.nanmin(compounddata),np.nanmax(compounddata)] if do_allowed_range: self.vars.allowed_range[varname] = [np.nanmin(range_results),np.nanmax(range_results)] self.log.debug('Added compound variable %s with limits: %s,\n allowed_range: %s,\n units: %s,\n description: %s' % (varname, str(self.vars.lims[varname]),'N/A' if not do_allowed_range else str(self.vars.allowed_range[varname]), str(self.vars.units[varname]),str(self.vars.descriptions[varname]))) def as_csv(self,varkeys): """ Serialize a list of variables as a CSV or JSON string """ #Make sure that we don't have any iterables as members of varkeys #(happens when plotting multiple variables on same axes) flatkeys = [] for v in varkeys: if isinstance(v,list) or isinstance(v,tuple): flatkeys += [vv for vv in v] else: flatkeys.append(v) bigheader = str(self).replace('|','\n') bigheader += '\n' onelineheader='' dats,lims,units,desc = [],[],[],[] for i,v in enumerate(flatkeys): var,lim,unit,desc = self[v] dats.append(var.flatten().reshape((-1,1))) #as a column bigheader += "%d - %s (%s)[%s]\n" % (i+1,v,desc,unit) onelineheader += v+',' onelineheader = onelineheader[:-1] data = np.column_stack(dats) fakefile = StringIO() np.savetxt(fakefile,data,delimiter=',',fmt='%10.5e',header=onelineheader,comments='') return fakefile.getvalue(),bigheader def populate(self): """Populates itself with data""" #Make sure that everything has the same shape (i.e. either a grid or a vector of length self.npts) self.log.info("Now populating model run") #Count up the number of independant variables nindependent=0 for key in self.vars.npts: if self.vars.npts[key] > 1: nindependent+=1 self.shape = (self.vars.npts[key],1) if nindependent>1: #If gridding set the shape self.shape = (int(self.vars.npts[self.xkey]),int(self.vars.npts[self.ykey])) #Populate the ephemeris variables as vectors for var in ['Latitude','Longitude','Altitude']: if self.vars.npts[var]>1: self.vars[var] = np.linspace(self.vars.lims[var][0],self.vars.lims[var][1],self.vars.npts[var]) self.log.debug("Generating %d %s points from %.3f to %.3f" % (self.vars.npts[var],var,self.vars.lims[var][0],self.vars.lims[var][1])) else: if self.vars[var] is not None: print(self.shape,self.vars[var]) self.vars[var] = np.ones(self.shape)*self.vars[var] else: raise RuntimeError('Set %s to something first if you want to hold it constant.' % (var)) if nindependent>1: x = self.vars[self.xkey] y = self.vars[self.ykey] X,Y = np.meshgrid(x,y) self.vars[self.xkey] = X self.vars[self.ykey] = Y #Now flatten everything to make the model call self.flatlat=self.vars['Latitude'].flatten() self.flatlon=self.vars['Longitude'].flatten() self.flatalt=self.vars['Altitude'].flatten() self.totalpts = len(self.flatlat) def finalize(self): """ Call after populate to finish shaping the data and filling the lims dict """ #Now make everything into the appropriate shape, if were #expecting grids. Otherwise make everything into a column vector if self.shape is None: self.shape = (self.npts,1) for v in self.vars: #Handle the potential for NaN or +-Inf values good = np.isfinite(self.vars[v]) nbad = np.count_nonzero(np.logical_not(good)) if nbad >= len(self.vars[v])/2: self.log.warn("Variable %s had more than half missing or infinite data!" % (str(v))) self.vars[v] = np.reshape(self.vars[v],self.shape) self.vars._lims[v] = [np.nanmin(self.vars[v].flatten()),np.nanmax(self.vars[v].flatten())] if v not in ['Latitude','Longitude','Altitude']: #Why do we do this again? Why not the positions? Because the positions create the grid self.vars.lims[v] = [np.nanmin(self.vars[v].flatten()),np.nanmax(self.vars[v].flatten())] def __str__(self): """ Gives a description of the model settings used to make this run """ mystr = "Model: %s|" % (self.modelname) if self.xkey is not None: mystr = mystr+"Dimension 1 %s: [%.3f-%.3f][%s]|" % (self.xkey,self.vars.lims[self.xkey][0],self.vars.lims[self.xkey][1],self.vars.units[self.xkey]) if self.ykey is not None: mystr = mystr+"Dimension 2 %s: [%.3f-%.3f][%s]|" % (self.ykey,self.vars.lims[self.ykey][0],self.vars.lims[self.ykey][1],self.vars.units[self.ykey]) if 'Latitude' not in [self.xkey,self.ykey]: mystr = mystr+"Latitude held constant at %.3f|" % (self.vars['Latitude'].flatten()[0]) #By this point they will be arrays if 'Longitude' not in [self.xkey,self.ykey]: mystr = mystr+"Longitude held constant at %.3f|" % (self.vars['Longitude'].flatten()[0]) if 'Altitude' not in [self.xkey,self.ykey]: mystr = mystr+"Altitude held constant at %.3f|" % (self.vars['Altitude'].flatten()[0]) for d in self.drivers: mystr = mystr+"Driver %s: %s[%s]|" % (d,str(self.drivers[d]),str(self.drivers.units[d])) mystr = mystr+"Generated at: %s" % (datetime.datetime.now().strftime('%c')) return mystr def __getitem__(self,key): """Easy syntax for returning data""" if hasattr(key, '__iter__') and not isinstance(key,str): #If key is a sequence of some kind self.log.debug("Getting multiple variables/limits %s" % (str(key))) var = [] lim = [] unit = [] desc = [] for k in key: v,l,u,d = self.__getitem__(k) var.append(v) lim.append(l) unit.append(u) desc.append(d) return var,lim,unit,desc else: if self.peer is None: self.log.debug("Getting variables/limits/units/description for %s" % (key)) return self.vars[key],self.vars.lims[key],self.vars.units[key],self.vars.descriptions[key] else: if key not in ['Latitude','Longitude','Altitude']: self.log.info( "Entering difference mode for var %s" % (key)) #Doesn't make sense to difference locations mydata,mylims = self.vars[key],self.vars.lims[key] peerdata,peerlims = self.peer[key] #oh look, recursion opportunity! newdata = mydata-peerdata newlims = (np.nanmin(newdata.flatten()),np.nanmax(newdata.flatten())) newunits = 'diff(%s)' % str(self.vars.units[key]) newdesc = self.vars.descriptions[key]+"(difference)" #newlims = lim_pad(newlims) return newdata,newlims,newunits,newdesc else: return self.vars[key],self.vars.lims[key] # class IRIRun(ModelRun): # """ Class for individual calls to IRI """ # #import iripy # def __init__(self): # """Initialize HWM ModelRun Subclass""" # super(IRIRun,self).__init__() # #HWM DRIVERS # #ap - float # # daily AP magnetic index # #Overwrite the superclass logger # self.log = logging.getLogger(__name__) # self.modelname = "International Reference Ionosphere 2011 (IRI-2011)" # self.modeldesc = textwrap.dedent(""" # The International Reference Ionosphere (IRI) is an international project sponsored by # the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI). # These organizations formed a Working Group (members list) in the late sixties to produce an # empirical standard model of the ionosphere, based on all available data sources (charter ). # Several steadily improved editions of the model have been released. For given location, time # and date, IRI provides monthly averages of the electron density, electron temperature, ion temperature, # and ion composition in the altitude range from 50 km to 2000 km. Additionally parameters given by IRI # include the Total Electron Content (TEC; a user can select the starting and ending height of the integral), # the occurrence probability for Spread-F and also the F1-region, and the equatorial vertical ion drift. # THE ALTITUDE LIMITS ARE: LOWER (DAY/NIGHT) UPPER *** # ELECTRON DENSITY 60/80 KM 1000 KM *** # TEMPERATURES 120 KM 2500/3000 KM *** # ION DENSITIES 100 KM 1000 KM *** # (text from: http://iri.gsfc.nasa.gov/) # """) # self.drivers['dt']=datetime.datetime(2000,6,21,12,0,0) # self.drivers.allowed_range['dt'] = [datetime.datetime(1970,1,1),datetime.datetime(2015,4,29,23,59,59)] # self.drivers.units['dt'] = 'UTC' # self.drivers['f107']=None # self.drivers.allowed_range['f107'] = [65.,350.] # self.drivers.units['f107'] = 'SFU' #No units # self.drivers.descriptions['f107'] = 'Solar 10.7 cm Flux' # self.drivers['f107_81']=None # self.drivers.allowed_range['f107_81'] = [65.,350.] # self.drivers.units['f107_81'] = 'SFU' #No units # self.drivers.descriptions['f107_81'] = '81-Day Average Solar 10.7 cm Flux' # self.vars.allowed_range['Altitude'] = [50.,1500.] # #Set a more sane default grid range # self.vars.lims['Altitude'] = [50.,250.] # def populate(self): # super(IRIRun,self).populate() # self.log.info( "Now runing IRI2011 for %s...\n" % (self.drivers['dt'].strftime('%c'))) # self.log.info( "Driver dict is %s\n" % (str(self.drivers))) # #Call the F2Py Wrapper on the Fortran IRI # outdata,descriptions,units,outdrivers = iripy.iri_call(self.flatlat,self.flatlon,self.flatalt, # self.drivers['dt'],f107=self.drivers['f107'],f107_81=self.drivers['f107_81']) # #Copy the output drivers into the drivers dictionary # for d in outdrivers: # self.drivers[d] = outdrivers[d] if isinstance(outdrivers[d],datetime.datetime) else float(outdrivers[d]) # #Now add all ionospheric variables (density, temperature) to the dictionary # #Also add the units, and descriptions # for var in outdata: # self.vars[var] = outdata[var] # self.vars.units[var] = units[var] # self.vars.descriptions[var] = descriptions[var] # #Finish reshaping the data # self.finalize() # class HWMRun(ModelRun): # """ Class for individual calls to HWM """ # #import hwmpy # def __init__(self): # """Initialize HWM ModelRun Subclass""" # super(HWMRun,self).__init__() # #HWM DRIVERS # #ap - float # # daily AP magnetic index # #Overwrite the superclass logger # self.log = logging.getLogger(__name__) # self.modelname = "Horizontal Wind Model 07 (HWM07)" # self.drivers['dt']=datetime.datetime(2000,6,21,12,0,0) # self.drivers.allowed_range['dt'] = [datetime.datetime(1970,1,1),datetime.datetime(2015,4,29,23,59,59)] # self.drivers.units['dt'] = 'UTC' # self.drivers['ap']=None # self.drivers.allowed_range['ap'] = [0,400] # self.drivers.units['ap'] = 'unitless' #No units # self.vars.allowed_range['Altitude'] = [100.,500.] # self.vars.lims['Altitude'] = [100.,500.] # def populate(self): # super(HWMRun,self).populate() # self.log.info( "Now runing HWM07 for %s...\n" % (self.drivers['dt'].strftime('%c'))) # self.log.info( "Driver dict is %s\n" % (str(self.drivers))) # #Call the F2Py Wrapper on the Fortran HWM07 # self.winds,outdrivers = hwmpy.hwm(self.flatlat,self.flatlon,self.flatalt,**self.drivers) # #Copy the output drivers into the drivers dictionary # for d in outdrivers: # self.drivers[d] = outdrivers[d] # #Now add all the zonal and meridional winds to the dictionary # #Also add the units # for w in self.winds: # self.vars[w] = self.winds[w] # self.vars.units[w] = 'km/s' # #Finish reshaping the data # self.finalize() #MSIS DRIVERS #f107 - float # daily f10.7 flux for previous day #ap_daily - float # daily AP magnetic index #f107a - optional,float # 81 day average of f10.7 flux (centered on date) #ap3 - optional, float # 3 hour AP for current time #ap33 - optional, float # 3 hour AP for current time - 3 hours #ap36 - optional, float # 3 hour AP for current time - 6 hours #ap39 - optional, float # 3 hour AP for current time - 9 hours #apa1233 - optional, float # Average of eight 3 hour AP indicies from 12 to 33 hrs prior to current time #apa3657 # Average of eight 3 hour AP indices from 36 to 57 hours prior to current time class MsisRun(ModelRun): """ Class for individual calls to NRLMSISE00 """ import msispy def __init__(self): """ModelRun subclass which adds MSIS to GUI""" super(MsisRun,self).__init__() #Overwrite the superclass logger self.log = logging.getLogger(self.__class__.__name__) self.modelname = "NRLMSISE00" self.modeldesc = textwrap.dedent(""" This version of the venerable mass-spectrometer and incoherent scatter radar model also incorporates mass density data derived from drag measurements and orbit determination. It includes the same database as the Jacchia family of models, and has been seen to outperform both the older MSIS90 and the ubiquitous Jacchia-70. It's purpose is to specify the mass-density, temperature and neutral species composition from the ground to the bottom of the exosphere (around 1400km altitude). It provides number densities for the major neutral atmosphere constituents: atomic and molecular nitrogen and oxygen, argon, helium and hydrogen. Additionally it includes a species referred to as anomalous oxygen which includes O+ ion and hot atomic oxygen, which was added to model these species' significant contributions to satellite drag at high latitude and altitude, primarily during the summer months [picone]. The model inputs are the location, date, and time of day, along with the 10.7 cm solar radio flux (F10.7) and the AP planetary activity index. NOTES ON INPUT VARIABLES: C UT, Local Time, and Longitude are used independently in the C model and are not of equal importance for every situation. C For the most physically realistic calculation these three C variables should be consistent (STL=SEC/3600+GLONG/15). C The Equation of Time departures from the above formula C for apparent local time can be included if available but C are of minor importance. c C F107 and F107A values used to generate the model correspond C to the 10.7 cm radio flux at the actual distance of the Earth C from the Sun rather than the radio flux at 1 AU. The following C site provides both classes of values: C ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/ """) self.drivers['dt']=datetime.datetime(2000,6,21,12,0,0) self.drivers.allowed_range['dt'] = [datetime.datetime(1970,1,1,0,0,0),msispy.latest_f107ap_datetime] self.drivers.descriptions['dt'] = 'Date and time of model run' self.drivers['f107']=None self.drivers.allowed_range['f107'] = [65.,350.] self.drivers.units['f107'] = 'SFU' self.drivers.descriptions['f107'] = 'Solar 10.7 cm Flux' self.drivers['ap_daily']=None self.drivers.allowed_range['ap_daily'] = [0.,400.] self.drivers.units['ap_daily'] = 'unitless' #No units self.drivers.descriptions['ap_daily'] = 'AP planetary activity index' self.drivers['f107a']=None self.drivers.allowed_range['f107a'] = [65.,350.] self.drivers.units['f107a'] = 'SFU' #10^-22 W/m2/Hz' self.drivers.descriptions['f107a'] = '81-day Average Solar 10.7 cm Flux' #Warning: if you don't define this you will be restricted to #0 to 400 km, which is the default set in the above function self.vars.allowed_range['Altitude'] = [0.,1000.] def populate(self): super(MsisRun,self).populate() self.log.info( "Now runing NRLMSISE00 for %s...\n" % (self.drivers['dt'].strftime('%c'))) self.log.info( "Driver dict is %s\n" % (str(self.drivers))) self.species,self.t_exo,self.t_alt,units,descriptions,outdrivers = msispy.msis(self.flatlat,self.flatlon,self.flatalt,**self.drivers) #Copy the output drivers into the drivers dictionary for d in outdrivers: self.drivers[d] = outdrivers[d] #Now add temperature the variables dictionary self.vars['T_exo'] = self.t_exo self.vars.units['T_exo'] = 'K' self.vars.descriptions['T_exo'] = 'Exospheric Temperature' self.vars['Temperature'] = self.t_alt self.vars.units['Temperature'] = 'K' #Now add all of the different number and mass densities to to the vars dictionary for s in self.species: self.vars[s] = self.species[s] if s == 'mass': self.vars.units[s] = 'g/cm^3' self.vars.descriptions[s] = 'Mass Density' else: self.vars.units[s] = '1/cm^3' self.vars.descriptions[s] = 'Number Density of %s' % (s) self.finalize() self.add_compound_var('ON2ratio','O/N2',units='unitless',description='Atomic Oxygen/Molecular Nitrogen Ratio') class ModelRunner(object): """ Makes model calls """ def __init__(self,canvas=None,firstmodel="msis"): self.log = logging.getLogger(self.__class__.__name__) self.cv = canvas self.model = firstmodel #Init the runs list (holds each run in sequence) self.runs = [] #Start with a blank msis run self.init_nextrun() self.nextrun.drivers['dt'] = datetime.datetime(2000,6,21,12,0,0) #Summer solstice #Set counters self.n_total_runs=0 self.n_max_runs=10 self._lastind=-1 #The index of the current 'previous' model self._differencemode = False # Init the property #Create the dictionary that stores the settings for the next run @property def lastind(self): return self._lastind @lastind.setter def lastind(self, value): if self.lastind < 0 and self.lastind >= -1*len(self.runs): self._lastind = value else: self.log.warn("Attempted to set model history index to %s, which is invalid." % ( str(value))) def init_nextrun(self): if self.model.lower() == 'msis': self.nextrun = MsisRun() #elif self.model.lower() == 'hwm': # self.nextrun = HWMRun() #elif self.model.lower() == 'iri': # self.nextrun = IRIRun() else: raise ValueError("%s is not a valid model to run" % (self.model)) def __call__(self,propagate_drivers=False): #Add to runs list, create a new nextrun self.runs.append(self.nextrun) self.init_nextrun() if propagate_drivers: for key in self.runs[-1].drivers: if key in self.nextrun.drivers and self.nextrun.drivers[key] is None: self.nextrun.drivers[key] = self.runs[-1].drivers[key] if self.differencemode: #Update the peering self.nextrun.peer = self.runs[-1].peer else: for run in self.runs: run.peer = None self.n_total_runs+=1 self.log.info( "Model run number %d added." % (self.n_total_runs)) if len(self.runs)>self.n_max_runs: del self.runs[0] self.log.info( "Exceeded total number of stored runs %d. Run %d removed" %(self.n_max_runs,self.n_total_runs-self.n_max_runs)) #Implement a simple interface for retrieving data, which is opaque to whether or now we're differencing #or which model we're using def __getitem__(self,key): """Shorthand for self.runs[-1][key], which returns self.runs[-1].vars[key],self.runs[-1].lims[key]""" return self.runs[self.lastind][key] def __setitem__(self,key,value): """Shorthand for self.nextrun[key]=value""" self.nextrun.key=value #Make a property for the difference mode turning on or off, which automatically updates the last run peer @property def differencemode(self): return self._differencemode @differencemode.setter def differencemode(self, boo): self.log.info( "Difference mode is now %s" % (str(boo))) if boo: self.nextrun.peer = self.runs[-1] else: self.nextrun.peer = None self._differencemode = boo class PlotDataHandler(object): def __init__(self,canvas,controlstate=None,plottype='line',cscale='linear',mapproj='moll'): """ Takes a singleMplCanvas instance to associate with and plot on """ self.canvas = canvas self.log = logging.getLogger(self.__class__.__name__) if controlstate is None: self.controlstate = canvas.controlstate #This is for atmodexplorer, where there's only one controlstate #and it's associated with the canvas else: self.controlstate = controlstate # This is for atmodweb, where the controlstate is associated with the synchronizer self.fig = canvas.fig self.ax = canvas.ax self.axpos = canvas.ax.get_position() pts = self.axpos.get_points().flatten() # Get the extent of the bounding box for the canvas axes self.cbpos = None self.cb = None self.map_lw=.5 #Map linewidth self.map = None #Place holder for map instance if we're plotting a map #The idea is to have all plot settings described in this class, #so that if we want to add a new plot type, we only need to modify #this class self.supported_projections={'mill':'Miller Cylindrical','moll':'Mollweide','ortho':'Orthographic'} self.plottypes = dict() self.plottypes['line'] = {'gridxy':False,'overplot_ready':True,'x_allowed':['all'],'y_allowed':['all'],'z_allowed':['none']} self.plottypes['pcolor'] = {'gridxy':True,'overplot_ready':False,'x_allowed':['position'],'y_allowed':['position'],'z_allowed':['notposition']} self.plottypes['map'] = {'gridxy':True,'overplot_ready':False,'x_allowed':['Longitude'],'y_allowed':['Latitude'],'z_allowed':['notposition']} if plottype not in self.plottypes: raise ValueError('Invalid plottype %s! Choose from %s' % (plottype,str(self.plottypes.keys()))) #Assign settings from input self.plottype = plottype self.mapproj = mapproj # Map projection for Basemap #Init the data variables self.clear_data() def caption(self): #Generates a description of the graph cap = "%s" % (str(self.xname) if not self.xlog else "log(%s)" % (str(self.xname))) cap = cap + " vs. %s" % (str(self.yname) if not self.ylog else "log(%s)" % (str(self.yname))) #if self.plottype == 'pcolor': # cap = "Pseudocolor plot of "+ cap + " vs. %s" % (str(self.zname) if not self.zlog else "log(%s)" % (str(self.zname))) if self.plottype == 'map': cap = "%s projection map of " % (self.supported_projections[self.mapproj])+ cap + \ " vs. %s" % (str(self.zname) if not self.zlog else "log(%s)" % (str(self.zname))) return cap def clear_data(self): self.log.info("Clearing PlotDataHandler data NOW.") self.x,self.y,self.z = None,None,None #must be np.array self.xname,self.yname,self.zname = None,None,None #must be string self.xbounds,self.ybounds,self.zbounds = None,None,None #must be 2 element tuple self.xlog, self.ylog, self.zlog = False, False, False self.xunits, self.yunits, self.zunits = None, None, None self.xdesc, self.ydesc, self.zdesc = None, None, None self.npts = None self.statistics = None # Information about each plotted data def associate_data(self,varxyz,vardata,varname,varbounds,varlog,multi=False,units=None,description=None): #Sanity check if not multi: thislen = len(vardata.flatten()) thisshape = vardata.shape else: thislen = len(vardata[0].flatten()) thisshape = vardata[0].shape #Make sure all the arguments have same length, even if left as default if not hasattr(units,'__iter__') and not isinstance(units,str) : #if it isn't a list, make it one units = [units for i in range(len(vardata))] if not hasattr(description,'__iter__') and not isinstance(description,str): #if it isn't a list, make it one description = [description for i in range(len(vardata))] #Check total number of points if self.npts is not None: if thislen != self.npts: raise RuntimeError('Variable %s passed for axes %s had wrong flat length, got %d, expected %d' % (varname,varaxes, thislen,self.npts)) #Check shape for v in [self.x[0] if self.multix else self.x,self.y[0] if self.multiy else self.y,self.z]: if v is not None: if v.shape != thisshape: raise RuntimeError('Variable %s passed for axes %s had mismatched shape, got %s, expected %s' % (varname,varaxes, str(thisshape),str(v.shape))) #Parse input and assign approriate variable if varxyz in ['x','X',0,'xvar']: self.x = vardata self.xname = varname self.xbounds = varbounds self.xlog = varlog self.xmulti = multi self.xunits = units self.xdesc = description elif varxyz in ['y','Y',1,'yvar']: self.y = vardata self.yname = varname self.ybounds = varbounds self.ylog = varlog self.ymulti = multi self.yunits = units self.ydesc = description elif varxyz in ['z','Z',2,'C','c','zvar']: self.z = vardata self.zname = varname self.zbounds = varbounds self.zlog = varlog self.zunits = units self.zdesc = description else: raise ValueError('%s is not a valid axes for plotting!' % (str(varaxes))) def compute_statistics(self): self.statistics = OrderedDict() if self.plottype=='line': if not self.xmulti: self.statistics['Mean-%s'%(self.xname)]=np.nanmean(self.x) self.statistics['Median-%s'%(self.xname)]=np.median(self.x) self.statistics['StDev-%s'%(self.xname)]=np.nanstd(self.x) else: for n in range(len(self.x)): self.statistics['Mean-%s'%(self.xname[n])]=np.nanmean(self.x[n]) self.statistics['Median-%s'%(self.xname[n])]=np.median(self.x[n]) self.statistics['StDev-%s'%(self.xname[n])]=np.nanstd(self.x[n]) if not self.ymulti: self.statistics['Mean-%s'%(self.yname)]=np.nanmean(self.y) self.statistics['Median-%s'%(self.yname)]=np.median(self.y) self.statistics['StDev-%s'%(self.yname)]=np.nanstd(self.y) else: for n in range(len(self.y)): self.statistics['Mean-%s'%(self.yname[n])]=np.nanmean(self.y[n]) self.statistics['Median-%s'%(self.yname[n])]=np.median(self.y[n]) self.statistics['StDev-%s'%(self.yname[n])]=np.nanstd(self.y[n]) #elif self.plottype=='map' or self.plottypes=='pcolor': elif self.plottype=='map': self.statistics['Mean-%s'%(self.zname)]=np.nanmean(self.z) self.statistics['Median-%s'%(self.zname)]=np.median(self.z) self.statistics['StDev-%s'%(self.zname)]=np.nanstd(self.z) if self.plottype=='map': self.statistics['Geo-Integrated-%s'%(self.zname)]=self.integrate_z() def integrate_z(self): #If x and y are longitude and latitude #integrates z over the grid if self.xname=='Longitude': lon=self.x.flatten() elif self.yname=='Longitude': lon=self.y.flatten() else: return np.nan if self.xname=='Latitude': lat=self.x.flatten() elif self.yname=='Latitude': lat=self.y.flatten() else: return np.nan #a little hack to get the altitude alt = self.controlstate['alt'] r_km = 6371.2+alt zee = self.z.flatten() zint = 0. for k in range(len(lat)-1): theta1 = (90.-lat[k])/180.*np.pi theta2 = (90.-lat[k+1])/180.*np.pi dphi = (lon[k+1]-lon[k])/180.*np.pi zint += (zee[k]+zee[k+1])/2.*np.abs(r_km**2*dphi*(np.cos(theta1)-np.cos(theta2)))#area element return zint def plot(self,*args,**kwargs): if self.map is not None: self.map = None #Make sure that we don't leave any maps lying around if we're not plotting maps #print "self.ax: %s\n" % (str(self.ax.get_position())) #print "All axes: \n" #for i,a in enumerate(self.fig.axes): # print "%d: %s" % (i,str(a.get_position())) if self.statistics is None: self.log.debug("Computing statistics") self.compute_statistics() if self.cb is not None: #logging.info("removing self.cb:%s\n" % (str(self.cb.ax.get_position())) self.log.debug("Removing self.cb") self.cb.remove() self.cb = None self.ax.cla() self.ax.get_xaxis().set_visible(True) self.ax.get_yaxis().set_visible(True) self.fig.suptitle('') #Check that we actually have something to plot #If we have less that 50% of data, add warnings and don't plot anything self.ax.set_xlim([-1,1]) self.ax.set_ylim([-1,1]) if self.z is not None: if np.count_nonzero(np.isfinite(self.z)) < len(self.z)/2: self.ax.text(0,0,"%s is unavailable for this position/altitude" % ((self.zname)), ha='center',va='center',color="r") self.ax.get_xaxis().set_visible(False) self.ax.get_yaxis().set_visible(False) return if self.x is not None: xlist = [self.x] if not self.xmulti else self.x xnamelist = [self.xname] if not self.xmulti else self.xname for i in range(len(xlist)): if np.count_nonzero(np.isfinite(xlist[i])) < len(xlist[i])/2: self.ax.text(0,0,"%s is unavailable for this position/altitude" % ((xnamelist[i])), ha='center',va='center',color="r") self.ax.get_xaxis().set_visible(False) self.ax.get_yaxis().set_visible(False) return if self.y is not None: ylist = [self.y] if not self.ymulti else self.y ynamelist = [self.yname] if not self.ymulti else self.yname for i in range(len(ylist)): if np.count_nonzero(np.isfinite(ylist[i])) < len(ylist[i])/2: self.ax.text(0,0,"%s is unavailable for this position/altitude" % ((ynamelist[i])), ha='center',va='center',color="r") self.ax.get_xaxis().set_visible(False) self.ax.get_yaxis().set_visible(False) return #self.zbounds = (np.nanmin(self.z),np.nanmax(self.z)) if self.zlog: self.log.debug("Z var set to use log scale") self.z[self.z<=0.] = np.nan norm = LogNorm(vmin=self.zbounds[0],vmax=self.zbounds[1]) locator = ticker.LogLocator() formatter = ticker.LogFormatter(10, labelOnlyBase=False) else: norm = Normalize(vmin=self.zbounds[0],vmax=self.zbounds[1]) if self.plottype == 'line': self.log.debug("Plottype is line") #Plot a simple 2d line plot if self.cb is not None: self.cb.remove() self.cb = None #self.ax.set_position(self.axpos) if not self.xmulti and not self.ymulti: #No overplotting self.log.debug("No multiplotting is requested: X var %s, Y var %s" % (str(self.xname),str(self.yname))) self.ax.plot(self.x,self.y,*args,**kwargs) xbnds = self.xbounds ybnds = self.ybounds xnm = self.xname if self.xdesc is None else self.xdesc xnm += '' if self.xunits is None else '[%s]' % (str(self.xunits)) ynm = self.yname if self.ydesc is None else self.ydesc ynm += '' if self.yunits is None else '[%s]' % (str(self.yunits)) elif self.xmulti and not self.ymulti: #Overplotting xvars self.log.debug("X multiplotting is requested: X vars %s, Y var %s" % (str(self.xname),str(self.yname))) xbnds = self.xbounds[0] ybnds = self.ybounds xnm = '' endut = self.xunits[0] for i in range(len(self.xname)): nm,ut = self.xname[i],self.xunits[i] if ut is not None and ut != endut: xnm += nm+'[%s]'%(str(ut))+',' else: xnm += nm+',' xnm = xnm[:-1] #Remove last comma xnm += '[%s]' % (endut) if endut is not None else '' print(xnm) print(self.xbounds) ynm = self.yname if self.ydesc is None else self.ydesc ynm += '' if self.yunits is None else '[%s]' % (str(self.yunits)) for i in range(len(self.x)): self.ax.plot(self.x[i],self.y,label=self.xname[i],*args,**kwargs) #should cycle through colors #self.ax.hold(True) #Compute new bounds as incuding all bounds xbnds[0] = xbnds[0] if xbnds[0]<self.xbounds[i][0] else self.xbounds[i][0] xbnds[1] = xbnds[1] if xbnds[1]>self.xbounds[i][1] else self.xbounds[i][1] elif self.ymulti and not self.xmulti: #Overplotting yvars self.log.debug("Y multiplotting is requested: X var %s, Y vars %s" % (str(self.xname),str(self.yname))) ybnds = self.ybounds[0] xbnds = self.xbounds xnm = self.xname xnm += '' if self.xunits is None else '[%s]' % (str(self.xunits)) ynm = '' endut = self.yunits[0] for i in range(len(self.yname)): nm,ut = self.yname[i],self.yunits[i] if ut is not None and ut != endut: ynm += nm+'[%s]'%(str(ut))+',' else: ynm += nm+',' ynm = ynm[:-1] #Remove last comma ynm += '[%s]' % (endut) if endut is not None else '' for i in range(len(self.y)): self.ax.plot(self.x,self.y[i],label=self.yname[i],*args,**kwargs) #should cycle through colors #self.ax.hold(True) #Compute new bounds as incuding all bounds print(self.ybounds[i]) ybnds[0] = ybnds[0] if ybnds[0]<self.ybounds[i][0] else self.ybounds[i][0] ybnds[1] = ybnds[1] if ybnds[1]>self.ybounds[i][1] else self.ybounds[i][1] #Set axes appearance and labeling self.ax.set_xlabel(xnm) if self.xlog: self.ax.set_xscale('log',nonposx='clip') self.ax.get_xaxis().get_major_formatter().labelOnlyBase = False self.ax.set_xlim(xbnds) self.log.debug("Setting bounds for X var %s, %s" % (str(self.xname),str(xbnds))) self.ax.set_ylabel(ynm) if self.ylog: self.ax.set_yscale('log',nonposx='clip') self.ax.get_yaxis().get_major_formatter().labelOnlyBase = False self.ax.set_ylim(ybnds) self.log.debug("Setting bounds for Y var %s, %s" % (str(self.yname),str(ybnds))) if self.xmulti or self.ymulti: self.ax.legend() #self.ax.set_ylim(0,np.log(self.ybounds[1])) self.ax.set_title('%s vs. %s' % (xnm if not self.xlog else 'log(%s)'%(xnm),ynm if not self.ylog else 'log(%s)'%(ynm)),y=1.08) self.ax.grid(True,linewidth=.1) if not self.xlog and not self.ylog: self.ax.set_aspect(1./self.ax.get_data_ratio()) self.ax.set_position([.15,.15,.75,.75]) #try: # self.fig.tight_layout() #except: # print "Tight layout for line failed" # elif self.plottype == 'pcolor': # self.log.info("Plottype is pcolor for vars:\n--X=%s lims=(%s)\n--Y=%s lims=(%s)\n--C=%s lims=(%s)" % (str(self.xname),str(self.xbounds), # str(self.yname),str(self.ybounds),str(self.zname),str(self.zbounds))) # xnm = self.xname if self.xdesc is None else self.xdesc # xnm += '' if self.xunits is None else '[%s]' % (str(self.xunits)) # ynm = self.yname if self.ydesc is None else self.ydesc # ynm += '' if self.yunits is None else '[%s]' % (str(self.yunits)) # znm = self.zname if self.zdesc is None else self.zdesc # znm += '' if self.zunits is None else '[%s]' % (str(self.zunits)) # #nn = np.isfinite(self.x) # #nn = np.logical_and(nn,np.isfinite(self.y)) # #nn = np.logical_and(nn,np.isfinite(self.z)) # mappable = self.ax.pcolormesh(self.x,self.y,self.z,norm=norm,shading='gouraud',**kwargs) # #m.draw() # self.ax.set_xlabel(xnm) # if self.xlog: # self.ax.set_xscale('log',nonposx='clip') # self.ax.set_xlim(self.xbounds) # self.ax.set_ylabel(ynm) # if self.ylog: # self.ax.set_xscale('log',nonposx='clip') # self.ax.set_ylim(self.ybounds) # if self.zlog: #Locator goes to ticks argument # self.cb = self.fig.colorbar(mappable,ax=self.ax,orientation='horizontal',format=formatter,ticks=locator) # else: # self.cb = self.fig.colorbar(mappable,ax=self.ax,orientation='horizontal') # #self.ax.set_position(self.axpos) # #self.cb.ax.set_position(self.cbpos) # self.cb.ax.set_position([.1,0,.8,.15]) # self.ax.set_position([.1,.25,.8,.7]) # self.cb.set_label(znm) # self.ax.set_aspect(1./self.ax.get_data_ratio()) # self.ax.set_title('%s vs. %s (color:%s)' % (xnm,ynm, # znm if not self.zlog else 'log(%s)'% znm)) elif self.plottype == 'map': #Basemap is too screwy for partial maps #self.ybounds = [-90.,90.] #self.xbounds = [-180.,180.] znm = self.zname if self.zdesc is None else self.zdesc znm += '' if self.zunits is None else '[%s]' % (str(self.zunits)) self.log.info("Plottype is %s projection MAP for vars:\n--X=%s lims=(%s)\n--Y=%s lims=(%s)\n--C=%s lims=(%s)" % (str(self.mapproj),str(self.xname),str(self.xbounds), str(self.yname),str(self.ybounds),str(self.zname),str(self.zbounds))) if self.mapproj=='moll': m = Basemap(projection=self.mapproj,llcrnrlat=int(self.ybounds[0]),urcrnrlat=int(self.ybounds[1]),\ llcrnrlon=int(self.xbounds[0]),urcrnrlon=int(self.xbounds[1]),lat_ts=20,resolution='c',ax=self.ax,lon_0=0.) elif self.mapproj=='mill': m = Basemap(projection=self.mapproj,llcrnrlat=int(self.ybounds[0]),urcrnrlat=int(self.ybounds[1]),\ llcrnrlon=int(self.xbounds[0]),urcrnrlon=int(self.xbounds[1]),lat_ts=20,resolution='c',ax=self.ax) elif self.mapproj=='ortho': m = Basemap(projection='ortho',ax=self.ax,lat_0=int(self.controlstate['lat']), lon_0=int(self.controlstate['lon']),resolution='l') m.drawcoastlines(linewidth=self.map_lw) #m.fillcontinents(color='coral',lake_color='aqua') # draw parallels and meridians. m.drawparallels(np.arange(-90.,91.,15.),linewidth=self.map_lw) m.drawmeridians(np.arange(-180.,181.,30.),linewidth=self.map_lw) if self.zlog: mappable = m.pcolormesh(self.x,self.y,self.z,linewidths=1.5,latlon=True,norm=norm, vmin=self.zbounds[0],vmax=self.zbounds[1],shading='gouraud',**kwargs) else: mappable = m.pcolormesh(self.x,self.y,self.z,linewidths=1.5,latlon=True,norm=norm, vmin=self.zbounds[0],vmax=self.zbounds[1],shading='gouraud',**kwargs) latbounds = [self.ybounds[0],self.ybounds[1]] lonbounds = [self.xbounds[0],self.xbounds[1]] lonbounds[0],latbounds[0] = m(lonbounds[0],latbounds[0]) lonbounds[1],latbounds[1] = m(lonbounds[1],latbounds[1]) #self.ax.set_ylim(latbounds) #self.ax.set_xlim(lonbounds) #m.draw() if self.zlog: self.cb = self.fig.colorbar(mappable,ax=self.ax,orientation='horizontal',format=formatter,ticks=locator) else: self.cb = self.fig.colorbar(mappable,ax=self.ax,orientation='horizontal') #m.set_axes_limits(ax=self.canvas.ax) if self.mapproj == 'mill': self.ax.set_xlim(lonbounds) self.ax.set_ylim(latbounds) self.cb.ax.set_position([.1,.05,.8,.15]) self.ax.set_position([.1,.2,.8,.7]) elif self.mapproj == 'moll': self.cb.ax.set_position([.1,.05,.8,.13]) self.ax.set_position([.05,.2,.9,.9]) self.cb.set_label(znm) self.ax.set_title('%s Projection Map of %s' % (self.supported_projections[self.mapproj], znm if not self.zlog else 'log(%s)' % (znm)),y=1.08) self.map = m #Now call the canvas cosmetic adjustment routine self.canvas.apply_lipstick()
gpl-3.0
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/mpl_examples/animation/old_animation/dynamic_image_wxagg2.py
10
3037
#!/usr/bin/env python """ Copyright (C) 2003-2005 Jeremy O'Donoghue and others License: This work is licensed under the PSF. A copy should be included with this source code, and is also available at http://www.python.org/psf/license.html """ import sys, time, os, gc import matplotlib matplotlib.use('WXAgg') from matplotlib import rcParams import numpy as npy import matplotlib.cm as cm from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure from wx import * TIMER_ID = NewId() class PlotFigure(Frame): def __init__(self): Frame.__init__(self, None, -1, "Test embedded wxFigure") self.fig = Figure((5,4), 75) self.canvas = FigureCanvasWxAgg(self, -1, self.fig) self.toolbar = NavigationToolbar2Wx(self.canvas) self.toolbar.Realize() # On Windows, default frame size behaviour is incorrect # you don't need this under Linux tw, th = self.toolbar.GetSizeTuple() fw, fh = self.canvas.GetSizeTuple() self.toolbar.SetSize(Size(fw, th)) # Create a figure manager to manage things # Now put all into a sizer sizer = BoxSizer(VERTICAL) # This way of adding to sizer allows resizing sizer.Add(self.canvas, 1, LEFT|TOP|GROW) # Best to allow the toolbar to resize! sizer.Add(self.toolbar, 0, GROW) self.SetSizer(sizer) self.Fit() EVT_TIMER(self, TIMER_ID, self.onTimer) def init_plot_data(self): # jdh you can add a subplot directly from the fig rather than # the fig manager a = self.fig.add_axes([0.075,0.1,0.75,0.85]) cax = self.fig.add_axes([0.85,0.1,0.075,0.85]) self.x = npy.empty((120,120)) self.x.flat = npy.arange(120.0)*2*npy.pi/120.0 self.y = npy.empty((120,120)) self.y.flat = npy.arange(120.0)*2*npy.pi/100.0 self.y = npy.transpose(self.y) z = npy.sin(self.x) + npy.cos(self.y) self.im = a.imshow( z, cmap=cm.jet)#, interpolation='nearest') self.fig.colorbar(self.im,cax=cax,orientation='vertical') def GetToolBar(self): # You will need to override GetToolBar if you are using an # unmanaged toolbar in your frame return self.toolbar def onTimer(self, evt): self.x += npy.pi/15 self.y += npy.pi/20 z = npy.sin(self.x) + npy.cos(self.y) self.im.set_array(z) self.canvas.draw() #self.canvas.gui_repaint() # jdh wxagg_draw calls this already def onEraseBackground(self, evt): # this is supposed to prevent redraw flicker on some X servers... pass if __name__ == '__main__': app = PySimpleApp() frame = PlotFigure() frame.init_plot_data() # Initialise the timer - wxPython requires this to be connected to # the receiving event handler t = Timer(frame, TIMER_ID) t.Start(200) frame.Show() app.MainLoop()
gpl-2.0
matthew-tucker/mne-python
examples/time_frequency/plot_source_label_time_frequency.py
19
3767
""" ========================================================= Compute power and phase lock in label of the source space ========================================================= Compute time-frequency maps of power and phase lock in the source space. The inverse method is linear based on dSPM inverse operator. The example also shows the difference in the time-frequency maps when they are computed with and without subtracting the evoked response from each epoch. The former results in induced activity only while the latter also includes evoked (stimulus-locked) activity. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' label_name = 'Aud-rh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name tmin, tmax, event_id = -0.2, 0.5, 2 # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Picks MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # Load epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Compute a source estimate per frequency band including and excluding the # evoked response frequencies = np.arange(7, 30, 2) # define frequencies of interest label = mne.read_label(fname_label) n_cycles = frequencies / 3. # different number of cycle per frequency # subtract the evoked response in order to exclude evoked activity epochs_induced = epochs.copy().subtract_evoked() plt.close('all') for ii, (this_epochs, title) in enumerate(zip([epochs, epochs_induced], ['evoked + induced', 'induced only'])): # compute the source space power and phase lock power, phase_lock = source_induced_power( this_epochs, inverse_operator, frequencies, label, baseline=(-0.1, 0), baseline_mode='percent', n_cycles=n_cycles, n_jobs=1) power = np.mean(power, axis=0) # average over sources phase_lock = np.mean(phase_lock, axis=0) # average over sources times = epochs.times ########################################################################## # View time-frequency plots plt.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.43) plt.subplot(2, 2, 2 * ii + 1) plt.imshow(20 * power, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0., vmax=30., cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Power (%s)' % title) plt.colorbar() plt.subplot(2, 2, 2 * ii + 2) plt.imshow(phase_lock, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0, vmax=0.7, cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Phase-lock (%s)' % title) plt.colorbar() plt.show()
bsd-3-clause
cheeseywhiz/cheeseywhiz
http/data/vectorized.py
1
3649
import csv import sys import time import matplotlib.pyplot as plt from config import data_sets try: data_set = data_sets[sys.argv[1]] if sys.argv[1] not in data_sets: raise IndexError if sys.argv[1] in ['-h', '-help', '--help']: raise IndexError except IndexError as error: keys = '\n'.join(key for key in data_sets) print(f'Data sets:\n{keys}\nPut in arg #1') sys.exit(1) def timer(f): """\ Print the execution time of the wrapped function to console. """ def decorator(*args, **kwargs): t = time.clock() result = f(*args, **kwargs) print('%.6f'%(time.clock() - t)) return result return decorator def restrict(index): """\ Restrict the wrapped function to access a specific index of the wrapped function. """ def decorated(f): def decorator(list, *args, **kwargs): return type(list)([ *list[:index], f(list[index], *args, **kwargs), *list[index + 1:1], ]) return decorator return decorated def vector_2d(f): """\ Perform the same operation on each element of a 2d list """ def decorator(list, *args, **kwargs): return [f(item, *args, **kwargs) for item in list] return decorator # allowing for None end chars if data_set['str-end-chars'] is not None: data_set['str-end-chars'] *= -1 with open(data_set['file-location']) as file: # for processing huge files csv.field_size_limit(sys.maxsize) # you can unpack a list: no tupling required here @timer def raw_data_(file): return list(csv.reader(file)) raw_data = raw_data_(file) print('raw_data\n') @timer def formatted_data_(raw_data): return [ ( row[data_set['label-index']], row[data_set['data-index']][ data_set['str-start-chars']:data_set['str-end-chars'] ] ) for row in raw_data[1:] ] formatted_data = formatted_data_(raw_data) print('formatted_data\n') # mo county data pairs coords differently if data_set == data_sets['mo-counties']: formatted_data = [ (label, coords.replace(',', ' ')) for label, coords in formatted_data ] # finally some functions @timer @vector_2d @restrict(1) def split_coords_(str): """\ Split the str in position 1 for each element in the argument """ return str.split(' ') split_coords = split_coords_(formatted_data) print('split_coords\n') # turn strings into floats by trimming off traiing characters if necessary def float_recur(str, n=1): if n > 1000: # Or else it causes stack overflow (???) return None # Also good for debugging try: return float(str) except Exception: return float_recur(str[:-1], n=n + 1) @timer @vector_2d @restrict(1) def float_coords_(coords): """\ """ return [float_recur(coord) for coord in coords] float_coords = float_coords_(split_coords) print('float_coords\n') @timer @vector_2d @restrict(1) def coord_pairs_(coords): return [ (coords[i], coords[i + 1]) for i in range(len(coords)) if not i % 2 ] coord_pairs = coord_pairs_(float_coords) print('coord_pairs\n') @timer def boundaries_(coord_pairs): return [ (label, zip(*coords)) for label, coords in coord_pairs ] boundaries = boundaries_(coord_pairs) print('boundaries\n') @timer def plot_(boundaries): for label, boundary in boundaries: plt.plot(*boundary) plot_(boundaries) print('showing plot') plt.show() print('\ndone')
mit
tdhopper/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
UDST/urbanaccess
urbanaccess/network.py
1
21031
import time import os import geopy from geopy import distance from sklearn.neighbors import KDTree import pandas as pd from urbanaccess.utils import log, df_to_hdf5, hdf5_to_df from urbanaccess import config if int(geopy.__version__[0]) < 2: dist_calc = distance.vincenty else: dist_calc = distance.geodesic class urbanaccess_network(object): """ An urbanaccess object of pandas.DataFrames representing the components of a graph network Parameters ---------- transit_nodes : pandas.DataFrame transit_edges : pandas.DataFrame net_connector_edges : pandas.DataFrame osm_nodes : pandas.DataFrame osm_edges : pandas.DataFrame net_nodes : pandas.DataFrame net_edges : pandas.DataFrame """ def __init__(self, transit_nodes=pd.DataFrame(), transit_edges=pd.DataFrame(), net_connector_edges=pd.DataFrame(), osm_nodes=pd.DataFrame(), osm_edges=pd.DataFrame(), net_nodes=pd.DataFrame(), net_edges=pd.DataFrame()): self.transit_nodes = transit_nodes self.transit_edges = transit_edges self.net_connector_edges = net_connector_edges self.osm_nodes = osm_nodes self.osm_edges = osm_edges self.net_nodes = net_nodes self.net_edges = net_edges # instantiate the UrbanAccess network object ua_network = urbanaccess_network() def _nearest_neighbor(df1, df2): """ For a DataFrame of xy coordinates find the nearest xy coordinates in a subsequent DataFrame Parameters ---------- df1 : pandas.DataFrame DataFrame of records to return as the nearest record to records in df2 df2 : pandas.DataFrame DataFrame of records with xy coordinates for which to find the nearest record in df1 for Returns ------- df1.index.values[indexes] : pandas.Series index of records in df1 that are nearest to the coordinates in df2 """ try: df1_matrix = df1.to_numpy() df2_matrix = df2.to_numpy() except AttributeError: df1_matrix = df1.values df2_matrix = df2.values kdt = KDTree(df1_matrix) indexes = kdt.query(df2_matrix, k=1, return_distance=False) return df1.index.values[indexes] def integrate_network(urbanaccess_network, headways=False, urbanaccess_gtfsfeeds_df=None, headway_statistic='mean'): """ Create an integrated network comprised of transit and OSM nodes and edges by connecting the transit network with the OSM network. travel time is in units of minutes Parameters ---------- urbanaccess_network : object ua_network object with transit_edges, transit_nodes, osm_edges, osm_nodes headways : bool, optional if true, route stop level headways calculated in a previous step will be applied to the OSM to transit connector edge travel time weights as an approximate measure of average passenger transit stop waiting time. urbanaccess_gtfsfeeds_df : object, optional required if headways is true; the gtfsfeeds_dfs object that holds the corresponding headways and stops DataFrames headway_statistic : {'mean', 'std', 'min', 'max'}, optional required if headways is true; route stop headway statistic to apply to the OSM to transit connector edges: mean, std, min, max. Default is mean. Returns ------- urbanaccess_network : object urbanaccess_network.transit_edges : pandas.DataFrame urbanaccess_network.transit_nodes : pandas.DataFrame urbanaccess_network.osm_edges : pandas.DataFrame urbanaccess_network.osm_nodes : pandas.DataFrame urbanaccess_network.net_connector_edges : pandas.DataFrame urbanaccess_network.net_edges : pandas.DataFrame urbanaccess_network.net_nodes : pandas.DataFrame """ if urbanaccess_network is None: raise ValueError('urbanaccess_network is not specified') if urbanaccess_network.transit_edges.empty \ or urbanaccess_network.transit_nodes.empty \ or urbanaccess_network.osm_edges.empty \ or urbanaccess_network.osm_nodes.empty: raise ValueError( 'one of the network objects: transit_edges, transit_nodes, ' 'osm_edges, or osm_nodes were found to be empty.') log('Loaded UrbanAccess network components comprised of:') log(' Transit: {:,} nodes and {:,} edges;'.format( len(urbanaccess_network.transit_nodes), len(urbanaccess_network.transit_edges))) log(' OSM: {:,} nodes and {:,} edges'.format( len(urbanaccess_network.osm_nodes), len(urbanaccess_network.osm_edges))) if not isinstance(headways, bool): raise ValueError('headways must be bool type') if headways: if urbanaccess_gtfsfeeds_df is None or \ urbanaccess_gtfsfeeds_df.headways.empty or \ urbanaccess_gtfsfeeds_df.stops.empty: raise ValueError( 'stops and headway DataFrames were not found in the ' 'urbanaccess_gtfsfeeds object. Please create these ' 'DataFrames in order to use headways.') valid_stats = ['mean', 'std', 'min', 'max'] if headway_statistic not in valid_stats or not isinstance( headway_statistic, str): raise ValueError('{} is not a supported statistic or is not a ' 'string'.format(headway_statistic)) transit_edge_cols = urbanaccess_network.transit_edges.columns if 'node_id_from' not in transit_edge_cols or 'from' in \ transit_edge_cols: urbanaccess_network.transit_edges.rename( columns={'from': 'node_id_from'}, inplace=True) if 'node_id_to' not in transit_edge_cols or 'to' in transit_edge_cols: urbanaccess_network.transit_edges.rename( columns={'to': 'node_id_to'}, inplace=True) urbanaccess_network.transit_edges['node_id_route_from'] = ( urbanaccess_network.transit_edges['node_id_from'].str.cat( urbanaccess_network.transit_edges['unique_route_id'].astype( 'str'), sep='_')) urbanaccess_network.transit_edges['node_id_route_to'] = ( urbanaccess_network.transit_edges['node_id_to'].str.cat( urbanaccess_network.transit_edges['unique_route_id'].astype( 'str'), sep='_')) urbanaccess_network.transit_nodes = _route_id_to_node( stops_df=urbanaccess_gtfsfeeds_df.stops, edges_w_routes=urbanaccess_network.transit_edges) net_connector_edges = _connector_edges( osm_nodes=urbanaccess_network.osm_nodes, transit_nodes=urbanaccess_network.transit_nodes, travel_speed_mph=3) urbanaccess_network.net_connector_edges = _add_headway_impedance( ped_to_transit_edges_df=net_connector_edges, headways_df=urbanaccess_gtfsfeeds_df.headways, headway_statistic=headway_statistic) else: urbanaccess_network.net_connector_edges = _connector_edges( osm_nodes=urbanaccess_network.osm_nodes, transit_nodes=urbanaccess_network.transit_nodes, travel_speed_mph=3) # change cols in transit edges and nodes if headways: urbanaccess_network.transit_edges.rename(columns={ 'node_id_route_from': 'from', 'node_id_route_to': 'to'}, inplace=True) urbanaccess_network.transit_edges.drop(['node_id_from', 'node_id_to'], inplace=True, axis=1) urbanaccess_network.transit_nodes.reset_index(inplace=True, drop=False) urbanaccess_network.transit_nodes.rename( columns={'node_id_route': 'id'}, inplace=True) else: urbanaccess_network.transit_edges.rename( columns={'node_id_from': 'from', 'node_id_to': 'to'}, inplace=True) urbanaccess_network.transit_nodes.reset_index(inplace=True, drop=False) urbanaccess_network.transit_nodes.rename(columns={'node_id': 'id'}, inplace=True) # concat all network components urbanaccess_network.net_edges = pd.concat( [urbanaccess_network.transit_edges, urbanaccess_network.osm_edges, urbanaccess_network.net_connector_edges], axis=0) urbanaccess_network.net_nodes = pd.concat( [urbanaccess_network.transit_nodes, urbanaccess_network.osm_nodes], axis=0) urbanaccess_network.net_edges, urbanaccess_network.net_nodes = \ _format_pandana_edges_nodes(edge_df=urbanaccess_network.net_edges, node_df=urbanaccess_network.net_nodes) success_msg_1 = ('Network edge and node network integration completed ' 'successfully resulting in a total of {:,} nodes ' 'and {:,} edges:') success_msg_2 = ' Transit: {:,} nodes {:,} edges;' success_msg_3 = ' OSM: {:,} nodes {:,} edges; and' success_msg_4 = ' OSM/Transit connector: {:,} edges.' log(success_msg_1.format(len(urbanaccess_network.net_nodes), len(urbanaccess_network.net_edges))) log(success_msg_2.format(len(urbanaccess_network.transit_nodes), len(urbanaccess_network.transit_edges))) log(success_msg_3.format(len(urbanaccess_network.osm_nodes), len(urbanaccess_network.osm_edges))) log(success_msg_4.format(len(urbanaccess_network.net_connector_edges))) return urbanaccess_network def _add_headway_impedance(ped_to_transit_edges_df, headways_df, headway_statistic='mean'): """ Add route stop level headways to the OSM to transit connector travel time weight column Parameters ---------- ped_to_transit_edges_df : pandas.DataFrame DataFrame of the OSM to transit connectors headways_df : pandas.DataFrame headways DataFrame headway_statistic : {'mean', 'std', 'min', 'max'}, optional required if headways is true; route stop headway statistic to apply to the OSM to transit connector edges: mean, std, min, max. Default is mean. Returns ------- osm_to_transit_wheadway : pandas.DataFrame """ start_time = time.time() log( '{} route stop headway will be used for pedestrian to transit edge ' 'impedance.'.format( headway_statistic)) osm_to_transit_wheadway = pd.merge(ped_to_transit_edges_df, headways_df[ [headway_statistic, 'node_id_route']], how='left', left_on=['to'], right_on=['node_id_route'], sort=False, copy=False) osm_to_transit_wheadway['weight_tmp'] = osm_to_transit_wheadway[ 'weight'] + ( osm_to_transit_wheadway[ headway_statistic] / 2.0) osm_to_transit_wheadway['weight_tmp'].fillna( osm_to_transit_wheadway['weight'], inplace=True) osm_to_transit_wheadway.drop('weight', axis=1, inplace=True) osm_to_transit_wheadway.rename(columns={'weight_tmp': 'weight'}, inplace=True) log('Headway impedance calculation completed. Took {:,.2f} seconds'.format( time.time() - start_time)) return osm_to_transit_wheadway def _route_id_to_node(stops_df, edges_w_routes): """ Assign route ids to the transit nodes table Parameters ---------- stops_df : pandas.DataFrame processed GTFS stops DataFrame edges_w_routes : pandas.DataFrame transit edge DataFrame that has route ID information Returns ------- transit_nodes_wroutes : pandas.DataFrame """ start_time = time.time() # create unique stop IDs stops_df['unique_stop_id'] = ( stops_df['stop_id'].str.cat( stops_df['unique_agency_id'].astype('str'), sep='_')) tmp1 = pd.merge(edges_w_routes[['node_id_from', 'node_id_route_from']], stops_df[['unique_stop_id', 'stop_lat', 'stop_lon']], how='left', left_on='node_id_from', right_on='unique_stop_id', sort=False, copy=False) tmp1.rename(columns={'node_id_route_from': 'node_id_route', 'stop_lon': 'x', 'stop_lat': 'y'}, inplace=True) tmp2 = pd.merge(edges_w_routes[['node_id_to', 'node_id_route_to']], stops_df[['unique_stop_id', 'stop_lat', 'stop_lon']], how='left', left_on='node_id_to', right_on='unique_stop_id', sort=False, copy=False) tmp2.rename(columns={'node_id_route_to': 'node_id_route', 'stop_lon': 'x', 'stop_lat': 'y'}, inplace=True) transit_nodes_wroutes = pd.concat([tmp1[['node_id_route', 'x', 'y']], tmp2[['node_id_route', 'x', 'y']]], axis=0) transit_nodes_wroutes.drop_duplicates( subset='node_id_route', keep='first', inplace=True) # set node index to be unique stop ID transit_nodes_wroutes = transit_nodes_wroutes.set_index('node_id_route') # set network type transit_nodes_wroutes['net_type'] = 'transit' log('routes successfully joined to transit nodes. ' 'Took {:,.2f} seconds'.format(time.time() - start_time)) return transit_nodes_wroutes def _connector_edges(osm_nodes, transit_nodes, travel_speed_mph=3): """ Generate the connector edges between the OSM and transit edges and weight by travel time Parameters ---------- osm_nodes : pandas.DataFrame OSM nodes DataFrame transit_nodes : pandas.DataFrame transit nodes DataFrame travel_speed_mph : int, optional travel speed to use to calculate travel time across a distance on an edge. units are in miles per hour (MPH) for pedestrian travel this is assumed to be 3 MPH Returns ------- net_connector_edges : pandas.DataFrame """ start_time = time.time() transit_nodes['nearest_osm_node'] = _nearest_neighbor( osm_nodes[['x', 'y']], transit_nodes[['x', 'y']]) net_connector_edges = [] for transit_node_id, row in transit_nodes.iterrows(): # create new edge between the node in df2 (transit) # and the node in OpenStreetMap (pedestrian) osm_node_id = int(row['nearest_osm_node']) osm_row = osm_nodes.loc[osm_node_id] distance = dist_calc((row['y'], row['x']), (osm_row['y'], osm_row['x'])).miles time_ped_to_transit = distance / travel_speed_mph * 60 time_transit_to_ped = distance / travel_speed_mph * 60 # save the edge net_type = 'transit to osm' net_connector_edges.append((transit_node_id, osm_node_id, time_transit_to_ped, net_type)) # make the edge bi-directional net_type = 'osm to transit' net_connector_edges.append((osm_node_id, transit_node_id, time_ped_to_transit, net_type)) net_connector_edges = pd.DataFrame(net_connector_edges, columns=["from", "to", "weight", "net_type"]) log( 'Connector edges between the OSM and transit network nodes ' 'successfully completed. Took {:,.2f} seconds'.format( time.time() - start_time)) return net_connector_edges def _format_pandana_edges_nodes(edge_df, node_df): """ Perform final formatting on nodes and edge DataFrames to prepare them for use in Pandana. Formatting mainly consists of creating an unique node ID and edge from and to ID that is an integer per Pandana requirements. Parameters ---------- edge_df : pandas.DataFrame integrated transit and OSM edge DataFrame node_df : pandas.DataFrame integrated transit and OSM node DataFrame Returns ------- edge_df_wnumericid, node_df : pandas.DataFrame """ start_time = time.time() # Pandana requires IDs that are integer: for nodes - make it the index, # for edges make it the from and to columns node_df['id_int'] = range(1, len(node_df) + 1) edge_df.rename(columns={'id': 'edge_id'}, inplace=True) tmp = pd.merge(edge_df, node_df[['id', 'id_int']], left_on='from', right_on='id', sort=False, copy=False, how='left') tmp['from_int'] = tmp['id_int'] tmp.drop(['id_int', 'id'], axis=1, inplace=True) edge_df_wnumericid = pd.merge(tmp, node_df[['id', 'id_int']], left_on='to', right_on='id', sort=False, copy=False, how='left') edge_df_wnumericid['to_int'] = edge_df_wnumericid['id_int'] edge_df_wnumericid.drop(['id_int', 'id'], axis=1, inplace=True) # turn mixed dtype cols into all same format col_list = edge_df_wnumericid.select_dtypes(include=['object']).columns for col in col_list: try: edge_df_wnumericid[col] = edge_df_wnumericid[col].astype(str) # deal with edge cases where typically the name of a street is not # in an uniform string encoding such as names with accents except UnicodeEncodeError: log('Fixed unicode error in {} column'.format(col)) edge_df_wnumericid[col] = edge_df_wnumericid[col].str.encode( 'utf-8') node_df.set_index('id_int', drop=True, inplace=True) # turn mixed dtype col into all same format node_df['id'] = node_df['id'].astype(str) if 'nearest_osm_node' in node_df.columns: node_df.drop(['nearest_osm_node'], axis=1, inplace=True) log('Edge and node tables formatted for Pandana with integer node IDs: ' 'id_int, to_int, and from_int. Took {:,.2f} seconds'.format( time.time() - start_time)) return edge_df_wnumericid, node_df def save_network(urbanaccess_network, filename, dir=config.settings.data_folder, overwrite_key=False, overwrite_hdf5=False): """ Write urbanaccess_network integrated nodes and edges to a node and edge table in a HDF5 file Parameters ---------- urbanaccess_network : object urbanaccess_network object with net_edges and net_nodes DataFrames filename : string name of the HDF5 file to save with .h5 extension dir : string, optional directory to save HDF5 file overwrite_key : bool, optional if true any existing table with the specified key name will be overwritten overwrite_hdf5 : bool, optional if true any existing HDF5 file with the specified name in the specified directory will be overwritten Returns ------- None """ log('Writing HDF5 store...') if urbanaccess_network is None or urbanaccess_network.net_edges.empty or \ urbanaccess_network.net_nodes.empty: raise ValueError('Either no urbanaccess_network specified or ' 'net_edges or net_nodes are empty.') df_to_hdf5(data=urbanaccess_network.net_edges, key='edges', overwrite_key=overwrite_key, dir=dir, filename=filename, overwrite_hdf5=overwrite_hdf5) df_to_hdf5(data=urbanaccess_network.net_nodes, key='nodes', overwrite_key=overwrite_key, dir=dir, filename=filename, overwrite_hdf5=overwrite_hdf5) log("Saved HDF5 store: {} with tables: ['net_edges', 'net_nodes'].".format( os.path.join(dir, filename))) def load_network(dir=config.settings.data_folder, filename=None): """ Read an integrated network node and edge data from a HDF5 file to an urbanaccess_network object Parameters ---------- dir : string, optional directory to read HDF5 file filename : string name of the HDF5 file to read with .h5 extension Returns ------- ua_network : object urbanaccess_network object with net_edges and net_nodes DataFrames ua_network.net_edges : object ua_network.net_nodes : object """ log('Loading HDF5 store...') ua_network.net_edges = hdf5_to_df(dir=dir, filename=filename, key='edges') ua_network.net_nodes = hdf5_to_df(dir=dir, filename=filename, key='nodes') log("Read HDF5 store: {} tables: ['net_edges', 'net_nodes'].".format( os.path.join(dir, filename))) return ua_network
agpl-3.0
ywang007/odo
odo/into.py
1
4396
from __future__ import absolute_import, division, print_function from toolz import merge from multipledispatch import Dispatcher from .convert import convert from .append import append from .resource import resource from .utils import ignoring from datashape import discover from datashape.dispatch import namespace from datashape.predicates import isdimension from .compatibility import unicode from pandas import DataFrame, Series from numpy import ndarray not_appendable_types = DataFrame, Series, ndarray, tuple if 'into' not in namespace: namespace['into'] = Dispatcher('into') into = namespace['into'] @into.register(type, object) def into_type(a, b, dshape=None, **kwargs): with ignoring(NotImplementedError): if dshape is None: dshape = discover(b) return convert(a, b, dshape=dshape, **kwargs) @into.register(object, object) def into_object(target, source, dshape=None, **kwargs): """ Push one dataset into another Parameters ---------- source: object or string The source of your data. Either an object (e.g. DataFrame), target: object or string or type The target for where you want your data to go. Either an object, (e.g. []), a type, (e.g. list) or a string (e.g. 'postgresql://hostname::tablename' raise_on_errors: bool (optional, defaults to False) Raise exceptions rather than reroute around them **kwargs: keyword arguments to pass through to conversion functions. Examples -------- >>> L = into(list, (1, 2, 3)) # Convert things into new things >>> L [1, 2, 3] >>> _ = into(L, (4, 5, 6)) # Append things onto existing things >>> L [1, 2, 3, 4, 5, 6] >>> into('myfile.csv', [('Alice', 1), ('Bob', 2)]) # doctest: +SKIP Explanation ----------- We can specify data with a Python object like a ``list``, ``DataFrame``, ``sqlalchemy.Table``, ``h5py.Dataset``, etc.. We can specify data with a string URI like ``'myfile.csv'``, ``'myfiles.*.json'`` or ``'sqlite:///data.db::tablename'``. These are matched by regular expression. See the ``resource`` function for more details on string URIs. We can optionally specify datatypes with the ``dshape=`` keyword, providing a datashape. This allows us to be explicit about types when mismatches occur or when our data doesn't hold the whole picture. See the ``discover`` function for more information on ``dshape``. >>> ds = 'var * {name: string, balance: float64}' >>> into('accounts.json', [('Alice', 100), ('Bob', 200)], dshape=ds) # doctest: +SKIP We can optionally specify keyword arguments to pass down to relevant conversion functions. For example, when converting a CSV file we might want to specify delimiter >>> into(list, 'accounts.csv', has_header=True, delimiter=';') # doctest: +SKIP These keyword arguments trickle down to whatever function ``into`` uses convert this particular format, functions like ``pandas.read_csv``. See Also -------- into.resource.resource - Specify things with strings datashape.discover - Get datashape of data into.convert.convert - Convert things into new things into.append.append - Add things onto existing things """ if isinstance(source, (str, unicode)): source = resource(source, dshape=dshape, **kwargs) if type(target) in not_appendable_types: raise TypeError('target of %s type does not support in-place append' % type(target)) with ignoring(NotImplementedError): if dshape is None: dshape = discover(source) return append(target, source, dshape=dshape, **kwargs) @into.register((str, unicode), object) def into_string(uri, b, dshape=None, **kwargs): if dshape is None: dshape = discover(b) resource_ds = 0 * dshape.subshape[0] if isdimension(dshape[0]) else dshape a = resource(uri, dshape=resource_ds, expected_dshape=dshape, **kwargs) return into(a, b, dshape=dshape, **kwargs) @into.register((type, (str, unicode)), (str, unicode)) def into_string_string(a, b, **kwargs): return into(a, resource(b, **kwargs), **kwargs) @into.register(object) def into_curried(o, **kwargs1): def curried_into(other, **kwargs2): return into(o, other, **merge(kwargs2, kwargs1)) return curried_into
bsd-3-clause
txd866/cuda-convnet2
shownet.py
180
18206
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from tarfile import TarFile, TarInfo from matplotlib import pylab as pl import numpy as n import getopt as opt from python_util.util import * from math import sqrt, ceil, floor from python_util.gpumodel import IGPUModel import random as r import numpy.random as nr from convnet import ConvNet from python_util.options import * from PIL import Image from time import sleep class ShowNetError(Exception): pass class ShowConvNet(ConvNet): def __init__(self, op, load_dic): ConvNet.__init__(self, op, load_dic) def init_data_providers(self): self.need_gpu = self.op.get_value('show_preds') class Dummy: def advance_batch(self): pass if self.need_gpu: ConvNet.init_data_providers(self) else: self.train_data_provider = self.test_data_provider = Dummy() def import_model(self): if self.need_gpu: ConvNet.import_model(self) def init_model_state(self): if self.op.get_value('show_preds'): self.softmax_name = self.op.get_value('show_preds') def init_model_lib(self): if self.need_gpu: ConvNet.init_model_lib(self) def plot_cost(self): if self.show_cost not in self.train_outputs[0][0]: raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost) # print self.test_outputs train_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.train_outputs] test_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.test_outputs] if self.smooth_test_errors: test_errors = [sum(test_errors[max(0,i-len(self.test_batch_range)):i])/(i-max(0,i-len(self.test_batch_range))) for i in xrange(1,len(test_errors)+1)] numbatches = len(self.train_batch_range) test_errors = n.row_stack(test_errors) test_errors = n.tile(test_errors, (1, self.testing_freq)) test_errors = list(test_errors.flatten()) test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors)) test_errors = test_errors[:len(train_errors)] numepochs = len(train_errors) / float(numbatches) pl.figure(1) x = range(0, len(train_errors)) pl.plot(x, train_errors, 'k-', label='Training set') pl.plot(x, test_errors, 'r-', label='Test set') pl.legend() ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches) epoch_label_gran = int(ceil(numepochs / 20.)) epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) if numepochs >= 10 else epoch_label_gran ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs)) pl.xticks(ticklocs, ticklabels) pl.xlabel('Epoch') # pl.ylabel(self.show_cost) pl.title('%s[%d]' % (self.show_cost, self.cost_idx)) # print "plotted cost" def make_filter_fig(self, filters, filter_start, fignum, _title, num_filters, combine_chans, FILTERS_PER_ROW=16): MAX_ROWS = 24 MAX_FILTERS = FILTERS_PER_ROW * MAX_ROWS num_colors = filters.shape[0] f_per_row = int(ceil(FILTERS_PER_ROW / float(1 if combine_chans else num_colors))) filter_end = min(filter_start+MAX_FILTERS, num_filters) filter_rows = int(ceil(float(filter_end - filter_start) / f_per_row)) filter_pixels = filters.shape[1] filter_size = int(sqrt(filters.shape[1])) fig = pl.figure(fignum) fig.text(.5, .95, '%s %dx%d filters %d-%d' % (_title, filter_size, filter_size, filter_start, filter_end-1), horizontalalignment='center') num_filters = filter_end - filter_start if not combine_chans: bigpic = n.zeros((filter_size * filter_rows + filter_rows + 1, filter_size*num_colors * f_per_row + f_per_row + 1), dtype=n.single) else: bigpic = n.zeros((3, filter_size * filter_rows + filter_rows + 1, filter_size * f_per_row + f_per_row + 1), dtype=n.single) for m in xrange(filter_start,filter_end ): filter = filters[:,:,m] y, x = (m - filter_start) / f_per_row, (m - filter_start) % f_per_row if not combine_chans: for c in xrange(num_colors): filter_pic = filter[c,:].reshape((filter_size,filter_size)) bigpic[1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size*num_colors) * x + filter_size*c:1 + (1 + filter_size*num_colors) * x + filter_size*(c+1)] = filter_pic else: filter_pic = filter.reshape((3, filter_size,filter_size)) bigpic[:, 1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size) * x:1 + (1 + filter_size) * x + filter_size] = filter_pic pl.xticks([]) pl.yticks([]) if not combine_chans: pl.imshow(bigpic, cmap=pl.cm.gray, interpolation='nearest') else: bigpic = bigpic.swapaxes(0,2).swapaxes(0,1) pl.imshow(bigpic, interpolation='nearest') def plot_filters(self): FILTERS_PER_ROW = 16 filter_start = 0 # First filter to show if self.show_filters not in self.layers: raise ShowNetError("Layer with name '%s' not defined by given convnet." % self.show_filters) layer = self.layers[self.show_filters] filters = layer['weights'][self.input_idx] # filters = filters - filters.min() # filters = filters / filters.max() if layer['type'] == 'fc': # Fully-connected layer num_filters = layer['outputs'] channels = self.channels filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) elif layer['type'] in ('conv', 'local'): # Conv layer num_filters = layer['filters'] channels = layer['filterChannels'][self.input_idx] if layer['type'] == 'local': filters = filters.reshape((layer['modules'], channels, layer['filterPixels'][self.input_idx], num_filters)) filters = filters[:, :, :, self.local_plane] # first map for now (modules, channels, pixels) filters = filters.swapaxes(0,2).swapaxes(0,1) num_filters = layer['modules'] # filters = filters.swapaxes(0,1).reshape(channels * layer['filterPixels'][self.input_idx], num_filters * layer['modules']) # num_filters *= layer['modules'] FILTERS_PER_ROW = layer['modulesX'] else: filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) # Convert YUV filters to RGB if self.yuv_to_rgb and channels == 3: R = filters[0,:,:] + 1.28033 * filters[2,:,:] G = filters[0,:,:] + -0.21482 * filters[1,:,:] + -0.38059 * filters[2,:,:] B = filters[0,:,:] + 2.12798 * filters[1,:,:] filters[0,:,:], filters[1,:,:], filters[2,:,:] = R, G, B combine_chans = not self.no_rgb and channels == 3 # Make sure you don't modify the backing array itself here -- so no -= or /= if self.norm_filters: #print filters.shape filters = filters - n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).mean(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1)) filters = filters / n.sqrt(n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).var(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1))) #filters = filters - n.tile(filters.min(axis=0).min(axis=0), (3, filters.shape[1], 1)) #filters = filters / n.tile(filters.max(axis=0).max(axis=0), (3, filters.shape[1], 1)) #else: filters = filters - filters.min() filters = filters / filters.max() self.make_filter_fig(filters, filter_start, 2, 'Layer %s' % self.show_filters, num_filters, combine_chans, FILTERS_PER_ROW=FILTERS_PER_ROW) def plot_predictions(self): epoch, batch, data = self.get_next_batch(train=False) # get a test batch num_classes = self.test_data_provider.get_num_classes() NUM_ROWS = 2 NUM_COLS = 4 NUM_IMGS = NUM_ROWS * NUM_COLS if not self.save_preds else data[0].shape[1] NUM_TOP_CLASSES = min(num_classes, 5) # show this many top labels NUM_OUTPUTS = self.model_state['layers'][self.softmax_name]['outputs'] PRED_IDX = 1 label_names = [lab.split(',')[0] for lab in self.test_data_provider.batch_meta['label_names']] if self.only_errors: preds = n.zeros((data[0].shape[1], NUM_OUTPUTS), dtype=n.single) else: preds = n.zeros((NUM_IMGS, NUM_OUTPUTS), dtype=n.single) #rand_idx = nr.permutation(n.r_[n.arange(1), n.where(data[1] == 552)[1], n.where(data[1] == 795)[1], n.where(data[1] == 449)[1], n.where(data[1] == 274)[1]])[:NUM_IMGS] rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS) if NUM_IMGS < data[0].shape[1]: data = [n.require(d[:,rand_idx], requirements='C') for d in data] # data += [preds] # Run the model print [d.shape for d in data], preds.shape self.libmodel.startFeatureWriter(data, [preds], [self.softmax_name]) IGPUModel.finish_batch(self) print preds data[0] = self.test_data_provider.get_plottable_data(data[0]) if self.save_preds: if not gfile.Exists(self.save_preds): gfile.MakeDirs(self.save_preds) preds_thresh = preds > 0.5 # Binarize predictions data[0] = data[0] * 255.0 data[0][data[0]<0] = 0 data[0][data[0]>255] = 255 data[0] = n.require(data[0], dtype=n.uint8) dir_name = '%s_predictions_batch_%d' % (os.path.basename(self.save_file), batch) tar_name = os.path.join(self.save_preds, '%s.tar' % dir_name) tfo = gfile.GFile(tar_name, "w") tf = TarFile(fileobj=tfo, mode='w') for img_idx in xrange(NUM_IMGS): img = data[0][img_idx,:,:,:] imsave = Image.fromarray(img) prefix = "CORRECT" if data[1][0,img_idx] == preds_thresh[img_idx,PRED_IDX] else "FALSE_POS" if preds_thresh[img_idx,PRED_IDX] == 1 else "FALSE_NEG" file_name = "%s_%.2f_%d_%05d_%d.png" % (prefix, preds[img_idx,PRED_IDX], batch, img_idx, data[1][0,img_idx]) # gf = gfile.GFile(file_name, "w") file_string = StringIO() imsave.save(file_string, "PNG") tarinf = TarInfo(os.path.join(dir_name, file_name)) tarinf.size = file_string.tell() file_string.seek(0) tf.addfile(tarinf, file_string) tf.close() tfo.close() # gf.close() print "Wrote %d prediction PNGs to %s" % (preds.shape[0], tar_name) else: fig = pl.figure(3, figsize=(12,9)) fig.text(.4, .95, '%s test samples' % ('Mistaken' if self.only_errors else 'Random')) if self.only_errors: # what the net got wrong if NUM_OUTPUTS > 1: err_idx = [i for i,p in enumerate(preds.argmax(axis=1)) if p not in n.where(data[2][:,i] > 0)[0]] else: err_idx = n.where(data[1][0,:] != preds[:,0].T)[0] print err_idx err_idx = r.sample(err_idx, min(len(err_idx), NUM_IMGS)) data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:] import matplotlib.gridspec as gridspec import matplotlib.colors as colors cconv = colors.ColorConverter() gs = gridspec.GridSpec(NUM_ROWS*2, NUM_COLS, width_ratios=[1]*NUM_COLS, height_ratios=[2,1]*NUM_ROWS ) #print data[1] for row in xrange(NUM_ROWS): for col in xrange(NUM_COLS): img_idx = row * NUM_COLS + col if data[0].shape[0] <= img_idx: break pl.subplot(gs[(row * 2) * NUM_COLS + col]) #pl.subplot(NUM_ROWS*2, NUM_COLS, row * 2 * NUM_COLS + col + 1) pl.xticks([]) pl.yticks([]) img = data[0][img_idx,:,:,:] pl.imshow(img, interpolation='lanczos') show_title = data[1].shape[0] == 1 true_label = [int(data[1][0,img_idx])] if show_title else n.where(data[1][:,img_idx]==1)[0] #print true_label #print preds[img_idx,:].shape #print preds[img_idx,:].max() true_label_names = [label_names[i] for i in true_label] img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:] #print img_labels axes = pl.subplot(gs[(row * 2 + 1) * NUM_COLS + col]) height = 0.5 ylocs = n.array(range(NUM_TOP_CLASSES))*height pl.barh(ylocs, [l[0] for l in img_labels], height=height, \ color=['#ffaaaa' if l[1] in true_label_names else '#aaaaff' for l in img_labels]) #pl.title(", ".join(true_labels)) if show_title: pl.title(", ".join(true_label_names), fontsize=15, fontweight='bold') else: print true_label_names pl.yticks(ylocs + height/2, [l[1] for l in img_labels], x=1, backgroundcolor=cconv.to_rgba('0.65', alpha=0.5), weight='bold') for line in enumerate(axes.get_yticklines()): line[1].set_visible(False) #pl.xticks([width], ['']) #pl.yticks([]) pl.xticks([]) pl.ylim(0, ylocs[-1] + height) pl.xlim(0, 1) def start(self): self.op.print_values() # print self.show_cost if self.show_cost: self.plot_cost() if self.show_filters: self.plot_filters() if self.show_preds: self.plot_predictions() if pl: pl.show() sys.exit(0) @classmethod def get_options_parser(cls): op = ConvNet.get_options_parser() for option in list(op.options): if option not in ('gpu', 'load_file', 'inner_size', 'train_batch_range', 'test_batch_range', 'multiview_test', 'data_path', 'pca_noise', 'scalar_mean'): op.delete_option(option) op.add_option("show-cost", "show_cost", StringOptionParser, "Show specified objective function", default="") op.add_option("show-filters", "show_filters", StringOptionParser, "Show learned filters in specified layer", default="") op.add_option("norm-filters", "norm_filters", BooleanOptionParser, "Individually normalize filters shown with --show-filters", default=0) op.add_option("input-idx", "input_idx", IntegerOptionParser, "Input index for layer given to --show-filters", default=0) op.add_option("cost-idx", "cost_idx", IntegerOptionParser, "Cost function return value index for --show-cost", default=0) op.add_option("no-rgb", "no_rgb", BooleanOptionParser, "Don't combine filter channels into RGB in layer given to --show-filters", default=False) op.add_option("yuv-to-rgb", "yuv_to_rgb", BooleanOptionParser, "Convert RGB filters to YUV in layer given to --show-filters", default=False) op.add_option("channels", "channels", IntegerOptionParser, "Number of channels in layer given to --show-filters (fully-connected layers only)", default=0) op.add_option("show-preds", "show_preds", StringOptionParser, "Show predictions made by given softmax on test set", default="") op.add_option("save-preds", "save_preds", StringOptionParser, "Save predictions to given path instead of showing them", default="") op.add_option("only-errors", "only_errors", BooleanOptionParser, "Show only mistaken predictions (to be used with --show-preds)", default=False, requires=['show_preds']) op.add_option("local-plane", "local_plane", IntegerOptionParser, "Local plane to show", default=0) op.add_option("smooth-test-errors", "smooth_test_errors", BooleanOptionParser, "Use running average for test error plot?", default=1) op.options['load_file'].default = None return op if __name__ == "__main__": #nr.seed(6) try: op = ShowConvNet.get_options_parser() op, load_dic = IGPUModel.parse_options(op) model = ShowConvNet(op, load_dic) model.start() except (UnpickleError, ShowNetError, opt.GetoptError), e: print "----------------" print "Error:" print e
apache-2.0
jakobworldpeace/scikit-learn
examples/tree/plot_unveil_tree_structure.py
47
4852
""" ========================================= Understanding the decision tree structure ========================================= The decision tree structure can be analysed to gain further insight on the relation between the features and the target to predict. In this example, we show how to retrieve: - the binary tree structure; - the depth of each node and whether or not it's a leaf; - the nodes that were reached by a sample using the ``decision_path`` method; - the leaf that was reached by a sample using the apply method; - the rules that were used to predict a sample; - the decision path shared by a group of samples. """ import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0) estimator.fit(X_train, y_train) # The decision estimator has an attribute called tree_ which stores the entire # tree structure and allows access to low level attributes. The binary tree # tree_ is represented as a number of parallel arrays. The i-th element of each # array holds information about the node `i`. Node 0 is the tree's root. NOTE: # Some of the arrays only apply to either leaves or split nodes, resp. In this # case the values of nodes of the other type are arbitrary! # # Among those arrays, we have: # - left_child, id of the left child of the node # - right_child, id of the right child of the node # - feature, feature used for splitting the node # - threshold, threshold value at the node # # Using those arrays, we can parse the tree structure: n_nodes = estimator.tree_.node_count children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right feature = estimator.tree_.feature threshold = estimator.tree_.threshold # The tree structure can be traversed to compute various properties such # as the depth of each node and whether or not it is a leaf. node_depth = np.zeros(shape=n_nodes, dtype=np.int64) is_leaves = np.zeros(shape=n_nodes, dtype=bool) stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0: node_id, parent_depth = stack.pop() node_depth[node_id] = parent_depth + 1 # If we have a test node if (children_left[node_id] != children_right[node_id]): stack.append((children_left[node_id], parent_depth + 1)) stack.append((children_right[node_id], parent_depth + 1)) else: is_leaves[node_id] = True print("The binary tree structure has %s nodes and has " "the following tree structure:" % n_nodes) for i in range(n_nodes): if is_leaves[i]: print("%snode=%s leaf node." % (node_depth[i] * "\t", i)) else: print("%snode=%s test node: go to node %s if X[:, %s] <= %s else to " "node %s." % (node_depth[i] * "\t", i, children_left[i], feature[i], threshold[i], children_right[i], )) print() # First let's retrieve the decision path of each sample. The decision_path # method allows to retrieve the node indicator functions. A non zero element of # indicator matrix at the position (i, j) indicates that the sample i goes # through the node j. node_indicator = estimator.decision_path(X_test) # Similarly, we can also have the leaves ids reached by each sample. leave_id = estimator.apply(X_test) # Now, it's possible to get the tests that were used to predict a sample or # a group of samples. First, let's make it for the sample. sample_id = 0 node_index = node_indicator.indices[node_indicator.indptr[sample_id]: node_indicator.indptr[sample_id + 1]] print('Rules used to predict sample %s: ' % sample_id) for node_id in node_index: if leave_id[sample_id] != node_id: continue if (X_test[sample_id, feature[node_id]] <= threshold[node_id]): threshold_sign = "<=" else: threshold_sign = ">" print("decision id node %s : (X_test[%s, %s] (= %s) %s %s)" % (node_id, sample_id, feature[node_id], X_test[sample_id, feature[node_id]], threshold_sign, threshold[node_id])) # For a group of samples, we have the following common node. sample_ids = [0, 1] common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) == len(sample_ids)) common_node_id = np.arange(n_nodes)[common_nodes] print("\nThe following samples %s share the node %s in the tree" % (sample_ids, common_node_id)) print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))
bsd-3-clause
Subarno/MachineLearningPracticePrograms
kmeans.py
1
5324
import numpy as np import matplotlib.pyplot as plt import random from base64 import b64decode from json import loads def parse(x): #parse the digits file into tuples of digit = loads(x) array = np.fromstring(b64decode(digit["data"]),dtype=np.ubyte) array = array.astype(np.float64) return (digit["label"], array) def cluster(labelled_data, k): centroids = init_centroids(labelled_data, k) clusters = form_clusters(labelled_data, centroids) final_clusters, final_centroids = repeat_until_convergence(labelled_data, clusters, centroids) return final_clusters, final_centroids def init_centroids(labelled_data,k): #Initialize random centroid positions return list(map(lambda x: x[1], random.sample(labelled_data,k))) def form_clusters(labelled_data, unlabelled_centroids): #allocate each datapoint to its closest centroid centroids_indices = range(len(unlabelled_centroids)) clusters = {c: [] for c in centroids_indices} for (label,Xi) in labelled_data: # for each datapoint, pick the closest centroid. smallest_distance = float("inf") for cj_index in centroids_indices: cj = unlabelled_centroids[cj_index] distance = np.linalg.norm(Xi - cj) if distance < smallest_distance: closest_centroid_index = cj_index smallest_distance = distance # allocate that datapoint to the cluster of that centroid. clusters[closest_centroid_index].append((label,Xi)) return clusters.values() def repeat_until_convergence(labelled_data, labelled_clusters, unlabelled_centroids): #find best fitting centroids to the labelled_data previous_max_difference = 0 while True: unlabelled_old_centroids = unlabelled_centroids unlabelled_centroids = move_centroids(labelled_clusters) labelled_clusters = form_clusters(labelled_data, unlabelled_centroids) differences = list(map(lambda a, b: np.linalg.norm(a-b),unlabelled_old_centroids,unlabelled_centroids)) max_difference = max(differences) if np.isnan(max_difference-previous_max_difference): difference_change = np.nan else: difference_change = abs((max_difference-previous_max_difference)/np.mean([previous_max_difference,max_difference])) * 100 previous_max_difference = max_difference # difference change is nan once the list of differences is all zeroes. if np.isnan(difference_change): break return labelled_clusters, unlabelled_centroids def move_centroids(labelled_clusters): """ returns a list of centroids corresponding to the clusters. """ new_centroids = [] for cluster in labelled_clusters: new_centroids.append(mean_cluster(cluster)) return new_centroids def mean_cluster(labelled_cluster): #return mean of a labelled_cluster sum_of_points = sum_cluster(labelled_cluster) mean_of_points = sum_of_points * (1.0 / len(labelled_cluster)) return mean_of_points def sum_cluster(labelled_cluster): # assumes len(cluster) > 0 sum_ = labelled_cluster[0][1].copy() for (label,vector) in labelled_cluster[1:]: sum_ += vector return sum_ def assign_labels_to_centroids(clusters, centroids): #assign a label to each centroid labelled_centroids = [] clusters = list(clusters) for i in range(len(clusters)): labels = list(map(lambda x: x[0], clusters[i])) # pick the most common label most_common = max(set(labels), key=labels.count) centroid = (most_common, centroids[i]) labelled_centroids.append(centroid) return labelled_centroids def get_error_rate(digits,labelled_centroids): #classifies a list of labelled digits. returns the error rate. classified_incorrect = 0 for (label,digit) in digits: classified_label = classify_digit(digit, labelled_centroids) if classified_label != label: classified_incorrect +=1 error_rate = classified_incorrect / float(len(digits)) return error_rate def classify_digit(digit, labelled_centroids): mindistance = float("inf") for (label, centroid) in labelled_centroids: distance = np.linalg.norm(centroid - digit) if distance < mindistance: mindistance = distance closest_centroid_label = label return closest_centroid_label #Read the data file with open("data/digits.base64.json","r") as f: digits = list(map(parse, f.readlines())) #devide the dataset into training and validation set ratio = int(len(digits)*0.25) validation = digits[:ratio] training = digits[ratio:] error_rates = {x:None for x in range(5,25)} for k in range(5,25): #training trained_clusters, trained_centroids = cluster(training, k) labelled_centroids = assign_labels_to_centroids(trained_clusters, trained_centroids) #validation error_rate = get_error_rate(validation, labelled_centroids) error_rates[k] = error_rate # Show the error rates x_axis = sorted(error_rates.keys()) y_axis = [error_rates[key] for key in x_axis] plt.figure() plt.title("Error Rate by Number of Clusters") plt.scatter(x_axis, y_axis) plt.xlabel("Number of Clusters") plt.ylabel("Error Rate") plt.savefig('Results/kmeans_acc.png')
gpl-3.0
julien6387/supervisors
setup.py
2
3152
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # ====================================================================== # Copyright 2016 Julien LE CLEACH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ====================================================================== import os import sys from setuptools import setup, find_packages py_version = sys.version_info[:2] if py_version < (3, 4): raise RuntimeError('Supvisors requires Python 3.4 or later') requires = ['supervisor >= 4.2.1', 'pyzmq >= 20.0.0'] ip_require = ['netifaces >= 0.10.9'] statistics_require = ['psutil >= 5.7.3', 'matplotlib >= 3.3.3'] xml_valid_require = ['lxml >= 4.6.2'] testing_extras = ['pytest >= 2.5.2', 'pytest-cov'] here = os.path.abspath(os.path.dirname(__file__)) try: README = open(os.path.join(here, 'README.md')).read() CHANGES = open(os.path.join(here, 'CHANGES.txt')).read() except: README = """Supvisors is a control system for distributed applications over multiple Supervisor instances. """ CHANGES = '' CLASSIFIERS = [ "License :: OSI Approved :: Apache Software License", "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: System Administrators", "Natural Language :: English", "Environment :: No Input/Output (Daemon)", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 3.6", "Topic :: System :: Boot", "Topic :: System :: Monitoring", "Topic :: System :: Software Distribution" ] version_txt = os.path.join(here, 'supvisors/version.txt') supvisors_version = open(version_txt).read().split('=')[1].strip() dist = setup( name='supvisors', version=supvisors_version, description="A Control System for Distributed Applications", long_description=README + '\n\n' + CHANGES, long_description_content_type='text/markdown', classifiers=CLASSIFIERS, author="Julien Le Cléach", author_email="[email protected]", url="https://github.com/julien6387/supvisors", download_url='https://github.com/julien6387/supvisors/archive/%s.tar.gz' % supvisors_version, platforms=[ "CentOS 8.3" ], packages=find_packages(), install_requires=requires, extras_require={'ip_address': ip_require, 'statistics': statistics_require, 'xml_valid': xml_valid_require, 'all': ip_require + statistics_require + xml_valid_require, 'testing': testing_extras}, include_package_data=True, zip_safe=False, namespace_packages=['supvisors'], test_suite="supvisors.tests", )
apache-2.0
nvoron23/scikit-learn
sklearn/decomposition/__init__.py
147
1421
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
JeanKossaifi/scikit-learn
sklearn/feature_extraction/tests/test_image.py
205
10378
# Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import scipy as sp from scipy import ndimage from nose.tools import assert_equal, assert_true from numpy.testing import assert_raises from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, extract_patches) from sklearn.utils.graph import connected_components def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert_equal(grad_x.nnz, grad_y.nnz) # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal(grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]) def test_grid_to_graph(): #Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert_true(connected_components(A)[0] == 2) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert_true(connected_components(A)[0] == 1) # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert_true(A.dtype == np.bool) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert_true(A.dtype == np.int) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float) assert_true(A.dtype == np.float) def test_connect_regions(): lena = sp.misc.lena() for thr in (50, 150): mask = lena > thr graph = img_to_graph(lena, mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def test_connect_regions_with_grid(): lena = sp.misc.lena() mask = lena > 50 graph = grid_to_graph(*lena.shape, mask=mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) mask = lena > 150 graph = grid_to_graph(*lena.shape, mask=mask, dtype=None) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def _downsampled_lena(): lena = sp.misc.lena().astype(np.float32) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = lena.astype(np.float) lena /= 16.0 return lena def _orange_lena(lena=None): lena = _downsampled_lena() if lena is None else lena lena_color = np.zeros(lena.shape + (3,)) lena_color[:, :, 0] = 256 - lena lena_color[:, :, 1] = 256 - lena / 2 lena_color[:, :, 2] = 256 - lena / 4 return lena_color def _make_images(lena=None): lena = _downsampled_lena() if lena is None else lena # make a collection of lenas images = np.zeros((3,) + lena.shape) images[0] = lena images[1] = lena + 1 images[2] = lena + 2 return images downsampled_lena = _downsampled_lena() orange_lena = _orange_lena(downsampled_lena) lena_collection = _make_images(downsampled_lena) def test_extract_patches_all(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_all_color(): lena = orange_lena i_h, i_w = lena.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_all_rect(): lena = downsampled_lena lena = lena[:, 32:97] i_h, i_w = lena.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_max_patches(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w), max_patches=100) assert_equal(patches.shape, (100, p_h, p_w)) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(lena, (p_h, p_w), max_patches=0.5) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=2.0) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=-1.0) def test_reconstruct_patches_perfect(): lena = downsampled_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_reconstruct_patches_perfect_color(): lena = orange_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_patch_extractor_fit(): lenas = lena_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert_true(extr == extr.fit(lenas)) def test_patch_extractor_max_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(lenas) * max_patches extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) max_patches = 0.5 expected_n_patches = len(lenas) * int((i_h - p_h + 1) * (i_w - p_w + 1) * max_patches) extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_max_patches_default(): lenas = lena_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(lenas) assert_equal(patches.shape, (len(lenas) * 100, 12, 12)) def test_patch_extractor_all_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_color(): lenas = _make_images(orange_lena) i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for (image_shape, patch_size, patch_step, expected_view, last_patch) in zip(image_shapes, patch_sizes, patch_steps, expected_views, last_patches): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = extract_patches(image, patch_shape=patch_size, extraction_step=patch_step) ndim = len(image_shape) assert_true(patches.shape[:ndim] == expected_view) last_patch_slices = [slice(i, i + j, None) for i, j in zip(last_patch, patch_size)] assert_true((patches[[slice(-1, None, None)] * ndim] == image[last_patch_slices].squeeze()).all()) def test_extract_patches_square(): # test same patch size for all dimensions lena = downsampled_lena i_h, i_w = lena.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = extract_patches(lena, patch_shape=p) assert_true(patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(ValueError, extract_patches_2d, x, (4, 1)) assert_raises(ValueError, extract_patches_2d, x, (1, 4))
bsd-3-clause
a301-teaching/a301_code
notebooks/python/satelliteI.py
1
6461
# coding: utf-8 # # Intro to satellite data I # # In this notebook we take a quick look at a 5 minutes of satellite data acquired from the MODIS instrument on the Aqua polar orbiting satellite. The granule covers the period from 20:15 to 20:20 UCT on May 15, 2016 (Julian day 136) while Aqua flew over Ft. McMurray, Alberta. I downloaded the granule from the [Laadsweb NASA site]( https://ladsweb.nascom.nasa.gov/data/search.html) and converted it from HDF4 to HDF5 format (more on [this](https://www.hdfgroup.org/h5h4-diff.html) later). The structure of HDF5 files can be explored with the [HDFViewer tool](https://www.hdfgroup.org/products/java/release/download.html) (install version 2.13 from that link). The gory details are in the [Modis Users Guide](http://clouds.eos.ubc.ca/~phil/courses/atsc301/downloads/modis_users_guide.pdf). # # First, download the file from our course website: # In[1]: from a301utils.a301_readfile import download import h5py filename = 'MYD021KM.A2016136.2015.006.2016138123353.h5' download(filename) # Here is the corresponding red,green,blue color composite for the granule. # In[13]: from IPython.display import Image Image(url='http://clouds.eos.ubc.ca/~phil/courses/atsc301/downloads/aqua_136_2015.jpg',width=600) # ### now use h5py to read some of the satellite channels # In[7]: h5_file=h5py.File(filename) # h5 files have attributes -- stored as a dictionary # In[9]: print(list(h5_file.attrs.keys())) # ### print two of the attributes # In[10]: print(h5_file.attrs['Earth-Sun Distance_GLOSDS']) # In[11]: print(h5_file.attrs['HDFEOSVersion_GLOSDS']) # h5 files have variables -- stored in a dictionary. # The fields are aranged in a hierarchy of groups similar to a set of nested folders # Here is what HDFViewer reports for the structure of the "EV_1KM_Emissive" dataset, which stands for "Earth View, 1 km pixel resolution, thermal emission channels". It is showing a 3 dimensional array of integers of shape (16,2030,1354). These are radiometer counts in 16 different wavelength channels for the 2030 x 1354 pixel granule. # In[14]: Image('screenshots/HDF_file_structure.png') # **Read the radiance data from MODIS_SWATH_Type_L1B/Data Fields/EV_1KM_Emissive** # Note the correspondence between the keys and the fields you see in HDFView: # # Here are the top level groups: # In[17]: print(list(h5_file.keys())) # and the 'MODIS_SWATH_Type_L1B' group contains 3 subgroups: # In[18]: print(list(h5_file['MODIS_SWATH_Type_L1B'].keys())) # and the 'Data Fields' subgroup contains 27 more groups: # In[57]: print(list(h5_file['MODIS_SWATH_Type_L1B/Data Fields'].keys())) # Print out the 16 channel numbers stored in Band_1KM_Emissive data array. The [...] means "read everything". The 16 thermal channels are channels 20-36. Their wavelength ranges and common uses are listed # [here](https://modis.gsfc.nasa.gov/about/specifications.php) # In[22]: print(h5_file['MODIS_SWATH_Type_L1B/Data Fields/Band_1KM_Emissive'][...]) # **note that channel 31, which covers the wavelength range 10.78-11.28 $\mu m$ occurs at index value 10 (remember python counts from 0)** # In[24]: index31=10 # **the data are stored as unsigned (i.e. only positive values), 2 byte (16 bit) integers which can hold values from 0 to $2^{16}$ - 1 = 65,535. # The ">u2" notation below for the datatype (dtype) says that the data is unsigned, 2 byte, with the most significant # byte stored first ("big endian", which is the same way we write numbers)** # # (Although the 2 byte words contain 16 bits, only 12 bits are significant). # # (h5py let's you specify the group names one at a time, instead of using '/' to separate them. This is convenient if you are storing your field name in a variable, for example.) # In[42]: my_name = 'EV_1KM_Emissive' chan31=h5_file['MODIS_SWATH_Type_L1B']['Data Fields'][my_name][index31,:,:] print(chan31.shape,chan31.dtype) # **Print the first 3 rows and columns** # In[26]: chan31[:3,:3] # ** we need to apply a # scale and offset to convert counts to radiance, with units of $(W\,m^{-2}\,\mu m^{-1}\,sr^{-1}$). More about the # sr units later** # $Data = (RawData - offset) \times scale$ # # this information is included in the attributes of each variable. # # (see page 36 of the [Modis Users Guide](http://clouds.eos.ubc.ca/~phil/courses/atsc301/downloads/modis_users_guide.pdf)) # **here is the scale for all 16 channels** # In[33]: scale=h5_file['MODIS_SWATH_Type_L1B']['Data Fields']['EV_1KM_Emissive'].attrs['radiance_scales'][...] print(scale) # **and here is the offset for 16 channels** # In[34]: offset=h5_file['MODIS_SWATH_Type_L1B']['Data Fields']['EV_1KM_Emissive'].attrs['radiance_offsets'][...] print(offset) # **note that as the satellite ages and wears out, these calibration coefficients change** # In[35]: chan31_calibrated =(chan31 - offset[index31])*scale[index31] # In[27]: get_ipython().magic('matplotlib inline') # **histogram the raw counts -- note that hist doesn't know how to handle 2-dim arrays, so flatten to 1-d** # In[55]: import matplotlib.pyplot as plt out=plt.hist(chan31.flatten()) # # get the current axis to add title with gca() # ax = plt.gca() _=ax.set(title='Aqua Modis raw counts') # **histogram the calibrated radiances and show that they lie between # 0-10 $W\,m^{-2}\,\mu m^{-1}\,sr^{-1}$ ** # In[45]: import matplotlib.pyplot as plt fig,ax = plt.subplots(1,1) ax.hist(chan31_calibrated.flatten()) _=ax.set(xlabel='radiance $(W\,m^{-2}\,\mu m^{-1}\,sr^{-1}$)', title='channel 31 radiance for Aqua Modis') # ** Next Read MODIS_SWATH_Type_L1B/Geolocation Fields/Longitude** # note that the longitude and latitude arrays are (406,271) while the actual # data are (2030,1354). These lat/lon arrays show only every fifth row and column to # save space. The full lat/lon arrays are stored in a separate file. # In[54]: lon_data=h5_file['MODIS_SWATH_Type_L1B']['Geolocation Fields']['Longitude'][...] lat_data=h5_file['MODIS_SWATH_Type_L1B']['Geolocation Fields']['Latitude'][...] _=plt.plot(lon_data[:10,:10],lat_data[:10,:10],'b+') # **Note two things: 1) the pixels overlap and 2) they don't line up on lines of constant longitude and latitude** # # **The pixels are also not all the same size -- this distortion is called the [bowtie effect](http://eoweb.dlr.de:8080/short_guide/D-MODIS.html)** # # **Next -- plotting image data** # In[ ]:
mit
heliazandi/volttron-applications
pnnl/TCMAgent/tcm/agent.py
5
12924
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright (c) 2015, Battelle Memorial Institute # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are those # of the authors and should not be interpreted as representing official policies, # either expressed or implied, of the FreeBSD Project. # # This material was prepared as an account of work sponsored by an # agency of the United States Government. Neither the United States # Government nor the United States Department of Energy, nor Battelle, # nor any of their employees, nor any jurisdiction or organization # that has cooperated in the development of these materials, makes # any warranty, express or implied, or assumes any legal liability # or responsibility for the accuracy, completeness, or usefulness or # any information, apparatus, product, software, or process disclosed, # or represents that its use would not infringe privately owned rights. # # Reference herein to any specific commercial product, process, or # service by trade name, trademark, manufacturer, or otherwise does # not necessarily constitute or imply its endorsement, recommendation, # r favoring by the United States Government or any agency thereof, # or Battelle Memorial Institute. The views and opinions of authors # expressed herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY # operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 #}}} import os import sys import logging import datetime from dateutil import parser from volttron.platform.vip.agent import Agent, Core, PubSub, RPC, compat from volttron.platform.agent import utils from volttron.platform.agent.utils import (get_aware_utc_now, format_timestamp) import pandas as pd import statsmodels.formula.api as sm utils.setup_logging() _log = logging.getLogger(__name__) class TCMAgent(Agent): def __init__(self, config_path, **kwargs): super(TCMAgent, self).__init__(**kwargs) self.config = utils.load_config(config_path) self.site = self.config.get('campus') self.building = self.config.get('building') self.unit = self.config.get('unit') self.subdevices = self.config.get('subdevices') self.out_temp_name = self.config.get('out_temp_name') self.supply_temp_name = self.config.get('supply_temp_name') self.zone_temp_name = self.config.get('zone_temp_name') self.air_flow_rate_name = self.config.get('air_flow_rate_name') self.aggregate_in_min = self.config.get('aggregate_in_min') self.aggregate_freq = str(self.aggregate_in_min) + 'Min' self.ts_name = self.config.get('ts_name') self.Qhvac_name = 'Q_hvac' self.Qhvac_new_name = 'Q_hvac_new' self.zone_temp_new_name = self.zone_temp_name + '_new' self.window_size_in_day = int(self.config.get('window_size_in_day')) self.min_required_window_size_in_percent = float(self.config.get('min_required_window_size_in_percent')) self.interval_in_min = int(self.config.get('interval_in_min')) self.no_of_recs_needed = self.window_size_in_day * 24 * (60 / self.interval_in_min) self.min_no_of_records_needed_after_aggr = int(self.min_required_window_size_in_percent/100 * self.no_of_recs_needed/self.aggregate_in_min) self.schedule_run_in_sec = int(self.config.get('schedule_run_in_day')) * 86400 self.rho = 1.204 self.c_p = 1006.0 # Testing #self.no_of_recs_needed = 200 #self.min_no_of_records_needed_after_aggr = self.no_of_recs_needed/self.aggregate_in_min @Core.receiver('onstart') def onstart(self, sender, **kwargs): self.core.periodic(self.schedule_run_in_sec, self.calculate_latest_coeffs) def calculate_latest_coeffs(self): unit_topic_tmpl = "{campus}/{building}/{unit}/{point}" topic_tmpl = "{campus}/{building}/{unit}/{subdevice}/{point}" unit_points = [self.out_temp_name, self.supply_temp_name] zone_points = [self.zone_temp_name, self.air_flow_rate_name] df = None for point in unit_points: unit_topic = unit_topic_tmpl.format(campus=self.site, building=self.building, unit=self.unit, point=point) result = self.vip.rpc.call('platform.historian', 'query', topic=unit_topic, count=self.no_of_recs_needed, order="LAST_TO_FIRST").get(timeout=1000) df2 = pd.DataFrame(result['values'], columns=[self.ts_name, point]) self.convert_units_to_SI(df2, point, result['metadata']['units']) df2[self.ts_name] = pd.to_datetime(df2[self.ts_name]) df2 = df2.groupby([pd.TimeGrouper(key=self.ts_name, freq=self.aggregate_freq)]).mean() #df2[self.ts_name] = df2[self.ts_name].apply(lambda dt: dt.replace(second=0, microsecond=0)) df = df2 if df is None else pd.merge(df, df2, how='outer', left_index=True, right_index=True) for subdevice in self.subdevices: for point in zone_points: # Query data from platform historian topic = topic_tmpl.format(campus=self.site, building=self.building, unit=self.unit, subdevice=subdevice, point=point) result = self.vip.rpc.call('platform.historian', 'query', topic=topic, count=self.no_of_recs_needed, order="LAST_TO_FIRST").get(timeout=1000) # Merge new point data to df df2 = pd.DataFrame(result['values'], columns=[self.ts_name, point]) self.convert_units_to_SI(df2, point, result['metadata']['units']) df2[self.ts_name] = pd.to_datetime(df2[self.ts_name]) df2 = df2.groupby([pd.TimeGrouper(key=self.ts_name, freq=self.aggregate_freq)]).mean() #df2[self.ts_name] = df2[self.ts_name].apply(lambda dt: dt.replace(second=0, microsecond=0)) df = pd.merge(df, df2, how='outer', left_index=True, right_index=True) #print(df) coeffs = self.calculate_coeffs(df) # Publish coeffs to store if coeffs is not None: self.save_coeffs(coeffs, subdevice) def convert_units_to_SI(self, df, point, unit): if unit == 'degreesFahrenheit': df[point] = (df[point]-32) * 5/9 # Air state assumption: http://www.remak.eu/en/mass-air-flow-rate-unit-converter # 1cfm ~ 0.00055kg/s if unit == 'cubicFeetPerMinute': df[point] = df[point] * 0.00055 def calculate_coeffs(self, df): # check if there is enough data l = len(df.index) if l < self.min_no_of_records_needed_after_aggr: _log.exception('Not enough data to process') return None df[self.Qhvac_name] = self.rho * self.c_p * df[self.air_flow_rate_name] * \ (df[self.supply_temp_name] - df[self.zone_temp_name]) # align future predicted value with current predictors # this is the next time interval lag = 1 df = df.append(df[-1:], ignore_index=True) df[self.zone_temp_new_name] = df[self.zone_temp_name].shift(-lag) df[self.Qhvac_new_name] = df[self.Qhvac_name].shift(-lag) df = df.dropna(subset=[self.zone_temp_new_name, self.Qhvac_new_name]) # calculate model coefficients T_coeffs = self.cal_T_coeffs(df) Q_coeffs = self.cal_Q_coeffs(df) return {"T_fit": T_coeffs, "Q_fit": Q_coeffs} def cal_T_coeffs(self, df): # the regression to predict new temperature given a new cooling rate formula = "{T_in_new} ~ {T_in} + {T_out} + {Q_hvac_new} + {Q_hvac}".format( T_in_new=self.zone_temp_new_name, T_in=self.zone_temp_name, T_out=self.out_temp_name, Q_hvac_new=self.Qhvac_new_name, Q_hvac=self.Qhvac_name ) T_fit = sm.ols(formula=formula, data=df).fit() return T_fit def cal_Q_coeffs(self, df): # the regression to predict new temperature given a new cooling rate formula = "{Q_hvac_new} ~ {T_in} + {T_out} + {T_in_new} + {Q_hvac}".format( T_in_new=self.zone_temp_new_name, T_in=self.zone_temp_name, T_out=self.out_temp_name, Q_hvac_new=self.Qhvac_new_name, Q_hvac=self.Qhvac_name ) Q_fit = sm.ols(formula=formula, data=df).fit() return Q_fit def save_coeffs(self, coeffs, subdevice): topic_tmpl = "analysis/TCM/{campus}/{building}/{unit}/{subdevice}/" topic = topic_tmpl.format(campus=self.site, building=self.building, unit=self.unit, subdevice=subdevice) T_coeffs = coeffs["T_fit"] Q_coeffs = coeffs["Q_fit"] headers = {'Date': format_timestamp(get_aware_utc_now())} for idx in xrange(0,5): T_topic = topic + "T_c" + str(idx) Q_topic = topic + "Q_c" + str(idx) self.vip.pubsub.publish( 'pubsub', T_topic, headers, T_coeffs.params[idx]) self.vip.pubsub.publish( 'pubsub', Q_topic, headers, Q_coeffs.params[idx]) _log.debug(T_coeffs.params) _log.debug(Q_coeffs.params) def main(argv=sys.argv): '''Main method called by the eggsecutable.''' try: utils.vip_main(TCMAgent) except Exception as e: _log.exception('unhandled exception') def test_ols(): '''To compare result of pandas and R's linear regression''' import os test_csv = '../test_data/tcm_ZONE_VAV_150_data.csv' df = pd.read_csv(test_csv) config_path = os.environ.get('AGENT_CONFIG') tcm = TCMAgent(config_path) coeffs = tcm.calculate_coeffs(df) if coeffs is not None: T_coeffs = coeffs["T_fit"] Q_coeffs = coeffs["Q_fit"] _log.debug(T_coeffs.params) _log.debug(Q_coeffs.params) def test_api(): '''To test Volttron APIs''' import os topic_tmpl = "{campus}/{building}/{unit}/{subdevice}/{point}" tcm = TCMAgent(os.environ.get('AGENT_CONFIG')) topic1 = topic_tmpl.format(campus='PNNL', building='SEB', unit='AHU1', subdevice='VAV123A', point='MaximumZoneAirFlow') result = tcm.vip.rpc.call('platform.historian', 'query', topic=topic1, count=20, order="LAST_TO_FIRST").get(timeout=100) assert result is not None if __name__ == '__main__': # Entry point for script sys.exit(main()) #test_api()
bsd-3-clause
luis-nogoseke/lfn-optimization
rosen_min.py
1
5085
from scipy.optimize import minimize, rosen, rosen_der from numpy.random import random import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm, ticker from matplotlib.colors import LogNorm from matplotlib.legend_handler import HandlerLine2D from matplotlib import pyplot import numpy as np from numpy import array as array import timeit # Plot the function fig = plt.figure() ax = Axes3D(fig, azim = -128, elev = 43) s = .05 X = np.arange(-2, 2.+s, s) Y = np.arange(-1, 3.+s, s) X, Y = np.meshgrid(X, Y) Z = rosen([X, Y]) ax.plot_surface(X, Y, Z, rstride = 1, cstride = 1, norm = LogNorm(), cmap = cm.jet, linewidth=0, edgecolor='none') ax.set_xlim([-2,2.0]) ax.set_ylim([-1,3.0]) ax.set_zlim([0, 2500]) plt.xlabel("x") plt.ylabel("y") plt.title('Rosenbrock 2D') plt.figure() # plt.show() ################################################################## ################################################################## # Get 30 solutions xs = [] ys = [] it = 0 def bstop(xk): xs.append(np.copy(xk)) ys.append(rosen(xk)) global it it = it + 1 iters = [] feval = [] sol = [] objective = [] times= [] #x0s = [] for i in range(0, 30): # x0 = (random(2)-1)*20 # x0s.append(x0) global it it = 0 start_time = timeit.default_timer() output = minimize(rosen, x0s[i], method='L-BFGS-B', callback=bstop, options= {'disp': True}) times.append(timeit.default_timer() - start_time) iters.append(it) feval.append(output.nfev) sol.append(output.x) objective.append(output.fun) ################################################################## # Plot solution on isolines # Isolines delta = 0.05 s = 0.05 X = np.arange(-1.5, 1.5, delta) Y = np.arange(-1, 3, delta) X, Y = np.meshgrid(X, Y) Z = rosen([X, Y]) levels = np.arange(10, 300, 10) plt.contour(X, Y, Z, levels=levels, norm=LogNorm()) xs = [np.array([-1, -0.5])] ys = [rosen(xs[0])] minimize(rosen, [-1, -0.5], method='BFGS', callback=bstop, options= {'disp': True}) linex = [-1] liney = [-0.5] for i in xs: linex.append(i[0]) liney.append(i[1]) bfgs_y = list(ys) bfgs, = plt.plot(linex, liney, '-o', label='BFGS') xs = [np.array([-1, -0.5])] ys = [rosen(xs[0])] minimize(rosen, [-1, -0.5], method='L-BFGS-B', callback=bstop, options= {'disp': True}) linex = [-1] liney = [-0.5] for i in xs: linex.append(i[0]) liney.append(i[1]) lbfgsb_y = list(ys) lbfgsb, = plt.plot(linex, liney, '-s', label='L-BFGS-B') #xs = [np.array([-1, -0.5])] xs = [array([-1, -5.000000e-01]), array([0, -3.311268e-03]), array([1.355493e-03, -5.959506e-03]), array([3.809721e-02, 3.027428e-03]), array([2.079182e-01, 4.341413e-02]), array([2.970837e-01, 6.464193e-02]), array([2.855097e-01, 6.251982e-02]), array([2.888685e-01, 7.041021e-02]), array([3.002800e-01, 9.371150e-02]), array([3.301636e-01, 1.239246e-01]), array([3.431667e-01, 1.362663e-01]), array([3.790113e-01, 1.696302e-01]), array([6.666666e-01, 4.364363e-01]), array([6.673740e-01, 4.370968e-01]), array([6.827426e-01, 4.586153e-01]), array([8.033587e-01, 6.278525e-01]), array([7.713845e-01, 5.861505e-01]), array([7.816157e-01, 6.030214e-01]), array([8.603122e-01, 7.330873e-01]), array([8.943182e-01, 7.953762e-01]), array([9.339127e-01, 8.700019e-01]), array([9.673623e-01, 9.336677e-01]), array([9.848576e-01, 9.714503e-01]), array([1.000155e+00, 9.998819e-01]), array([9.986836e-01, 9.973498e-01]), array([9.995547e-01, 9.990956e-01])] #ys = [rosen(xs[0])] ys = [229, 1.001096e+00, 1.000845e+00, 9.255054e-01, 6.273970e-01, 5.498666e-01, 5.465811e-01, 5.226986e-01, 4.908637e-01, 4.709314e-01, 4.656657e-01, 4.531264e-01, 1.175240e-01, 1.175146e-01, 1.063106e-01, 6.940715e-02, 6.015688e-02, 5.393538e-02, 2.448267e-02, 1.313008e-02, 4.847591e-03, 1.515564e-03, 4.560516e-04, 1.832000e-05, 1.769561e-06, 2.180442e-07, 1.568248e-10] #minimize(rosen, [-1, -0.5], method=_minimize_dfp, callback=bstop, options= {'disp': True}) linex = [] liney = [] for i in xs: linex.append(i[0]) liney.append(i[1]) powell_y = list(ys) powell, = plt.plot(linex, liney, '-^', label='DFP') plt.legend(handles=[bfgs, lbfgsb, powell]) plt.title('Isolines') plt.xlabel('x1') plt.ylabel('x2') plt.figure() b, = plt.plot(bfgs_y, '-o', label='BFGS') l, = plt.plot(lbfgsb_y, '-s', label='L-BFGS-B') p, = plt.plot(powell_y, '-^', label='DFP') pyplot.yscale('log') plt.grid(True) plt.title('Objective') plt.legend(handles=[b, l, p]) plt.xlabel('Number of Iterations') plt.ylabel('Objective') plt.show() ################################################################## iters = [] feval = [] sol = [] objective = [] x0s = [] it = 0 for i in range(0, 30): x0 = (random(30)-1)*10 x0s.append(x0) global it it = 0 output = minimize(rosen, x0, method='BFGS', callback=bstop, options= {'disp': True}) iters.append(it) feval.append(output.nfev) sol.append(output.x) objective.append(output.fun)
apache-2.0
rl-institut/reegis-hp
reegis_hp/berlin_hp/berlin_brdbg_example_opt.py
7
9772
#!/usr/bin/python3 # -*- coding: utf-8 import logging import pandas as pd import numpy as np from oemof import db from oemof.db import tools from oemof.db import powerplants as db_pps from oemof.db import feedin_pg from oemof.tools import logger from oemof.core import energy_system as es from oemof.solph import predefined_objectives as predefined_objectives from oemof.core.network.entities import Bus from oemof.core.network.entities.components import sources as source from oemof.core.network.entities.components import sinks as sink from oemof.core.network.entities.components import transformers as transformer from oemof.core.network.entities.components import transports as transport import warnings warnings.simplefilter(action="ignore", category=RuntimeWarning) # Plant and site parameter site = {'module_name': 'Yingli_YL210__2008__E__', 'azimuth': 0, 'tilt': 0, 'albedo': 0.2, 'hoy': 8760, 'h_hub': 135, 'd_rotor': 127, 'wka_model': 'ENERCON E 126 7500', 'h_hub_dc': { 1: 135, 2: 78, 3: 98, 4: 138, 0: 135}, 'd_rotor_dc': { 1: 127, 2: 82, 3: 82, 4: 82, 0: 127}, 'wka_model_dc': { 1: 'ENERCON E 126 7500', 2: 'ENERCON E 82 3000', 3: 'ENERCON E 82 2300', 4: 'ENERCON E 82 2300', 0: 'ENERCON E 126 7500'}, } define_elec_buildings = [ {'annual_elec_demand': 2000, 'selp_type': 'h0'}, {'annual_elec_demand': 2000, 'selp_type': 'g0'}, {'annual_elec_demand': 2000, 'selp_type': 'i0'}] define_heat_buildings = [ {'building_class': 11, 'wind_class': 0, 'annual_heat_demand': 5000, 'shlp_type': 'efh'}, {'building_class': 5, 'wind_class': 1, 'annual_heat_demand': 5000, 'shlp_type': 'mfh'}, {'selp_type': 'g0', 'building_class': 0, 'wind_class': 1, 'annual_heat_demand': 3000, 'shlp_type': 'ghd'}] # emission factors in t/MWh co2_emissions = {} co2_emissions['lignite'] = 0.111 * 3.6 co2_emissions['hard_coal'] = 0.0917 * 3.6 co2_emissions['natural_gas'] = 0.0556 * 3.6 co2_emissions['mineral_oil'] = 0.0750 * 3.6 co2_emissions['waste'] = 0.0750 * 3.6 co2_emissions['biomass'] = 0.0750 * 3.6 eta_elec = {} eta_elec['lignite'] = 0.35 eta_elec['hard_coal'] = 0.39 eta_elec['natural_gas'] = 0.45 eta_elec['mineral_oil'] = 0.40 eta_elec['waste'] = 0.40 eta_elec['biomass'] = 0.40 opex_var = {} opex_var['lignite'] = 22 opex_var['hard_coal'] = 25 opex_var['natural_gas'] = 22 opex_var['mineral_oil'] = 22 opex_var['waste'] = 22 opex_var['biomass'] = 22 opex_var['solar_power'] = 1 opex_var['wind_power'] = 1 capex = {} capex['lignite'] = 22 capex['hard_coal'] = 25 capex['natural_gas'] = 22 capex['mineral_oil'] = 22 capex['waste'] = 22 capex['biomass'] = 22 capex['solar_power'] = 1 capex['wind_power'] = 1 # price for resource price = {} price['lignite'] = 60 price['hard_coal'] = 60 price['natural_gas'] = 60 price['mineral_oil'] = 60 price['waste'] = 60 price['biomass'] = 60 de_en = { 'Braunkohle': 'lignite', 'Steinkohle': 'hard_coal', 'Erdgas': 'natural_gas', 'Öl': 'mineral_oil', 'Solarstrom': 'solar_power', 'Windkraft': 'wind_power', 'Biomasse': 'biomass', 'Wasserkraft': 'hydro_power', 'Gas': 'methan'} en_de = { 'lignite': 'Braunkohle', 'hard_coal': 'Steinkohle', 'natural_gas': 'Erdgas', 'mineral_oil': 'Öl'} opex_fix = {} resource_buses = { 'global': ['hard_coal', 'lignite', 'oil'], 'local': ['natural_gas']} translator = lambda x: de_en[x] def get_demand(): 'Dummy function until real function exists.' demand_df = pd.DataFrame() demand_df['elec'] = np.random.rand(8760) * 10 ** 11 return demand_df def entity_exists(esystem, uid): return len([obj for obj in esystem.entities if obj.uid == uid]) > 0 def create_entity_objects(esystem, region, pp, tclass, bclass): '' if entity_exists(esystem, ('bus', region.name, pp[1].type)): logging.debug('Bus {0} exists. Nothing done.'.format( ('bus', region.name, pp[1].type))) location = region.name elif entity_exists(esystem, ('bus', 'global', pp[1].type)): logging.debug('Bus {0} exists. Nothing done.'.format( ('bus', 'global', pp[1].type))) location = 'global' else: print() logging.debug('Creating Bus {0}.'.format( ('bus', region.name, pp[1].type))) bclass(uid=('bus', region.name, pp[1].type), type=pp[1].type, price=price[pp[1].type], regions=[region], excess=False) location = region.name source.Commodity( uid='rgas', outputs=[obj for obj in esystem.entities if obj.uid == ( 'bus', location, pp[1].type)]) tclass( uid=('transformer', region.name, pp[1].type), inputs=[obj for obj in esystem.entities if obj.uid == ( 'bus', location, pp[1].type)], outputs=[obj for obj in region.entities if obj.uid == ( 'bus', region.name, 'elec')], in_max=[None], out_max=[float(pp[1].cap)], eta=[eta_elec[pp[1].type]], opex_var=opex_var[pp[1].type], regions=[region]) logger.define_logging() year = 2010 time_index = pd.date_range('1/1/{0}'.format(year), periods=8760, freq='H') overwrite = False overwrite = True conn = db.connection() # Create a simulation object simulation = es.Simulation( timesteps=range(len(time_index)), verbose=True, solver='gurobi', debug=True, objective_options={'function': predefined_objectives.minimize_cost}) # Create an energy system TwoRegExample = es.EnergySystem(time_idx=time_index, simulation=simulation) # Add regions to the energy system TwoRegExample.regions.append(es.Region( geom=tools.get_polygon_from_nuts(conn, 'DE3'), name='Berlin')) TwoRegExample.regions.append(es.Region( geom=tools.get_polygon_from_nuts(conn, 'DE4'), name='Brandenburg')) # Create global buses Bus(uid=('bus', 'global', 'coal'), type='coal', price=60, sum_out_limit=10e10, excess=False) Bus(uid=('bus', 'global', 'lignite'), type='lignite', price=60, sum_out_limit=10e10, excess=False) # Create entity objects for each region for region in TwoRegExample.regions: logging.info('Processing region: {0} ({1})'.format( region.name, region.code)) # Get demand time series and create buses. One bus for each demand series. demand = get_demand() for demandtype in demand.keys(): Bus(uid=('bus', region.name, demandtype), type=demandtype, price=60, regions=[region], excess=False) sink.Simple( uid=('sink', region.name, demandtype), inputs=[obj for obj in TwoRegExample.entities if obj.uid == ('bus', region.name, demandtype)], val=demand[demandtype], region=[region]) # Create source object feedin_pg.Feedin().create_fixed_source( conn, region=region, year=TwoRegExample.time_idx.year[0], bustype='elec', **site) # Get power plants from database and write them into a DataFrame pps_df = db_pps.get_bnetza_pps(conn, region.geom) print(pps_df) # Add aditional power plants to the DataFrame pps_df.loc[len(pps_df)] = 'natural_gas', np.nan, 10 ** 12 # TODO: Summerize power plants of the same type for pwrp in pps_df.iterrows(): create_entity_objects(TwoRegExample, region, pwrp, tclass=transformer.Simple, bclass=Bus) # create storage transformer object for storage # transformer.Storage.optimization_options.update({'investment': True}) bel = [obj for obj in TwoRegExample.entities if obj.uid == ('bus', region.name, demandtype)] transformer.Storage(uid=('sto_simple', region.name, 'elec'), inputs=bel, outputs=bel, eta_in=1, eta_out=0.8, cap_loss=0.00, opex_fix=35, opex_var=0, capex=1000, cap_max=10 ** 12, cap_initial=0, c_rate_in=1/6, c_rate_out=1/6) # Connect the electrical bus of region StaDes und LanWit. bus1 = [obj for obj in TwoRegExample.entities if obj.uid == ( 'bus', 'Berlin', 'elec')][0] bus2 = [obj for obj in TwoRegExample.entities if obj.uid == ( 'bus', 'Brandenburg', 'elec')][0] TwoRegExample.connect(bus1, bus2, in_max=10 * 10 ** 12, out_max=0.9 * 10 ** 12, eta=0.9, transport_class=transport.Simple) #pv_lk_wtb = ([obj for obj in TwoRegExample.entities if obj.uid == ( # 'FixedSrc', 'Landkreis Wittenberg', 'pv_pwr')][0]) ## Multiply PV with 25 #pv_lk_wtb.val = pv_lk_wtb.val * 25 # Remove orphan buses buses = [obj for obj in TwoRegExample.entities if isinstance(obj, Bus)] for bus in buses: if len(bus.inputs) > 0 or len(bus.outputs) > 0: logging.debug('Bus {0} has connections.'.format(bus.type)) else: logging.debug('Bus {0} has no connections and will be deleted.'.format( bus.type)) TwoRegExample.entities.remove(bus) TwoRegExample.simulation = es.Simulation( solver='gurobi', timesteps=[t for t in range(8760)], stream_solver_output=True, objective_options={ 'function': predefined_objectives.minimize_cost}) for entity in TwoRegExample.entities: entity.uid = str(entity.uid) # Optimize the energy system TwoRegExample.optimize() logging.info(TwoRegExample.dump())
gpl-3.0
18padx08/PPTex
PPTexEnv_x86_64/bin/JinjaPPExtension.py
1
18508
#!/bin/bash "exec" "python" "$0" "$@" from os import sys sys.path += ['/usr/texbin','', '//anaconda/lib/python27.zip', '//anaconda/lib/python2.7', '//anaconda/lib/python2.7/plat-darwin', '//anaconda/lib/python2.7/plat-mac', '//anaconda/lib/python2.7/plat-mac/lib-scriptpackages', '//anaconda/lib/python2.7/lib-tk', '//anaconda/lib/python2.7/lib-old', '//anaconda/lib/python2.7/lib-dynload', '//anaconda/lib/python2.7/site-packages', '//anaconda/lib/python2.7/site-packages/PIL', '//anaconda/lib/python2.7/site-packages/setuptools-2.1-py2.7.egg'] from jinja2 import nodes, contextfunction from jinja2.ext import Extension from jinja2 import Environment, FileSystemLoader from jinja2.exceptions import TemplateSyntaxError import numpy as np from sympy import Symbol, sympify, lambdify, latex import sympy as sp import matplotlib.pyplot as plot import subprocess import re class PPException(Exception): pass class PPExtension(Extension): tags = set(['figure', 'table', 'calcTable', 'evaluate', 'evaltex']) def __init(self, environment): super(PPExtension, self).__init__(environment) #add defaults environment.extend(error_calculation='gauss', data_mode='tuples', print_figure_for_each_table=True) def parse(self, parser): #the token lineno = parser.stream.next() linnum = lineno.lineno if(lineno.value == 'figure'): #ther argument arg = [parser.parse_expression()] #the figure data if (parser.stream.skip_if('comma')): arg.append(parser.parse_expression()) body = parser.parse_statements(['name:endfigure'], drop_needle=True) return nodes.CallBlock(self.call_method('_create_figure', arg),[], [], body).set_lineno(linnum) elif(lineno.value == 'table'): arg = [parser.parse_expression()] return nodes.Output([self.call_method('_print_latex_table', arg)]) elif(lineno.value == 'evaluate'): arg = [parser.parse_expression()] return nodes.Output([self.call_method('_evaluate_function', arg)]) elif(lineno.value == 'evaltex'): arg = [parser.parse_expression()] return nodes.Output([self.call_method('_evaltex_function', arg)]) elif( lineno.value == 'calcTable'): arg = [parser.parse_expression()] return nodes.Output([self.call_method('_calcTable_function', arg)]) #body = parser.parse_statements(['name:endfigure'], drop_needle=True) return nodes.Const(None) def _getValue(self, r,c,table, regExps): try: print("is it a value?") return np.round(float(table[r,c]), 6) except(ValueError): print("no it's not") #got string try parse it #for reg in regExps: val = self._parseValue(r,c,table[r,c],table, regExps) if val is not None: return val return 0 def _parseValue(self, row, column, entry, table, regExps): value = 0 print('sp lets try parse it') for reg in regExps: temp = reg.finditer(entry) cor= 0 if temp: for match in temp: tup = match.group().replace('$', '') print(tup) r,c = tup.split(',') r = row if int(r) < 0 else r c = column if int(c) < 0 else c print(r,c) tmpVal = str(self._getValue(r,c,table, regExps)) entry = entry[0:match.start()-cor] + tmpVal + entry[match.end()-cor:] cor += len(match.group()) - len(tmpVal) try: value = eval(entry) except(Exception): return None return np.round(value, 6) def _calcTable_function(self, data): xheader = data['xheader'] yheader = data['yheader'] #build up the regex for formula $1,2$ means second row third column $(0:1,0:1)$ the rect (0,0) - (0,1) which yields an array with every entry putting them into an array with same dimension # | | # (1,0) - (1,1) #replace every placeholder with the value, putting 0 if the index is not valid singleVal = re.compile('\$-?\d*,-?\d*\$') table = np.array(data['table']) print table for row in range(np.shape(table)[0]): print(row) for column in range(np.shape(table)[1]): print ("parse (",row,column,")") blub = [] blub.append(singleVal) value = self._getValue(row, column, table, blub) print(value) table[row,column] = value datArr = {} print('table construction completed') datArr['extended'] = True datArr['xheader'] = xheader datArr['yheader'] = yheader datArr['xdata'] = [] print('building up data array') for c in range(np.shape(table)[1]): print(c) datArr['xdata'].append(table[:,c].tolist()) datArr['desc'] = data['desc'] figstr = '' if 'figure' in data: print( data['figure']) for fig in data['figure']: xrow = int(fig['xrow']) yrow = int(fig['yrow']) print(xrow, yrow) xdata = table[:,xrow].astype(np.float) ydata = table[:,yrow].astype(np.float) print(xdata, ydata) xmin = np.min(xdata) print(xmin) xmax = np.max(xdata) ymin = np.min(ydata) ymax = np.max(ydata) print(xmin,xmax,ymin,ymax) rang = [xmin, xmax, ymin, ymax] print (rang) title = fig['title'] desc = data['desc'] ylabel = fig['ylabel'] xlabel = fig['xlabel'] ref = fig['ref'] figureArray = {} figureArray['xdata'] = xdata.tolist() figureArray['ydata'] = ydata.tolist() figureArray['title'] = title figureArray['desc'] = desc figureArray['range'] = rang if 'interpolate' in fig: figureArray['dim'] = fig['dim'] figureArray['interpolate'] = fig['interpolate'] if 'slope' in fig: figureArray['slope'] = fig['slope'] print('try creating figure') figstr += self._create_figure(ref, {'data': [figureArray], 'ylabel':ylabel, 'xlabel':xlabel}, fig['caption']) print('try printing the table') return self._print_latex_table(datArr) + figstr def _evaltex_function(self, data): try: s = sympify(data['function']) except: raise TemplateSyntaxError("could not parse formula", 01) try: l = latex(s) s = s.doit() except: raise TemplateSyntaxError("could either not make latex output or simpify", 1) l2 = None #errors is ignoring step if 'step' in data: l2 = latex(s) #print(latex(s)) vals = [] syms = [] indep = [] unindep = [] try: print(data['symbols']) for symbol in data['symbols']: print(symbol) print(symbol['sym'], symbol['val']) syms.append(Symbol(symbol['sym'])) vals.append(symbol['val']) if 'indep' in symbol: indep.append([syms[-1], symbol['uncert'], vals[-1]]) else: unindep.append([syms[-1], vals[-1]]) except: raise TemplateSyntaxError("something went wrong parsing symbols", 100) #print(syms, vals) print(syms, vals, indep, s) try: my_function = lambdify(syms, s, 'numpy') result = my_function(*vals) print("check if error is set", result) if 'errors' in data: #start looping through all variables in an extra arra error_terms = 0 partial_terms = [] partial_terms_squared = [] uncerts = [] print(l + " = " + str(result)) try: for ind in indep: #loop through variables d = Symbol('s_' + ind[0].name) partial = sp.diff(s, ind[0]) * d/s partial_terms.append(partial) partial_terms_squared.append(partial**2) error_terms = error_terms + partial**2 uncerts.append([d, str(ind[1])]) except: raise TemplateSyntaxError("error on building up error_terms", 15) #make substitutions print("begin substitution", error_terms) error_terms = error_terms**0.5 ptsv1 = [] try: for pt in partial_terms_squared: ptsv = pt print("substitution started" ) #substitue first all dependend variables for ind in indep: print(ind) try: ptsv = ptsv.subs(ind[0], ind[-1]) ptsv = ptsv.subs('s_' + ind[0].name, ind[1]) except: raise TemplateSyntaxError("Could not substitued dependend var", 100) for unind in unindep: print(unind) try: ptsv = ptsv.subs(unind[0], unind[1]) except: raise TemplateSyntaxError("Could not substitued undependend var", 100) ptsv1.append(ptsv) except: raise TemplateSyntaxError("the substitution failed for error calculation", 10) #error uval = sp.sqrt(sum(ptsv1)) rresult = np.round(result, data['digits'] if 'digits' in data else 5) print(rresult) print(uval) error = (uval * result).round(data['digits'] if 'digits' in data else 5) print(rresult, error) return """\\(""" + (data['fname'] if 'fname' in data else "f") + """ = """ + l + """ = """ + str(rresult) + """ \pm """ + str(abs(error)) + (data['units'] if 'units' in data else "") + """\\) Error is calculated according to standard error propagation: \\begin{dmath} s_{""" + (data['fname'] if 'fname' in data else "f") +"""} = """ + latex(error_terms) + """ = """ + str(abs(error.round(data['digits'] if 'digits' in data else 5))) +(data['units'] if 'units' in data else "" )+ """ \\end{dmath} with uncertainities: \\(""" + ",".join([latex(cert[0]) + ' = ' + cert[1] for cert in uncerts]) +"""\\) """ #print(result) except: raise TemplateSyntaxError("could not evaluate formula", 100) try: if 'supRes' in data: return l elif 'step' in data: return l + " = " + l2 + " = " + str(result) return l + " = " + str(result) except: raise TemplateSyntaxError("Malformed result...", 100) # dictionary with entries # data # |_ [xdata, ydata, desc] # xlabel # ylabel def _print_latex_table(self, data): if 'extended' in data: #we have in xdata an array and there is an array xheader and yheader (optional otherwise same as xheader) where xheader matches size of xdata and yheader matches size of one entry array of xdata #at least one entry print("latex print function", data) ylen = len(data['xdata'][0]) #since len(xheader) and len (xdata) should match we take xheader xlen = len(data['xheader']) #the xheader string (since latex builds tables per row) yheader = data['yheader'] if 'yheader' in data else [] xheader = "&" if len(yheader) >0 else "" #xheader += "&".join(data['xheader']) isfirst = True for h in data['xheader']: if isfirst: xheader += "\\textbf{" + str(h) + "}" isfirst = False else: xheader += "&\\textbf{" + str(h) + "}" table = '\\begin{figure}\\centering\\begin{tabular}{' + 'c' * (xlen+ (1 if len(yheader) > 0 else 0)) +'}' #table += "\\hline\n" table += xheader + "\\\\\n\\cline{2-" + str(xlen+1) + "}" #first = True #now iterate over all rows, remember to print in the first row the yheader if there is one for i in xrange(0, ylen): first = True if(len(yheader) > 0): try: table += "\\multicolumn{1}{r|}{\\textbf{" + str(data['yheader'][i]) + "}}" except: if i > len(data['yheader'])-1: print("dimension of yheader is wrong") print("ooooops there is an error in yheader") raise TemplateSyntaxError("Yheader is wrong: probably inconsistencies in dimension", i) for o in xrange(0,xlen): try: if len(yheader) >0: if o == xlen-1: table += "&\multicolumn{1}{c|}{" + str(data['xdata'][o][i]) + "}" else: print(data['xdata'][o][i]) table += "&" + str(data['xdata'][o][i]) else: if not first: table += "&" first = False if o == xlen-1: table += "\multicolumn{1}{c|}{" + str(data['xdata'][o][i]) + "}" else: #print(data['xdata'][o][i]) table += str(data['xdata'][o][i]) except: print("some error at: ", o, i) raise TemplateSyntaxError("some error while parsing table data: ("+str(o)+","+str(i)+")" , o) #raise PPException("Error while parsing datapoints, probably missing an entry; check dimensions") #print(table) table += "\\\\\\cline{2-" + str(xlen+1) + "}\n" table += "\\end{tabular} \\caption{" + str(data['desc']) + "} \\end{figure}\n" print (table) else: for tab in data['data']: table = "\\begin{figure}\\centering\\begin{tabular}{|c|c|}" i = 0 table += "\\hline\n" table += str(data['xlabel']) + " & " + str(data['ylabel']) + "\\\\\n" table += "\\hline\n" for entry in tab['xdata']: table += str(entry) + " & " + str(tab['ydata'][i]) + "\\\\\n" table += "\\hline\n" i+=1 table += "\\end{tabular} \\caption{" + str(tab['desc']) + "} \\end{figure}\n" return table # dictionary with entries # data # |_ (xdata,ydata,range = [xmin,xmax,ymin,ymax], title, interpolate) # ylabel # xlabel def _create_figure(self, title, data, caller): plot.figure() print (data) slopeinter = '' #foreach data set in data print a figure for fig in data['data']: if 'range' in fig: plot.axis(fig['range']) if 'interpolate' in fig : f = np.polyfit(fig['xdata'],fig['ydata'], fig['dim'] if 'dim' in fig else 1) print("slope-intercept",f[0]) if 'slope' in fig: slopeinter = "y = "+str(f[0]) + " + " + str(f[1]) #plot.annotate("y = " + f[0]+"*x + "+ f[1], xy=(1,1), xytext=(1,1.5), arrowprops=dict(facecolor='black', shrink=0.05),) f_n = np.poly1d(f) xnew = np.linspace(fig['range'][0], fig['range'][1], 10000) plot.plot(xnew, f_n(xnew), label = slopeinter) plot.plot(fig['xdata'], fig['ydata'], label=fig['title'], linestyle="solid", marker="s", markersize=7) plot.legend() plot.ylabel(data['ylabel']) plot.xlabel(data['xlabel']) file = plot.savefig(title.replace(" ","")+".png") print file return u""" \\begin{figure}[ht!] \centering \includegraphics[width=\\textwidth]{""" + title.replace(" ","") + """.png} \\caption{"""+(caller().strip() if type(caller) is not str else caller.strip())+u""" \\label{fig:""" + title + """}} \\end{figure}\n""" #return nodes. #dictionary for evaluating functions # variables - [] (use default values as initialization of data) # function - str def _evaluate_function(self, data): funcstr = """\ def evalFunc(""" + ",".join(data['variables']) +"""): return {e}""".format(e=data['function']) exec(funcstr) return evalFunc() env = Environment(extensions=[PPExtension], loader=FileSystemLoader('.')) t = env.get_template(sys.argv[2]) f = open(sys.argv[2] + "tmp", 'w') f.write(t.render()) cmdstr = "xelatex -interaction=nonstopmode " + sys.argv[1] + " " + f.name f.close() print subprocess.Popen( cmdstr, shell=True, stdout=subprocess.PIPE ).stdout.read() #os.system("open " + os.path.splitext(os.path.basename(sys.argv[1]))[0] + ".pdf")
mit
MohammedWasim/scikit-learn
sklearn/linear_model/setup.py
146
1713
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('linear_model', parent_package, top_path) cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') config.add_extension('cd_fast', sources=['cd_fast.c'], libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_extension('sgd_fast', sources=['sgd_fast.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], libraries=cblas_libs, extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info) config.add_extension('sag_fast', sources=['sag_fast.c'], include_dirs=numpy.get_include()) # add other directories config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
sao-eht/lmtscripts
pointing_lmt2018.py
1
36718
import numpy import matplotlib import shutil # matplotlib.use('agg') from matplotlib import pylab, mlab, pyplot import os np = numpy plt = pyplot # plt.ion() from argparse import Namespace from glob import glob import scipy.io from scipy.signal import butter,lfilter,freqz from scipy.interpolate import interp1d #from scipy.ndimage.filters import minimum_filter1dar from scipy.interpolate import UnivariateSpline from matplotlib.mlab import griddata, psd from datetime import datetime, timedelta from scipy.optimize import fmin #pathname_12bit = '../obsfiles/ifproc_2018-04-21_%06d_01_0000.nc' #pathname_16bit = '../obsfiles/lmttpm_2018-04-21_%06d_01_0000.nc' pathname_12bit = '../obsfiles/ifproc_2018-*-*_%06d_01_0000.nc' pathname_16bit = '../obsfiles/lmttpm_2018-*-*_%06d_01_0000.nc' def asec2rad(asec): return asec * 2*np.pi / 3600. / 360. def rad2asec(rad): return rad * 3600. * 360. / (2*np.pi) ################### def focus(first, last, plot=False, point=False, win_pointing=5., win_focusing=5., res=2., fwhm=7., channel='tp12bit', z0search=20., alphasearch=20., disk_diameter=0.): plt.close('all') if point: print 'pointing' out = pointing_lmt2017(first, last=last, plot=plot, win=win_pointing, res=res, fwhm=fwhm, channel=channel, disk_diameter=disk_diameter) imax = np.argmax(out.snr.ravel()) (xmax, ymax) = (out.xx.ravel()[imax], out.yy.ravel()[imax]) else: xmax = 0. ymax = 0. scans = range(first, last+1) focus_subset(scans, x0=xmax, y0=ymax, plot=plot, win_pointing=win_pointing, win_focusing=win_focusing, res=res, fwhm=fwhm, channel=channel, z0search=z0search, alphasearch=alphasearch, disk_diameter=disk_diameter) def focus_subset(scans, x0=0., y0=0., plot=False, win_pointing=50., win_focusing=5., res=2., fwhm=7., channel='tp12bit', z0search=20., alphasearch=20., disk_diameter=0.): focusing_parabolicfit_lmt2017(scans, plot=plot, win=win_pointing, channel=channel, disk_diameter=disk_diameter) focusing_matchfilter_lmt2017(scans, x0=x0, y0=y0, win=win_focusing, res=res, fwhm=fwhm, channel=channel, z0search=z0search, alphasearch=alphasearch) ########################################################### # Based on scitools meshgrid def meshgrid_lmtscripts(*xi, **kwargs): """ Return coordinate matrices from coordinate vectors. Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,..., xn. .. versionchanged:: 1.9 1-D and 0-D cases are allowed. Parameters ---------- x1, x2,..., xn : array_like 1-D arrays representing the coordinates of a grid. indexing : {'xy', 'ij'}, optional Cartesian ('xy', default) or matrix ('ij') indexing of output. See Notes for more details. .. versionadded:: 1.7.0 sparse : bool, optional If True a sparse grid is returned in order to conserve memory. Default is False. .. versionadded:: 1.7.0 copy : bool, optional If False, a view into the original arrays are returned in order to conserve memory. Default is True. Please note that ``sparse=False, copy=False`` will likely return non-contiguous arrays. Furthermore, more than one element of a broadcast array may refer to a single memory location. If you need to write to the arrays, make copies first. .. versionadded:: 1.7.0 Returns ------- X1, X2,..., XN : ndarray For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` , return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij' or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy' with the elements of `xi` repeated to fill the matrix along the first dimension for `x1`, the second for `x2` and so on. Notes ----- This function supports both indexing conventions through the indexing keyword argument. Giving the string 'ij' returns a meshgrid with matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing. In the 2-D case with inputs of length M and N, the outputs are of shape (N, M) for 'xy' indexing and (M, N) for 'ij' indexing. In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for 'xy' indexing and (M, N, P) for 'ij' indexing. The difference is illustrated by the following code snippet:: xv, yv = meshgrid(x, y, sparse=False, indexing='ij') for i in range(nx): for j in range(ny): # treat xv[i,j], yv[i,j] xv, yv = meshgrid(x, y, sparse=False, indexing='xy') for i in range(nx): for j in range(ny): # treat xv[j,i], yv[j,i] In the 1-D and 0-D case, the indexing and sparse keywords have no effect. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> nx, ny = (3, 2) >>> x = np.linspace(0, 1, nx) >>> y = np.linspace(0, 1, ny) >>> xv, yv = meshgrid(x, y) >>> xv array([[ 0. , 0.5, 1. ], [ 0. , 0.5, 1. ]]) >>> yv array([[ 0., 0., 0.], [ 1., 1., 1.]]) >>> xv, yv = meshgrid(x, y, sparse=True) # make sparse output arrays >>> xv array([[ 0. , 0.5, 1. ]]) >>> yv array([[ 0.], [ 1.]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = meshgrid(x, y, sparse=True) >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) >>> h = plt.contourf(x,y,z) """ ndim = len(xi) copy_ = kwargs.pop('copy', True) sparse = kwargs.pop('sparse', False) indexing = kwargs.pop('indexing', 'xy') if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if indexing not in ['xy', 'ij']: raise ValueError( "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(xi)] shape = [x.size for x in output] if indexing == 'xy' and ndim > 1: # switch first and second axis output[0].shape = (1, -1) + (1,)*(ndim - 2) output[1].shape = (-1, 1) + (1,)*(ndim - 2) shape[0], shape[1] = shape[1], shape[0] if sparse: if copy_: return [x.copy() for x in output] else: return output else: # Return the full N-D matrix (not only the 1-D vector) if copy_: mult_fact = np.ones(shape, dtype=int) return [x * mult_fact for x in output] else: return np.broadcast_arrays(*output) ################### EXTRACT INFORMATION ################### # extract 1mm total power data and fix some timing jitter issues def extract(nc): t0 = nc.variables['Data.TelescopeBackend.TelTime'].data[0] t = nc.variables['Data.TelescopeBackend.TelTime'].data - t0 try: a = -nc.variables['Data.LmtTpm.Signal'].data[:,0] b = a except: print("Using 12 bit signal") try: b = np.sum(nc.variables['Data.IfProc.BasebandLevel'].data, axis=1) / nc.variables['Data.IfProc.BasebandLevel'].data.shape[1] a = b except: print("Using 16 bit signal") x = nc.variables['Data.TelescopeBackend.TelAzMap'].data y = nc.variables['Data.TelescopeBackend.TelElMap'].data i = ~nc.variables['Data.TelescopeBackend.BufPos'].data.astype(np.bool) iobs = nc.variables['Header.Dcs.ObsNum'].data if iobs >= 70000: # move to 50 Hz sampling to avoid ADC time glitches fs = (1./np.mean(np.diff(t))) tnew = nc.variables['Data.TelescopeBackend.TelTime'].data - nc.variables['Data.TelescopeBackend.TelTime'].data[0] idx = tnew <= t[-1] a = a[idx] b = b[idx] tnew = tnew[idx] elif iobs >= 39150: # move to 50 Hz sampling to avoid ADC time glitches fs = 50. tnew = nc.variables['Data.TelescopeBackend.TelTime'].data - nc.variables['Data.TelescopeBackend.TelTime'].data[0] idx = tnew <= t[-1] a = a[idx] b = b[idx] tnew = tnew[idx] elif iobs >= 38983: # kamal includes gap times tnew = np.linspace(0, t[-1], len(t)) fs = 1./(t[1]-t[0]) adctime = nc.variables['Data.TelescopeBackend.TelTime'].data - nc.variables['Data.TelescopeBackend.TelTime'].data[0] tnew = np.linspace(0, adctime[-1], len(adctime)) tnew = tnew[(tnew <= t[-1])] a = interp1d(adctime, a)(tnew) b = interp1d(adctime, b)(tnew) elif iobs >= 38915: # 83.3 Hz becomes available but has gaps fs = 1./0.012 tnew = np.arange(0, t[-1] + 1e-6, 1./fs) a = interp1d(t, a)(tnew) # t is not a great varialbe to use, but all we have b = interp1d(t, b)(tnew) # t is not a great varialbe to use, but all we have else: # we are in 10 Hz data fs = 10. tnew = np.arange(0, t[-1] + 1e-6, .10) a = interp1d(t, a)(tnew) b = interp1d(t, b)(tnew) x = interp1d(t, x)(tnew) y = interp1d(t, y)(tnew) i = interp1d(t, i)(tnew).astype(bool) t = tnew #iobs = nc.hdu.header.ObsNum[0] source = ''.join(nc.variables['Header.Source.SourceName']) return Namespace(t0=t0, t=t, tp16bit=a, tp12bit=b, x=x, y=y, i=i, iobs=iobs, source=source, fs=fs) def rawopen(iobs, channel='tp12bit'): from scipy.io import netcdf if channel=='tp12bit': filename = glob(pathname_12bit % iobs)[-1] elif channel=='tp16bit': filename = glob(pathname_16bit % iobs)[-1] else: print('ERROR: you can only specify tp12bit or tp16bit for the channel') nc = netcdf.netcdf_file(filename) keep = Namespace() keep.BufPos = nc.variables['Data.TelescopeBackend.BufPos'].data keep.Time = nc.variables['Data.TelescopeBackend.TelTime'].data keep.XPos = nc.variables['Data.TelescopeBackend.TelAzMap'].data keep.YPos = nc.variables['Data.TelescopeBackend.TelElMap'].data if channel=='tp16bit': keep.APower = -nc.variables['Data.LmtTpm.Signal'].data[:,0] keep.BPower = keep.APower elif channel=='tp12bit': keep.BPower = np.sum(nc.variables['Data.IfProc.BasebandLevel'].data, axis=1) / nc.variables['Data.IfProc.BasebandLevel'].data.shape[1] keep.APower = keep.BPower keep.nc = nc if 'Data.IfProc.BasebandTime' in nc.variables: keep.ADCTime = nc.variables['Data.IfProc.BasebandTime'].data return keep # patch together many scans and try to align in time (to the sample -- to keep X and Y) def mfilt(scans, channel='tp12bit'): aps = [] bps = [] xs = [] ys = [] ts = [] ss = [] fss = [] zs = [] ntaper = 100 for i in sorted(scans): keep = rawopen(i, channel=channel) scan = extract(keep.nc) aps.append(detrend(scan.tp16bit, ntaper=ntaper)) bps.append(detrend(scan.tp12bit, ntaper=ntaper)) ts.append(scan.t + scan.t0) xs.append(scan.x) ys.append(scan.y) ss.append(scan.source) fss.append(scan.fs) zs.append(keep.nc.variables['Header.M2.ZReq'].data) flag = 1 for s1 in range(0,len(ss)): for s2 in range(s1,len(ss)): if (ss[s1] != ss[s2]): flag = 0 print('WARNING: NOT THE SAME SOURCE!!') print ss break s = ss[0] fs = fss[0] t0 = ts[0][0] t1 = ts[-1][-1] tnew = np.arange(t0, t1+1./fs, 1./fs) idx = np.zeros(len(tnew), dtype=np.bool) x = np.zeros(len(tnew)) y = np.zeros(len(tnew)) a = np.zeros(len(tnew)) b = np.zeros(len(tnew)) for i in range(len(ts)): istart = int(np.round((ts[i][0] - t0) * 50.)) idx[istart:istart+len(ts[i])] = True x[istart:istart+len(xs[i])] = xs[i][:len(x)-istart] y[istart:istart+len(ys[i])] = ys[i][:len(y)-istart] a[istart:istart+len(aps[i])] = aps[i][:len(a)-istart] b[istart:istart+len(bps[i])] = bps[i][:len(b)-istart] x[~idx] = np.inf y[~idx] = np.inf fillfrac = float(np.sum(idx)-ntaper*len(scans)) / len(tnew) return Namespace(t=tnew, tp16bit=a, tp12bit=b, x=x, y=y, z=zs, idx=idx, source=s, fs=fs, fillfrac=fillfrac) ################### POINTING & FOCUSING ################### def pointing_lmt2018(first, last=None, plot=True, win=10., res=0.5, fwhm=7., channel='tp12bit', disk_diameter=0.): if last is None: last = first scans = range(first, last+1) out = pointing_lmt2018_wrapper(scans, plot=plot, win=win, res=res, fwhm=fwhm, channel=channel, disk_diameter=disk_diameter) return out def pointing_lmt2018_wrapper(scans, plot=True, win=10., res=0.5, fwhm=7., channel='tp12bit', disk_diameter=0.): ############## pointing ############# z = mfilt(scans, channel) if win is None: win = np.ceil(rad2asec(np.abs(np.min(z.x)))) # get the prob of a each location in the map being the point source and rename the variables out = fitmodel_lmt2018(z, win=win, res=res, fwhm=fwhm, channel=channel, disk_diameter=disk_diameter) (xxa, yya, snr, v, prob, pcum) = (out.xx, out.yy, out.snr, out.v, out.prob, out.pcum) ############## compute statistics ############# indices_3sigma = (pcum.ravel() < 0.99730020393673979) voltages_3sigma = v.ravel()[indices_3sigma] prob_3sigma = prob.ravel()[indices_3sigma] # compute the expected value of the source voltage within 3 sigma sourcevoltage_expvalue = np.sum(voltages_3sigma * prob_3sigma) / np.sum(prob_3sigma) # expectation value of v3s # compute the variance of the source voltage within 3 sigma voltage_squareddiff = (voltages_3sigma - sourcevoltage_expvalue)**2 sourcevoltage_stdev = np.sqrt(np.sum(voltage_squareddiff * prob_3sigma) / np.sum(prob_3sigma)) # std ############## plotting ############# if plot: plt.figure() plt.clf() plt.axis(aspect=1.0) plt.imshow(v, extent=(-win-res/2., win+res/2., -win-res/2., win+res/2.), interpolation='nearest', origin='lower', cmap='afmhot_r') plt.plot(rad2asec(z.x), rad2asec(z.y), '-', color='violet', ls='--', lw=1.5, alpha=0.75) h1 = plt.contour(xxa, yya, pcum, scipy.special.erf(np.array([0,1,2,3])/np.sqrt(2)), colors='cyan', linewidths=2, alpha=1.0) imax = np.argmax(snr.ravel()) (xmax, ymax) = (xxa.ravel()[imax], yya.ravel()[imax]) plt.plot(xmax, ymax, 'y+', ms=11, mew=2) plt.text(-0.99*win-res/2, 0.98*win+res/2, '[%.1f, %.1f]"' % (xmax, ymax), va='top', ha='left', color='black') plt.text(.99*win+res/2, .98*win+res/2, '[%.1f $\pm$ %.1f mV]' % (sourcevoltage_expvalue, sourcevoltage_stdev), va='top', ha='right', color='black') plt.title(z.source.strip() + ' scans:' + str(scans[0]) + '-' + str(scans[-1])) plt.xlabel('$\Delta$x [arcsec]') plt.ylabel('$\Delta$y [arcsec]') plt.gca().set_aspect(1.0) plt.gca().set_axis_bgcolor('white') plt.grid(alpha=0.5) plt.ylim(-win-res/2, win+res/2) plt.xlim(-win-res/2, win+res/2) plt.tight_layout() ############## return ############# return out def focusing_parabolicfit_lmt2018(scans, plot=True, win=10., res=0.5, fwhm=7., channel='tp12bit', disk_diameter=0.): vmeans = [] vstds = [] z_position = [] for scan in scans: z_position.append(rawopen(scan, channel).nc.variables['Header.M2.ZReq'].data) out = pointing_lmt2018(scan, plot=plot, win=win, res=res, fwhm=fwhm, channel=channel, disk_diameter=disk_diameter) (xxa, yya, snr, v, prob, cumulative_prob) = (out.xx, out.yy, out.snr, out.v, out.prob, out.pcum) # KATIE: DOESN'T THIS ONLY WORK IF YOU ONLY HAVE 1 PEAK??? # get the indices of the points on the map within 3 sigma and extract those voltages and probablities indices_3sigma = (cumulative_prob.ravel() < 0.99730020393673979) voltages_3sigma = v.ravel()[indices_3sigma] prob_3sigma = prob.ravel()[indices_3sigma] # compute the expected value of the source voltage within 3 sigma sourcevoltage_expvalue = np.sum(voltages_3sigma * prob_3sigma) / np.sum(prob_3sigma) # expectation value of v3s # compute the variance of the source voltage within 3 sigma voltage_squareddiff = (voltages_3sigma - sourcevoltage_expvalue)**2 sourcevoltage_stdev = np.sqrt(np.sum(voltage_squareddiff * prob_3sigma) / np.sum(prob_3sigma)) # std vmeans.append(sourcevoltage_expvalue) vstds.append(sourcevoltage_stdev) plt.figure(); plt.errorbar(z_position, vmeans, yerr=vstds) ############ LEAST SQUARES FITTING ################ A = np.vstack([np.ones([1, len(z_position)]), np.array(z_position), np.array(z_position)**2]).T meas = np.array(vmeans) meas_cov = np.diag(np.array(vstds)**2) polydeg = 2 scale = 1e5 polyparams_cov = scale*np.eye(polydeg+1) polyparams_mean = np.zeros([polydeg+1]) intTerm = np.linalg.inv(meas_cov + np.dot(A, np.dot(polyparams_cov, A.T))) est_polyparams = polyparams_mean + np.dot(polyparams_cov, np.dot(A.T, np.dot( intTerm, (meas - np.dot(A, polyparams_mean)) ) ) ) error_polyparams = polyparams_cov - np.dot(polyparams_cov, np.dot(A.T, np.dot(intTerm, np.dot(A, polyparams_cov)) ) ) #print 'estimated polyparams' #print est_polyparams #print 'estimated error' #print error_polyparams p = np.poly1d(est_polyparams[::-1]) znews = np.linspace(np.min(z_position), np.max(z_position),100) pnews = p(znews) plt.plot(znews, pnews) imax = np.argmax(pnews) z0 = znews[imax] print 'estimated z0' print z0 ################################################## #vmean_fit_flipped, stats = np.polynomial.polynomial.polyfit(np.array(z_position), np.array(vmeans), 2, rcond=None, full=True, w=1/np.array(vstds)) #vmean_fit = vmean_fit_flipped[::-1] #p = np.poly1d(vmean_fit) #znews = np.linspace(np.min(z_position), np.max(z_position),100) #pnews = p(znews) #plt.plot(znews, pnews) #plt.text(-1.4, 210., '[estimated $\mathbf{z}_0$: %.3f $\pm$ %.3f]' % (z0, z0_approxstdev), va='top', ha='left', color='black') plt.text(min(znews), min(pnews), '[peak $\mathbf{z}$: %.3f]' % (z0), va='top', ha='left', color='black') plt.title('Focusing') plt.xlabel('$\mathbf{z}$') plt.ylabel('amplitude') def focusing_matchfilter_lmt2018(scans, x0=0, y0=0, win=50., res=2., fwhm=7., channel='tp12bit', alpha_min=0., alpha_max=20., disk_diameter=0., z0search=20., alphasearch=20., plot=True): all_scans = mfilt(scans, channel) if win is None: win = np.ceil(rad2asec(np.abs(np.min(all_scans.x)))) zpos = [] xpos = [] ypos = [] meas_whitened = [] N_s = [] for scan_num in scans: scan = mfilt(range(scan_num,scan_num+1), channel) meas = scan.__dict__[channel] N_s.append(len(scan.t)) maxN = np.max(N_s) # compute pad length for efficient FFTs pad = 2**int(np.ceil(np.log2(maxN))) for scan_num in scans: scan = mfilt(range(scan_num,scan_num+1),channel) # place the measurements into meas_pad so that its padded to be of a power 2 length meas = scan.__dict__[channel] # original sequence length N = len(scan.t) if scan_num == scans[0]: whiteningfac = whiten_measurements(all_scans, pad, channel=channel) meas_pad = np.zeros(pad) meas_pad[:N] = meas # measurements of channel volatage in frequency domain meas_rfft = np.fft.rfft(meas_pad) # N factor goes into fft, ifft = 1/N * .. meas_rfft_conj = meas_rfft.conj(); meas_rfft_conj_white = meas_rfft_conj * whiteningfac meas_whitened.append(meas_rfft_conj_white) zpos.append(scan.z[0]) xpos.append(scan.x) ypos.append(scan.y) z0_min = min(zpos) z0_max = max(zpos) z0s = np.linspace(z0_min, z0_max, z0search) alphas = np.linspace(alpha_min, alpha_max,alphasearch) # compute the x and y coordinates that we are computing the maps over x = asec2rad(np.arange(x0-win, x0+win+res, res)) y = asec2rad(np.arange(y0-win, y0+win+res, res)) #(z0s_grid, alphas_grid, xx_grid, yy_grid) = np.meshgrid(z0s, alphas, x, y) # search grid (z0s_grid, alphas_grid, xx_grid, yy_grid) = meshgrid_lmtscripts(z0s, alphas, x, y) # search grid zr = z0s_grid.ravel() ar = alphas_grid.ravel() xr = xx_grid.ravel() yr = yy_grid.ravel() count = 0. num_zs = len(zpos) model_pad = np.zeros(pad) snrs = [] # signal-to-noise ratios norms = [] # sqrt of whitened matched filter signal power for (ztest, atest, xtest, ytest) in zip(zr, ar, xr, yr): #print count/len(zr) if disk_diameter > 0: models = focus_model_disk(xpos, ypos, zpos, x0=xtest, y0=ytest, fwhm=fwhm, z0=ztest, alpha=atest, disk_diameter=disk_diameter, res=0.2) else: models = focus_model(xpos, ypos, zpos, x0=xtest, y0=ytest, fwhm=fwhm, z0=ztest, alpha=atest) snr = 0.0 norm = 0.0 for s in range(0,num_zs): N = len(models[s]) # compute the ideal model in the time domain model_pad[:N] = models[s] # convert the ideal model to the frequency domain and whiten model_rfft = np.fft.rfft(model_pad) model_rfft_white = model_rfft * whiteningfac # compute the normalization by taking the square root of the whitened model spectrums' dot products norm = norm + np.sum(np.abs(model_rfft_white)**2) snr = snr + ( np.sum((model_rfft_white * meas_whitened[s]).real) ) norm = np.sqrt(norm) norms.append(norm) snrs.append(snr/norm) count = count + 1. # compute probablity and cumulative probabilities isnr = np.argsort(np.array(snrs).ravel())[::-1] # reverse sort high to low prob = np.exp((np.array(snrs).ravel()/np.sqrt(num_zs * pad/2.))**2/2.) pcum = np.zeros_like(prob) pcum[isnr] = np.cumsum(prob[isnr]) pcum = pcum.reshape(z0s_grid.shape) / np.sum(prob) # get the indices of the points on the map within 3 sigma and extract those z0s and probablities indices_3sigma = (pcum.ravel() < 0.99730020393673979) z0s_3sigma = z0s_grid.ravel()[indices_3sigma] prob_3sigma = prob.ravel()[indices_3sigma] # compute the expected value of the z0 within 3 sigma z0_expvalue = np.sum(z0s_3sigma * prob_3sigma) / np.sum(prob_3sigma) # expectation value of v3s # compute the variance of the source voltage within 3 sigma z0_squareddiff = (z0s_3sigma - z0_expvalue)**2 z0_variance = np.sqrt(np.sum(z0_squareddiff * prob_3sigma) / np.sum(prob_3sigma)) # std imax = np.argmax(np.array(snrs).ravel()) (zmax, amax, xmax, ymax) = (zr.ravel()[imax], ar.ravel()[imax], xr.ravel()[imax], yr.ravel()[imax]) print 'estimated z0' print zmax if plot: plt.figure() plt.clf() loc = np.unravel_index(imax, xx_grid.shape) reshape_snr = np.array(snrs).reshape(z0s_grid.shape) slice_snr = reshape_snr[:,:,loc[2],loc[3]] plt.imshow(slice_snr, extent=(z0_min, z0_max, alpha_min, alpha_max), aspect=(z0_max-z0_min)/(alpha_max-alpha_min), interpolation='nearest', origin='lower', cmap='Spectral_r') h1 = plt.contour(z0s_grid[:,:,loc[2],loc[3]], alphas_grid[:,:,loc[2],loc[3]], pcum[:,:,loc[2],loc[3]], scipy.special.erf(np.array([0,1,2,3])/np.sqrt(2)), colors='cyan', linewidths=2, alpha=1.0) plt.plot(zmax, amax, 'y+', ms=11, mew=2) plt.text(z0_min+z0s[1]-z0s[0], alpha_max-(alphas[1]-alphas[0]), '[maximum $\mathbf{z}_0$: %.3f, x: %.3f, y: %.3f, alpha: %.3f]' % (zmax, rad2asec(xmax), rad2asec(ymax), amax), va='top', ha='left', color='black') plt.text(z0_min+z0s[1]-z0s[0], alpha_max-4*(alphas[1]-alphas[0]), '[expected $\mathbf{z}_0$: %.3f $\pm$ %.3f]' % (z0_expvalue, np.sqrt(z0_variance)), va='top', ha='left', color='black') plt.title('Focusing') plt.xlabel('$\mathbf{z}_0$') plt.ylabel('alpha (FWHM in arcseconds per mm offset in $\mathbf{z}$)') plt.gca().set_axis_bgcolor('white') plt.tight_layout() return def whiten_measurements(z, pad_psd, channel='tp12bit'): Fs = z.fs #extract the detrended voltage measurements meas = z.__dict__[channel] # compute the psd of the voltage measurements (p, f) = psd(meas, NFFT=1024, pad_to=4096) # unit variance -> PSD = 1 = variance of complex FFT (1/sqrt(N)) # LINDY COMMENT: we will take out the 1/Hz normalization later, to get unit variance per complex data point if 'fillfrac' in z: p = p / z.fillfrac # account for zeros in stiched timeseries (otherwise 1) # sample frequencies for a sequence of length 'pad'. This should be equal to f... freq_samples = np.abs(np.fft.fftfreq(pad_psd, d=1./2.)[:1+pad_psd/2]) # the default nyquist units # Compute the factor that whitens the data. This is 1 over the point spread funcntion. # Each of the signals - the model and the measurements - should be whitened by the square root of this term whiteningfac_squared = 1. / interp1d(f, p)(freq_samples) # compute 1/PSD at the locations of the measurements B. Really this shouldn't do anything... whiteningfac_squared[freq_samples < 0.1 * (2./Fs)] = 0. # turn off low freqs below 0.1 Hz - just an arbitrary choice whiteningfac = np.sqrt(whiteningfac_squared) return whiteningfac def fitmodel_lmt2018(z, win=50., res=2., fwhm=7., channel='tp12bit', disk_diameter=0.): Fs = z.fs #extract the detrended voltage measurements meas = z.__dict__[channel] # original sequence length N = len(z.t) # compute pad length for efficient FFTs pad = 2**int(np.ceil(np.log2(N))) whiteningfac = whiten_measurements(z, pad, channel=channel) # place the measurements into meas_pad so that its padded to be of a power 2 length modelpad = np.zeros(pad) meas_pad = np.zeros(pad) meas_pad[:N] = meas # lINDY COMMENT: fails if N = len(tp) ?? # measurements of channel volatage in frequency domain meas_rfft = np.fft.rfft(meas_pad) # N factor goes into fft, ifft = 1/N * .. meas_rfft_conj = meas_rfft.conj(); meas_rfft_conj_white = meas_rfft_conj * whiteningfac # compute the x and y coordinates that we are computing the maps over x = asec2rad(np.arange(-win, win+res, res)) y = asec2rad(np.arange(-win, win+res, res)) #(xx, yy) = np.meshgrid(x, y) # search grid (xx, yy) = meshgrid_lmtscripts(x, y) # search grid xr = xx.ravel() yr = yy.ravel() count = 0; snrs = [] # signal-to-noise ratios norms = [] # sqrt of whitened matched filter signal power for (xtest, ytest) in zip(xr, yr): # compute the ideal model in the time domain if disk_diameter>0: modelpad[:N] = model_disk(z.x, z.y, x0=xtest, y0=ytest, fwhm=fwhm, disk_diameter=disk_diameter, res=disk_diameter/8.) else: modelpad[:N] = model(z.x, z.y, x0=xtest, y0=ytest, fwhm=fwhm) # model signal # convert the ideal model to the frequency domain and whiten model_rfft = np.fft.rfft(modelpad) model_rfft_white = model_rfft * whiteningfac # compute the normalization by taking the square root of the whitened model spectrums' dot products norm = np.sqrt(np.sum(np.abs(model_rfft_white)**2)) norms.append(norm) snrs.append(np.sum((model_rfft_white * meas_rfft_conj_white).real) / norm) count = count + 1 snr = np.array(snrs) snr[snr < 0] = 0. imax = np.argmax(snr) # maximum snr location snr = snr.reshape(xx.shape) isnr = np.argsort(snr.ravel())[::-1] # reverse sort high to low prob = np.exp((snr.ravel()/np.sqrt(pad/2.))**2/2.) pcum = np.zeros_like(prob) pcum[isnr] = np.cumsum(prob[isnr]) pcum = pcum.reshape(xx.shape) / np.sum(prob) xxa = xx * rad2asec(1.) yya = yy * rad2asec(1.) # m = model, b = measurements, # Expected [ b_conj * (noise + amplitude*m) ] # = Expected [b_conj*noise + b_conj*amplitude*m] = 0 + amplitude*b_conj*m # Optimally, m = b. Therefore to get out the amplitude we would need to divide by # b_conj*m = |model|^2 = norms^2 volts2milivolts = 1e3 voltage = volts2milivolts * snr/ np.array(norms).reshape(xx.shape) return Namespace(xx=xxa, yy=yya, snr=snr/np.sqrt(pad/2.), v=voltage, prob=prob, pcum=pcum) # linear detrend, use only edges def detrend(x, ntaper=100): x0 = np.mean(x[:ntaper]) x1 = np.mean(x[-ntaper:]) m = (x1 - x0) / len(x) x2 = x - (x0 + m*np.arange(len(x))) w = np.hanning(2 * ntaper) x2[:ntaper] *= w[:ntaper] x2[-ntaper:] *= w[-ntaper:] return x2 def model(x, y, x0=0, y0=0, fwhm=7.): fwhm = asec2rad(fwhm) sigma = fwhm / 2.335 # predicted counts m = np.exp(-((x-x0)**2 + (y-y0)**2) / (2*sigma**2)) return m def focus_model(xpos, ypos, zs, x0=0, y0=0, fwhm=7., z0=0, alpha=0): fwhm2stdev_factor = 1/2.335 sigma = asec2rad(fwhm) * fwhm2stdev_factor alpha_rad = asec2rad(alpha) * fwhm2stdev_factor count = 0 models = [] for z in zs: sigma_z = np.sqrt(sigma**2 + (alpha_rad*np.abs(z-z0))**2) amplitude_z = 1/( np.sqrt(2*np.pi) * (sigma_z)**2 ) m_z = amplitude_z * np.exp(-((xpos[count]-x0)**2 + (ypos[count]-y0)**2) / (2*sigma_z**2)) models.append(m_z) count = count + 1 return models def model_disk(xpos, ypos, x0=0, y0=0, fwhm=7., disk_diameter=0., res=2.): fwhm2stdev_factor = 1/2.335 sigma = asec2rad(fwhm) * fwhm2stdev_factor res_rad = asec2rad(res) sigma_pixels = sigma/res_rad # generate a disk image at radian positions xx and yy disk_radius = asec2rad(disk_diameter)/2. x = (np.arange(x0-disk_radius-3*sigma, x0+disk_radius+3*sigma+res_rad, res_rad)) y = (np.arange(y0-disk_radius-3*sigma, y0+disk_radius+3*sigma+res_rad, res_rad)) #(xx_disk, yy_disk) = np.meshgrid(x, y) # search grid (xx_disk, yy_disk) = meshgrid_lmtscripts(x, y) # search grid disk = np.zeros(xx_disk.shape) disk[ ((xx_disk-x0 )**2 + (yy_disk- y0)**2) <= disk_radius**2 ] = 1. #1./(np.pi*disk_radius**2) #disk = disk/np.sum(np.sum(disk)) blurred_disk = scipy.ndimage.filters.gaussian_filter(disk, sigma_pixels, mode='constant', cval=0.0) #blurred_disk = blurred_disk*( np.sqrt(2*np.pi) * (sigma)**2 ) #blurred_disk = blurred_disk/np.sum(np.sum(blurred_disk)) #interpfunc = scipy.interpolate.RectBivariateSpline(xx_disk.flatten(), yy_disk.flatten(), blurred_disk.flatten()) interpfunc = scipy.interpolate.RectBivariateSpline(y, x, blurred_disk) model = interpfunc(ypos, xpos, grid=False) #plt.figure(); plt.plot(model) #plt.figure() #plt.axis(aspect=1.0) #plt.imshow(blurred_disk, extent=(rad2asec(min(x)), rad2asec(max(x)), rad2asec(min(y)), rad2asec(max(y))), interpolation='nearest', origin='lower', cmap='afmhot_r') #plt.plot(rad2asec(xpos), rad2asec(ypos), '-', color='violet', ls='--', lw=1.5, alpha=0.75) return model def focus_model_disk(xpos, ypos, zs, x0=0, y0=0, fwhm=7., z0=0, alpha=0, disk_diameter=0., res=2.): # generate a disk image at radian positions xx and yy disk_radius = asec2rad(disk_diameter)/2. scaling = 10 res_rad = asec2rad(res) x = (np.arange(x0-scaling*disk_radius, x0+scaling*disk_radius+res_rad, res_rad)) y = (np.arange(y0-scaling*disk_radius, y0+scaling*disk_radius+res_rad, res_rad)) #(xx_disk, yy_disk) = np.meshgrid(x, y) # search grid (xx_disk, yy_disk) = meshgrid_lmtscripts(x, y) # search grid disk = np.zeros(xx_disk.shape) disk[ ((xx_disk-x0)**2 + (yy_disk-y0)**2) <= (disk_radius)**2 ] = 1. fwhm2stdev_factor = 1/2.335 sigma = asec2rad(fwhm) * fwhm2stdev_factor alpha_rad = asec2rad(alpha) * fwhm2stdev_factor count = 0 models = [] for z in zs: sigma_z = np.sqrt(sigma**2 + (alpha_rad*np.abs(z-z0))**2) amplitude_z = 1/( np.sqrt(2*np.pi) * (sigma_z)**2 ) sigma_z_pixels = sigma_z/asec2rad(res) blurred_disk = scipy.ndimage.filters.gaussian_filter(disk, sigma_z_pixels, mode='constant', cval=0.0) #interpfunc = scipy.interpolate.RectBivariateSpline(xx_disk.flatten(), yy_disk.flatten(), blurred_disk.flatten()) interpfunc = scipy.interpolate.RectBivariateSpline(y, x, blurred_disk) m_z = interpfunc(ypos[count], xpos[count], grid=False) models.append(m_z) count = count + 1 #plt.figure(); plt.imshow(blurred_disk) return models def gridPower(first, last=None, win=50., res=2., fwhm=7., channel='tp12bit', plot=True): if last is None: last = first scans = range(first, last+1) z = mfilt(scans, channel) meas = z.__dict__[channel] # compute the x and y coordinates that we are computing the maps over x = asec2rad(np.arange(-win, win+res, res)) y = asec2rad(np.arange(-win, win+res, res)) #(xx, yy) = np.meshgrid(x, y) # search grid (xx, yy) = meshgrid_lmtscripts(x, y) # search grid gridded = scipy.interpolate.griddata(np.array([z.x[:-1], z.y[:-1]]).T , meas[:-1], (xx, yy), method='linear', fill_value=0.) imax = np.argmax(gridded.ravel()) (xmax, ymax) = (xx.ravel()[imax], yy.ravel()[imax]) peakval = (gridded.ravel()[imax]) if plot: plt.figure() plt.clf() plt.axis(aspect=1.0) plt.imshow(gridded, extent=(-win-res/2., win+res/2., -win-res/2., win+res/2.), interpolation='nearest', origin='lower', cmap='afmhot_r') plt.plot(rad2asec(z.x), rad2asec(z.y), '-', color='violet', ls='--', lw=1.5, alpha=0.75) plt.text(-0.99*win-res/2, 0.98*win+res/2, '[%.1f, %.1f]"' % (rad2asec(xmax), rad2asec(ymax)), va='top', ha='left', color='black') plt.text(.99*win+res/2, .98*win+res/2, '[%.1f mV]' % (peakval*1e3), va='top', ha='right', color='black') plt.title(z.source.strip() + ' scan:' + str(scans[0]) + '-' + str(scans[-1]) ) plt.xlabel('$\Delta$x [arcsec]') plt.ylabel('$\Delta$y [arcsec]') plt.gca().set_aspect(1.0) plt.gca().set_axis_bgcolor('white') plt.grid(alpha=0.5) plt.ylim(-win-res/2, win+res/2) plt.xlim(-win-res/2, win+res/2) plt.tight_layout() return peakval, xmax, ymax def focus_origMap(first, last=None, win=50., res=2., fwhm=7., channel='tp12bit', plot=True): if last is None: last = first scans = range(first, last+1) vmeans = [] vstds = [] z_position = [] for scan in scans: z_position.append(rawopen(scan, channel).nc.variables['Header.M2.ZReq'].data) peakval, xmax, ymax = gridPower(scan, last=None, win=win, res=res, fwhm=fwhm, channel=channel, plot=plot) vmeans.append(peakval) plt.figure(); plt.plot(z_position, vmeans) vmean_fit_flipped, stats = np.polynomial.polynomial.polyfit(np.array(z_position), np.array(vmeans), 2, rcond=None, full=True) vmean_fit = vmean_fit_flipped[::-1] p = np.poly1d(vmean_fit) znews = np.linspace(np.min(z_position), np.max(z_position),100) pnews = p(znews) plt.plot(znews, pnews) imax = np.argmax(pnews) z0 = znews[imax] print 'estimated z0' print z0 plt.text(min(znews), min(pnews), '[peak $\mathbf{z}$: %.3f]' % (z0), va='top', ha='left', color='black') plt.title('Focusing') plt.xlabel('$\mathbf{z}$') plt.ylabel('amplitude') return
mit
jetuk/pywr
pywr/notebook/figures.py
4
3488
import numpy as np import scipy.stats import pandas import matplotlib import matplotlib.pyplot as plt c = { "Afill": "#ee1111", "Aedge": "#660000", "Bfill": "#1111ee", "Bedge": "#000066", "Cfill": "#11bb11", "Cedge": "#008800", } def align_series(A, B, names=None, start=None, end=None): """Align two series for plotting / comparison Parameters ---------- A : `pandas.Series` B : `pandas.Series` names : list of strings start : `pandas.Timestamp` or timestamp string end : `pandas.Timestamp` or timestamp string Example ------- >>> A, B = align_series(A, B, ["Pywr", "Aquator"], start="1920-01-01", end="1929-12-31") >>> plot_standard1(A, B) """ # join series B to series A # TODO: better handling of heterogeneous frequencies df = pandas.concat([A, B], join="inner", axis=1) # apply names if names is not None: df.columns = names else: names = list(df.columns) # clip start and end to user-specified dates idx = [df.index[0], df.index[-1]] if start is not None: idx[0] = pandas.Timestamp(start) if end is not None: idx[1] = pandas.Timestamp(end) if start or end: df = df.loc[idx[0]:idx[-1],:] A = df[names[0]] B = df[names[1]] return A, B def plot_standard1(A, B): fig, axarr = plt.subplots(3, figsize=(10, 12), facecolor="white") plot_timeseries(A, B, axarr[0]) plot_QQ(A, B, axarr[1]) plot_percentiles(A, B, axarr[2]) return fig, axarr def set_000formatter(axis): axis.set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ','))) def plot_timeseries(A, B, ax=None): if ax is None: ax = plt.gca() B.plot(ax=ax, color=c["Bfill"], clip_on=False) A.plot(ax=ax, color=c["Afill"], clip_on=False) ax.grid(True) ax.set_ylim(0, None) set_000formatter(ax.get_yaxis()) ax.set_xlabel("") ax.legend([B.name, A.name], loc="best") return ax def plot_QQ(A, B, ax=None): if ax is None: ax = plt.gca() ax.scatter(B.values, A.values, color=c["Cfill"], edgecolor=c["Cedge"], clip_on=False) xlim = ax.get_xlim() ylim = ax.get_ylim() limit = max(xlim[1], ylim[0]) ax.plot([0, limit], [0, limit], '-k') ax.set_xlim(0, limit) ax.set_ylim(0, limit) ax.grid(True) set_000formatter(ax.get_xaxis()) set_000formatter(ax.get_yaxis()) ax.set_xlabel(B.name) ax.set_ylabel(A.name) ax.legend(["Equality"], loc="best") return ax def plot_percentiles(A, B, ax=None): if ax is None: ax = plt.gca() percentiles = np.linspace(0.001, 0.999, 1000) * 100 A_pct = scipy.stats.scoreatpercentile(A.values, percentiles) B_pct = scipy.stats.scoreatpercentile(B.values, percentiles) percentiles = percentiles / 100.0 ax.plot(percentiles, B_pct[::-1], color=c["Bfill"], clip_on=False, linewidth=2) ax.plot(percentiles, A_pct[::-1], color=c["Afill"], clip_on=False, linewidth=2) ax.set_xlabel("Cumulative frequency") ax.grid(True) ax.xaxis.grid(True, which="both") set_000formatter(ax.get_yaxis()) ax.set_xscale("logit") xticks = ax.get_xticks() xticks_minr = ax.get_xticks(minor=True) ax.set_xticklabels([], minor=True) ax.set_xticks([0.01, 0.1, 0.5, 0.9, 0.99]) ax.set_xticklabels(["1", "10", "50", "90", "99"]) ax.set_xlim(0.001, 0.999) ax.legend([B.name, A.name], loc="best") return ax
gpl-3.0
bxlab/HiFive_Paper
Scripts/HiCLib/mirnylab-hiclib-460c3fbc0f72/src/hiclib/binnedData.py
2
64389
#(c) 2012 Massachusetts Institute of Technology. All Rights Reserved # Code written by: Maksim Imakaev ([email protected]) #TODO:(MIU) Write tests for this module! """ Binned data - analysis of HiC, binned to resolution. Concepts -------- class Binned Data allows low-level manipulation of multiple HiC datasets, binned to the same resolution from the same genome. When working with multiple datasets, all the filters will be synchronized, so only bins present in all datasets will be considered for the analysis. Removal of bins from one dataset will remove them from the others. E.g. removing 1% of bins with lowest # of count might remove more than 1% of total bins, when working with 2 or more datasets. Class has significant knowledge about filters that have been applied. If an essential filter was not applied, it will throw an exception; if advised filter is not applied, it will throw a warning. However, it does not guarantee dependencies, and you have to think yourself. Most of the methods have an optional "force" argument that will ignore dependencies. We provide example scripts that show ideal protocols for certain types of the analysis, but they don't cover the realm of all possible manipulations that can be performed with this class. Input data ---------- method :py:func:`SimpleLoad <binnedData.simpleLoad>` may be used to load the data. It automatically checks for possible genome length mismatch. This method works best with h5dict files, created by fragmentHiC. In this case you just need to supply the filename. It can also accept any dictionary-like object with the following keys, where all but "heatmap" is optional. * ["heatmap"] : all-by-all heatmap * ["singles"] : vector of SS reads, optional * ["frags"] : number of rsites per bin, optional * ["resolution"] : resolution All information about the genome, including GC content and restriction sites, can be obtained from the Genome class. Genomic tracks can be loaded using an automated parser that accepts bigWig files and fixed step wiggle files. See documentation for :py:func:`experimentalBinnedData.loadWigFile` that describes exactly how the data is averaged and parsed. Variables --------- self.dataDict - dictionary with heatmaps; keys are provided when loading the data. self.singlesDict - dictionary with SS read vectors. Keys are the same. self.fragsDict - dictionary with fragment density data self.trackDict - dictionary with genomic tracks, such as GC content. Custom tracks should be added here. self.biasDict - dictionary with biases as calculated by iterative correction (incomplete) self.PCDict - dictionary with principal components of each datasets. Keys as in dataDict self.EigEict - dictionary with eigenvectors for each dataset. Keys as in datadict. Hierarchy of filters -------------------- This hierarchy attempts to connect all logical dependencies between filters into one diagram. This includes both biological dependencies and programming dependencies. As a result, it's incomplete and might be not 100% accurate. Generally filters from the next group should be applied after filters from previous groups, if any. Examples of the logic are below: * First, apply filters that don't depend on counts, i.e. remove diagonal and low-coverage bins. * Second, remove regions with poor coverage; do this before chaining heatmaps with other filters. * Fake translocations before truncating trans, as translocations are very high-count regions, and truncTrans will truncate them, not actuall trans reads * Faking reads currently requires zeros to be removed. This will be changed later * Fake cis counts after truncating trans, so that they don't get faked with extremely high-count outliers in a trans-map * Perform iterative correction after all the filters are applied * Preform PCA after IC of trans data, and with zeros removed 1. Remove Diagonal, removeBySequencedCount 2. RemovePoorRegions, RemoveStandalone (this two filters are not transitive) 3. fakeTranslocations 4. truncTrans 5. fakeCis 6. iterative correction (does not require removeZeros) 7. removeZeros 8. PCA (Requires removeZeros) 9. RestoreZeros Besides that, filter dependencies are: * Faking reads requires: removeZeros * PCA requires: removeZeros, fakeCis * IC with SS requires: no previous iterative corrections, no removed cis reads * IC recommends removal of poor regions Other filter dependencies, including advised but not required filters, will be issued as warnings during runtime of a program. ------------------------------------------------------------------------------- API documentation ----------------- """ import os from mirnylib import numutils import warnings from mirnylib.numutils import PCA, EIG, correct, \ ultracorrectSymmetricWithVector, isInteger, \ observedOverExpected, ultracorrect, adaptiveSmoothing, \ removeDiagonals, fillDiagonal from mirnylib.genome import Genome import numpy as np from math import exp from mirnylib.h5dict import h5dict from scipy.stats.stats import spearmanr from mirnylib.numutils import fakeCisImpl class binnedData(object): """Base class to work with binned data, the most documented and robust part of the code. Further classes for other analysis are inherited from this class. """ def __init__(self, resolution, genome, readChrms=["#", "X"]): """ self.__init__ - initializes an empty dataset. This method sets up a Genome object and resolution. Genome object specifies genome version and inclusion/exclusion of sex chromosomes. Parameters ---------- resolution : int Resolution of all datasets genome : genome Folder or Genome object """ if type(genome) == str: self.genome = Genome(genomePath=genome, readChrms=readChrms) else: self.genome = genome assert hasattr(self.genome, "chrmCount") if resolution is not None: self.resolution = resolution self.chromosomes = self.genome.chrmLens self.genome.setResolution(self.resolution) self._initChromosomes() self.dataDict = {} self.biasDict = {} self.trackDict = {} self.singlesDict = {} self.fragsDict = {} self.PCDict = {} self.EigDict = {} self.eigEigenvalueDict = {} self.PCAEigenvalueDict = {} self.dicts = [self.trackDict, self.biasDict, self.singlesDict, self.fragsDict] self.eigDicts = [self.PCDict, self.EigDict] self._loadGC() self.appliedOperations = {} def _initChromosomes(self): "internal: loads mappings from the genome class based on resolution" self.chromosomeStarts = self.genome.chrmStartsBinCont self.centromerePositions = self.genome.cntrMidsBinCont self.chromosomeEnds = self.genome.chrmEndsBinCont self.trackLength = self.genome.numBins self.chromosomeCount = self.genome.chrmCount self.chromosomeIndex = self.genome.chrmIdxBinCont self.positionIndex = self.genome.posBinCont self.armIndex = self.chromosomeIndex * 2 + \ np.array(self.positionIndex > self.genome.cntrMids [self.chromosomeIndex], int) def _giveMask(self): "Returns index of all bins with non-zero read counts" self.mask = np.ones(len(self.dataDict.values()[0]), np.bool) for data in self.dataDict.values(): datasum = np.sum(data, axis=0) datamask = datasum > 0 self.mask *= datamask return self.mask def _giveMask2D(self): """Returns outer product of _giveMask with itself, i.e. bins with possibly non-zero counts""" self._giveMask() self.mask2D = self.mask[:, None] * self.mask[None, :] return self.mask2D def _loadGC(self): "loads GC content at given resolution" self.trackDict["GC"] = np.concatenate(self.genome.GCBin) def _checkItertiveCorrectionError(self): """internal method for checking if iterative correction might be bad to apply""" for value in self.dataDict.values(): if isInteger(value) == True: s = np.sum(value, axis=0) sums = np.sort(s[s != 0]) if sums[0] < 100: error = int(100. / np.sqrt(sums[0])) message1 = "Lowest 5 sums of an array rows are: " + \ str(sums[:5]) warnings.warn("\n%s\nIterative correction will lead to \ about %d %% relative error for certain columns" % (message1, error)) if sums[0] < 5: raise StandardError("Iterative correction is \ very dangerous. Use force=true to override.") else: s = np.sum(value > 0, axis=0) sums = np.sort(s[s != 0]) if sums[0] < min(100, len(value) / 2): error = int(100. / np.sqrt(sums[0])) print "Got floating-point array for correction. Rows with \ 5 least entrees are:", sums[:5] warnings.warn("\nIterative correction might lead to about\ %d %% relative error for certain columns" % error) if sums[0] < 4: raise StandardError("Iterative correction is \ very dangerous. Use force=true to override.") def _checkAppliedOperations(self, neededKeys=[], advicedKeys=[], excludedKeys=[]): "Internal method to check if all needed operations were applied" if (True in [i in self.appliedOperations for i in excludedKeys]): print "Operations that are not allowed:", excludedKeys print "applied operations: ", self.appliedOperations print "use 'force = True' to override this message" raise StandardError("Prohibited filter was applied") if (False in [i in self.appliedOperations for i in neededKeys]): print "needed operations:", neededKeys print "applied operations:", self.appliedOperations print "use 'force = True' to override this message" raise StandardError("Critical filter not applied") if (False in [i in self.appliedOperations for i in advicedKeys]): print "Adviced operations:", advicedKeys print "Applied operations:", self.appliedOperations warnings.warn("\nNot all adviced filters applied") def _recoverOriginalReads(self, key): """Attempts to recover original read counts from the data If data is integer, returns data. If not, attepts to revert iterative correction and return original copy. This method does not modify the dataset! """ data = self.dataDict[key] if "Corrected" not in self.appliedOperations: if isInteger(data): return data else: warnings.warn("Data was not corrected, but is not integer") return None else: if key not in self.biasDict: warnings.warn("Correction was applied, " "but bias information is missing!") return None bias = self.biasDict[key] data1 = data * bias[:, None] data1 *= bias[None, :] if isInteger(data1): return data1 else: warnings.warn("Attempted recovery of reads, but " "data is not integer") return None def simpleLoad(self, in_data, name, chromosomeOrder=None): """Loads data from h5dict file or dict-like object Parameters ---------- in_data : str or dict-like h5dict filename or dictionary-like object with input data, stored under the key "heatmap", and a vector of SS reads, stored under the key "singles". name : str Key under which to store dataset in self.dataDict chromosomeOrder : None or list If file to load is a byChromosome map, use this to define chromosome order """ if type(in_data) == str: path = os.path.abspath(os.path.expanduser(in_data)) if os.path.exists(path) == False: raise IOError("HDF5 dict do not exist, %s" % path) alldata = h5dict(path, mode="r") else: alldata = in_data if type(alldata) == h5dict: if ("0 0" in alldata.keys()) and ("heatmap" not in alldata.keys()): if chromosomeOrder != None: chromosomes = chromosomeOrder else: chromosomes = xrange(self.chromosomeCount) datas = [] for i in chromosomes: datas.append(np.concatenate([alldata["{0} {1}".format(i, j)] for j in chromosomes], axis=1)) newdata = {"heatmap": np.concatenate(datas)} for i in alldata.keys(): newdata[i] = alldata[i] alldata = newdata self.dataDict[name] = np.asarray(alldata["heatmap"], dtype=np.double) try: self.singlesDict[name] = alldata["singles"] except: print "No SS reads found" try: if len(alldata["frags"]) == self.genome.numBins: self.fragsDict[name] = alldata["frags"] else: print "Different bin number in frag dict" except: pass if "resolution" in alldata: if self.resolution != alldata["resolution"]: print "resolution mismatch!!!" print "--------------> Bye <-------------" raise StandardError("Resolution mismatch! ") if self.genome.numBins != len(alldata["heatmap"]): print "Genome length mismatch!!!" print "source genome", len(alldata["heatmap"]) print "our genome", self.genome.numBins print "Check for readChrms parameter when you identify the genome" raise StandardError("Genome size mismatch! ") def export(self, name, outFilename, byChromosome=False, **kwargs): """ Exports current heatmaps and SS files to an h5dict. Parameters ---------- name : str Key for the dataset to export outFilename : str Where to export byChromosome : bool or "cis" or "all" save by chromosome heatmaps. Ignore SS reads. True means "all" """ if "out_filename" in kwargs.keys(): raise ValueError("out_filename replaced with outFilename!") if name not in self.dataDict: raise ValueError("No data {name}".format(name=name)) toexport = {} if byChromosome is False: toexport["heatmap"] = self.dataDict[name] if name in self.singlesDict: toexport["singles"] = self.singlesDict[name] if name in self.fragsDict: toexport["frags"] = self.fragsDict[name] else: hm = self.dataDict[name] for i in xrange(self.genome.chrmCount): for j in xrange(self.genome.chrmCount): if (byChromosome == "cis") and (i != j): continue st1 = self.chromosomeStarts[i] end1 = self.chromosomeEnds[i] st2 = self.chromosomeStarts[j] end2 = self.chromosomeEnds[j] toexport["{0} {1}".format(i, j)] = hm[st1:end1, st2:end2] toexport["resolution"] = self.resolution toexport["genome"] = self.genome.folderName toexport["binNumber"] = len(self.chromosomeIndex) toexport["genomeIdxToLabel"] = self.genome.idx2label toexport["chromosomeStarts"] = self.chromosomeStarts toexport["chromosomeIndex"] = self.chromosomeIndex toexport["positionIndex"] = self.positionIndex myh5dict = h5dict(outFilename, mode="w") myh5dict.update(toexport) def removeDiagonal(self, m=1): """Removes all bins on a diagonal, and bins that are up to m away from the diagonal, including m. By default, removes all bins touching the diagonal. Parameters ---------- m : int, optional Number of bins to remove """ for i in self.dataDict.keys(): self.dataDict[i] = np.asarray( self.dataDict[i], dtype=np.double, order="C") removeDiagonals(self.dataDict[i], m) self.appliedOperations["RemovedDiagonal"] = True self.removedDiagonalValue = m def removeStandalone(self, offset=3): """removes standalone groups of bins (groups of less-than-offset bins) Parameters ---------- offset : int Maximum length of group of bins to be removed """ diffs = np.diff(np.array(np.r_[False, self._giveMask(), False], int)) begins = np.nonzero(diffs == 1)[0] ends = np.nonzero(diffs == -1)[0] beginsmask = (ends - begins) <= offset newbegins = begins[beginsmask] newends = ends[beginsmask] print "removing %d standalone bins" % np.sum(newends - newbegins) mask = self._giveMask() for i in xrange(len(newbegins)): mask[newbegins[i]:newends[i]] = False mask2D = mask[:, None] * mask[None, :] antimask = np.nonzero(mask2D.flat == False)[0] for i in self.dataDict.values(): i.flat[antimask] = 0 self.appliedOperations["RemovedStandalone"] = True def removeBySequencedCount(self, sequencedFraction=0.5): """ Removes bins that have less than sequencedFraction*resolution sequenced counts. This filters bins by percent of sequenced counts, and also removes the last bin if it's very short. .. note:: this is not equivalent to mapability Parameters ---------- sequencedFraction: float, optional, 0<x<1 Fraction of the bin that needs to be sequenced in order to keep the bin """ self._checkAppliedOperations(excludedKeys="RemovedZeros") binCutoff = int(self.resolution * sequencedFraction) sequenced = np.concatenate(self.genome.mappedBasesBin) mask = sequenced < binCutoff nzmask = np.zeros( len(mask), bool) # mask of regions with non-zero counts for i in self.dataDict.values(): sumData = np.sum(i[mask], axis=1) > 0 nzmask[mask] = nzmask[mask] + sumData i[mask, :] = 0 i[:, mask] = 0 print "Removing %d bins with <%lf %% coverage by sequenced reads" % \ ((nzmask > 0).sum(), 100 * sequencedFraction) self.appliedOperations["RemovedUnsequenced"] = True pass def removePoorRegions(self, names=None, cutoff=2, coverage=False, trans=False): """Removes "cutoff" percent of bins with least counts Parameters ---------- names : list of str List of datasets to perform the filter. All by default. cutoff : int, 0<cutoff<100 Percent of lowest-counts bins to be removed """ statmask = np.zeros(len(self.dataDict.values()[0]), np.bool) mask = np.ones(len(self.dataDict.values()[0]), np.bool) if names is None: names = self.dataDict.keys() for i in names: data = self.dataDict[i] if trans: data = data.copy() data[self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :]] = 0 datasum = np.sum(data, axis=0) datamask = datasum > 0 mask *= datamask if coverage == False: countsum = np.sum(data, axis=0) elif coverage == True: countsum = np.sum(data > 0, axis=0) else: raise ValueError("coverage is true or false!") newmask = countsum >= np.percentile(countsum[datamask], cutoff) mask *= newmask statmask[(newmask == False) * (datamask == True)] = True print "removed {0} poor bins".format(statmask.sum()) inds = np.nonzero(mask == False) for i in self.dataDict.values(): i[inds, :] = 0 i[:, inds] = 0 self.appliedOperations["RemovedPoor"] = True def truncTrans(self, high=0.0005): """Truncates trans contacts to remove blowouts Parameters ---------- high : float, 0<high<1, optional Fraction of top trans interactions to be removed """ for i in self.dataDict.keys(): data = self.dataDict[i] transmask = self.chromosomeIndex[:, None] != self.chromosomeIndex[None, :] lim = np.percentile(data[transmask], 100. * (1 - high)) print "dataset %s truncated at %lf" % (i, lim) tdata = data[transmask] tdata[tdata > lim] = lim self.dataDict[i][transmask] = tdata self.appliedOperations["TruncedTrans"] = True def removeCis(self): "sets to zero all cis contacts" mask = self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :] for i in self.dataDict.keys(): self.dataDict[i][mask] = 0 self.appliedOperations["RemovedCis"] = True print("All cis counts set to zero") def fakeCisOnce(self, mask="CisCounts", silent=False): """Used to fake cis counts or any other region with random trans counts. If extra mask is supplied, it is used instead of cis counts. This method draws fake contact once. Use fakeCis() for iterative self-consistent faking of cis. Parameters ---------- mask : NxN boolean array or "CisCounts" Mask of elements to be faked. If set to "CisCounts", cis counts will be faked When mask is used, cis elements are NOT faked. silent : bool Do not print anything """ #TODO (MIU): check this method! if silent == False: print("All cis counts are substituted with matching trans count") for key in self.dataDict.keys(): data = np.asarray(self.dataDict[key], order="C", dtype=float) if mask == "CisCounts": _mask = np.array(self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :], int, order="C") else: assert mask.shape == self.dataDict.values()[0].shape _mask = np.array(mask, dtype=int, order="C") _mask[self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :]] = 2 s = np.abs(np.sum(data, axis=0)) <= 1e-10 _mask[:, s] = 2 _mask[s, :] = 2 _mask = np.asarray(_mask, dtype=np.int64) fakeCisImpl(data, _mask) self.dataDict[key] = data self.appliedOperations["RemovedCis"] = True self.appliedOperations["FakedCis"] = True def fakeCis(self, force=False, mask="CisCounts"): """This method fakes cis contacts in an interative way It is done to achieve faking cis contacts that is independent of normalization of the data. Parameters ---------- Force : bool (optional) Set this to avoid checks for iterative correction mask : see fakeCisOnce """ self.removeCis() self.iterativeCorrectWithoutSS(force=force) self.fakeCisOnce(silent=True, mask=mask) self.iterativeCorrectWithoutSS(force=force) self.fakeCisOnce(silent=True, mask=mask) self.iterativeCorrectWithoutSS(force=force) print("All cis counts are substituted with faked counts") print("Data is iteratively corrected as a part of faking cis counts") def fakeTranslocations(self, translocationRegions): """ This method fakes reads corresponding to a translocation. Parameters ---------- translocationRegions: list of tuples List of tuples (chr1,start1,end1,chr2,start2,end2), masking a high-count region around visible translocation. If end1/end2 is None, it is treated as length of chromosome. So, use (chr1,0,None,chr2,0,None) to remove inter-chromosomal interaction entirely. """ self._checkAppliedOperations(excludedKeys="RemovedZeros") mask = np.zeros((self.genome.numBins, self.genome.numBins), int) resolution = self.genome.resolution for i in translocationRegions: st1 = self.genome.chrmStartsBinCont[i[0]] st2 = self.genome.chrmStartsBinCont[i[3]] beg1 = st1 + i[1] / resolution if i[2] is not None: end1 = st1 + i[2] / resolution + 1 else: end1 = self.genome.chrmEndsBinCont[i[0]] beg2 = st2 + i[4] / resolution if i[5] is not None: end2 = st2 + i[5] / resolution + 1 else: end2 = self.genome.chrmEndsBinCont[i[3]] mask[beg1:end1, beg2:end2] = 1 mask[beg2:end2, beg1:end1] = 1 self.fakeCisOnce(mask) def correct(self, names=None): """performs single correction without SS Parameters ---------- names : list of str or None Keys of datasets to be corrected. If none, all are corrected. """ self.iterativeCorrectWithoutSS(names, M=1) def iterativeCorrectWithoutSS(self, names=None, M=None, force=False, tolerance=1e-5): """performs iterative correction without SS Parameters ---------- names : list of str or None, optional Keys of datasets to be corrected. By default, all are corrected. M : int, optional Number of iterations to perform. force : bool, optional Ignore warnings and pre-requisite filters """ if force == False: self._checkItertiveCorrectionError() self._checkAppliedOperations(advicedKeys=[ "RemovedDiagonal", "RemovedPoor"]) if names is None: names = self.dataDict.keys() for i in names: data, dummy, bias = ultracorrectSymmetricWithVector( self.dataDict[i], M=M, tolerance=tolerance) self.dataDict[i] = data self.biasDict[i] = bias if i in self.singlesDict: self.singlesDict[i] = self.singlesDict[i] / bias.astype(float) self.appliedOperations["Corrected"] = True def adaptiveSmoothing(self, smoothness, useOriginalReads="try", names=None, rawReadDict=None): """ Performs adaptive smoothing of Hi-C datasets. Adaptive smoothing attempts to smooth low-count, "sparce" part of a Hi-C matrix, while keeping the contrast in a high-count "diagonal" part of the matrix. It does it by blurring each bin pair value into a gaussian, which should encoumpass at least **smoothness** raw reads. However, only half of reads from each bin pair is counted into this gaussian, while full reads from neighboring bin pairs are counted. To summarize: If a bin pair contains #>2*smoothness reads, it is kept intact. If a bin pair contains #<2*smoothness reads, reads around bin pair are counted, and a bin pair is smoothed to a circle (gaussian), containing smoothness - (#/2) reads. A standalone read in a sparce part of a matrix is smoothed to a circle (gaussian) that encoumpasses smoothness reads. .. note:: This algorithm can smooth any heatmap, e.g. corrected one. However, ideally it needs to know raw reads to correctly leverage the contribution from different bins. By default, it attempts to recover raw reads. However, it can do so only after single iterative correction. If used after fakeCis method, it won't use raw reads, unless provided externally. .. warning:: Note that if you provide raw reads externally, you would need to make a copy of dataDict prior to filtering the data, not just a reference to it. Like >>>for i in keys: dataCopy[i] = self.dataDict[i].copy() Parameters ---------- smoothness : float, positive. Often >1. Parameter of smoothness as described above useOriginalReads : bool or "try" If True, requires to recover original reads for smoothness If False, treats heatmap data as reads If "try", attempts to recover original reads; otherwise proceeds with heatmap data. rawReadDict : dict A copy of self.dataDict with raw reads """ if names is None: names = self.dataDict.keys() mask2D = self._giveMask2D() #If diagonal was removed, we should remember about it! if hasattr(self, "removedDiagonalValue"): removeDiagonals(mask2D, self.removedDiagonalValue) for name in names: data = self.dataDict[name] if useOriginalReads is not False: if rawReadDict is not None: #raw reads provided externally reads = rawReadDict[name] else: #recovering raw reads reads = self._recoverOriginalReads(name) if reads is None: #failed to recover reads if useOriginalReads == True: raise RuntimeError("Cannot recover original reads!") else: #raw reads were not requested reads = None if reads is None: reads = data # Feed this to adaptive smoothing smoothed = np.zeros_like(data, dtype=float) N = self.chromosomeCount for i in xrange(N): for j in xrange(N): st1 = self.chromosomeStarts[i] st2 = self.chromosomeStarts[j] end1 = self.chromosomeEnds[i] end2 = self.chromosomeEnds[j] cur = data[st1:end1, st2:end2] curReads = reads[st1:end1, st2:end2] curMask = mask2D[st1:end1, st2:end2] s = adaptiveSmoothing(matrix=cur, cutoff=smoothness, alpha=0.5, mask=curMask, originalCounts=curReads) smoothed[st1:end1, st2:end2] = s self.dataDict[name] = smoothed self.appliedOperations["Smoothed"] = True def removeChromosome(self, chromNum): """removes certain chromosome from all tracks and heatmaps, setting all values to zero Parameters ---------- chromNum : int Number of chromosome to be removed """ beg = self.genome.chrmStartsBinCont[chromNum] end = self.genome.chrmEndsBinCont[chromNum] for i in self.dataDict.values(): i[beg:end] = 0 i[:, beg:end] = 0 for mydict in self.dicts: for value in mydict.values(): value[beg:end] = 0 for mydict in self.eigDicts: for value in mydict.values(): value[beg:end] = 0 def removeZeros(self, zerosMask=None): """removes bins with zero counts keeps chromosome starts, ends, etc. consistent Parameters ---------- zerosMask : length N array or None, optional If provided, this method removes a defined set of bins By default, it removes bins with zero # counts. """ if zerosMask is not None: s = zerosMask else: s = np.sum(self._giveMask2D(), axis=0) > 0 for i in self.dataDict.values(): s *= (np.sum(i, axis=0) > 0) indices = np.zeros(len(s), int) count = 0 for i in xrange(len(indices)): if s[i] == True: indices[i] = count count += 1 else: indices[i] = count indices = np.r_[indices, indices[-1] + 1] N = len(self.positionIndex) for i in self.dataDict.keys(): a = self.dataDict[i] if len(a) != N: raise ValueError("Wrong dimensions of data %i: \ %d instead of %d" % (i, len(a), N)) b = a[:, s] c = b[s, :] self.dataDict[i] = c for mydict in self.dicts: for key in mydict.keys(): if len(mydict[key]) != N: raise ValueError("Wrong dimensions of data {0}: {1} instead of {2}".format(key, len(mydict[key]), N)) mydict[key] = mydict[key][s] for mydict in self.eigDicts: for key in mydict.keys(): mydict[key] = mydict[key][:, s] if len(mydict[key][0]) != N: raise ValueError("Wrong dimensions of data %i: \ %d instead of %d" % (key, len(mydict[key][0]), N)) self.chromosomeIndex = self.chromosomeIndex[s] self.positionIndex = self.positionIndex[s] self.armIndex = self.armIndex[s] self.chromosomeEnds = indices[self.chromosomeEnds] self.chromosomeStarts = indices[self.chromosomeStarts] self.centromerePositions = indices[self.centromerePositions] self.removeZerosMask = s if self.appliedOperations.get("RemovedZeros", False) == True: warnings.warn("\nYou're removing zeros twice. \ You can't restore zeros now!") self.appliedOperations["RemovedZeros"] = True self.genome.setResolution(-1) return s def restoreZeros(self, value=np.NAN): """Restores zeros that were removed by removeZeros command. .. warning:: You can restore zeros only if you used removeZeros once. Parameters ---------- value : number-like, optional. Value to fill in missing regions. By default, NAN. """ if not hasattr(self, "removeZerosMask"): raise StandardError("Zeros have not been removed!") s = self.removeZerosMask N = len(s) for i in self.dataDict.keys(): a = self.dataDict[i] self.dataDict[i] = np.zeros((N, N), dtype=a.dtype) * value tmp = np.zeros((N, len(a)), dtype=a.dtype) * value tmp[s, :] = a self.dataDict[i][:, s] = tmp for mydict in self.dicts: for key in mydict.keys(): a = mydict[key] mydict[key] = np.zeros(N, dtype=a.dtype) * value mydict[key][s] = a for mydict in self.eigDicts: #print mydict for key in mydict.keys(): a = mydict[key] mydict[key] = np.zeros((len(a), N), dtype=a.dtype) * value mydict[key][:, s] = a self.genome.setResolution(self.resolution) self._initChromosomes() self.appliedOperations["RemovedZeros"] = False def doPCA(self, force=False): """performs PCA on the data creates dictionary self.PCADict with results Last column of PC matrix is first PC, second to last - second, etc. Returns ------- Dictionary of principal component matrices for different datasets """ neededKeys = ["RemovedZeros", "Corrected", "FakedCis"] advicedKeys = ["TruncedTrans", "RemovedPoor"] if force == False: self._checkAppliedOperations(neededKeys, advicedKeys) for i in self.dataDict.keys(): currentPCA, eigenvalues = PCA(self.dataDict[i]) self.PCAEigenvalueDict[i] = eigenvalues for j in xrange(len(currentPCA)): if spearmanr(currentPCA[j], self.trackDict["GC"])[0] < 0: currentPCA[j] = -currentPCA[j] self.PCDict[i] = currentPCA return self.PCDict def doEig(self, numPCs=3, force=False): """performs eigenvector expansion on the data creates dictionary self.EigDict with results Last row of the eigenvector matrix is the largest eigenvector, etc. Returns ------- Dictionary of eigenvector matrices for different datasets """ neededKeys = ["RemovedZeros", "Corrected", "FakedCis"] advicedKeys = ["TruncedTrans", "RemovedPoor"] if force == False: self._checkAppliedOperations(neededKeys, advicedKeys) for i in self.dataDict.keys(): currentEIG, eigenvalues = EIG(self.dataDict[i], numPCs=numPCs) self.eigEigenvalueDict[i] = eigenvalues for j in xrange(len(currentEIG)): if spearmanr(currentEIG[j], self.trackDict["GC"])[0] < 0: currentEIG[j] = -currentEIG[j] self.EigDict[i] = currentEIG return self.EigDict def doCisPCADomains( self, numPCs=3, swapFirstTwoPCs=False, useArms=True, corrFunction=lambda x, y: spearmanr(x, y)[0], domainFunction="default"): """Calculates A-B compartments based on cis data. All PCs are oriented to have positive correlation with GC. Writes the main result (PCs) in the self.PCADict dictionary. Additionally, returns correlation coefficients with GC; by chromosome. Parameters ---------- numPCs : int, optional Number of PCs to compute swapFirstTwoPCs : bool, by default False Swap first and second PC if second has higher correlation with GC useArms : bool, by default True Use individual arms, not chromosomes corr function : function, default: spearmanr Function to compute correlation with GC. Accepts two arrays, returns correlation domain function : function, optional Function to calculate principal components of a square matrix. Accepts: N by N matrix returns: numPCs by N matrix Default does iterative correction, then observed over expected. Then IC Then calculates correlation matrix. Then calculates PCA of correlation matrix. other options: metaphasePaper (like in Naumova, Science 2013) .. note:: Main output of this function is written to self.PCADict Returns ------- corrdict,lengthdict Dictionaries with keys for each dataset. Values of corrdict contains an M x numPCs array with correlation coefficient for each chromosome (or arm) with non-zero length. Values of lengthdict contain lengthds of chromosomes/arms. These dictionaries can be used to calculate average correlation coefficient by chromosome (or by arm). """ corr = corrFunction if (type(domainFunction) == str): domainFunction = domainFunction.lower() if domainFunction in ["metaphasepaper", "default", "lieberman", "erez", "geoff", "lieberman+", "erez+"]: fname = domainFunction def domainFunction(chrom): #orig = chrom.copy() M = len(chrom.flat) toclip = 100 * min(0.999, (M - 10.) / M) removeDiagonals(chrom, 1) chrom = ultracorrect(chrom) chrom = observedOverExpected(chrom) chrom = np.clip(chrom, -1e10, np.percentile(chrom, toclip)) for i in [-1, 0, 1]: fillDiagonal(chrom, 1, i) if fname in ["default", "lieberman+", "erez+"]: #upgrade of (Lieberman 2009) # does IC, then OoE, then IC, then corrcoef, then PCA chrom = ultracorrect(chrom) chrom = np.corrcoef(chrom) PCs = PCA(chrom, numPCs)[0] return PCs elif fname in ["lieberman", "erez"]: #slight upgrade of (Lieberman 2009) # does IC, then OoE, then corrcoef, then PCA chrom = np.corrcoef(chrom) PCs = PCA(chrom, numPCs)[0] return PCs elif fname in ["metaphasepaper", "geoff"]: chrom = ultracorrect(chrom) PCs = EIG(chrom, numPCs)[0] return PCs else: raise if domainFunction in ["lieberman-", "erez-"]: #simplest function presented in (Lieberman 2009) #Closest to (Lieberman 2009) that we could do def domainFunction(chrom): removeDiagonals(chrom, 1) chrom = observedOverExpected(chrom) chrom = np.corrcoef(chrom) PCs = PCA(chrom, numPCs)[0] return PCs corrdict, lengthdict = {}, {} #dict of per-chromosome correlation coefficients for key in self.dataDict.keys(): corrdict[key] = [] lengthdict[key] = [] dataset = self.dataDict[key] N = len(dataset) PCArray = np.zeros((3, N)) for chrom in xrange(len(self.chromosomeStarts)): if useArms == False: begs = (self.chromosomeStarts[chrom],) ends = (self.chromosomeEnds[chrom],) else: begs = (self.chromosomeStarts[chrom], self.centromerePositions[chrom]) ends = (self.centromerePositions[chrom], self.chromosomeEnds[chrom]) for end, beg in map(None, ends, begs): if end - beg < 5: continue chrom = dataset[beg:end, beg:end] GC = self.trackDict["GC"][beg:end] PCs = domainFunction(chrom) for PC in PCs: if corr(PC, GC) < 0: PC *= -1 if swapFirstTwoPCs == True: if corr(PCs[0], GC) < corr(PCs[1], GC): p0, p1 = PCs[0].copy(), PCs[1].copy() PCs[0], PCs[1] = p1, p0 corrdict[key].append(tuple([corr(i, GC) for i in PCs])) lengthdict[key].append(end - beg) PCArray[:, beg:end] = PCs self.PCDict[key] = PCArray return corrdict, lengthdict def cisToTrans(self, mode="All", filename="GM-all"): """ Calculates cis-to-trans ratio. "All" - treating SS as trans reads "Dummy" - fake SS reads proportional to cis reads with the same total sum "Matrix" - use heatmap only """ data = self.dataDict[filename] cismap = self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :] cissums = np.sum(cismap * data, axis=0) allsums = np.sum(data, axis=0) if mode.lower() == "all": cissums += self.singlesDict[filename] allsums += self.singlesDict[filename] elif mode.lower() == "dummy": sm = np.mean(self.singlesDict[filename]) fakesm = cissums * sm / np.mean(cissums) cissums += fakesm allsums += fakesm elif mode.lower() == "matrix": pass else: raise return cissums / allsums class binnedDataAnalysis(binnedData): """ Class containing experimental features and data analysis scripts """ def plotScaling(self, name, label="BLA", color=None, plotUnit=1000000): "plots scaling of a heatmap,treating arms separately" import matplotlib.pyplot as plt data = self.dataDict[name] bins = numutils.logbins( 2, self.genome.maxChrmArm / self.resolution, 1.17) s = np.sum(data, axis=0) > 0 mask = s[:, None] * s[None, :] chroms = [] masks = [] for i in xrange(self.chromosomeCount): beg = self.chromosomeStarts[i] end = self.centromerePositions[i] chroms.append(data[beg:end, beg:end]) masks.append(mask[beg:end, beg:end]) beg = self.centromerePositions[i] end = self.chromosomeEnds[i] chroms.append(data[beg:end, beg:end]) masks.append(mask[beg:end, beg:end]) observed = [] expected = [] for i in xrange(len(bins) - 1): low = bins[i] high = bins[i + 1] obs = 0 exp = 0 for j in xrange(len(chroms)): if low > len(chroms[j]): continue high2 = min(high, len(chroms[j])) for k in xrange(low, high2): obs += np.sum(np.diag(chroms[j], k)) exp += np.sum(np.diag(masks[j], k)) observed.append(obs) expected.append(exp) observed = np.array(observed, float) expected = np.array(expected, float) values = observed / expected bins = np.array(bins, float) bins2 = 0.5 * (bins[:-1] + bins[1:]) norm = np.sum(values * (bins[1:] - bins[:-1]) * ( self.resolution / float(plotUnit))) args = [self.resolution * bins2 / plotUnit, values / (1. * norm)] if color is not None: args.append(color) plt.plot(*args, label=label, linewidth=2) def averageTransMap(self, name, **kwargs): "plots and returns average inter-chromosomal inter-arm map" import matplotlib.pyplot as plt from mirnylib.plotting import removeBorder data = self.dataDict[name] avarms = np.zeros((80, 80)) avmasks = np.zeros((80, 80)) discardCutoff = 10 for i in xrange(self.chromosomeCount): print i for j in xrange(self.chromosomeCount): for k in [-1, 1]: for l in [-1, 1]: if i == j: continue cenbeg1 = self.chromosomeStarts[i] + \ self.genome.cntrStarts[i] / self.resolution cenbeg2 = self.chromosomeStarts[j] + \ self.genome.cntrStarts[j] / self.resolution cenend1 = self.chromosomeStarts[i] + \ self.genome.cntrEnds[i] / self.resolution cenend2 = self.chromosomeStarts[j] + \ self.genome.cntrEnds[j] / self.resolution beg1 = self.chromosomeStarts[i] beg2 = self.chromosomeStarts[j] end1 = self.chromosomeEnds[i] end2 = self.chromosomeEnds[j] if k == 1: bx = cenbeg1 ex = beg1 - 1 dx = -1 else: bx = cenend1 ex = end1 dx = 1 if l == 1: by = cenbeg2 ey = beg2 - 1 dy = -1 else: by = cenend2 ey = end2 dy = 1 if abs(bx - ex) < discardCutoff: continue if bx < 0: bx = None if ex < 0: ex = None if abs(by - ey) < discardCutoff: continue if by < 0: by = None if ey < 0: ey = None arms = data[bx:ex:dx, by:ey:dy] assert max(arms.shape) <= self.genome.maxChrmArm / \ self.genome.resolution + 2 mx = np.sum(arms, axis=0) my = np.sum(arms, axis=1) maskx = mx == 0 masky = my == 0 mask = (maskx[None, :] + masky[:, None]) == False maskf = np.array(mask, float) mlenx = (np.abs(np.sum(mask, axis=0)) > 1e-20).sum() mleny = (np.abs(np.sum(mask, axis=1)) > 1e-20).sum() if min(mlenx, mleny) < discardCutoff: continue add = numutils.zoomOut(arms, avarms.shape) assert np.abs((arms.sum() - add.sum( )) / arms.sum()) < 0.02 addmask = numutils.zoomOut(maskf, avarms.shape) avarms += add avmasks += addmask avarms /= np.mean(avarms) data = avarms / avmasks data /= np.mean(data) plt.imshow(np.log(numutils.trunc( data)), cmap="jet", interpolation="nearest", **kwargs) removeBorder() return np.log(numutils.trunc(data)) def perArmCorrelation(self, data1, data2, doByArms=[]): """does inter-chromosomal spearman correlation of two vectors for each chromosomes separately. Averages over chromosomes with weight of chromosomal length For chromosomes in "doByArms" treats arms as separatre chromosomes returns average Spearman r correlation """ cr = 0 ln = 0 for i in xrange(self.chromosomeCount): if i in doByArms: beg = self.chromosomeStarts[i] end = self.centromerePositions[i] if end > beg: cr += (abs(spearmanr(data1[beg:end], data2[beg:end] )[0])) * (end - beg) ln += (end - beg) print spearmanr(data1[beg:end], data2[beg:end])[0] beg = self.centromerePositions[i] end = self.chromosomeEnds[i] if end > beg: cr += (abs(spearmanr(data1[beg:end], data2[beg:end] )[0])) * (end - beg) ln += (end - beg) print spearmanr(data1[beg:end], data2[beg:end])[0] else: beg = self.chromosomeStarts[i] end = self.chromosomeEnds[i] if end > beg: cr += (abs(spearmanr(data1[beg:end], data2[beg:end] )[0])) * (end - beg) ln += (end - beg) return cr / ln def divideOutAveragesPerChromosome(self): "divides each interchromosomal map by it's mean value" mask2D = self._giveMask2D() for chrom1 in xrange(self.chromosomeCount): for chrom2 in xrange(self.chromosomeCount): for i in self.dataDict.keys(): value = self.dataDict[i] submatrix = value[self.chromosomeStarts[chrom1]: self.chromosomeEnds[chrom1], self.chromosomeStarts[chrom2]: self.chromosomeEnds[chrom2]] masksum = np.sum( mask2D[self.chromosomeStarts[chrom1]: self.chromosomeEnds[chrom1], self.chromosomeStarts[chrom2]: self.chromosomeEnds[chrom2]]) valuesum = np.sum(submatrix) mean = valuesum / masksum submatrix /= mean def interchromosomalValues(self, filename="GM-all", returnAll=False): """returns average inter-chromosome-interaction values, ordered always the same way""" values = self.chromosomeIndex[:, None] + \ self.chromosomeCount * self.chromosomeIndex[None, :] values[self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :]] = self.chromosomeCount * self.chromosomeCount - 1 #mat_img(values) uv = np.sort(np.unique(values))[1:-1] probs = np.bincount( values.ravel(), weights=self.dataDict[filename].ravel()) counts = np.bincount(values.ravel()) if returnAll == False: return probs[uv] / counts[uv] else: probs[self.chromosomeCount * self.chromosomeCount - 1] = 0 values = probs / counts values[counts == 0] = 0 #mat_img(values.reshape((22,22))) return values.reshape((self.chromosomeCount, self.chromosomeCount)) class experimentalBinnedData(binnedData): "Contains some poorly-implemented new features" def projectOnEigenvalues(self, eigenvectors=[0]): """ Calculates projection of the data on a set of eigenvectors. This is used to calculate heatmaps, reconstructed from eigenvectors. Parameters ---------- eigenvectors : list of non-negative ints, optional Zero-based indices of eigenvectors, to project onto By default projects on the first eigenvector Returns ------- Puts resulting data in dataDict under DATANAME_projected key """ for name in self.dataDict.keys(): if name not in self.EigDict: raise RuntimeError("Calculate eigenvectors first!") PCs = self.EigDict[name] if max(eigenvectors) >= len(PCs): raise RuntimeError("Not enough eigenvectors." "Increase numPCs in doEig()") PCs = PCs[eigenvectors] eigenvalues = self.eigEigenvalueDict[name][eigenvectors] proj = reduce(lambda x, y: x + y, [PCs[i][:, None] * PCs[i][None, :] * \ eigenvalues[i] for i in xrange(len(PCs))]) mask = PCs[0] != 0 mask = mask[:, None] * mask[None, :] # maks of non-zero elements data = self.dataDict[name] datamean = np.mean(data[mask]) proj[mask] += datamean self.dataDict[name + "_projected"] = proj def emulateCis(self): """if you want to have fun creating syntetic data, this emulates cis contacts. adjust cis/trans ratio in the C code""" from scipy import weave transmap = self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :] len(transmap) for i in self.dataDict.keys(): data = self.dataDict[i] * 1. N = len(data) N code = r""" #line 1427 "binnedData.py" using namespace std; for (int i = 0; i < N; i++) { for (int j = 0; j<N; j++) { if (transmap[N * i + j] == 1) { data[N * i + j] = data[N * i +j] * 300 /(abs(i-j) + \ 0.5); } } } """ support = """ #include <math.h> """ weave.inline(code, ['transmap', 'data', "N"], extra_compile_args=['-march=native -malign-double'], support_code=support) self.dataDict[i] = data self.removedCis = False self.fakedCis = False def fakeMissing(self): """fakes megabases that have no reads. For cis reads fakes with cis reads at the same distance. For trans fakes with random trans read at the same diagonal. """ from scipy import weave for i in self.dataDict.keys(): data = self.dataDict[i] * 1. sm = np.sum(data, axis=0) > 0 mask = sm[:, None] * sm[None, :] transmask = np.array(self.chromosomeIndex[:, None] == self.chromosomeIndex[None, :], int) #mat_img(transmask) N = len(data) N, transmask, mask # to remove warning code = r""" #line 1467 "binnedData.py" using namespace std; for (int i = 0; i < N; i++) { for (int j = i; j<N; j++) { if ((MASK2(i,j) == 0) ) { for (int ss = 0; ss < 401; ss++) { int k = 0; int s = rand() % (N - (j-i)); if ((mask[s * N + s + j - i] == 1) &&\ ((transmask[s * N + s + j - i] ==\ transmask[i * N + j]) || (ss > 200)) ) { data[i * N + j] = data[s * N + s + j - i]; data[j * N + i] = data[s * N + s + j - i]; break; } if (ss == 400) {printf("Cannot fake one point... \ skipping %d %d \n",i,j);} } } } } """ support = """ #include <math.h> """ for _ in xrange(5): weave.inline(code, ['transmask', 'mask', 'data', "N"], extra_compile_args=['-march=native' ' -malign-double -O3'], support_code=support) data = correct(data) self.dataDict[i] = data #mat_img(self.dataDict[i]>0) def iterativeCorrectByTrans(self, names=None): """performs iterative correction by trans data only, corrects cis also Parameters ---------- names : list of str or None, optional Keys of datasets to be corrected. By default, all are corrected. """ self.appliedOperations["Corrected"] = True if names is None: names = self.dataDict.keys() self.transmap = self.chromosomeIndex[:, None] != self.chromosomeIndex[None, :] #mat_img(self.transmap) for i in names: data = self.dataDict[i] self.dataDict[i], self.biasDict[i] = \ numutils.ultracorrectSymmetricByMask(data, self.transmap, M=None) try: self.singlesDict[i] /= self.biasDict[i] except: print "bla" def loadWigFile(self, filenames, label, control=None, wigFileType="Auto", functionToAverage=np.log, internalResolution=1000): byChromosome = self.genome.parseAnyWigFile(filenames=filenames, control=control, wigFileType=wigFileType, functionToAverage=functionToAverage, internalResolution=internalResolution) self.trackDict[label] = np.concatenate(byChromosome) def loadErezEigenvector1MB(self, erezFolder): "Loads Erez chromatin domain eigenvector for HindIII" if self.resolution != 1000000: raise StandardError("Erez eigenvector is only at 1MB resolution") if self.genome.folderName != "hg18": raise StandardError("Erez eigenvector is for hg18 only!") folder = os.path.join(erezFolder, "GM-combined.ctgDATA1.ctgDATA1." "1000000bp.hm.eigenvector.tab") folder2 = os.path.join(erezFolder, "GM-combined.ctgDATA1.ctgDATA1." "1000000bp.hm.eigenvector2.tab") eigenvector = np.zeros(self.genome.numBins, float) for chrom in range(1, 24): filename = folder.replace("DATA1", str(chrom)) if chrom in [4, 5]: filename = folder2.replace("DATA1", str(chrom)) mydata = np.array([[float(j) for j in i.split( )] for i in open(filename).readlines()]) eigenvector[self.genome.chrmStartsBinCont[chrom - 1] + np.array(mydata[:, 1], int)] = mydata[:, 2] self.trackDict["Erez"] = eigenvector def loadTanayDomains(self): "domains, extracted from Tanay paper image" if self.genome.folderName != "hg18": raise StandardError("Tanay domains work only with hg18") data = """0 - 17, 1 - 13.5, 2 - 6.5, 0 - 2, 2 - 2; x - 6.5, 0 - 6,\ 1 - 13.5, 0 - 1.5, 1 - 14.5 1 - 8.5, 0 - 2.5, 1 - 14, 2 - 6; 0 - 1.5, 2 - 11.5, 1 - 35 1 - 14, 0-6, 2 - 11; 2 - 4.5, 1 - 5, 0 - 4, 1 -20.5, 0 - 2 0 - 3, 2 - 14; 2 - 5, 1 - 42 2 - 16; 2 - 7, 0 - 3, 1 - 18.5, 0 - 1, 1 - 13, 0 - 2.5 0 - 2, 1 - 6.5, 0 - 7.5, 2 - 4; 2 - 6, 1 - 31 0 - 2, 1 - 11, 2 - 7; 2 - 7.5, 1 - 5, 0 - 3, 1 - 19 2 - 9.5, 0 - 1, 2 - 5; 2 - 4, 1 - 27.5, 0 - 2.5 2 - 11.5, 0 - 2.5, x - 2.5; x - 5, 2 - 8, 0 - 3.5, 1 - 9, 0 - 6 2 - 13.5; 2 - 9, 0 - 3, 1 - 6, 0 - 3.5, 1 - 10.5 0 - 3.5, 2 - 15; 2 - 1, 0 - 7.5, 1 - 13, 0 - 1.5, 1 - 4 0 - 4, 2 - 8; 2 - 2, 0 - 5, 2 - 2.5, 1 - 13, 0 - 6.5, 1 - 3.5 x - 5.5; 2 - 8.5, 0 - 1, 2 - 7, 1 - 16 x - 5.5; 2 - 14.5, 0 - 6, 2 - 3, 1 - 2.5, 2 - 1, 0 - 3 x - 5.5; 2 - 6, 0 - 3.5, 2 - 1.5, 0 - 11.5, 2 - 5.5 0 - 11, 2 - 1; x - 2.5, 2 - 6.5, 0 - 3, 2 - 2, 0 - 3.5 0 - 4, 2 - 1.5, 0 - 1.5; 0 - 19 2 - 5; 2 - 20 0 - 9.5, x - 1.5; x - 1, 2 - 2, 0 - 8.5 0 - 2, 2 - 7; 0 - 8, 2 - 2, 0 - 1 x - 0.5; 2 - 8.5, 0 - 3 x - 4; 0 -12 x - 1.5, 1 - 13, 2 - 5.5; 2 - 2, 1 - 29""" chroms = [i.split(";") for i in data.split("\n")] result = [] for chrom in chroms: result.append([]) cur = result[-1] for arm in chrom: for enrty in arm.split(","): spentry = enrty.split("-") if "x" in spentry[0]: value = -1 else: value = int(spentry[0]) cur += ([value] * int(2 * float(spentry[1]))) cur += [-1] * 2 #lenses = [len(i) for i in result] domains = np.zeros(self.genome.numBins, int) for i in xrange(self.genome.chrmCount): for j in xrange((self.genome.chrmLens[i] / self.resolution)): domains[self.genome.chrmStartsBinCont[i] + j] = \ result[i][(j * len(result[i]) / ((self.genome.chrmLens[i] / self.resolution)))] self.trackDict['TanayDomains'] = domains
bsd-3-clause
CDSFinance/zipline
zipline/examples/dual_ema_talib.py
12
4122
#!/usr/bin/env python # # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dual Moving Average Crossover algorithm. This algorithm buys apple once its short moving average crosses its long moving average (indicating upwards momentum) and sells its shares once the averages cross again (indicating downwards momentum). """ from zipline.api import order, record, symbol # Import exponential moving average from talib wrapper from zipline.transforms.ta import EMA def initialize(context): context.asset = symbol('AAPL') # Add 2 mavg transforms, one with a long window, one with a short window. context.short_ema_trans = EMA(timeperiod=20) context.long_ema_trans = EMA(timeperiod=40) # To keep track of whether we invested in the stock or not context.invested = False def handle_data(context, data): short_ema = context.short_ema_trans.handle_data(data) long_ema = context.long_ema_trans.handle_data(data) if short_ema is None or long_ema is None: return buy = False sell = False if (short_ema > long_ema).all() and not context.invested: order(context.asset, 100) context.invested = True buy = True elif (short_ema < long_ema).all() and context.invested: order(context.asset, -100) context.invested = False sell = True record(AAPL=data[context.asset].price, short_ema=short_ema[context.asset], long_ema=long_ema[context.asset], buy=buy, sell=sell) # Note: this function can be removed if running # this algorithm on quantopian.com def analyze(context=None, results=None): import matplotlib.pyplot as plt import logbook logbook.StderrHandler().push_application() log = logbook.Logger('Algorithm') fig = plt.figure() ax1 = fig.add_subplot(211) results.portfolio_value.plot(ax=ax1) ax1.set_ylabel('Portfolio value (USD)') ax2 = fig.add_subplot(212) ax2.set_ylabel('Price (USD)') # If data has been record()ed, then plot it. # Otherwise, log the fact that no data has been recorded. if 'AAPL' in results and 'short_ema' in results and 'long_ema' in results: results[['AAPL', 'short_ema', 'long_ema']].plot(ax=ax2) ax2.plot(results.ix[results.buy].index, results.short_ema[results.buy], '^', markersize=10, color='m') ax2.plot(results.ix[results.sell].index, results.short_ema[results.sell], 'v', markersize=10, color='k') plt.legend(loc=0) plt.gcf().set_size_inches(18, 8) else: msg = 'AAPL, short_ema and long_ema data not captured using record().' ax2.annotate(msg, xy=(0.1, 0.5)) log.info(msg) plt.show() # Note: this if-block should be removed if running # this algorithm on quantopian.com if __name__ == '__main__': from datetime import datetime import pytz from zipline.algorithm import TradingAlgorithm from zipline.utils.factory import load_from_yahoo # Set the simulation start and end dates. start = datetime(2014, 1, 1, 0, 0, 0, 0, pytz.utc) end = datetime(2014, 11, 1, 0, 0, 0, 0, pytz.utc) # Load price data from yahoo. data = load_from_yahoo(stocks=['AAPL'], indexes={}, start=start, end=end) # Create and run the algorithm. algo = TradingAlgorithm(initialize=initialize, handle_data=handle_data, identifiers=['AAPL']) results = algo.run(data).dropna() # Plot the portfolio and asset data. analyze(results=results)
apache-2.0
StrellaGroup/erpnext
erpnext/selling/page/sales_funnel/sales_funnel.py
13
4035
# Copyright (c) 2018, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import unicode_literals import frappe from frappe import _ from erpnext.accounts.report.utils import convert import pandas as pd @frappe.whitelist() def get_funnel_data(from_date, to_date, company): active_leads = frappe.db.sql("""select count(*) from `tabLead` where (date(`modified`) between %s and %s) and status != "Do Not Contact" and company=%s""", (from_date, to_date, company))[0][0] active_leads += frappe.db.sql("""select count(distinct contact.name) from `tabContact` contact left join `tabDynamic Link` dl on (dl.parent=contact.name) where dl.link_doctype='Customer' and (date(contact.modified) between %s and %s) and status != "Passive" """, (from_date, to_date))[0][0] opportunities = frappe.db.sql("""select count(*) from `tabOpportunity` where (date(`creation`) between %s and %s) and status != "Lost" and company=%s""", (from_date, to_date, company))[0][0] quotations = frappe.db.sql("""select count(*) from `tabQuotation` where docstatus = 1 and (date(`creation`) between %s and %s) and status != "Lost" and company=%s""", (from_date, to_date, company))[0][0] sales_orders = frappe.db.sql("""select count(*) from `tabSales Order` where docstatus = 1 and (date(`creation`) between %s and %s) and company=%s""", (from_date, to_date, company))[0][0] return [ { "title": _("Active Leads / Customers"), "value": active_leads, "color": "#B03B46" }, { "title": _("Opportunities"), "value": opportunities, "color": "#F09C00" }, { "title": _("Quotations"), "value": quotations, "color": "#006685" }, { "title": _("Sales Orders"), "value": sales_orders, "color": "#00AD65" } ] @frappe.whitelist() def get_opp_by_lead_source(from_date, to_date, company): opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability', 'source']) if opportunities: default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency') cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities] df = pd.DataFrame(cp_opportunities).groupby(['source', 'sales_stage'], as_index=False).agg({'compound_amount': 'sum'}) result = {} result['labels'] = list(set(df.source.values)) result['datasets'] = [] for s in set(df.sales_stage.values): result['datasets'].append({'name': s, 'values': [0]*len(result['labels']), 'chartType': 'bar'}) for row in df.itertuples(): source_index = result['labels'].index(row.source) for dataset in result['datasets']: if dataset['name'] == row.sales_stage: dataset['values'][source_index] = row.compound_amount return result else: return 'empty' @frappe.whitelist() def get_pipeline_data(from_date, to_date, company): opportunities = frappe.get_all("Opportunity", filters=[['status', 'in', ['Open', 'Quotation', 'Replied']], ['company', '=', company], ['transaction_date', 'Between', [from_date, to_date]]], fields=['currency', 'sales_stage', 'opportunity_amount', 'probability']) if opportunities: default_currency = frappe.get_cached_value('Global Defaults', 'None', 'default_currency') cp_opportunities = [dict(x, **{'compound_amount': (convert(x['opportunity_amount'], x['currency'], default_currency, to_date) * x['probability']/100)}) for x in opportunities] df = pd.DataFrame(cp_opportunities).groupby(['sales_stage'], as_index=True).agg({'compound_amount': 'sum'}).to_dict() result = {} result['labels'] = df['compound_amount'].keys() result['datasets'] = [] result['datasets'].append({'name': _("Total Amount"), 'values': df['compound_amount'].values(), 'chartType': 'bar'}) return result else: return 'empty'
gpl-3.0