repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
jnarhan/Breast_Cancer
src/models/dwdii_bc_model_helper.py
1
12893
# # Author: Daniel Dittenhafer # # Created: Mar 14, 2017 # # Description: Model Helper Functions # # __author__ = 'Daniel Dittenhafer' import collections import csv import os import random import sys import gc import itertools from decimal import * from scipy import misc from scipy import ndimage import numpy as np from scipy import misc from scipy import ndimage import cv2 import matplotlib.cm as cm import matplotlib.pyplot as plt NDX_NAME = 0 NDX_TYPE = 1 NDX_ABTYPE = 2 NDX_SCANNER = 3 NDX_SUBFOLDER = 4 NDX_PATHOLOGY = 5 def load_training_metadata(metadataFile, balanceViaRemoval = False, verbose=False, exclude = ['unproven', 'pathology', 'benign_without_callback'], normalVsAbnormal=False): """ Loads the designated meta data optionally balancing the data by removing heavily weighted category entries. 3 result sets are returned: 1) Dictionary where key = filename and value = label (normal, benign, malignant) 2) Dictionary where key = filename and value = list with values sub folder)= (0,1,2,3,4) 3) Dictionary where key = label (normal, benign, etc) and value = count of images in category. :param metadataFile: :param balanceViaRemoval: :param verbose: :param exclude: :return: """ # Load the existing CSV so we can skip what we've already worked on abnormalList = ["benign", "malignant"] bcDict = {} bcMetaDict = {} bcCounts = collections.defaultdict(int) with open(metadataFile, 'r') as csvfile: bcCsv = csv.reader(csvfile) headers = bcCsv.next() for row in bcCsv: subfld = row[NDX_SUBFOLDER] patho = row[NDX_PATHOLOGY].lower() if patho == "": patho = "normal" if patho in exclude: pass else: if normalVsAbnormal and (patho in abnormalList): patho = "abnormal" # Load into our result sets bcDict[row[0]] = patho bcMetaDict[row[0]] = (subfld) bcCounts[patho] += 1 if verbose: print "Raw Balance" print "----------------" for e in bcCounts: print e, bcCounts[e] if balanceViaRemoval: balanaceViaRemoval(bcCounts, bcDict, factor=1.0) if verbose: print print "After Balancing" print "----------------" for e in bcCounts: print e, bcCounts[e] return bcDict, bcMetaDict, bcCounts def balanaceViaRemoval(emoCounts, emoDict, depth = 0, factor = 1.50): if(depth >= 2): return # First get mean items per category sum = len(emoDict) avgE = sum / len(emoCounts) theshold = avgE * factor if depth == 0: print "balanaceViaRemoval.avgE: " + str(avgE) print "balanaceViaRemoval.theshold: " + str(theshold) # Determine categories for balancing. toBeBalanced = [] for e in emoCounts.keys(): if emoCounts[e] > theshold: toBeBalanced.append(e) # iterate over categories to be balanced and do balancing. for b in toBeBalanced: candidatesForRemoval = [] for f in emoDict.keys(): if emoDict[f] == b: candidatesForRemoval.append(f) random.shuffle(candidatesForRemoval) candidatesForRemoval = candidatesForRemoval[avgE:] for c in candidatesForRemoval: del emoDict[c] emoCounts[b] = avgE balanaceViaRemoval(emoCounts, emoDict, depth + 1, factor) def bcNumerics(): emoNdx = {} emoNdx["normal"] = 0 emoNdx["benign"] = 1 emoNdx["malignant"] = 2 return emoNdx def numericBC(): emoNdx = bcNumerics() ndxEmo = {} for k in emoNdx: ndxEmo[emoNdx[k]] = k return ndxEmo def bcNormVsAbnormNumerics(): emoNdx = {} emoNdx["normal"] = 0 emoNdx["abnormal"] = 1 return emoNdx def reverseDict(d): ndxEmo = {} for k in d: ndxEmo[d[k]] = k return ndxEmo def load_data(metadataFile, imagesPath, categories = bcNumerics(), verbose=True, verboseFreq = 200, maxData = None, imgSize = (350, 350), imgResize = None, thesePathos = None, normalVsAbnormal = False): """Helper function to load the training/test data""" show = False # Load the CSV meta data emoMetaData, bcDetaDict, bcCounts = load_training_metadata(metadataFile, True, verbose=verbose, normalVsAbnormal=normalVsAbnormal) total = len(emoMetaData) ndx = 0 x, y = imgSize if imgResize is not None: x, y = imgResize if maxData is not None: total = maxData # Allocate containers for the data X_data = np.zeros([total, x, y]) Y_data = np.zeros([total, 1], dtype=np.int8) # load the image bits based on what's in the meta data for k in emoMetaData.keys(): if thesePathos is None or emoMetaData[k] in thesePathos: # Load the file filepath = os.path.join(imagesPath, bcDetaDict[k][0], k) #filepath = filepath + ".png" if(os.path.exists(filepath)): img = misc.imread(filepath, flatten = True) # flatten = True? else: img = None print "Not Found: " + filepath # Only accept images that were loaded if img is not None: # Verbose status if verbose and ndx % verboseFreq == 0: msg = "{0:.4f}: {1}\r\n".format(ndx / Decimal(total), k) sys.stdout.writelines(msg) # Resize if desired. if imgResize is not None: img = misc.imresize(img, imgResize) gc.collect() if show: plt.imshow(img, cmap=cm.gray) plt.show() X_data[ndx] = img rawEmotion = emoMetaData[k] emotionKey = rawEmotion.lower() emotionNdx = categories[emotionKey] Y_data[ndx] = emotionNdx ndx += 1 if maxData is not None and maxData <= ndx: break Y_data = Y_data[:ndx] X_data = X_data[:ndx] X_data = X_data.astype('float32') X_data /= 255.0 return X_data, Y_data def to_categorical(y, nb_classes=None): '''Convert class vector (integers from 0 to nb_classes) to binary class matrix, for use with categorical_crossentropy. # Arguments y: class vector to be converted into a matrix nb_classes: total number of classes # Returns A binary matrix representation of the input. ''' if not nb_classes: nb_classes = np.max(y)+1 Y = np.zeros((len(y), nb_classes)) for i in range(len(y)): Y[i, y[i]] = 1. return Y def getNameParts(name): parts = name.split(".") sideParts = parts[1].split("_") case = parts[0] side = sideParts[0] return case, side def splitTrainTestValSets(metadataFile, valCsv, testCsv, trainCsv, valSize = 100, trainPct = 0.80, seed = 20275): """Generates 3 CSV files containing the meta data split from the source meta data file. First a Numpy random shuffle is performed on the data loaded from the metadataFile. :param metadataFile: the path to the source CSV file :param valCsv: The path to the output CSV to be overwritten by the new validation meta data. :param testCsv: The path to the output CSV to be overwritten by the new test meta data. :param trainCsv: The path to the output CSV to be overwritten by the new train meta data. :param valSize: The number of data rows to pull out for validation purposes :param trainPct: Of the remaining data rows after the validation rows have been removed, the percent of data to seperate for training purposes. After the training data is extracted, the final remaining data is saved to the test data set. """ caseSides = {} with open(metadataFile, 'r') as csvfile: bcCsv = csv.reader(csvfile) headers = bcCsv.next() headers = bcCsv.next() for row in bcCsv: case, side = getNameParts(row[NDX_NAME]) key = "{0}-{1}".format(case, side) # build list of case-sides caseSides[key] = (case, side) # Split the keys up csKeys = caseSides.keys() # Shuffle np.random.seed(seed) np.random.shuffle(csKeys) valKeys = csKeys[0 : valSize] remainingKeys = csKeys[valSize + 1 : len(csKeys) - 1] trainNdx = int(round(len(remainingKeys) * trainPct)) trainKeys = remainingKeys[0 : trainNdx] testKeys = remainingKeys[trainNdx + 1 : len(remainingKeys) - 1] # split the actual meta data with open(metadataFile, 'r') as csvfile: with open(valCsv, 'wb') as valfile: with open(testCsv, 'wb') as testfile: with open(trainCsv, 'wb') as trainfile: bcCsv = csv.reader(csvfile) valCsv = csv.writer(valfile) testCsv = csv.writer(testfile) trainCsv = csv.writer(trainfile) headers = bcCsv.next() headers = bcCsv.next() valCsv.writerow(headers) testCsv.writerow(headers) trainCsv.writerow(headers) for row in bcCsv: case, side = getNameParts(row[NDX_NAME]) key = "{0}-{1}".format(case, side) if(key in valKeys): valCsv.writerow(row) elif (key in testKeys): testCsv.writerow(row) elif (key in trainKeys): trainCsv.writerow(row) return trainKeys, testKeys, valKeys # for k in csKeys: def load_mias_labeldata(metadataFile, skip_lines=102): ld = {} with open(metadataFile, 'r') as csvfile: emoCsv = csv.reader(csvfile, delimiter=' ') # skip first 104 lines of description info for i in range(0, skip_lines): emoCsv.next() for row in emoCsv: if len(row) >= 2: ld[row[0]] = [row[2]] if row[2] != "NORM": ld[row[0]].append(row[3]) return ld # From: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, '{0:.4f}'.format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def cleanDataSet(csvFile, imageRoot): data = [] with open(csvFile, 'r') as csvfile: bcCsv = csv.reader(csvfile) headers = bcCsv.next() for row in bcCsv: name = row[NDX_NAME] subfld = row[NDX_SUBFOLDER] fullName = os.path.join(imageRoot, subfld, name) if os.path.exists(fullName): data.append(row) else: print "Not found: " + fullName with open(csvFile + "2.csv", 'wb') as file: dataCsv = csv.writer(file) dataCsv.writerow(headers) for row in data: dataCsv.writerow(row) def reflectY(img): tx = [[1, 0], [0, -1]] offset = [0, img.shape[0]] img2 = ndimage.interpolation.affine_transform(img, tx, offset) return img2
mit
stylianos-kampakis/scikit-learn
sklearn/svm/setup.py
321
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
mne-tools/mne-python
mne/tests/test_cov.py
4
34609
# Author: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # # License: BSD (3-clause) import os.path as op import itertools as itt from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal, assert_allclose) import pytest import numpy as np from scipy import linalg from mne.cov import (regularize, whiten_evoked, _auto_low_rank_model, prepare_noise_cov, compute_whitener, _regularized_covariance) from mne import (read_cov, write_cov, Epochs, merge_events, find_events, compute_raw_covariance, compute_covariance, read_evokeds, compute_proj_raw, pick_channels_cov, pick_types, make_ad_hoc_cov, make_fixed_length_events, create_info, compute_rank) from mne.channels import equalize_channels from mne.datasets import testing from mne.fixes import _get_args from mne.io import read_raw_fif, RawArray, read_raw_ctf, read_info from mne.io.pick import _DATA_CH_TYPES_SPLIT, pick_info from mne.preprocessing import maxwell_filter from mne.rank import _compute_rank_int from mne.utils import requires_sklearn, catch_logging, assert_snr base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data') cov_fname = op.join(base_dir, 'test-cov.fif') cov_gz_fname = op.join(base_dir, 'test-cov.fif.gz') cov_km_fname = op.join(base_dir, 'test-km-cov.fif') raw_fname = op.join(base_dir, 'test_raw.fif') ave_fname = op.join(base_dir, 'test-ave.fif') erm_cov_fname = op.join(base_dir, 'test_erm-cov.fif') hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif') ctf_fname = op.join(testing.data_path(download=False), 'CTF', 'testdata_ctf.ds') @pytest.mark.parametrize('proj', (True, False)) @pytest.mark.parametrize('pca', (True, 'white', False)) def test_compute_whitener(proj, pca): """Test properties of compute_whitener.""" raw = read_raw_fif(raw_fname).crop(0, 3).load_data() raw.pick_types(meg=True, eeg=True, exclude=()) if proj: raw.apply_proj() else: raw.del_proj() with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_raw_covariance(raw) W, _, C = compute_whitener(cov, raw.info, pca=pca, return_colorer=True, verbose='error') n_channels = len(raw.ch_names) n_reduced = len(raw.ch_names) rank = n_channels - len(raw.info['projs']) n_reduced = rank if pca is True else n_channels assert W.shape == C.shape[::-1] == (n_reduced, n_channels) # round-trip mults round_trip = np.dot(W, C) if pca is True: assert_allclose(round_trip, np.eye(n_reduced), atol=1e-7) elif pca == 'white': # Our first few rows/cols are zeroed out in the white space assert_allclose(round_trip[-rank:, -rank:], np.eye(rank), atol=1e-7) else: assert pca is False assert_allclose(round_trip, np.eye(n_channels), atol=0.05) def test_cov_mismatch(): """Test estimation with MEG<->Head mismatch.""" raw = read_raw_fif(raw_fname).crop(0, 5).load_data() events = find_events(raw, stim_channel='STI 014') raw.pick_channels(raw.ch_names[:5]) raw.add_proj([], remove_existing=True) epochs = Epochs(raw, events, None, tmin=-0.2, tmax=0., preload=True) for kind in ('shift', 'None'): epochs_2 = epochs.copy() # This should be fine compute_covariance([epochs, epochs_2]) if kind == 'shift': epochs_2.info['dev_head_t']['trans'][:3, 3] += 0.001 else: # None epochs_2.info['dev_head_t'] = None pytest.raises(ValueError, compute_covariance, [epochs, epochs_2]) compute_covariance([epochs, epochs_2], on_mismatch='ignore') with pytest.raises(RuntimeWarning, match='transform mismatch'): compute_covariance([epochs, epochs_2], on_mismatch='warn') with pytest.raises(ValueError, match='Invalid value'): compute_covariance(epochs, on_mismatch='x') # This should work epochs.info['dev_head_t'] = None epochs_2.info['dev_head_t'] = None compute_covariance([epochs, epochs_2], method=None) def test_cov_order(): """Test covariance ordering.""" raw = read_raw_fif(raw_fname) raw.set_eeg_reference(projection=True) info = raw.info # add MEG channel with low enough index number to affect EEG if # order is incorrect info['bads'] += ['MEG 0113'] ch_names = [info['ch_names'][pick] for pick in pick_types(info, meg=False, eeg=True)] cov = read_cov(cov_fname) # no avg ref present warning prepare_noise_cov(cov, info, ch_names, verbose='error') # big reordering cov_reorder = cov.copy() order = np.random.RandomState(0).permutation(np.arange(len(cov.ch_names))) cov_reorder['names'] = [cov['names'][ii] for ii in order] cov_reorder['data'] = cov['data'][order][:, order] # Make sure we did this properly _assert_reorder(cov_reorder, cov, order) # Now check some functions that should get the same result for both # regularize with pytest.raises(ValueError, match='rank, if str'): regularize(cov, info, rank='foo') with pytest.raises(TypeError, match='rank must be'): regularize(cov, info, rank=False) with pytest.raises(TypeError, match='rank must be'): regularize(cov, info, rank=1.) cov_reg = regularize(cov, info, rank='full') cov_reg_reorder = regularize(cov_reorder, info, rank='full') _assert_reorder(cov_reg_reorder, cov_reg, order) # prepare_noise_cov cov_prep = prepare_noise_cov(cov, info, ch_names) cov_prep_reorder = prepare_noise_cov(cov, info, ch_names) _assert_reorder(cov_prep, cov_prep_reorder, order=np.arange(len(cov_prep['names']))) # compute_whitener whitener, w_ch_names, n_nzero = compute_whitener( cov, info, return_rank=True) assert whitener.shape[0] == whitener.shape[1] whitener_2, w_ch_names_2, n_nzero_2 = compute_whitener( cov_reorder, info, return_rank=True) assert_array_equal(w_ch_names_2, w_ch_names) assert_allclose(whitener_2, whitener, rtol=1e-6) assert n_nzero == n_nzero_2 # with pca assert n_nzero < whitener.shape[0] whitener_pca, w_ch_names_pca, n_nzero_pca = compute_whitener( cov, info, pca=True, return_rank=True) assert_array_equal(w_ch_names_pca, w_ch_names) assert n_nzero_pca == n_nzero assert whitener_pca.shape == (n_nzero_pca, len(w_ch_names)) # whiten_evoked evoked = read_evokeds(ave_fname)[0] evoked_white = whiten_evoked(evoked, cov) evoked_white_2 = whiten_evoked(evoked, cov_reorder) assert_allclose(evoked_white_2.data, evoked_white.data, atol=1e-7) def _assert_reorder(cov_new, cov_orig, order): """Check that we get the same result under reordering.""" inv_order = np.argsort(order) assert_array_equal([cov_new['names'][ii] for ii in inv_order], cov_orig['names']) assert_allclose(cov_new['data'][inv_order][:, inv_order], cov_orig['data'], atol=1e-20) def test_ad_hoc_cov(tmpdir): """Test ad hoc cov creation and I/O.""" out_fname = tmpdir.join('test-cov.fif') evoked = read_evokeds(ave_fname)[0] cov = make_ad_hoc_cov(evoked.info) cov.save(out_fname) assert 'Covariance' in repr(cov) cov2 = read_cov(out_fname) assert_array_almost_equal(cov['data'], cov2['data']) std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6) cov = make_ad_hoc_cov(evoked.info, std) cov.save(out_fname) assert 'Covariance' in repr(cov) cov2 = read_cov(out_fname) assert_array_almost_equal(cov['data'], cov2['data']) cov['data'] = np.diag(cov['data']) with pytest.raises(RuntimeError, match='attributes inconsistent'): cov._get_square() cov['diag'] = False cov._get_square() cov['data'] = np.diag(cov['data']) with pytest.raises(RuntimeError, match='attributes inconsistent'): cov._get_square() def test_io_cov(tmpdir): """Test IO for noise covariance matrices.""" cov = read_cov(cov_fname) cov['method'] = 'empirical' cov['loglik'] = -np.inf cov.save(tmpdir.join('test-cov.fif')) cov2 = read_cov(tmpdir.join('test-cov.fif')) assert_array_almost_equal(cov.data, cov2.data) assert_equal(cov['method'], cov2['method']) assert_equal(cov['loglik'], cov2['loglik']) assert 'Covariance' in repr(cov) cov2 = read_cov(cov_gz_fname) assert_array_almost_equal(cov.data, cov2.data) cov2.save(tmpdir.join('test-cov.fif.gz')) cov2 = read_cov(tmpdir.join('test-cov.fif.gz')) assert_array_almost_equal(cov.data, cov2.data) cov['bads'] = ['EEG 039'] cov_sel = pick_channels_cov(cov, exclude=cov['bads']) assert cov_sel['dim'] == (len(cov['data']) - len(cov['bads'])) assert cov_sel['data'].shape == (cov_sel['dim'], cov_sel['dim']) cov_sel.save(tmpdir.join('test-cov.fif')) cov2 = read_cov(cov_gz_fname) assert_array_almost_equal(cov.data, cov2.data) cov2.save(tmpdir.join('test-cov.fif.gz')) cov2 = read_cov(tmpdir.join('test-cov.fif.gz')) assert_array_almost_equal(cov.data, cov2.data) # test warnings on bad filenames cov_badname = tmpdir.join('test-bad-name.fif.gz') with pytest.warns(RuntimeWarning, match='-cov.fif'): write_cov(cov_badname, cov) with pytest.warns(RuntimeWarning, match='-cov.fif'): read_cov(cov_badname) @pytest.mark.parametrize('method', (None, 'empirical', 'shrunk')) def test_cov_estimation_on_raw(method, tmpdir): """Test estimation from raw (typically empty room).""" if method == 'shrunk': try: import sklearn # noqa: F401 except Exception as exp: pytest.skip('sklearn is required, got %s' % (exp,)) raw = read_raw_fif(raw_fname, preload=True) cov_mne = read_cov(erm_cov_fname) method_params = dict(shrunk=dict(shrinkage=[0])) # The pure-string uses the more efficient numpy-based method, the # the list gets triaged to compute_covariance (should be equivalent # but use more memory) with pytest.warns(None): # can warn about EEG ref cov = compute_raw_covariance( raw, tstep=None, method=method, rank='full', method_params=method_params) assert_equal(cov.ch_names, cov_mne.ch_names) assert_equal(cov.nfree, cov_mne.nfree) assert_snr(cov.data, cov_mne.data, 1e6) # test equivalence with np.cov cov_np = np.cov(raw.copy().pick_channels(cov['names']).get_data(), ddof=1) if method != 'shrunk': # can check all off_diag = np.triu_indices(cov_np.shape[0]) else: # We explicitly zero out off-diag entries between channel types, # so let's just check MEG off-diag entries off_diag = np.triu_indices(len(pick_types(raw.info, meg=True, exclude=()))) for other in (cov_mne, cov): assert_allclose(np.diag(cov_np), np.diag(other.data), rtol=5e-6) assert_allclose(cov_np[off_diag], other.data[off_diag], rtol=4e-3) assert_snr(cov.data, other.data, 1e6) # tstep=0.2 (default) with pytest.warns(None): # can warn about EEG ref cov = compute_raw_covariance(raw, method=method, rank='full', method_params=method_params) assert_equal(cov.nfree, cov_mne.nfree - 120) # cutoff some samples assert_snr(cov.data, cov_mne.data, 170) # test IO when computation done in Python cov.save(tmpdir.join('test-cov.fif')) # test saving cov_read = read_cov(tmpdir.join('test-cov.fif')) assert cov_read.ch_names == cov.ch_names assert cov_read.nfree == cov.nfree assert_array_almost_equal(cov.data, cov_read.data) # test with a subset of channels raw_pick = raw.copy().pick_channels(raw.ch_names[:5]) raw_pick.info.normalize_proj() cov = compute_raw_covariance(raw_pick, tstep=None, method=method, rank='full', method_params=method_params) assert cov_mne.ch_names[:5] == cov.ch_names assert_snr(cov.data, cov_mne.data[:5, :5], 5e6) cov = compute_raw_covariance(raw_pick, method=method, rank='full', method_params=method_params) assert_snr(cov.data, cov_mne.data[:5, :5], 90) # cutoff samps # make sure we get a warning with too short a segment raw_2 = read_raw_fif(raw_fname).crop(0, 1) with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_raw_covariance(raw_2, method=method, method_params=method_params) # no epochs found due to rejection pytest.raises(ValueError, compute_raw_covariance, raw, tstep=None, method='empirical', reject=dict(eog=200e-6)) # but this should work with pytest.warns(None): # sklearn cov = compute_raw_covariance( raw.copy().crop(0, 10.), tstep=None, method=method, reject=dict(eog=1000e-6), method_params=method_params, verbose='error') @pytest.mark.slowtest @requires_sklearn def test_cov_estimation_on_raw_reg(): """Test estimation from raw with regularization.""" raw = read_raw_fif(raw_fname, preload=True) raw.info['sfreq'] /= 10. raw = RawArray(raw._data[:, ::10].copy(), raw.info) # decimate for speed cov_mne = read_cov(erm_cov_fname) with pytest.warns(RuntimeWarning, match='Too few samples'): # "diagonal_fixed" is much faster. Use long epochs for speed. cov = compute_raw_covariance(raw, tstep=5., method='diagonal_fixed') assert_snr(cov.data, cov_mne.data, 5) def _assert_cov(cov, cov_desired, tol=0.005, nfree=True): assert_equal(cov.ch_names, cov_desired.ch_names) err = (linalg.norm(cov.data - cov_desired.data, ord='fro') / linalg.norm(cov.data, ord='fro')) assert err < tol, '%s >= %s' % (err, tol) if nfree: assert_equal(cov.nfree, cov_desired.nfree) @pytest.mark.slowtest @pytest.mark.parametrize('rank', ('full', None)) def test_cov_estimation_with_triggers(rank, tmpdir): """Test estimation from raw with triggers.""" raw = read_raw_fif(raw_fname) raw.set_eeg_reference(projection=True).load_data() events = find_events(raw, stim_channel='STI 014') event_ids = [1, 2, 3, 4] reject = dict(grad=10000e-13, mag=4e-12, eeg=80e-6, eog=150e-6) # cov with merged events and keep_sample_mean=True events_merged = merge_events(events, event_ids, 1234) epochs = Epochs(raw, events_merged, 1234, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True, reject=reject, preload=True) cov = compute_covariance(epochs, keep_sample_mean=True) cov_km = read_cov(cov_km_fname) # adjust for nfree bug cov_km['nfree'] -= 1 _assert_cov(cov, cov_km) # Test with tmin and tmax (different but not too much) cov_tmin_tmax = compute_covariance(epochs, tmin=-0.19, tmax=-0.01) assert np.all(cov.data != cov_tmin_tmax.data) err = (linalg.norm(cov.data - cov_tmin_tmax.data, ord='fro') / linalg.norm(cov_tmin_tmax.data, ord='fro')) assert err < 0.05 # cov using a list of epochs and keep_sample_mean=True epochs = [Epochs(raw, events, ev_id, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True, reject=reject) for ev_id in event_ids] cov2 = compute_covariance(epochs, keep_sample_mean=True) assert_array_almost_equal(cov.data, cov2.data) assert cov.ch_names == cov2.ch_names # cov with keep_sample_mean=False using a list of epochs cov = compute_covariance(epochs, keep_sample_mean=False) assert cov_km.nfree == cov.nfree _assert_cov(cov, read_cov(cov_fname), nfree=False) method_params = {'empirical': {'assume_centered': False}} pytest.raises(ValueError, compute_covariance, epochs, keep_sample_mean=False, method_params=method_params) pytest.raises(ValueError, compute_covariance, epochs, keep_sample_mean=False, method='shrunk', rank=rank) # test IO when computation done in Python cov.save(tmpdir.join('test-cov.fif')) # test saving cov_read = read_cov(tmpdir.join('test-cov.fif')) _assert_cov(cov, cov_read, 1e-5) # cov with list of epochs with different projectors epochs = [Epochs(raw, events[:1], None, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True), Epochs(raw, events[:1], None, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=False)] # these should fail pytest.raises(ValueError, compute_covariance, epochs) pytest.raises(ValueError, compute_covariance, epochs, projs=None) # these should work, but won't be equal to above with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_covariance(epochs, projs=epochs[0].info['projs']) with pytest.warns(RuntimeWarning, match='Too few samples'): cov = compute_covariance(epochs, projs=[]) # test new dict support epochs = Epochs(raw, events, dict(a=1, b=2, c=3, d=4), tmin=-0.01, tmax=0, proj=True, reject=reject, preload=True) with pytest.warns(RuntimeWarning, match='Too few samples'): compute_covariance(epochs) with pytest.warns(RuntimeWarning, match='Too few samples'): compute_covariance(epochs, projs=[]) pytest.raises(TypeError, compute_covariance, epochs, projs='foo') pytest.raises(TypeError, compute_covariance, epochs, projs=['foo']) def test_arithmetic_cov(): """Test arithmetic with noise covariance matrices.""" cov = read_cov(cov_fname) cov_sum = cov + cov assert_array_almost_equal(2 * cov.nfree, cov_sum.nfree) assert_array_almost_equal(2 * cov.data, cov_sum.data) assert cov.ch_names == cov_sum.ch_names cov += cov assert_array_almost_equal(cov_sum.nfree, cov.nfree) assert_array_almost_equal(cov_sum.data, cov.data) assert cov_sum.ch_names == cov.ch_names def test_regularize_cov(): """Test cov regularization.""" raw = read_raw_fif(raw_fname) raw.info['bads'].append(raw.ch_names[0]) # test with bad channels noise_cov = read_cov(cov_fname) # Regularize noise cov reg_noise_cov = regularize(noise_cov, raw.info, mag=0.1, grad=0.1, eeg=0.1, proj=True, exclude='bads', rank='full') assert noise_cov['dim'] == reg_noise_cov['dim'] assert noise_cov['data'].shape == reg_noise_cov['data'].shape assert np.mean(noise_cov['data'] < reg_noise_cov['data']) < 0.08 # make sure all args are represented assert set(_DATA_CH_TYPES_SPLIT) - set(_get_args(regularize)) == set() def test_whiten_evoked(): """Test whitening of evoked data.""" evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True) cov = read_cov(cov_fname) ########################################################################### # Show result picks = pick_types(evoked.info, meg=True, eeg=True, ref_meg=False, exclude='bads') noise_cov = regularize(cov, evoked.info, grad=0.1, mag=0.1, eeg=0.1, exclude='bads', rank='full') evoked_white = whiten_evoked(evoked, noise_cov, picks, diag=True) whiten_baseline_data = evoked_white.data[picks][:, evoked.times < 0] mean_baseline = np.mean(np.abs(whiten_baseline_data), axis=1) assert np.all(mean_baseline < 1.) assert np.all(mean_baseline > 0.2) # degenerate cov_bad = pick_channels_cov(cov, include=evoked.ch_names[:10]) pytest.raises(RuntimeError, whiten_evoked, evoked, cov_bad, picks) def test_regularized_covariance(): """Test unchanged data with regularized_covariance.""" evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0), proj=True) data = evoked.data.copy() # check that input data remain unchanged. gh-5698 _regularized_covariance(data) assert_allclose(data, evoked.data, atol=1e-20) @requires_sklearn def test_auto_low_rank(): """Test probabilistic low rank estimators.""" n_samples, n_features, rank = 400, 10, 5 sigma = 0.1 def get_data(n_samples, n_features, rank, sigma): rng = np.random.RandomState(42) W = rng.randn(n_features, n_features) X = rng.randn(n_samples, rank) U, _, _ = linalg.svd(W.copy()) X = np.dot(X, U[:, :rank].T) sigmas = sigma * rng.rand(n_features) + sigma / 2. X += rng.randn(n_samples, n_features) * sigmas return X X = get_data(n_samples=n_samples, n_features=n_features, rank=rank, sigma=sigma) method_params = {'iter_n_components': [4, 5, 6]} cv = 3 n_jobs = 1 mode = 'factor_analysis' rescale = 1e8 X *= rescale est, info = _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs, method_params=method_params, cv=cv) assert_equal(info['best'], rank) X = get_data(n_samples=n_samples, n_features=n_features, rank=rank, sigma=sigma) method_params = {'iter_n_components': [n_features + 5]} msg = ('You are trying to estimate %i components on matrix ' 'with %i features.') % (n_features + 5, n_features) with pytest.warns(RuntimeWarning, match=msg): _auto_low_rank_model(X, mode=mode, n_jobs=n_jobs, method_params=method_params, cv=cv) @pytest.mark.slowtest @pytest.mark.parametrize('rank', ('full', None, 'info')) @requires_sklearn def test_compute_covariance_auto_reg(rank): """Test automated regularization.""" raw = read_raw_fif(raw_fname, preload=True) raw.resample(100, npad='auto') # much faster estimation events = find_events(raw, stim_channel='STI 014') event_ids = [1, 2, 3, 4] reject = dict(mag=4e-12) # cov with merged events and keep_sample_mean=True events_merged = merge_events(events, event_ids, 1234) # we need a few channels for numerical reasons in PCA/FA picks = pick_types(raw.info, meg='mag', eeg=False)[:10] raw.pick_channels([raw.ch_names[pick] for pick in picks]) raw.info.normalize_proj() epochs = Epochs( raw, events_merged, 1234, tmin=-0.2, tmax=0, baseline=(-0.2, -0.1), proj=True, reject=reject, preload=True) epochs = epochs.crop(None, 0)[:5] method_params = dict(factor_analysis=dict(iter_n_components=[3]), pca=dict(iter_n_components=[3])) covs = compute_covariance(epochs, method='auto', method_params=method_params, return_estimators=True, rank=rank) # make sure regularization produces structured differencess diag_mask = np.eye(len(epochs.ch_names)).astype(bool) off_diag_mask = np.invert(diag_mask) for cov_a, cov_b in itt.combinations(covs, 2): if (cov_a['method'] == 'diagonal_fixed' and # here we have diagnoal or no regularization. cov_b['method'] == 'empirical' and rank == 'full'): assert not np.any(cov_a['data'][diag_mask] == cov_b['data'][diag_mask]) # but the rest is the same assert_allclose(cov_a['data'][off_diag_mask], cov_b['data'][off_diag_mask], rtol=1e-12) else: # and here we have shrinkage everywhere. assert not np.any(cov_a['data'][diag_mask] == cov_b['data'][diag_mask]) assert not np.any(cov_a['data'][diag_mask] == cov_b['data'][diag_mask]) logliks = [c['loglik'] for c in covs] assert np.diff(logliks).max() <= 0 # descending order methods = ['empirical', 'ledoit_wolf', 'oas', 'shrunk', 'shrinkage'] if rank == 'full': methods.extend(['factor_analysis', 'pca']) with catch_logging() as log: cov3 = compute_covariance(epochs, method=methods, method_params=method_params, projs=None, return_estimators=True, rank=rank, verbose=True) log = log.getvalue().split('\n') if rank is None: assert ' Setting small MAG eigenvalues to zero (without PCA)' in log assert 'Reducing data rank from 10 -> 7' in log else: assert 'Reducing' not in log method_names = [cov['method'] for cov in cov3] best_bounds = [-45, -35] bounds = [-55, -45] if rank == 'full' else best_bounds for method in set(methods) - {'empirical', 'shrunk'}: this_lik = cov3[method_names.index(method)]['loglik'] assert bounds[0] < this_lik < bounds[1] this_lik = cov3[method_names.index('shrunk')]['loglik'] assert best_bounds[0] < this_lik < best_bounds[1] this_lik = cov3[method_names.index('empirical')]['loglik'] bounds = [-110, -100] if rank == 'full' else best_bounds assert bounds[0] < this_lik < bounds[1] assert_equal({c['method'] for c in cov3}, set(methods)) cov4 = compute_covariance(epochs, method=methods, method_params=method_params, projs=None, return_estimators=False, rank=rank) assert cov3[0]['method'] == cov4['method'] # ordering # invalid prespecified method pytest.raises(ValueError, compute_covariance, epochs, method='pizza') # invalid scalings pytest.raises(ValueError, compute_covariance, epochs, method='shrunk', scalings=dict(misc=123)) def _cov_rank(cov, info, proj=True): # ignore warnings about rank mismatches: sometimes we will intentionally # violate the computed/info assumption, such as when using SSS with # `rank='full'` with pytest.warns(None): return _compute_rank_int(cov, info=info, proj=proj) @pytest.fixture(scope='module') def raw_epochs_events(): """Create raw, epochs, and events for tests.""" raw = read_raw_fif(raw_fname).set_eeg_reference(projection=True).crop(0, 3) raw = maxwell_filter(raw, regularize=None) # heavily reduce the rank assert raw.info['bads'] == [] # no bads events = make_fixed_length_events(raw) epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True) return (raw, epochs, events) @requires_sklearn @pytest.mark.parametrize('rank', (None, 'full', 'info')) def test_low_rank_methods(rank, raw_epochs_events): """Test low-rank covariance matrix estimation.""" epochs = raw_epochs_events[1] sss_proj_rank = 139 # 80 MEG + 60 EEG - 1 proj n_ch = 366 methods = ('empirical', 'diagonal_fixed', 'oas') bounds = { 'None': dict(empirical=(-15000, -5000), diagonal_fixed=(-1500, -500), oas=(-700, -600)), 'full': dict(empirical=(-18000, -8000), diagonal_fixed=(-2000, -1600), oas=(-1600, -1000)), 'info': dict(empirical=(-15000, -5000), diagonal_fixed=(-700, -600), oas=(-700, -600)), } with pytest.warns(RuntimeWarning, match='Too few samples'): covs = compute_covariance( epochs, method=methods, return_estimators=True, rank=rank, verbose=True) for cov in covs: method = cov['method'] these_bounds = bounds[str(rank)][method] this_rank = _cov_rank(cov, epochs.info, proj=(rank != 'full')) if rank == 'full' and method != 'empirical': assert this_rank == n_ch else: assert this_rank == sss_proj_rank assert these_bounds[0] < cov['loglik'] < these_bounds[1], \ (rank, method) @requires_sklearn def test_low_rank_cov(raw_epochs_events): """Test additional properties of low rank computations.""" raw, epochs, events = raw_epochs_events sss_proj_rank = 139 # 80 MEG + 60 EEG - 1 proj n_ch = 366 proj_rank = 365 # one EEG proj with pytest.warns(RuntimeWarning, match='Too few samples'): emp_cov = compute_covariance(epochs) # Test equivalence with mne.cov.regularize subspace with pytest.raises(ValueError, match='are dependent.*must equal'): regularize(emp_cov, epochs.info, rank=None, mag=0.1, grad=0.2) assert _cov_rank(emp_cov, epochs.info) == sss_proj_rank reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full') assert _cov_rank(reg_cov, epochs.info) == proj_rank with pytest.warns(RuntimeWarning, match='exceeds the theoretical'): _compute_rank_int(reg_cov, info=epochs.info) del reg_cov with catch_logging() as log: reg_r_cov = regularize(emp_cov, epochs.info, proj=True, rank=None, verbose=True) log = log.getvalue() assert 'jointly' in log assert _cov_rank(reg_r_cov, epochs.info) == sss_proj_rank reg_r_only_cov = regularize(emp_cov, epochs.info, proj=False, rank=None) assert _cov_rank(reg_r_only_cov, epochs.info) == sss_proj_rank assert_allclose(reg_r_only_cov['data'], reg_r_cov['data']) del reg_r_only_cov, reg_r_cov # test that rank=306 is same as rank='full' epochs_meg = epochs.copy().pick_types(meg=True) assert len(epochs_meg.ch_names) == 306 epochs_meg.info.update(bads=[], projs=[]) cov_full = compute_covariance(epochs_meg, method='oas', rank='full', verbose='error') assert _cov_rank(cov_full, epochs_meg.info) == 306 with pytest.warns(RuntimeWarning, match='few samples'): cov_dict = compute_covariance(epochs_meg, method='oas', rank=dict(meg=306)) assert _cov_rank(cov_dict, epochs_meg.info) == 306 assert_allclose(cov_full['data'], cov_dict['data']) cov_dict = compute_covariance(epochs_meg, method='oas', rank=dict(meg=306), verbose='error') assert _cov_rank(cov_dict, epochs_meg.info) == 306 assert_allclose(cov_full['data'], cov_dict['data']) # Work with just EEG data to simplify projection / rank reduction raw = raw.copy().pick_types(meg=False, eeg=True) n_proj = 2 raw.add_proj(compute_proj_raw(raw, n_eeg=n_proj)) n_ch = len(raw.ch_names) rank = n_ch - n_proj - 1 # plus avg proj assert len(raw.info['projs']) == 3 epochs = Epochs(raw, events, tmin=-0.2, tmax=0, preload=True) assert len(raw.ch_names) == n_ch emp_cov = compute_covariance(epochs, rank='full', verbose='error') assert _cov_rank(emp_cov, epochs.info) == rank reg_cov = regularize(emp_cov, epochs.info, proj=True, rank='full') assert _cov_rank(reg_cov, epochs.info) == rank reg_r_cov = regularize(emp_cov, epochs.info, proj=False, rank=None) assert _cov_rank(reg_r_cov, epochs.info) == rank dia_cov = compute_covariance(epochs, rank=None, method='diagonal_fixed', verbose='error') assert _cov_rank(dia_cov, epochs.info) == rank assert_allclose(dia_cov['data'], reg_cov['data']) epochs.pick_channels(epochs.ch_names[:103]) # degenerate with pytest.raises(ValueError, match='can.*only be used with rank="full"'): compute_covariance(epochs, rank=None, method='pca') with pytest.raises(ValueError, match='can.*only be used with rank="full"'): compute_covariance(epochs, rank=None, method='factor_analysis') @testing.requires_testing_data @requires_sklearn def test_cov_ctf(): """Test basic cov computation on ctf data with/without compensation.""" raw = read_raw_ctf(ctf_fname).crop(0., 2.).load_data() events = make_fixed_length_events(raw, 99999) assert len(events) == 2 ch_names = [raw.info['ch_names'][pick] for pick in pick_types(raw.info, meg=True, eeg=False, ref_meg=False)] for comp in [0, 1]: raw.apply_gradient_compensation(comp) epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True) with pytest.warns(RuntimeWarning, match='Too few samples'): noise_cov = compute_covariance(epochs, tmax=0., method=['empirical']) prepare_noise_cov(noise_cov, raw.info, ch_names) raw.apply_gradient_compensation(0) epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True) with pytest.warns(RuntimeWarning, match='Too few samples'): noise_cov = compute_covariance(epochs, tmax=0., method=['empirical']) raw.apply_gradient_compensation(1) # TODO This next call in principle should fail. prepare_noise_cov(noise_cov, raw.info, ch_names) # make sure comps matrices was not removed from raw assert raw.info['comps'], 'Comps matrices removed' def test_equalize_channels(): """Test equalization of channels for instances of Covariance.""" cov1 = make_ad_hoc_cov(create_info(['CH1', 'CH2', 'CH3', 'CH4'], sfreq=1.0, ch_types='eeg')) cov2 = make_ad_hoc_cov(create_info(['CH5', 'CH1', 'CH2'], sfreq=1.0, ch_types='eeg')) cov1, cov2 = equalize_channels([cov1, cov2]) assert cov1.ch_names == ['CH1', 'CH2'] assert cov2.ch_names == ['CH1', 'CH2'] def test_compute_whitener_rank(): """Test risky rank options.""" info = read_info(ave_fname) info = pick_info(info, pick_types(info, meg=True)) info['projs'] = [] # need a square version because the diag one takes shortcuts in # compute_whitener (users shouldn't even need this function so it's # private) cov = make_ad_hoc_cov(info)._as_square() assert len(cov['names']) == 306 _, _, rank = compute_whitener(cov, info, rank=None, return_rank=True) assert rank == 306 assert compute_rank(cov, info=info, verbose=True) == dict(meg=rank) cov['data'][-1] *= 1e-14 # trivially rank-deficient _, _, rank = compute_whitener(cov, info, rank=None, return_rank=True) assert rank == 305 assert compute_rank(cov, info=info, verbose=True) == dict(meg=rank) # this should emit a warning with pytest.warns(RuntimeWarning, match='exceeds the estimated'): _, _, rank = compute_whitener(cov, info, rank=dict(meg=306), return_rank=True) assert rank == 306
bsd-3-clause
WillemWybo/SGF_formalism
demo.py
1
4706
import matplotlib.pyplot as pl import numpy as np import copy import pickle import sys sys.setrecursionlimit(2000) import morphologyReader as morphR import neuronModels as neurM import functionFitter as funF ## parameters Veq = -65. # mV tmax = 300. # ms dt = .1 # ms K = 4 ## initialization ##################################################################### ## Step 0: initialize the morphology # Specify the path to an '.swc' file. morphfile = 'morphologies/ball_and_stick_taper.swc' # Define the ion channel distributions for dendrites and soma. Here the neuron model is # passive. d_distr = {'L': {'type': 'fit', 'param': [Veq, 50.], 'E': Veq, 'calctype': 'pas'}} s_distr = {'L': {'type': 'fit', 'param': [Veq, 50.], 'E': Veq, 'calctype': 'pas'}} # initialize a greensTree. Here, all the quantities are stored to compute the GF in the # frequency domain (algorithm of Koch and Poggio, 1985). greenstree = morphR.greensTree(morphfile, soma_distr=s_distr, ionc_distr=d_distr, cnodesdistr='all') # initialize a greensFunctionCalculator using the previously created greensTree. This class # stores all variables necessary to compute the GF in a format fit for simulation, either # the plain time domain or with the partial fraction decomposition. gfcalc = morphR.greensFunctionCalculator(greenstree) gfcalc.set_impedances_logscale(fmax=7, base=10, num=200) # Now a list of input locations needs to be defined. For the sparse reformulation, the # first location needs to be the soma inlocs = [ {'node': 1, 'x': .5, 'ID': 0}, {'node': 4, 'x': .5, 'ID': 1}, {'node': 5, 'x': .5, 'ID': 2}, {'node': 6, 'x': .5, 'ID': 3}, {'node': 7, 'x': .5, 'ID': 4}, {'node': 8, 'x': .5, 'ID': 5}, {'node': 9, 'x': .5, 'ID': 6}] ## Steps 1,2,3 and 4: # find sets of nearest neighbours, computes the necessary GF kernels, then computes the # sparse kernels and then fits the partial fraction decomposition using the VF algorithm. alphas, gammas, pairs, Ms = gfcalc.kernelSet_sparse(inlocs, FFT=False, kernelconstants=True) ## Step 4 bis: compute the vectors that will be used in the simulation prep = neurM.preprocessor() mat_dict_hybrid = prep.construct_volterra_matrices_hybrid(dt, alphas, gammas, K, pprint=False) ## Examples of steps that happen within the kernelSet_sparse function ## Step 1: example to find the nearest neighbours NNs, _ = gfcalc.greenstree.get_nearest_neighbours(inlocs, add_leaves=False, reduced=False) ## Step 2: example of finding a kernel g_example = gfcalc.greenstree.calc_greensfunction(inlocs[0], inlocs[1], voltage=True) ## Step 4: example of computing a partial fraction decomposition FEF = funF.fExpFitter() alpha_example, gamma_example, pair_example, rms = FEF.fitFExp_increment(gfcalc.s, g_example, \ rtol=1e-8, maxiter=50, realpoles=False, constrained=True, zerostart=False) # # plot the kernel example # pl.figure('kernel example') # pl.plot(gfcalc.s.imag, g_example.real, 'b') # pl.plot(gfcalc.s.imag, g_example.real, 'r') ####################################################################################### ## Simulation ######################################################################### # define a synapse and a spiketime synapseparams = [{'node': 9, 'x': .5, 'ID': 0, 'tau1': .2, 'tau2': 3., 'E_r': 0., 'weight': 5.*1e-3}] spiketimes = [{'ID': 0, 'spks': [10.]}] # ion channel conductances at integration points, in this example, there is only leak which is # already incorporated in the GF gs_point = {inloc['ID']: {'L': 0.} for inloc in inlocs} es_point = {inloc['ID']: {'L': -65.} for inloc in inlocs} gcalctype_point = {inloc['ID']: {'L': 'pas'} for inloc in inlocs} # create an SGF neuron SGFneuron = neurM.integratorneuron(inlocs, synapseparams, [], gs_point, es_point, gcalctype_point, E_eq=Veq, nonlinear=False) # run the simulation SGFres = SGFneuron.run_volterra_hybrid(tmax, dt, spiketimes, mat_dict=mat_dict_hybrid) # run a neuron simulation for comparison NEURONneuron = neurM.NeuronNeuron(greenstree, dt=dt, truemorph=True, factorlambda=10.) NEURONneuron.add_double_exp_synapses(copy.deepcopy(synapseparams)) NEURONneuron.set_spiketrains(spiketimes) NEURres = NEURONneuron.run(tdur=tmax, pprint=False) ####################################################################################### ## plot trace pl.figure('simulation') pl.plot(NEURres['t'], NEURres['vmsoma'], 'r-', label=r'NEURON soma') pl.plot(NEURres['t'], NEURres[0], 'b-', label=r'NEURON syn') pl.plot(SGFres['t'], SGFres['Vm'][0,:], 'r--', lw=1.7, label=r'SGF soma') pl.plot(SGFres['t'], SGFres['Vm'][-1,:], 'b--', lw=1.7, label=r'SGF syn') pl.xlabel(r'$t$ (ms)') pl.ylabel(r'$V_m$ (mV)') pl.legend(loc=0) pl.show()
mit
xubenben/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
tdhopper/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
284
3265
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
sgenoud/scikit-learn
sklearn/metrics/metrics.py
1
31423
"""Utilities to evaluate the predictive performance of models Functions named as *_score return a scalar value to maximize: the higher the better Function named as *_loss return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # License: BSD Style. import numpy as np from ..utils import check_arrays from ..utils import deprecated def unique_labels(*lists_of_labels): """Extract an ordered array of unique labels""" labels = set() for l in lists_of_labels: if hasattr(l, 'ravel'): l = l.ravel() labels |= set(l) return np.unique(sorted(labels)) def confusion_matrix(y_true, y_pred, labels=None): """Compute confusion matrix to evaluate the accuracy of a classification By definition a confusion matrix cm is such that cm[i, j] is equal to the number of observations known to be in group i but predicted to be in group j. Parameters ---------- y_true : array, shape = [n_samples] true targets y_pred : array, shape = [n_samples] estimated targets labels : array, shape = [n_classes] lists all labels occuring in the dataset. If none is given, those that appear at least once in y_true or y_pred are used. Returns ------- CM : array, shape = [n_classes, n_classes] confusion matrix References ---------- http://en.wikipedia.org/wiki/Confusion_matrix """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels, dtype=np.int) n_labels = labels.size label_to_ind = dict((y, x) for x, y in enumerate(labels)) if n_labels >= 15: CM = np.zeros((n_labels, n_labels), dtype=np.long) for yt, yp in zip(y_true, y_pred): CM[label_to_ind[yt], label_to_ind[yp]] += 1 else: CM = np.empty((n_labels, n_labels), dtype=np.long) for i, label_i in enumerate(labels): for j, label_j in enumerate(labels): CM[i, j] = np.sum( np.logical_and(y_true == label_i, y_pred == label_j)) return CM def roc_curve(y_true, y_score): """compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Parameters ---------- y_true : array, shape = [n_samples] true binary labels y_score : array, shape = [n_samples] target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- fpr : array, shape = [>2] False Positive Rates tpr : array, shape = [>2] True Positive Rates thresholds : array, shape = [>2] Thresholds on y_score used to compute fpr and tpr. *Note*: Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both fpr and tpr, which are sorted in reversed order during their calculation. Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) References ---------- http://en.wikipedia.org/wiki/Receiver_operating_characteristic """ y_true = np.ravel(y_true) classes = np.unique(y_true) # ROC only for binary classification if classes.shape[0] != 2: raise ValueError("ROC is defined for binary classification only") y_score = np.ravel(y_score) n_pos = float(np.sum(y_true == classes[1])) # nb of true positive n_neg = float(np.sum(y_true == classes[0])) # nb of true negative thresholds = np.unique(y_score) neg_value, pos_value = classes[0], classes[1] tpr = np.empty(thresholds.size, dtype=np.float) # True positive rate fpr = np.empty(thresholds.size, dtype=np.float) # False positive rate # Build tpr/fpr vector current_pos_count = current_neg_count = sum_pos = sum_neg = idx = 0 signal = np.c_[y_score, y_true] sorted_signal = signal[signal[:, 0].argsort(), :][::-1] last_score = sorted_signal[0][0] for score, value in sorted_signal: if score == last_score: if value == pos_value: current_pos_count += 1 else: current_neg_count += 1 else: tpr[idx] = (sum_pos + current_pos_count) / n_pos fpr[idx] = (sum_neg + current_neg_count) / n_neg sum_pos += current_pos_count sum_neg += current_neg_count current_pos_count = 1 if value == pos_value else 0 current_neg_count = 1 if value == neg_value else 0 idx += 1 last_score = score else: tpr[-1] = (sum_pos + current_pos_count) / n_pos fpr[-1] = (sum_neg + current_neg_count) / n_neg # hard decisions, add (0,0) if fpr.shape[0] == 2: fpr = np.array([0.0, fpr[0], fpr[1]]) tpr = np.array([0.0, tpr[0], tpr[1]]) # trivial decisions, add (0,0) and (1,1) elif fpr.shape[0] == 1: fpr = np.array([0.0, fpr[0], 1.0]) tpr = np.array([0.0, tpr[0], 1.0]) return fpr, tpr, thresholds[::-1] def auc(x, y): """Compute Area Under the Curve (AUC) using the trapezoidal rule Parameters ---------- x : array, shape = [n] x coordinates y : array, shape = [n] y coordinates Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred) >>> metrics.auc(fpr, tpr) 0.75 """ x, y = check_arrays(x, y) if x.shape[0] != y.shape[0]: raise ValueError('x and y should have the same shape' ' to compute area under curve,' ' but x.shape = %s and y.shape = %s.' % (x.shape, y.shape)) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) # reorder the data points according to the x axis and using y to break ties x, y = np.array(sorted(points for points in zip(x, y))).T h = np.diff(x) area = np.sum(h * (y[1:] + y[:-1])) / 2.0 return area def precision_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'): """Compute the precision The precision is the ratio :math:`tp / (tp + fp)` where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The best value is 1 and the worst value is 0. Parameters ---------- y_true : array, shape = [n_samples] True targets y_pred : array, shape = [n_samples] Predicted targets labels : array Integer array of labels pos_label : int In the binary classification case, give the label of the positive class (default is 1). Everything else but 'pos_label' is considered to belong to the negative class. Set to None in the case of multiclass classification. average : string, [None, 'micro', 'macro', 'weighted'(default)] In the multiclass classification case, this determines the type of averaging performed on the data. macro: Average over classes (does not take imbalance into account). micro: Average over instances (takes imbalance into account). This implies that ``precision == recall == f1`` weighted: Average weighted by support (takes imbalance into account). Can result in f1 score that is not between precision and recall. Returns ------- precision : float Precision of the positive class in binary classification or weighted average of the precision of each class for the multiclass task """ p, _, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average) return p def recall_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'): """Compute the recall The recall is the ratio :math:`tp / (tp + fn)` where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The best value is 1 and the worst value is 0. Parameters ---------- y_true : array, shape = [n_samples] True targets y_pred : array, shape = [n_samples] Predicted targets labels : array Integer array of labels pos_label : int In the binary classification case, give the label of the positive class (default is 1). Everything else but 'pos_label' is considered to belong to the negative class. Set to None in the case of multiclass classification. average : string, [None, 'micro', 'macro', 'weighted'(default)] In the multiclass classification case, this determines the type of averaging performed on the data. macro: Average over classes (does not take imbalance into account). micro: Average over instances (takes imbalance into account). This implies that ``precision == recall == f1`` weighted: Average weighted by support (takes imbalance into account). Can result in f1 score that is not between precision and recall. Returns ------- recall : float Recall of the positive class in binary classification or weighted average of the recall of each class for the multiclass task. """ _, r, _, _ = precision_recall_fscore_support(y_true, y_pred, labels=labels, pos_label=pos_label, average=average) return r def fbeta_score(y_true, y_pred, beta, labels=None, pos_label=1, average='weighted'): """Compute fbeta score The F_beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0. The beta parameter determines the weight of precision in the combined score. ``beta < 1`` lends more weight to precision, while ``beta > 1`` favors precision (``beta == 0`` considers only precision, ``beta == inf`` only recall). Parameters ---------- y_true : array, shape = [n_samples] True targets y_pred : array, shape = [n_samples] Predicted targets beta: float Weight of precision in harmonic mean. labels : array Integer array of labels pos_label : int In the binary classification case, give the label of the positive class (default is 1). Everything else but 'pos_label' is considered to belong to the negative class. Set to None in the case of multiclass classification. average : string, [None, 'micro', 'macro', 'weighted'(default)] In the multiclass classification case, this determines the type of averaging performed on the data. macro: Average over classes (does not take imbalance into account). micro: Average over instances (takes imbalance into account). This implies that ``precision == recall == f1`` weighted: Average weighted by support (takes imbalance into account). Can result in f1 score that is not between precision and recall. Returns ------- fbeta_score : float fbeta_score of the positive class in binary classification or weighted average of the fbeta_score of each class for the multiclass task. References ---------- R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-328. http://en.wikipedia.org/wiki/F1_score """ _, _, f, _ = precision_recall_fscore_support(y_true, y_pred, beta=beta, labels=labels, pos_label=pos_label, average=average) return f def f1_score(y_true, y_pred, labels=None, pos_label=1, average='weighted'): """Compute f1 score The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the f1 score are equal. The formular for the F_1 score is:: F_1 = 2 * (precision * recall) / (precision + recall) See: http://en.wikipedia.org/wiki/F1_score In the multi-class case, this is the weighted average of the f1-score of each class. Parameters ---------- y_true : array, shape = [n_samples] True targets y_pred : array, shape = [n_samples] Predicted targets labels : array Integer array of labels pos_label : int In the binary classification case, give the label of the positive class (default is 1). Everything else but 'pos_label' is considered to belong to the negative class. Set to None in the case of multiclass classification. average : string, [None, 'micro', 'macro', 'weighted'(default)] In the multiclass classification case, this determines the type of averaging performed on the data. macro: Average over classes (does not take imbalance into account). micro: Average over instances (takes imbalance into account). This implies that ``precision == recall == f1`` weighted: Average weighted by support (takes imbalance into account). Can result in f1 score that is not between precision and recall. Returns ------- f1_score : float f1_score of the positive class in binary classification or weighted average of the f1_scores of each class for the multiclass task References ---------- http://en.wikipedia.org/wiki/F1_score """ return fbeta_score(y_true, y_pred, 1, labels=labels, pos_label=pos_label, average=average) def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None, pos_label=1, average=None): """Compute precisions, recalls, f-measures and support for each class The precision is the ratio :math:`tp / (tp + fp)` where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio :math:`tp / (tp + fn)` where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The F_beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F_beta score reaches its best value at 1 and worst score at 0. The F_beta score weights recall beta as much as precision. beta = 1.0 means recall and precsion are equally important. The support is the number of occurrences of each class in y_true. If pos_label is None, this function returns the average precision, recall and f-measure if `average` is one of 'micro', 'macro', 'weighted'. Parameters ---------- y_true : array, shape = [n_samples] True targets y_pred : array, shape = [n_samples] Predicted targets beta : float, 1.0 by default The strength of recall versus precision in the f-score. labels : array Integer array of labels pos_label : int In the binary classification case, give the label of the positive class (default is 1). Everything else but 'pos_label' is considered to belong to the negative class. Set to None in the case of multiclass classification. average : string, [None, 'micro', 'macro', 'weighted'(default)] In the multiclass classification case, this determines the type of averaging performed on the data. macro: Average over classes (does not take imbalance into account). micro: Average over instances (takes imbalance into account). This implies that ``precision == recall == f1`` weighted: Average weighted by support (takes imbalance into account). Can result in f1 score that is not between precision and recall. Returns ------- precision: array, shape = [n_unique_labels], dtype = np.double recall: array, shape = [n_unique_labels], dtype = np.double f1_score: array, shape = [n_unique_labels], dtype = np.double support: array, shape = [n_unique_labels], dtype = np.long References ---------- http://en.wikipedia.org/wiki/Precision_and_recall """ if beta <= 0: raise ValueError("beta should be >0 in the F-beta score") y_true, y_pred = check_arrays(y_true, y_pred) if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels, dtype=np.int) n_labels = labels.size true_pos = np.zeros(n_labels, dtype=np.double) false_pos = np.zeros(n_labels, dtype=np.double) false_neg = np.zeros(n_labels, dtype=np.double) support = np.zeros(n_labels, dtype=np.long) for i, label_i in enumerate(labels): true_pos[i] = np.sum(y_pred[y_true == label_i] == label_i) false_pos[i] = np.sum(y_pred[y_true != label_i] == label_i) false_neg[i] = np.sum(y_pred[y_true == label_i] != label_i) support[i] = np.sum(y_true == label_i) try: # oddly, we may get an "invalid" rather than a "divide" error here old_err_settings = np.seterr(divide='ignore', invalid='ignore') # precision and recall precision = true_pos / (true_pos + false_pos) recall = true_pos / (true_pos + false_neg) # handle division by 0.0 in precision and recall precision[(true_pos + false_pos) == 0.0] = 0.0 recall[(true_pos + false_neg) == 0.0] = 0.0 # fbeta score beta2 = beta ** 2 fscore = (1 + beta2) * (precision * recall) / ( beta2 * precision + recall) # handle division by 0.0 in fscore fscore[(precision + recall) == 0.0] = 0.0 finally: np.seterr(**old_err_settings) if not average: return precision, recall, fscore, support elif n_labels == 2: if pos_label not in labels: raise ValueError("pos_label=%d is not a valid label: %r" % (pos_label, labels)) pos_label_idx = list(labels).index(pos_label) return (precision[pos_label_idx], recall[pos_label_idx], fscore[pos_label_idx], support[pos_label_idx]) else: average_options = (None, 'micro', 'macro', 'weighted') if average == 'micro': avg_precision = true_pos.sum() / (true_pos.sum() + false_pos.sum()) avg_recall = true_pos.sum() / (true_pos.sum() + false_neg.sum()) avg_fscore = (1 + beta2) * (avg_precision * avg_recall) / \ (beta2 * avg_precision + avg_recall) elif average == 'macro': avg_precision = np.mean(precision) avg_recall = np.mean(recall) avg_fscore = np.mean(fscore) elif average == 'weighted': avg_precision = np.average(precision, weights=support) avg_recall = np.average(recall, weights=support) avg_fscore = np.average(fscore, weights=support) else: raise ValueError('average has to be one of ' + str(average_options)) return avg_precision, avg_recall, avg_fscore, None def matthews_corrcoef(y_true, y_pred): """Returns matthew's correlation coefficient for binary classes The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class) classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] Only in the binary case does this relate to information about true and false positives and negatives. See references below. Parameters ---------- y_true : array, shape = [n_samples] true targets y_pred : array, shape = [n_samples] estimated targets Returns ------- mcc : float matthew's correlation coefficient (+1 represents a perfect prediction, 0 an average random prediction and -1 and inverse prediction). References ---------- http://en.wikipedia.org/wiki/Matthews_correlation_coefficient http://dx.doi.org/10.1093/bioinformatics/16.5.412 """ mcc = np.corrcoef(y_true, y_pred)[0, 1] if np.isnan(mcc): return 0. else: return mcc def classification_report(y_true, y_pred, labels=None, target_names=None): """Build a text report showing the main classification metrics Parameters ---------- y_true : array, shape = [n_samples] True targets y_pred : array, shape = [n_samples] Estimated targets labels : array, shape = [n_labels] Optional list of label indices to include in the report target_names : list of strings Optional display names matching the labels (same order) Returns ------- report : string Text summary of the precision, recall, f1-score for each class """ if labels is None: labels = unique_labels(y_true, y_pred) else: labels = np.asarray(labels, dtype=np.int) last_line_heading = 'avg / total' if target_names is None: width = len(last_line_heading) target_names = ['%d' % l for l in labels] else: width = max(len(cn) for cn in target_names) width = max(width, len(last_line_heading)) headers = ["precision", "recall", "f1-score", "support"] fmt = '%% %ds' % width # first column: class name fmt += ' ' fmt += ' '.join(['% 9s' for _ in headers]) fmt += '\n' headers = [""] + headers report = fmt % tuple(headers) report += '\n' p, r, f1, s = precision_recall_fscore_support(y_true, y_pred, labels=labels, average=None) for i, label in enumerate(labels): values = [target_names[i]] for v in (p[i], r[i], f1[i]): values += ["%0.2f" % float(v)] values += ["%d" % int(s[i])] report += fmt % tuple(values) report += '\n' # compute averages values = [last_line_heading] for v in (np.average(p, weights=s), np.average(r, weights=s), np.average(f1, weights=s)): values += ["%0.2f" % float(v)] values += ['%d' % np.sum(s)] report += fmt % tuple(values) return report def precision_recall_curve(y_true, probas_pred): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio :math:`tp / (tp + fp)` where tp is the number of true positives and fp the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio :math:`tp / (tp + fn)` where tp is the number of true positives and fn the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1} probas_pred : array, shape = [n_samples] Estimated probabilities Returns ------- precision : array, shape = [n + 1] Precision values recall : array, shape = [n + 1] Recall values thresholds : array, shape = [n] Thresholds on y_score used to compute precision and recall """ y_true = y_true.ravel() labels = np.unique(y_true) if np.all(labels == np.array([-1, 1])): # convert {-1, 1} to boolean {0, 1} repr y_true = y_true.copy() y_true[y_true == -1] = 0 elif not np.all(labels == np.array([0, 1])): raise ValueError("y_true contains non binary labels: %r" % labels) probas_pred = probas_pred.ravel() thresholds = np.sort(np.unique(probas_pred)) n_thresholds = thresholds.size + 1 precision = np.empty(n_thresholds) recall = np.empty(n_thresholds) for i, t in enumerate(thresholds): y_pred = (probas_pred >= t).astype(np.int) p, r, _, _ = precision_recall_fscore_support(y_true, y_pred) precision[i] = p[1] recall[i] = r[1] precision[-1] = 1.0 recall[-1] = 0.0 return precision, recall, thresholds def explained_variance_score(y_true, y_pred): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Note: the explained variance is not a symmetric function. return the explained variance Parameters ---------- y_true : array-like y_pred : array-like """ y_true, y_pred = check_arrays(y_true, y_pred) numerator = np.var(y_true - y_pred) denominator = np.var(y_true) if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator def r2_score(y_true, y_pred): """R^2 (coefficient of determination) regression score function Best possible score is 1.0, lower values are worse. Parameters ---------- y_true : array-like y_pred : array-like Returns ------- z : float The R^2 score Notes ----- This is not a symmetric function. References ---------- http://en.wikipedia.org/wiki/Coefficient_of_determination """ y_true, y_pred = check_arrays(y_true, y_pred) numerator = ((y_true - y_pred) ** 2).sum() denominator = ((y_true - y_true.mean()) ** 2).sum() if denominator == 0.0: if numerator == 0.0: return 1.0 else: # arbitary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway return 0.0 return 1 - numerator / denominator def zero_one_score(y_true, y_pred): """Zero-one classification score (accuracy) Positive integer (number of good classifications). The best performance is 1. Return the fraction of correct predictions in y_pred. Parameters ---------- y_true : array-like, shape = n_samples Gold standard labels. y_pred : array-like, shape = n_samples Predicted labels, as returned by a classifier. Returns ------- score : float """ y_true, y_pred = check_arrays(y_true, y_pred) return np.mean(y_pred == y_true) ############################################################################### # Loss functions def zero_one(y_true, y_pred): """Zero-One classification loss Positive integer (number of misclassifications). The best performance is 0. Return the number of errors Parameters ---------- y_true : array-like y_pred : array-like Returns ------- loss : float """ y_true, y_pred = check_arrays(y_true, y_pred) return np.sum(y_pred != y_true) def mean_squared_error(y_true, y_pred): """Mean squared error regression loss Return a a positive floating point value (the best value is 0.0). Parameters ---------- y_true : array-like y_pred : array-like Returns ------- loss : float """ y_true, y_pred = check_arrays(y_true, y_pred) return np.mean((y_pred - y_true) ** 2) @deprecated("""Incorrectly returns the cumulated error: use mean_squared_error instead; to be removed in v0.12""") def mean_square_error(y_true, y_pred): """Cumulated square error regression loss Positive floating point value: the best value is 0.0. return the mean square error Parameters ---------- y_true : array-like y_pred : array-like Returns ------- loss : float """ y_true, y_pred = check_arrays(y_true, y_pred) return np.linalg.norm(y_pred - y_true) ** 2 def hinge_loss(y_true, pred_decision, pos_label=1, neg_label=-1): """ Cumulated hinge loss (non-regularized). Assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is made, margin = y_true * pred_decision is always negative (since the signs disagree), therefore 1 - margin is always greater than 1. The cumulated hinge loss therefore upperbounds the number of mistakes made by the classifier. Parameters ---------- y_true : array, shape = [n_samples] True target (integers) pred_decision : array, shape = [n_samples] or [n_samples, n_classes] Predicted decisions, as output by decision_function (floats) """ # TODO: multi-class hinge-loss if pos_label != 1 or neg_label != -1: # the rest of the code assumes that positive and negative labels # are encoded as +1 and -1 respectively y_true = y_true.copy() y_true[y_true == pos_label] = 1 y_true[y_true == neg_label] = -1 margin = y_true * pred_decision losses = 1 - margin # The hinge doesn't penalize good enough predictions. losses[losses <= 0] = 0 return np.mean(losses)
bsd-3-clause
nhejazi/scikit-learn
examples/svm/plot_svm_margin.py
88
2540
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors (margin away from hyperplane in direction # perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in # 2-d. margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy - np.sqrt(1 + a ** 2) * margin yy_up = yy + np.sqrt(1 + a ** 2) * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10, edgecolors='k') plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k') plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
alexis-roche/nipy
examples/algorithms/mixed_effects.py
4
1939
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import print_function # Python 2/3 compatibility __doc__ = """ This example illustrates the impact of using a mixed-effects model for the detection of the effects, when the first-level variance is known: If the first level variance is very variable across observations, then taking it into account gives more relibale detections, as seen in an ROC curve. Requires matplotlib. Author: Bertrand Thirion, 2012 """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from nipy.algorithms.statistics.mixed_effects_stat import ( generate_data, one_sample_ttest, t_stat) # generate the data N, P = 15, 500 V1 = np.random.randn(N, P) ** 2 effects = 0.5 * (np.random.randn(P) > 0) Y = generate_data(np.ones(N), effects, .25, V1) # compute the statistics T1 = one_sample_ttest(Y, V1, n_iter=5) T1 = [T1[effects == x] for x in np.unique(effects)] T2 = [t_stat(Y)[effects == x] for x in np.unique(effects)] # Derive ROC curves ROC1 = np.array([np.sum(T1[1] > - x) for x in np.sort(- T1[0])])\ * 1. / T1[1].size ROC2 = np.array([np.sum(T2[1] > - x) for x in np.sort(- T2[0])])\ * 1. / T1[1].size # make a figure FIG = plt.figure(figsize=(10, 5)) AX = FIG.add_subplot(121) AX.plot(np.linspace(0, 1, len(ROC1)), ROC1, label='mixed effects') AX.plot(np.linspace(0, 1, len(ROC2)), ROC2, label='t test') AX.set_xlabel('false positives') AX.set_ylabel('true positives') AX.set_title('ROC curves for the detection of effects', fontsize=12) AX.legend(loc='lower right') AX = FIG.add_subplot(122) AX.boxplot(T1, positions=[-0.1, .9]) AX.boxplot(T2, positions=[0.1, 1.1]) AX.set_xticks([0, 1]) AX.set_xlabel('simulated effects') AX.set_ylabel('decision statistic') AX.set_title('left: mixed effects model, \n right: standard t test', fontsize=12) plt.show()
bsd-3-clause
MTG/sms-tools
lectures/06-Harmonic-model/plots-code/sines-partials-harmonics-phase.py
2
1988
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/sine-440-490.wav') w = np.hamming(3529) N = 32768 hN = N/2 t = -20 pin = 4850 x1 = x[pin:pin+w.size] mX1, pX1 = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX1, t) pmag = mX1[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX1, pX1, ploc) plt.figure(1, figsize=(9, 6)) plt.subplot(311) plt.plot(fs*np.arange(pX1.size)/float(N), pX1, 'c', lw=1.5) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([200, 1000, 50, 200]) plt.title('pX + peaks (sine-440-490.wav)') (fs, x) = UF.wavread('../../../sounds/vibraphone-C6.wav') w = np.blackman(401) N = 1024 hN = N/2 t = -80 pin = 200 x2 = x[pin:pin+w.size] mX2, pX2 = DFT.dftAnal(x2, w, N) ploc = UF.peakDetection(mX2, t) pmag = mX2[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX2, pX2, ploc) plt.subplot(3,1,2) plt.plot(fs*np.arange(pX2.size)/float(N), pX2, 'c', lw=1.5) plt.plot(fs * iploc/N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([500,10000,min(pX2), 25]) plt.title('pX + peaks (vibraphone-C6.wav)') (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') w = np.blackman(651) N = 2048 hN = N/2 t = -80 pin = 10000 x3 = x[pin:pin+w.size] mX3, pX3 = DFT.dftAnal(x3, w, N) ploc = UF.peakDetection(mX3, t) pmag = mX3[ploc] iploc, ipmag, ipphase = UF.peakInterp(mX3, pX3, ploc) plt.subplot(3,1,3) plt.plot(fs*np.arange(pX3.size)/float(N), pX3, 'c', lw=1.5) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', alpha=1, linestyle='', markeredgewidth=1.5) plt.axis([0,6000,2, 24]) plt.title('pX + peaks (oboe-A4.wav)') plt.tight_layout() plt.savefig('sines-partials-harmonics-phase.png') plt.show()
agpl-3.0
nelson-liu/scikit-learn
sklearn/ensemble/tests/test_forest.py
19
41737
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.94, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", "mae", "friedman_mse")): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse", "mae"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Using a Python 2.x list as the sample_weight parameter used to raise # an exception. This test makes sure such code will now run correctly. clf = ForestClassifier() sample_weight = [1.] * len(iris.data) clf.fit(iris.data, iris.target, sample_weight=sample_weight) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='balanced', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name
bsd-3-clause
HaebinShin/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/dataframe.py
1
5845
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A DataFrame is a container for ingesting and preprocessing data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from .series import Series from .transform import Transform class DataFrame(object): """A DataFrame is a container for ingesting and preprocessing data.""" def __init__(self): self._columns = {} def columns(self): """Set of the column names.""" return frozenset(self._columns.keys()) def __len__(self): """The number of columns in the DataFrame.""" return len(self._columns) def assign(self, **kwargs): """Adds columns to DataFrame. Args: **kwargs: assignments of the form key=value where key is a string and value is an `inflow.Series`, a `pandas.Series` or a numpy array. Raises: TypeError: keys are not strings. TypeError: values are not `inflow.Series`, `pandas.Series` or `numpy.ndarray`. TODO(jamieas): pandas assign method returns a new DataFrame. Consider switching to this behavior, changing the name or adding in_place as an argument. """ for k, v in kwargs.items(): if not isinstance(k, str): raise TypeError("The only supported type for keys is string; got %s" % type(k)) if isinstance(v, Series): s = v elif isinstance(v, Transform) and v.input_valency() == 0: s = v() # TODO(jamieas): hook up these special cases again # TODO(soergel): can these special cases be generalized? # elif isinstance(v, pd.Series): # s = series.NumpySeries(v.values) # elif isinstance(v, np.ndarray): # s = series.NumpySeries(v) else: raise TypeError( "Column in assignment must be an inflow.Series, pandas.Series or a" " numpy array; got type '%s'." % type(v).__name__) self._columns[k] = s def select_columns(self, keys): """Returns a new DataFrame with a subset of columns. Args: keys: A list of strings. Each should be the name of a column in the DataFrame. Returns: A new DataFrame containing only the specified columns. """ result = type(self)() for key in keys: result[key] = self._columns[key] return result def __getitem__(self, key): """Indexing functionality for DataFrames. Args: key: a string or an iterable of strings. Returns: A Series or list of Series corresponding to the given keys. """ if isinstance(key, str): return self._columns[key] elif isinstance(key, collections.Iterable): for i in key: if not isinstance(i, str): raise TypeError("Expected a String; entry %s has type %s." % (i, type(i).__name__)) return [self.__getitem__(i) for i in key] raise TypeError( "Invalid index: %s of type %s. Only strings or lists of strings are " "supported." % (key, type(key))) def __setitem__(self, key, value): if isinstance(key, str): key = [key] if isinstance(value, Series): value = [value] self.assign(**dict(zip(key, value))) def build(self): # We do not allow passing a cache here, because that would encourage # working around the rule that DataFrames cannot be expected to be # synced with each other (e.g., they shuffle independently). cache = {} tensors = {name: c.build(cache) for name, c in self._columns.items()} return tensors def to_input_fn(self, feature_keys=None, target_keys=None): """Build an input_fn suitable for use with Estimator. Args: feature_keys: the names of columns to be used as features. If None, all columns except those in target_keys are used. target_keys: the names of columns to be used as targets. None is acceptable for unsupervised learning. Returns: A function that returns a pair of dicts (features, targets), each mapping string names to Tensors. Raises: ValueError: when the feature and target key sets are non-disjoint """ if target_keys is None: target_keys = [] if feature_keys is None: feature_keys = self.columns() - set(target_keys) else: in_both = set(feature_keys) & set(target_keys) if in_both: raise ValueError( "Columns cannot be used for both features and targets: %s" % ", ".join(in_both)) def input_fn(): # It's important to build all the tensors together in one DataFrame. # If we did df.select() for both key sets and then build those, the two # resulting DataFrames would be shuffled independently. tensors = self.build() # Note that (for now at least) we provide our columns to Estimator keyed # by strings, so they are base features as far as Estimator is concerned. # TODO(soergel): reconcile with FeatureColumn keys, Transformer etc. features = {key: tensors[key] for key in feature_keys} targets = {key: tensors[key] for key in target_keys} return features, targets return input_fn
apache-2.0
pnedunuri/scipy
tools/refguide_check.py
29
23595
#!/usr/bin/env python """ refguide_check.py [OPTIONS] [-- ARGS] Check for a Scipy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings. This is different from doctesting [we do not aim to have scipy docstrings doctestable!], this is just to make sure that code in docstrings is valid python:: $ python refguide_check.py --check_docs optimize """ from __future__ import print_function import sys import os import re import copy import inspect import warnings import doctest import tempfile import io import docutils.core from docutils.parsers.rst import directives import shutil from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from argparse import ArgumentParser, REMAINDER import numpy as np sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object # Remove sphinx directives that don't run without Sphinx environment directives._directives.pop('versionadded', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "scipy" PUBLIC_SUBMODULES = [ 'cluster', 'cluster.hierarchy', 'cluster.vq', 'constants', 'fftpack', 'fftpack.convolve', 'integrate', 'interpolate', 'io', 'io.arff', 'io.wavfile', 'linalg', 'linalg.blas', 'linalg.lapack', 'linalg.interpolative', 'misc', 'ndimage', 'odr', 'optimize', 'signal', 'sparse', 'sparse.csgraph', 'sparse.linalg', 'spatial', 'spatial.distance', 'special', 'stats', 'stats.mstats', ] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = { 'fftpack.convolve': 'fftpack', 'io.wavfile': 'io', 'io.arff': 'io', } # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ 'scipy.stats.kstwobign', # inaccurate cdf or ppf 'scipy.stats.levy_stable', 'scipy.special.sinc', # comes from numpy 'scipy.misc.who', # comes from numpy ]) # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [ r'scipy\.sparse\.csgraph', r'scipy\.sparse\.linalg', r'scipy\.spatial\.distance', r'scipy\.linalg\.blas\.[sdczi].*', r'scipy\.linalg\.lapack\.[sdczi].*', ] def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): # Refguide entries: # # - 3 spaces followed by function name, and maybe some spaces, some # dashes, and an explanation; only function names listed in # refguide are formatted like this (mostly, there may be some false # positives) # # - special directives, such as data and function # # - (scipy.constants only): quoted list # patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """Return sets of objects only in __all__, refguide, or completely missing.""" only_all = set() for name in all_dict: if name not in names: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'currentmodule', 'autosummary', 'data', 'obj', 'versionadded', 'module', 'class', 'ref', 'func', 'toctree', 'moduleauthor', 'sectionauthor', 'codeauthor', 'eq', ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Returns: [(name, success_flag, output), ...] """ skip_types = (dict, str, unicode, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results def check_doctests(module, verbose, dots=True, doctest_warnings=False): """Check code in docstrings of the module's public symbols. Returns: list of [(item_name, success_flag, output), ...] """ # the namespace to run examples in ns = {'np': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf,} # if MPL is available, use display-less backend try: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt have_matplotlib = True except ImportError: have_matplotlib = False class DTRunner(doctest.DocTestRunner): DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', 'ax.axis', 'plt.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim'} def __init__(self, parse_namedtuples=True, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(ns)) a_got = eval(got, dict(ns)) except: if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = ('[\w\d_]+\(' + ', '.join(['[\w\d_]+=(.+)']*num) + '\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except TypeError: return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogenous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) # Loop over non-deprecated items results = [] all_success = True for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue flags = NORMALIZE_WHITESPACE | ELLIPSIS | IGNORE_EXCEPTION_DETAIL runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = [] success = True def out(msg): output.append(msg) class MyStderr(object): """Redirect stderr to the current stdout""" def write(self, msg): if doctest_warnings: sys.stdout.write(msg) else: out(msg) # Run tests, trying to restore global state afterward old_printoptions = np.get_printoptions() old_errstate = np.seterr() old_stderr = sys.stderr cwd = os.getcwd() tmpdir = tempfile.mkdtemp() sys.stderr = MyStderr() try: os.chdir(tmpdir) # try to ensure random seed is NOT reproducible np.random.seed(None) for t in tests: t.filename = short_path(t.filename, cwd) fails, successes = runner.run(t, out=out) if fails > 0: success = False all_success = False if have_matplotlib: plt.close('all') finally: sys.stderr = old_stderr os.chdir(cwd) shutil.rmtree(tmpdir) np.set_printoptions(**old_printoptions) np.seterr(**old_errstate) if dots: output_dot('.' if success else 'F') results.append((full_name, success, "".join(output))) return results def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=list(PUBLIC_SUBMODULES), nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") args = parser.parse_args(argv) modules = [] names_dict = {} os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in list(module_names): if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) dots = True success = True results = [] print("Running checks for %d modules:" % (len(modules),)) for module in modules: if dots: if module is not modules[0]: sys.stderr.write(' ') sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results all_success = True for module, mod_results in results: success = all(x[1] for x in mod_results) all_success = all_success and success if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if all_success: print("\nOK: refguide and doctests checks passed!") sys.exit(0) else: print("\nERROR: refguide or doctests have errors") sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
rbharath/deepchem
deepchem/dock/tests/test_pose_scoring.py
2
1939
""" Tests for Pose Scoring """ from __future__ import print_function from __future__ import division from __future__ import unicode_literals __author__ = "Bharath Ramsundar" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import sys import unittest import tempfile import os import shutil import numpy as np import deepchem as dc from sklearn.ensemble import RandomForestRegressor from subprocess import call class TestPoseScoring(unittest.TestCase): """ Does sanity checks on pose generation. """ def setUp(self): """Downloads dataset.""" call( "wget -c http://deepchem.io.s3-website-us-west-1.amazonaws.com/featurized_datasets/core_grid.tar.gz". split()) call("tar -zxvf core_grid.tar.gz".split()) self.core_dataset = dc.data.DiskDataset("core_grid/") def tearDown(self): """Removes dataset""" call("rm -rf core_grid/".split()) def test_pose_scorer_init(self): """Tests that pose-score works.""" if sys.version_info >= (3, 0): return sklearn_model = RandomForestRegressor(n_estimators=10) model = dc.models.SklearnModel(sklearn_model) print("About to fit model on core set") model.fit(self.core_dataset) pose_scorer = dc.dock.GridPoseScorer(model, feat="grid") def test_pose_scorer_score(self): """Tests that scores are generated""" if sys.version_info >= (3, 0): return current_dir = os.path.dirname(os.path.realpath(__file__)) protein_file = os.path.join(current_dir, "1jld_protein.pdb") ligand_file = os.path.join(current_dir, "1jld_ligand.sdf") sklearn_model = RandomForestRegressor(n_estimators=10) model = dc.models.SklearnModel(sklearn_model) print("About to fit model on core set") model.fit(self.core_dataset) pose_scorer = dc.dock.GridPoseScorer(model, feat="grid") score = pose_scorer.score(protein_file, ligand_file) assert score.shape == (1,)
mit
amadeuspzs/travelTime
utils.py
1
1252
import pandas as pd # Return start of the week def find_week_start(data): return find_day_start(data,1) # mondays # Return start and end of week def find_weeks(data): start = find_week_start(data) weeks = [] for i in range(len(start)): if i < len(start)-1: weeks.append([start[i],start[i+1]-1]) else: weeks.append([start[i],len(data)-1]) return weeks def find_day_start(data,day): days = [] seek_day = True next_day = day + 1 if day < 6 else 0 for index, row in data.iterrows(): if seek_day is True and int(row.Timestamp.strftime("%w")) == day: days.append(index) seek_day = False elif seek_day is False and int(row.Timestamp.strftime("%w")) == next_day: seek_day = True return days def find_days(data,day): days = [] next_day = day + 1 if day < 6 else 0 day_starts = find_day_start(data,day) # don't include next days that start before the first day # start next days search at beginning of data for first first day next_day_starts = find_day_start(data[day_starts[0]:],next_day) for i in range(len(day_starts)): days.append([day_starts[i], next_day_starts[i]-1 ]) return days
mit
Archman/felapps
felapps/utils/funutils.py
1
63024
#!/usr/bin/env python # -*- coding: utf-8 -*- #-------------------------------------------------------------------------# """ Author: Tong Zhang Created Time: 11:09, Jan. 29, 2015 utilities/functions for convenience """ #-------------------------------------------------------------------------# from __future__ import division from __future__ import print_function import wx import wx.lib.mixins.listctrl as listmix import numpy as np import os import matplotlib.colors as colors from matplotlib.text import Text as mText from matplotlib.lines import Line2D as mLine import time import sys import h5py import shutil import random import string from . import EnhancedStatusBar as ESB from . import uiutils import lmfit def rescaleImage(image0, scaledFac): """ Jan. 28, 2105 rescale image, given the image full path on disk """ #originalImage = wx.Image(imagePath, type = wx.BITMAP_TYPE_ANY) originalImage = image0 imgW, imgH = originalImage.GetSize() scaledImage = originalImage.Scale(imgW * scaledFac, imgH * scaledFac) return scaledImage def findObj(objroot, objclass): """ Find all the objects that is instance of objclass belongs to objroot. obj """ objfound = [] for obj in dir(objroot): obji = eval('objroot.' + obj) if isinstance(obji, objclass): objfound.append(obji) return objfound class MySpinCtrl(wx.SpinCtrl): """ font: wx.Font() """ def __init__(self, parent, font=None, fontsize=10, fontcolor='black', fontweight=wx.FONTWEIGHT_NORMAL, *args, **kws): wx.SpinCtrl.__init__(self, parent=parent, *args, **kws) if font == None: font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) self.font = font self.fontcolor = fontcolor self.fontsize = fontsize self.setFont(self.font) self.setFontSize(self.fontsize) self.setFontColor(self.fontcolor) def setFontSize(self, fontsize): self.fontsize = fontsize self.font.SetPointSize(fontsize) self.SetFont(self.font) def setFontColor(self, fontcolor): self.fontcolor = fontcolor self.SetForegroundColour(self.fontcolor) def setFontFaceName(self, facename): self.facename = facename self.font.SetFaceName(facename) self.SetFont(self.font) def setFont(self, font): self.font = font self.SetFont(font) class MyStaticText(wx.StaticText): def __init__(self, parent, font=None, fontsize=10, fontcolor='black', fontweight=wx.FONTWEIGHT_NORMAL, *args, **kws): wx.StaticText.__init__(self, parent=parent, *args, **kws) if font == None: font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) self.font = font self.fontcolor = fontcolor self.fontsize = fontsize self.setFont(self.font) self.setFontSize(self.fontsize) self.setFontColor(self.fontcolor) def setFontSize(self, fontsize): self.fontsize = fontsize self.font.SetPointSize(fontsize) self.SetFont(self.font) def setFontColor(self, fontcolor): self.fontcolor = fontcolor self.SetForegroundColour(self.fontcolor) def setFontFaceName(self, facename): self.facename = facename self.font.SetFaceName(facename) self.SetFont(self.font) def setFont(self, font): self.font = font self.SetFont(font) class MyTextCtrl(wx.TextCtrl): def __init__(self, parent, font=None, fontsize=10, fontcolor='black', *args, **kws): wx.TextCtrl.__init__(self, parent=parent, *args, **kws) if font == None: font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) self.font = font self.fontcolor = fontcolor self.fontsize = fontsize self.setFont(self.font) self.setFontSize(self.fontsize) self.setFontColor(self.fontcolor) def setFontSize(self, fontsize): self.fontsize = fontsize self.font.SetPointSize(fontsize) self.SetFont(self.font) def setFontColor(self, fontcolor): self.fontcolor = fontcolor self.SetDefaultStyle(wx.TextAttr(colText=self.fontcolor)) def setFontFaceName(self, facename): self.facename = facename self.font.SetFaceName(facename) self.SetFont(self.font) def setFont(self, font): self.font = font self.SetFont(font) class MyCheckBox(wx.CheckBox): def __init__(self, parent, font=None, fontsize=10, fontcolor='black', *args, **kws): wx.CheckBox.__init__(self, parent=parent, *args, **kws) if font == None: font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) self.font = font self.fontcolor = fontcolor self.fontsize = fontsize self.setFont(self.font) self.setFontSize(self.fontsize) self.setFontColor(self.fontcolor) def setFontSize(self, fontsize): self.fontsize = fontsize self.font.SetPointSize(fontsize) self.SetFont(self.font) def setFontColor(self, fontcolor): self.fontcolor = fontcolor #self.SetDefaultStyle(wx.TextAttr(colText = self.fontcolor)) def setFontFaceName(self, facename): self.facename = facename self.font.SetFaceName(facename) self.SetFont(self.font) def setFont(self, font): self.font = font self.SetFont(font) class MyButton(wx.Button): def __init__(self, parent, font=None, fontsize=10, fontcolor='black', *args, **kws): wx.Button.__init__(self, parent=parent, *args, **kws) if font == None: font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) self.font = font self.fontcolor = fontcolor self.fontsize = fontsize self.setFont(self.font) self.setFontSize(self.fontsize) self.setFontColor(self.fontcolor) def setFontSize(self, fontsize): self.fontsize = fontsize self.font.SetPointSize(fontsize) self.SetFont(self.font) def setFontColor(self, fontcolor): self.fontcolor = fontcolor self.SetForegroundColour(fontcolor) def setFontFaceName(self, facename): self.facename = facename self.font.SetFaceName(facename) self.SetFont(self.font) def setFont(self, font): self.font = font self.SetFont(font) class MyComboBox(wx.ComboBox): def __init__(self, parent, font=None, fontsize=12, fontcolor='black', fontweight=wx.FONTWEIGHT_NORMAL, *args, **kws): wx.ComboBox.__init__(self, parent=parent, *args, **kws) if font == None: font = wx.SystemSettings.GetFont(wx.SYS_DEFAULT_GUI_FONT) self.font = font self.fontcolor = fontcolor self.fontsize = fontsize self.setFont(self.font) self.setFontSize(self.fontsize) self.setFontColor(self.fontcolor) def setFontSize(self, fontsize): self.fontsize = fontsize self.font.SetPointSize(fontsize) self.SetFont(self.font) def setFontColor(self, fontcolor): self.fontcolor = fontcolor self.SetForegroundColour(self.fontcolor) def setFontFaceName(self, facename): self.facename = facename self.font.SetFaceName(facename) self.SetFont(self.font) def setFont(self, font): self.font = font self.SetFont(font) class MyListCtrl(wx.ListCtrl, listmix.ListCtrlAutoWidthMixin): def __init__(self, parent, ID, pos=wx.DefaultPosition, size=wx.DefaultSize, style=0): wx.ListCtrl.__init__(self, parent, ID, pos, size, style) listmix.ListCtrlAutoWidthMixin.__init__(self) def createwxStaticText(parent, label, size=wx.DefaultSize, style=wx.ALIGN_LEFT, fontname=wx.SYS_DEFAULT_GUI_FONT, fontsize=10, fontweight=wx.FONTWEIGHT_NORMAL, fontcolor='black'): font = wx.SystemSettings.GetFont(fontname) font.SetPointSize(fontsize) font.SetWeight(fontweight) st = wx.StaticText(parent=parent, label=label, style=style) st.SetFont(font) st.SetForegroundColour(fontcolor) return st def createwxTextCtrl(parent, value='', style=wx.TE_LEFT, fontname=wx.SYS_DEFAULT_GUI_FONT, fontsize=10, fontweight=wx.FONTWEIGHT_NORMAL, fontcolor='black'): font = wx.SystemSettings.GetFont(fontname) font.SetPointSize(fontsize) font.SetWeight(fontweight) textctrl = wx.TextCtrl(parent=parent, value=value, style=style) textctrl.SetFont(font) textctrl.SetDefaultStyle(wx.TextAttr(font=font, colText=fontcolor)) return textctrl def createwxButton(parent, label, fontname=wx.SYS_DEFAULT_GUI_FONT, fontsize=10, fontweight=wx.FONTWEIGHT_NORMAL, fontcolor='black', size=wx.DefaultSize): font = wx.SystemSettings.GetFont(fontname) font.SetPointSize(fontsize) font.SetWeight(fontweight) btn = wx.Button(parent=parent, label=label, size=size) btn.SetFont(font) btn.SetForegroundColour(fontcolor) return btn def createwxPanel(parent, backgroundcolor=None, id=wx.ID_ANY): if backgroundcolor == None: backgroundcolor = wx.SystemSettings.GetColour( wx.SYS_COLOUR_BTNFACE).Get() panel = wx.Panel(parent, id=id) panel.SetBackgroundColour(backgroundcolor) return panel def createwxStaticBox(parent, label='', style=wx.ALIGN_LEFT, fontname=wx.SYS_DEFAULT_GUI_FONT, fontsize=10, fontweight=wx.FONTWEIGHT_NORMAL, fontcolor='black'): font = wx.SystemSettings.GetFont(fontname) font.SetPointSize(fontsize) font.SetWeight(fontweight) sbox = wx.StaticBox(parent, id=wx.ID_ANY, label=label, style=style) sbox.SetFont(font) sbox.SetForegroundColour(fontcolor) return sbox def aupmu(gap, xlamd, a=3.44, b=-5.00, c=1.54): """ gap, xlamd: [mm] """ bfield = a * np.exp(b * (gap / xlamd) + c * (gap / xlamd)**2) au = 0.934 * (xlamd / 10) * bfield / np.sqrt(2) return au def r56chi( gam0, ibfield, imagl=0.150, idril=0.285, ): """ return r56 of chicane, ibfield: [T] """ c0 = 299792458.0 m0 = 9.10938188e-31 e0 = 1.60218e-19 r56 = (2.0 / 3.0 * imagl + idril) * 2 * ( np.arcsin(imagl * e0 * ibfield / np.sqrt(gam0**2 - 1) / m0 / c0))**2 return r56 def readfld(filename, ncar=121): fid = open(filename, 'rb') data = np.fromfile(fid, 'double').reshape(ncar * ncar, 2) realp = data[:, 0] imagp = data[:, 1] intp = sum(realp**2 + imagp**2) efield = np.array([complex(realp[i], imagp[i]) for i in range(realp.size)]).reshape(ncar, ncar) wexy = np.fft.fftshift(np.fft.fft2(efield)) farfield = abs(wexy)**2 return intp, farfield def getResPath(filename, cwd='.', resdir='../resources'): """ return absolute path for resources, e.g. images, data :param reshead : the relative path for resources dir :param filename: filename for images or data """ resRoot = os.path.join(os.path.abspath(cwd), resdir) resPath = os.path.join(resRoot, filename) return resPath def importCheck(moduleName): """ check could import moduleName or not """ try: #return map(__import__, moduleName) return __import__(moduleName) except ImportError: dial = wx.MessageDialog( None, message=u"Cannot import module named" + u" '" + moduleName[0] + u"', please try again!", caption=u"Module import error", style=wx.OK | wx.CANCEL | wx.ICON_ERROR | wx.CENTRE) if dial.ShowModal() == wx.ID_OK: dial.Destroy() def hex2rgb(hex_string): """ convert hexadecimal color into rgb form. :param hex_string: hex color string, e.g. white color: '#FFFFFF' Example: >>> hex2rgb('#FFAABB') (255, 170, 187) """ rgb = colors.hex2color(hex_string) return tuple([int(255 * x) for x in rgb]) def rgb2hex(rgb_tuple): """ convert color rgb into hex form. :param rgb_tuple: tuple of rgb color, e.g. white color: (255, 255, 255) Example: >>> rgb2hex((255, 170, 187)) u'ffaabb' """ return colors.rgb2hex([1.0 * x / 255 for x in rgb_tuple]) def setPath(pathstr): return os.path.expanduser( os.path.sep.join( pathstr.replace('\\', ' ').replace('/', ' ').split(' '))) def getFileToLoad(parent, ext='*', flag='single'): if isinstance(ext, list): if len(ext) > 1: exts = [x.upper() + ' files (*.' + x + ')|*.' + x for x in ext] wildcardpattern = '|'.join(exts) else: x = ext[0] wildcardpattern = x.upper() + ' files ' + '(*.' + x + ')|*.' + x else: wildcardpattern = ext.upper() + ' files ' + '(*.' + ext + ')|*.' + ext if flag == 'single': dial = wx.FileDialog( parent, message="Please select file", defaultDir=".", defaultFile="", wildcard=wildcardpattern, style=wx.FD_DEFAULT_STYLE | wx.FD_FILE_MUST_EXIST) if dial.ShowModal() == wx.ID_OK: fullfilename = os.path.join(dial.GetDirectory(), dial.GetFilename()) return fullfilename else: return None else: #flag = 'multi': dial = wx.FileDialog( parent, message="Please select file", defaultDir=".", defaultFile="", wildcard=wildcardpattern, style=wx.FD_DEFAULT_STYLE | wx.FD_FILE_MUST_EXIST | wx.FD_MULTIPLE) if dial.ShowModal() == wx.ID_OK: fullfilenames = [ os.path.join(dial.GetDirectory(), filename) for filename in dial.GetFilenames() ] return fullfilenames else: return None dial.Destroy() def getFileToSave(parent, ext='*'): if isinstance(ext, list): if len(ext) > 1: exts = [x.upper() + ' files (*.' + x + ')|*.' + x for x in ext] wildcardpattern = '|'.join(exts) else: x = ext[0] wildcardpattern = x.upper() + ' files ' + '(*.' + x + ')|*.' + x else: wildcardpattern = ext.upper() + ' files ' + '(*.' + ext + ')|*.' + ext dial = wx.FileDialog( parent, "Save it as", wildcard=wildcardpattern, style=wx.FD_SAVE | wx.FD_OVERWRITE_PROMPT) if dial.ShowModal() == wx.ID_OK: savetofilename = dial.GetPath() return savetofilename else: return None dial.Destroy() class SaveData(object): def __init__(self, data, fname, type, app='imageviewer'): """ type: asc, hdf5, sdds """ self.data = data self.fname = fname self.app = app self.onDataProcess() if type == ".asc": self.onSaveASC() elif type == '.hdf5': self.onSaveHDF5() elif type == '.sdds': self.onSaveSDDS() def onDataProcess(self): xx, yy = np.sum(self.data, 0), np.sum(self.data, 1) idx, idy = np.where(xx == xx.max()), np.where(yy == yy.max()) self.xpos, self.ypos = idx[0][0], idy[0][0] self.maxint = self.data.max() self.sumint = self.data.sum() def onSaveASC(self): np.savetxt(self.fname, self.data, fmt='%.16e', delimiter=' ') def onSaveHDF5(self): f = h5py.File(self.fname, 'w') rg = f.create_group('image') rg.attrs['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S %Z', time.localtime()) rg.attrs['app'] = self.app dset = f.create_dataset( 'image/data', shape=self.data.shape, dtype=self.data.dtype) dset[...] = self.data dset.attrs['xypos'] = (self.xpos, self.ypos) dset.attrs['sumint'] = self.sumint dset.attrs['maxint'] = self.maxint f.close() def onSaveSDDS(self): raise NotImplemented('save sdds format to be implemented.') class ExportData(object): def __init__(self, data_raw, data_fit, model_x, model_y, fname): self.data_raw = data_raw self.data_fit = data_fit self.model_x = model_x self.model_y = model_y self.fname = fname self.onProcess() self.onSave() def onProcess(self): # fit: res_x = self.model_x.get_fit_result() res_y = self.model_x.get_fit_result() self.x0 = res_x.params['x0'].value self.y0 = res_y.params['x0'].value self.sx = res_x.params['xstd'].value self.sy = res_y.params['xstd'].value def onSave(self): f = h5py.File(self.fname, 'w') rg = f.create_group('data') rg.attrs['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S %Z', time.localtime()) for k, v in self.data_raw.items(): dset = f.create_dataset( 'data/raw/' + k, shape=v.shape, dtype=v.dtype, compression=None) dset[...] = v dg = f.create_group('data/fit') dg.attrs['x0'] = self.x0 dg.attrs['y0'] = self.y0 dg.attrs['xstd'] = self.sx dg.attrs['ystd'] = self.sy for k, v in self.data_fit.items(): dset = f.create_dataset( 'data/fit/' + k, shape=v.shape, dtype=v.dtype, compression=None) dset[...] = v f.close() class FloatSlider(wx.Slider): def __init__(self, parent, id=wx.ID_ANY, value=0, minValue=0, maxValue=10, increment=0.1, size=wx.DefaultSize, style=wx.SL_HORIZONTAL, *args, **kws): self._value = value self._min = minValue self._max = maxValue self._inc = increment ival, imin, imax = [ round(v / increment) for v in (value, minValue, maxValue) ] self._islider = super(FloatSlider, self) self._islider.__init__( parent=parent, value=ival, minValue=imin, maxValue=imax, id=id, size=size, style=style, *args, **kws) self.Bind(wx.EVT_SCROLL, self._OnScroll, self._islider) def _OnScroll(self, event): ival = self._islider.GetValue() imin = self._islider.GetMin() imax = self._islider.GetMax() if ival == imin: self._value = self._min elif ival == imax: self._value = self._max else: self._value = ival * self._inc event.Skip() def GetValue(self): return self._value def GetMin(self): return self._min def GetMax(self): return self._max def GetInc(self): return self._inc def GetRange(self): return self._min, self._max def SetValue(self, value): self._islider.SetValue(round(value / self._inc)) self._value = value def SetMin(self, minval): self._islider.SetMin(round(minval / self._inc)) self._min = minval def SetMax(self, maxval): self._islider.SetMax(round(maxval / self._inc)) self._max = maxval def SetInc(self, inc): self._islider.SetRange(round(self._min / inc), round(self._max / inc)) self._islider.SetValue(round(self._value / inc)) self._inc = inc def SetRange(self, minval, maxval): self._islider.SetRange( round(minval / self._inc), round(maxval / self._inc)) self._min = minval self._max = maxval def func_sinc(x, y): r = np.sqrt(x**2 + y**2) return np.sin(r) / r def func_peaks(x, y): return 3 * (1 - x)**2 * np.exp(-(x**2) - (y + 1)**2) - 10 * ( x / 5 - x**3 - y**5 ) * np.exp(-x**2 - y**2) - 1 / 3 * np.exp(-(x + 1)**2 - y**2) class ImageDataFactor(object): # will write into C module, 2015-06-16 def __init__(self, z): self.imgdata = z def setData(self, z): self.imgdata = z def getData(self): return imgdata def getInt(self): return np.sum(self.imgdata) class ScanDataFactor(object): # will write into C module, 2015-06-17 def __init__(self, z, scannum, shotnum, ndim=2): self.scanshape = [scannum, shotnum, ndim] self.scandata = z.reshape(self.scanshape) self.scanmean = self.scandata.mean(axis=1) def show(self): print([ self.scandata[i, :, :][:, 1].std() for i in range(0, self.scanshape[0]) ]) def setData(self, z): self.scandata = z def getXerrbar(self): self.xerr = [ self.scandata[i, :, :][:, 0].std() for i in range(0, self.scanshape[0]) ] return np.array(self.xerr) def getYerrbar(self): self.yerr = [ self.scandata[i, :, :][:, 1].std() for i in range(0, self.scanshape[0]) ] return np.array(self.yerr) def getXavg(self): return self.scanmean[:, 0] def getYavg(self): return self.scanmean[:, 1] class ProgressBarFrame(wx.Frame): def __init__(self, parent, title, range=100, *args, **kws): wx.Frame.__init__(self, parent=parent, title=title, *args, **kws) self.range = range self.createProgressbar() self.SetMinSize((400, 10)) self.Centre() self.Show() self.t0 = time.time() self.elapsed_time_timer.Start(1000) def createProgressbar(self): self.pb = wx.Gauge(self) self.pb.SetRange(range=self.range) self.elapsed_time_st = createwxStaticText( self, 'Elapsed Time:', fontsize=10) self.elapsed_time_val = createwxStaticText( self, '00:00:00', fontsize=10, fontcolor='red') vbox_main = wx.BoxSizer(wx.VERTICAL) hbox_time = wx.BoxSizer(wx.HORIZONTAL) hbox_time.Add(self.elapsed_time_st, 0, wx.ALIGN_LEFT | wx.EXPAND | wx.ALL, 5) hbox_time.Add(self.elapsed_time_val, 0, wx.ALIGN_LEFT | wx.EXPAND | wx.ALL, 5) vbox_main.Add(self.pb, 0, wx.EXPAND | wx.ALL, 5) vbox_main.Add(hbox_time, 0, wx.EXPAND | wx.ALL, 5) self.SetSizerAndFit(vbox_main) self.elapsed_time_timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.onTickTimer, self.elapsed_time_timer) def onTickTimer(self, event): fmt = '%H:%M:%S' self.elapsed_time_val.SetLabel( time.strftime(fmt, time.gmtime(time.time() - self.t0))) def handleConfig(config_name='imageviewer.xml'): """ handle configuration files issues: 1 load configuration files from app data 2 create user specific configuration files :param config_name: configuration file name, by default is 'imageviewer.xml' (for app Image Viewer) reutrn valid configuration file at default user location """ default_location = os.path.expanduser("~/.felapps/config/") if not os.path.exists(default_location): os.system('mkdir -p ' + default_location) default_configfile = os.path.join(default_location, config_name) optional_configfile = os.path.join(sys.prefix, 'local/share/felapps/', config_name) if os.path.isfile(default_configfile ): # configuration file is found at default location retval = default_configfile elif os.path.isfile( optional_configfile ): # load from system location, copy to default user location shutil.copy2(optional_configfile, default_configfile) retval = default_configfile else: # pop window to let user select config file and copy to default user location config_selected = getFileToLoad(None, ext='xml') shutil.copy2(config_selected, default_configfile) retval = default_configfile return retval class FitModels(object): def __init__(self, model='gaussian', params=None, **kws): """ fitting models: 'gaussuan' : a * exp(-(x-x0)^2/2/xstd^2) + y0 'polynomial': \Sigma_i=0^n x^i * a_i 'power' : a * x ^ b 'sin' : a * sin(b * x + c) + d """ if params is None: params = lmfit.Parameters() self._model = model self._params = params try: self._x, self._y = kws['x'], kws['y'] except: self._x, self._y = [], [] try: self.n = kws['n'] except: self.n = 1 # when model is polynomial, highest order self.n += 1 # range(n + 1): [0, n] # data fitting window self.x_fit_min, self.x_fit_max = kws.get('xmin'), kws.get('xmax') # fitting method self._method = 'leastsq' self._set_params_func = { 'gaussian': self._set_params_gaussian, 'polynomial': self._set_params_polynomial, } self._fitfunc = { 'gaussian': self._fit_gaussian, 'polynomial': self._fit_polynomial, } self._gen_func_text = { 'gaussian': self._gen_func_text_gaussian, 'polynomial': self._gen_func_text_polynomial, } self._fit_result = None @property def model(self): return self._model @model.setter def mode(self, model): self._model = model @property def method(self): return self._method @method.setter def method(self, method): self._method = method def _fit_gaussian(self, p, x): a = p['a'].value x0 = p['x0'].value y0 = p['y0'].value xstd = p['xstd'].value return a * np.exp(-(x - x0)**2.0 / 2.0 / xstd / xstd) + y0 def _fit_polynomial(self, p, x): f = 0 for i in range(self.n): f += p['a' + str(i)].value * x**i return f def _errfunc(self, p, f, x, y): return f(p, x) - y def set_data(self, data=None, x=None, y=None): """ set raw data to fit """ if data is not None: self._x, self._y = data[:, 0], data[:, 1] else: if x is not None: self._x = x if y is not None: self._y = y def get_data(self): """ return raw data """ return self._x, self._y def _set_fitfunc(self, type=None): """ type: gaussian, linear, quadratic, polynomial, power, sin """ if type is not None: self._model = type def _gen_func_text_gaussian(self, p0): a = p0['a'].value x0 = p0['x0'].value y0 = p0['y0'].value xstd = p0['xstd'].value retfun = '$f(x) = a e^{-\\frac{(x-x_0)^2}{2\sigma_x^2}}+y_0$' retcoe = '$a = %.3f, x_0 = %.3f, \sigma_x = %.3f, y_0 = %.3f$' % (a, x0, xstd, y0) return {'func': retfun, 'fcoef': retcoe} def _gen_func_text_polynomial(self, p0): retfun = '$f(x) = \sum_{i=0}^{%s}\,a_i x^i$' % (self.n) retcoe = ','.join([ '$a_{%d} = %.3f$' % (i, p0['a' + str(i)].value) for i in range(self.n) ]) return {'func': retfun, 'fcoef': retcoe} def set_params(self, **p0): """p0: initial parameters dict""" self._set_params_func[self._model](p0) def _set_params_gaussian(self, p0): self._params.add('a', value=p0['a']) self._params.add('x0', value=p0['x0']) self._params.add('y0', value=p0['y0']) self._params.add('xstd', value=p0['xstd']) def _set_params_polynomial(self, p0): for i in range(self.n): pi_name = 'a' + str(i) self._params.add(pi_name, value=p0[pi_name]) def get_fitfunc(self, p0=None): if p0 is None: p0 = self._fit_result.params f_func = self._fitfunc[self._model] gen_func = self._gen_func_text[self._model] f_text = gen_func(p0) return f_func, f_text def get_fit_result(self): return self._fit_result def fit(self): p = self._params f = self._fitfunc[self._model] x, y = self._x, self._y xmin = self.x_fit_min if self.x_fit_min is not None else x.min() xmax = self.x_fit_max if self.x_fit_max is not None else x.max() x_fit, idx = get_range(x, xmin, xmax) y_fit = y[idx] m = self._method res = lmfit.minimize( self._errfunc, p, method=m, args=(f, x_fit, y_fit)) self._fit_result = res return res def fit_report(self): # gaussian model if self._model == 'gaussian': if self._fit_result is not None: p = self._fit_result.params retstr1 = "Fitting Function:" + "\n" retstr2 = "a*exp(-(x-x0)^2/2/sx^2)+y0" + "\n" retstr3 = "Fitting Output:" + "\n" retstr4 = "{a0_k:<3s}: {a0_v:>10.4f}\n".format( a0_k='a', a0_v=p['a'].value) retstr5 = "{x0_k:<3s}: {x0_v:>10.4f}\n".format( x0_k='x0', x0_v=p['x0'].value) retstr6 = "{sx_k:<3s}: {sx_v:>10.4f}\n".format( sx_k='sx', sx_v=p['xstd'].value) retstr7 = "{y0_k:<3s}: {y0_v:>10.4f}".format( y0_k='y0', y0_v=p['y0'].value) return retstr1 + retstr2 + retstr3 + retstr4 + retstr5 + retstr6 + retstr7 else: return "Nothing to report." elif self._model == 'polynomial': if self._fit_result is not None: p = self._fit_result.params retstr = "Fitting Function:" + "\n" fstr = '+'.join( ['a' + str(i) + '*x^' + str(i) for i in range(self.n)]) fstr = fstr.replace('*x^0', '') fstr = fstr.replace('x^1', 'x') retstr += fstr + '\n' retstr += "Fitting Output:" + "\n" for i in range(self.n): ki = 'a' + str(i) retstr += "{k:<3s}: {v:>10.4f}\n".format( k=ki, v=p[ki].value) return retstr else: return "Nothing to report." def calc_p0(self): """ return p0 from input x, y """ if self._model == 'gaussian': x, xdata = self._x, self._y x0 = np.sum(x * xdata) / np.sum(xdata) p0 = { 'a': xdata.max(), 'x0': x0, 'xstd': (np.sum((x - x0)**2 * xdata) / np.sum(xdata))**0.5, 'y0': 0, } elif self._model == 'polynomial': p0 = {'a' + str(i): 1 for i in range(self.n)} return p0 def get_randstr(length=1): """ return string of random picked up chars :param length: string length to return """ chars = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz' retval = ''.join([random.choice(chars) for _ in range(length)]) return retval def get_file_info(filepath): """ return file information :param filepath: file full path name """ f_info = os.stat(filepath) f_ctime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(f_info.st_ctime)) f_size_bytes = f_info.st_size f_name = os.path.basename(filepath) return {'name': f_name, 'ctime': f_ctime, 'bytes': f_size_bytes} def gaussian_fit(x, xdata, mode='full'): """ return fit result and fitmodels :param x: data to fit, x col, numpy array :param xdata: data to fit, y col, numpy array """ fm = FitModels() x0 = np.sum(x * xdata) / np.sum(xdata) p0 = { 'a': xdata.max(), 'x0': x0, 'xstd': (np.sum((x - x0)**2 * xdata) / np.sum(xdata))**0.5, 'y0': 0 } fm.set_data(x=x, y=xdata) fm.set_params(**p0) res = fm.fit() if mode == 'full': return res, fm elif mode == 'simple': return [res.params[k].value for k in ('x0', 'xstd')] class AnalysisPlotPanel(uiutils.MyPlotPanel): def __init__(self, parent, data=None, **kwargs): """ data: m x n image array """ if data is None: x = y = np.linspace(-np.pi, np.pi, 100) xx, yy = np.meshgrid(x, y) data = func_sinc(xx, yy) #data = np.zeros([50, 50]) self.data = data self.cmap = 'jet' # axis directions self.xaxis_direction = True # left->right: small->big self.yaxis_direction = True # bottom->up : small->big self.line_color = wx.Colour(255, 165, 0).GetAsString(wx.C2S_HTML_SYNTAX) self.mec = wx.Colour(255, 0, 0).GetAsString(wx.C2S_HTML_SYNTAX) self.mfc = wx.Colour(255, 0, 0).GetAsString(wx.C2S_HTML_SYNTAX) # pos markers M1 and M2 self.mkc1 = wx.Colour(255, 0, 0).GetAsString(wx.C2S_HTML_SYNTAX) self.mkc2 = wx.Colour(240, 230, 140).GetAsString(wx.C2S_HTML_SYNTAX) self.pcc = wx.Colour(0, 0, 0).GetAsString(wx.C2S_HTML_SYNTAX) self.mk1, self.mk2 = False, False uiutils.MyPlotPanel.__init__(self, parent, **kwargs) # specific relationship between self and the parent? frame self.mframe_point = self.parent.GetParent().GetParent() def set_color(self, rgb_tuple): """ set figure and canvas with the same color. :param rgb_tuple: rgb color tuple, e.g. (255, 255, 255) for white color """ if rgb_tuple is None: rgb_tuple = wx.SystemSettings.GetColour( wx.SYS_COLOUR_WINDOWFRAME).Get() clr = [c / 255.0 for c in rgb_tuple] self.figure.set_facecolor(clr) self.figure.set_edgecolor(clr) def _init_plot(self): pass def on_press(self, event): if event.inaxes: x0, y0 = event.xdata, event.ydata self.draw_hvlines(x0, y0) def on_release(self, event): pass #x0, y0 = event.xdata, event.ydata #self.x0, self.y0 = x0, y0 def set_markflags(self, mk1=False, mk2=False): self.mk1, self.mk2 = mk1, mk2 try: if self.mk1 == True: self._draw_hvlines1(self.x_pos1, self.y_pos1) elif self.mk2 == True: self._draw_hvlines2(self.x_pos2, self.y_pos2) except: return def set_mkc1(self, color): self.mkc1 = color def set_mkc2(self, color): self.mkc2 = color def set_pcc(self, color): self.pcc = color if hasattr(self, 'pc1'): self.pc1.set_mec(color) self.pc1.set_mfc(color) if hasattr(self, 'pc2'): self.pc2.set_mec(color) self.pc2.set_mfc(color) if hasattr(self, 'plbl1'): self.plbl1.set_color(color) if hasattr(self, 'plbl2'): self.plbl2.set_color(color) self.refresh() def draw_hvlines(self, x0, y0): if self.mk1 == True: self._draw_hvlines1(x0, y0) elif self.mk2 == True: self._draw_hvlines2(x0, y0) try: self.update_deltxy() except: pass def _draw_hvlines1(self, x0, y0): if hasattr(self, 'hl1'): self.hl1.set_ydata([y0, y0]) else: self.hl1 = self.axes.axhline(y0, ls='--') self.hl1.set_color(self.mkc1) if hasattr(self, 'vl1'): self.vl1.set_xdata([x0, x0]) else: self.vl1 = self.axes.axvline(x0, ls='--') self.vl1.set_color(self.mkc1) if hasattr(self, 'pc1'): self.pc1.set_data(x0, y0) else: self.pc1, = self.axes.plot(x0, y0, 'ko', ms=6, mfc='k', mec='k') self.pc1.set_mec(self.pcc) self.pc1.set_mfc(self.pcc) if hasattr(self, 'plbl1'): self.plbl1.set_position((x0, y0)) else: self.plbl1 = self.axes.text(x0, y0, r'$\mathsf{M1}$', fontsize=16) self.plbl1.set_color(self.pcc) self.x_pos1, self.y_pos1 = x0, y0 try: self.mframe_point.m1_pos_st.SetLabel( '{0:.1f},{1:.1f}'.format(x0, y0)) except: pass self.refresh() def _draw_hvlines2(self, x0, y0): if hasattr(self, 'hl2'): self.hl2.set_ydata([y0, y0]) else: self.hl2 = self.axes.axhline(y0, color='r', ls='--') self.hl2.set_color(self.mkc2) if hasattr(self, 'vl2'): self.vl2.set_xdata([x0, x0]) else: self.vl2 = self.axes.axvline(x0, color='r', ls='--') self.vl2.set_color(self.mkc2) if hasattr(self, 'pc2'): self.pc2.set_data(x0, y0) else: self.pc2, = self.axes.plot(x0, y0, 'ko', ms=6, mfc='k', mec='k') self.pc2.set_mec(self.pcc) self.pc2.set_mfc(self.pcc) if hasattr(self, 'plbl2'): self.plbl2.set_position((x0, y0)) else: self.plbl2 = self.axes.text(x0, y0, r'$\mathsf{M2}$', fontsize=16) self.plbl2.set_color(self.pcc) self.x_pos2, self.y_pos2 = x0, y0 try: self.mframe_point.m2_pos_st.SetLabel( '{0:.1f},{1:.1f}'.format(x0, y0)) except: pass self.refresh() def update_deltxy(self): m1_pos_val = self.mframe_point.m1_pos_st.GetLabel() m2_pos_val = self.mframe_point.m2_pos_st.GetLabel() if m1_pos_val != '' and m2_pos_val != '': x1, y1 = [float(i) for i in m1_pos_val.split(',')] x2, y2 = [float(i) for i in m2_pos_val.split(',')] dx = abs(x1 - x2) dy = abs(y1 - y2) self.mframe_point.delx_val_st.SetLabel("{0:.1f}".format(dx)) self.mframe_point.dely_val_st.SetLabel("{0:.1f}".format(dy)) def set_colormap(self, cmap): self.cmap = cmap self.image.set_cmap(cmap) self.refresh() def set_linecolor(self, color): self.line_color = color [line.set_color(color) for line in self.line_list] self.refresh() def set_fontsize(self, fontsize): x_lbl = self.axes.get_xlabel() y_lbl = self.axes.get_ylabel() self.axes.set_xlabel(x_lbl, fontsize=fontsize + 4) self.axes.set_ylabel(y_lbl, fontsize=fontsize + 4) self.axes.tick_params(labelsize=fontsize) self.refresh() def set_line_id(self, line='raw'): """ selected current editable line, 'raw': raw data 'fitted': fitted lines 'none': hide all lines 'show': show all lines """ if line == 'none': self.linex.set_visible(False) self.liney.set_visible(False) self.linex_fit.set_visible(False) self.liney_fit.set_visible(False) self.line_list = [] elif line == 'show': self.linex.set_visible(True) self.liney.set_visible(True) self.linex_fit.set_visible(True) self.liney_fit.set_visible(True) self.line_list = [ self.linex, self.liney, self.linex_fit, self.liney_fit ] elif line == 'raw': self.linex.set_visible(True) self.liney.set_visible(True) self.linex_fit.set_visible(False) self.liney_fit.set_visible(False) self.line_list = [self.linex, self.liney] elif line == 'fit': self.linex.set_visible(False) self.liney.set_visible(False) self.linex_fit.set_visible(True) self.liney_fit.set_visible(True) self.line_list = [self.linex_fit, self.liney_fit] self.refresh() def set_lines(self): if self.data is None: return data = self.data hx, hy = np.sum(data, 0), np.sum(data, 1) idxmaxx, idxmaxy = np.where(hx == hx.max()), np.where(hy == hy.max()) maxidx, maxidy = idxmaxx[0][0], idxmaxy[0][0] x, y = np.arange(hx.size), np.arange(hy.size) hx = hx / hx.max() * maxidy hy = hy / hy.max() * maxidx res_x, fm_x = gaussian_fit(x, hx) res_y, fm_y = gaussian_fit(y, hy) self.linex, = self.axes.plot(x, hx) self.liney, = self.axes.plot(hy, y) self.linex.set_color(self.line_color) self.liney.set_color(self.line_color) self.linex.set_marker('') self.linex.set_markersize(5) self.linex.set_mec(self.mec) self.linex.set_mfc(self.mfc) self.liney.set_marker('') self.liney.set_markersize(5) self.liney.set_mec(self.mec) self.liney.set_mfc(self.mfc) # fitted lines x_fit = np.linspace(x.min(), x.max(), 200) y_fit = np.linspace(y.min(), y.max(), 200) fx, tx = fm_x.get_fitfunc(res_x.params) fy, ty = fm_y.get_fitfunc(res_y.params) self.linex_fit, = self.axes.plot(x_fit, fx(res_x.params, x_fit)) self.liney_fit, = self.axes.plot(fy(res_y.params, y_fit), y_fit) self.linex_fit.set_color(self.line_color) self.liney_fit.set_color(self.line_color) self.linex_fit.set_marker('') self.linex_fit.set_markersize(5) self.linex_fit.set_mec(self.mec) self.linex_fit.set_mfc(self.mfc) self.liney_fit.set_marker('') self.liney_fit.set_markersize(5) self.liney_fit.set_mec(self.mec) self.liney_fit.set_mfc(self.mfc) self.axes.set_xlim([x.min(), x.max()]) self.axes.set_ylim([y.min(), y.max()]) # hide all lines self.linex.set_visible(False) self.liney.set_visible(False) self.linex_fit.set_visible(False) self.liney_fit.set_visible(False) self.refresh() self.res_x, self.res_y = res_x, res_y self.line_list = [] def get_fit_report(self, xoy='x'): """ return fitting report if success, else return None """ if xoy == 'x': p = self.res_x.params else: p = self.res_y.params retstr2 = "f(x) = a*exp(-(x-x0)^2/2/sx^2)+y0" + "\n" retstr4 = " {a0_k:<3s}: {a0_v:>10.4f}\n".format( a0_k='a', a0_v=p['a'].value) retstr5 = " {x0_k:<3s}: {x0_v:>10.4f}\n".format( x0_k='x0', x0_v=p['x0'].value) retstr6 = " {sx_k:<3s}: {sx_v:>10.4f}\n".format( sx_k='sx', sx_v=p['xstd'].value) retstr7 = " {y0_k:<3s}: {y0_v:>10.4f}".format( y0_k='y0', y0_v=p['y0'].value) retval = retstr2 + retstr4 + retstr5 + retstr6 + retstr7 if 'nan' in retval: return None else: return retval def set_figure_data(self, data, fit=True): self.data = data if not hasattr(self, 'axes'): self.axes = self.figure.add_subplot(111, aspect=1.0) self.z = data self.image = self.axes.imshow(self.z, cmap=self.cmap) if fit: self.set_lines() else: dimx, dimy = self.z.shape x, y = np.arange(dimy), np.arange(dimx) self.image.set_extent([x.min(), x.max(), y.min(), y.max()]) self.refresh() def set_linestyle(self, ls): [line.set_linestyle(ls) for line in self.line_list] self.refresh() def set_marker(self, mk): [line.set_marker(mk) for line in self.line_list] self.refresh() def set_markersize(self, ms): [line.set_markersize(ms) for line in self.line_list] self.refresh() def set_mec(self, c): self.mec = c [line.set_mec(c) for line in self.line_list] self.refresh() def set_mfc(self, c): self.mfc = c [line.set_mfc(c) for line in self.line_list] self.refresh() def set_linewidth(self, lw): [line.set_linewidth(lw) for line in self.line_list] self.refresh() def set_ticks(self, flag='half'): # ticks position if flag == 'half': s = ['on', 'on', 'off', 'off'] self.axes.tick_params(labelbottom=s[0]) self.axes.tick_params(labelleft=s[1]) self.axes.tick_params(labeltop=s[2]) self.axes.tick_params(labelright=s[3]) elif flag == 'all': s = ['on', 'on', 'on', 'on'] self.axes.tick_params(labelbottom=s[0]) self.axes.tick_params(labelleft=s[1]) self.axes.tick_params(labeltop=s[2]) self.axes.tick_params(labelright=s[3]) self.refresh() def set_mticks(self, flag='off'): if flag == 'on': self.axes.minorticks_on() self.refresh() elif flag == 'off': self.axes.minorticks_off() self.refresh() def set_grids(self, color, b=None, which='major'): if b is None: self.axes.grid(which=which, color=color, linestyle='--') else: self.axes.grid(b=False) self.refresh() def set_origin(self, ll=False, ul=False, ur=False, lr=False): if ll: self.direct_xyaxis(True, True) self.axes.xaxis.set_ticks_position('bottom') self.axes.yaxis.set_ticks_position('left') self.axes.xaxis.set_label_position('bottom') self.axes.yaxis.set_label_position('left') if ul: self.direct_xyaxis(True, False) self.axes.xaxis.set_ticks_position('top') self.axes.yaxis.set_ticks_position('left') self.axes.xaxis.set_label_position('top') self.axes.yaxis.set_label_position('left') if ur: self.direct_xyaxis(False, False) self.axes.xaxis.set_ticks_position('top') self.axes.yaxis.set_ticks_position('right') self.axes.xaxis.set_label_position('top') self.axes.yaxis.set_label_position('right') if lr: self.direct_xyaxis(False, True) self.axes.xaxis.set_ticks_position('bottom') self.axes.yaxis.set_ticks_position('right') self.axes.xaxis.set_label_position('bottom') self.axes.yaxis.set_label_position('right') self.refresh() def get_clim(self): clim = self.image.get_clim() return "{cmin:.1f} : {cmax:.1f}".format(cmin=clim[0], cmax=clim[1]) def set_clim(self, cr): clim = sorted(float(i) for i in cr.split(':')) self.image.set_clim(clim) self.refresh() def direct_xyaxis(self, x_direction, y_direction): if self.xaxis_direction != x_direction: self.axes.invert_xaxis() self.xaxis_direction = x_direction if self.yaxis_direction != y_direction: self.axes.invert_yaxis() self.yaxis_direction = y_direction def hide_image(self, hide_flag): self.image.set_visible(not hide_flag) self.refresh() def clear(self): if hasattr(self, 'axes'): self.axes.cla() def get_data(self): """ return data: image, raw data, fit data """ data = {} data['raw'] = {} data['fit'] = {} data['attr'] = {} data['image'] = self.image.get_array() data['raw']['prof_x'] = self.linex.get_data() data['raw']['prof_y'] = self.liney.get_data() data['fit']['prof_x'] = self.linex_fit.get_data() data['fit']['prof_y'] = self.liney_fit.get_data() data['attr']['x0'] = self.res_x.params['x0'].value data['attr']['sx'] = self.res_x.params['xstd'].value data['attr']['y0'] = self.res_y.params['x0'].value data['attr']['sy'] = self.res_y.params['xstd'].value return data class ScanPlotPanel(AnalysisPlotPanel): def __init__(self, parent, data=None, **kws): AnalysisPlotPanel.__init__(self, parent, data, **kws) self.line_mean = None self.eb_mks = None self.eb_lines = None self.line_fit = None self.pick_obj_text = None self._init_config() self._init_plot_new() def _init_plot(self): pass def _init_plot_new(self): self.x, self.y, self.xerrarr, self.yerrarr = np.nan, np.nan, np.nan, np.nan if not hasattr(self, 'axes'): self.axes = self.figure.add_subplot(111) self.ebplot = self.axes.errorbar( self.x, self.y, xerr=self.xerrarr, yerr=self.yerrarr, fmt=self.eb_fmt, color=self.avg_linecolor, linewidth=self.avg_lw, ls=self.avg_ls, marker=self.avg_marker, ms=self.avg_ms, mfc=self.avg_mfc, mec=self.avg_mec, elinewidth=self.eb_lw, ecolor=self.eb_markercolor, capsize=self.eb_markersize, capthick=self.eb_mew, ) self.line_mean, self.eb_mks, self.eb_lines = self.ebplot self._edit_obj = { 'marker': [ self.line_mean, ], 'line': [ self.line_mean, ] } self.pick_pt = {} self.line_mean.set_picker(5) self.canvas.draw() def _init_config(self): self.eb_fmt = '' self.eb_markercolor = '#1E90FF' self.eb_markersize = 10 self.eb_mew = 2 self.eb_lw = 1 self.avg_ls = '--' self.avg_lw = 1 self.avg_linecolor = 'g' self.avg_mfc = 'r' self.avg_mec = 'r' self.avg_ms = 10 self.avg_marker = 'H' def get_edit_obj(self): return self._edit_obj def get_mean_line(self): return self.line_mean def get_errorbar_mks(self): return self.eb_mks def get_errorbar_line(self): return self.eb_lines def get_fit_line(self): return self.line_fit def set_fit_model(self, model='gaussian', **kws): x, y = self.x, self.y fit_model = FitModels(model=model, **kws) fit_model.method = 'leastsq' fit_model.set_data(x=x, y=y) p0 = fit_model.calc_p0() fit_model.set_params(**p0) fit_res = fit_model.fit() fx, tx = fit_model.get_fitfunc(fit_res.params) self.fx = fx self.fit_res = fit_res self.fit_model = fit_model def set_fit_line(self, point_num=200, **kws): """ apply fitting model to average curve """ try: self.line_fit.remove() except: pass x = self.x x_fit_min, x_fit_max = kws.get('xmin'), kws.get('xmax') xmin = x_fit_min if x_fit_min is not None else x.min() xmax = x_fit_max if x_fit_max is not None else x.max() x_fit = np.linspace(xmin, xmax, point_num) y_fit = self.fx(self.fit_res.params, x_fit) self.line_fit, = self.axes.plot(x_fit, y_fit, 'b', ls='solid', lw=2) self.refresh() def get_fit_result(self): return self.fit_res def get_fit_model(self): return self.fit_model def hide_fit_line(self): self.line_fit.set_visible(False) self.refresh() def set_line_id(self, line='Average Curve'): """ selected current editable line, 'Average Curve': curve of mean value of every iteration 'Errorbars' : errorbars, x and y 'Fitting Curve': fitting curve of average curve """ if line == 'Average Curve': self._edit_obj = { 'marker': [self.line_mean], 'line': [ self.line_mean, ] } elif line == 'Errorbars': self._edit_obj = {'marker': self.eb_mks, 'line': self.eb_lines} elif line == 'Fitting Curve': self._edit_obj = { 'marker': [ self.line_fit, ], 'line': [ self.line_fit, ] } def repaint(self): self.adjustErrbar(self.ebplot, self.x, self.y, self.xerrarr, self.yerrarr) self.axes.relim() self.axes.autoscale_view(False, True, True) self.refresh() def adjustErrbar(self, err, x, y, x_error, y_error): ln, (errx_top, errx_bot, erry_top, erry_bot), (barsx, barsy) = err ln.set_data(x, y) x_base = x y_base = y xerr_top = x_base + x_error xerr_bot = x_base - x_error yerr_top = y_base + y_error yerr_bot = y_base - y_error errx_top.set_xdata(xerr_top) errx_bot.set_xdata(xerr_bot) errx_top.set_ydata(y_base) errx_bot.set_ydata(y_base) erry_top.set_xdata(x_base) erry_bot.set_xdata(x_base) erry_top.set_ydata(yerr_top) erry_bot.set_ydata(yerr_bot) new_segments_x = [ np.array([[xt, y], [xb, y]]) for xt, xb, y in zip(xerr_top, xerr_bot, y_base) ] new_segments_y = [ np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(x_base, yerr_top, yerr_bot) ] barsx.set_segments(new_segments_x) barsy.set_segments(new_segments_y) def on_motion(self, event): if event.inaxes: x0, y0 = event.xdata, event.ydata self.pos_st.SetLabel('({x:<.4f}, {y:<.4f})'.format(x=x0, y=y0)) #self._draw_hvlines1(x0, y0) def set_linecolor(self, color): [line.set_color(color) for line in self._edit_obj['line']] self.refresh() def set_linestyle(self, ls): [line.set_linestyle(ls) for line in self._edit_obj['line']] self.refresh() def set_linewidth(self, lw): [line.set_linewidth(lw) for line in self._edit_obj['line']] self.refresh() def set_marker(self, mk): [line.set_marker(mk) for line in self._edit_obj['marker']] self.refresh() def set_mks(self, mks): [line.set_markersize(mks) for line in self._edit_obj['marker']] self.refresh() def set_mew(self, mew): [line.set_mew(mew) for line in self._edit_obj['marker']] self.refresh() def set_mfc(self, color): [line.set_mfc(color) for line in self._edit_obj['marker']] self.refresh() def set_mec(self, color): l = self._edit_obj['marker'] [line.set_mec(color) for line in self._edit_obj['marker']] self.refresh() def set_grid(self): self.axes.grid() self.refresh() def set_legend(self, **kws): show_val = kws.get('show') if not show_val: self.legend_box.set_visible(False) else: try: l_avg = kws.get( 'avg') if kws.get('avg') is not None else 'Average' l_fit = kws.get( 'fit') if kws.get('fit') is not None else 'Fitting' self.line_mean.set_label(l_avg) self.line_fit.set_label(l_fit) self.legend_box = self.axes.legend() self.legend_box.set_visible(True) except: pass self.refresh() def set_title(self, **kws): show_val = kws.get('show') if not show_val: # if auto_title is ticked, show title, else not self.title_box.set_visible(False) else: time_now = time.strftime('%Y-%m-%d %H:%M:%S %Z', time.localtime()) title_str = kws.get( 'title') if kws.get('title') is not None else time_now self.title_box = self.axes.set_title(title_str) self.title_box.set_visible(True) self.refresh() def set_xlabel(self, **kws): show_val = kws.get('show') if not show_val: self.xlabel_box.set_visible(False) else: xlabel_str = kws.get( 'xlabel') if kws.get('xlabel') is not None else u'$x$' self.xlabel_box = self.axes.set_xlabel(xlabel_str) self.xlabel_box.set_visible(True) self.refresh() def set_text(self, text, **kws): """ set fitting result output as a Text object :param text: fitting result text from FitModels class available keys of kws:, x, y, fontsize """ if hasattr(self, 'func_text'): self.func_text.remove() if kws.get('x') is None or kws.get('y') is None: self.func_text = self.axes.text( 0., 0., text, bbox=dict(facecolor='#E6E5E4', alpha=0.5), transform=self.axes.transData, fontsize=kws.get('fontsize')) else: self.func_text = self.axes.text( kws['x'], kws['y'], text, bbox=dict(facecolor='#E6E5E4', alpha=0.5), fontsize=kws.get('fontsize')) self.func_text.set_picker(True) self.refresh() def update_text(self, **kws): """ available keys of kws:, x, y, fontsize """ fs = kws.get('fontsize') if fs is None: fs = self.func_text.get_fontsize() self.func_text.set_fontsize(fs) x, y = kws.get('x'), kws.get('y') o_x, o_y = self.func_text.get_position() if x is not None: o_x = x if y is not None: o_y = y self.func_text.set_position((o_x, o_y)) self.refresh() def on_pick(self, event): if isinstance(event.artist, mText): self.pick_obj_text = event.artist self.pick_pos = event.mouseevent.xdata, event.mouseevent.ydata if isinstance(event.artist, mLine): self.pick_obj_p0 = event.artist idx = event.ind x, y = self.pick_obj_p0.get_data() x0, y0 = np.take(x, idx), np.take(y, idx) if self.pick_pt.get(idx[0]) is None: pt0, = self.axes.plot(x0, y0) pt0.set_marker(self.pick_obj_p0.get_marker()) pt0.set_ms(self.pick_obj_p0.get_ms()) pt0.set_mew(2.0) ic = invert_color_hex(color_to_hex(self.pick_obj_p0.get_mfc())) pt0.set_mec(ic) pt0.set_mfc(ic) self.pick_pt[idx[0]] = pt0 else: self.pick_pt[idx[0]].remove() self.pick_pt.pop(idx[0]) self.refresh() def get_pick_pt(self): """ return picked points dict {k:v}, k: index, v: drawing artist """ return self.pick_pt def clear_pick_pt(self): """ clear picked points (which are picked for retaking) """ for k, v in self.pick_pt.iteritems(): v.remove() self.pick_pt.clear() self.refresh() def on_press(self, event): pass #print event.xdata, event.ydata def on_release(self, event): if event.inaxes: n_x, n_y = event.xdata, event.ydata if self.pick_obj_text is not None: o_x, o_y = self.pick_obj_text.get_position() x = o_x + n_x - self.pick_pos[0] y = o_y + n_y - self.pick_pos[1] self.pick_obj_text.set_position((x, y)) self.pick_obj_text = None self.refresh() def pick_color(): dlg = wx.ColourDialog(None) dlg.GetColourData().SetChooseFull(True) # only windows if dlg.ShowModal() == wx.ID_OK: color = dlg.GetColourData().GetColour() dlg.Destroy() return color def set_staticbmp_color(obj, color): """ obj: staticbitmap, bitmapbutton color: could be returned by pick_color() """ r, g, b = color.Red(), color.Green(), color.Blue() w, h = 16, 16 bmp = wx.Bitmap(w, h) img = bmp.ConvertToImage() img.SetRGB(wx.Rect(0, 0, w, h), r, g, b) obj.SetBitmap(wx.Bitmap(img)) def get_range(x, xmin, xmax): """ find array range, :param x: orignal numpy array, 1d :param xmin: x min of range :param xmax: x max of range return range_index and array """ if xmin >= xmax: return x, np.arange(x.size) idx1, idx2 = np.where(x > xmin), np.where(x < xmax) idx = np.intersect1d(idx1, idx2) return x[idx], idx def color_to_hex(c): """ convert matplotlib colors into hex string format, e.g. 1 color_to_hex('r') = '#FF0000' 2 color_to_hex('red') = '#FF0000' 3 color_to_hex('#FF0000') = '#FF0000' """ if c.startswith('#'): clr = c else: try: clr = colors.rgb2hex(colors.colorConverter.colors[c]) except: clr = colors.cnames[c] return clr def invert_color_hex(hex_color_str): """ invert hex colors, e.g. invert_color_hex('#FFFFFF') = '#000000' """ table = string.maketrans('0123456789abcdef', 'fedcba9876543210') hex_str = str(hex_color_str[1:].lower()) return '#' + hex_str.translate(table).upper()
mit
haesemeyer/RegionSelector
utilities.py
1
4881
import pyqtgraph as pg import matplotlib.path as mpath import h5py import numpy as np import warnings class RegionContainer: """ Container for saving and loading RegionROI information """ def __init__(self, positions, region_name: str, z_index: int): """ Create a new RegionContainer :param positions: The polygon vertices of the ROI :param region_name: The name of this region :param z_index: The index of the z-plane that this ROI came from """ self.positions = positions self.region_name = region_name self.z_index = z_index def point_in_region(self, point): """ Tests whether a point is within the region or outside :param point: The test point :return: True if the point is within the region False if on a boundary or outside """ # even when setting closed to True we still need to supply the first point twice poly_path = mpath.Path(self.positions + [self.positions[0]], closed=True) return poly_path.contains_point(point) @staticmethod def save_container_list(container_list, dfile: h5py.File): """ Saves a list of RegionContainer objects to an hdf5 file :param container_list: The list of RegionContainer objects to save :param dfile: Handle of hdf5 file to which the list should be saved """ key = 0 for rc in container_list: while str(key) in dfile: key += 1 dfile.create_group(str(key)) dfile[str(key)].create_dataset(name="positions", data=np.vstack(rc.positions)) dfile[str(key)].create_dataset(name="region_name", data=rc.region_name) dfile[str(key)].create_dataset(name="z_index", data=rc.z_index) @staticmethod def load_container_list(dfile: h5py.File): """ Loads a list of RegionContainer objects from an hdf5 file :param dfile: Handle of hdf5 file from which list should be loaded :return: A list of RegionContainer objects """ container_list = [] for k in dfile.keys(): try: pos = np.array(dfile[k]["positions"]) pos = [(p[0], p[1]) for p in pos] rn = str(np.array(dfile[k]["region_name"])) zi = int(np.array(dfile[k]["z_index"])) rc = RegionContainer(pos, rn, zi) container_list.append(rc) except KeyError: warnings.warn("Found non RegionContainer object in file {0}".format(dfile.filename)) continue return container_list # Class RegionContainer class RegionROI(pg.PolyLineROI): """ Extension of pyqtgraph's PolyLineROI """ def __init__(self, positions, tag_id, region_name: str, z_index: int, **args): """ Create new region ROI :param positions: The vertex positions of the new ROI :param tag_id: A unique ROI id :param region_name: The name associated with this region :param z_index: The index of the z-plane that contains this ROI :param args: Other arguments passed to PolyLineROI """ self.tag_id = tag_id self.z_index = z_index if region_name == "": region_name = str(tag_id) self.region_name = region_name super().__init__(positions, closed=True, **args) def get_vertex_list(self): """ Obtain the handles/vertices of this ROI :return: list of (x, y) tuples with the image-vertex coordinates """ plist = self.getLocalHandlePositions() transform = self.getGlobalTransform({'pos': pg.Point(0, 0), 'size': pg.Point(1, 1), 'angle': 0}) assert transform.getAngle() == 0.0 assert transform.getScale()[0] == 1 assert transform.getScale()[1] == 1 tx = transform.getTranslation()[0] ty = transform.getTranslation()[1] return [(p[1].x() + tx, p[1].y() + ty) for p in plist] def get_container(self): """ Copies the non-ui related ROI information to a simple container object for saving :return: A RegionContainer object with all important information """ return RegionContainer(self.get_vertex_list(), self.region_name, self.z_index) @staticmethod def from_container(container: RegionContainer, tag_id, **args): """ Creates a new RegionROI from a container object :param container: The container with the ROI information :param tag_id: A unique ROI id :param args: Other arguments passed to PolyLineROI :return: A new RegionROI object corresponding to the container """ return RegionROI(container.positions, tag_id, container.region_name, container.z_index, **args) # Class RegionROI
mit
redreamality/tushare
setup.py
21
2592
from setuptools import setup, find_packages import codecs import os import tushare def read(fname): return codecs.open(os.path.join(os.path.dirname(__file__), fname)).read() long_desc = """ TuShare =============== .. image:: https://api.travis-ci.org/waditu/tushare.png?branch=master :target: https://travis-ci.org/waditu/tushare .. image:: https://badge.fury.io/py/tushare.png :target: http://badge.fury.io/py/tushare * easy to use as most of the data returned are pandas DataFrame objects * can be easily saved as csv, excel or json files * can be inserted into MySQL or Mongodb Target Users -------------- * financial market analyst of China * learners of financial data analysis with pandas/NumPy * people who are interested in China financial data Installation -------------- pip install tushare Upgrade --------------- pip install tushare --upgrade Quick Start -------------- :: import tushare as ts ts.get_hist_data('600848') return:: open high close low volume p_change ma5 \ date 2012-01-11 6.880 7.380 7.060 6.880 14129.96 2.62 7.060 2012-01-12 7.050 7.100 6.980 6.900 7895.19 -1.13 7.020 2012-01-13 6.950 7.000 6.700 6.690 6611.87 -4.01 6.913 2012-01-16 6.680 6.750 6.510 6.480 2941.63 -2.84 6.813 2012-01-17 6.660 6.880 6.860 6.460 8642.57 5.38 6.822 2012-01-18 7.000 7.300 6.890 6.880 13075.40 0.44 6.788 2012-01-19 6.690 6.950 6.890 6.680 6117.32 0.00 6.770 2012-01-20 6.870 7.080 7.010 6.870 6813.09 1.74 6.832 """ setup( name='tushare', version=tushare.__version__, description='A utility for crawling historical and Real-time Quotes data of China stocks', # long_description=read("READM.rst"), long_description = long_desc, author='Jimmy Liu', author_email='[email protected]', license='BSD', url='http://tushare.org', keywords='china stock data', classifiers=['Development Status :: 4 - Beta', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'License :: OSI Approved :: BSD License'], packages=['tushare','tushare.stock','tushare.data','tushare.util'], package_data={'': ['*.csv']}, )
bsd-3-clause
MJuddBooth/pandas
pandas/core/computation/engines.py
4
3796
""" Engine classes for :func:`~pandas.eval` """ import abc from pandas.compat import map from pandas import compat from pandas.core.computation.align import _align, _reconstruct_object from pandas.core.computation.ops import ( UndefinedVariableError, _mathops, _reductions) import pandas.io.formats.printing as printing _ne_builtins = frozenset(_mathops + _reductions) class NumExprClobberingError(NameError): pass def _check_ne_builtin_clash(expr): """Attempt to prevent foot-shooting in a helpful way. Parameters ---------- terms : Term Terms can contain """ names = expr.names overlap = names & _ne_builtins if overlap: s = ', '.join(map(repr, overlap)) raise NumExprClobberingError('Variables in expression "{expr}" ' 'overlap with builtins: ({s})' .format(expr=expr, s=s)) class AbstractEngine(object): """Object serving as a base class for all engines.""" __metaclass__ = abc.ABCMeta has_neg_frac = False def __init__(self, expr): self.expr = expr self.aligned_axes = None self.result_type = None def convert(self): """Convert an expression for evaluation. Defaults to return the expression as a string. """ return printing.pprint_thing(self.expr) def evaluate(self): """Run the engine on the expression This method performs alignment which is necessary no matter what engine is being used, thus its implementation is in the base class. Returns ------- obj : object The result of the passed expression. """ if not self._is_aligned: self.result_type, self.aligned_axes = _align(self.expr.terms) # make sure no names in resolvers and locals/globals clash res = self._evaluate() return _reconstruct_object(self.result_type, res, self.aligned_axes, self.expr.terms.return_type) @property def _is_aligned(self): return self.aligned_axes is not None and self.result_type is not None @abc.abstractmethod def _evaluate(self): """Return an evaluated expression. Parameters ---------- env : Scope The local and global environment in which to evaluate an expression. Notes ----- Must be implemented by subclasses. """ pass class NumExprEngine(AbstractEngine): """NumExpr engine class""" has_neg_frac = True def __init__(self, expr): super(NumExprEngine, self).__init__(expr) def convert(self): return str(super(NumExprEngine, self).convert()) def _evaluate(self): import numexpr as ne # convert the expression to a valid numexpr expression s = self.convert() try: env = self.expr.env scope = env.full_scope truediv = scope['truediv'] _check_ne_builtin_clash(self.expr) return ne.evaluate(s, local_dict=scope, truediv=truediv) except KeyError as e: # python 3 compat kludge try: msg = e.message except AttributeError: msg = compat.text_type(e) raise UndefinedVariableError(msg) class PythonEngine(AbstractEngine): """Evaluate an expression in Python space. Mostly for testing purposes. """ has_neg_frac = False def __init__(self, expr): super(PythonEngine, self).__init__(expr) def evaluate(self): return self.expr() def _evaluate(self): pass _engines = {'numexpr': NumExprEngine, 'python': PythonEngine}
bsd-3-clause
weissercn/learningml
learningml/GoF/analysis/S-4mu/plot_S-4mu_p1D_alphaSvalue_analysis.py
1
9748
from __future__ import print_function import sys import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import os import time # Options for mode 'lower_level' MODE = 'S-4mu_WigD' label_size = 28 ################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################ mpl.rc('font', family='serif', size=34, serif="Times New Roman") #mpl.rcParams['text.usetex'] = True #mpl.rcParams['text.latex.preamble'] = [r'\boldmath'] mpl.rcParams['legend.fontsize'] = "medium" mpl.rc('savefig', format ="pdf") mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size mpl.rcParams['figure.figsize'] = 8, 6 mpl.rcParams['lines.linewidth'] = 3 def binomial_error(l1): err_list = [] for item in l1: if item==1. or item==0.: err_list.append(np.sqrt(100./101.*(1.-100./101.)/101.)) else: err_list.append(np.sqrt(item*(1.-item)/100.)) return err_list ################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################ # S - 4 mu WigD ################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################ if MODE == 'S-4mu_WigD': #param_list = [0.1,0.08,0.06,0.04,0.02,0.0] param_list = [0.1,0.08,0.06,0.04] param_list = [0.0,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1] #param_list = [0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09] ml_classifiers = ['nn','bdt'] ml_classifiers_colors = ['green','magenta','cyan'] ml_classifiers_bin = 5 chi2_color = 'red' chi2_splits = [1,2,3,4,5,6,7,8,9,10] #chi2_splits = [8] ml_folder_name = "S-4mu_WigD/evaluation_S-VV-4mu_WigD_updated3" chi2_folder_name = "S-4mu_WigD" #chi2_folder_name = "event_shapes_lower_level_without_Mult" ml_file_name = "{1}_S-VV-4mu_WigD_updated3_{0}_syst_0_01__chi2scoring_5_p_values" chi2_file_name = "S-4mu_WigD_updated3_{0}D_chi2_{1}_splits_p_values" #chi2_file_name = "event_shapes_lower_level_syst_0_01_attempt4_without_Mult__{0}D_chi2_{1}_splits_p_values" chi2_1D_file_name = "S-4mu_WigD_updated3_1D_{0}D_chi2_{1}_splits_p_values" title = "S-4mu" name = "S-4mu" CL = 0.95 ml_classifiers_dict={} chi2_splits_dict={} chi2_1D_splits_dict={} #xwidth = [0.5]*len(param_list) xwidth = np.subtract(param_list[1:],param_list[:-1])/2. xwidth_left = np.append(xwidth[0] , xwidth) xwidth_right = np.append(xwidth,xwidth[-1]) print("xwidth : ", xwidth) fig = plt.figure() ax = fig.add_axes([0.2,0.15,0.75,0.8]) if True: for ml_classifier_index, ml_classifier in enumerate(ml_classifiers): ml_classifiers_dict[ml_classifier]= [] for param in param_list: p_values = np.loadtxt(os.environ['learningml']+"/GoF/optimisation_and_evaluation/"+ml_folder_name+"/"+ml_classifier+"/"+ml_file_name.format(param,ml_classifier,ml_classifiers_bin)).tolist() p_values_in_CL = sum(i < (1-CL) for i in p_values) ml_classifiers_dict[ml_classifier].append(p_values_in_CL) ml_classifiers_dict[ml_classifier]= np.divide(ml_classifiers_dict[ml_classifier],100.) ax.errorbar(param_list,ml_classifiers_dict['nn'], yerr=binomial_error(ml_classifiers_dict['nn']), linestyle='-', marker='s', markeredgewidth=0.0, markersize=12, color=ml_classifiers_colors[0], label=r'$ANN$',clip_on=False) print("bdt : ", ml_classifiers_dict['bdt']) ax.errorbar(param_list,ml_classifiers_dict['bdt'], yerr=binomial_error(ml_classifiers_dict['bdt']), linestyle='-', marker='o', markeredgewidth=0.0, markersize=12, color=ml_classifiers_colors[1], label=r'$BDT$', clip_on=False) for chi2_split_index, chi2_split in enumerate(chi2_splits): chi2_splits_dict[str(chi2_split)]=[] chi2_best = [] for param in param_list: chi2_best_dim = [] for chi2_split_index, chi2_split in enumerate(chi2_splits): p_values = np.loadtxt(os.environ['learningml']+"/GoF/chi2/"+chi2_folder_name+"/"+chi2_file_name.format(param,chi2_split)).tolist() p_values_in_CL = sum(i < (1-CL) for i in p_values) temp = float(p_values_in_CL) /100. chi2_splits_dict[str(chi2_split)].append(temp) chi2_best_dim.append(temp) temp_best = np.max(chi2_best_dim) #print(str(dim)+"D chi2_best_dim : ", chi2_best_dim) #print(str(dim)+"D temp_best : ",np.max(temp_best)) chi2_best.append(temp_best) #print("chi2_best : ",chi2_best) for chi2_split_index, chi2_split in enumerate(chi2_splits): chi2_1D_splits_dict[str(chi2_split)]=[] chi2_1D_best = [] for param in param_list: chi2_1D_best_dim = [] for chi2_split_index, chi2_split in enumerate(chi2_splits): p_values = np.loadtxt(os.environ['learningml']+"/GoF/chi2/"+chi2_folder_name+"/"+chi2_1D_file_name.format(param,chi2_split)).tolist() p_values_in_CL = sum(i < (1-CL) for i in p_values) temp = float(p_values_in_CL) /100. chi2_1D_splits_dict[str(chi2_split)].append(temp) chi2_1D_best_dim.append(temp) temp_best = np.max(chi2_1D_best_dim) #print(str(dim)+"D chi2_best_dim : ", chi2_best_dim) #print(str(dim)+"D temp_best : ",np.max(temp_best)) chi2_1D_best.append(temp_best) #print("chi2_best : ",chi2_best) print("param_list : ",param_list) print("chi2_best : ", chi2_best) print("chi2_splits_dict : ", chi2_splits_dict) ax.errorbar(param_list,chi2_best, yerr=binomial_error(chi2_best), linestyle='--', marker='$\chi$', markeredgecolor='none', markersize=18, color='black', label=r'$\chi^2$', clip_on=False) ax.errorbar(param_list,chi2_1D_best, yerr=binomial_error(chi2_1D_best), linestyle='--', marker='$\chi$', markeredgecolor='none', markersize=18, color='blue', label=r'$\chi^2 1D$', clip_on=False) print("ml_classifiers_dict : ",ml_classifiers_dict) print("chi2_best : ", chi2_best) #ax.plot((0.1365,0.1365),(0.,1.),c="grey",linestyle="--") ax.set_xlim([0.,0.1]) #ax.set_xlim([0.129,0.1405]) ax.set_ylim([0.,1.]) ax.set_xlabel(r"$p_{signal}$") ax.set_ylabel("Fraction rejected") #a, b, c = [0.130,0.133], [0.1365],[0.14] #ax.set_xticks(a+b+c) #xx, locs = plt.xticks() #ll = ['%.3f' % y for y in a] + ['%.4f' % y for y in b] + ['%.3f' % y for y in c] #plt.xticks(xx, ll) #ax.legend(loc='lower left', frameon=False, numpoints=1) fig_leg = plt.figure(figsize=(8,2.7)) ax_leg = fig_leg.add_axes([0.0,0.0,1.0,1.0]) plt.tick_params(axis='x',which='both',bottom='off', top='off', labelbottom='off') plt.tick_params(axis='y',which='both',bottom='off', top='off', labelbottom='off') ax_leg.yaxis.set_ticks_position('none') ax_leg.set_frame_on(False) plt.figlegend(*ax.get_legend_handles_labels(), loc = 'upper left',frameon=False, numpoints=1,ncol=2) fig_leg.savefig("S-4mu_WigD_updated3_analysis_legend.pdf") #fig_name=name+"_alphaSvalue_analysis" fig_name="S-4mu_WigD_updated3_analysis" fig.savefig(fig_name+".pdf") fig.savefig(fig_name+"_"+time.strftime("%b_%d_%Y")+".pdf") print("Saved the figure as" , fig_name+".pdf")
mit
avistous/QSTK
Tools/DataGenerate_SineWave.py
2
2050
import datetime as dt import csv import copy import os import pickle import math # 3rd party imports import numpy as np import matplotlib.pyplot as plt import pandas as pd # QSTK imports from qstkutil import qsdateutil as du import qstkutil.DataEvolved as de def write(ls_symbols, d_data, ldt_timestamps): ldt_timestamps.reverse() ls_keys = ['actual_open', 'actual_high', 'actual_low', 'actual_close', 'volume', 'close'] length = len(ldt_timestamps) for symbol in ls_symbols: sym_file = open('./' + symbol + '.csv', 'w') sym_file.write("Date,Open,High,Low,Close,Volume,Adj Close \n") for i,date in enumerate(ldt_timestamps): date_to_csv = '{:%Y-%m-%d}'.format(date) string_to_csv = date_to_csv for key in ls_keys: string_to_csv = string_to_csv + ',' + str(d_data[symbol][length-i-1]) string_to_csv = string_to_csv + '\n' sym_file.write(string_to_csv) def main(): print "Creating Stock data from Sine Waves" dt_start = dt.datetime(2000, 1, 1) dt_end = dt.datetime(2012, 10, 31) ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt.timedelta(hours=16)) x = np.array(range(len(ldt_timestamps))) ls_symbols = ['SINE_FAST', 'SINE_SLOW', 'SINE_FAST_NOISE', 'SINE_SLOW_NOISE'] sine_fast = 10*np.sin(x/10.) + 100 sine_slow = 10*np.sin(x/30.) + 100 sine_fast_noise = 10*(np.sin(x/10.) + np.random.randn(x.size)) + 100 sine_slow_noise = 10*(np.sin(x/30.) + np.random.randn(x.size)) + 100 d_data = dict(zip(ls_symbols, [sine_fast, sine_slow, sine_fast_noise, sine_slow_noise])) write(ls_symbols, d_data, ldt_timestamps) plt.clf() plt.plot(ldt_timestamps, sine_fast) plt.plot(ldt_timestamps, sine_slow) plt.plot(ldt_timestamps, sine_fast_noise) plt.plot(ldt_timestamps, sine_slow_noise) plt.ylim(50,150) plt.xticks(size='xx-small') plt.legend(ls_symbols, loc='best') plt.savefig('test.png',format='png') if __name__ == '__main__': main()
bsd-3-clause
tensorflow/minigo
oneoffs/embeddings_graphs.py
8
3394
#!/usr/bin/env python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import subprocess import time from absl import app, flags from sklearn.decomposition import PCA from sklearn.manifold import TSNE from tqdm import tqdm flags.DEFINE_string('embedding_file', None, 'Where to save the embeddings.') flags.DEFINE_integer( 'pca_dims', None, help='None to skip PCA, else number of dimensions to reduce to') flags.DEFINE_bool( 'produce_pngs', False, help='if true call sgftopng for all positions') flags.mark_flag_as_required('embedding_file') flags.register_validator( 'embedding_file', lambda ef: ef.endswith('.pickle') and os.path.isfile(ef), 'embedding_file must be an existing .pickle file') FLAGS = flags.FLAGS def main(argv): t0 = time.time() embedding_file = FLAGS.embedding_file with open(embedding_file, 'rb') as pickle_file: metadata, embeddings = pickle.load(pickle_file) t1 = time.time() reduced = embeddings if FLAGS.pca_dims: pca = PCA(n_components=FLAGS.pca_dims) pca_result = pca.fit_transform(embeddings) print('Explained variation per principal component:') print(pca.explained_variance_ratio_) print('Total Explained: {:.4f}'.format( sum(pca.explained_variance_ratio_))) print() reduced = pca_result t2 = time.time() print('Shape:', reduced.shape) tsne = TSNE( n_components=2, verbose=4, perplexity=40, n_iter=2000, min_grad_norm=5e-5) coords = tsne.fit_transform(reduced) assert len(coords.shape) == 2, coords.shape[1] == 2 # scale coords to be [0,1] in both dims coords -= [min(coords[:, 0]), min(coords[:, 1])] coords /= max(coords.flatten()) t3 = time.time() for i, (path, move) in enumerate(tqdm(metadata)): assert path.endswith('.sgf'), path png = '{}_{}.png'.format(path[:-4], move) assert '/eval/' in png, png png = png.replace('/eval/', '/thumbnails/') if FLAGS.produce_pngs and not os.path.exists(png): # NOTE: sgftopng is a pain to install, sorry. with open(path) as sgf_file: subprocess.run( ['sgftopng', png, '-' + str(move + 1)], stdin=sgf_file) metadata[i] = (path, move, png) t4 = time.time() print('Read {:.2f}s, PCA {:.2f}s t-SNE {:.2f}s, PNGs {:.2f}s'.format( t1 - t0, t2 - t1, t3 - t2, t4 - t3)) new_file = embedding_file.replace('.pickle', '.graph.pickle') assert new_file != embedding_file, (new_file, embedding_file) with open(new_file, 'wb') as pickle_file: pickle.dump([metadata, embeddings, coords], pickle_file) print('TSNE cords added to', new_file) if __name__ == '__main__': app.run(main)
apache-2.0
silky/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/hpsModelFrame.py
22
2075
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris, resample import math from scipy.fftpack import fft, ifft, fftshift import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF import harmonicModel as HM (fs, x) = UF.wavread('../../../sounds/flute-A4.wav') pos = .8*fs M = 601 hM1 = int(math.floor((M+1)/2)) hM2 = int(math.floor(M/2)) w = np.hamming(M) N = 1024 t = -100 nH = 40 minf0 = 420 maxf0 = 460 f0et = 5 minSineDur = .1 harmDevSlope = 0.01 Ns = 512 H = Ns/4 stocf = .2 x1 = x[pos-hM1:pos+hM2] x2 = x[pos-Ns/2-1:pos+Ns/2-1] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) ipfreq = fs*iploc/N f0 = UF.f0Twm(ipfreq, ipmag, f0et, minf0, maxf0) hfreqp = [] hfreq, hmag, hphase = HM.harmonicDetection(ipfreq, ipmag, ipphase, f0, nH, hfreqp, fs, harmDevSlope) Yh = UF.genSpecSines(hfreq, hmag, hphase, Ns, fs) mYh = 20 * np.log10(abs(Yh[:Ns/2])) bh=blackmanharris(Ns) X2 = fft(fftshift(x2*bh/sum(bh))) Xr = X2-Yh mXr = 20 * np.log10(abs(Xr[:Ns/2])) mYst = resample(np.maximum(-200, mXr), mXr.size*stocf) # decimate the mag spectrum maxplotfreq = 8000.0 plt.figure(1, figsize=(9, 7)) plt.subplot(2,1,1) binFreq = (fs/2.0)*np.arange(mX.size)/(mX.size) plt.plot(binFreq,mX,'r', lw=1.5) plt.axis([0,maxplotfreq,-100,max(mX)+2]) plt.plot(hfreq, hmag, marker='x', color='b', linestyle='', lw=2, markeredgewidth=1.5) plt.title('mX + harmonics') plt.subplot(2,1,2) binFreq = (fs/2.0)*np.arange(mXr.size)/(mXr.size) plt.plot(binFreq,mYh,'r', lw=.6, label='mYh') plt.plot(binFreq,mXr,'r', lw=1.0, label='mXr') binFreq = (fs/2.0)*np.arange(mYst.size)/(mYst.size) plt.plot(binFreq,mYst,'r', lw=1.5, label='mYst') plt.axis([0,maxplotfreq,-100,max(mYh)+2]) plt.legend(prop={'size':15}) plt.title('mYh + mXr + mYst') plt.tight_layout() plt.savefig('hpsModelFrame.png') plt.show()
agpl-3.0
simongibbons/numpy
doc/source/reference/random/performance.py
14
2599
from collections import OrderedDict from timeit import repeat import pandas as pd import numpy as np from numpy.random import MT19937, PCG64, Philox, SFC64 PRNGS = [MT19937, PCG64, Philox, SFC64] funcs = OrderedDict() integers = 'integers(0, 2**{bits},size=1000000, dtype="uint{bits}")' funcs['32-bit Unsigned Ints'] = integers.format(bits=32) funcs['64-bit Unsigned Ints'] = integers.format(bits=64) funcs['Uniforms'] = 'random(size=1000000)' funcs['Normals'] = 'standard_normal(size=1000000)' funcs['Exponentials'] = 'standard_exponential(size=1000000)' funcs['Gammas'] = 'standard_gamma(3.0,size=1000000)' funcs['Binomials'] = 'binomial(9, .1, size=1000000)' funcs['Laplaces'] = 'laplace(size=1000000)' funcs['Poissons'] = 'poisson(3.0, size=1000000)' setup = """ from numpy.random import {prng}, Generator rg = Generator({prng}()) """ test = "rg.{func}" table = OrderedDict() for prng in PRNGS: print(prng) col = OrderedDict() for key in funcs: t = repeat(test.format(func=funcs[key]), setup.format(prng=prng().__class__.__name__), number=1, repeat=3) col[key] = 1000 * min(t) col = pd.Series(col) table[prng().__class__.__name__] = col npfuncs = OrderedDict() npfuncs.update(funcs) npfuncs['32-bit Unsigned Ints'] = 'randint(2**32,dtype="uint32",size=1000000)' npfuncs['64-bit Unsigned Ints'] = 'randint(2**64,dtype="uint64",size=1000000)' setup = """ from numpy.random import RandomState rg = RandomState() """ col = {} for key in npfuncs: t = repeat(test.format(func=npfuncs[key]), setup.format(prng=prng().__class__.__name__), number=1, repeat=3) col[key] = 1000 * min(t) table['RandomState'] = pd.Series(col) columns = ['MT19937','PCG64','Philox','SFC64', 'RandomState'] table = pd.DataFrame(table) order = np.log(table).mean().sort_values().index table = table.T table = table.reindex(columns) table = table.T table = table.reindex([k for k in funcs], axis=0) print(table.to_csv(float_format='%0.1f')) rel = table.loc[:, ['RandomState']].values @ np.ones( (1, table.shape[1])) / table rel.pop('RandomState') rel = rel.T rel['Overall'] = np.exp(np.log(rel).mean(1)) rel *= 100 rel = np.round(rel) rel = rel.T print(rel.to_csv(float_format='%0d')) # Cross-platform table rows = ['32-bit Unsigned Ints','64-bit Unsigned Ints','Uniforms','Normals','Exponentials'] xplat = rel.reindex(rows, axis=0) xplat = 100 * (xplat / xplat.MT19937.values[:,None]) overall = np.exp(np.log(xplat).mean(0)) xplat = xplat.T.copy() xplat['Overall']=overall print(xplat.T.round(1))
bsd-3-clause
arizona-phonological-imaging-lab/Autotrace
installer-scripts/python3/mac_autotrace_installer.py
1
19896
''' Mac Autotrace Installer This python2.7 script will automatically install all of the dependences to run the AutoTrace software from the APIL (Arizona Phonological Imaging Lab) on a macintosh computer. Installs MacPorts and uses it to prepare the following dependencies: python27 python-select GTK numpy OpenCV MatPlotLib qt4 Also checks for matlab installation, but matlab is not required for installation (though it is required to make AutoTrace run properly, ATM.) Changes to be made: qt stuff? (refer to the Autotrace readme) possibly: tk gui interface after install? Needs Sudo! By Gustave Powell and Trevor Sullivan ''' import subprocess as sp import re import shlex import urllib.request, urllib.parse, urllib.error import os import sys import time import webbrowser import tkinter class Installer(object): def __init__(self): self.user_home = os.path.expanduser("~/") self.user_name = self.user_home.split("/")[-2] self.profile_path = os.path.join(self.user_home,".bash_profile") self.github_path = os.path.join(self.user_home,"github/") self.downloads_folder = os.path.join(self.user_home, "Downloads/") self.macports_dst = os.path.join(self.downloads_folder, "macports_installer.pkg") self.version = self.check_OSX_version() def exit_on_error(self): print("Exiting...") sys.exit(1) def progress(self, process): while process.poll() is None: print(".") time.sleep(3) def prepare_installation(self): self.find_matlab() self.check_root() self.check_xcode() self.check_macports() def install(self): print("Updating macports database...") p = sp.Popen(shlex.split("sudo port selfupdate"), stdout=sp.PIPE, stderr=sp.PIPE) p = self.progress(p) print("Upgrading outdated ports...") o, e = sp.Popen(shlex.split("sudo port upgrade outdated"), stdout=sp.PIPE, stderr=sp.PIPE).communicate() self.check_python() self.check_qt4() self.check_gtk() self.check_numpy() self.check_cv() self.check_matplot() self.check_git() self.check_clone() self.set_crontab() print("Success!") #point user to ReadMe file or give URL to place on github (possibly even hyperlink?) #tk window that says something like "install complete, click here for more info" self.check_clone() self.set_crontab() self.after_install_gui() ''' Check for matlab install and ask permission to continue ''' def find_matlab(self): Applications_folder, _ = sp.Popen(["ls", "Applications"], stdout=sp.PIPE, stderr=sp.PIPE, ).communicate() matlab_installed = Applications_folder.find("MATLAB") if matlab_installed > 0: pass else: print("You don't seem to have MATLAB installed. Autotrace may not run properly without it.") answer = raw_input("Would you like to continue with the installation anyway? (y/n) ").lower() if answer == "n": self.exit_on_error() elif answer == "y": return else: print("Try again") self.find_matlab() ''' Checks for matlab version ''' def check_matlab_version(self): out, err = sp.Popen(shlex.split("matlab -nosplash -nodesktop -r 'exit'"), stdout=sp.PIPE, stderr=sp.PIPE, ).communicate() if out: print("You've got MATLAB already with the proper license") if err: print("You do not have the proper MATLAB license. Please check your install.") def check_root(self): """ check if user has root priviliges """ o, e = sp.Popen(["groups"], stderr = sp.PIPE, stdout = sp.PIPE, shell = True).communicate() oa, e = sp.Popen(["whoami"], stderr = sp.PIPE, stdout = sp.PIPE, shell = True).communicate() if "admin" not in o: print("ERROR: You need administrative rights to complete the installation") self.exit_on_error() def check_OSX_version(self): #find Mac OSX version version_pattern = re.compile("([0-9.]+)") version = sp.Popen("sw_vers", stdout=sp.PIPE, stderr=sp.PIPE) out, _ = version.communicate() version = out.split('\n') version = re.search(version_pattern, version[1]).group(1) return version def install_macports(self): """ Download appropriate version and open installer """ #print("creating file: {0}".format(os.path.expanduser("~/.bash_profile"))) if not os.path.exists(self.profile_path): print("bash_profile doesn't exist, creating it now") open(self.profile_path, "w").close() #sp.Popen(["sudo", "chown", "$USER", "~/.bash_profile"]) o, e =sp.Popen(["sudo", "chmod", "777", self.profile_path], stderr=sp.PIPE, stdout=sp.PIPE).communicate() print("chmod out {0}".format(o)) print("chmod err {0}".format(e)) else: o, e = sp.Popen(["$PATH"], stderr=sp.PIPE, stdout=sp.PIPE, shell=True).communicate() sys_path = os.environ['PATH'] if "/opt/local/bin" in sys_path and '/opt/local/sbin' in sys_path: print("PATH is correct") elif "/opt/local/bin" not in sys_path: newfile = open(self.profile_path, "a") newfile.write("\nexport PATH=/opt/local/bin:$PATH\n") newfile.close() os.environ['PATH'] = ":".join([sys_path, '/opt/local/bin']) sys_path = os.environ['PATH'] elif "/opt/local/sbin" not in sys_path: newfile = open(self.profile_path, "a") newfile.write("\nexport PATH=/opt/local/sbin:$PATH\n") newfile.close() os.environ['PATH'] = ":".join([sys_path, '/opt/local/sbin']) sys_path = os.environ['PATH'] else: print("adding to PATH") newfile = open(self.profile_path, "a") # gotta look up the code for this part newfile.write("\nexport PATH=/opt/local/bin:/opt/local/sbin:$PATH\n") newfile.close() o, e = sp.Popen(["sudo", "chmod", "777", self.profile_path], stderr=sp.PIPE, stdout=sp.PIPE).communicate() o, e = sp.Popen(["sudo", "chown", self.user_name, self.profile_path], stderr=sp.PIPE, stdout=sp.PIPE).communicate() if self.version.startswith("10.9"): print("You're using Mavericks\n") macports_src = "https://distfiles.macports.org/MacPorts/MacPorts-2.2.1-10.9-Mavericks.pkg" elif self.version.startswith("10.8"): print("You're using Mountain Lion\n") macports_src = "https://distfiles.macports.org/MacPorts/MacPorts-2.2.1-10.8-MountainLion.pkg" elif self.version.startswith("10.7"): print("You're using Lion\n") macports_src = "https://distfiles.macports.org/MacPorts/MacPorts-2.2.1-10.7-Lion.pkg" elif self.version.startswith("10.6"): print("You're using Snow Leopard\n") macports_src = "https://distfiles.macports.org/MacPorts/MacPorts-2.2.1-10.6-SnowLeopard.pkg" else: print("Mac OSX version not recognized.") self.exit_on_error() #urllib.request.urlretrieve(macports_src, macports_dst) f = urllib.urlopen(macports_src) with open(self.macports_dst, "wb") as pkgFile: pkgFile.write(f.read()) #open macports installer... macports_installer = sp.Popen(shlex.split("open {pkg}".format(pkg=self.macports_dst)), stdout=sp.PIPE, stderr=sp.PIPE) print("follow the instructions in the installer") o, e = macports_installer.communicate() raw_input("Press Enter after finishing MacPorts install") #macports_installer.wait() self.install() def check_macports(self): """ Check to see if macport installed """ port_found, _ = sp.Popen(shlex.split("which port"), stdout=sp.PIPE, stderr=sp.PIPE).communicate() print(port_found) if not port_found: print("We need to install Macports...Let's see what system you're using...") self.install_macports() else: print("Macports already installed!") self.install() #see if xcode tools installed def check_xcode(self): p = sp.Popen(["pkgutil", "--pkg-info=com.apple.pkg.CLTools_Executables"], stdout=sp.PIPE, stderr=sp.PIPE) o, e = p.communicate() if "No receipt" in e: print("Xcode not installed") if self.version.startswith("10.9"): try: print("Installing XCode command line tools") o, e = sp.Popen(shlex.split("xcode-select --install"), stdout=sp.PIPE, stderr=sp.PIPE).communicate() raw_input("Press Enter after finishing Command Line Tools install") except: print("You need to install XCode tools! \n You'll find it in the app store.") sys.exit() else: print("Please install XCode tools. ") print("1. Install 'XCode' from the app store") print("2. run Xcode") print("3. go to menu > preferences > downloads") print("4. select 'command line tools'") self.exit_on_error() else: print("Xcode installed") ''' try: gcc_configured = sp.Popen(shlex.split("gcc --version"), stdout=sp.PIPE, stderr=sp.PIPE) o, e = gcc_configured.communicate() if "--prefix=/Applications/Xcode.app/Contents/Developer/usr" in e: print("XCode command line tools appear to be installed.") except: ''' def get_installed_list(self): port_installed, _ = sp.Popen(shlex.split("port installed"), stdout=sp.PIPE, stderr=sp.PIPE).communicate() return port_installed def check_python(self): ''' Checks for python27 installation ''' installed = self.get_installed_list() if re.search(".*python27 [@0-9._]+? \(active\)", installed): print("You have the correct version of Python installed (2.7)") else: print("You do not have the correct version of python installed. Installing Python 2.7 using MacPorts") self.install_python() def install_python(self): p = sp.Popen(shlex.split("sudo port install python27"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) out, err = p.communicate() if not err: print(out) return else: print(err) print("Python 2.7 install failed. (port install python27)") self.exit_on_error() print("Setting python27 as system default...") o, e = sp.Popen("sudo port select --set python python27").communicate() def check_qt4(self): installed = self.get_installed_list() pos = installed.find('qt4-mac') if pos > 0: print("You have QT4 installed") else: print("You do not have qt4 installed. Installing qt4 using MacPorts (this may take a while, be patient)") self.install_qt4() def install_qt4(self): p = sp.Popen(shlex.split("sudo port install qt4-mac"), stdout=sp.PIPE, stderr=sp.PIPE) while p.poll() is None: print(".",) time.sleep(3) out, err = p.communicate() if not err: print(out) return else: print(err) print("qt4 install failed. (port install qt4-mac)") self.exit_on_error() print("Setting qt4 as system default...") o, e = sp.Popen("sudo port select --set qt4 qt4-mac").communicate() def check_gtk(self): ''' checks for gtk installation, if not found, installs using methods below ''' installed = self.get_installed_list() gtk_pos = installed.find('py27-pygtk ') gtk_doc_pos = installed.find('gtk-doc ') gtk2_pos = installed.find('gtk2 ') gtk3_pos = installed.find('gtk3 ') if gtk_pos > 0: print("pyGTK already installed!") else: print("Installing pyGTK using MacPorts") self.install_gtk() ''' if gtk_doc_pos > 0: print("gtk-doc already installed!") else: print("Installing gtk-doc using MacPorts") self.install_gtkdoc() ''' if gtk2_pos > 0: print("gtk2 already installed!") else: print("Installing gtk2 using MacPorts") self.install_gtk2() if gtk3_pos > 0: print("gtk3 already installed!") else: print("Installing gtk3 using MacPorts") self.install_gtk3() def install_gtk(self): p = sp.Popen(shlex.split("sudo port install py27-pygtk"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("pygtk install failed. (port install py27-pygtk)") print(err) self.exit_on_error() def install_gtkdoc(self): p = sp.Popen(shlex.split("sudo port install gtk-doc"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("gtk-doc install failed. (port install gtk-doc)") print(err) self.exit_on_error() def install_gtk2(self): p = sp.Popen(shlex.split("sudo port install gtk2"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("gtk2 install failed. (port install gtk2)") print(err) self.exit_on_error() def install_gtk3(self): p = sp.Popen(shlex.split("sudo port install gtk3"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("gtk3 install failed. (port install gtk3)") print(err) self.exit_on_error() def check_numpy(self): ''' checks for numpy installation. If not found, installs with methods below ''' installed = self.get_installed_list() numpy_pos = installed.find("py27-numpy ") if numpy_pos > 0: print("Looks like we've got numpy already") else: print("Oh Noes! We need numpy. Installing with MacPorts") self.install_numpy() def install_numpy(self): p = sp.Popen(shlex.split("sudo port install py27-numpy"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("numpy install failed. (port install py27-numpy)") print(err) self.exit_on_error() def check_cv(self): ''' take a guess ''' installed = self.get_installed_list() opencv_pos = installed.find("opencv ") if opencv_pos > 0: print("OpenCV is here") else: print("OpenCV is missing, time for MacPorts") self.install_cv() def install_cv(self): p = sp.Popen(shlex.split("sudo port install opencv +qt4 +python27"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("OpenCV install failed. (port install opencv)") print(err) self.exit_on_error() def check_matplot(self): ''' yep ''' installed = self.get_installed_list() matplot_pos = installed.find("matplotlib") if matplot_pos > 0: print("Looks like we've got matplotlib over here") else: print("matplotlib is missing, installing with MacPorts") self.install_matplot() def install_matplot(self): p = sp.Popen(shlex.split("sudo port install py27-matplotlib +gtk3 +gtk2 +qt4"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("Matplotlib install failed. (port install py27-matplotlib)") print(err) self.exit_on_error() def check_git(self): installed = self.get_installed_list() matplot_pos = installed.find("git-core") if matplot_pos > 0: print("Looks like git is installed") else: print("git is missing, installing with MacPorts") self.install_git() def install_git(self): p = sp.Popen(shlex.split("sudo port install git-core"), stdout=sp.PIPE, stderr=sp.PIPE) self.progress(p) output, err = p.communicate() if not err: return else: print("Git install failed. (port install git-core)") print(err) self.exit_on_error() #github stuff def check_clone(self): if not os.path.exists(self.github_path): print("github directory doesn't exist, creating it now") print(self.github_path) os.makedirs(self.github_path) o, e = sp.Popen(["sudo", "chmod", "777", self.github_path], stderr=sp.PIPE, stdout=sp.PIPE).communicate() o, e = sp.Popen(["sudo", "chown", self.user_name, self.github_path], stderr=sp.PIPE, stdout=sp.PIPE).communicate() if not os.path.exists(os.path.join(self.github_path, "old/")): print("Downloading Autotrace to ~/github/") self.clone_autotrace_repo() else: print("Looks like you have autotrace installed already") def clone_autotrace_repo(self): p = sp.Popen(["sudo git clone https://github.com/jjberry/Autotrace.git {0}".format(self.github_path)], stdout=sp.PIPE, stderr=sp.PIPE, shell=True) self.progress(p) o, e = p.communicate() print("git clone output") print(o) print("git clone error") print(e) # may be unnecessary. #if [failure because of non-empty repo] # p = sp.Popen([shlex.split("rm -rf"), self.github_path], stderr=sp.PIPE, stdout=sp.PIPE) # self.check_clone() #updates def set_crontab(self): print("Creating UpdateAutotrace file in /usr/local") f = open("/usr/local/UpdateAutotrace", 'w') f.write('#!/bin/bash\ \ cd /Users/$USER/github\ \ sudo git pull') #This will overwrite whatever's already there, but it shouldn't matter because the file #won't change. If we want we can add an if statement so that this doesn't happen if the file #exists and has what we want in it. f.close() o, e = sp.Popen(["sudo", "chmod", "777", "/usr/local/UpdateAutotrace"], stderr=sp.PIPE, stdout=sp.PIPE).communicate() o, e = sp.Popen(["sudo", "chown", self.user_name, "/usr/local/UpdateAutotrace"], stderr=sp.PIPE, stdout=sp.PIPE).communicate() print("Creating crontab job to run the /usr/local/UpdateAutotrace script every Sunday and Thursday at noon") if not os.path.exists("/etc/crontab"): open("/etc/crontab", "w").close() with open('/etc/crontab', 'r+') as f: contents = f.read() if contents.find("automatically updates autotrace") > 0: print("crontab job already set") else: f.write("\n 0 12 * * 0,4 /usr/local/UpdateAutotrace #This script automatically updates autotrace \n\t\ #on sundays and thursdays at noon\n") #f.write("\n * * * * * echo 'test' >> /Users/apiladmin/Downloads/test.txt") <- uncomment to test cron sp.Popen(["crontab", "/etc/crontab"]) #this refreshes crontab so that it starts counting ''' This would work if we install the CronTab module, which would require some downloading, unpacking, and installing. I figure it's best to just change the file we want directly. try: from crontab import CronTab except: https://pypi.python.org/packages/source/p/python-crontab/python-crontab-1.7.2.tar.gz #unpack and cd into this archive sp.Popen(["sudo python setup.py install"], stderr=sp.PIPE, stdout=sp.PIPE) from crontab import CronTab cron = new CronTab() if cron.find_comment("automatically updates autotrace"): return else: job = cron.new(command=/usr/local/UpdateAutotrace, comment="This script automatically updates autotrace on sundays \ and thursdays at noon") job.setall('0 12 * * 0,4') ''' def after_install_gui(self): top = tkinter.Tk() top.geometry('300x150') top.title("AutoTrace") label = tkinter.Label(top, text = "Welcome to Autotrace!", font = 'Helvetica -18 bold') label.pack(fill=tkinter.Y, expand=1) folder = tkinter.Button(top, text='Click here to view Autotrace files', command = lambda: (os.system("open "+self.github_path))) folder.pack() readme = tkinter.Button(top, text='ReadMe', command = lambda: (os.system("open "+os.path.join(self.github_path, "README.md"))), activeforeground ='blue', activebackground = 'green') readme.pack() apilsite = tkinter.Button(top, text='Look here for more info on the project', command = lambda: (webbrowser.open("http://apil.arizona.edu")), activeforeground = 'purple', activebackground = 'orange') apilsite.pack() quit = tkinter.Button(top, text='Quit', command=top.quit, activeforeground='red', activebackground='black') quit.pack() tkinter.mainloop() def test_git(self): self.after_install_gui() if __name__ == '__main__': installer = Installer() installer.prepare_installation()
mit
kcavagnolo/astroML
astroML/correlation.py
3
12069
""" Tools for computing two-point correlation functions. """ import warnings import numpy as np from sklearn.neighbors import BallTree from .utils import check_random_state # Check if scikit-learn's two-point functionality is available. # This was added in scikit-learn version 0.14 try: from sklearn.neighbors import KDTree sklearn_has_two_point = True except ImportError: import warnings sklearn_has_two_point = False def uniform_sphere(RAlim, DEClim, size=1): """Draw a uniform sample on a sphere Parameters ---------- RAlim : tuple select Right Ascension between RAlim[0] and RAlim[1] units are degrees DEClim : tuple select Declination between DEClim[0] and DEClim[1] size : int (optional) the size of the random arrays to return (default = 1) Returns ------- RA, DEC : ndarray the random sample on the sphere within the given limits. arrays have shape equal to size. """ zlim = np.sin(np.pi * np.asarray(DEClim) / 180.) z = zlim[0] + (zlim[1] - zlim[0]) * np.random.random(size) DEC = (180. / np.pi) * np.arcsin(z) RA = RAlim[0] + (RAlim[1] - RAlim[0]) * np.random.random(size) return RA, DEC def ra_dec_to_xyz(ra, dec): """Convert ra & dec to Euclidean points Parameters ---------- ra, dec : ndarrays Returns x, y, z : ndarrays """ sin_ra = np.sin(ra * np.pi / 180.) cos_ra = np.cos(ra * np.pi / 180.) sin_dec = np.sin(np.pi / 2 - dec * np.pi / 180.) cos_dec = np.cos(np.pi / 2 - dec * np.pi / 180.) return (cos_ra * sin_dec, sin_ra * sin_dec, cos_dec) def angular_dist_to_euclidean_dist(D, r=1): """convert angular distances to euclidean distances""" return 2 * r * np.sin(0.5 * D * np.pi / 180.) def two_point(data, bins, method='standard', data_R=None, random_state=None): """Two-point correlation function Parameters ---------- data : array_like input data, shape = [n_samples, n_features] bins : array_like bins within which to compute the 2-point correlation. shape = Nbins + 1 method : string "standard" or "landy-szalay". data_R : array_like (optional) if specified, use this as the random comparison sample random_state : integer, np.random.RandomState, or None specify the random state to use for generating background Returns ------- corr : ndarray the estimate of the correlation function within each bin shape = Nbins """ data = np.asarray(data) bins = np.asarray(bins) rng = check_random_state(random_state) if method not in ['standard', 'landy-szalay']: raise ValueError("method must be 'standard' or 'landy-szalay'") if bins.ndim != 1: raise ValueError("bins must be a 1D array") if data.ndim == 1: data = data[:, np.newaxis] elif data.ndim != 2: raise ValueError("data should be 1D or 2D") n_samples, n_features = data.shape Nbins = len(bins) - 1 # shuffle all but one axis to get background distribution if data_R is None: data_R = data.copy() for i in range(n_features - 1): rng.shuffle(data_R[:, i]) else: data_R = np.asarray(data_R) if (data_R.ndim != 2) or (data_R.shape[-1] != n_features): raise ValueError('data_R must have same n_features as data') factor = len(data_R) * 1. / len(data) if sklearn_has_two_point: # Fast two-point correlation functions added in scikit-learn v. 0.14 KDT_D = KDTree(data) KDT_R = KDTree(data_R) counts_DD = KDT_D.two_point_correlation(data, bins) counts_RR = KDT_R.two_point_correlation(data_R, bins) else: warnings.warn("Version 0.3 of astroML will require scikit-learn " "version 0.14 or higher for correlation function " "calculations. Upgrade to sklearn 0.14+ now for much " "faster correlation function calculations.") BT_D = BallTree(data) BT_R = BallTree(data_R) counts_DD = np.zeros(Nbins + 1) counts_RR = np.zeros(Nbins + 1) for i in range(Nbins + 1): counts_DD[i] = np.sum(BT_D.query_radius(data, bins[i], count_only=True)) counts_RR[i] = np.sum(BT_R.query_radius(data_R, bins[i], count_only=True)) DD = np.diff(counts_DD) RR = np.diff(counts_RR) # check for zero in the denominator RR_zero = (RR == 0) RR[RR_zero] = 1 if method == 'standard': corr = factor ** 2 * DD / RR - 1 elif method == 'landy-szalay': if sklearn_has_two_point: counts_DR = KDT_R.two_point_correlation(data, bins) else: counts_DR = np.zeros(Nbins + 1) for i in range(Nbins + 1): counts_DR[i] = np.sum(BT_R.query_radius(data, bins[i], count_only=True)) DR = np.diff(counts_DR) corr = (factor ** 2 * DD - 2 * factor * DR + RR) / RR corr[RR_zero] = np.nan return corr def bootstrap_two_point(data, bins, Nbootstrap=10, method='standard', return_bootstraps=False, random_state=None): """Bootstrapped two-point correlation function Parameters ---------- data : array_like input data, shape = [n_samples, n_features] bins : array_like bins within which to compute the 2-point correlation. shape = Nbins + 1 Nbootstrap : integer number of bootstrap resamples to perform (default = 10) method : string "standard" or "landy-szalay". return_bootstraps: bool if True, return full bootstrapped samples random_state : integer, np.random.RandomState, or None specify the random state to use for generating background Returns ------- corr, corr_err : ndarrays the estimate of the correlation function and the bootstrap error within each bin. shape = Nbins """ data = np.asarray(data) bins = np.asarray(bins) rng = check_random_state(random_state) if method not in ['standard', 'landy-szalay']: raise ValueError("method must be 'standard' or 'landy-szalay'") if bins.ndim != 1: raise ValueError("bins must be a 1D array") if data.ndim == 1: data = data[:, np.newaxis] elif data.ndim != 2: raise ValueError("data should be 1D or 2D") if Nbootstrap < 2: raise ValueError("Nbootstrap must be greater than 1") n_samples, n_features = data.shape # get the baseline estimate corr = two_point(data, bins, method=method, random_state=rng) bootstraps = np.zeros((Nbootstrap, len(corr))) for i in range(Nbootstrap): indices = rng.randint(0, n_samples, n_samples) bootstraps[i] = two_point(data[indices, :], bins, method=method, random_state=rng) # use masked std dev in case of NaNs corr_err = np.asarray(np.ma.masked_invalid(bootstraps).std(0, ddof=1)) if return_bootstraps: return corr, corr_err, bootstraps else: return corr, corr_err def two_point_angular(ra, dec, bins, method='standard', random_state=None): """Angular two-point correlation function A separate function is needed because angular distances are not euclidean, and random sampling needs to take into account the spherical volume element. Parameters ---------- ra : array_like input right ascention, shape = (n_samples,) dec : array_like input declination bins : array_like bins within which to compute the 2-point correlation. shape = Nbins + 1 method : string "standard" or "landy-szalay". random_state : integer, np.random.RandomState, or None specify the random state to use for generating background Returns ------- corr : ndarray the estimate of the correlation function within each bin shape = Nbins """ ra = np.asarray(ra) dec = np.asarray(dec) rng = check_random_state(random_state) if method not in ['standard', 'landy-szalay']: raise ValueError("method must be 'standard' or 'landy-szalay'") if bins.ndim != 1: raise ValueError("bins must be a 1D array") if (ra.ndim != 1) or (dec.ndim != 1) or (ra.shape != dec.shape): raise ValueError('ra and dec must be 1-dimensional ' 'arrays of the same length') n_features = len(ra) Nbins = len(bins) - 1 # draw a random sample with N points ra_R, dec_R = uniform_sphere((min(ra), max(ra)), (min(dec), max(dec)), 2 * len(ra)) data = np.asarray(ra_dec_to_xyz(ra, dec), order='F').T data_R = np.asarray(ra_dec_to_xyz(ra_R, dec_R), order='F').T # convert spherical bins to cartesian bins bins_transform = angular_dist_to_euclidean_dist(bins) return two_point(data, bins_transform, method=method, data_R=data_R, random_state=rng) def bootstrap_two_point_angular(ra, dec, bins, method='standard', Nbootstraps=10, random_state=None): """Angular two-point correlation function A separate function is needed because angular distances are not euclidean, and random sampling needs to take into account the spherical volume element. Parameters ---------- ra : array_like input right ascention, shape = (n_samples,) dec : array_like input declination bins : array_like bins within which to compute the 2-point correlation. shape = Nbins + 1 method : string "standard" or "landy-szalay". Nbootstraps : int number of bootstrap resamples random_state : integer, np.random.RandomState, or None specify the random state to use for generating background Returns ------- corr : ndarray the estimate of the correlation function within each bin shape = Nbins dcorr : ndarray error estimate on dcorr (sample standard deviation of bootstrap resamples) bootstraps : ndarray The full sample of bootstraps used to compute corr and dcorr """ ra = np.asarray(ra) dec = np.asarray(dec) rng = check_random_state(random_state) if method not in ['standard', 'landy-szalay']: raise ValueError("method must be 'standard' or 'landy-szalay'") if bins.ndim != 1: raise ValueError("bins must be a 1D array") if (ra.ndim != 1) or (dec.ndim != 1) or (ra.shape != dec.shape): raise ValueError('ra and dec must be 1-dimensional ' 'arrays of the same length') n_features = len(ra) Nbins = len(bins) - 1 data = np.asarray(ra_dec_to_xyz(ra, dec), order='F').T # convert spherical bins to cartesian bins bins_transform = angular_dist_to_euclidean_dist(bins) bootstraps = [] for i in range(Nbootstraps): # draw a random sample with N points ra_R, dec_R = uniform_sphere((min(ra), max(ra)), (min(dec), max(dec)), 2 * len(ra)) data_R = np.asarray(ra_dec_to_xyz(ra_R, dec_R), order='F').T if i > 0: # random sample of the data ind = np.random.randint(0, data.shape[0], data.shape[0]) data_b = data[ind] else: data_b = data bootstraps.append(two_point(data_b, bins_transform, method=method, data_R=data_R, random_state=rng)) bootstraps = np.asarray(bootstraps) corr = np.mean(bootstraps, 0) corr_err = np.std(bootstraps, 0, ddof=1) return corr, corr_err, bootstraps
bsd-2-clause
mojoboss/scikit-learn
sklearn/metrics/cluster/__init__.py
312
1322
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "entropy", "silhouette_samples", "silhouette_score", "consensus_score"]
bsd-3-clause
daodaoliang/bokeh
bokeh/sampledata/daylight.py
45
2522
"""Daylight hours from http://www.sunrisesunset.com """ from __future__ import absolute_import import re import datetime import requests from six.moves import xrange from os.path import join, abspath, dirname import pandas as pd url = "http://sunrisesunset.com/calendar.asp" r0 = re.compile("<[^>]+>|&nbsp;|[\r\n\t]") r1 = re.compile(r"(\d+)(DST Begins|DST Ends)?Sunrise: (\d+):(\d\d)Sunset: (\d+):(\d\d)") def fetch_daylight_hours(lat, lon, tz, dst, year): """Fetch daylight hours from sunrisesunset.com for a given location. Parameters ---------- lat : float Location's latitude. lon : float Location's longitude. tz : int or float Time zone offset from UTC. Use floats for half-hour time zones. dst : int Daylight saving type, e.g. 0 -> none, 1 -> North America, 2 -> Europe. See sunrisesunset.com/custom.asp for other possible values. year : int Year (1901..2099). """ daylight = [] summer = 0 if lat >= 0 else 1 for month in xrange(1, 12+1): args = dict(url=url, lat=lat, lon=lon, tz=tz, dst=dst, year=year, month=month) response = requests.get("%(url)s?comb_city_info=_;%(lon)s;%(lat)s;%(tz)s;%(dst)s&month=%(month)s&year=%(year)s&time_type=1&wadj=1" % args) entries = r1.findall(r0.sub("", response.text)) for day, note, sunrise_hour, sunrise_minute, sunset_hour, sunset_minute in entries: if note == "DST Begins": summer = 1 elif note == "DST Ends": summer = 0 date = datetime.date(year, month, int(day)) sunrise = datetime.time(int(sunrise_hour), int(sunrise_minute)) sunset = datetime.time(int(sunset_hour), int(sunset_minute)) daylight.append([date, sunrise, sunset, summer]) return pd.DataFrame(daylight, columns=["Date", "Sunrise", "Sunset", "Summer"]) # daylight_warsaw_2013 = fetch_daylight_hours(52.2297, -21.0122, 1, 2, 2013) # daylight_warsaw_2013.to_csv("bokeh/sampledata/daylight_warsaw_2013.csv", index=False) def load_daylight_hours(file): path = join(dirname(abspath(__file__)), file) df = pd.read_csv(path, parse_dates=["Date", "Sunrise", "Sunset"]) df["Date"] = df.Date.map(lambda x: x.date()) df["Sunrise"] = df.Sunrise.map(lambda x: x.time()) df["Sunset"] = df.Sunset.map(lambda x: x.time()) return df daylight_warsaw_2013 = load_daylight_hours("daylight_warsaw_2013.csv")
bsd-3-clause
bundgus/python-playground
matplotlib-playground/examples/user_interfaces/rec_edit_gtk_custom.py
1
1310
""" generate an editable gtk treeview widget for record arrays with custom formatting of the cells and show how to limit string entries to a list of strings """ from __future__ import print_function import gtk import numpy as np import matplotlib.mlab as mlab import matplotlib.cbook as cbook import mpl_toolkits.gtktools as gtktools datafile = cbook.get_sample_data('demodata.csv', asfileobj=False) r = mlab.csv2rec(datafile, converterd={'weekdays': str}) formatd = mlab.get_formatd(r) formatd['date'] = mlab.FormatDate('%Y-%m-%d') formatd['prices'] = mlab.FormatMillions(precision=1) formatd['gain'] = mlab.FormatPercent(precision=2) # use a drop down combo for weekdays stringd = dict(weekdays=['Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']) constant = ['clientid'] # block editing of this field liststore = gtktools.RecListStore(r, formatd=formatd, stringd=stringd) treeview = gtktools.RecTreeView(liststore, constant=constant) def mycallback(liststore, rownum, colname, oldval, newval): print('verify: old=%s, new=%s, rec=%s' % (oldval, newval, liststore.r[rownum][colname])) liststore.callbacks.connect('cell_changed', mycallback) win = gtk.Window() win.set_title('click to edit') win.add(treeview) win.show_all() win.connect('delete-event', lambda *args: gtk.main_quit()) gtk.main()
mit
VU-Cog-Sci/PRF_experiment
exp_tools/Session.py
1
19888
#!/usr/bin/env python # encoding: utf-8 """ Session.py Created by Tomas HJ Knapen on 2009-11-26. Copyright (c) 2009 TK. All rights reserved. """ import os, sys, datetime import subprocess, logging import pickle, datetime, time import scipy as sp import numpy as np # import matplotlib.pylab as pl from math import * from psychopy import visual, core, event, misc # import VisionEgg # VisionEgg.start_default_logging(); VisionEgg.watch_exceptions() # # from VisionEgg.Core import * import pygame from pygame.locals import * from scipy.io import wavfile import pyaudio, wave from pylink import * import pygaze from pygaze import libscreen from pygaze import eyetracker from IPython import embed as shell class Session(object): """Session is a main class that creates screen and file properties""" def __init__(self, subject_initials, index_number): super(Session, self).__init__() self.subject_initials = subject_initials self.index_number = index_number self.setup_sound_system() # pygame.mixer.init() # os.chdir('sounds') # self.sound_files = ['%d.wav' % i for i in range(3)] # subprocess.Popen('ls *.*', shell=True, stdout=subprocess.PIPE).communicate()[0].split('\n')[0:-1] # self.sounds = [pygame.mixer.Sound(s) for s in self.sound_files] # os.chdir('..') self.clock = core.Clock() self.outputDict = {'parameterArray': [], 'eventArray' : []} self.events = [] self.stopped = False def setup_sound_system(self): """initialize pyaudio backend, and create dictionary of sounds.""" self.pyaudio = pyaudio.PyAudio() self.sound_files = subprocess.Popen('ls ' + os.path.join(os.environ['EXPERIMENT_HOME'], 'sounds', '*.wav'), shell=True, stdout=subprocess.PIPE).communicate()[0].split('\n')[0:-1] self.sounds = {} for sf in self.sound_files: self.read_sound_file(file_name = sf) # print self.sounds def read_sound_file(self, file_name, sound_name = None): """Read sound file from file_name, and append to self.sounds with name as key""" if sound_name == None: sound_name = os.path.splitext(os.path.split(file_name)[-1])[0] rate, data = wavfile.read(file_name) # create stream data assuming 2 channels, i.e. stereo data, and use np.float32 data format stream_data = data.astype(np.int16) # check data formats - is this stereo sound? If so, we need to fix it. wf = wave.open(file_name, 'rb') # print sound_name # print wf.getframerate(), wf.getnframes(), wf.getsampwidth(), wf.getnchannels() if wf.getnchannels() == 2: stream_data = stream_data[::2] self.sounds.update({sound_name: stream_data}) def create_screen(self, size = (1280, 960), full_screen = False, background_color = (0.0,0.0,0.0), gamma_scale = (2.475,2.25,2.15), physical_screen_size = (48, 32), physical_screen_distance = 71.0, max_lums = (24.52, 78.8, 10.19), wait_blanking = True, screen_nr = 0 ): """ create_screen take a screen to display the stimuli on. the standard screen is assumed to be the Sony FW600, which is set up to start up in the 1280x960@96Hz resolution. """ # the actual screen-getting self.display = libscreen.Display(disptype='psychopy', dispsize=size, fgc=(255,0,0), bgc=list((255*bgl for bgl in background_color)), screennr=screen_nr,mousevisible=False) # self.pygaze_scr = libscreen.Screen(disptype='psychopy') # print dir(self.display) # print self.display # print dir(self.pygaze_scr) # print dir(self.pygaze_scr.screen[0]) self.screen = pygaze.expdisplay self.screen.setMouseVisible(False) self.screen.setColor(background_color) # self.screen = visual.Window( size = size, fullscr = full_screen, allowGUI = False, units = 'pix', allowStencil = True, rgb = background_color, waitBlanking = wait_blanking, winType = 'pyglet' ) self.screen.background_color = background_color # worked = pygame.display.set_gamma(gamma_scale[0],gamma_scale[1],gamma_scale[2]) self.screen_pix_size = size self.max_lums = max_lums self.physical_screen_size = physical_screen_size self.physical_screen_distance = physical_screen_distance self.screen_height_degrees = 2.0 * 180.0/pi * atan((physical_screen_size[1]/2.0)/physical_screen_distance) self.pixels_per_degree = (size[1]) / self.screen_height_degrees self.centimeters_per_degree = physical_screen_size[1] / self.screen_height_degrees self.pixels_per_centimeter = self.pixels_per_degree / self.centimeters_per_degree # print 'screen: ' + str(self.screen_height_degrees) + ' degrees tall and pixels per degree: ' + str(self.pixels_per_degree) # self.screen.mousevis = False self.screen.flip() def create_output_file_name(self, data_directory = 'data'): """create output file""" now = datetime.datetime.now() opfn = now.strftime("%Y-%m-%d_%H.%M.%S") if not os.path.isdir(data_directory): os.mkdir(data_directory) self.output_file = os.path.join(data_directory, self.subject_initials + '_' + str(self.index_number) + '_' + opfn ) def open_input_file(self): """ This method opens a pickle file that has input data in it. we assume the input data consists of two arrays - one for parameters and one for timings. the two arrays' rows will be trials. """ self.input_file_name = self.index_number + '.pickle' ipf = open(self.input_file_name) self.input_data = pickle.load(ipf) ipf.close() def create_input_data(self, save = False): """ This method should be provided by subclasses that create input data on the fly """ pass def parse_input_data(self): """ We assume that the pickle file used as input will be an array, the rows of which will be the requested trials. """ self.nr_trials = len(self.input_data) def close(self): """close screen and save data""" pygame.mixer.quit() self.screen.close() parsopf = open(self.output_file + '_outputDict.pickle', 'a') pickle.dump(self.outputDict,parsopf) parsopf.close() def play_sound(self, sound_index = '0'): """docstring for play_sound""" if type(sound_index) == int: sound_index = str(sound_index) # assuming 44100 Hz, mono channel np.int16 format for the sounds stream_data = self.sounds[sound_index] self.frame_counter = 0 def callback(in_data, frame_count, time_info, status): data = stream_data[self.frame_counter:self.frame_counter+frame_count] self.frame_counter += frame_count return (data, pyaudio.paContinue) # open stream using callback (3) stream = self.pyaudio.open(format=pyaudio.paInt16, channels=1, rate=44100, output=True, stream_callback=callback) stream.start_stream() # stream.write(stream_data) def play_np_sound(self, sound_array): # assuming 44100 Hz, mono channel np.int16 format for the sounds self.frame_counter = 0 def callback(in_data, frame_count, time_info, status): data = sound_array[self.frame_counter:self.frame_counter+frame_count] self.frame_counter += frame_count return (data, pyaudio.paContinue) # open stream using callback (3) stream = self.pyaudio.open(format=pyaudio.paInt16, channels=1, rate=44100, output=True, stream_callback=callback) stream.start_stream() class EyelinkSession(Session): """docstring for EyelinkSession""" def __init__(self, subject_initials, index_number): super(EyelinkSession, self).__init__(subject_initials, index_number) def create_tracker(self, tracker_on = True, sensitivity_class = 0, split_screen = False, screen_half = 'L', auto_trigger_calibration = 1, calibration_type = 'HV9', sample_rate = 1000): """ tracker sets up the connection and inputs the parameters. only start tracker after the screen is taken, its parameters are set, and output file names are created. """ self.eyelink_temp_file = self.subject_initials[:2] + '_' + str(self.index_number) + '_' + str(np.random.randint(99)) + '.edf' # self.tracker.openDataFile(self.eyelink_temp_file) if tracker_on: # create actual tracker try: # self.tracker = EyeLink() # shell() self.tracker = eyetracker.EyeTracker(self.display, trackertype='eyelink', resolution=self.display.dispsize, data_file=self.eyelink_temp_file, bgc=self.display.bgc) self.tracker_on = True except: print '\ncould not connect to tracker' self.tracker = None self.tracker_on = False self.eye_measured, self.sample_rate, self.CR_mode, self.file_sample_filter, self.link_sample_filter = 'N', sample_rate, 1, 1, 1 return else: # not even create dummy tracker self.tracker = None self.tracker_on = False return self.apply_settings(sensitivity_class = sensitivity_class, split_screen = split_screen, screen_half = screen_half, auto_trigger_calibration = auto_trigger_calibration, calibration_type = calibration_type, sample_rate = sample_rate) def apply_settings(self, sensitivity_class = 0, split_screen = False, screen_half = 'L', auto_trigger_calibration = True, sample_rate = 1000, calibration_type = 'HV9', margin = 60): # set EDF file contents self.tracker.send_command("file_event_filter = LEFT,RIGHT,FIXATION,SACCADE,BLINK,MESSAGE,BUTTON") # self.tracker.send_command("file_sample_filter = LEFT,RIGHT,GAZE,SACCADE,BLINK,MESSAGE,AREA")#,GAZERES,STATUS,HTARGET") self.tracker.send_command("file_sample_data = LEFT,RIGHT,GAZE,AREA,GAZERES,STATUS,HTARGET") # set link da (used for gaze cursor) self.tracker.send_command("link_event_filter = LEFT,RIGHT,FIXATION,FIXUPDATE,SACCADE,BLINK") self.tracker.send_command("link_sample_data = GAZE,GAZERES,AREA,HREF,PUPIL,STATUS") self.tracker.send_command("link_event_data = GAZE,GAZERES,AREA,HREF,VELOCITY,FIXAVG,STATUS") # set furtheinfo self.tracker.send_command("screen_pixel_coords = 0 0 %d %d" %self.screen_pix_size) self.tracker.send_command("pupil_size_diameter = %s"%('YES')); self.tracker.send_command("heuristic_filter %d %d"%([1, 0][sensitivity_class], 1)) self.tracker.send_command("sample_rate = %d" % sample_rate) # settings tt address saccade sensitivity - to be set with sensitivity_class parameter. 0 is cognitive style, 1 is pursuit/neurological style self.tracker.send_command("saccade_velocity_threshold = %d" %[30, 22][sensitivity_class]) self.tracker.send_command("saccade_acceleration_threshold = %d" %[9500, 5000][sensitivity_class]) self.tracker.send_command("saccade_motion_threshold = %d" %[0.15, 0][sensitivity_class]) # self.tracker.send_command("file_sample_control = 1,0,0") self.tracker.send_command("screen_phys_coords = %d %d %d %d" %(-self.physical_screen_size[0] / 2.0, self.physical_screen_size[1] / 2.0, self.physical_screen_size[0] / 2.0, -self.physical_screen_size[1] / 2.0)) self.tracker.send_command("simulation_screen_distance = " + str(self.physical_screen_distance)) if auto_trigger_calibration: self.tracker.send_command("enable_automatic_calibration = YES") else: self.tracker.send_command("enable_automatic_calibration = NO") # for binocular stereo-setup need to adjust the calibration procedure to sample only points on the left/right side of the screen. This allows only HV9 calibration for now. # standard would be: # self.tracker.).send_command("calibration_targets = 320,240 320,40 320,440 40,240 600,240 40,40 600,40, 40,440 600,440") # ordering of points: # ;; FOR 9-SAMPLE ALGORITHM: # ;; POINTS MUST BE ORDERED ON SCREEN: # ;; 5 1 6 # ;; 3 0 4 # ;; 7 2 8 # ;; ordering for points in bicubic ("HV13", 13 pt) cal # ;; Point order: 6 2 7 # ;; 10 11 # ;; 4 1 5 # ;; 12 13 # ;; 8 3 9 if split_screen: self.tracker.send_command("calibration_type = HV9") self.tracker.send_command("generate_default_targets = NO") sh, nsw = self.screen.size[1], self.screen.size[0]/2 points = np.array([[nsw/2, sh/2], [nsw/2, sh-margin], [nsw/2, margin], [margin, sh/2], [nsw-margin, sh/2], [margin, sh - margin], [nsw - margin, sh - margin], [margin, margin], [nsw - margin, margin]]) if screen_half == 'R': points[:,0] += nsw points_string = '' for p in points: points_string += "%s,%s " % tuple(p) points_string = points_string[:-1] # delete last space self.tracker.send_command("calibration_targets = " % points_string) self.tracker.send_command("validation_targets = " % points_string) else: self.tracker.send_command("calibration_type = " + calibration_type) def tracker_setup(self, sensitivity_class = 0, split_screen = False, screen_half = 'L', auto_trigger_calibration = True, calibration_type = 'HV9', sample_rate = 1000): if self.tracker.connected(): self.tracker.calibrate() # re-set all the settings to be sure of sample rate and filter and such that may have been changed during the calibration procedure and the subject pressing all sorts of buttons self.apply_settings(sensitivity_class = sensitivity_class, split_screen = split_screen, screen_half = screen_half, auto_trigger_calibration = auto_trigger_calibration, calibration_type = calibration_type, sample_rate = sample_rate ) # we'll record the whole session continuously and parse the data afterward using the messages sent to the eyelink. self.tracker.start_recording() # for that, we'll need the pixel size and the like. self.tracker.log('degrees per pixel ' + str(self.pixels_per_degree) ) # now, we want to know how fast we're sampling, really # self.eye_measured, self.sample_rate, self.CR_mode, self.file_sample_filter, self.link_sample_filter = self.tracker.getModeData() self.sample_rate = sample_rate def drift_correct(self, position = None): """docstring for drift_correct""" if self.tracker.connected(): if position == None: # standard is of course centered on the screen. position = [self.screen.size[0]/2,self.screen.size[1]/2] while 1: # Does drift correction and handles the re-do camera setup situations error = self.tracker.doDriftCorrect(position[0],position[1],1,1) if error != 27: break; else: self.tracker_setup() def eye_pos(self): if self.tracker: return self.tracker.sample() # check for new sample update # if(dt != None): # # Gets the gaze position of the latest sample, # if dt.isRightSample(): # gaze_position = dt.getRightEye().getGaze() # return gaze_position[0],gaze_position[1] # self.screen.size[1]- # elif dt.isLeftSample(): # gaze_position = dt.getLeftEye().getGaze() # return gaze_position[0],gaze_position[1] # self.screen.size[1]- # return 0,self.screen.size[1]-0 else: pygame.event.pump() (x,y) = pygame.mouse.get_pos() y = self.screen.size[1]-y return x,y def detect_saccade(self, algorithm_type = 'velocity', threshold = 0.25, direction = None, fixation_position = None, max_time = 1.0 ): """ detect_saccade tries to detect a saccade based on position (needs fixation_position argument) or velocity (perhaps a direction argument?) information. It can be 'primed' with a vector giving the predicted direction of the impending saccade. detect_saccade looks for a saccade between call_time (= now) and max_time+call_time """ no_saccade = True start_time = core.getTime() if algorithm_type == 'velocity': sample_array = np.zeros((max_time * self.sample_rate, 2), dtype = np.float32) velocity_array = np.zeros((max_time * self.sample_rate, 2), dtype = np.float32) f = np.array([1,1,2,3], dtype = np.float32)/7.0 nr_samples = 1 sample_array[0,:] = self.eye_pos() velocity_array[0,:] = 0.001, 0.001 if direction != None: # make direction a unit vector if it is an argument to this function direction = direction / np.linalg.norm(direction) while no_saccade: saccade_polling_time = core.getTime() sample_array[nr_samples][:] = self.eye_pos() if (sample_array[nr_samples-1][0] != sample_array[nr_samples][0]) or (sample_array[nr_samples-1][1] != sample_array[nr_samples][1]): velocity_array[nr_samples][:] = sample_array[nr_samples][:] - sample_array[nr_samples-1][:] if nr_samples > 3: # scale velocities according to x and y median-based standard deviations, as in engbert & mergenthaler, 2006 med_scaled_velocity = velocity_array[:nr_samples]/np.mean(np.sqrt(((velocity_array[:nr_samples] - np.median(velocity_array[:nr_samples], axis = 0))**2)), axis = 0) if direction != None: # scale the velocity array according to the direction in the direction argument before thresholding # assuming direction is a x,y unit vector specifying the expected direction of the impending saccade if np.inner(med_scaled_velocity[nr_samples], direction) > threshold: no_saccade = False if np.linalg.norm(med_scaled_velocity[-1]) > threshold: no_saccade = False nr_samples += 1 if ( saccade_polling_time - start_time ) > max_time: no_saccade = False if algorithm_type == 'position' or not self.tracker: if fixation_position == None: fixation_position = np.array(self.eye_pos()) while no_saccade: saccade_polling_time = core.getTime() ep = np.array(self.eye_pos()) # print ep, fixation_position, threshold, np.linalg.norm(ep - fixation_position) / self.pixels_per_degree if (np.linalg.norm(ep - fixation_position) / self.pixels_per_degree) > threshold: # eye position is outside the safe zone surrounding fixation - swap the buffers to change saccade target position no_saccade = False # print '\n' if ( saccade_polling_time - start_time ) > max_time: no_saccade = False if algorithm_type == 'eyelink': while no_saccade: self.tracker.wait_for_saccade_start() saccade_polling_time = core.getTime() # ev = # if ev == 5: # start of a saccade # no_saccade = False # if ( saccade_polling_time - start_time ) > max_time: # no_saccade = False return saccade_polling_time def close(self): if self.tracker: if self.tracker.connected(): self.tracker.stop_recording() # inject local file name into pygaze tracker and then close. self.tracker.local_data_file = self.output_file + '.edf' self.tracker.close() super(EyelinkSession, self).close() def play_sound(self, sound_index = '1'): """docstring for play_sound""" super(EyelinkSession, self).play_sound(sound_index = sound_index) if self.tracker != None: self.tracker.log('sound ' + str(sound_index) + ' at ' + str(core.getTime()) ) class StarStimSession(EyelinkSession): """StarStimSession adds starstim EEG trigger functionality to the EyelinkSession. It assumes an active recording, using NIC already connected over bluetooth. Triggers land in the file that's already set up and recording. """ def __init__(self, subject_initials, index_number, connect_to_starstim = False, TCP_IP = '10.0.1.201', TCP_PORT = 1234): super(StarStimSession, self).__init__(subject_initials, index_number) self.setup_starstim_connection(TCP_IP = TCP_IP, TCP_PORT = TCP_PORT, connect_to_starstim = connect_to_starstim) def setup_starstim_connection(self, TCP_IP = '10.0.1.201', TCP_PORT = 1234, connect_to_starstim = True): """setup_starstim_connection opens a connection to the starstim to its standard ip address and standard (trigger) port. For controlling the recordings etc, we need tcp port 1235, it seems. more on that later. """ if connect_to_starstim: self.star_stim_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.star_stim_socket.connect((TCP_IP, TCP_PORT)) self.star_stim_connected = True else: self.star_stim_connected = False def close_starstim_connection(self): if self.star_stim_connected: self.star_stim_socket.close() def send_starstim_trigger(self, trigger = 1): if self.star_stim_connected: self.star_stim_socket.sendall('<TRIGGER>%i</TRIGGER>'%trigger) def close(self): super(StarStimSession, self).close() if self.star_stim_connected: self.close_starstim_connection()
mit
jorik041/scikit-learn
sklearn/tree/tree.py
113
34767
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # Licence: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator, ClassifierMixin, RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array, check_random_state, compute_sample_weight from ..utils.validation import NotFittedError from ._tree import Criterion from ._tree import Splitter from ._tree import DepthFirstTreeBuilder, BestFirstTreeBuilder from ._tree import Tree from . import _tree __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _tree.Gini, "entropy": _tree.Entropy} CRITERIA_REG = {"mse": _tree.MSE, "friedman_mse": _tree.FriedmanMSE} DENSE_SPLITTERS = {"best": _tree.BestSplitter, "presort-best": _tree.PresortBestSplitter, "random": _tree.RandomSplitter} SPARSE_SPLITTERS = {"best": _tree.BestSparseSplitter, "random": _tree.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, class_weight=None): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.class_weight = class_weight self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if self.min_samples_split <= 0: raise ValueError("min_samples_split must be greater than zero.") if self.min_samples_leaf <= 0: raise ValueError("min_samples_leaf must be greater than zero.") if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. # Set min_samples_split sensibly min_samples_split = max(self.min_samples_split, 2 * self.min_samples_leaf) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, self.min_samples_leaf, min_weight_leaf, random_state) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes) builder.build(self.tree_, X, y, sample_weight) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
bsd-3-clause
hainm/statsmodels
statsmodels/genmod/_prediction.py
27
9437
# -*- coding: utf-8 -*- """ Created on Fri Dec 19 11:29:18 2014 Author: Josef Perktold License: BSD-3 """ import numpy as np from scipy import stats # this is similar to ContrastResults after t_test, partially copied and adjusted class PredictionResults(object): def __init__(self, predicted_mean, var_pred_mean, var_resid=None, df=None, dist=None, row_labels=None, linpred=None, link=None): # TODO: is var_resid used? drop from arguments? self.predicted_mean = predicted_mean self.var_pred_mean = var_pred_mean self.df = df self.var_resid = var_resid self.row_labels = row_labels self.linpred = linpred self.link = link if dist is None or dist == 'norm': self.dist = stats.norm self.dist_args = () elif dist == 't': self.dist = stats.t self.dist_args = (self.df,) else: self.dist = dist self.dist_args = () @property def se_obs(self): raise NotImplementedError return np.sqrt(self.var_pred_mean + self.var_resid) @property def se_mean(self): return np.sqrt(self.var_pred_mean) @property def tvalues(self): return self.predicted_mean / self.se_mean def t_test(self, value=0, alternative='two-sided'): '''z- or t-test for hypothesis that mean is equal to value Parameters ---------- value : array_like value under the null hypothesis alternative : string 'two-sided', 'larger', 'smaller' Returns ------- stat : ndarray test statistic pvalue : ndarray p-value of the hypothesis test, the distribution is given by the attribute of the instance, specified in `__init__`. Default if not specified is the normal distribution. ''' # from statsmodels.stats.weightstats # assumes symmetric distribution stat = (self.predicted_mean - value) / self.se_mean if alternative in ['two-sided', '2-sided', '2s']: pvalue = self.dist.sf(np.abs(stat), *self.dist_args)*2 elif alternative in ['larger', 'l']: pvalue = self.dist.sf(stat, *self.dist_args) elif alternative in ['smaller', 's']: pvalue = self.dist.cdf(stat, *self.dist_args) else: raise ValueError('invalid alternative') return stat, pvalue def conf_int(self, method='endpoint', alpha=0.05, **kwds): """ Returns the confidence interval of the value, `effect` of the constraint. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. kwds : extra keyword arguments currently ignored, only for compatibility, consistent signature Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns. """ tmp = np.linspace(0, 1, 6) is_linear = (self.link.inverse(tmp) == tmp).all() if method == 'endpoint' and not is_linear: ci_linear = self.linpred.conf_int(alpha=alpha, obs=False) ci = self.link.inverse(ci_linear) elif method == 'delta' or is_linear: se = self.se_mean q = self.dist.ppf(1 - alpha / 2., *self.dist_args) lower = self.predicted_mean - q * se upper = self.predicted_mean + q * se ci = np.column_stack((lower, upper)) # if we want to stack at a new last axis, for lower.ndim > 1 # np.concatenate((lower[..., None], upper[..., None]), axis=-1) return ci def summary_frame(self, what='all', alpha=0.05): # TODO: finish and cleanup import pandas as pd from statsmodels.compat.collections import OrderedDict #ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split ci_mean = self.conf_int(alpha=alpha) to_include = OrderedDict() to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean to_include['mean_ci_lower'] = ci_mean[:, 0] to_include['mean_ci_upper'] = ci_mean[:, 1] self.table = to_include #OrderedDict doesn't work to preserve sequence # pandas dict doesn't handle 2d_array #data = np.column_stack(list(to_include.values())) #names = .... res = pd.DataFrame(to_include, index=self.row_labels, columns=to_include.keys()) return res def get_prediction_glm(self, exog=None, transform=True, weights=None, row_labels=None, linpred=None, link=None, pred_kwds=None): """ compute prediction results Parameters ---------- exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. weights : array_like, optional Weights interpreted as in WLS, used for the variance of the predicted residual. args, kwargs : Some models can take additional arguments or keywords, see the predict method of the model for the details. Returns ------- prediction_results : instance The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. """ ### prepare exog and row_labels, based on base Results.predict if transform and hasattr(self.model, 'formula') and exog is not None: from patsy import dmatrix exog = dmatrix(self.model.data.design_info.builder, exog) if exog is not None: if row_labels is None: if hasattr(exog, 'index'): row_labels = exog.index else: row_labels = None exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] else: exog = self.model.exog if weights is None: weights = getattr(self.model, 'weights', None) if row_labels is None: row_labels = getattr(self.model.data, 'row_labels', None) # need to handle other arrays, TODO: is delegating to model possible ? if weights is not None: weights = np.asarray(weights) if (weights.size > 1 and (weights.ndim != 1 or weights.shape[0] == exog.shape[1])): raise ValueError('weights has wrong shape') ### end pred_kwds['linear'] = False predicted_mean = self.model.predict(self.params, exog, **pred_kwds) covb = self.cov_params() link_deriv = self.model.family.link.inverse_deriv(linpred.predicted_mean) var_pred_mean = link_deriv**2 * (exog * np.dot(covb, exog.T).T).sum(1) # TODO: check that we have correct scale, Refactor scale #??? var_resid = self.scale / weights # self.mse_resid / weights # special case for now: if self.cov_type == 'fixed scale': var_resid = self.cov_kwds['scale'] / weights dist = ['norm', 't'][self.use_t] return PredictionResults(predicted_mean, var_pred_mean, var_resid, df=self.df_resid, dist=dist, row_labels=row_labels, linpred=linpred, link=link) def params_transform_univariate(params, cov_params, link=None, transform=None, row_labels=None): """ results for univariate, nonlinear, monotonicaly transformed parameters This provides transformed values, standard errors and confidence interval for transformations of parameters, for example in calculating rates with `exp(params)` in the case of Poisson or other models with exponential mean function. """ from statsmodels.genmod.families import links if link is None and transform is None: link = links.Log() if row_labels is None and hasattr(params, 'index'): row_labels = params.index params = np.asarray(params) predicted_mean = link.inverse(params) link_deriv = link.inverse_deriv(params) var_pred_mean = link_deriv**2 * np.diag(cov_params) # TODO: do we want covariance also, or just var/se dist = stats.norm # TODO: need ci for linear prediction, method of `lin_pred linpred = PredictionResults(params, np.diag(cov_params), dist=dist, row_labels=row_labels, link=links.identity()) res = PredictionResults(predicted_mean, var_pred_mean, dist=dist, row_labels=row_labels, linpred=linpred, link=link) return res
bsd-3-clause
matthew-brett/draft-statsmodels
scikits/statsmodels/sandbox/mle.py
1
1652
'''What's the origin of this file? It is not ours. Does not run because of missing mtx files, now included changes: JP corrections to imports so it runs, comment out print ''' import numpy as np from numpy import dot, outer, random, argsort from scipy import io, linalg, optimize from scipy.sparse import speye import matplotlib.pyplot as plt def R(v): rq = dot(v.T,A*v)/dot(v.T,B*v) res = (A*v-rq*B*v)/linalg.norm(B*v) data.append(linalg.norm(res)) return rq def Rp(v): """ Gradient """ result = 2*(A*v-R(v)*B*v)/dot(v.T,B*v) #print "Rp: ", result return result def Rpp(v): """ Hessian """ result = 2*(A-R(v)*B-outer(B*v,Rp(v))-outer(Rp(v),B*v))/dot(v.T,B*v) #print "Rpp: ", result return result A = io.mmread('nos4.mtx') # clustered eigenvalues #B = io.mmread('bcsstm02.mtx.gz') #A = io.mmread('bcsstk06.mtx.gz') # clustered eigenvalues #B = io.mmread('bcsstm06.mtx.gz') n = A.shape[0] B = speye(n,n) random.seed(1) v_0=random.rand(n) print "try fmin_bfgs" full_output = 1 data=[] v,fopt, gopt, Hopt, func_calls, grad_calls, warnflag, allvecs = \ optimize.fmin_bfgs(R,v_0,fprime=Rp,full_output=full_output,retall=1) if warnflag == 0: plt.semilogy(np.arange(0,len(data)),data) print 'Rayleigh quotient BFGS',R(v) print "fmin_bfgs OK" print "try fmin_ncg" # # WARNING: the program may hangs if fmin_ncg is used # data=[] v,fopt, fcalls, gcalls, hcalls, warnflag, allvecs = \ optimize.fmin_ncg(R,v_0,fprime=Rp,fhess=Rpp,full_output=full_output,retall=1) if warnflag==0: plt.figure() plt.semilogy(np.arange(0,len(data)),data) print 'Rayleigh quotient NCG',R(v)
bsd-3-clause
mattloper/opendr
opendr/test_sh.py
1
4734
#!/usr/bin/env python # encoding: utf-8 """ Author(s): Matthew Loper See LICENCE.txt for licensing and contact information. """ from chumpy import Ch import numpy as np from chumpy.utils import row, col from .lighting import SphericalHarmonics import unittest try: import matplotlib.pyplot as plt except: from .dummy import dummy as plt from .topology import loop_subdivider visualize = False def getcam(): from .camera import ProjectPoints3D w = 640 h = 320 f = np.array([500,500]) rt = np.zeros(3) t = np.zeros(3) k = np.zeros(5) c = np.array([w/2., h/2.]) near = .1 far = 20. frustum = {'near': near, 'far': far, 'width': int(w), 'height': int(h)} pp = ProjectPoints3D(f=f, rt=rt, t=t, k=k, c=c) return pp, frustum class TestSphericalHarmonics(unittest.TestCase): def test_spherical_harmonics(self): global visualize if visualize: plt.ion() # Get mesh v, f = get_sphere_mesh() from .geometry import VertNormals vn = VertNormals(v=v, f=f) #vn = Ch(mesh.estimate_vertex_normals()) # Get camera cam, frustum = getcam() # Get renderer from .renderer import ColoredRenderer cam.v = v cr = ColoredRenderer(f=f, camera=cam, frustum=frustum, v=v) sh_red = SphericalHarmonics(vn=vn, light_color=np.array([1,0,0])) sh_green = SphericalHarmonics(vn=vn, light_color=np.array([0,1,0])) cr.vc = sh_red + sh_green ims_baseline = [] for comp_idx, subplot_idx in enumerate([3,7,8,9,11,12,13,14,15]): sh_comps = np.zeros(9) sh_comps[comp_idx] = 1 sh_red.components = Ch(sh_comps) sh_green.components = Ch(-sh_comps) newim = cr.r.reshape((frustum['height'], frustum['width'], 3)) ims_baseline.append(newim) if visualize: plt.subplot(3,5,subplot_idx) plt.imshow(newim) plt.axis('off') offset = row(.4 * (np.random.rand(3)-.5)) #offset = row(np.array([1.,1.,1.]))*.05 vn_shifted = (vn.r + offset) vn_shifted = vn_shifted / col(np.sqrt(np.sum(vn_shifted**2, axis=1))) vn_shifted = vn_shifted.ravel() vn_shifted[vn_shifted>1.] = 1 vn_shifted[vn_shifted<-1.] = -1 vn_shifted = Ch(vn_shifted) cr.replace(sh_red.vn, vn_shifted) if True: for comp_idx in range(9): if visualize: plt.figure(comp_idx+2) sh_comps = np.zeros(9) sh_comps[comp_idx] = 1 sh_red.components = Ch(sh_comps) sh_green.components = Ch(-sh_comps) pred = cr.dr_wrt(vn_shifted).dot(col(vn_shifted.r.reshape(vn.r.shape) - vn.r)).reshape((frustum['height'], frustum['width'], 3)) if visualize: plt.subplot(1,2,1) plt.imshow(pred) plt.title('pred (comp %d)' % (comp_idx,)) plt.subplot(1,2,2) newim = cr.r.reshape((frustum['height'], frustum['width'], 3)) emp = newim - ims_baseline[comp_idx] if visualize: plt.imshow(emp) plt.title('empirical (comp %d)' % (comp_idx,)) pred_flat = pred.ravel() emp_flat = emp.ravel() nnz = np.unique(np.concatenate((np.nonzero(pred_flat)[0], np.nonzero(emp_flat)[0]))) if comp_idx != 0: med_diff = np.median(np.abs(pred_flat[nnz]-emp_flat[nnz])) med_obs = np.median(np.abs(emp_flat[nnz])) if comp_idx == 4 or comp_idx == 8: self.assertTrue(med_diff / med_obs < .6) else: self.assertTrue(med_diff / med_obs < .3) if visualize: plt.axis('off') def get_sphere_mesh(): from .util_tests import get_earthmesh mesh = get_earthmesh(np.zeros(3), np.zeros(3)) # load_mesh(filename) v, f = mesh.v*64., mesh.f for i in range(3): mtx, f = loop_subdivider(v, f) v = mtx.dot(v.ravel()).reshape((-1,3)) v /= 200. v[:,2] += 2 return v, f if __name__ == '__main__': visualize = True plt.ion() #unittest.main() suite = unittest.TestLoader().loadTestsFromTestCase(TestSphericalHarmonics) unittest.TextTestRunner(verbosity=2).run(suite) plt.show() import pdb; pdb.set_trace()
mit
aasensio/pyiacsun
pyiacsun/util/fvoigt.py
1
1842
# Author: [email protected] # Code: Translation of IDL file # @vivivum: https://github.com/vivivum/MilosIDL/ # Author: D. Orozco Suarez & J.C. del Toro Iniesta def fvoigt(damp,vv): """ Extract spectral data from the Kitt Peak FTS-Spectral-Atlas as provided by H. Neckel, Hamburg. INPUTS: DAMP: A scalar with the damping parameter VV: Wavelength axis usually in Doppler units. OUTPUTS: H: Voigt function F: Faraday-Voigt function NOTES: A rational approximation to the complex error function is used after Hui, Armstrong, and Wray(1978, JQSRT 19, 509). H and F are the real and imaginary parts of such function, respectively. The procedure is inspired on that in SIR (Ruiz Cobo & del Toro Iniesta 1992, ApJ 398, 385). On its turn, that routine was taken from modifications by A. Wittmann (1986) to modifications by S.K. Solanki (1985) to an original FORTRAN routine written by J.W. Harvey and A. Nordlund. """ import numpy as np A = [122.607931777104326, 214.382388694706425, 181.928533092181549,\ 93.155580458138441, 30.180142196210589, 5.912626209773153,\ 0.564189583562615] B = [122.60793177387535, 352.730625110963558, 457.334478783897737,\ 348.703917719495792, 170.354001821091472, 53.992906912940207,\ 10.479857114260399,1.] z = np.array(damp*np.ones(len(vv)) + -abs(vv)*1j) Z = ((((((A[6]*z+A[5])*z+A[4])*z+A[3])*z+A[2])*z+A[1])*z+A[0])/\ (((((((z+B[6])*z+B[5])*z+B[4])*z+B[3])*z+B[2])*z+B[1])*z+B[0]) h = np.real(Z) f = np.sign(vv)*np.imag(Z)*0.5 return [h,f] if __name__ == "__main__": import numpy as np import matplotlib.pyplot as plt uvals = np.linspace(-20., 20., 200) a = 2.E-1 [h,f] = fvoigt(a,uvals) plt.plot(uvals,f,'k-') plt.plot(uvals,h,'r-') plt.show()
mit
ngoix/OCRF
examples/cluster/plot_segmentation_toy.py
91
3522
""" =========================================== Spectral clustering for image segmentation =========================================== In this example, an image with connected circles is generated and spectral clustering is used to separate the circles. In these settings, the :ref:`spectral_clustering` approach solves the problem know as 'normalized graph cuts': the image is seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining regions while minimizing the ratio of the gradient along the cut, and the volume of the region. As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the segmentation fails. In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi partition of the graph. In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are interested in separating the objects one from the other, and not from the background. """ print(__doc__) # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering ############################################################################### l = 100 x, y = np.indices((l, l)) center1 = (28, 24) center2 = (40, 50) center3 = (67, 58) center4 = (24, 70) radius1, radius2, radius3, radius4 = 16, 14, 15, 14 circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2 circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2 circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2 circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2 ############################################################################### # 4 circles img = circle1 + circle2 + circle3 + circle4 # We use a mask that limits to the foreground: the problem that we are # interested in here is not separating the objects from the background, # but separating them one from the other. mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(img, mask=mask) # Take a decreasing function of the gradient: we take it weakly # dependent from the gradient the segmentation is close to a voronoi graph.data = np.exp(-graph.data / graph.data.std()) # Force the solver to be arpack, since amg is numerically # unstable on this example labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) ############################################################################### # 2 circles img = circle1 + circle2 mask = img.astype(bool) img = img.astype(float) img += 1 + 0.2 * np.random.randn(*img.shape) graph = image.img_to_graph(img, mask=mask) graph.data = np.exp(-graph.data / graph.data.std()) labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack') label_im = -np.ones(mask.shape) label_im[mask] = labels plt.matshow(img) plt.matshow(label_im) plt.show()
bsd-3-clause
QISKit/qiskit-sdk-py
test/python/visualization/test_gate_map.py
1
5558
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """A test for visualizing device coupling maps""" import unittest import os from ddt import ddt, data from qiskit.test.mock import FakeProvider from qiskit.test import QiskitTestCase from qiskit.visualization.gate_map import _GraphDist, plot_gate_map, plot_circuit_layout from qiskit.tools.visualization import HAS_MATPLOTLIB from qiskit import QuantumRegister, QuantumCircuit from qiskit.transpiler import Layout from .visualization import path_to_diagram_reference, QiskitVisualizationTestCase if HAS_MATPLOTLIB: import matplotlib.pyplot as plt @ddt class TestGateMap(QiskitVisualizationTestCase): """ visual tests for plot_gate_map """ backends = list(filter(lambda x: not (x.configuration().simulator or x.configuration().n_qubits == 2), FakeProvider().backends())) @data(*backends) @unittest.skipIf(not HAS_MATPLOTLIB, 'matplotlib not available.') def test_plot_gate_map(self, backend): """ tests plotting of gate map of a device (20 qubit, 16 qubit, 14 qubit and 5 qubit)""" n = backend.configuration().n_qubits img_ref = path_to_diagram_reference(str(n) + "bit_quantum_computer.png") filename = "temp.png" fig = plot_gate_map(backend) fig.savefig(filename) self.assertImagesAreEqual(filename, img_ref, 0.2) os.remove(filename) @data(*backends) @unittest.skipIf(not HAS_MATPLOTLIB, 'matplotlib not available.') def test_plot_circuit_layout(self, backend): """ tests plot_circuit_layout for each device""" layout_length = int(backend._configuration.n_qubits / 2) qr = QuantumRegister(layout_length, 'qr') circuit = QuantumCircuit(qr) circuit._layout = Layout({qr[i]: i * 2 for i in range(layout_length)}) n = backend.configuration().n_qubits img_ref = path_to_diagram_reference(str(n) + "_plot_circuit_layout.png") filename = str(n) + "_plot_circuit_layout_result.png" fig = plot_circuit_layout(circuit, backend) fig.savefig(filename) self.assertImagesAreEqual(filename, img_ref, 0.1) os.remove(filename) @unittest.skipIf(not HAS_MATPLOTLIB, 'matplotlib not available.') class TestGraphDist(QiskitTestCase): """ tests _GraphdDist functions """ def setUp(self): """ setup plots for _GraphDist """ ax1 = plt.subplots(figsize=(5, 5))[1] ax2 = plt.subplots(figsize=(9, 3))[1] ax1.axis("off") ax2.axis("off") self.ax1 = ax1 self.ax2 = ax2 self.ax1_x0, self.ax1_y0 = ax1.transAxes.transform((0, 0)) self.ax1_x1, self.ax1_y1 = ax1.transAxes.transform((1, 1)) self.ax2_x0, self.ax2_y0 = ax2.transAxes.transform((0, 0)) self.ax2_x1, self.ax2_y1 = ax2.transAxes.transform((1, 1)) self.ax1_bounds_x, self.ax1_bounds_y = ax1.get_xlim(), ax1.get_ylim() self.ax2_bounds_x, self.ax2_bounds_y = ax2.get_xlim(), ax2.get_ylim() self.size = 4 self.real_values = [self.ax1_x1 - self.ax1_x0, self.ax1_y1 - self.ax1_y0, self.ax2_x1 - self.ax2_x0, self.ax2_y1 - self.ax2_y0] self.abs_values = [self.ax1_bounds_x[0] - self.ax1_bounds_x[1], self.ax1_bounds_y[0] - self.ax1_bounds_y[1], self.ax2_bounds_x[0] - self.ax2_bounds_x[1], self.ax2_bounds_y[0] - self.ax2_bounds_y[1]] self.val = [] for i in range(4): val = (self.size / self.real_values[i]) * self.abs_values[i] self.val.append(val) def test_dist_real(self): """ tests dist_real calculation for different figsize """ params = [(self.ax1, self.real_values[0], True), (self.ax1, self.real_values[1], False), (self.ax2, self.real_values[2], True), (self.ax2, self.real_values[3], False)] for test_val, expected_val, bool_op in params: with self.subTest(): self.assertEqual(expected_val, _GraphDist(self.size, test_val, bool_op).dist_real) def test_dist_abs(self): """ tests dist_abs calculation for different figsize """ params = [(self.ax1, self.abs_values[0], True), (self.ax1, self.abs_values[1], False), (self.ax2, self.abs_values[2], True), (self.ax2, self.abs_values[3], False)] for test_val, expected_val, bool_op in params: with self.subTest(): self.assertEqual(expected_val, _GraphDist(self.size, test_val, bool_op).dist_abs) def test_value(self): """ tests value calculation for size = 4 """ params = [(self.ax1, self.val[0], True), (self.ax1, self.val[1], False), (self.ax2, self.val[2], True), (self.ax2, self.val[3], False)] for test_val, expected_val, bool_op in params: with self.subTest(): self.assertEqual(expected_val, _GraphDist(self.size, test_val, bool_op).value) if __name__ == '__main__': unittest.main(verbosity=2)
apache-2.0
rflamary/AstroImageReconsCNN
visu_images_rec.py
1
2838
# -*- coding: utf-8 -*- """ Created on Fri Jul 29 10:02:40 2016 @author: rflamary """ import sys import numpy as np import scipy as sp import scipy.io as spio import matplotlib.pylab as pl import deconv def get_fname(method,n,npsf,sigma,img): return 'res/{}_{}x{}_PSF{}_sigma{:1.3f}_{}.mat'.format(method,n,n,npsf,sigma,img) def get_fname_all(method,n,npsf,sigma): return 'res/{}_{}x{}_PSF{}_sigma{:1.3f}_all.mat'.format(method,n,n,npsf,sigma) # set seed np.random.seed(1985) if len(sys.argv)>1: method=sys.argv[1] else: method='none' #%% PSF sigma=0.01 npsf=64 nr=5 cr=32 PSF=deconv.get_PSF_airy(npsf,nr) npsf=64 #%% lst_img=['M31','Hoag','M51a','M81','M101','M104'] #lst_img=['M31'] nb_img=len(lst_img) lst_methods=['wiener','rl','vc_tv','cnn0','cnn'] nbm=len(lst_methods) #%% generat i=2 def sel(I): return I[300:-cr-100,300:-cr-100] img_txt=lst_img[i] method='none' I0=deconv.load_fits_image(img_txt) n=1024 iv=1200;jv=1200 I0=I0[iv:iv+n,jv:jv+n] fname=get_fname('none',n,npsf,sigma,img_txt) data=spio.loadmat(fname) Inoise=data['Irec'] fname=get_fname('wiener',n,npsf,sigma,img_txt) data=spio.loadmat(fname) Iwiener=data['Irec'] fname=get_fname('rl',n,npsf,sigma,img_txt) data=spio.loadmat(fname) Irl=data['Irec'] fname=get_fname('vc_tv',n,npsf,sigma,img_txt) data=spio.loadmat(fname) Itv=data['Irec'] fname=get_fname('cnn0',n,npsf,sigma,img_txt) data=spio.loadmat(fname) Icnn0=data['Irec'] fname=get_fname('cnn',n,npsf,sigma,img_txt) data=spio.loadmat(fname) Icnn=data['Irec'] #%% plot szsb=[4,4] pl.figure(1) pl.clf() fs=5 vmin=0.15 vmax=0.8 pl.subplot(szsb[0],szsb[1],1) pl.imshow(sel(I0)/sel(I0).max(),cmap='gray',vmin=vmin,vmax=vmax) pl.title('Original',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],2) pl.imshow(np.sqrt(PSF),cmap='gray',interpolation='nearest') pl.title('PSF',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],3) pl.imshow(sel(Inoise),cmap='gray',vmin=vmin,vmax=vmax) pl.title('Conv. + noisy',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],4) pl.imshow(sel(Iwiener),cmap='gray',vmin=vmin,vmax=vmax) pl.title('Wiener',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],5) pl.imshow(sel(Irl),cmap='gray',vmin=vmin,vmax=vmax) pl.title('RL',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],6) pl.imshow(sel(Itv),cmap='gray',vmin=vmin,vmax=vmax) pl.title('Prox. TV',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],7) pl.imshow(sel(Icnn0),cmap='gray',vmin=vmin,vmax=vmax) pl.title('1-CNN',fontsize=fs,y=0.95) pl.axis("off") pl.subplot(szsb[0],szsb[1],8) pl.imshow(sel(Icnn0),cmap='gray') pl.title('3-CNN',fontsize=fs,y=0.95) pl.axis("off") pl.subplots_adjust(wspace=0.0,hspace=0.15) pl.savefig('imgs/images_rec.png',dpi=400,bbox_inches='tight',pad_inches=.01)
mit
boland1992/seissuite_iran
build/lib/ambient/azimuth/decluster.py
4
8306
# -*- coding: utf-8 -*- """ Created on Fri Jul 3 08:44:50 2015 @author: boland """ #------------------------------------------------------------------------------ # MODULES #------------------------------------------------------------------------------ import os import fiona import pickle import pyproj import datetime import itertools import shapefile import numpy as np import datetime as dt import pointshape as ps from shapely import geometry import multiprocessing as mp import matplotlib.pyplot as plt from shapely.geometry import asPolygon, Polygon from math import sqrt, radians, cos, sin, asin from info_dataless import locs_from_dataless from descartes.patch import PolygonPatch from matplotlib.colors import LogNorm from scipy.spatial import ConvexHull from scipy.cluster.vq import kmeans from shapely.affinity import scale from matplotlib.path import Path #------------------------------------------------------------------------------ # VARIABLES #------------------------------------------------------------------------------ verbose = False #Enter path to boundary shape file. shape_boundary = False #shape_path = "/home/boland/Dropbox/University/UniMelb\ #/AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" dataless = True # Enter path to dataless file #dataless_path = 'ALL_AUSTRALIA.870093.dataless' #dataless_path = 'UOM.dataless' # Enter number new stations desired. N = 3 # Enter km spacing between path density points. km_points = 20.0 # Reference elipsoid to calculate distance. wgs84 = pyproj.Geod(ellps='WGS84') # Enter number of bins for 2D Histogram density calculation. nbins = 220 # Enter estimated average shear wave velocity. 3kms-1 is the default! velocity = 3.0 # Define your ambient noise period range OR individual period in seconds. global period_range period_range = [1,40] dataless_path = 'east-timor/timor.dataless' dataless_path = '/storage/ANT/spectral_density/USARRAY/full_USARRAY.dataless' coords = locs_from_dataless(dataless_path) #shape_path = "/home/boland/Dropbox/University/UniMelb\ #/AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" shape_path = 'east-timor/TLS_adm0.shp' coords = locs_from_dataless(dataless_path) #shape_path = "/home/boland/Dropbox/University/UniMelb\ #/AGOS/PROGRAMS/ANT/Versions/26.04.2015/shapefiles/aus.shp" t0 = dt.datetime.now() # Generate InShape class SHAPE = InShape(shape_path) # Create shapely polygon from imported shapefile UNIQUE_SHAPE = SHAPE.shape_poly() print type(UNIQUE_SHAPE) # Generate InPoly class INPOLY = InPoly(shape_path) # Create matplotlib Path object from imported shapefile #outer_shape = UNIQUE_SHAPE.buffer(1.,resolution=1) #inner_shape = UNIQUE_SHAPE.buffer(-8,resolution=1) #outer_poly = INPOLY.poly_from_shape(shape=outer_shape) #inner_poly = INPOLY.poly_from_shape(shape=inner_shape) #many_points = INPOLY.rand_poly(poly=outer_poly, N=1e4) # Scale smaller shape to fit inside larger shape. #SMALL_SHAPE = scale(UNIQUE_SHAPE, xfact=0.3, yfact=0.3) #points_in_small_shape = INPOLY.rand_shape(shape=SMALL_SHAPE, IN=False) # Generate matplotlib Path object for the small scalled polygon #small_poly = INPOLY.node_poly(SHAPE.external_coords(shape=SMALL_SHAPE)) # Remove points that are outside the buffered_poly #outer_poly_points = INPOLY.points_in(many_points, poly=outer_poly) # Remove points that are inside the small_poly #inner_poly_points = np.asarray(INPOLY.points_in(outer_poly_points, # poly=inner_poly, # IN=False)) #cluster_points = np.asarray(kmeans(inner_poly_points, 130)[0]) #plt.figure() #plt.scatter(inner_poly_points[:,0], inner_poly_points[:,1], c='b') #plt.scatter(cluster_points[:,0], cluster_points[:,1], c='orange', s=35) #plt.show() #----------------------------------------------------------------------------- # INITIALISE CLASS STATES #----------------------------------------------------------------------------- GEODESIC = Geodesic() COORDS = Coordinates() INPOLY = InPoly(shape_path) POLY_NODES = INPOLY.poly_nodes() #----------------------------------------------------------------------------- # GENERATE SECOND SET OF VARIABLES AND STATES #----------------------------------------------------------------------------- ideal_path = 'ideal_coordinates.pickle' #if no paths have been done before, start afresh! #if dataless: # coords = locs_from_dataless(dataless_path) # original_coords = coords #elif os.path.exists(ideal_path): # f = open(name=ideal_path, mode='rb') # coords = pickle.load(f) # f.close() # decluster the points to desired specifications. coords = COORDS.decluster(inputs=coords, degree_dist=0.5) lonmin, lonmax = np.floor(min(coords[:,0])), np.ceil(max(coords[:,0])) latmin, latmax = np.floor(min(coords[:,1])), np.ceil(max(coords[:,1])) print lonmin,lonmax,latmin,latmax plt.figure() plt.scatter(coords[:,0], coords[:,1]) plt.show() kappa = [np.vstack([[coord1[0],coord1[1],coord2[0],coord2[1]]\ for coord2 in coords]) for coord1 in coords] def spread_paths(coord_list): return GEODESIC.fast_paths(coord_list) t0 = datetime.datetime.now() pool = mp.Pool() paths = pool.map(spread_paths, kappa) pool.close() pool.join() t1 = datetime.datetime.now() print t1-t0 counter, counter2 = 0, 0 #cd Desktop/Link\ to\ SIMULATIONS/Network_Tracks/smarter_model/ grad_ideal, grad_check1, grad_check2, H_avg1, H_avg2 = 0, 0, 0, 0, 0 SHAPE = (1,1) perc_high = 0.01 low_counter = 0 random_counter = 0 #new_coord = 0 infinite_counter = 0 find_it = [] check_coord = None use_old_path = False searches_per_point = 3 factor = 0.05 cluster = False N_cluster_points = False while infinite_counter <= 1: t0 = datetime.datetime.now() #---------------------------------------------------------------------- # Generate N new point coordinates #---------------------------------------------------------------------- if cluster: new_coords = N_cluster_points else: new_coords = ps.points_in_shape(shape_path, N) coords = np.append(coords, new_coords, axis=0) coord_set = [np.vstack([[coord1[0],coord1[1],coord2[0],coord2[1]]\ for coord2 in coords]) for coord1 in coords] t0 = datetime.datetime.now() pool = mp.Pool() paths = pool.map(spread_paths, coord_set) pool.close() pool.join() t1 = datetime.datetime.now() print "time to generate new paths", t1-t0 # Append new set of paths now that old set has been deleted. #create a flattened numpy array of size 2xN from the paths created! paths1 = GEODESIC.combine_paths(paths) paths = list(paths) paths1 = GEODESIC.remove_zeros(paths1) DENSITY = Density(paths=paths1) H, xedges, yedges = DENSITY.hist2d(paths=paths1) grad = DENSITY.hgrad(H=H) H_avg1 = np.average(H) grad_check1 = np.std(grad) H_masked = DENSITY.transform_h(H=H) grad = DENSITY.transform_grad(grad=grad) search = np.where(H<0.1*np.average(H)) Hmaxx, Hmaxy = search[1], search[0] Hmaxx = (lonmax-lonmin)/(nbins) * Hmaxx + lonmin Hmaxy = (latmax-latmin)/(nbins) * Hmaxy + latmin # Make sure all low density coordinates ARE within shapefile! low_density_coords = ps.paths_in_shape(np.column_stack((Hmaxx, Hmaxy))) #N_cluster_points = kmeans(low_density_coords, N)[0] density_coords = DENSITY.select_points() # make sure that your density coords are within the boundary shape density_coords = INPOLY.points_in(density_coords) #cluster = True if counter == 0: grad_ideal = 1e6 avg_ideal = 0 if grad_check1 < grad_ideal and avg_ideal < H_avg1: with open(u'ideal_coordinates.pickle', 'wb') as f: print "\nExporting new ideal coordinates." pickle.dump(coords, f, protocol=2) DENSITY.plot_field()#nodes=POLY_NODES)#SHAPE=UNIQUE_SHAPE) grad_ideal = grad_check1 avg_ideal = H_avg1 coords = COORDS.del_N(N=N, inputs=coords) paths = COORDS.del_N(N=N, inputs=paths) paths=list(paths) counter+=1 t1 = datetime.datetime.now() print "That loop took: ", t1-t0
gpl-3.0
josherick/bokeh
bokeh/charts/builder/tests/test_scatter_builder.py
33
2895
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import Scatter from bokeh.charts.builder.tests._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestScatter(unittest.TestCase): def test_supported_input(self): xyvalues = OrderedDict() xyvalues['python'] = [(1, 2), (3, 3), (4, 7), (5, 5), (8, 26)] xyvalues['pypy'] = [(1, 12), (2, 23), (4, 47), (5, 15), (8, 46)] xyvalues['jython'] = [(1, 22), (2, 43), (4, 10), (6, 25), (8, 26)] xyvaluesdf = pd.DataFrame(xyvalues) y_python = [2, 3, 7, 5, 26] y_pypy = [12, 23, 47, 15, 46] y_jython = [22, 43, 10, 25, 26] x_python = [1, 3, 4, 5, 8] x_pypy = [1, 2, 4, 5, 8] x_jython = [1, 2, 4, 6, 8] for i, _xy in enumerate([xyvalues, xyvaluesdf]): hm = create_chart(Scatter, _xy) builder = hm._builders[0] self.assertEqual(sorted(builder._groups), sorted(list(xyvalues.keys()))) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_jython'], y_jython) assert_array_equal(builder._data['y_pypy'], y_pypy) assert_array_equal(builder._data['x_python'], x_python) assert_array_equal(builder._data['x_jython'], x_jython) assert_array_equal(builder._data['x_pypy'], x_pypy) lvalues = [xyvalues['python'], xyvalues['pypy'], xyvalues['jython']] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(Scatter, _xy) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython) assert_array_equal(builder._data['x_0'], x_python) assert_array_equal(builder._data['x_1'], x_pypy) assert_array_equal(builder._data['x_2'], x_jython)
bsd-3-clause
fabioticconi/scikit-learn
sklearn/linear_model/sag.py
29
11291
"""Solvers for Ridge and LogisticRegression using SAG algorithm""" # Authors: Tom Dupre la Tour <[email protected]> # # Licence: BSD 3 clause import numpy as np import warnings from ..exceptions import ConvergenceWarning from ..utils import check_array from ..utils.extmath import row_norms from .base import make_dataset from .sag_fast import sag def get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept): """Compute automatic step size for SAG solver The step size is set to 1 / (alpha_scaled + L + fit_intercept) where L is the max sum of squares for over all samples. Parameters ---------- max_squared_sum : float Maximum squared sum of X over samples. alpha_scaled : float Constant that multiplies the regularization term, scaled by 1. / n_samples, the number of samples. loss : string, in {"log", "squared"} The loss function used in SAG solver. fit_intercept : bool Specifies if a constant (a.k.a. bias or intercept) will be added to the decision function. Returns ------- step_size : float Step size used in SAG solver. References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/PDF/sag_journal.pdf """ if loss in ('log', 'multinomial'): # inverse Lipschitz constant for log loss return 4.0 / (max_squared_sum + int(fit_intercept) + 4.0 * alpha_scaled) elif loss == 'squared': # inverse Lipschitz constant for squared loss return 1.0 / (max_squared_sum + int(fit_intercept) + alpha_scaled) else: raise ValueError("Unknown loss function for SAG solver, got %s " "instead of 'log' or 'squared'" % loss) def sag_solver(X, y, sample_weight=None, loss='log', alpha=1., max_iter=1000, tol=0.001, verbose=0, random_state=None, check_input=True, max_squared_sum=None, warm_start_mem=None): """SAG solver for Ridge and LogisticRegression SAG stands for Stochastic Average Gradient: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a constant learning rate. IMPORTANT NOTE: 'sag' solver converges faster on columns that are on the same scale. You can normalize the data by using sklearn.preprocessing.StandardScaler on your data before passing it to the fit method. This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point values for the features. It will fit the data according to squared loss or log loss. The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using the squared euclidean norm L2. .. versionadded:: 0.17 Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values. With loss='multinomial', y must be label encoded (see preprocessing.LabelEncoder). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). loss : 'log' | 'squared' | 'multinomial' Loss function that will be optimized: -'log' is the binary logistic loss, as used in LogisticRegression. -'squared' is the squared loss, as used in Ridge. -'multinomial' is the multinomial logistic loss, as used in LogisticRegression. .. versionadded:: 0.18 *loss='multinomial'* alpha : float, optional Constant that multiplies the regularization term. Defaults to 1. max_iter: int, optional The max number of passes over the training data if the stopping criterea is not reached. Defaults to 1000. tol: double, optional The stopping criterea for the weights. The iterations will stop when max(change in weights) / max(weights) < tol. Defaults to .001 verbose: integer, optional The verbosity level. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. warm_start_mem: dict, optional The initialization parameters used for warm starting. Warm starting is currently used in LogisticRegression but not in Ridge. It contains: - 'coef': the weight vector, with the intercept in last line if the intercept is fitted. - 'gradient_memory': the scalar gradient for all seen samples. - 'sum_gradient': the sum of gradient over all seen samples, for each feature. - 'intercept_sum_gradient': the sum of gradient over all seen samples, for the intercept. - 'seen': array of boolean describing the seen samples. - 'num_seen': the number of seen samples. Returns ------- coef_ : array, shape (n_features) Weight vector. n_iter_ : int The number of full pass on all samples. warm_start_mem : dict Contains a 'coef' key with the fitted result, and possibly the fitted intercept at the end of the array. Contains also other keys used for warm starting. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> X = np.random.randn(n_samples, n_features) >>> y = np.random.randn(n_samples) >>> clf = linear_model.Ridge(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='sag', tol=0.001) >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> clf = linear_model.LogisticRegression(solver='sag') >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1, penalty='l2', random_state=None, solver='sag', tol=0.0001, verbose=0, warm_start=False) References ---------- Schmidt, M., Roux, N. L., & Bach, F. (2013). Minimizing finite sums with the stochastic average gradient https://hal.inria.fr/hal-00860051/PDF/sag_journal.pdf See also -------- Ridge, SGDRegressor, ElasticNet, Lasso, SVR, and LogisticRegression, SGDClassifier, LinearSVC, Perceptron """ if warm_start_mem is None: warm_start_mem = {} # Ridge default max_iter is None if max_iter is None: max_iter = 1000 if check_input: X = check_array(X, dtype=np.float64, accept_sparse='csr', order='C') y = check_array(y, dtype=np.float64, ensure_2d=False, order='C') n_samples, n_features = X.shape[0], X.shape[1] # As in SGD, the alpha is scaled by n_samples. alpha_scaled = float(alpha) / n_samples # if loss == 'multinomial', y should be label encoded. n_classes = int(y.max()) + 1 if loss == 'multinomial' else 1 # initialization if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float64, order='C') if 'coef' in warm_start_mem.keys(): coef_init = warm_start_mem['coef'] else: # assume fit_intercept is False coef_init = np.zeros((n_features, n_classes), dtype=np.float64, order='C') # coef_init contains possibly the intercept_init at the end. # Note that Ridge centers the data before fitting, so fit_intercept=False. fit_intercept = coef_init.shape[0] == (n_features + 1) if fit_intercept: intercept_init = coef_init[-1, :] coef_init = coef_init[:-1, :] else: intercept_init = np.zeros(n_classes, dtype=np.float64) if 'intercept_sum_gradient' in warm_start_mem.keys(): intercept_sum_gradient = warm_start_mem['intercept_sum_gradient'] else: intercept_sum_gradient = np.zeros(n_classes, dtype=np.float64) if 'gradient_memory' in warm_start_mem.keys(): gradient_memory_init = warm_start_mem['gradient_memory'] else: gradient_memory_init = np.zeros((n_samples, n_classes), dtype=np.float64, order='C') if 'sum_gradient' in warm_start_mem.keys(): sum_gradient_init = warm_start_mem['sum_gradient'] else: sum_gradient_init = np.zeros((n_features, n_classes), dtype=np.float64, order='C') if 'seen' in warm_start_mem.keys(): seen_init = warm_start_mem['seen'] else: seen_init = np.zeros(n_samples, dtype=np.int32, order='C') if 'num_seen' in warm_start_mem.keys(): num_seen_init = warm_start_mem['num_seen'] else: num_seen_init = 0 dataset, intercept_decay = make_dataset(X, y, sample_weight, random_state) if max_squared_sum is None: max_squared_sum = row_norms(X, squared=True).max() step_size = get_auto_step_size(max_squared_sum, alpha_scaled, loss, fit_intercept) if step_size * alpha_scaled == 1: raise ZeroDivisionError("Current sag implementation does not handle " "the case step_size * alpha_scaled == 1") num_seen, n_iter_ = sag(dataset, coef_init, intercept_init, n_samples, n_features, n_classes, tol, max_iter, loss, step_size, alpha_scaled, sum_gradient_init, gradient_memory_init, seen_init, num_seen_init, fit_intercept, intercept_sum_gradient, intercept_decay, verbose) if n_iter_ == max_iter: warnings.warn("The max_iter was reached which means " "the coef_ did not converge", ConvergenceWarning) if fit_intercept: coef_init = np.vstack((coef_init, intercept_init)) warm_start_mem = {'coef': coef_init, 'sum_gradient': sum_gradient_init, 'intercept_sum_gradient': intercept_sum_gradient, 'gradient_memory': gradient_memory_init, 'seen': seen_init, 'num_seen': num_seen} if loss == 'multinomial': coef_ = coef_init.T else: coef_ = coef_init[:, 0] return coef_, n_iter_, warm_start_mem
bsd-3-clause
JaggedG/ThinkStats2
code/hinc_soln.py
67
4296
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import hinc import thinkplot import thinkstats2 """This file contains a solution to an exercise in Think Stats: The distributions of wealth and income are sometimes modeled using lognormal and Pareto distributions. To see which is better, let's look at some data. The Current Population Survey (CPS) is joint effort of the Bureau of Labor Statistics and the Census Bureau to study income and related variables. Data collected in 2013 is available from http://www.census.gov/hhes/www/cpstables/032013/hhinc/toc.htm. I downloaded hinc06.xls, which is an Excel spreadsheet with information about household income, and converted it to hinc06.csv, a CSV file you will find in the repository for this book. You will also find hinc.py, which reads the CSV file. Extract the distribution of incomes from this dataset. Are any of the analytic distributions in this chapter a good model of the data? A solution to this exercise is in hinc_soln.py. My solution generates three figures: 1) The CDF of income on a linear scale. 2) The CCDF on a log-log scale along with a Pareto model intended to match the tail behavior. 3) The CDF on a log-x scale along with a lognormal model chose to match the median and inter-quartile range. My conclusions based on these figures are: 1) The Pareto model is probably a reasonable choice for the top 10-20% of incomes. 2) The lognormal model captures the shape of the distribution better, but the data deviate substantially from the model. With different choices for sigma, you could match the upper or lower tail, but not both at the same time. In summary I would say that neither model captures the whole distribution, so you might have to 1) look for another analytic model, 2) choose one that captures the part of the distribution that is most relevent, or 3) avoid using an analytic model altogether. """ class SmoothCdf(thinkstats2.Cdf): """Represents a CDF based on calculated quantiles. """ def Render(self): """Because this CDF was not computed from a sample, it should not be rendered as a step function. """ return self.xs, self.ps def Prob(self, x): """Compute CDF(x), interpolating between known values. """ return np.interp(x, self.xs, self.ps) def Value(self, p): """Compute inverse CDF(x), interpolating between probabilities. """ return np.interp(p, self.ps, self.xs) def MakeFigures(df): """Plots the CDF of income in several forms. """ xs, ps = df.income.values, df.ps.values cdf = SmoothCdf(xs, ps, label='data') cdf_log = SmoothCdf(np.log10(xs), ps, label='data') # linear plot thinkplot.Cdf(cdf) thinkplot.Save(root='hinc_linear', xlabel='household income', ylabel='CDF') # pareto plot # for the model I chose parameters by hand to fit the tail xs, ys = thinkstats2.RenderParetoCdf(xmin=55000, alpha=2.5, low=0, high=250000) thinkplot.Plot(xs, 1-ys, label='model', color='0.8') thinkplot.Cdf(cdf, complement=True) thinkplot.Save(root='hinc_pareto', xlabel='log10 household income', ylabel='CCDF', xscale='log', yscale='log') # lognormal plot # for the model I estimate mu and sigma using # percentile-based statistics median = cdf_log.Percentile(50) iqr = cdf_log.Percentile(75) - cdf_log.Percentile(25) std = iqr / 1.349 # choose std to match the upper tail std = 0.35 print(median, std) xs, ps = thinkstats2.RenderNormalCdf(median, std, low=3.5, high=5.5) thinkplot.Plot(xs, ps, label='model', color='0.8') thinkplot.Cdf(cdf_log) thinkplot.Save(root='hinc_normal', xlabel='log10 household income', ylabel='CDF') def main(): df = hinc.ReadData() MakeFigures(df) if __name__ == "__main__": main()
gpl-3.0
kinverarity1/geotransect
feature_plot.py
2
10843
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Functions for plotting. :copyright: 2015 Agile Geoscience :license: Apache 2.0 """ import csv import os import numpy as np import matplotlib.pyplot as plt import matplotlib.transforms as transforms from striplog import Legend import utils from notice import Notice def get_curve_params(abbrev, fname): """ Builds and returns a dictionary of petrophysical parameters for plotting purposes. Args: abbrev (str): A curve mnemonic or other abbreviation. fname (str): The path to a file with the curve configuration. Returns: dict: A mapping of parameter:value for the curve in question. """ params = {'acronym': abbrev} with open(fname, 'rU') as csvfile: reader = csv.DictReader(csvfile) for row in reader: if row['acronymn'] == abbrev: params['track'] = int(row['track']) params['units'] = row['units'] params['xleft'] = float(row['xleft']) params['xright'] = float(row['xright']) params['logarithmic'] = row['logarithmic'] params['hexcolor'] = row['hexcolor'] params['fill_left_cond'] = bool(row['fill_left_cond']) params['fill_left'] = row['fill_left'] params['fill_right_cond'] = bool(row['fill_right_cond']) params['fill_right'] = row['fill_right'] params['xticks'] = row['xticks'].split(',') return params def plot_feature_well(tc, gs): """ Plotting function for the feature well. Args: tc (TransectContainer): The container for the main plot. log (axis): A matplotlib axis. gs (GridSpec): A matplotlib gridspec. """ fname = tc.settings['curve_display'] logs = tc.log.get(tc.feature_well) if not logs: # There was no data for this well, so there won't be a feature plot. Notice.fail("There's no well data for feature well " + tc.feature_well) return gs Z = logs.data['DEPT'] curves = ['GR', 'DT', 'DPHI_SAN', 'NPHI_SAN', 'DTS', 'RT_HRLT', 'RHOB', 'DRHO'] window = tc.settings.get('curve_smooth_window') or 51 ntracks = 5 lw = 1.0 smooth = True naxes = 0 ncurv_per_track = np.zeros(ntracks) if getattr(tc.log, 'striplog', None): ncurv_per_track[0] = 1 for curve in curves: naxes += 1 params = get_curve_params(curve, fname) ncurv_per_track[params['track']] += 1 axss = plt.subplot(gs[2:, -5]) axs0 = [axss, axss.twiny()] axs1 = [plt.subplot(gs[2:, -4])] axs2 = [plt.subplot(gs[2:, -3])] axs3 = [plt.subplot(gs[2:, -2])] axs4 = [plt.subplot(gs[2:, -1])] axs = [axs0, axs1, axs2, axs3, axs4] if getattr(tc.log, 'striplog', None): legend = Legend.default() try: logs.striplog[tc.log.striplog].plot_axis(axs0[0], legend=legend) except KeyError: # In fact, this striplog doesn't exist. Notice.fail("There is no such striplog" + tc.log.striplog) # And move on... axs0[0].set_ylim([Z[-1], 0]) label_shift = np.zeros(len(axs)) for curve in curves: try: values = logs.data[curve] except ValueError: Notice.warning("Curve not present: "+curve) values = np.empty_like(Z) values[:] = np.nan params = get_curve_params(curve, fname) i = params['track'] j = 0 label_shift[i] += 1 linOrlog = params['logarithmic'] sxticks = np.array(params['xticks']) xticks = np.array(sxticks, dtype=float) whichticks = 'major' if linOrlog == 'log': midline = np.log(np.mean(xticks)) xpos = midline whichticks = 'minor' else: midline = np.mean(xticks) xpos = midline if smooth: values = utils.rolling_median(values, window) if curve == 'GR': j = 1 # second axis in first track label_shift[i] = 1 if params['fill_left_cond']: # do the fill for the lithology track axs[i][j].fill_betweenx(Z, params['xleft'], values, facecolor=params['fill_left'], alpha=1.0, zorder=11) if (curve == 'DPHI_SAN') and params['fill_left_cond']: # do the fill for the neutron porosity track try: nphi = utils.rolling_median(logs.data['NPHI_SAN'], window) except ValueError: Notice.warning("No NPHI in this well") nphi = np.empty_like(Z) nphi[:] = np.nan axs[i][j].fill_betweenx(Z, nphi, values, where=nphi >= values, facecolor=params['fill_left'], alpha=1.0, zorder=11) axs[i][j].fill_betweenx(Z, nphi, values, where=nphi <= values, facecolor='#8C1717', alpha=0.5, zorder=12) if curve == 'DRHO': blk_drho = 3.2 values += blk_drho # this is a hack to get DRHO on RHOB scale axs[i][j].fill_betweenx(Z, blk_drho, values, where=nphi <= values, facecolor='#CCCCCC', alpha=0.5, zorder=12) # fill right if params['fill_right_cond']: axs[i][j].fill_betweenx(Z, values, params['xright'], facecolor=params['fill_right'], alpha=1.0, zorder=12) # plot curve axs[i][j].plot(values, Z, color=params['hexcolor'], lw=lw, zorder=13) # set scale of curve axs[i][j].set_xlim([params['xleft'], params['xright']]) # ------------------------------------------------- # # curve labels # ------------------------------------------------- # trans = transforms.blended_transform_factory(axs[i][j].transData, axs[i][j].transData) magic = -Z[-1] / 12. axs[i][j].text(xpos, magic - (magic/4)*(label_shift[i]-1), curve, horizontalalignment='center', verticalalignment='bottom', fontsize=12, color=params['hexcolor'], transform=trans) # curve units units = '${}$'.format(params['units']) if label_shift[i] <= 1: axs[i][j].text(xpos, magic*0.5, units, horizontalalignment='center', verticalalignment='top', fontsize=12, color='k', transform=trans) # ------------------------------------------------- # # scales and tickmarks # ------------------------------------------------- # axs[i][j].set_xscale(linOrlog) axs[i][j].set_ylim([Z[-1], 0]) axs[i][j].axes.xaxis.set_ticks(xticks) axs[i][j].axes.xaxis.set_ticklabels(sxticks, fontsize=8) for label in axs[i][j].axes.xaxis.get_ticklabels(): label.set_rotation(90) axs[i][j].tick_params(axis='x', direction='out') axs[i][j].xaxis.tick_top() axs[i][j].xaxis.set_label_position('top') axs[i][j].xaxis.grid(True, which=whichticks, linewidth=0.25, linestyle='-', color='0.75', zorder=100) axs[i][j].yaxis.grid(True, which=whichticks, linewidth=0.25, linestyle='-', color='0.75', zorder=100) axs[i][j].yaxis.set_ticks(np.arange(0, max(Z), 100)) if i != 0: axs[i][j].set_yticklabels("") # ------------------------------------------------- # # End of curve loop # ------------------------------------------------- # # Add Depth label axs[0][0].text(0, 1.05, 'MD\n$m$', fontsize='10', horizontalalignment='center', verticalalignment='center', transform=axs[0][0].transAxes) axs[0][0].axes.yaxis.get_ticklabels() axs[0][0].axes.xaxis.set_ticklabels('') for label in axs[0][0].axes.yaxis.get_ticklabels(): label.set_rotation(90) label.set_fontsize(10) for label in axs[1][0].axes.xaxis.get_ticklabels(): label.set_rotation(90) label.set_fontsize(10) # Add Tops try: if os.path.exists(tc.tops_file): tops = utils.get_tops(tc.tops_file) topx = get_curve_params('DT', fname) topmidpt = np.amax((topx)['xright']) # plot tops for i in range(ntracks): for mkr, depth in tops.iteritems(): # draw horizontal bars at the top position axs[i][-1].axhline(y=depth, xmin=0.01, xmax=.99, color='b', lw=2, alpha=0.5, zorder=100) # draw text box at the right edge of the last track axs[-1][-1].text(x=topmidpt, y=depth, s=mkr, alpha=0.5, color='k', fontsize='8', horizontalalignment='center', verticalalignment='center', zorder=10000, bbox=dict(facecolor='white', edgecolor='k', alpha=0.25, lw=0.25), weight='light') except AttributeError: Notice.warning("No tops for this well") except TypeError: # We didn't get a tops file so move along. print "No tops for this well" return gs
apache-2.0
puolival/multipy
multipy/permutation_test.py
1
2218
import matplotlib.pyplot as plt from mne.viz import plot_evoked_topo import numpy as np from permutation import permutation_test from viz import plot_permutation_distribution, plot_permutation_result_1d import seaborn as sns """Test the permutation testing methods on MNE sample data.""" import mne """Settings.""" plot_topography = False """Load the sample dataset from disk.""" data_path = mne.datasets.sample.data_path() fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = mne.io.Raw(fname, preload=True) """Load EOG and ECG projectors.""" eog_proj = mne.read_proj(data_path + '/MEG/sample/sample_audvis_eog-proj.fif') ecg_proj = mne.read_proj(data_path + '/MEG/sample/sample_audvis_ecg-proj.fif') raw.add_proj(eog_proj) raw.add_proj(ecg_proj) """Apply the projectors.""" raw.apply_proj() """Epoch the data.""" events = mne.find_events(raw) raw.pick_types(meg=True) lh_aud = mne.Epochs(raw, events, event_id=1, tmin=-0.75, tmax=0.75, baseline=(-0.75, -0.5)) rh_aud = mne.Epochs(raw, events, event_id=3, tmin=-0.75, tmax=0.75, baseline=(-0.75, -0.5)) """Compared evoked responses""" if (plot_topography): lh_aud_evoked, rh_aud_evoked = lh_aud.average(), rh_aud.average() plot_evoked_topo([lh_aud_evoked, rh_aud_evoked], color=['blue', 'red']) # Select all epochs and time points from one channel. ch_ind = [i for i, ch_name in enumerate(raw.info['ch_names']) if 'MEG 2343'in ch_name][0] lh_data, rh_data = (lh_aud.get_data()[:, ch_ind, :], rh_aud.get_data()[:, ch_ind, :]) significant, pvals, cstats, ref_cstat, ref_clusters = permutation_test(lh_data, rh_data) plot_permutation_distribution(cstats, ref_cstat, show_plot=True) plot_permutation_result_1d(lh_data, rh_data, significant, lh_aud.times, ref_clusters) """Plot trial averages.""" plot_ave = False if (plot_ave): sns.set_style('darkgrid') fig = plt.figure() ax = fig.add_subplot(111) ax.plot(np.mean(lh_data, axis=0)) ax.plot(np.mean(rh_data, axis=0)) ax.set_xlabel('Time (samples)') ax.set_ylabel('Amplitude') fig.tight_layout() plt.show()
bsd-3-clause
gclenaghan/scikit-learn
examples/decomposition/plot_incremental_pca.py
175
1974
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) colors = ['navy', 'turquoise', 'darkorange'] for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], color=color, lw=2, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best", shadow=False, scatterpoints=1) plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
mhdella/scikit-learn
sklearn/preprocessing/tests/test_label.py
156
17626
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): lb = LabelBinarizer() # one-class case defaults to negative label inp = ["pos", "pos", "pos", "pos"] expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
jjx02230808/project0223
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
daichi-yoshikawa/dnn
dnnet/neuralnet.py
1
15563
# Authors: Daichi Yoshikawa <[email protected]> # License: BSD 3 clause import os, sys import matplotlib.pyplot as plt import pickle import time import logging logger = logging.getLogger('dnnet.log') import dnnet from dnnet.exception import DNNetIOError, DNNetRuntimeError from dnnet.ext_mathlibs import cp, np from dnnet.utils.nn_utils import prod, shuffle_data, split_data, w2im from dnnet.utils.nn_utils import is_multi_channels_image, flatten, unflatten from dnnet.training.back_propagation import BackPropagation from dnnet.layers.layer import Layer, InputLayer, OutputLayer class NeuralNetwork: """Interface of neural network. Training of model and prediction with resulting model is done through this class. Parameters ---------- layers : np.array of derived class of Layer Layers to build neural network. The first layer must be InputLayer and last layer must be OutputLayer. dtype : type Data type selected through constructor. """ @classmethod def load(self, name, path=None): """Load model from storage. Arguments --------- name : str or None, default None Name of the desired file. Doesn't include path. path : str or None, default None Full path to the directory where the desired file is contained. If None, file is loaded from a directory where script runs. Returns ------- NeuralNetwork Returns model. """ if path is None: path = '.' if path[0] == '~': path = os.getenv("HOME") + path[1:] try: with open(path + '/' + name, 'rb') as f: return pickle.load(f) except IOError as e: msg = str(e) + '\nNeuralNetwork.load failed.' raise DNNetIOError(msg) def __init__(self, input_shape, dtype=np.float32): """ Arguments --------- dtype : type, default np.float32 Data type to use. """ self.layers = np.array([], dtype=Layer) self.dtype = dtype self.add(InputLayer(input_shape=input_shape)) def add(self, layer): """Add instance of derived class of layer. Build neural network by adding layers one by one with this method. Arguments --------- layer : Derived class of Layer Instance of derived class of Layer. """ layer.set_dtype(self.dtype) self.layers = np.append(self.layers, layer) def compile(self): """Finalize configuration of neural network model. Warning ------- This method must be called after adding all required layers and before starting training. """ logger.info('Define network with dnnet of version : %s'\ % dnnet.__version__) if self.layers.size == 0: msg = 'NeuralNetwork has no layer.\n Add layers before compiling.' raise DNNetRuntimeError(msg) parent = self.layers[0] self.add(OutputLayer()) for i, layer in enumerate(self.layers, 1): logger.debug('Add %s layer.' % layer.get_type()) layer.set_parent(parent) parent = layer logger.debug('Defined network.') def fit(self, x, y, optimizer, loss_function, **kwargs): """Train model. Arguments --------- x : np.array Descriptive features in 2d array, whose shape is (num of data, num of feature) y : np.array Target features in 2d array, whose shape is (num of data, num of feature) optimizer : Derived class of Optimizer Instance of derived class of Optimizer. loss_function : Derived class of LossFunction Used to calculate loss. epochs : int, default 10 Number of iterations of training. 1 iteration scans all batches one time. batch_size : int, default 100 Dataset is splitted into multiple mini batches whose size is this. learning_curve : bool, default True Prints out evaluation results of ongoing training. Also, returns learning curve after completion of training. shuffle : bool, default True Shuffle dataset one time before training. shuffle_per_epoch : bool, default False Shuffle training data every epoch. test_data_ratio : float, default 0 Ratio of test data. If 0, all data is used for training. train_data_ratio_for_eval : float, default 1.0 Ratio of training data to calculate accuracy w.r.t training data. Returns ------- LearningCurve Instance of LearningCurve, which contains losses and accuracies for train and test data. Warning ------- This method assumes that x and y include all data you use. If your data set is so large that all data cannot be stored in memory, you cannot use this method. Use fit_genenerator instead. """ start = time.time() epochs = kwargs.pop('epochs', 10) batch_size = kwargs.pop('batch_size', 100) learning_curve = kwargs.pop('learning_curve', True) shuffle = kwargs.pop('shuffle', True) shuffle_per_epoch = kwargs.pop('shuffle_per_epoch', False) test_data_ratio = kwargs.pop('test_data_ratio', self.dtype(0.)) train_data_ratio_for_eval = kwargs.pop( 'train_data_ratio_for_eval', 1.0) logger.info('\n--- Parameters ---\nepochs: %d\nbatch_size: %d\n' 'learning_curve: %r\nshuffle: %r\nshuffle_per_epoch: %r\n' 'test_data_ratio: %f\ntest_data_ratio_for_eval: %f\n' 'optimizer: %s\nloss_function: %s' % (epochs, batch_size, learning_curve, shuffle, shuffle_per_epoch, test_data_ratio, train_data_ratio_for_eval, optimizer.get_type(), loss_function.get_type())) if shuffle: logger.debug('shuffle data.') x, y = shuffle_data(x, y) x, y = self.__convert_dtype(x, y) x_train, y_train, x_test, y_test = split_data(x, y, test_data_ratio) logger.info('Train data input, output : %s, %s' % (x_train.shape, y_train.shape)) logger.info('Test data input, output : %s, %s' % (x_test.shape, y_test.shape)) back_prop = BackPropagation( epochs, batch_size, optimizer, loss_function, learning_curve, self.dtype) np_err_config = np.seterr('raise') try: logger.info('Fitting model starts.') lc = back_prop.fit( self.layers, x_train, y_train, x_test, y_test, shuffle_per_epoch, batch_size, train_data_ratio_for_eval) except FloatingPointError as e: msg = str(e) + '\nOverflow or underflow occurred. '\ + 'Retry with smaller learning_rate or '\ + 'larger weight_decay for Optimizer.' raise DNNetRuntimeError(msg) except Exception as e: raise DNNetRuntimeError(e) finally: np.seterr( divide=np_err_config['divide'], over=np_err_config['over'], under=np_err_config['under'], invalid=np_err_config['invalid'] ) end = time.time() logger.info('Fitting model is done. ' 'Processing time : %.2f[s]\n' % (end - start)) return lc def fit_generator(self, x, y, optimizer, loss_function, **kwargs): """Train model for large size data set by using generator. TODO( """ raise NotImplementError('NeuralNetwork.fit_one_batch') def predict(self, x): """Returns predicted result. Arguments --------- x : np.array Discriptive features in 2d array, whose shape is (num of data, num of features) Returns ------- np.array Predicted target features in 2d array, whose shape is (num of data, num of features) """ return self.layers[0].predict(x.astype(self.dtype)) def get_config_str(self): config_str = '' for i, layer in enumerate(self.layers): config_str += layer.get_config_str() + '\n' config_str = config_str.rstrip('\n') return config_str def save(self, name, path=None): """Save model to storage. Arguments --------- name : str or None, default None Name of the resulting file. Doesn't include path. path : str or None, default None Full path to the directory where the resulting file is generated. If None, file is saved in a directory where script runs. Returns ------- bool Returns true when succeeded. """ if path is None: path = '.' if path[0] == '~': path = os.getenv("HOME") + path[1:] try: with open(os.path.join(path, name), 'wb') as f: pickle.dump(self, f) except IOError as e: msg = str(e) + '\nNeuralNetwork.save failed.' raise DNNetIOError(msg) def visualize_filters( self, index, n_rows, n_cols, filter_shape, figsize=(8, 8)): """Visualize filters. Weight matrix in affine layer or convolution layer can be shown as image. If weight matrix is so big that all filters cannot be displayed, displayed filters are randomly selected. Arguments --------- index : int index-th affine/convolution layer's weight matrix is visualized. This index starts from 0, that is, the first layer with weight matrix is 0-th. If this value is out of range, raise DNNetRuntimeError. shape : tuple (rows, cols) Shape of filter. In the case of multi-channel, filters are taken as single channel by taking average over channels. filter_shape : tuple (rows, cols) layout : tuple (rows, cols) Number of filter to display in direction of rows and cols respectively. """ # Get index of layer which is index-th layer with weight matrix. n_layers_w_filter = 0 tgt_layer_idx = None tgt_layer_type = None for i, layer in enumerate(self.layers, 0): if layer.has_weight(): if n_layers_w_filter == index: tgt_layer_idx = i tgt_layer_type = layer.get_type() break n_layers_w_filter += 1 if tgt_layer_idx is None: msg = str(index) + '-th layer with weight matrix doesn\'t exist.' raise DNNetRuntimeError(msg) if tgt_layer_type == 'convolution': self.visualize_filter_of_convolution_layer( self.layers[tgt_layer_idx], n_rows, n_cols, filter_shape, figsize) elif tgt_layer_type == 'affine': self.visualize_filter_of_affine_layer( self.layers[tgt_layer_idx], n_rows, n_cols, filter_shape, figsize) else: msg = 'NeuralNetwork.visualize_filters does not support '\ + '%s' % tgt_layer_type raise DNNetRuntimeError(msg) print(tgt_layer_idx, tgt_layer_type) def visualize_filter_of_convolution_layer( self, layer, n_rows, n_cols, filter_shape, figsize=(8, 8)): n_filters = layer.w.shape[1] if n_filters < n_rows * n_cols: msg = 'n_rows and n_cols is too big.\n'\ + 'n_filters : %d\n' % n_filters\ + 'n_rows : %d\n' % n_rows\ + 'n_cols : %d\n' % n_cols raise DNNetRuntimeError(msg) w = layer.w[1:, :n_rows*n_cols] img = w.T.reshape(-1, filter_shape[0], filter_shape[1]) plt.figure(figsize=figsize) plt.imshow(img) plt.show() def visualize_filter_of_affine_layer( self, layer, n_rows, n_cols, filter_shape, figsize=(8, 8)): """Visualize filters. Weight matrix in affine layer or convolution layer can be shown as image. If weight matrix is so big that all filters cannot be displayed, displayed filters are randomly selected. Arguments --------- index : int index-th affine/convolution layer's weight matrix is visualized. This index starts from 0, that is, the first layer with weight matrix is 0-th. If this value is out of range, raise DNNetRuntimeError. shape : tuple (rows, cols) Shape of filter. In the case of multi-channel, filters are taken as single channel by taking average over channels. layout : tuple (rows, cols) Number of filter to display in direction of rows and cols respectively. """ w = layer.w if (w.shape[0] - 1) != prod(shape): msg = '(w.shape[0] - 1) != prod(shape)\n'\ + 'w.shape[0] : %d\n' % w.shape[0]\ + 'prod(shape) : %d' % prod(shape) raise DNNetRuntimeError(msg) #if w.shape[1] < prod(layout): #img = w2im(self.layers[tgt_index].w, shape, layout) #plt.figure(figsize=figsize) #plt.imshow(img) #plt.show() def show_filters(self, index, shape, layout, figsize=(8, 8)): """Visualize filters. Weight matrix in affine layer or convolution layer can be shown as image. If weight matrix is so big that all filters cannot be displayed, displayed filters are randomly selected. Arguments --------- index : int index-th affine/convolution layer's weight matrix is visualized. This index starts from 0, that is, the first layer with weight matrix is 0-th. If this value is out of range, raise RuntimeError. shape : tuple (rows, cols) Shape of filter. In the case of multi-channel, filters are taken as single channel by taking average over channels. layout : tuple (rows, cols) Number of filter to display in direction of rows and cols respectively. """ # Get index of layer which is index-th layer with weight matrix. num_of_layer_with_filter = 0 tgt_index = None for i, layer in enumerate(self.layers, 0): if layer.has_weight(): if num_of_layer_with_filter == index: tgt_index = i break num_of_layer_with_filter += 1 if tgt_index is None: msg = str(index) + '-th layer with weight matrix doesn\'t exist.' raise DNNetRuntimeError(msg) img = w2im(self.layers[tgt_index].w, shape, layout) plt.figure(figsize=figsize) plt.imshow(img) plt.show() def __convert_dtype(self, x, y): """Convert data type of features into selected one in constructor.""" return x.astype(self.dtype), y.astype(self.dtype)
bsd-3-clause
rupakc/Kaggle-Compendium
Otto Group Product Classification Challenge/otto-baseline.py
1
2583
import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.neural_network import MLPClassifier from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn import metrics from sklearn.model_selection import train_test_split def get_naive_bayes_models(): gnb = GaussianNB() mnb = MultinomialNB() bnb = BernoulliNB() classifier_list = [gnb,mnb,bnb] classifier_name_list = ['Gaussian NB','Multinomial NB','Bernoulli NB'] return classifier_list,classifier_name_list def get_neural_network(hidden_layer_size=50): mlp = MLPClassifier(hidden_layer_sizes=hidden_layer_size) return [mlp], ['MultiLayer Perceptron'] def get_ensemble_models(): rf = RandomForestClassifier(n_estimators=51,min_samples_leaf=5,min_samples_split=3) bagg = BaggingClassifier(n_estimators=71,random_state=42) extra = ExtraTreesClassifier(n_estimators=57,random_state=42) ada = AdaBoostClassifier(n_estimators=51,random_state=42) grad = GradientBoostingClassifier(n_estimators=101,random_state=42) classifier_list = [rf,bagg,extra,ada,grad] classifier_name_list = ['Random Forests','Bagging','Extra Trees','AdaBoost','Gradient Boost'] return classifier_list,classifier_name_list def print_evaluation_metrics(trained_model,trained_model_name,X_test,y_test): print '--------- For Model : ', trained_model_name predicted_values = trained_model.predict(X_test) print metrics.classification_report(y_test,predicted_values) print "Accuracy Score : ",metrics.accuracy_score(y_test,predicted_values) print "---------------------------------------\n" filename = 'train.csv' otto_frame = pd.read_csv(filename) otto_frame.dropna(inplace=True) del otto_frame['id'] class_labels = list(otto_frame['target'].values) del otto_frame['target'] X_train,X_test,y_train,y_test = train_test_split(otto_frame.values,class_labels,test_size=0.2,random_state=42) classifier_list, classifier_name_list = get_ensemble_models() #classifier_list, classifier_name_list = get_naive_bayes_models() #classifier_list, classifier_name_list = get_neural_network() for classifier,classifier_name in zip(classifier_list,classifier_name_list): classifier.fit(X_train,y_train) print_evaluation_metrics(classifier,classifier_name,X_test,y_test)
mit
mmoiozo/IROS
sw/airborne/test/stabilization/compare_ref_quat.py
48
1123
#! /usr/bin/env python from __future__ import division, print_function, absolute_import import numpy as np import matplotlib.pyplot as plt from ref_quat_float import RefQuatFloat from ref_quat_int import RefQuatInt steps = 512 * 2 ref_float_res = np.zeros((steps, 3)) ref_int_res = np.zeros((steps, 3)) ref_float = RefQuatFloat() ref_int = RefQuatInt() q_sp = np.array([0.92387956, 0.38268346, 0., 0.]) ref_float.setpoint = q_sp ref_int.setpoint = q_sp #print(ref_int.setpoint) dt = 1/512 for i in range(0, steps): ref_float.update(dt) ref_float_res[i, :] = ref_float.eulers ref_int.update(dt) ref_int_res[i, :] = ref_int.eulers plt.figure(1) plt.subplot(311) plt.title("reference in euler angles") plt.plot(np.degrees(ref_float_res[:, 0]), 'g') plt.plot(np.degrees(ref_int_res[:, 0]), 'r') plt.ylabel("phi [deg]") plt.subplot(312) plt.plot(np.degrees(ref_float_res[:, 1]), 'g') plt.plot(np.degrees(ref_int_res[:, 1]), 'r') plt.ylabel("theta [deg]") plt.subplot(313) plt.plot(np.degrees(ref_float_res[:, 2]), 'g') plt.plot(np.degrees(ref_int_res[:, 2]), 'r') plt.ylabel("psi [deg]") plt.show()
gpl-2.0
Fireblend/scikit-learn
sklearn/decomposition/truncated_svd.py
199
7744
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA). """ # Author: Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # Michael Becker <[email protected]> # License: 3-clause BSD. import numpy as np import scipy.sparse as sp try: from scipy.sparse.linalg import svds except ImportError: from ..utils.arpack import svds from ..base import BaseEstimator, TransformerMixin from ..utils import check_array, as_float_array, check_random_state from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip from ..utils.sparsefuncs import mean_variance_axis __all__ = ["TruncatedSVD"] class TruncatedSVD(BaseEstimator, TransformerMixin): """Dimensionality reduction using truncated SVD (aka LSA). This transformer performs linear dimensionality reduction by means of truncated singular value decomposition (SVD). It is very similar to PCA, but operates on sample vectors directly, instead of on a covariance matrix. This means it can work with scipy.sparse matrices efficiently. In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.feature_extraction.text. In that context, it is known as latent semantic analysis (LSA). This estimator supports two algorithm: a fast randomized SVD solver, and a "naive" algorithm that uses ARPACK as an eigensolver on (X * X.T) or (X.T * X), whichever is more efficient. Read more in the :ref:`User Guide <LSA>`. Parameters ---------- n_components : int, default = 2 Desired dimensionality of output data. Must be strictly less than the number of features. The default value is useful for visualisation. For LSA, a value of 100 is recommended. algorithm : string, default = "randomized" SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the randomized algorithm due to Halko (2009). n_iter : int, optional Number of iterations for randomized SVD solver. Not used by ARPACK. random_state : int or RandomState, optional (Seed for) pseudo-random number generator. If not given, the numpy.random singleton is used. tol : float, optional Tolerance for ARPACK. 0 means machine precision. Ignored by randomized SVD solver. Attributes ---------- components_ : array, shape (n_components, n_features) explained_variance_ratio_ : array, [n_components] Percentage of variance explained by each of the selected components. explained_variance_ : array, [n_components] The variance of the training samples transformed by a projection to each component. Examples -------- >>> from sklearn.decomposition import TruncatedSVD >>> from sklearn.random_projection import sparse_random_matrix >>> X = sparse_random_matrix(100, 100, density=0.01, random_state=42) >>> svd = TruncatedSVD(n_components=5, random_state=42) >>> svd.fit(X) # doctest: +NORMALIZE_WHITESPACE TruncatedSVD(algorithm='randomized', n_components=5, n_iter=5, random_state=42, tol=0.0) >>> print(svd.explained_variance_ratio_) # doctest: +ELLIPSIS [ 0.07825... 0.05528... 0.05445... 0.04997... 0.04134...] >>> print(svd.explained_variance_ratio_.sum()) # doctest: +ELLIPSIS 0.27930... See also -------- PCA RandomizedPCA References ---------- Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 Notes ----- SVD suffers from a problem called "sign indeterminancy", which means the sign of the ``components_`` and the output from transform depend on the algorithm and random state. To work around this, fit instances of this class to data once, then keep the instance around to do transformations. """ def __init__(self, n_components=2, algorithm="randomized", n_iter=5, random_state=None, tol=0.): self.algorithm = algorithm self.n_components = n_components self.n_iter = n_iter self.random_state = random_state self.tol = tol def fit(self, X, y=None): """Fit LSI model on training data X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- self : object Returns the transformer object. """ self.fit_transform(X) return self def fit_transform(self, X, y=None): """Fit LSI model to X and perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = as_float_array(X, copy=False) random_state = check_random_state(self.random_state) # If sparse and not csr or csc, convert to csr if sp.issparse(X) and X.getformat() not in ["csr", "csc"]: X = X.tocsr() if self.algorithm == "arpack": U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol) # svds doesn't abide by scipy.linalg.svd/randomized_svd # conventions, so reverse its outputs. Sigma = Sigma[::-1] U, VT = svd_flip(U[:, ::-1], VT[::-1]) elif self.algorithm == "randomized": k = self.n_components n_features = X.shape[1] if k >= n_features: raise ValueError("n_components must be < n_features;" " got %d >= %d" % (k, n_features)) U, Sigma, VT = randomized_svd(X, self.n_components, n_iter=self.n_iter, random_state=random_state) else: raise ValueError("unknown algorithm %r" % self.algorithm) self.components_ = VT # Calculate explained variance & explained variance ratio X_transformed = np.dot(U, np.diag(Sigma)) self.explained_variance_ = exp_var = np.var(X_transformed, axis=0) if sp.issparse(X): _, full_var = mean_variance_axis(X, axis=0) full_var = full_var.sum() else: full_var = np.var(X, axis=0).sum() self.explained_variance_ratio_ = exp_var / full_var return X_transformed def transform(self, X): """Perform dimensionality reduction on X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data. Returns ------- X_new : array, shape (n_samples, n_components) Reduced version of X. This will always be a dense array. """ X = check_array(X, accept_sparse='csr') return safe_sparse_dot(X, self.components_.T) def inverse_transform(self, X): """Transform X back to its original space. Returns an array X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data. Returns ------- X_original : array, shape (n_samples, n_features) Note that this is always a dense array. """ X = check_array(X) return np.dot(X, self.components_)
bsd-3-clause
jpo/healthcareai-py
healthcareai/tests/test_predict.py
4
1135
import unittest from sklearn.linear_model import LinearRegression from healthcareai.common.healthcareai_error import HealthcareAIError from healthcareai.common.predict import validate_estimator class TestPredictValidation(unittest.TestCase): def test_predict_validation_should_raise_error_on_non_estimator(self): self.assertRaises(HealthcareAIError, validate_estimator, 'foo') def test_predict_validation_error_message_on_non_estimator(self): non_estimator_junk_data = 'foo' try: validate_estimator(non_estimator_junk_data) # Fail the test if no error is raised self.fail() except HealthcareAIError as e: expected_message = 'Predictions require an estimator. You passed in foo, which is of type: {}'.format( type(non_estimator_junk_data)) self.assertEqual(expected_message, e.message) def test_predict_validation_should_be_true_with_instance_of_scikit_estimator(self): estimator = LinearRegression() self.assertTrue(validate_estimator(estimator)) if __name__ == '__main__': unittest.main()
mit
feranick/SpectralMachine
Archive/SpectraLearnPredict2/SpectraLearnPredict2/slp/slp_kmeans.py
1
3378
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ********************************************************** * * SpectraLearnPredict2 - kmeans * Perform Machine Learning on Spectroscopy Data. * * Uses: Deep Neural Networks, TensorFlow, SVM, PCA, K-Means * * By: Nicola Ferralis <[email protected]> * *********************************************************** ''' import matplotlib if matplotlib.get_backend() == 'TkAgg': matplotlib.use('Agg') import numpy as np import sys, os.path, getopt, glob, csv import random, time, configparser, os from os.path import exists, splitext from os import rename from datetime import datetime, date from .slp_config import * #******************** ''' Run K-Means ''' #******************** def runKMmain(A, Cl, En, R, Aorig, Rorig): from sklearn.cluster import KMeans print('==========================================================================\n') print(' Running K-Means...') print(' Number of unique identifiers in training data: ' + str(np.unique(Cl).shape[0])) if kmDef.customNumKMComp == False: numKMcomp = np.unique(Cl).shape[0] else: numKMcomp = kmDef.numKMcomponents kmeans = KMeans(n_clusters=numKMcomp, random_state=0).fit(A) prediction = kmeans.predict(R)[0] print('\n ==============================') print(' \033[1mK-Means\033[0m - Prediction') print(' ==============================') print(' Class\t| Value') for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == prediction: print(" {0:d}\t| {1:.2f}".format(prediction,Cl[j])) print(' ==============================\n') if kmDef.plotKM: import matplotlib.pyplot as plt for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == kmeans.predict(R)[0]: plt.plot(En, Aorig[j,:]) plt.plot(En, Rorig[0,:], linewidth = 2, label='Predict') plt.title('K-Means') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Intensity') plt.legend() plt.show() return kmeans.predict(R)[0] #********************************************** ''' K-Means - Maps''' #********************************************** def KmMap(mapFile, numKMcomp): ''' Open prediction map ''' X, Y, R, Rx = readPredMap(mapFile) type = 0 i = 0; R, Rx, Rorig = preProcessNormMap(R, Rx, type) from sklearn.cluster import KMeans print(' Running K-Means...') print(' Number of classes: ' + str(numKMcomp)) kmeans = KMeans(n_clusters=kmDef.numKMcomponents, random_state=0).fit(R) kmPred = np.empty([R.shape[0]]) for i in range(0, R.shape[0]): kmPred[i] = kmeans.predict(R[i,:].reshape(1,-1))[0] saveMap(mapFile, 'KM', 'Class', int(kmPred[i]), X[i], Y[i], True) if kmPred[i] in kmeans.labels_: if os.path.isfile(saveMapName(mapFile, 'KM', 'Class_'+ str(int(kmPred[i]))+'-'+str(np.unique(kmeans.labels_).shape[0]), False)) == False: saveMap(mapFile, 'KM', 'Class_'+ str(int(kmPred[i])) + '-'+str(np.unique(kmeans.labels_).shape[0]) , '\t'.join(map(str, Rx)), ' ', ' ', False) saveMap(mapFile, 'KM', 'Class_'+ str(int(kmPred[i])) + '-'+str(np.unique(kmeans.labels_).shape[0]) , '\t'.join(map(str, R[1,:])), X[i], Y[i], False) if kmDef.plotKM: plotMaps(X, Y, kmPred, 'K-Means')
gpl-3.0
frank-tancf/scikit-learn
sklearn/neural_network/rbm.py
46
12303
"""Restricted Boltzmann Machine """ # Authors: Yann N. Dauphin <[email protected]> # Vlad Niculae # Gabriel Synnaeve # Lars Buitinck # License: BSD 3 clause import time import numpy as np import scipy.sparse as sp from ..base import BaseEstimator from ..base import TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array from ..utils import check_random_state from ..utils import gen_even_slices from ..utils import issparse from ..utils.extmath import safe_sparse_dot from ..utils.extmath import log_logistic from ..utils.fixes import expit # logistic function from ..utils.validation import check_is_fitted class BernoulliRBM(BaseEstimator, TransformerMixin): """Bernoulli Restricted Boltzmann Machine (RBM). A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2]. The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components. Read more in the :ref:`User Guide <rbm>`. Parameters ---------- n_components : int, optional Number of binary hidden units. learning_rate : float, optional The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range. batch_size : int, optional Number of examples per minibatch. n_iter : int, optional Number of iterations/sweeps over the training dataset to perform during training. verbose : int, optional The verbosity level. The default, zero, means silent mode. random_state : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. Examples -------- >>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10, random_state=None, verbose=0) References ---------- [1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf [2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008 """ def __init__(self, n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None): self.n_components = n_components self.learning_rate = learning_rate self.batch_size = batch_size self.n_iter = n_iter self.verbose = verbose self.random_state = random_state def transform(self, X): """Compute the hidden layer activation probabilities, P(h=1|v=X). Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) The data to be transformed. Returns ------- h : array, shape (n_samples, n_components) Latent representations of the data. """ check_is_fitted(self, "components_") X = check_array(X, accept_sparse='csr', dtype=np.float64) return self._mean_hiddens(X) def _mean_hiddens(self, v): """Computes the probabilities P(h=1|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- h : array-like, shape (n_samples, n_components) Corresponding mean field values for the hidden layer. """ p = safe_sparse_dot(v, self.components_.T) p += self.intercept_hidden_ return expit(p, out=p) def _sample_hiddens(self, v, rng): """Sample from the distribution P(h|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to sample from. rng : RandomState Random number generator to use. Returns ------- h : array-like, shape (n_samples, n_components) Values of the hidden layer. """ p = self._mean_hiddens(v) return (rng.random_sample(size=p.shape) < p) def _sample_visibles(self, h, rng): """Sample from the distribution P(v|h). Parameters ---------- h : array-like, shape (n_samples, n_components) Values of the hidden layer to sample from. rng : RandomState Random number generator to use. Returns ------- v : array-like, shape (n_samples, n_features) Values of the visible layer. """ p = np.dot(h, self.components_) p += self.intercept_visible_ expit(p, out=p) return (rng.random_sample(size=p.shape) < p) def _free_energy(self, v): """Computes the free energy F(v) = - log sum_h exp(-E(v,h)). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- free_energy : array-like, shape (n_samples,) The value of the free energy. """ return (- safe_sparse_dot(v, self.intercept_visible_) - np.logaddexp(0, safe_sparse_dot(v, self.components_.T) + self.intercept_hidden_).sum(axis=1)) def gibbs(self, v): """Perform one Gibbs sampling step. Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to start from. Returns ------- v_new : array-like, shape (n_samples, n_features) Values of the visible layer after one Gibbs step. """ check_is_fitted(self, "components_") if not hasattr(self, "random_state_"): self.random_state_ = check_random_state(self.random_state) h_ = self._sample_hiddens(v, self.random_state_) v_ = self._sample_visibles(h_, self.random_state_) return v_ def partial_fit(self, X, y=None): """Fit the model to the data X which should contain a partial segment of the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) if not hasattr(self, 'components_'): self.components_ = np.asarray( self.random_state_.normal( 0, 0.01, (self.n_components, X.shape[1]) ), order='fortran') if not hasattr(self, 'intercept_hidden_'): self.intercept_hidden_ = np.zeros(self.n_components, ) if not hasattr(self, 'intercept_visible_'): self.intercept_visible_ = np.zeros(X.shape[1], ) if not hasattr(self, 'h_samples_'): self.h_samples_ = np.zeros((self.batch_size, self.n_components)) self._fit(X, self.random_state_) def _fit(self, v_pos, rng): """Inner fit for one mini-batch. Adjust the parameters to maximize the likelihood of v using Stochastic Maximum Likelihood (SML). Parameters ---------- v_pos : array-like, shape (n_samples, n_features) The data to use for training. rng : RandomState Random number generator to use for sampling. """ h_pos = self._mean_hiddens(v_pos) v_neg = self._sample_visibles(self.h_samples_, rng) h_neg = self._mean_hiddens(v_neg) lr = float(self.learning_rate) / v_pos.shape[0] update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T update -= np.dot(h_neg.T, v_neg) self.components_ += lr * update self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0)) self.intercept_visible_ += lr * (np.asarray( v_pos.sum(axis=0)).squeeze() - v_neg.sum(axis=0)) h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial self.h_samples_ = np.floor(h_neg, h_neg) def score_samples(self, X): """Compute the pseudo-likelihood of X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Values of the visible layer. Must be all-boolean (not checked). Returns ------- pseudo_likelihood : array-like, shape (n_samples,) Value of the pseudo-likelihood (proxy for likelihood). Notes ----- This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly corrupted version of X, and returns the log of the logistic function of the difference. """ check_is_fitted(self, "components_") v = check_array(X, accept_sparse='csr') rng = check_random_state(self.random_state) # Randomly corrupt one feature in each sample in v. ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0])) if issparse(v): data = -2 * v[ind] + 1 v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape) else: v_ = v.copy() v_[ind] = 1 - v_[ind] fe = self._free_energy(v) fe_ = self._free_energy(v_) return v.shape[1] * log_logistic(fe_ - fe) def fit(self, X, y=None): """Fit the model to the data X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) n_samples = X.shape[0] rng = check_random_state(self.random_state) self.components_ = np.asarray( rng.normal(0, 0.01, (self.n_components, X.shape[1])), order='fortran') self.intercept_hidden_ = np.zeros(self.n_components, ) self.intercept_visible_ = np.zeros(X.shape[1], ) self.h_samples_ = np.zeros((self.batch_size, self.n_components)) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) batch_slices = list(gen_even_slices(n_batches * self.batch_size, n_batches, n_samples)) verbose = self.verbose begin = time.time() for iteration in xrange(1, self.n_iter + 1): for batch_slice in batch_slices: self._fit(X[batch_slice], rng) if verbose: end = time.time() print("[%s] Iteration %d, pseudo-likelihood = %.2f," " time = %.2fs" % (type(self).__name__, iteration, self.score_samples(X).mean(), end - begin)) begin = end return self
bsd-3-clause
fuxiang90/speed-prediction
script/lr.py
1
2753
# coding=utf-8 #! /usr/bin/python import matplotlib.pyplot as plt import numpy as np import mlpy import sys import math def get_input(filename): fin = open(filename) x = [] y = [] for each in fin: each = each[:each.find('\n')] l = each.split(' ') each_x = [] each_x.append(1) each_x .append(float(l[0])) each_x .append(float(l[1])) each_x .append(float(l[2])) each_x .append(float(l[3])) x.append(each_x) y.append(float(l[4])) return x ,y def mlpy_linear_regressiono(x ,y): beta ,rank = mlpy.ols_base(x, y,0.05) return beta def split(filename): f_train = open('train','w') f_test = open('test','w') fin = open(filename) pos = 0 for each in fin: if pos % 8 ==0: f_test.write(each) else: f_train.write(each) pos = pos + 1 fin.close() f_train.close() f_test.close() def ridge_main(): x,y = get_input('train') ridge = mlpy.Ridge() ridge.learn(x, y) test_x ,test_y = get_input('test') right_num = 0 mae = 0.0 for pos in range(0,len(test_x)): yy = ridge.pred(test_x[pos]) #print yy ,test_y[pos] if abs(yy - test_y[pos]) < 5.0 : right_num +=1 mae += math.sqrt( (yy-test_y[pos]) ** 2 ) print right_num*1.0 / len(test_x), mae/len(test_x) def lars_base_main(): x,y = get_input('train') lars = mlpy.LARS() lars.learn(x, y) test_x ,test_y = get_input('test') right_num = 0 for pos in range(0,len(test_x)): yy = lars.pred(test_x[pos]) #print yy ,test_y[pos] if abs(yy - test_y[pos]) < 5.0 : right_num +=1 print right_num*1.0 / len(test_x) def main(): x,y = get_input('train') beta = mlpy_linear_regressiono(x,y) test_x ,test_y = get_input('test') right_num = 0 mae = 0.0 for pos in range(0,len(test_x)): pre_y = test_x[pos][0] * beta[0] + test_x[pos][1] * beta[1] + test_x[pos][2] * beta[2] + test_x[pos][3] * beta[3] #print pre_y , y[pos] if abs(pre_y - y[pos]) < 5.0: right_num += 1 mae += math.fabs(pre_y-y[pos] ) print right_num*1.0 / len(test_x) ,mae/len(test_x) def test_main(): files = ['2111_data' , '22520_data' ,'3860_data','390_data','620_data'] for file_name in files: name = file_name[:file_name.find('_')] print "roadid :" , name split(file_name) #ridge_main() main() if __name__ =='__main__': #split('2111_data') #ridge_main() test_main() #main() #lars_base_main()
bsd-3-clause
yebrahim/pydatalab
legacy_tests/bigquery/table_tests.py
4
32582
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. from __future__ import absolute_import from __future__ import unicode_literals from builtins import str from builtins import object import calendar import datetime as dt import mock import pandas import unittest import google.auth import datalab.bigquery import datalab.context import datalab.utils class TestCases(unittest.TestCase): def _check_name_parts(self, table): parsed_name = table._name_parts self.assertEqual('test', parsed_name[0]) self.assertEqual('requestlogs', parsed_name[1]) self.assertEqual('today', parsed_name[2]) self.assertEqual('', parsed_name[3]) self.assertEqual('[test:requestlogs.today]', table._repr_sql_()) self.assertEqual('test:requestlogs.today', str(table)) def test_api_paths(self): name = datalab.bigquery._utils.TableName('a', 'b', 'c', 'd') self.assertEqual('/projects/a/datasets/b/tables/cd', datalab.bigquery._api.Api._TABLES_PATH % name) self.assertEqual('/projects/a/datasets/b/tables/cd/data', datalab.bigquery._api.Api._TABLEDATA_PATH % name) name = datalab.bigquery._utils.DatasetName('a', 'b') self.assertEqual('/projects/a/datasets/b', datalab.bigquery._api.Api._DATASETS_PATH % name) def test_parse_full_name(self): table = TestCases._create_table('test:requestlogs.today') self._check_name_parts(table) def test_parse_local_name(self): table = TestCases._create_table('requestlogs.today') self._check_name_parts(table) def test_parse_dict_full_name(self): table = TestCases._create_table({'project_id': 'test', 'dataset_id': 'requestlogs', 'table_id': 'today'}) self._check_name_parts(table) def test_parse_dict_local_name(self): table = TestCases._create_table({'dataset_id': 'requestlogs', 'table_id': 'today'}) self._check_name_parts(table) def test_parse_named_tuple_name(self): table = TestCases._create_table(datalab.bigquery._utils.TableName('test', 'requestlogs', 'today', '')) self._check_name_parts(table) def test_parse_tuple_full_name(self): table = TestCases._create_table(('test', 'requestlogs', 'today')) self._check_name_parts(table) def test_parse_tuple_local(self): table = TestCases._create_table(('requestlogs', 'today')) self._check_name_parts(table) def test_parse_array_full_name(self): table = TestCases._create_table(['test', 'requestlogs', 'today']) self._check_name_parts(table) def test_parse_array_local(self): table = TestCases._create_table(['requestlogs', 'today']) self._check_name_parts(table) def test_parse_invalid_name(self): with self.assertRaises(Exception): TestCases._create_table('today@') @mock.patch('datalab.bigquery._api.Api.tables_get') def test_table_metadata(self, mock_api_tables_get): name = 'test:requestlogs.today' ts = dt.datetime.utcnow() mock_api_tables_get.return_value = TestCases._create_table_info_result(ts=ts) t = TestCases._create_table(name) metadata = t.metadata self.assertEqual('Logs', metadata.friendly_name) self.assertEqual(2, metadata.rows) self.assertEqual(2, metadata.rows) self.assertTrue(abs((metadata.created_on - ts).total_seconds()) <= 1) self.assertEqual(None, metadata.expires_on) @mock.patch('datalab.bigquery._api.Api.tables_get') def test_table_schema(self, mock_api_tables): mock_api_tables.return_value = TestCases._create_table_info_result() t = TestCases._create_table('test:requestlogs.today') schema = t.schema self.assertEqual(2, len(schema)) self.assertEqual('name', schema[0].name) @mock.patch('datalab.bigquery._api.Api.tables_get') def test_table_schema_nested(self, mock_api_tables): mock_api_tables.return_value = TestCases._create_table_info_nested_schema_result() t = TestCases._create_table('test:requestlogs.today') schema = t.schema self.assertEqual(4, len(schema)) self.assertEqual('name', schema[0].name) self.assertEqual('val', schema[1].name) self.assertEqual('more', schema[2].name) self.assertEqual('more.xyz', schema[3].name) self.assertIsNone(schema['value']) self.assertIsNotNone(schema['val']) @mock.patch('datalab.bigquery._api.Api.tables_get') def test_malformed_response_raises_exception(self, mock_api_tables_get): mock_api_tables_get.return_value = {} t = TestCases._create_table('test:requestlogs.today') with self.assertRaises(Exception) as error: t.schema self.assertEqual('Unexpected table response: missing schema', str(error.exception)) @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_dataset_list(self, mock_api_datasets_get, mock_api_tables_list): mock_api_datasets_get.return_value = None mock_api_tables_list.return_value = TestCases._create_table_list_result() ds = datalab.bigquery.Dataset('testds', context=TestCases._create_context()) tables = [] for table in ds: tables.append(table) self.assertEqual(2, len(tables)) self.assertEqual('test:testds.testTable1', str(tables[0])) self.assertEqual('test:testds.testTable2', str(tables[1])) @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_table_list(self, mock_api_datasets_get, mock_api_tables_list): mock_api_datasets_get.return_value = None mock_api_tables_list.return_value = TestCases._create_table_list_result() ds = datalab.bigquery.Dataset('testds', context=TestCases._create_context()) tables = [] for table in ds.tables(): tables.append(table) self.assertEqual(2, len(tables)) self.assertEqual('test:testds.testTable1', str(tables[0])) self.assertEqual('test:testds.testTable2', str(tables[1])) @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_view_list(self, mock_api_datasets_get, mock_api_tables_list): mock_api_datasets_get.return_value = None mock_api_tables_list.return_value = TestCases._create_table_list_result() ds = datalab.bigquery.Dataset('testds', context=TestCases._create_context()) views = [] for view in ds.views(): views.append(view) self.assertEqual(1, len(views)) self.assertEqual('test:testds.testView1', str(views[0])) @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_table_list_empty(self, mock_api_datasets_get, mock_api_tables_list): mock_api_datasets_get.return_value = None mock_api_tables_list.return_value = TestCases._create_table_list_empty_result() ds = datalab.bigquery.Dataset('testds', context=TestCases._create_context()) tables = [] for table in ds: tables.append(table) self.assertEqual(0, len(tables)) @mock.patch('datalab.bigquery._api.Api.tables_get') def test_table_exists(self, mock_api_tables_get): mock_api_tables_get.return_value = None tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) self.assertTrue(tbl.exists()) mock_api_tables_get.side_effect = datalab.utils.RequestException(404, 'failed') self.assertFalse(tbl.exists()) @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_tables_create(self, mock_api_datasets_get, mock_api_tables_list, mock_api_tables_insert): mock_api_datasets_get.return_value = None mock_api_tables_list.return_value = [] schema = TestCases._create_inferred_schema() mock_api_tables_insert.return_value = {} with self.assertRaises(Exception) as error: TestCases._create_table_with_schema(schema) self.assertEqual('Table test:testds.testTable0 could not be created as it already exists', str(error.exception)) mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} self.assertIsNotNone(TestCases._create_table_with_schema(schema), 'Expected a table') @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_insert_data_no_table(self, mock_api_datasets_get, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_time_sleep, mock_uuid): mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_tables_list.return_value = [] mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_get.side_effect = datalab.utils.RequestException(404, 'failed') mock_api_tabledata_insert_all.return_value = {} mock_api_datasets_get.return_value = None table = TestCases._create_table_with_schema(TestCases._create_inferred_schema()) df = TestCases._create_data_frame() with self.assertRaises(Exception) as error: table.insert_data(df) self.assertEqual('Table %s does not exist.' % str(table), str(error.exception)) @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.datasets_get') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') def test_insert_data_missing_field(self, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_api_datasets_get, mock_time_sleep, mock_uuid,): # Truncate the schema used when creating the table so we have an unmatched column in insert. schema = TestCases._create_inferred_schema()[:2] mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_datasets_get.return_value = None mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_list.return_value = [] mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_insert_all.return_value = {} table = TestCases._create_table_with_schema(schema) df = TestCases._create_data_frame() with self.assertRaises(Exception) as error: table.insert_data(df) self.assertEqual('Table does not contain field headers', str(error.exception)) @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') @mock.patch('datalab.bigquery._api.Api.datasets_get') def test_insert_data_mismatched_schema(self, mock_api_datasets_get, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_time_sleep, mock_uuid): # Change the schema used when creating the table so we get a mismatch when inserting. schema = TestCases._create_inferred_schema() schema[2]['type'] = 'STRING' mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_tables_list.return_value = [] mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_insert_all.return_value = {} mock_api_datasets_get.return_value = None table = TestCases._create_table_with_schema(schema) df = TestCases._create_data_frame() with self.assertRaises(Exception) as error: table.insert_data(df) self.assertEqual('Field headers in data has type FLOAT but in table has type STRING', str(error.exception)) @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.datasets_get') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') def test_insert_data_dataframe(self, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_api_datasets_get, mock_time_sleep, mock_uuid): schema = TestCases._create_inferred_schema() mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_datasets_get.return_value = True mock_api_tables_list.return_value = [] mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_insert_all.return_value = {} table = TestCases._create_table_with_schema(schema) df = TestCases._create_data_frame() result = table.insert_data(df) self.assertIsNotNone(result, "insert_all should return the table object") mock_api_tabledata_insert_all.assert_called_with(('test', 'testds', 'testTable0', ''), [ {'insertId': '#0', 'json': {u'column': 'r0', u'headers': 10.0, u'some': 0}}, {'insertId': '#1', 'json': {u'column': 'r1', u'headers': 10.0, u'some': 1}}, {'insertId': '#2', 'json': {u'column': 'r2', u'headers': 10.0, u'some': 2}}, {'insertId': '#3', 'json': {u'column': 'r3', u'headers': 10.0, u'some': 3}} ]) @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.datasets_get') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') def test_insert_data_dictlist(self, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_api_datasets_get, mock_time_sleep, mock_uuid): schema = TestCases._create_inferred_schema() mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_datasets_get.return_value = True mock_api_tables_list.return_value = [] mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_insert_all.return_value = {} table = TestCases._create_table_with_schema(schema) result = table.insert_data([ {u'column': 'r0', u'headers': 10.0, u'some': 0}, {u'column': 'r1', u'headers': 10.0, u'some': 1}, {u'column': 'r2', u'headers': 10.0, u'some': 2}, {u'column': 'r3', u'headers': 10.0, u'some': 3} ]) self.assertIsNotNone(result, "insert_all should return the table object") mock_api_tabledata_insert_all.assert_called_with(('test', 'testds', 'testTable0', ''), [ {'insertId': '#0', 'json': {u'column': 'r0', u'headers': 10.0, u'some': 0}}, {'insertId': '#1', 'json': {u'column': 'r1', u'headers': 10.0, u'some': 1}}, {'insertId': '#2', 'json': {u'column': 'r2', u'headers': 10.0, u'some': 2}}, {'insertId': '#3', 'json': {u'column': 'r3', u'headers': 10.0, u'some': 3}} ]) @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.datasets_get') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') def test_insert_data_dictlist_index(self, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_api_datasets_get, mock_time_sleep, mock_uuid): schema = TestCases._create_inferred_schema('Index') mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_datasets_get.return_value = True mock_api_tables_list.return_value = [] mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_insert_all.return_value = {} table = TestCases._create_table_with_schema(schema) result = table.insert_data([ {u'column': 'r0', u'headers': 10.0, u'some': 0}, {u'column': 'r1', u'headers': 10.0, u'some': 1}, {u'column': 'r2', u'headers': 10.0, u'some': 2}, {u'column': 'r3', u'headers': 10.0, u'some': 3} ], include_index=True) self.assertIsNotNone(result, "insert_all should return the table object") mock_api_tabledata_insert_all.assert_called_with(('test', 'testds', 'testTable0', ''), [ {'insertId': '#0', 'json': {u'column': 'r0', u'headers': 10.0, u'some': 0, 'Index': 0}}, {'insertId': '#1', 'json': {u'column': 'r1', u'headers': 10.0, u'some': 1, 'Index': 1}}, {'insertId': '#2', 'json': {u'column': 'r2', u'headers': 10.0, u'some': 2, 'Index': 2}}, {'insertId': '#3', 'json': {u'column': 'r3', u'headers': 10.0, u'some': 3, 'Index': 3}} ]) @mock.patch('uuid.uuid4') @mock.patch('time.sleep') @mock.patch('datalab.bigquery._api.Api.datasets_get') @mock.patch('datalab.bigquery._api.Api.tables_list') @mock.patch('datalab.bigquery._api.Api.tables_insert') @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.tabledata_insert_all') def test_insert_data_dictlist_named_index(self, mock_api_tabledata_insert_all, mock_api_tables_get, mock_api_tables_insert, mock_api_tables_list, mock_api_datasets_get, mock_time_sleep, mock_uuid): schema = TestCases._create_inferred_schema('Row') mock_uuid.return_value = TestCases._create_uuid() mock_time_sleep.return_value = None mock_api_datasets_get.return_value = True mock_api_tables_list.return_value = [] mock_api_tables_insert.return_value = {'selfLink': 'http://foo'} mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_insert_all.return_value = {} table = TestCases._create_table_with_schema(schema) result = table.insert_data([ {u'column': 'r0', u'headers': 10.0, u'some': 0}, {u'column': 'r1', u'headers': 10.0, u'some': 1}, {u'column': 'r2', u'headers': 10.0, u'some': 2}, {u'column': 'r3', u'headers': 10.0, u'some': 3} ], include_index=True, index_name='Row') self.assertIsNotNone(result, "insert_all should return the table object") mock_api_tabledata_insert_all.assert_called_with(('test', 'testds', 'testTable0', ''), [ {'insertId': '#0', 'json': {u'column': 'r0', u'headers': 10.0, u'some': 0, 'Row': 0}}, {'insertId': '#1', 'json': {u'column': 'r1', u'headers': 10.0, u'some': 1, 'Row': 1}}, {'insertId': '#2', 'json': {u'column': 'r2', u'headers': 10.0, u'some': 2, 'Row': 2}}, {'insertId': '#3', 'json': {u'column': 'r3', u'headers': 10.0, u'some': 3, 'Row': 3}} ]) @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.jobs_insert_load') @mock.patch('datalab.bigquery._api.Api.jobs_get') def test_table_load(self, mock_api_jobs_get, mock_api_jobs_insert_load, mock_api_tables_get): schema = TestCases._create_inferred_schema('Row') mock_api_jobs_get.return_value = {'status': {'state': 'DONE'}} mock_api_jobs_insert_load.return_value = None mock_api_tables_get.return_value = {'schema': {'fields': schema}} tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) job = tbl.load('gs://foo') self.assertIsNone(job) mock_api_jobs_insert_load.return_value = {'jobReference': {'jobId': 'bar'}} job = tbl.load('gs://foo') self.assertEquals('bar', job.id) @mock.patch('datalab.bigquery._api.Api.table_extract') @mock.patch('datalab.bigquery._api.Api.jobs_get') @mock.patch('datalab.bigquery._api.Api.tables_get') def test_table_extract(self, mock_api_tables_get, mock_api_jobs_get, mock_api_table_extract): mock_api_tables_get.return_value = {} mock_api_jobs_get.return_value = {'status': {'state': 'DONE'}} mock_api_table_extract.return_value = None tbl = datalab.bigquery.Table('testds.testTable0', context=self._create_context()) job = tbl.extract('gs://foo') self.assertIsNone(job) mock_api_table_extract.return_value = {'jobReference': {'jobId': 'bar'}} job = tbl.extract('gs://foo') self.assertEquals('bar', job.id) @mock.patch('datalab.bigquery._api.Api.tabledata_list') @mock.patch('datalab.bigquery._api.Api.tables_get') def test_table_to_dataframe(self, mock_api_tables_get, mock_api_tabledata_list): schema = self._create_inferred_schema() mock_api_tables_get.return_value = {'schema': {'fields': schema}} mock_api_tabledata_list.return_value = { 'rows': [ {'f': [{'v': 1}, {'v': 'foo'}, {'v': 3.1415}]}, {'f': [{'v': 2}, {'v': 'bar'}, {'v': 0.5}]}, ] } tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) df = tbl.to_dataframe() self.assertEquals(2, len(df)) self.assertEquals(1, df['some'][0]) self.assertEquals(2, df['some'][1]) self.assertEquals('foo', df['column'][0]) self.assertEquals('bar', df['column'][1]) self.assertEquals(3.1415, df['headers'][0]) self.assertEquals(0.5, df['headers'][1]) def test_encode_dict_as_row(self): when = dt.datetime(2001, 2, 3, 4, 5, 6, 7) row = datalab.bigquery.Table._encode_dict_as_row({'fo@o': 'b@r', 'b+ar': when}, {}) self.assertEqual({'foo': 'b@r', 'bar': '2001-02-03T04:05:06.000007'}, row) def test_decorators(self): tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) tbl2 = tbl.snapshot(dt.timedelta(hours=-1)) self.assertEquals('test:testds.testTable0@-3600000', str(tbl2)) with self.assertRaises(Exception) as error: tbl2 = tbl2.snapshot(dt.timedelta(hours=-2)) self.assertEqual('Cannot use snapshot() on an already decorated table', str(error.exception)) with self.assertRaises(Exception) as error: tbl2.window(dt.timedelta(hours=-2), 0) self.assertEqual('Cannot use window() on an already decorated table', str(error.exception)) with self.assertRaises(Exception) as error: tbl.snapshot(dt.timedelta(days=-8)) self.assertEqual( 'Invalid snapshot relative when argument: must be within 7 days: -8 days, 0:00:00', str(error.exception)) with self.assertRaises(Exception) as error: tbl.snapshot(dt.timedelta(days=-8)) self.assertEqual( 'Invalid snapshot relative when argument: must be within 7 days: -8 days, 0:00:00', str(error.exception)) tbl2 = tbl.snapshot(dt.timedelta(days=-1)) self.assertEquals('test:testds.testTable0@-86400000', str(tbl2)) with self.assertRaises(Exception) as error: tbl.snapshot(dt.timedelta(days=1)) self.assertEqual('Invalid snapshot relative when argument: 1 day, 0:00:00', str(error.exception)) with self.assertRaises(Exception) as error: tbl2 = tbl.snapshot(1000) self.assertEqual('Invalid snapshot when argument type: 1000', str(error.exception)) self.assertEquals('test:testds.testTable0@-86400000', str(tbl2)) when = dt.datetime.utcnow() + dt.timedelta(1) with self.assertRaises(Exception) as error: tbl.snapshot(when) self.assertEqual('Invalid snapshot absolute when argument: %s' % when, str(error.exception)) when = dt.datetime.utcnow() - dt.timedelta(8) with self.assertRaises(Exception) as error: tbl.snapshot(when) self.assertEqual('Invalid snapshot absolute when argument: %s' % when, str(error.exception)) def test_window_decorators(self): # The at test above already tests many of the conversion cases. The extra things we # have to test are that we can use two values, we get a meaningful default for the second # if we pass None, and that the first time comes before the second. tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) tbl2 = tbl.window(dt.timedelta(hours=-1)) self.assertEquals('test:testds.testTable0@-3600000-0', str(tbl2)) with self.assertRaises(Exception) as error: tbl2 = tbl2.window(-400000, 0) self.assertEqual('Cannot use window() on an already decorated table', str(error.exception)) with self.assertRaises(Exception) as error: tbl2.snapshot(-400000) self.assertEqual('Cannot use snapshot() on an already decorated table', str(error.exception)) with self.assertRaises(Exception) as error: tbl.window(dt.timedelta(0), dt.timedelta(hours=-1)) self.assertEqual( 'window: Between arguments: begin must be before end: 0:00:00, -1 day, 23:00:00', str(error.exception)) @mock.patch('datalab.bigquery._api.Api.tables_get') @mock.patch('datalab.bigquery._api.Api.table_update') def test_table_update(self, mock_api_table_update, mock_api_tables_get): schema = self._create_inferred_schema() info = {'schema': {'fields': schema}, 'friendlyName': 'casper', 'description': 'ghostly logs', 'expirationTime': calendar.timegm(dt.datetime(2020, 1, 1).utctimetuple()) * 1000} mock_api_tables_get.return_value = info tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) new_name = 'aziraphale' new_description = 'demon duties' new_schema = [{'name': 'injected', 'type': 'FLOAT'}] new_schema.extend(schema) new_expiry = dt.datetime(2030, 1, 1) tbl.update(new_name, new_description, new_expiry, new_schema) name, info = mock_api_table_update.call_args[0] self.assertEqual(tbl.name, name) self.assertEqual(new_name, tbl.metadata.friendly_name) self.assertEqual(new_description, tbl.metadata.description) self.assertEqual(new_expiry, tbl.metadata.expires_on) self.assertEqual(len(new_schema), len(tbl.schema)) def test_table_to_query(self): tbl = datalab.bigquery.Table('testds.testTable0', context=TestCases._create_context()) q = tbl.to_query() self.assertEqual('SELECT * FROM [test:testds.testTable0]', q.sql) q = tbl.to_query('foo, bar') self.assertEqual('SELECT foo, bar FROM [test:testds.testTable0]', q.sql) q = tbl.to_query(['bar', 'foo']) self.assertEqual('SELECT bar,foo FROM [test:testds.testTable0]', q.sql) @staticmethod def _create_context(): project_id = 'test' creds = mock.Mock(spec=google.auth.credentials.Credentials) return datalab.context.Context(project_id, creds) @staticmethod def _create_table(name): return datalab.bigquery.Table(name, TestCases._create_context()) @staticmethod def _create_table_info_result(ts=None): if ts is None: ts = dt.datetime.utcnow() epoch = dt.datetime.utcfromtimestamp(0) timestamp = (ts - epoch).total_seconds() * 1000 return { 'description': 'Daily Logs Table', 'friendlyName': 'Logs', 'numBytes': 1000, 'numRows': 2, 'creationTime': timestamp, 'lastModifiedTime': timestamp, 'schema': { 'fields': [ {'name': 'name', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'val', 'type': 'INTEGER', 'mode': 'NULLABLE'} ] } } @staticmethod def _create_table_info_nested_schema_result(ts=None): if ts is None: ts = dt.datetime.utcnow() epoch = dt.datetime.utcfromtimestamp(0) timestamp = (ts - epoch).total_seconds() * 1000 return { 'description': 'Daily Logs Table', 'friendlyName': 'Logs', 'numBytes': 1000, 'numRows': 2, 'creationTime': timestamp, 'lastModifiedTime': timestamp, 'schema': { 'fields': [ {'name': 'name', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'val', 'type': 'INTEGER', 'mode': 'NULLABLE'}, {'name': 'more', 'type': 'RECORD', 'mode': 'REPEATED', 'fields': [ {'name': 'xyz', 'type': 'INTEGER', 'mode': 'NULLABLE'} ] } ] } } @staticmethod def _create_dataset(dataset_id): return datalab.bigquery.Dataset(dataset_id, context=TestCases._create_context()) @staticmethod def _create_table_list_result(): return { 'tables': [ { 'type': 'TABLE', 'tableReference': {'projectId': 'test', 'datasetId': 'testds', 'tableId': 'testTable1'} }, { 'type': 'VIEW', 'tableReference': {'projectId': 'test', 'datasetId': 'testds', 'tableId': 'testView1'} }, { 'type': 'TABLE', 'tableReference': {'projectId': 'test', 'datasetId': 'testds', 'tableId': 'testTable2'} } ] } @staticmethod def _create_table_list_empty_result(): return { 'tables': [] } @staticmethod def _create_data_frame(): data = { 'some': [ 0, 1, 2, 3 ], 'column': [ 'r0', 'r1', 'r2', 'r3' ], 'headers': [ 10.0, 10.0, 10.0, 10.0 ] } return pandas.DataFrame(data) @staticmethod def _create_inferred_schema(extra_field=None): schema = [ {'name': 'some', 'type': 'INTEGER'}, {'name': 'column', 'type': 'STRING'}, {'name': 'headers', 'type': 'FLOAT'}, ] if extra_field: schema.append({'name': extra_field, 'type': 'INTEGER'}) return schema @staticmethod def _create_table_with_schema(schema, name='test:testds.testTable0'): return datalab.bigquery.Table(name, TestCases._create_context()).create(schema) class _uuid(object): @property def hex(self): return '#' @staticmethod def _create_uuid(): return TestCases._uuid()
apache-2.0
Yurlungur/FLRW
plot_all_variables.py
1
2036
#!/usr/bin/env python2 # Author: Jonah Miller ([email protected]) # Time-stamp: <2013-12-14 14:15:26 (jonah)> # This is a companion program to my FLRW simulator. It takes a data # file and generates a plot of the scale factor, its derivative, the # density, and the pressure of the matter. # Call the program with # python2 plot_all_variables.py filename.dat # Imports # ---------------------------------------------------------------------- import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.pyplot as plt import sys, os # ---------------------------------------------------------------------- # Parameters for plots # ---------------------------------------------------------------------- xlabel = "Cosmological time. (geometrized units)" my_linewidth = 5 fontsize = 20 # ---------------------------------------------------------------------- def load_data(filename): """ Takes a file name as a string and extracts the simulation data from it. Returns a tuple of arrays: (times,a_values,b_values,rho_values,p_values) """ with open(filename,'r') as f: data = np.loadtxt(filename).transpose() times = data[0] a_values = data[1] rho_values = data[2] p_values = data[3] return times,a_values,rho_values,p_values def plot_data(times,a_values,rho_values,p_values): """ Takes the times,a_values,b_values,rho_values, and p_values and makes a nice plot out of them. Takes labels, etc. into account. """ mpl.rcParams.update({'font.size': fontsize}) lines = [plt.plot(times,y_set,linewidth=my_linewidth) for y_set in [a_values,rho_values,p_values]] plt.legend(["a",r'$\rho$',"p"]) plt.xlabel(xlabel) plt.show() return def plot_file(filename): "Plots the data in a file." times,a_values,rho_values,p_values = load_data(filename) plot_data(times,a_values,rho_values,p_values) return if __name__ == "__main__": for filename in sys.argv[1:]: plot_file(filename)
mit
CopyChat/Plotting
Python/TestCode/colormaps_reference.py
4
3411
""" Reference for colormaps included with Matplotlib. This reference example shows all colormaps included with Matplotlib. Note that any colormap listed here can be reversed by appending "_r" (e.g., "pink_r"). These colormaps are divided into the following categories: Sequential: These colormaps are approximately monochromatic colormaps varying smoothly between two color tones---usually from low saturation (e.g. white) to high saturation (e.g. a bright blue). Sequential colormaps are ideal for representing most scientific data since they show a clear progression from low-to-high values. Diverging: These colormaps have a median value (usually light in color) and vary smoothly to two different color tones at high and low values. Diverging colormaps are ideal when your data has a median value that is significant (e.g. 0, such that positive and negative values are represented by different colors of the colormap). Qualitative: These colormaps vary rapidly in color. Qualitative colormaps are useful for choosing a set of discrete colors. For example:: color_list = plt.cm.Set3(np.linspace(0, 1, 12)) gives a list of RGB colors that are good for plotting a series of lines on a dark background. Miscellaneous: Colormaps that don't fit into the categories above. """ import numpy as np import matplotlib.pyplot as plt cmaps = [('Sequential', ['binary', 'Blues', 'BuGn', 'BuPu', 'gist_yarg', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd']), ('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool', 'copper', 'gist_gray', 'gist_heat', 'gray', 'hot', 'pink', 'spring', 'summer', 'winter']), ('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr', 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'seismic']), ('Qualitative', ['Accent', 'Dark2', 'hsv', 'Paired', 'Pastel1', 'Pastel2', 'Set1', 'Set2', 'Set3', 'spectral']), ('Miscellaneous', ['gist_earth', 'gist_ncar', 'gist_rainbow', 'gist_stern', 'jet', 'brg', 'CMRmap', 'cubehelix', 'gnuplot', 'gnuplot2', 'ocean', 'rainbow', 'terrain', 'flag', 'prism'])] nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps) gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) def plot_color_gradients(cmap_category, cmap_list): fig, axes = plt.subplots(nrows=nrows) fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99) axes[0].set_title(cmap_category + ' colormaps', fontsize=14) for ax, name in zip(axes, cmap_list): ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name)) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3]/2. fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axes: ax.set_axis_off() for cmap_category, cmap_list in cmaps: plot_color_gradients(cmap_category, cmap_list) plt.show()
gpl-3.0
KNMI/VERCE
scigateway-api/src/scigateway_app.py
2
3047
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib matplotlib.use('Agg') import json from flask import request, send_file, Flask from scigateway_services import mtensor from scigateway_services.wfs_input_generator.input_file_generator import InputFileGenerator from pymongo import MongoClient import sys DATA_PATH = "../mt/" ROOT_URL = "/" app = Flask("scigateway-api") mtstore = mtensor.MtStore(DATA_PATH) uri=sys.argv[1] db=MongoClient(uri,maxPoolSize=100)["verce-prov"] def str_to_bool_pass(value): if value == "true": return True if value == "false": return False return value @app.route(ROOT_URL) def start(): return "VERCE scigateway-api service." @app.route(ROOT_URL + "version") def version(): """ Return the version string of the webservice. """ return "0.0.3" @app.route(ROOT_URL + "mt/components-image") def components_image(): mrr = request.args['mrr'] mtt = request.args['mtt'] mpp = request.args['mpp'] mrt = request.args['mrt'] mrp = request.args['mrp'] mtp = request.args['mtp'] filename = mtstore.produceImage(id, mrr=float(mrr), mtt=float(mtt), mpp=float(mpp), mrt=float(mrt), mrp=float(mrp), mtp=float(mtp)) return send_file(filename, mimetype='image/png') @app.route(ROOT_URL + "mt/nodal-plane-image") def nodal_plane_image(): strike = request.args['strike'] dip = request.args['dip'] rake = request.args['rake'] filename = mtstore.produceImage(strike=float(strike), dip=float(dip), rake=float(rake)) return send_file(filename, mimetype='image/png') @app.route(ROOT_URL + "solver/par-file/<solver>", methods=['POST']) def solver_par_file(solver): solver_conf = json.loads(str(request.form["jsondata"])) gen = InputFileGenerator() fields = solver_conf["fields"] for x in fields: gen.add_configuration({x["name"]: str_to_bool_pass(x["value"])}) par_file = gen.write_par_file(format=solver.upper()) return par_file, 200, {'Content-Type': 'application/octet-stream'} @app.route(ROOT_URL + "solver/<solverId>") def solver_config(solverId): solver = db['solver'] try: solver = solver.find_one({"_id": solverId}) if (solver != None): solver.update({"success": True}) userId = request.args["userId"][0] if "userId" in request.args else False def userFilter(item): return (not "users" in item) or (userId and userId in item["users"]) def velmodFilter(item): item["velmod"] = filter(userFilter, item["velmod"]) return item solver["meshes"] = map(velmodFilter, filter(userFilter, solver["meshes"])) return json.dumps(solver), 200, {'Content-type': 'application/json'} else: return {"success": False, "error": "Solver " + solverId + " not Found"} except Exception, e: return {"success": False, "error": str(e)} if __name__ == "__main__": app.run(debug=True)
mit
zorojean/scikit-learn
examples/gaussian_process/plot_gp_regression.py
253
4054
#!/usr/bin/python # -*- coding: utf-8 -*- r""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression exercise computed in two different ways: 1. A noise-free case with a cubic correlation model 2. A noisy case with a squared Euclidean correlation model In both cases, the model parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``nugget`` is applied as a Tikhonov regularization of the assumed covariance between the training points. In the special case of the squared euclidean correlation model, nugget is mathematically equivalent to a normalized variance: That is .. math:: \mathrm{nugget}_i = \left[\frac{\sigma_i}{y_i}\right]^2 """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Licence: BSD 3 clause import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') #---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
dino-dna/donut
packages/regression/src/DonutLearner.py
1
1836
import json import os import sys import numpy as np from scipy.optimize import differential_evolution from sklearn import linear_model from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.neighbors import KNeighborsRegressor def log(msg): if os.getenv('DEBUG') is not None: sys.stderr.write(f'donut:py_regression: {msg}\n') class DonutLearner: @staticmethod def knn(X, Y): neigh = KNeighborsRegressor() neigh.fit(X, Y) def explore(x): score = -1 * neigh.predict([x]) return score minimized = differential_evolution(explore, ((0, 1), (0, 1), (0, 1), (0, 1), (0, 1))) return { 'X_min': list(minimized.x), 'score': neigh.score(X, Y) } @staticmethod def ridge_regression_with_sim_ann(X, Y): model = make_pipeline(PolynomialFeatures(2), linear_model.Ridge()) reg = model.fit(X, Y) def explore(x): score = -1 * reg.predict([x]) return score minimized = differential_evolution(explore, ((0, 1), (0, 1), (0, 1), (0, 1), (0, 1))) return { 'X_min': list(minimized.x), 'score': reg.score(X, Y) } @staticmethod def from_stdin(): log('reading input') data = "" for line in sys.stdin: data += line try: request = json.loads(data) break except: pass log('input read complete') response = {} for learner in request['learners']: X = request['X'] log(f'execing learner ({len(X)} records): {learner}') reg = getattr(DonutLearner, learner)(X, request['Y']) response[learner] = reg log('writing response') print(json.dumps(response)) # send to stdout for parsing if __name__ == "__main__": log('Launching DonutLearner') DonutLearner.from_stdin() log('complete.') exit(0)
mit
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/pandas/tests/indexes/period/test_period.py
4
29718
import pytest import numpy as np from numpy.random import randn from datetime import timedelta import pandas as pd from pandas.util import testing as tm from pandas import (PeriodIndex, period_range, notnull, DatetimeIndex, NaT, Index, Period, Int64Index, Series, DataFrame, date_range, offsets, compat) from ..datetimelike import DatetimeLike class TestPeriodIndex(DatetimeLike): _holder = PeriodIndex _multiprocess_can_split_ = True def setup_method(self, method): self.indices = dict(index=tm.makePeriodIndex(10)) self.setup_indices() def create_index(self): return period_range('20130101', periods=5, freq='D') def test_astype(self): # GH 13149, GH 13209 idx = PeriodIndex(['2016-05-16', 'NaT', NaT, np.NaN], freq='D') result = idx.astype(object) expected = Index([Period('2016-05-16', freq='D')] + [Period(NaT, freq='D')] * 3, dtype='object') tm.assert_index_equal(result, expected) result = idx.astype(int) expected = Int64Index([16937] + [-9223372036854775808] * 3, dtype=np.int64) tm.assert_index_equal(result, expected) idx = period_range('1990', '2009', freq='A') result = idx.astype('i8') tm.assert_index_equal(result, Index(idx.asi8)) tm.assert_numpy_array_equal(result.values, idx.asi8) def test_astype_raises(self): # GH 13149, GH 13209 idx = PeriodIndex(['2016-05-16', 'NaT', NaT, np.NaN], freq='D') pytest.raises(ValueError, idx.astype, str) pytest.raises(ValueError, idx.astype, float) pytest.raises(ValueError, idx.astype, 'timedelta64') pytest.raises(ValueError, idx.astype, 'timedelta64[ns]') def test_pickle_compat_construction(self): pass def test_pickle_round_trip(self): for freq in ['D', 'M', 'A']: idx = PeriodIndex(['2016-05-16', 'NaT', NaT, np.NaN], freq=freq) result = tm.round_trip_pickle(idx) tm.assert_index_equal(result, idx) def test_get_loc(self): idx = pd.period_range('2000-01-01', periods=3) for method in [None, 'pad', 'backfill', 'nearest']: assert idx.get_loc(idx[1], method) == 1 assert idx.get_loc(idx[1].asfreq('H', how='start'), method) == 1 assert idx.get_loc(idx[1].to_timestamp(), method) == 1 assert idx.get_loc(idx[1].to_timestamp() .to_pydatetime(), method) == 1 assert idx.get_loc(str(idx[1]), method) == 1 idx = pd.period_range('2000-01-01', periods=5)[::2] assert idx.get_loc('2000-01-02T12', method='nearest', tolerance='1 day') == 1 assert idx.get_loc('2000-01-02T12', method='nearest', tolerance=pd.Timedelta('1D')) == 1 assert idx.get_loc('2000-01-02T12', method='nearest', tolerance=np.timedelta64(1, 'D')) == 1 assert idx.get_loc('2000-01-02T12', method='nearest', tolerance=timedelta(1)) == 1 with tm.assert_raises_regex(ValueError, 'must be convertible'): idx.get_loc('2000-01-10', method='nearest', tolerance='foo') msg = 'Input has different freq from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex(ValueError, msg): idx.get_loc('2000-01-10', method='nearest', tolerance='1 hour') with pytest.raises(KeyError): idx.get_loc('2000-01-10', method='nearest', tolerance='1 day') def test_where(self): i = self.create_index() result = i.where(notnull(i)) expected = i tm.assert_index_equal(result, expected) i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq='D') result = i.where(notnull(i2)) expected = i2 tm.assert_index_equal(result, expected) def test_where_array_like(self): i = self.create_index() cond = [False] + [True] * (len(i) - 1) klasses = [list, tuple, np.array, Series] expected = pd.PeriodIndex([pd.NaT] + i[1:].tolist(), freq='D') for klass in klasses: result = i.where(klass(cond)) tm.assert_index_equal(result, expected) def test_where_other(self): i = self.create_index() for arr in [np.nan, pd.NaT]: result = i.where(notnull(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq='D') result = i.where(notnull(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = pd.PeriodIndex([pd.NaT, pd.NaT] + i[2:].tolist(), freq='D') result = i.where(notnull(i2), i2.values) tm.assert_index_equal(result, i2) def test_get_indexer(self): idx = pd.period_range('2000-01-01', periods=3).asfreq('H', how='start') tm.assert_numpy_array_equal(idx.get_indexer(idx), np.array([0, 1, 2], dtype=np.intp)) target = pd.PeriodIndex(['1999-12-31T23', '2000-01-01T12', '2000-01-02T01'], freq='H') tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'), np.array([-1, 0, 1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'), np.array([0, 1, 2], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'), np.array([0, 1, 1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest', tolerance='1 hour'), np.array([0, -1, 1], dtype=np.intp)) msg = 'Input has different freq from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex(ValueError, msg): idx.get_indexer(target, 'nearest', tolerance='1 minute') tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest', tolerance='1 day'), np.array([0, 1, 1], dtype=np.intp)) def test_repeat(self): # GH10183 idx = pd.period_range('2000-01-01', periods=3, freq='D') res = idx.repeat(3) exp = PeriodIndex(idx.values.repeat(3), freq='D') tm.assert_index_equal(res, exp) assert res.freqstr == 'D' def test_period_index_indexer(self): # GH4125 idx = pd.period_range('2002-01', '2003-12', freq='M') df = pd.DataFrame(pd.np.random.randn(24, 10), index=idx) tm.assert_frame_equal(df, df.loc[idx]) tm.assert_frame_equal(df, df.loc[list(idx)]) tm.assert_frame_equal(df, df.loc[list(idx)]) tm.assert_frame_equal(df.iloc[0:5], df.loc[idx[0:5]]) tm.assert_frame_equal(df, df.loc[list(idx)]) def test_fillna_period(self): # GH 11343 idx = pd.PeriodIndex(['2011-01-01 09:00', pd.NaT, '2011-01-01 11:00'], freq='H') exp = pd.PeriodIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H') tm.assert_index_equal( idx.fillna(pd.Period('2011-01-01 10:00', freq='H')), exp) exp = pd.Index([pd.Period('2011-01-01 09:00', freq='H'), 'x', pd.Period('2011-01-01 11:00', freq='H')], dtype=object) tm.assert_index_equal(idx.fillna('x'), exp) exp = pd.Index([pd.Period('2011-01-01 09:00', freq='H'), pd.Period('2011-01-01', freq='D'), pd.Period('2011-01-01 11:00', freq='H')], dtype=object) tm.assert_index_equal(idx.fillna( pd.Period('2011-01-01', freq='D')), exp) def test_no_millisecond_field(self): with pytest.raises(AttributeError): DatetimeIndex.millisecond with pytest.raises(AttributeError): DatetimeIndex([]).millisecond def test_difference_freq(self): # GH14323: difference of Period MUST preserve frequency # but the ability to union results must be preserved index = period_range("20160920", "20160925", freq="D") other = period_range("20160921", "20160924", freq="D") expected = PeriodIndex(["20160920", "20160925"], freq='D') idx_diff = index.difference(other) tm.assert_index_equal(idx_diff, expected) tm.assert_attr_equal('freq', idx_diff, expected) other = period_range("20160922", "20160925", freq="D") idx_diff = index.difference(other) expected = PeriodIndex(["20160920", "20160921"], freq='D') tm.assert_index_equal(idx_diff, expected) tm.assert_attr_equal('freq', idx_diff, expected) def test_hash_error(self): index = period_range('20010101', periods=10) with tm.assert_raises_regex(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_make_time_series(self): index = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') series = Series(1, index=index) assert isinstance(series, Series) def test_shallow_copy_empty(self): # GH13067 idx = PeriodIndex([], freq='M') result = idx._shallow_copy() expected = idx tm.assert_index_equal(result, expected) def test_dtype_str(self): pi = pd.PeriodIndex([], freq='M') assert pi.dtype_str == 'period[M]' assert pi.dtype_str == str(pi.dtype) pi = pd.PeriodIndex([], freq='3M') assert pi.dtype_str == 'period[3M]' assert pi.dtype_str == str(pi.dtype) def test_view_asi8(self): idx = pd.PeriodIndex([], freq='M') exp = np.array([], dtype=np.int64) tm.assert_numpy_array_equal(idx.view('i8'), exp) tm.assert_numpy_array_equal(idx.asi8, exp) idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M') exp = np.array([492, -9223372036854775808], dtype=np.int64) tm.assert_numpy_array_equal(idx.view('i8'), exp) tm.assert_numpy_array_equal(idx.asi8, exp) exp = np.array([14975, -9223372036854775808], dtype=np.int64) idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D') tm.assert_numpy_array_equal(idx.view('i8'), exp) tm.assert_numpy_array_equal(idx.asi8, exp) def test_values(self): idx = pd.PeriodIndex([], freq='M') exp = np.array([], dtype=np.object) tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([], dtype=np.int64) tm.assert_numpy_array_equal(idx._values, exp) idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M') exp = np.array([pd.Period('2011-01', freq='M'), pd.NaT], dtype=object) tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([492, -9223372036854775808], dtype=np.int64) tm.assert_numpy_array_equal(idx._values, exp) idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D') exp = np.array([pd.Period('2011-01-01', freq='D'), pd.NaT], dtype=object) tm.assert_numpy_array_equal(idx.values, exp) tm.assert_numpy_array_equal(idx.get_values(), exp) exp = np.array([14975, -9223372036854775808], dtype=np.int64) tm.assert_numpy_array_equal(idx._values, exp) def test_period_index_length(self): pi = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') assert len(pi) == 9 pi = PeriodIndex(freq='Q', start='1/1/2001', end='12/1/2009') assert len(pi) == 4 * 9 pi = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') assert len(pi) == 12 * 9 start = Period('02-Apr-2005', 'B') i1 = PeriodIndex(start=start, periods=20) assert len(i1) == 20 assert i1.freq == start.freq assert i1[0] == start end_intv = Period('2006-12-31', 'W') i1 = PeriodIndex(end=end_intv, periods=10) assert len(i1) == 10 assert i1.freq == end_intv.freq assert i1[-1] == end_intv end_intv = Period('2006-12-31', '1w') i2 = PeriodIndex(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq end_intv = Period('2006-12-31', ('w', 1)) i2 = PeriodIndex(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq try: PeriodIndex(start=start, end=end_intv) raise AssertionError('Cannot allow mixed freq for start and end') except ValueError: pass end_intv = Period('2005-05-01', 'B') i1 = PeriodIndex(start=start, end=end_intv) try: PeriodIndex(start=start) raise AssertionError( 'Must specify periods if missing start or end') except ValueError: pass # infer freq from first element i2 = PeriodIndex([end_intv, Period('2005-05-05', 'B')]) assert len(i2) == 2 assert i2[0] == end_intv i2 = PeriodIndex(np.array([end_intv, Period('2005-05-05', 'B')])) assert len(i2) == 2 assert i2[0] == end_intv # Mixed freq should fail vals = [end_intv, Period('2006-12-31', 'w')] pytest.raises(ValueError, PeriodIndex, vals) vals = np.array(vals) pytest.raises(ValueError, PeriodIndex, vals) def test_fields(self): # year, month, day, hour, minute # second, weekofyear, week, dayofweek, weekday, dayofyear, quarter # qyear pi = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2005') self._check_all_fields(pi) pi = PeriodIndex(freq='Q', start='1/1/2001', end='12/1/2002') self._check_all_fields(pi) pi = PeriodIndex(freq='M', start='1/1/2001', end='1/1/2002') self._check_all_fields(pi) pi = PeriodIndex(freq='D', start='12/1/2001', end='6/1/2001') self._check_all_fields(pi) pi = PeriodIndex(freq='B', start='12/1/2001', end='6/1/2001') self._check_all_fields(pi) pi = PeriodIndex(freq='H', start='12/31/2001', end='1/1/2002 23:00') self._check_all_fields(pi) pi = PeriodIndex(freq='Min', start='12/31/2001', end='1/1/2002 00:20') self._check_all_fields(pi) pi = PeriodIndex(freq='S', start='12/31/2001 00:00:00', end='12/31/2001 00:05:00') self._check_all_fields(pi) end_intv = Period('2006-12-31', 'W') i1 = PeriodIndex(end=end_intv, periods=10) self._check_all_fields(i1) def _check_all_fields(self, periodindex): fields = ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter', 'qyear', 'days_in_month'] periods = list(periodindex) s = pd.Series(periodindex) for field in fields: field_idx = getattr(periodindex, field) assert len(periodindex) == len(field_idx) for x, val in zip(periods, field_idx): assert getattr(x, field) == val if len(s) == 0: continue field_s = getattr(s.dt, field) assert len(periodindex) == len(field_s) for x, val in zip(periods, field_s): assert getattr(x, field) == val def test_indexing(self): # GH 4390, iat incorrectly indexing index = period_range('1/1/2001', periods=10) s = Series(randn(10), index=index) expected = s[index[0]] result = s.iat[0] assert expected == result def test_period_set_index_reindex(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = period_range('2011/01/01', periods=6, freq='M') idx2 = period_range('2013', periods=6, freq='A') df = df.set_index(idx1) tm.assert_index_equal(df.index, idx1) df = df.set_index(idx2) tm.assert_index_equal(df.index, idx2) def test_factorize(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype=np.intp) exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') arr, idx = idx1.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) arr, idx = idx1.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) idx2 = pd.PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype=np.intp) arr, idx = idx2.factorize(sort=True) tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) exp_arr = np.array([0, 0, 1, 2, 0, 2], dtype=np.intp) exp_idx = PeriodIndex(['2014-03', '2014-02', '2014-01'], freq='M') arr, idx = idx2.factorize() tm.assert_numpy_array_equal(arr, exp_arr) tm.assert_index_equal(idx, exp_idx) def test_asobject_like(self): idx = pd.PeriodIndex([], freq='M') exp = np.array([], dtype=object) tm.assert_numpy_array_equal(idx.asobject.values, exp) tm.assert_numpy_array_equal(idx._mpl_repr(), exp) idx = pd.PeriodIndex(['2011-01', pd.NaT], freq='M') exp = np.array([pd.Period('2011-01', freq='M'), pd.NaT], dtype=object) tm.assert_numpy_array_equal(idx.asobject.values, exp) tm.assert_numpy_array_equal(idx._mpl_repr(), exp) exp = np.array([pd.Period('2011-01-01', freq='D'), pd.NaT], dtype=object) idx = pd.PeriodIndex(['2011-01-01', pd.NaT], freq='D') tm.assert_numpy_array_equal(idx.asobject.values, exp) tm.assert_numpy_array_equal(idx._mpl_repr(), exp) def test_is_(self): create_index = lambda: PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') index = create_index() assert index.is_(index) assert not index.is_(create_index()) assert index.is_(index.view()) assert index.is_(index.view().view().view().view().view()) assert index.view().is_(index) ind2 = index.view() index.name = "Apple" assert ind2.is_(index) assert not index.is_(index[:]) assert not index.is_(index.asfreq('M')) assert not index.is_(index.asfreq('A')) assert not index.is_(index - 2) assert not index.is_(index - 0) def test_comp_period(self): idx = period_range('2007-01', periods=20, freq='M') result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) def test_contains(self): rng = period_range('2007-01', freq='M', periods=10) assert Period('2007-01', freq='M') in rng assert not Period('2007-01', freq='D') in rng assert not Period('2007-01', freq='2M') in rng def test_contains_nat(self): # see gh-13582 idx = period_range('2007-01', freq='M', periods=10) assert pd.NaT not in idx assert None not in idx assert float('nan') not in idx assert np.nan not in idx idx = pd.PeriodIndex(['2011-01', 'NaT', '2011-02'], freq='M') assert pd.NaT in idx assert None in idx assert float('nan') in idx assert np.nan in idx def test_periods_number_check(self): with pytest.raises(ValueError): period_range('2011-1-1', '2012-1-1', 'B') def test_start_time(self): index = PeriodIndex(freq='M', start='2016-01-01', end='2016-05-31') expected_index = date_range('2016-01-01', end='2016-05-31', freq='MS') tm.assert_index_equal(index.start_time, expected_index) def test_end_time(self): index = PeriodIndex(freq='M', start='2016-01-01', end='2016-05-31') expected_index = date_range('2016-01-01', end='2016-05-31', freq='M') tm.assert_index_equal(index.end_time, expected_index) def test_index_duplicate_periods(self): # monotonic idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq='A-JUN') ts = Series(np.random.randn(len(idx)), index=idx) result = ts[2007] expected = ts[1:3] tm.assert_series_equal(result, expected) result[:] = 1 assert (ts[1:3] == 1).all() # not monotonic idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq='A-JUN') ts = Series(np.random.randn(len(idx)), index=idx) result = ts[2007] expected = ts[idx == 2007] tm.assert_series_equal(result, expected) def test_index_unique(self): idx = PeriodIndex([2000, 2007, 2007, 2009, 2009], freq='A-JUN') expected = PeriodIndex([2000, 2007, 2009], freq='A-JUN') tm.assert_index_equal(idx.unique(), expected) assert idx.nunique() == 3 idx = PeriodIndex([2000, 2007, 2007, 2009, 2007], freq='A-JUN', tz='US/Eastern') expected = PeriodIndex([2000, 2007, 2009], freq='A-JUN', tz='US/Eastern') tm.assert_index_equal(idx.unique(), expected) assert idx.nunique() == 3 def test_shift_gh8083(self): # test shift for PeriodIndex # GH8083 drange = self.create_index() result = drange.shift(1) expected = PeriodIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') tm.assert_index_equal(result, expected) def test_shift(self): pi1 = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='A', start='1/1/2002', end='12/1/2010') tm.assert_index_equal(pi1.shift(0), pi1) assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = PeriodIndex(freq='A', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='A', start='1/1/2000', end='12/1/2008') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) pi1 = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='M', start='2/1/2001', end='1/1/2010') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = PeriodIndex(freq='M', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='M', start='12/1/2000', end='11/1/2009') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) pi1 = PeriodIndex(freq='D', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='D', start='1/2/2001', end='12/2/2009') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(1), pi2) pi1 = PeriodIndex(freq='D', start='1/1/2001', end='12/1/2009') pi2 = PeriodIndex(freq='D', start='12/31/2000', end='11/30/2009') assert len(pi1) == len(pi2) tm.assert_index_equal(pi1.shift(-1), pi2) def test_shift_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx.shift(1) expected = PeriodIndex(['2011-02', '2011-03', 'NaT', '2011-05'], freq='M', name='idx') tm.assert_index_equal(result, expected) assert result.name == expected.name def test_ndarray_compat_properties(self): if compat.is_platform_32bit(): pytest.skip("skipping on 32bit") super(TestPeriodIndex, self).test_ndarray_compat_properties() def test_shift_ndarray(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx.shift(np.array([1, 2, 3, 4])) expected = PeriodIndex(['2011-02', '2011-04', 'NaT', '2011-08'], freq='M', name='idx') tm.assert_index_equal(result, expected) idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2011-04'], freq='M', name='idx') result = idx.shift(np.array([1, -2, 3, -4])) expected = PeriodIndex(['2011-02', '2010-12', 'NaT', '2010-12'], freq='M', name='idx') tm.assert_index_equal(result, expected) def test_negative_ordinals(self): Period(ordinal=-1000, freq='A') Period(ordinal=0, freq='A') idx1 = PeriodIndex(ordinal=[-1, 0, 1], freq='A') idx2 = PeriodIndex(ordinal=np.array([-1, 0, 1]), freq='A') tm.assert_index_equal(idx1, idx2) def test_pindex_fieldaccessor_nat(self): idx = PeriodIndex(['2011-01', '2011-02', 'NaT', '2012-03', '2012-04'], freq='D', name='name') exp = Index([2011, 2011, -1, 2012, 2012], dtype=np.int64, name='name') tm.assert_index_equal(idx.year, exp) exp = Index([1, 2, -1, 3, 4], dtype=np.int64, name='name') tm.assert_index_equal(idx.month, exp) def test_pindex_qaccess(self): pi = PeriodIndex(['2Q05', '3Q05', '4Q05', '1Q06', '2Q06'], freq='Q') s = Series(np.random.rand(len(pi)), index=pi).cumsum() # Todo: fix these accessors! assert s['05Q4'] == s[2] def test_numpy_repeat(self): index = period_range('20010101', periods=2) expected = PeriodIndex([Period('2001-01-01'), Period('2001-01-01'), Period('2001-01-02'), Period('2001-01-02')]) tm.assert_index_equal(np.repeat(index, 2), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, index, 2, axis=1) def test_pindex_multiples(self): pi = PeriodIndex(start='1/1/11', end='12/31/11', freq='2M') expected = PeriodIndex(['2011-01', '2011-03', '2011-05', '2011-07', '2011-09', '2011-11'], freq='2M') tm.assert_index_equal(pi, expected) assert pi.freq == offsets.MonthEnd(2) assert pi.freqstr == '2M' pi = period_range(start='1/1/11', end='12/31/11', freq='2M') tm.assert_index_equal(pi, expected) assert pi.freq == offsets.MonthEnd(2) assert pi.freqstr == '2M' pi = period_range(start='1/1/11', periods=6, freq='2M') tm.assert_index_equal(pi, expected) assert pi.freq == offsets.MonthEnd(2) assert pi.freqstr == '2M' def test_iteration(self): index = PeriodIndex(start='1/1/10', periods=4, freq='B') result = list(index) assert isinstance(result[0], Period) assert result[0].freq == index.freq def test_is_full(self): index = PeriodIndex([2005, 2007, 2009], freq='A') assert not index.is_full index = PeriodIndex([2005, 2006, 2007], freq='A') assert index.is_full index = PeriodIndex([2005, 2005, 2007], freq='A') assert not index.is_full index = PeriodIndex([2005, 2005, 2006], freq='A') assert index.is_full index = PeriodIndex([2006, 2005, 2005], freq='A') pytest.raises(ValueError, getattr, index, 'is_full') assert index[:0].is_full def test_with_multi_index(self): # #1705 index = date_range('1/1/2012', periods=4, freq='12H') index_as_arrays = [index.to_period(freq='D'), index.hour] s = Series([0, 1, 2, 3], index_as_arrays) assert isinstance(s.index.levels[0], PeriodIndex) assert isinstance(s.index.values[0][0], Period) def test_convert_array_of_periods(self): rng = period_range('1/1/2000', periods=20, freq='D') periods = list(rng) result = pd.Index(periods) assert isinstance(result, PeriodIndex) def test_append_concat(self): # #1815 d1 = date_range('12/31/1990', '12/31/1999', freq='A-DEC') d2 = date_range('12/31/2000', '12/31/2009', freq='A-DEC') s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = pd.concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_pickle_freq(self): # GH2891 prng = period_range('1/1/2011', '1/1/2012', freq='M') new_prng = tm.round_trip_pickle(prng) assert new_prng.freq == offsets.MonthEnd() assert new_prng.freqstr == 'M' def test_map(self): index = PeriodIndex([2005, 2007, 2009], freq='A') result = index.map(lambda x: x + 1) expected = index + 1 tm.assert_index_equal(result, expected) result = index.map(lambda x: x.ordinal) exp = Index([x.ordinal for x in index]) tm.assert_index_equal(result, exp)
mit
AlexanderFabisch/scikit-learn
sklearn/metrics/tests/test_pairwise.py
17
25508
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import laplacian_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unkown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def test_pairwise_precomputed(): for func in [pairwise_distances, pairwise_kernels]: # Test correct shape assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), metric='precomputed') # with two args assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 4)), metric='precomputed') # even if shape[1] agrees (although thus second arg is spurious) assert_raises_regexp(ValueError, '.* shape .*', func, np.zeros((5, 3)), np.zeros((4, 3)), metric='precomputed') # Test not copied (if appropriate dtype) S = np.zeros((5, 5)) S2 = func(S, metric="precomputed") assert_true(S is S2) # with two args S = np.zeros((5, 3)) S2 = func(S, np.zeros((3, 3)), metric="precomputed") assert_true(S is S2) # Test always returns float dtype S = func(np.array([[1]], dtype='int'), metric='precomputed') assert_equal('f', S.dtype.kind) # Test converts list to array-like S = func([[1]], metric='precomputed') assert_true(isinstance(S, np.ndarray)) def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "laplacian", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {'gamma': 0.1} K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) rng = np.random.RandomState(0) X = rng.random_sample((10, 4)) Y = rng.random_sample((20, 4)) X_norm_sq = (X ** 2).sum(axis=1).reshape(1, -1) Y_norm_sq = (Y ** 2).sum(axis=1).reshape(1, -1) # check that we still get the right answers with {X,Y}_norm_squared D1 = euclidean_distances(X, Y) D2 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq) D3 = euclidean_distances(X, Y, Y_norm_squared=Y_norm_sq) D4 = euclidean_distances(X, Y, X_norm_squared=X_norm_sq, Y_norm_squared=Y_norm_sq) assert_array_almost_equal(D2, D1) assert_array_almost_equal(D3, D1) assert_array_almost_equal(D4, D1) # check we get the wrong answer with wrong {X,Y}_norm_squared X_norm_sq *= 0.5 Y_norm_sq *= 0.5 wrong_D = euclidean_distances(X, Y, X_norm_squared=np.zeros_like(X_norm_sq), Y_norm_squared=np.zeros_like(Y_norm_sq)) assert_greater(np.max(np.abs(wrong_D - D1)), .01) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, laplacian_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_laplacian_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = laplacian_kernel(X, X) # the diagonal elements of a laplacian kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(5)) # off-diagonal elements are < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. # The modified tests are not 1D. In the old test, the array was internally # converted to 2D anyways XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.arange(45).reshape(9, 5) XB = np.arange(32).reshape(4, 8) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
r24mille/think_stats
chapter_two/conditional_ans.py
1
2761
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import Pmf import descriptive import matplotlib.pyplot as pyplot import myplot import risk_ans def ConditionPmf(pmf, filter_func, name='conditional'): """Computes a conditional PMF based on a filter function. Args: pmf: Pmf object filter_func: callable that takes a value from the Pmf and returns a boolean name: string name for the new pmf Returns: new Pmf object """ cond_pmf = pmf.Copy(name) vals = [val for val in pmf.Values() if filter_func(val)] for val in vals: cond_pmf.Remove(val) cond_pmf.Normalize() return cond_pmf def ConditionOnWeeks(pmf, week=39, name='conditional'): """Computes a PMF conditioned on the given number of weeks. Args: pmf: Pmf object week: the current duration of the pregnancy name: string name for the new pmf Returns: new Pmf object """ def filter_func(x): return x < week cond = ConditionPmf(pmf, filter_func, name) return cond def MakeFigure(firsts, others): """Makes a figure showing... """ weeks = range(35, 46) # probs is a map from table name to list of conditional probabilities probs = {} for table in [firsts, others]: name = table.pmf.name probs[name] = [] for week in weeks: cond = ConditionOnWeeks(table.pmf, week) prob = cond.Prob(week) print week, prob, table.pmf.name probs[name].append(prob) # make a plot with one line for each table pyplot.clf() for name, ps in probs.iteritems(): pyplot.plot(weeks, ps, label=name) print name, ps myplot.Save(root='conditional', xlabel='weeks', ylabel=r'Prob{x $=$ weeks | x $\geq$ weeks}', title='Conditional Probability') def RelativeRisk(first, others, week=38): """Computes relative risk of the conditional prob of having a baby for each week, first babies compared to others. first: Pregnancies table others: Pregnancies table week: """ print type(first) first_cond = ConditionOnWeeks(first.pmf, week, 'first babies') other_cond = ConditionOnWeeks(others.pmf, week, 'others') risk_ans.ComputeRelativeRisk(first_cond, other_cond) def main(): pool, firsts, others = descriptive.MakeTables() RelativeRisk(firsts, others) MakeFigure(firsts, others) if __name__ == "__main__": main()
gpl-3.0
soylentdeen/BlurryApple
Tools/infl_func_sub.py
1
2579
import pyfits import matplotlib.pyplot as pyplot import scipy import numpy datadir = '/home/deen/Data/GRAVITY/InfluenceFunctions/IFs_nov82013/' fig = pyplot.figure(0, figsize=(20, 15)) fig.clear() influence_functions = [] N_act = 60 rebinned_img_width = 64 rebinned_IF_cube = numpy.zeros((N_act, rebinned_img_width, rebinned_img_width)) for i in range(60): print i ax = fig.add_axes([0.1+(i/8)*0.1, 0.1+(i%8)*0.1, 0.1, 0.1]) plus_file = datadir+'poke+'+str(i)+'.fits' minus_file = datadir+'poke-'+str(i)+'.fits' plus = pyfits.getdata(plus_file) minus = pyfits.getdata(minus_file) plus_hdr = pyfits.getheader(plus_file) minus_hdr = pyfits.getheader(minus_file) img_shape = plus.shape nonapval = plus_hdr["NONAPVAL"] plus_mask = numpy.not_equal(plus, nonapval) minus_mask = numpy.not_equal(minus, nonapval) data_mask = numpy.all(numpy.vstack((plus_mask.ravel(), minus_mask.ravel())), axis=0).reshape(img_shape) y_beg = min(numpy.where(data_mask==True)[0]) y_end = max(numpy.where(data_mask==True)[0]) x_beg = min(numpy.where(data_mask==True)[1]) x_end = max(numpy.where(data_mask==True)[1]) subtraction = numpy.zeros(img_shape) subtraction[data_mask] = plus[data_mask] - minus[data_mask] influence_functions.append(subtraction/10000.0) bin_size = max([y_end-y_beg, x_end-x_beg])/rebinned_img_width if_img = subtraction/10000.0 # Convert from Angstroems to microns #""" for xbin in range(rebinned_img_width): for ybin in range(rebinned_img_width): N_sum = 0 for x in range(x_beg + xbin*bin_size, x_beg+(xbin+1)*bin_size): for y in range(y_beg+ybin*bin_size, y_beg+(ybin+1)*bin_size): if (x < img_shape[1] and y < img_shape[0] and data_mask[y,x]==True): rebinned_IF_cube[i, ybin, xbin] += if_img[y,x] N_sum += 1 if N_sum > 0: rebinned_IF_cube[i, ybin, xbin] /= N_sum else: rebinned_IF_cube[i, ybin, xbin] = 0.0 ax.imshow(rebinned_IF_cube[i]) ax.set_yticks([]) ax.set_xticks([]) #""" IFs = numpy.array(influence_functions) IF_cube_hdu = pyfits.PrimaryHDU( rebinned_IF_cube.astype(numpy.float32)) IF_cube_hdu.writeto('IF_cube_zeros.fits', clobber=True) #IF_cube_hdu = pyfits.PrimaryHDU( IFs.astype(numpy.float32)) #IF_cube_hdu.writeto('IF_cube_HR.fits', clobber=True) #pyfits.writeto('IF_cube.fits', IFs) #fig.show() #fig.savefig("IF_cube.png")
gpl-2.0
YzPaul3/h2o-3
h2o-py/tests/testdir_algos/gbm/pyunit_bernoulli_synthetic_data_GBM_medium.py
8
3234
from builtins import range import sys, os sys.path.insert(1, os.path.join("..","..","..")) import h2o from tests import pyunit_utils from h2o import H2OFrame import numpy as np import numpy.random import scipy.stats from sklearn import ensemble from sklearn.metrics import roc_auc_score from h2o.estimators.gbm import H2OGradientBoostingEstimator def bernoulli_synthetic_data_gbm_medium(): # Generate training dataset (adaptation of http://www.stat.missouri.edu/~speckman/stat461/boost.R) train_rows = 10000 train_cols = 10 # Generate variables V1, ... V10 X_train = np.random.randn(train_rows, train_cols) # y = +1 if sum_i x_{ij}^2 > chisq median on 10 df y_train = np.asarray([1 if rs > scipy.stats.chi2.ppf(0.5, 10) else -1 for rs in [sum(r) for r in np.multiply(X_train,X_train).tolist()]]) # Train scikit gbm # TODO: grid-search distribution = "bernoulli" ntrees = 150 min_rows = 1 max_depth = 2 learn_rate = .01 nbins = 20 gbm_sci = ensemble.GradientBoostingClassifier(learning_rate=learn_rate, n_estimators=ntrees, max_depth=max_depth, min_samples_leaf=min_rows, max_features=None) gbm_sci.fit(X_train,y_train) # Generate testing dataset test_rows = 2000 test_cols = 10 # Generate variables V1, ... V10 X_test = np.random.randn(test_rows, test_cols) # y = +1 if sum_i x_{ij}^2 > chisq median on 10 df y_test = np.asarray([1 if rs > scipy.stats.chi2.ppf(0.5, 10) else -1 for rs in [sum(r) for r in np.multiply(X_test,X_test).tolist()]]) # Score (AUC) the scikit gbm model on the test data auc_sci = roc_auc_score(y_test, gbm_sci.predict_proba(X_test)[:,1]) # Compare this result to H2O xtrain = np.transpose(X_train).tolist() ytrain = y_train.tolist() xtest = np.transpose(X_test).tolist() ytest = y_test.tolist() train_h2o = H2OFrame(list(zip(*[ytrain]+xtrain))) test_h2o = H2OFrame(list(zip(*[ytest]+xtest))) train_h2o["C1"] = train_h2o["C1"].asfactor() test_h2o["C1"] = test_h2o["C1"].asfactor() gbm_h2o = H2OGradientBoostingEstimator(distribution=distribution, ntrees=ntrees, min_rows=min_rows, max_depth=max_depth, learn_rate=learn_rate, nbins=nbins) gbm_h2o.train(x=list(range(1,train_h2o.ncol)), y="C1", training_frame=train_h2o) gbm_perf = gbm_h2o.model_performance(test_h2o) auc_h2o = gbm_perf.auc() #Log.info(paste("scikit AUC:", auc_sci, "\tH2O AUC:", auc_h2o)) assert abs(auc_h2o - auc_sci) < 1e-2, "h2o (auc) performance degradation, with respect to scikit. h2o auc: {0} " \ "scickit auc: {1}".format(auc_h2o, auc_sci) if __name__ == "__main__": pyunit_utils.standalone_test(bernoulli_synthetic_data_gbm_medium) else: bernoulli_synthetic_data_gbm_medium()
apache-2.0
JacekPierzchlewski/RxCS
examples/dictionaries/dict_IDFT_ex0.py
1
2391
""" This script is an example on how to use the Inverse Discrete Fourier Transform (IDFT) Dictionary module. |br| In this example signal with 1 cosine tone is generated. |br| After the generation, the signal is plotted in the time domain. *Author*: Jacek Pierzchlewski, Aalborg University, Denmark. <[email protected]> *Version*: 1.0 | 30-MAY-2014 : * Version 1.0 released. |br| 1.0-r1 | 23-FEB-2015 : * Header is added. |br| 2.0 | 20-AUG-2015 : * Version 2.0 released (adjusted to v2.0 of the dictionary generator) |br| 2.1 | 23-MAR-2017 : * Symmetrical frequency distribution is set *License*: BSD 2-Clause """ from __future__ import division import rxcs import numpy as np import matplotlib.pyplot as plt def _dict_IDFT_ex0(): # Things on the table: IDFT = rxcs.cs.dict.IDFT() # IDFT dictionary generator # Configure the IDF generator IDFT.tS = 1e-3 # Time of the dictionary is 1 ms IDFT.fR = 40e3 # Representation sampling frequency is 40 kHz IDFT.fDelta = 1e3 # The frequency separation between tones IDFT.nTones = 10 # The number of tones in the dictionary IDFT.bFreqSym = 1 # Symmetrical frequency distribution IDFT.run() # Generate the dictionary # ----------------------------------------------------------------- # Generate the signal using the dictionary # Vector with Fourier coefficients vFcoef = np.zeros((1,20)).astype(complex) vFcoef[0, 0] = 1 vFcoef[0, 19] = 1 # Get the dictionary matrix mIDFT = IDFT.mDict # Generate a signal and change its shape to a single vector vSig = np.real(np.dot(vFcoef,mIDFT)) vSig.shape = (vSig.size,) # ----------------------------------------------------------------- # Plot signal in the time domain vT = IDFT.vT # Get the time vector hFig1 = plt.figure(1) hSubPlot1 = hFig1.add_subplot(111) hSubPlot1.grid(True) hSubPlot1.set_title('Signal') hSubPlot1.set_xlabel('Time [s]') hSubPlot1.plot(vT, vSig) hSubPlot1.set_xlim(min(vT), max(vT)) hSubPlot1.set_ylim(-1.1, 1.1) plt.show(block=True) # ===================================================================== # Trigger when start as a script # ===================================================================== if __name__ == '__main__': _dict_IDFT_ex0()
bsd-2-clause
kiyoto/statsmodels
statsmodels/examples/ex_feasible_gls_het.py
34
4267
# -*- coding: utf-8 -*- """Examples for linear model with heteroscedasticity estimated by feasible GLS These are examples to check the results during developement. The assumptions: We have a linear model y = X*beta where the variance of an observation depends on some explanatory variable Z (`exog_var`). linear_model.WLS estimated the model for a given weight matrix here we want to estimate also the weight matrix by two step or iterative WLS Created on Wed Dec 21 12:28:17 2011 Author: Josef Perktold There might be something fishy with the example, but I don't see it. Or maybe it's supposed to be this way because in the first case I don't include a constant and in the second case I include some of the same regressors as in the main equation. """ from __future__ import print_function import numpy as np from numpy.testing import assert_almost_equal from statsmodels.regression.linear_model import OLS, WLS, GLS from statsmodels.regression.feasible_gls import GLSHet, GLSHet2 examples = ['ex1'] if 'ex1' in examples: #from tut_ols_wls nsample = 1000 sig = 0.5 x1 = np.linspace(0, 20, nsample) X = np.c_[x1, (x1-5)**2, np.ones(nsample)] np.random.seed(0)#9876789) #9876543) beta = [0.5, -0.015, 1.] y_true2 = np.dot(X, beta) w = np.ones(nsample) w[nsample*6//10:] = 4 #Note this is the squared value #y2[:nsample*6/10] = y_true2[:nsample*6/10] + sig*1. * np.random.normal(size=nsample*6/10) #y2[nsample*6/10:] = y_true2[nsample*6/10:] + sig*4. * np.random.normal(size=nsample*4/10) y2 = y_true2 + sig*np.sqrt(w)* np.random.normal(size=nsample) X2 = X[:,[0,2]] X2 = X res_ols = OLS(y2, X2).fit() print('OLS beta estimates') print(res_ols.params) print('OLS stddev of beta') print(res_ols.bse) print('\nWLS') mod0 = GLSHet2(y2, X2, exog_var=w) res0 = mod0.fit() print('new version') mod1 = GLSHet(y2, X2, exog_var=w) res1 = mod1.iterative_fit(2) print('WLS beta estimates') print(res1.params) print(res0.params) print('WLS stddev of beta') print(res1.bse) #compare with previous version GLSHet2, refactoring check #assert_almost_equal(res1.params, np.array([ 0.37642521, 1.51447662])) #this fails ??? more iterations? different starting weights? print(res1.model.weights/res1.model.weights.max()) #why is the error so small in the estimated weights ? assert_almost_equal(res1.model.weights/res1.model.weights.max(), 1./w, 14) print('residual regression params') print(res1.results_residual_regression.params) print('scale of model ?') print(res1.scale) print('unweighted residual variance, note unweighted mean is not zero') print(res1.resid.var()) #Note weighted mean is zero: #(res1.model.weights * res1.resid).mean() doplots = False if doplots: import matplotlib.pyplot as plt plt.figure() plt.plot(x1, y2, 'o') plt.plot(x1, y_true2, 'b-', label='true') plt.plot(x1, res1.fittedvalues, 'r-', label='fwls') plt.plot(x1, res_ols.fittedvalues, '--', label='ols') plt.legend() #z = (w[:,None] == [1,4]).astype(float) #dummy variable z = (w[:,None] == np.unique(w)).astype(float) #dummy variable mod2 = GLSHet(y2, X2, exog_var=z) res2 = mod2.iterative_fit(2) print(res2.params) import statsmodels.api as sm z = sm.add_constant(w) mod3 = GLSHet(y2, X2, exog_var=z) res3 = mod3.iterative_fit(8) print(res3.params) print("np.array(res3.model.history['ols_params'])") print(np.array(res3.model.history['ols_params'])) print("np.array(res3.model.history['self_params'])") print(np.array(res3.model.history['self_params'])) print(np.unique(res2.model.weights)) #for discrete z only, only a few uniques print(np.unique(res3.model.weights)) if doplots: plt.figure() plt.plot(x1, y2, 'o') plt.plot(x1, y_true2, 'b-', label='true') plt.plot(x1, res1.fittedvalues, '-', label='fwls1') plt.plot(x1, res2.fittedvalues, '-', label='fwls2') plt.plot(x1, res3.fittedvalues, '-', label='fwls3') plt.plot(x1, res_ols.fittedvalues, '--', label='ols') plt.legend() plt.show()
bsd-3-clause
jreback/pandas
pandas/tests/frame/test_arithmetic.py
1
59527
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int class DummyElement: def __init__(self, value, dtype): self.value = value self.dtype = np.dtype(dtype) def __array__(self): return np.array(self.value, dtype=self.dtype) def __str__(self) -> str: return f"DummyElement({self.value}, {self.dtype})" def __repr__(self) -> str: return str(self) def astype(self, dtype, copy=False): self.dtype = dtype return self def view(self, dtype): return type(self)(self.value.view(dtype), dtype) def any(self, axis=None): return bool(self.value) # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = DataFrame(np.arange(6).reshape((3, 2))) expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = DataFrame(np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"]) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = DataFrame(data) other = DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = Series(np.random.randn(5)) col_ser = Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = DataFrame({"a": arr}) df2 = DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = DataFrame({"A": ii, "B": ii}) ser = Series([0, 0]) res = df.eq(ser, axis=0) expected = DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = Series(arr) df = DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = Series(tdi) df = DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = DataFrame({"A": dti, "B": ser}) other = DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = DataFrame( { "A": Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype={"C": None}) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = {"B": "uint64", "C": None} elif op in ["__add__", "__mul__"]: dtype = {"C": None} tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype={"C": None}) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = Series([], dtype=object) df_len0 = DataFrame(columns=["A", "B"]) df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = DataFrame([[1, 2], [3, 4]]) result = df * ser expected = DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = DataFrame({"A": [1, 1], "B": [1, 1]}) expected = DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "value, dtype", [ (1, "i8"), (1.0, "f8"), (2 ** 63, "f8"), (1j, "complex128"), (2 ** 63, "complex128"), (True, "bool"), (np.timedelta64(20, "ns"), "<m8[ns]"), (np.datetime64(20, "ns"), "<M8[ns]"), ], ) @pytest.mark.xfail(reason="GH38630", strict=False) @pytest.mark.parametrize( "op", [ operator.add, operator.sub, operator.mul, operator.truediv, operator.mod, operator.pow, ], ids=lambda x: x.__name__, ) def test_binop_other(self, op, value, dtype): skip = { (operator.truediv, "bool"), (operator.pow, "bool"), } e = DummyElement(value, dtype) s = DataFrame({"A": [e.value, e.value]}, dtype=e.dtype) invalid = { (operator.pow, "<M8[ns]"), (operator.mod, "<M8[ns]"), (operator.truediv, "<M8[ns]"), (operator.mul, "<M8[ns]"), (operator.add, "<M8[ns]"), (operator.pow, "<m8[ns]"), (operator.mul, "<m8[ns]"), (operator.sub, "bool"), (operator.mod, "complex128"), } if (op, dtype) in invalid: warn = None if (dtype == "<M8[ns]" and op == operator.add) or ( dtype == "<m8[ns]" and op == operator.mul ): msg = None elif dtype == "complex128": msg = "ufunc 'remainder' not supported for the input types" warn = UserWarning # "evaluating in Python space because ..." elif op is operator.sub: msg = "numpy boolean subtract, the `-` operator, is " warn = UserWarning # "evaluating in Python space because ..." else: msg = ( f"cannot perform __{op.__name__}__ with this " "index type: (DatetimeArray|TimedeltaArray)" ) with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(warn): op(s, e.value) elif (op, dtype) in skip: msg = "operator '.*' not implemented for .* dtypes" with pytest.raises(NotImplementedError, match=msg): with tm.assert_produces_warning(UserWarning): # "evaluating in Python space because ..." op(s, e.value) else: # FIXME: Since dispatching to Series, this test no longer # asserts anything meaningful with tm.assert_produces_warning(None): result = op(s, e.value).dtypes expected = op(s, value).dtypes tm.assert_series_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = Series(dtype=np.float64) result = df + ser expected = DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning(FutureWarning): # Automatic alignment for comparisons deprecated result = df == ser expected = DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # non-float case should not raise on comparison df2 = DataFrame(df.values.view("M8[ns]"), columns=df.columns) with tm.assert_produces_warning(FutureWarning): # Automatic alignment for comparisons deprecated result = df2 == ser expected = DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_zero_len_frame_with_series_corner_cases(): # GH#28600 df = DataFrame(columns=["A", "B"], dtype=np.float64) ser = Series([1, 2], index=["A", "B"]) result = df + ser expected = df tm.assert_frame_equal(result, expected) def test_frame_single_columns_object_sum_axis_1(): # GH 13758 data = { "One": Series(["A", 1.2, np.nan]), } df = DataFrame(data) result = df.sum(axis=1) expected = Series(["A", 1.2, 0]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------- # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestFrameArithmeticUnsorted: def test_frame_add_tz_mismatch_converts_to_utc(self): rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") df = DataFrame(np.random.randn(len(rng)), index=rng, columns=["a"]) df_moscow = df.tz_convert("Europe/Moscow") result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_align_frame(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) half = ts[::2] result = ts + half.take(np.random.permutation(len(half))) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "op", [operator.add, operator.sub, operator.mul, operator.truediv] ) def test_operators_none_as_na(self, op): df = DataFrame( {"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object ) # since filling converts dtypes from object, changed expected to be # object filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df.fillna(7)) tm.assert_frame_equal(result, expected) result = op(df.fillna(7), df) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)]) # TODO: not sure what's correct here. @pytest.mark.filterwarnings("ignore:elementwise:FutureWarning") def test_logical_typeerror_with_non_valid(self, op, res, float_frame): # we are comparing floats vs a string result = getattr(float_frame, op)("foo") assert bool(result.all().all()) is res def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product( [list("abc"), ["one", "two", "three"], [1, 2, 3]], names=["first", "second", "third"], ) df = DataFrame( np.arange(27 * 3).reshape(27, 3), index=index, columns=["value1", "value2", "value3"], ).sort_index() idx = pd.IndexSlice for op in ["add", "sub", "mul", "div", "truediv"]: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level="third", axis=0) expected = pd.concat( [opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()] ).sort_index() tm.assert_frame_equal(result, expected) x = Series([1.0, 10.0], ["two", "three"]) result = getattr(df, op)(x, level="second", axis=0) expected = ( pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()]) .reindex_like(df) .sort_index() ) tm.assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([["A", "B"], ["a", "b"]]) df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx) s = Series({"a": 1, "b": 2}) df2 = df.copy() df2.columns.names = ["lvl0", "lvl1"] s2 = s.copy() s2.index.name = "lvl1" # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level="lvl1") res6 = df2.mul(s2, axis=1, level="lvl1") exp = DataFrame( np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx ) for res in [res1, res2]: tm.assert_frame_equal(res, exp) exp.columns.names = ["lvl0", "lvl1"] for res in [res3, res4, res5, res6]: tm.assert_frame_equal(res, exp) def test_add_with_dti_mismatched_tzs(self): base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC") idx1 = base.tz_convert("Asia/Tokyo")[:2] idx2 = base.tz_convert("US/Eastern")[1:] df1 = DataFrame({"A": [1, 2]}, index=idx1) df2 = DataFrame({"A": [1, 1]}, index=idx2) exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base) tm.assert_frame_equal(df1 + df2, exp) def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame): frame_copy = float_frame.reindex(float_frame.index[::2]) del frame_copy["D"] frame_copy["C"][:5] = np.nan added = float_frame + frame_copy indexer = added["A"].dropna().index exp = (float_frame["A"] * 2).copy() tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added["A"], exp.loc[added["A"].index]) assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added["D"]).all() self_added = float_frame + float_frame tm.assert_index_equal(self_added.index, float_frame.index) added_rev = frame_copy + float_frame assert np.isnan(added["D"]).all() assert np.isnan(added_rev["D"]).all() # corner cases # empty plus_empty = float_frame + DataFrame() assert np.isnan(plus_empty.values).all() empty_plus = DataFrame() + float_frame assert np.isnan(empty_plus.values).all() empty_empty = DataFrame() + DataFrame() assert empty_empty.empty # out of order reverse = float_frame.reindex(columns=float_frame.columns[::-1]) tm.assert_frame_equal(reverse + float_frame, float_frame * 2) # mix vs float64, upcast added = float_frame + mixed_float_frame _check_mixed_float(added, dtype="float64") added = mixed_float_frame + float_frame _check_mixed_float(added, dtype="float64") # mix vs mix added = mixed_float_frame + mixed_float_frame _check_mixed_float(added, dtype={"C": None}) # with int added = float_frame + mixed_int_frame _check_mixed_float(added, dtype="float64") def test_combine_series( self, float_frame, mixed_float_frame, mixed_int_frame, datetime_frame ): # Series series = float_frame.xs(float_frame.index[0]) added = float_frame + series for key, s in added.items(): tm.assert_series_equal(s, float_frame[key] + series[key]) larger_series = series.to_dict() larger_series["E"] = 1 larger_series = Series(larger_series) larger_added = float_frame + larger_series for key, s in float_frame.items(): tm.assert_series_equal(larger_added[key], s + series[key]) assert "E" in larger_added assert np.isnan(larger_added["E"]).all() # no upcast needed added = mixed_float_frame + series assert np.all(added.dtypes == series.dtype) # vs mix (upcast) as needed added = mixed_float_frame + series.astype("float32") _check_mixed_float(added, dtype={"C": None}) added = mixed_float_frame + series.astype("float16") _check_mixed_float(added, dtype={"C": None}) # FIXME: don't leave commented-out # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = mixed_int_frame + (100*series).astype('int64') # _check_mixed_int(added, dtype = {"A": 'int64', "B": 'float64', "C": # 'int64', "D": 'int64'}) # added = mixed_int_frame + (100*series).astype('int32') # _check_mixed_int(added, dtype = {"A": 'int32', "B": 'float64', "C": # 'int32', "D": 'int64'}) # TimeSeries ts = datetime_frame["A"] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = datetime_frame.add(ts, axis="index") for key, col in datetime_frame.items(): result = col + ts tm.assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == "A" else: assert result.name is None smaller_frame = datetime_frame[:-5] smaller_added = smaller_frame.add(ts, axis="index") tm.assert_index_equal(smaller_added.index, datetime_frame.index) smaller_ts = ts[:-5] smaller_added2 = datetime_frame.add(smaller_ts, axis="index") tm.assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = datetime_frame.add(ts[:0], axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # Frame is all-nan result = datetime_frame[:0].add(ts, axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # empty but with non-empty index frame = datetime_frame[:1].reindex(columns=[]) result = frame.mul(ts, axis="index") assert len(result) == len(ts) def test_combineFunc(self, float_frame, mixed_float_frame): result = float_frame * 2 tm.assert_numpy_array_equal(result.values, float_frame.values * 2) # vs mix result = mixed_float_frame * 2 for c, s in result.items(): tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2) _check_mixed_float(result, dtype={"C": None}) result = DataFrame() * 2 assert result.index.equals(DataFrame().index) assert len(result.columns) == 0 def test_comparisons(self, simple_frame, float_frame): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = simple_frame.xs("a") ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) msg = ( "Unable to coerce to Series/DataFrame, " "dimension must be <= 2: (30, 4, 1, 1, 1)" ) with pytest.raises(ValueError, match=re.escape(msg)): func(df1, ndim_5) result2 = func(simple_frame, row) tm.assert_numpy_array_equal( result2.values, func(simple_frame.values, row.values) ) result3 = func(float_frame, 0) tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0)) msg = "Can only compare identically-labeled DataFrame" with pytest.raises(ValueError, match=msg): func(simple_frame, simple_frame[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne): # GH 11565 df = DataFrame( {x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]} ) f = getattr(operator, compare_operators_no_eq_ne) msg = "'[<>]=?' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): f(df, 0) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]["A"] = np.nan with np.errstate(invalid="ignore"): expected = missing_df.values < 0 with np.errstate(invalid="raise"): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T lst = [2, 2, 2] tup = tuple(lst) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b tm.assert_frame_equal(result, expected) result = df.values > b tm.assert_numpy_array_equal(result, expected.values) msg1d = "Unable to coerce to Series, length must be 2: given 3" msg2d = "Unable to coerce to DataFrame, shape must be" msg2db = "operands could not be broadcast together with shapes" with pytest.raises(ValueError, match=msg1d): # wrong shape df > lst with pytest.raises(ValueError, match=msg1d): # wrong shape result = df > tup # broadcasts like ndarray (GH#23000) result = df > b_r tm.assert_frame_equal(result, expected) result = df.values > b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df > b_c with pytest.raises(ValueError, match=msg2db): df.values > b_c # == expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == b tm.assert_frame_equal(result, expected) with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup # broadcasts like ndarray (GH#23000) result = df == b_r tm.assert_frame_equal(result, expected) result = df.values == b_r tm.assert_numpy_array_equal(result, expected.values) with pytest.raises(ValueError, match=msg2d): df == b_c assert df.values.shape != b_c.shape # with alignment df = DataFrame( np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc") ) expected.index = df.index expected.columns = df.columns with pytest.raises(ValueError, match=msg1d): result = df == lst with pytest.raises(ValueError, match=msg1d): result = df == tup def test_inplace_ops_alignment(self): # inplace ops / ops alignment # GH 8511 columns = list("abcdefg") X_orig = DataFrame( np.arange(10 * len(columns)).reshape(-1, len(columns)), columns=columns, index=range(10), ) Z = 100 * X_orig.iloc[:, 1:-1].copy() block1 = list("bedcf") subs = list("bcdef") # add X = X_orig.copy() result1 = (X[block1] + Z).reindex(columns=subs) X[block1] += Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] + Z[block1]).reindex(columns=subs) X[block1] += Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) # sub X = X_orig.copy() result1 = (X[block1] - Z).reindex(columns=subs) X[block1] -= Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] - Z[block1]).reindex(columns=subs) X[block1] -= Z[block1] result4 = X.reindex(columns=subs) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result1, result3) tm.assert_frame_equal(result1, result4) def test_inplace_ops_identity(self): # GH 5104 # make sure that we are actually changing the object s_orig = Series([1, 2, 3]) df_orig = DataFrame(np.random.randint(0, 5, size=10).reshape(-1, 5)) # no dtype change s = s_orig.copy() s2 = s s += 1 tm.assert_series_equal(s, s2) tm.assert_series_equal(s_orig + 1, s) assert s is s2 assert s._mgr is s2._mgr df = df_orig.copy() df2 = df df += 1 tm.assert_frame_equal(df, df2) tm.assert_frame_equal(df_orig + 1, df) assert df is df2 assert df._mgr is df2._mgr # dtype change s = s_orig.copy() s2 = s s += 1.5 tm.assert_series_equal(s, s2) tm.assert_series_equal(s_orig + 1.5, s) df = df_orig.copy() df2 = df df += 1.5 tm.assert_frame_equal(df, df2) tm.assert_frame_equal(df_orig + 1.5, df) assert df is df2 assert df._mgr is df2._mgr # mixed dtype arr = np.random.randint(0, 10, size=5) df_orig = DataFrame({"A": arr.copy(), "B": "foo"}) df = df_orig.copy() df2 = df df["A"] += 1 expected = DataFrame({"A": arr.copy() + 1, "B": "foo"}) tm.assert_frame_equal(df, expected) tm.assert_frame_equal(df2, expected) assert df._mgr is df2._mgr df = df_orig.copy() df2 = df df["A"] += 1.5 expected = DataFrame({"A": arr.copy() + 1.5, "B": "foo"}) tm.assert_frame_equal(df, expected) tm.assert_frame_equal(df2, expected) assert df._mgr is df2._mgr @pytest.mark.parametrize( "op", [ "add", "and", "div", "floordiv", "mod", "mul", "or", "pow", "sub", "truediv", "xor", ], ) def test_inplace_ops_identity2(self, op): if op == "div": return df = DataFrame({"a": [1.0, 2.0, 3.0], "b": [1, 2, 3]}) operand = 2 if op in ("and", "or", "xor"): # cannot use floats for boolean ops df["a"] = [True, False, True] df_copy = df.copy() iop = f"__i{op}__" op = f"__{op}__" # no id change and value is correct getattr(df, iop)(operand) expected = getattr(df_copy, op)(operand) tm.assert_frame_equal(df, expected) expected = id(df) assert id(df) == expected def test_alignment_non_pandas(self): index = ["A", "B", "C"] columns = ["X", "Y", "Z"] df = DataFrame(np.random.randn(3, 3), index=index, columns=columns) align = pd.core.ops.align_method_FRAME for val in [ [1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype=np.int64), range(1, 4), ]: expected = DataFrame({"X": val, "Y": val, "Z": val}, index=df.index) tm.assert_frame_equal(align(df, val, "index")[1], expected) expected = DataFrame( {"X": [1, 1, 1], "Y": [2, 2, 2], "Z": [3, 3, 3]}, index=df.index ) tm.assert_frame_equal(align(df, val, "columns")[1], expected) # length mismatch msg = "Unable to coerce to Series, length must be 3: given 2" for val in [[1, 2], (1, 2), np.array([1, 2]), range(1, 3)]: with pytest.raises(ValueError, match=msg): align(df, val, "index") with pytest.raises(ValueError, match=msg): align(df, val, "columns") val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) tm.assert_frame_equal( align(df, val, "index")[1], DataFrame(val, index=df.index, columns=df.columns), ) tm.assert_frame_equal( align(df, val, "columns")[1], DataFrame(val, index=df.index, columns=df.columns), ) # shape mismatch msg = "Unable to coerce to DataFrame, shape must be" val = np.array([[1, 2, 3], [4, 5, 6]]) with pytest.raises(ValueError, match=msg): align(df, val, "index") with pytest.raises(ValueError, match=msg): align(df, val, "columns") val = np.zeros((3, 3, 3)) msg = re.escape( "Unable to coerce to Series/DataFrame, dimension must be <= 2: (3, 3, 3)" ) with pytest.raises(ValueError, match=msg): align(df, val, "index") with pytest.raises(ValueError, match=msg): align(df, val, "columns") def test_no_warning(self, all_arithmetic_operators): df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]}) b = df["B"] with tm.assert_produces_warning(None): getattr(df, all_arithmetic_operators)(b) def test_dunder_methods_binary(self, all_arithmetic_operators): # GH#??? frame.__foo__ should only accept one argument df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]}) b = df["B"] with pytest.raises(TypeError, match="takes 2 positional arguments"): getattr(df, all_arithmetic_operators)(b, 0) def test_align_int_fill_bug(self): # GH#910 X = np.arange(10 * 10, dtype="float64").reshape(10, 10) Y = np.ones((10, 1), dtype=int) df1 = DataFrame(X) df1["0.X"] = Y.squeeze() df2 = df1.astype(float) result = df1 - df1.mean() expected = df2 - df2.mean() tm.assert_frame_equal(result, expected) def test_pow_with_realignment(): # GH#32685 pow has special semantics for operating with null values left = DataFrame({"A": [0, 1, 2]}) right = DataFrame(index=[0, 1, 2]) result = left ** right expected = DataFrame({"A": [np.nan, 1.0, np.nan]}) tm.assert_frame_equal(result, expected) # TODO: move to tests.arithmetic and parametrize def test_pow_nan_with_zero(): left = DataFrame({"A": [np.nan, np.nan, np.nan]}) right = DataFrame({"A": [0, 0, 0]}) expected = DataFrame({"A": [1.0, 1.0, 1.0]}) result = left ** right tm.assert_frame_equal(result, expected) result = left["A"] ** right["A"] tm.assert_series_equal(result, expected["A"]) def test_dataframe_series_extension_dtypes(): # https://github.com/pandas-dev/pandas/issues/34311 df = DataFrame(np.random.randint(0, 100, (10, 3)), columns=["a", "b", "c"]) ser = Series([1, 2, 3], index=["a", "b", "c"]) expected = df.to_numpy("int64") + ser.to_numpy("int64").reshape(-1, 3) expected = DataFrame(expected, columns=df.columns, dtype="Int64") df_ea = df.astype("Int64") result = df_ea + ser tm.assert_frame_equal(result, expected) result = df_ea + ser.astype("Int64") tm.assert_frame_equal(result, expected) def test_dataframe_blockwise_slicelike(): # GH#34367 arr = np.random.randint(0, 1000, (100, 10)) df1 = DataFrame(arr) df2 = df1.copy() df2.iloc[0, [1, 3, 7]] = np.nan df3 = df1.copy() df3.iloc[0, [5]] = np.nan df4 = df1.copy() df4.iloc[0, np.arange(2, 5)] = np.nan df5 = df1.copy() df5.iloc[0, np.arange(4, 7)] = np.nan for left, right in [(df1, df2), (df2, df3), (df4, df5)]: res = left + right expected = DataFrame({i: left[i] + right[i] for i in left.columns}) tm.assert_frame_equal(res, expected) @pytest.mark.parametrize( "df, col_dtype", [ (DataFrame([[1.0, 2.0], [4.0, 5.0]], columns=list("ab")), "float64"), (DataFrame([[1.0, "b"], [4.0, "b"]], columns=list("ab")), "object"), ], ) def test_dataframe_operation_with_non_numeric_types(df, col_dtype): # GH #22663 expected = DataFrame([[0.0, np.nan], [3.0, np.nan]], columns=list("ab")) expected = expected.astype({"b": col_dtype}) result = df + Series([-1.0], index=list("a")) tm.assert_frame_equal(result, expected) def test_arith_reindex_with_duplicates(): # https://github.com/pandas-dev/pandas/issues/35194 df1 = DataFrame(data=[[0]], columns=["second"]) df2 = DataFrame(data=[[0, 0, 0]], columns=["first", "second", "second"]) result = df1 + df2 expected = DataFrame([[np.nan, 0, 0]], columns=["first", "second", "second"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("to_add", [[Series([1, 1])], [Series([1, 1]), Series([1, 1])]]) def test_arith_list_of_arraylike_raise(to_add): # GH 36702. Raise when trying to add list of array-like to DataFrame df = DataFrame({"x": [1, 2], "y": [1, 2]}) msg = f"Unable to coerce list of {type(to_add[0])} to Series/DataFrame" with pytest.raises(ValueError, match=msg): df + to_add with pytest.raises(ValueError, match=msg): to_add + df def test_inplace_arithmetic_series_update(): # https://github.com/pandas-dev/pandas/issues/36373 df = DataFrame({"A": [1, 2, 3]}) series = df["A"] vals = series._values series += 1 assert series._values is vals expected = DataFrame({"A": [2, 3, 4]}) tm.assert_frame_equal(df, expected)
bsd-3-clause
fyffyt/scikit-learn
sklearn/covariance/robust_covariance.py
198
29735
""" Robust location and covariance estimators. Here are implemented estimators that are resistant to outliers. """ # Author: Virgile Fritsch <[email protected]> # # License: BSD 3 clause import warnings import numbers import numpy as np from scipy import linalg from scipy.stats import chi2 from . import empirical_covariance, EmpiricalCovariance from ..utils.extmath import fast_logdet, pinvh from ..utils import check_random_state, check_array # Minimum Covariance Determinant # Implementing of an algorithm by Rousseeuw & Van Driessen described in # (A Fast Algorithm for the Minimum Covariance Determinant Estimator, # 1999, American Statistical Association and the American Society # for Quality, TECHNOMETRICS) # XXX Is this really a public function? It's not listed in the docs or # exported by sklearn.covariance. Deprecate? def c_step(X, n_support, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD. Parameters ---------- X : array-like, shape (n_samples, n_features) Data set in which we look for the n_support observations whose scatter matrix has minimum determinant. n_support : int, > n_samples / 2 Number of observations to compute the robust estimates of location and covariance from. remaining_iterations : int, optional Number of iterations to perform. According to [Rouseeuw1999]_, two iterations are sufficient to get close to the minimum, and we never need more than 30 to reach convergence. initial_estimates : 2-tuple, optional Initial estimates of location and shape from which to run the c_step procedure: - initial_estimates[0]: an initial location estimate - initial_estimates[1]: an initial covariance estimate verbose : boolean, optional Verbose mode. random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Returns ------- location : array-like, shape (n_features,) Robust location estimates. covariance : array-like, shape (n_features, n_features) Robust covariance estimates. support : array-like, shape (n_samples,) A mask for the `n_support` observations whose scatter matrix has minimum determinant. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ X = np.asarray(X) random_state = check_random_state(random_state) return _c_step(X, n_support, remaining_iterations=remaining_iterations, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state) def _c_step(X, n_support, random_state, remaining_iterations=30, initial_estimates=None, verbose=False, cov_computation_method=empirical_covariance): n_samples, n_features = X.shape # Initialisation support = np.zeros(n_samples, dtype=bool) if initial_estimates is None: # compute initial robust estimates from a random subset support[random_state.permutation(n_samples)[:n_support]] = True else: # get initial robust estimates from the function parameters location = initial_estimates[0] covariance = initial_estimates[1] # run a special iteration for that case (to get an initial support) precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(1) # compute new estimates support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(0) covariance = cov_computation_method(X_support) # Iterative procedure for Minimum Covariance Determinant computation det = fast_logdet(covariance) previous_det = np.inf while (det < previous_det) and (remaining_iterations > 0): # save old estimates values previous_location = location previous_covariance = covariance previous_det = det previous_support = support # compute a new support from the full data set mahalanobis distances precision = pinvh(covariance) X_centered = X - location dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1) # compute new estimates support = np.zeros(n_samples, dtype=bool) support[np.argsort(dist)[:n_support]] = True X_support = X[support] location = X_support.mean(axis=0) covariance = cov_computation_method(X_support) det = fast_logdet(covariance) # update remaining iterations for early stopping remaining_iterations -= 1 previous_dist = dist dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1) # Catch computation errors if np.isinf(det): raise ValueError( "Singular covariance matrix. " "Please check that the covariance matrix corresponding " "to the dataset is full rank and that MinCovDet is used with " "Gaussian-distributed data (or at least data drawn from a " "unimodal, symmetric distribution.") # Check convergence if np.allclose(det, previous_det): # c_step procedure converged if verbose: print("Optimal couple (location, covariance) found before" " ending iterations (%d left)" % (remaining_iterations)) results = location, covariance, det, support, dist elif det > previous_det: # determinant has increased (should not happen) warnings.warn("Warning! det > previous_det (%.15f > %.15f)" % (det, previous_det), RuntimeWarning) results = previous_location, previous_covariance, \ previous_det, previous_support, previous_dist # Check early stopping if remaining_iterations == 0: if verbose: print('Maximum number of iterations reached') results = location, covariance, det, support, dist return results def select_candidates(X, n_support, n_trials, select=1, n_iter=30, verbose=False, cov_computation_method=empirical_covariance, random_state=None): """Finds the best pure subset of observations to compute MCD from it. The purpose of this function is to find the best sets of n_support observations with respect to a minimization of their covariance matrix determinant. Equivalently, it removes n_samples-n_support observations to construct what we call a pure data set (i.e. not containing outliers). The list of the observations of the pure data set is referred to as the `support`. Starting from a random support, the pure data set is found by the c_step procedure introduced by Rousseeuw and Van Driessen in [Rouseeuw1999]_. Parameters ---------- X : array-like, shape (n_samples, n_features) Data (sub)set in which we look for the n_support purest observations. n_support : int, [(n + p + 1)/2] < n_support < n The number of samples the pure data set must contain. select : int, int > 0 Number of best candidates results to return. n_trials : int, nb_trials > 0 or 2-tuple Number of different initial sets of observations from which to run the algorithm. Instead of giving a number of trials to perform, one can provide a list of initial estimates that will be used to iteratively run c_step procedures. In this case: - n_trials[0]: array-like, shape (n_trials, n_features) is the list of `n_trials` initial location estimates - n_trials[1]: array-like, shape (n_trials, n_features, n_features) is the list of `n_trials` initial covariances estimates n_iter : int, nb_iter > 0 Maximum number of iterations for the c_step procedure. (2 is enough to be close to the final solution. "Never" exceeds 20). random_state : integer or numpy.RandomState, default None The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) verbose : boolean, default False Control the output verbosity. See Also --------- c_step Returns ------- best_locations : array-like, shape (select, n_features) The `select` location estimates computed from the `select` best supports found in the data set (`X`). best_covariances : array-like, shape (select, n_features, n_features) The `select` covariance estimates computed from the `select` best supports found in the data set (`X`). best_supports : array-like, shape (select, n_samples) The `select` best supports found in the data set (`X`). References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS """ random_state = check_random_state(random_state) n_samples, n_features = X.shape if isinstance(n_trials, numbers.Integral): run_from_estimates = False elif isinstance(n_trials, tuple): run_from_estimates = True estimates_list = n_trials n_trials = estimates_list[0].shape[0] else: raise TypeError("Invalid 'n_trials' parameter, expected tuple or " " integer, got %s (%s)" % (n_trials, type(n_trials))) # compute `n_trials` location and shape estimates candidates in the subset all_estimates = [] if not run_from_estimates: # perform `n_trials` computations from random initial supports for j in range(n_trials): all_estimates.append( _c_step( X, n_support, remaining_iterations=n_iter, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) else: # perform computations from every given initial estimates for j in range(n_trials): initial_estimates = (estimates_list[0][j], estimates_list[1][j]) all_estimates.append(_c_step( X, n_support, remaining_iterations=n_iter, initial_estimates=initial_estimates, verbose=verbose, cov_computation_method=cov_computation_method, random_state=random_state)) all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \ zip(*all_estimates) # find the `n_best` best results among the `n_trials` ones index_best = np.argsort(all_dets_sub)[:select] best_locations = np.asarray(all_locs_sub)[index_best] best_covariances = np.asarray(all_covs_sub)[index_best] best_supports = np.asarray(all_supports_sub)[index_best] best_ds = np.asarray(all_ds_sub)[index_best] return best_locations, best_covariances, best_supports, best_ds def fast_mcd(X, support_fraction=None, cov_computation_method=empirical_covariance, random_state=None): """Estimates the Minimum Covariance Determinant matrix. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- X : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: `[n_sample + n_features + 1] / 2`. random_state : integer or numpy.RandomState, optional The generator used to randomly subsample. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. cov_computation_method : callable, default empirical_covariance The function which will be used to compute the covariance. Must return shape (n_features, n_features) Notes ----- The FastMCD algorithm has been introduced by Rousseuw and Van Driessen in "A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS". The principle is to compute robust estimates and random subsets before pooling them into a larger subsets, and finally into the full data set. Depending on the size of the initial sample, we have one, two or three such computation levels. Note that only raw estimates are returned. If one is interested in the correction and reweighting steps described in [Rouseeuw1999]_, see the MinCovDet object. References ---------- .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400 Returns ------- location : array-like, shape (n_features,) Robust location of the data. covariance : array-like, shape (n_features, n_features) Robust covariance of the features. support : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the robust location and covariance estimates of the data set. """ random_state = check_random_state(random_state) X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) warnings.warn("Only one sample available. " "You may want to reshape your data array") n_samples, n_features = X.shape # minimum breakdown value if support_fraction is None: n_support = int(np.ceil(0.5 * (n_samples + n_features + 1))) else: n_support = int(support_fraction * n_samples) # 1-dimensional case quick computation # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust # Regression and Outlier Detection, John Wiley & Sons, chapter 4) if n_features == 1: if n_support < n_samples: # find the sample shortest halves X_sorted = np.sort(np.ravel(X)) diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)] halves_start = np.where(diff == np.min(diff))[0] # take the middle points' mean to get the robust location estimate location = 0.5 * (X_sorted[n_support + halves_start] + X_sorted[halves_start]).mean() support = np.zeros(n_samples, dtype=bool) X_centered = X - location support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True covariance = np.asarray([[np.var(X[support])]]) location = np.array([location]) # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) else: support = np.ones(n_samples, dtype=bool) covariance = np.asarray([[np.var(X)]]) location = np.asarray([np.mean(X)]) X_centered = X - location # get precision matrix in an optimized way precision = pinvh(covariance) dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1) # Starting FastMCD algorithm for p-dimensional case if (n_samples > 500) and (n_features > 1): # 1. Find candidate supports on subsets # a. split the set in subsets of size ~ 300 n_subsets = n_samples // 300 n_samples_subsets = n_samples // n_subsets samples_shuffle = random_state.permutation(n_samples) h_subset = int(np.ceil(n_samples_subsets * (n_support / float(n_samples)))) # b. perform a total of 500 trials n_trials_tot = 500 # c. select 10 best (location, covariance) for each subset n_best_sub = 10 n_trials = max(10, n_trials_tot // n_subsets) n_best_tot = n_subsets * n_best_sub all_best_locations = np.zeros((n_best_tot, n_features)) try: all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) except MemoryError: # The above is too big. Let's try with something much small # (and less optimal) all_best_covariances = np.zeros((n_best_tot, n_features, n_features)) n_best_tot = 10 n_best_sub = 2 for i in range(n_subsets): low_bound = i * n_samples_subsets high_bound = low_bound + n_samples_subsets current_subset = X[samples_shuffle[low_bound:high_bound]] best_locations_sub, best_covariances_sub, _, _ = select_candidates( current_subset, h_subset, n_trials, select=n_best_sub, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub) all_best_locations[subset_slice] = best_locations_sub all_best_covariances[subset_slice] = best_covariances_sub # 2. Pool the candidate supports into a merged set # (possibly the full dataset) n_samples_merged = min(1500, n_samples) h_merged = int(np.ceil(n_samples_merged * (n_support / float(n_samples)))) if n_samples > 1500: n_best_merged = 10 else: n_best_merged = 1 # find the best couples (location, covariance) on the merged set selection = random_state.permutation(n_samples)[:n_samples_merged] locations_merged, covariances_merged, supports_merged, d = \ select_candidates( X[selection], h_merged, n_trials=(all_best_locations, all_best_covariances), select=n_best_merged, cov_computation_method=cov_computation_method, random_state=random_state) # 3. Finally get the overall best (locations, covariance) couple if n_samples < 1500: # directly get the best couple (location, covariance) location = locations_merged[0] covariance = covariances_merged[0] support = np.zeros(n_samples, dtype=bool) dist = np.zeros(n_samples) support[selection] = supports_merged[0] dist[selection] = d[0] else: # select the best couple on the full dataset locations_full, covariances_full, supports_full, d = \ select_candidates( X, n_support, n_trials=(locations_merged, covariances_merged), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] elif n_features > 1: # 1. Find the 10 best couples (location, covariance) # considering two iterations n_trials = 30 n_best = 10 locations_best, covariances_best, _, _ = select_candidates( X, n_support, n_trials=n_trials, select=n_best, n_iter=2, cov_computation_method=cov_computation_method, random_state=random_state) # 2. Select the best couple on the full dataset amongst the 10 locations_full, covariances_full, supports_full, d = select_candidates( X, n_support, n_trials=(locations_best, covariances_best), select=1, cov_computation_method=cov_computation_method, random_state=random_state) location = locations_full[0] covariance = covariances_full[0] support = supports_full[0] dist = d[0] return location, covariance, support, dist class MinCovDet(EmpiricalCovariance): """Minimum Covariance Determinant (MCD): robust estimator of covariance. The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should consider projection pursuit methods to deal with multi-modal datasets. Read more in the :ref:`User Guide <robust_covariance>`. Parameters ---------- store_precision : bool Specify if the estimated precision is stored. assume_centered : Boolean If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction : float, 0 < support_fraction < 1 The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state : integer or numpy.RandomState, optional The random generator used. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- raw_location_ : array-like, shape (n_features,) The raw robust estimated location before correction and re-weighting. raw_covariance_ : array-like, shape (n_features, n_features) The raw robust estimated covariance before correction and re-weighting. raw_support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the raw robust estimates of location and shape, before correction and re-weighting. location_ : array-like, shape (n_features,) Estimated robust location covariance_ : array-like, shape (n_features, n_features) Estimated robust covariance matrix precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. (stored only if store_precision is True) support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the robust estimates of location and shape. dist_ : array-like, shape (n_samples,) Mahalanobis distances of the training set (on which `fit` is called) observations. References ---------- .. [Rouseeuw1984] `P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.` .. [Rouseeuw1999] `A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS` .. [Butler1993] `R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400` """ _nonrobust_covariance = staticmethod(empirical_covariance) def __init__(self, store_precision=True, assume_centered=False, support_fraction=None, random_state=None): self.store_precision = store_precision self.assume_centered = assume_centered self.support_fraction = support_fraction self.random_state = random_state def fit(self, X, y=None): """Fits a Minimum Covariance Determinant with the FastMCD algorithm. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : not used, present for API consistence purpose. Returns ------- self : object Returns self. """ X = check_array(X) random_state = check_random_state(self.random_state) n_samples, n_features = X.shape # check that the empirical covariance is full rank if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features: warnings.warn("The covariance matrix associated to your dataset " "is not full rank") # compute and store raw estimates raw_location, raw_covariance, raw_support, raw_dist = fast_mcd( X, support_fraction=self.support_fraction, cov_computation_method=self._nonrobust_covariance, random_state=random_state) if self.assume_centered: raw_location = np.zeros(n_features) raw_covariance = self._nonrobust_covariance(X[raw_support], assume_centered=True) # get precision matrix in an optimized way precision = pinvh(raw_covariance) raw_dist = np.sum(np.dot(X, precision) * X, 1) self.raw_location_ = raw_location self.raw_covariance_ = raw_covariance self.raw_support_ = raw_support self.location_ = raw_location self.support_ = raw_support self.dist_ = raw_dist # obtain consistency at normal models self.correct_covariance(X) # re-weight estimator self.reweight_covariance(X) return self def correct_covariance(self, data): """Apply a correction to raw Minimum Covariance Determinant estimates. Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [Rouseeuw1984]_. Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- covariance_corrected : array-like, shape (n_features, n_features) Corrected robust covariance estimate. """ correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5) covariance_corrected = self.raw_covariance_ * correction self.dist_ /= correction return covariance_corrected def reweight_covariance(self, data): """Re-weight raw Minimum Covariance Determinant estimates. Re-weight observations using Rousseeuw's method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates). [Rouseeuw1984]_ Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates. Returns ------- location_reweighted : array-like, shape (n_features, ) Re-weighted robust location estimate. covariance_reweighted : array-like, shape (n_features, n_features) Re-weighted robust covariance estimate. support_reweighted : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the re-weighted robust location and covariance estimates. """ n_samples, n_features = data.shape mask = self.dist_ < chi2(n_features).isf(0.025) if self.assume_centered: location_reweighted = np.zeros(n_features) else: location_reweighted = data[mask].mean(0) covariance_reweighted = self._nonrobust_covariance( data[mask], assume_centered=self.assume_centered) support_reweighted = np.zeros(n_samples, dtype=bool) support_reweighted[mask] = True self._set_covariance(covariance_reweighted) self.location_ = location_reweighted self.support_ = support_reweighted X_centered = data - self.location_ self.dist_ = np.sum( np.dot(X_centered, self.get_precision()) * X_centered, 1) return location_reweighted, covariance_reweighted, support_reweighted
bsd-3-clause
vene/marseille
marseille/struct_models.py
1
24113
""" Pystruct-compatible models. """ # Author: Vlad Niculae <[email protected]> # License: BSD 3-clause # AD3 is (c) Andre F. T. Martins, LGPLv3.0: http://www.cs.cmu.edu/~ark/AD3/ import warnings import numpy as np from sklearn.utils import compute_class_weight from sklearn.utils.extmath import safe_sparse_dot from sklearn.metrics import f1_score from sklearn.preprocessing import LabelEncoder, label_binarize from pystruct.models import StructuredModel from marseille.inference import loss_augment_unaries, CDCP_ILLEGAL_LINKS from marseille.argdoc import DocLabel from marseille.custom_logging import logging from itertools import permutations from ad3 import factor_graph as fg def _binary_2d(y): if y.shape[1] == 1: y = np.column_stack([1 - y, y]) return y def arg_f1_scores(Y_true, Y_pred, **kwargs): macro = [] micro_true = [] micro_pred = [] for y_true, y_pred in zip(Y_true, Y_pred): macro.append(f1_score(y_true, y_pred, **kwargs)) micro_true.extend(y_true) micro_pred.extend(y_pred) return np.mean(macro), f1_score(micro_true, micro_pred, **kwargs) class BaseArgumentMixin(object): def initialize_labels(self, Y): y_nodes_flat = [y_val for y in Y for y_val in y.nodes] y_links_flat = [y_val for y in Y for y_val in y.links] self.prop_encoder_ = LabelEncoder().fit(y_nodes_flat) self.link_encoder_ = LabelEncoder().fit(y_links_flat) self.n_prop_states = len(self.prop_encoder_.classes_) self.n_link_states = len(self.link_encoder_.classes_) self.prop_cw_ = np.ones_like(self.prop_encoder_.classes_, dtype=np.double) self.link_cw_ = compute_class_weight(self.class_weight, self.link_encoder_.classes_, y_links_flat) self.link_cw_ /= self.link_cw_.min() logging.info('Setting node class weights {}'.format(", ".join( "{}: {}".format(lbl, cw) for lbl, cw in zip( self.prop_encoder_.classes_, self.prop_cw_)))) logging.info('Setting link class weights {}'.format(", ".join( "{}: {}".format(lbl, cw) for lbl, cw in zip( self.link_encoder_.classes_, self.link_cw_)))) def _round(self, prop_marg, link_marg, prop_unary=None, link_unary=None, inverse_transform=True): # ensure ties are broken according to unary scores if prop_unary is not None: prop_unary = prop_unary.copy() prop_unary -= np.min(prop_unary) prop_unary /= np.max(prop_unary) * np.max(prop_marg) prop_marg[prop_marg > 1e-9] += prop_unary[prop_marg > 1e-9] if link_unary is not None: link_unary = link_unary.copy() link_unary -= np.min(link_unary) link_unary /= np.max(link_unary) * np.max(link_marg) link_marg[link_marg > 1e-9] += link_unary[link_marg > 1e-9] y_hat_props = np.argmax(prop_marg, axis=1) y_hat_links = np.argmax(link_marg, axis=1) if inverse_transform: y_hat_props = self.prop_encoder_.inverse_transform(y_hat_props) y_hat_links = self.link_encoder_.inverse_transform(y_hat_links) return DocLabel(y_hat_props, y_hat_links) def loss(self, y, y_hat): if not isinstance(y_hat, DocLabel): return self.continuous_loss(y, y_hat) y_nodes = self.prop_encoder_.transform(y.nodes) y_links = self.link_encoder_.transform(y.links) node_loss = np.sum(self.prop_cw_[y_nodes] * (y.nodes != y_hat.nodes)) link_loss = np.sum(self.link_cw_[y_links] * (y.links != y_hat.links)) return node_loss + link_loss def max_loss(self, y): y_nodes = self.prop_encoder_.transform(y.nodes) y_links = self.link_encoder_.transform(y.links) return np.sum(self.prop_cw_[y_nodes]) + np.sum(self.link_cw_[y_links]) def continuous_loss(self, y, y_hat): if isinstance(y_hat, DocLabel): raise ValueError("continuous loss on discrete input") if isinstance(y_hat[0], tuple): y_hat = y_hat[0] prop_marg, link_marg = y_hat y_nodes = self.prop_encoder_.transform(y.nodes) y_links = self.link_encoder_.transform(y.links) prop_ix = np.indices(y.nodes.shape) link_ix = np.indices(y.links.shape) # relies on prop_marg and link_marg summing to 1 row-wise prop_loss = np.sum(self.prop_cw_[y_nodes] * (1 - prop_marg[prop_ix, y_nodes])) link_loss = np.sum(self.link_cw_[y_links] * (1 - link_marg[link_ix, y_links])) loss = prop_loss + link_loss return loss def _marg_rounded(self, x, y): y_node = y.nodes y_link = y.links Y_node = label_binarize(y_node, self.prop_encoder_.classes_) Y_link = label_binarize(y_link, self.link_encoder_.classes_) # XXX can this be avoided? Y_node, Y_link = map(_binary_2d, (Y_node, Y_link)) src_type = Y_node[x.link_to_prop[:, 0]] trg_type = Y_node[x.link_to_prop[:, 1]] if self.compat_features: pw = np.einsum('...j,...k,...l->...jkl', src_type, trg_type, Y_link) compat = np.tensordot(x.X_compat.T, pw, axes=[1, 0]) else: # equivalent to compat_features == np.ones(n_links) compat = np.einsum('ij,ik,il->jkl', src_type, trg_type, Y_link) second_order = [] if self.coparents_ or self.grandparents_ or self.siblings_: link = {(a, b): k for k, (a, b) in enumerate(x.link_to_prop)} if self.coparents_: second_order.extend(y_link[link[a, b]] & y_link[link[c, b]] for a, b, c in x.second_order) if self.grandparents_: second_order.extend(y_link[link[a, b]] & y_link[link[b, c]] for a, b, c in x.second_order) if self.siblings_: second_order.extend(y_link[link[b, a]] & y_link[link[b, c]] for a, b, c in x.second_order) second_order = np.array(second_order) return Y_node, Y_link, compat, second_order def _marg_fractional(self, x, y): (prop_marg, link_marg), (compat_marg, second_order_marg) = y if self.compat_features: compat_marg = np.tensordot(x.X_compat.T, compat_marg, axes=[1, 0]) else: compat_marg = compat_marg.sum(axis=0) return prop_marg, link_marg, compat_marg, second_order_marg def _inference(self, x, potentials, exact=False, relaxed=True, return_energy=False, constraints=None, eta=0.1, adapt=True, max_iter=5000, verbose=False): (prop_potentials, link_potentials, compat_potentials, coparent_potentials, grandparent_potentials, sibling_potentials) = potentials n_props, n_prop_classes = prop_potentials.shape n_links, n_link_classes = link_potentials.shape g = fg.PFactorGraph() g.set_verbosity(verbose) prop_vars = [g.create_multi_variable(n_prop_classes) for _ in range(n_props)] link_vars = [g.create_multi_variable(n_link_classes) for _ in range(n_links)] for var, scores in zip(prop_vars, prop_potentials): for state, score in enumerate(scores): var.set_log_potential(state, score) for var, scores in zip(link_vars, link_potentials): for state, score in enumerate(scores): var.set_log_potential(state, score) # compatibility trigram factors compat_factors = [] link_vars_dict = {} link_on, link_off = self.link_encoder_.transform([True, False]) # account for compat features if self.compat_features: assert compat_potentials.shape[0] == n_links compats = compat_potentials else: compats = (compat_potentials for _ in range(n_links)) for (src, trg), link_v, compat in zip(x.link_to_prop, link_vars, compats): src_v = prop_vars[src] trg_v = prop_vars[trg] compat_factors.append(g.create_factor_dense([src_v, trg_v, link_v], compat.ravel())) # keep track of binary link variables, for constraints. # we need .get_state() to get the underlaying PBinaryVariable link_vars_dict[src, trg] = link_v.get_state(link_on) # second-order factors coparent_factors = [] grandparent_factors = [] sibling_factors = [] for score, (a, b, c) in zip(coparent_potentials, x.second_order): # a -> b <- c vars = [link_vars_dict[a, b], link_vars_dict[c, b]] coparent_factors.append(g.create_factor_pair(vars, score)) for score, (a, b, c) in zip(grandparent_potentials, x.second_order): # a -> b -> c vars = [link_vars_dict[a, b], link_vars_dict[b, c]] grandparent_factors.append(g.create_factor_pair(vars, score)) for score, (a, b, c) in zip(sibling_potentials, x.second_order): # a <- b -> c vars = [link_vars_dict[b, a], link_vars_dict[b, c]] sibling_factors.append(g.create_factor_pair(vars, score)) # domain-specific constraints if constraints and 'cdcp' in constraints: # antisymmetry: if a -> b, then b cannot -> a for src in range(n_props): for trg in range(src): fwd_link_v = link_vars_dict[src, trg] rev_link_v = link_vars_dict[trg, src] g.create_factor_logic('ATMOSTONE', [fwd_link_v, rev_link_v], [False, False]) # transitivity. # forall a != b != c: a->b and b->c imply a->c for a, b, c in permutations(range(n_props), 3): ab_link_v = link_vars_dict[a, b] bc_link_v = link_vars_dict[b, c] ac_link_v = link_vars_dict[a, c] g.create_factor_logic('IMPLY', [ab_link_v, bc_link_v, ac_link_v], [False, False, False]) # standard model: if 'strict' in constraints: for src, trg in x.link_to_prop: src_v = prop_vars[src] trg_v = prop_vars[trg] for types in CDCP_ILLEGAL_LINKS: src_ix, trg_ix = self.prop_encoder_.transform(types) g.create_factor_logic('IMPLY', [src_v.get_state(src_ix), trg_v.get_state(trg_ix), link_vars_dict[src, trg]], [False, False, True]) elif constraints and 'ukp' in constraints: # Tree constraints using AD3 MST factor for each paragraph. # First, identify paragraphs prop_para = np.array(x.prop_para) link_para = prop_para[x.link_to_prop[:, 0]] tree_factors = [] for para_ix in np.unique(link_para): props = np.where(prop_para == para_ix)[0] offset = props.min() para_vars = [] para_arcs = [] # call them arcs, semantics differ from links # add a new head node pointing to every possible variable for relative_ix, prop_ix in enumerate(props, 1): para_vars.append(g.create_binary_variable()) para_arcs.append((0, relative_ix)) # add an MST arc for each link for src, trg in x.link_to_prop[link_para == para_ix]: relative_src = src - offset + 1 relative_trg = trg - offset + 1 para_vars.append(link_vars_dict[src, trg]) # MST arcs have opposite direction from argument links! # because each prop can have multiple supports but not # the other way around para_arcs.append((relative_trg, relative_src)) tree = fg.PFactorTree() g.declare_factor(tree, para_vars, True) tree.initialize(1 + len(props), para_arcs) tree_factors.append(tree) if 'strict' in constraints: # further domain-specific constraints mclaim_ix, claim_ix, premise_ix = self.prop_encoder_.transform( ['MajorClaim', 'Claim', 'Premise']) # a -> b implies a = 'premise' for (src, trg), link_v in zip(x.link_to_prop, link_vars): src_v = prop_vars[src] g.create_factor_logic('IMPLY', [link_v.get_state(link_on), src_v.get_state(premise_ix)], [False, False]) g.fix_multi_variables_without_factors() g.set_eta_ad3(eta) g.adapt_eta_ad3(adapt) g.set_max_iterations_ad3(max_iter) if exact: val, posteriors, additionals, status = g.solve_exact_map_ad3() else: val, posteriors, additionals, status = g.solve_lp_map_ad3() status = ["integer", "fractional", "infeasible", "not solved"][status] prop_marg = posteriors[:n_props * n_prop_classes] prop_marg = np.array(prop_marg).reshape(n_props, -1) link_marg = posteriors[n_props * n_prop_classes:] # remaining posteriors are for artificial root nodes for MST factors link_marg = link_marg[:n_links * n_link_classes] link_marg = np.array(link_marg).reshape(n_links, -1) n_compat = n_links * n_link_classes * n_prop_classes ** 2 compat_marg = additionals[:n_compat] compat_marg = np.array(compat_marg).reshape((n_links, n_prop_classes, n_prop_classes, n_link_classes)) second_ordermarg = np.array(additionals[n_compat:]) posteriors = (prop_marg, link_marg) additionals = (compat_marg, second_ordermarg) if relaxed: y_hat = posteriors, additionals else: y_hat = self._round(prop_marg, link_marg, prop_potentials, link_potentials) if return_energy: return y_hat, status, -val else: return y_hat, status def _score(self, Y_true, Y_pred): acc = sum(1 for y_true, y_pred in zip(Y_true, Y_pred) if np.all(y_true.links == y_pred.links) and np.all(y_true.nodes == y_pred.nodes)) acc /= len(Y_true) with warnings.catch_warnings(): warnings.simplefilter('ignore') link_macro, link_micro = arg_f1_scores( (y.links for y in Y_true), (y.links for y in Y_pred), average='binary', pos_label=True, labels=self.link_encoder_.classes_ ) node_macro, node_micro = arg_f1_scores( (y.nodes for y in Y_true), (y.nodes for y in Y_pred), average='macro', labels=self.prop_encoder_.classes_ ) return link_macro, link_micro, node_macro, node_micro, acc class ArgumentGraphCRF(BaseArgumentMixin, StructuredModel): def __init__(self, class_weight=None, link_node_weight_ratio=1, exact=False, constraints=None, compat_features=False, coparents=False, grandparents=False, siblings=False): self.class_weight = class_weight self.link_node_weight_ratio = link_node_weight_ratio self.exact = exact self.constraints = constraints self.compat_features = compat_features self.coparents = coparents self.grandparents = grandparents self.siblings = siblings self.n_second_order_factors_ = coparents + grandparents + siblings self.n_prop_states = None self.n_link_states = None self.n_prop_features = None self.n_link_features = None self.n_second_order_features_ = None self.n_compat_features_ = None self.inference_calls = 0 super(ArgumentGraphCRF, self).__init__() def initialize(self, X, Y): # each x in X is a vectorized doc exposing sp.csr x.X_prop, x.X_link, # and maybe x.X_compat and x.X_sec_ord # each y in Y exposes lists y.nodes, y.links x = X[0] self.n_prop_features = x.X_prop.shape[1] self.n_link_features = x.X_link.shape[1] if self.compat_features: self.n_compat_features_ = x.X_compat.shape[1] if self.n_second_order_factors_: self.n_second_order_features_ = x.X_sec_ord.shape[1] else: self.n_second_order_features_ = 0 self.initialize_labels(Y) self._set_size_joint_feature() self.coparents_ = self.coparents self.grandparents_ = self.grandparents self.siblings_ = self.siblings def _set_size_joint_feature(self): # assumes no second order compat_size = self.n_prop_states ** 2 * self.n_link_states if self.compat_features: compat_size *= self.n_compat_features_ total_n_second_order = (self.n_second_order_features_ * self.n_second_order_factors_) self.size_joint_feature = (self.n_prop_features * self.n_prop_states + self.n_link_features * self.n_link_states + compat_size + total_n_second_order) logging.info("Joint feature size: {}".format(self.size_joint_feature)) def joint_feature(self, x, y): if isinstance(y, DocLabel): Y_prop, Y_link, compat, second_order = self._marg_rounded(x, y) else: Y_prop, Y_link, compat, second_order = self._marg_fractional(x, y) prop_acc = safe_sparse_dot(Y_prop.T, x.X_prop) # node_cls * node_feats link_acc = safe_sparse_dot(Y_link.T, x.X_link) # link_cls * link_feats f_sec_ord = [] if len(second_order): second_order = second_order.reshape(-1, len(x.second_order)) if self.coparents: f_sec_ord.append(safe_sparse_dot(second_order[0], x.X_sec_ord)) second_order = second_order[1:] if self.grandparents: f_sec_ord.append(safe_sparse_dot(second_order[0], x.X_sec_ord)) second_order = second_order[1:] if self.siblings: f_sec_ord.append(safe_sparse_dot(second_order[0], x.X_sec_ord)) elif self.n_second_order_factors_: # document has no second order factors so the joint feature # must be filled with zeros manually f_sec_ord = [np.zeros(self.n_second_order_features_) for _ in range(self.n_second_order_factors_)] jf = np.concatenate([prop_acc.ravel(), link_acc.ravel(), compat.ravel()] + f_sec_ord) return jf # basically reversing the joint feature def _get_potentials(self, x, w): # check sizes? n_node_coefs = self.n_prop_states * self.n_prop_features n_link_coefs = self.n_link_states * self.n_link_features n_compat_coefs = self.n_prop_states ** 2 * self.n_link_states if self.compat_features: n_compat_coefs *= self.n_compat_features_ assert w.size == (n_node_coefs + n_link_coefs + n_compat_coefs + self.n_second_order_features_ * self.n_second_order_factors_) w_node = w[:n_node_coefs] w_node = w_node.reshape(self.n_prop_states, self.n_prop_features) w_link = w[n_node_coefs:n_node_coefs + n_link_coefs] w_link = w_link.reshape(self.n_link_states, self.n_link_features) # for readability, consume w. This is not inplace, don't worry. w = w[n_node_coefs + n_link_coefs:] w_compat = w[:n_compat_coefs] if self.compat_features: w_compat = w_compat.reshape((self.n_compat_features_, -1)) w_compat = np.dot(x.X_compat, w_compat) compat_potentials = w_compat.reshape((-1, self.n_prop_states, self.n_prop_states, self.n_link_states)) else: compat_potentials = w_compat.reshape(self.n_prop_states, self.n_prop_states, self.n_link_states) w = w[n_compat_coefs:] coparent_potentials = grandparent_potentials = sibling_potentials = [] if self.coparents: w_coparent = w[:self.n_second_order_features_] coparent_potentials = safe_sparse_dot(x.X_sec_ord, w_coparent) w = w[self.n_second_order_features_:] if self.grandparents: w_grandparent = w[:self.n_second_order_features_] grandparent_potentials = safe_sparse_dot(x.X_sec_ord, w_grandparent) w = w[self.n_second_order_features_:] if self.siblings: w_sibling = w[:self.n_second_order_features_] sibling_potentials = safe_sparse_dot(x.X_sec_ord, w_sibling) prop_potentials = safe_sparse_dot(x.X_prop, w_node.T) link_potentials = safe_sparse_dot(x.X_link, w_link.T) return (prop_potentials, link_potentials, compat_potentials, coparent_potentials, grandparent_potentials, sibling_potentials) def inference(self, x, w, relaxed=False, return_energy=False): self.inference_calls += 1 potentials = self._get_potentials(x, w) out = self._inference(x, potentials, exact=self.exact, relaxed=relaxed, return_energy=return_energy, constraints=self.constraints) if return_energy: return out[0], out[-1] else: return out[0] def loss_augmented_inference(self, x, y, w, relaxed=None): self.inference_calls += 1 potentials = self._get_potentials(x, w) (prop_potentials, link_potentials, compat_potentials, coparent_potentials, grandparent_potentials, sibling_potentials) = potentials y_prop = self.prop_encoder_.transform(y.nodes) y_link = self.link_encoder_.transform(y.links) loss_augment_unaries(prop_potentials, y_prop, self.prop_cw_) loss_augment_unaries(link_potentials, y_link, self.link_cw_) potentials = (prop_potentials, link_potentials, compat_potentials, coparent_potentials, grandparent_potentials, sibling_potentials) out = self._inference(x, potentials, exact=self.exact, relaxed=relaxed, constraints=self.constraints) return out[0]
bsd-3-clause
heli522/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
181
15664
from __future__ import division from collections import defaultdict from functools import partial import numpy as np import scipy.sparse as sp from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y)) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
tawsifkhan/scikit-learn
sklearn/utils/tests/test_validation.py
133
18339
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=100, dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, []) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = check_array(42, ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
henrykironde/scikit-learn
sklearn/cluster/tests/test_bicluster.py
226
9457
"""Testing for Spectral Biclustering methods""" import numpy as np from scipy.sparse import csr_matrix, issparse from sklearn.grid_search import ParameterGrid from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn.base import BaseEstimator, BiclusterMixin from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.cluster.bicluster import _scale_normalize from sklearn.cluster.bicluster import _bistochastic_normalize from sklearn.cluster.bicluster import _log_normalize from sklearn.metrics import consensus_score from sklearn.datasets import make_biclusters, make_checkerboard class MockBiclustering(BaseEstimator, BiclusterMixin): # Mock object for testing get_submatrix. def __init__(self): pass def get_indices(self, i): # Overridden to reproduce old get_submatrix test. return (np.where([True, True, False, False, True])[0], np.where([False, False, True, True])[0]) def test_get_submatrix(): data = np.arange(20).reshape(5, 4) model = MockBiclustering() for X in (data, csr_matrix(data), data.tolist()): submatrix = model.get_submatrix(0, X) if issparse(submatrix): submatrix = submatrix.toarray() assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) submatrix[:] = -1 if issparse(X): X = X.toarray() assert_true(np.all(X != -1)) def _test_shape_indices(model): # Test get_shape and get_indices on fitted model. for i in range(model.n_clusters): m, n = model.get_shape(i) i_ind, j_ind = model.get_indices(i) assert_equal(len(i_ind), m) assert_equal(len(j_ind), n) def test_spectral_coclustering(): # Test Dhillon's Spectral CoClustering on a simple problem. param_grid = {'svd_method': ['randomized', 'arpack'], 'n_svd_vecs': [None, 20], 'mini_batch': [False, True], 'init': ['k-means++'], 'n_init': [10], 'n_jobs': [1]} random_state = 0 S, rows, cols = make_biclusters((30, 30), 3, noise=0.5, random_state=random_state) S -= S.min() # needs to be nonnegative before making it sparse S = np.where(S < 1, 0, S) # threshold some values for mat in (S, csr_matrix(S)): for kwargs in ParameterGrid(param_grid): model = SpectralCoclustering(n_clusters=3, random_state=random_state, **kwargs) model.fit(mat) assert_equal(model.rows_.shape, (3, 30)) assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def test_spectral_biclustering(): # Test Kluger methods on a checkerboard dataset. S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5, random_state=0) non_default_params = {'method': ['scale', 'log'], 'svd_method': ['arpack'], 'n_svd_vecs': [20], 'mini_batch': [True]} for mat in (S, csr_matrix(S)): for param_name, param_values in non_default_params.items(): for param_value in param_values: model = SpectralBiclustering( n_clusters=3, n_init=3, init='k-means++', random_state=0, ) model.set_params(**dict([(param_name, param_value)])) if issparse(mat) and model.get_params().get('method') == 'log': # cannot take log of sparse matrix assert_raises(ValueError, model.fit, mat) continue else: model.fit(mat) assert_equal(model.rows_.shape, (9, 30)) assert_equal(model.columns_.shape, (9, 30)) assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def _do_scale_test(scaled): """Check that rows sum to one constant, and columns to another.""" row_sum = scaled.sum(axis=1) col_sum = scaled.sum(axis=0) if issparse(scaled): row_sum = np.asarray(row_sum).squeeze() col_sum = np.asarray(col_sum).squeeze() assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) def _do_bistochastic_test(scaled): """Check that rows and columns sum to the same constant.""" _do_scale_test(scaled) assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) def test_scale_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled, _, _ = _scale_normalize(mat) _do_scale_test(scaled) if issparse(mat): assert issparse(scaled) def test_bistochastic_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled = _bistochastic_normalize(mat) _do_bistochastic_test(scaled) if issparse(mat): assert issparse(scaled) def test_log_normalize(): # adding any constant to a log-scaled matrix should make it # bistochastic generator = np.random.RandomState(0) mat = generator.rand(100, 100) scaled = _log_normalize(mat) + 1 _do_bistochastic_test(scaled) def test_fit_best_piecewise(): model = SpectralBiclustering(random_state=0) vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) assert_array_equal(best, vectors[:2]) def test_project_and_cluster(): model = SpectralBiclustering(random_state=0) data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) vectors = np.array([[1, 0], [0, 1], [0, 0]]) for mat in (data, csr_matrix(data)): labels = model._project_and_cluster(data, vectors, n_clusters=2) assert_array_equal(labels, [0, 0, 1, 1]) def test_perfect_checkerboard(): raise SkipTest("This test is failing on the buildbot, but cannot" " reproduce. Temporarily disabling it until it can be" " reproduced and fixed.") model = SpectralBiclustering(3, svd_method="arpack", random_state=0) S, rows, cols = make_checkerboard((30, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((40, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((30, 40), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) def test_errors(): data = np.arange(25).reshape((5, 5)) model = SpectralBiclustering(n_clusters=(3, 3, 3)) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters='abc') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters=(3, 'abc')) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(svd_method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_best=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=3, n_best=4) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering() data = np.arange(27).reshape((3, 3, 3)) assert_raises(ValueError, model.fit, data)
bsd-3-clause
paalge/scikit-image
doc/examples/transform/plot_radon_transform.py
3
8550
""" =============== Radon transform =============== In computed tomography, the tomography reconstruction problem is to obtain a tomographic slice image from a set of projections [1]_. A projection is formed by drawing a set of parallel rays through the 2D object of interest, assigning the integral of the object's contrast along each ray to a single pixel in the projection. A single projection of a 2D object is one dimensional. To enable computed tomography reconstruction of the object, several projections must be acquired, each of them corresponding to a different angle between the rays with respect to the object. A collection of projections at several angles is called a sinogram, which is a linear transform of the original image. The inverse Radon transform is used in computed tomography to reconstruct a 2D image from the measured projections (the sinogram). A practical, exact implementation of the inverse Radon transform does not exist, but there are several good approximate algorithms available. As the inverse Radon transform reconstructs the object from a set of projections, the (forward) Radon transform can be used to simulate a tomography experiment. This script performs the Radon transform to simulate a tomography experiment and reconstructs the input image based on the resulting sinogram formed by the simulation. Two methods for performing the inverse Radon transform and reconstructing the original image are compared: The Filtered Back Projection (FBP) and the Simultaneous Algebraic Reconstruction Technique (SART). For further information on tomographic reconstruction, see .. [1] AC Kak, M Slaney, "Principles of Computerized Tomographic Imaging", IEEE Press 1988. http://www.slaney.org/pct/pct-toc.html .. [2] Wikipedia, Radon transform, http://en.wikipedia.org/wiki/Radon_transform#Relationship_with_the_Fourier_transform .. [3] S Kaczmarz, "Angenaeherte Aufloesung von Systemen linearer Gleichungen", Bulletin International de l'Academie Polonaise des Sciences et des Lettres, 35 pp 355--357 (1937) .. [4] AH Andersen, AC Kak, "Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm", Ultrasonic Imaging 6 pp 81--94 (1984) The forward transform ===================== As our original image, we will use the Shepp-Logan phantom. When calculating the Radon transform, we need to decide how many projection angles we wish to use. As a rule of thumb, the number of projections should be about the same as the number of pixels there are across the object (to see why this is so, consider how many unknown pixel values must be determined in the reconstruction process and compare this to the number of measurements provided by the projections), and we follow that rule here. Below is the original image and its Radon transform, often known as its *sinogram*: """ from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt from skimage.io import imread from skimage import data_dir from skimage.transform import radon, rescale image = imread(data_dir + "/phantom.png", as_grey=True) image = rescale(image, scale=0.4) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4.5)) ax1.set_title("Original") ax1.imshow(image, cmap=plt.cm.Greys_r) theta = np.linspace(0., 180., max(image.shape), endpoint=False) sinogram = radon(image, theta=theta, circle=True) ax2.set_title("Radon transform\n(Sinogram)") ax2.set_xlabel("Projection angle (deg)") ax2.set_ylabel("Projection position (pixels)") ax2.imshow(sinogram, cmap=plt.cm.Greys_r, extent=(0, 180, 0, sinogram.shape[0]), aspect='auto') fig.tight_layout() plt.show() ###################################################################### # # Reconstruction with the Filtered Back Projection (FBP) # ====================================================== # # The mathematical foundation of the filtered back projection is the Fourier # slice theorem [2]_. It uses Fourier transform of the projection and # interpolation in Fourier space to obtain the 2D Fourier transform of the # image, which is then inverted to form the reconstructed image. The filtered # back projection is among the fastest methods of performing the inverse # Radon transform. The only tunable parameter for the FBP is the filter, # which is applied to the Fourier transformed projections. It may be used to # suppress high frequency noise in the reconstruction. ``skimage`` provides a # few different options for the filter. from skimage.transform import iradon reconstruction_fbp = iradon(sinogram, theta=theta, circle=True) error = reconstruction_fbp - image print('FBP rms reconstruction error: %.3g' % np.sqrt(np.mean(error**2))) imkwargs = dict(vmin=-0.2, vmax=0.2) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4.5), sharex=True, sharey=True, subplot_kw={'adjustable': 'box-forced'}) ax1.set_title("Reconstruction\nFiltered back projection") ax1.imshow(reconstruction_fbp, cmap=plt.cm.Greys_r) ax2.set_title("Reconstruction error\nFiltered back projection") ax2.imshow(reconstruction_fbp - image, cmap=plt.cm.Greys_r, **imkwargs) plt.show() ###################################################################### # # Reconstruction with the Simultaneous Algebraic Reconstruction Technique # ======================================================================= # # Algebraic reconstruction techniques for tomography are based on a # straightforward idea: for a pixelated image the value of a single ray in a # particular projection is simply a sum of all the pixels the ray passes # through on its way through the object. This is a way of expressing the # forward Radon transform. The inverse Radon transform can then be formulated # as a (large) set of linear equations. As each ray passes through a small # fraction of the pixels in the image, this set of equations is sparse, # allowing iterative solvers for sparse linear systems to tackle the system # of equations. One iterative method has been particularly popular, namely # Kaczmarz' method [3]_, which has the property that the solution will # approach a least-squares solution of the equation set. # # The combination of the formulation of the reconstruction problem as a set # of linear equations and an iterative solver makes algebraic techniques # relatively flexible, hence some forms of prior knowledge can be # incorporated with relative ease. # # ``skimage`` provides one of the more popular variations of the algebraic # reconstruction techniques: the Simultaneous Algebraic Reconstruction # Technique (SART) [1]_ [4]_. It uses Kaczmarz' method [3]_ as the iterative # solver. A good reconstruction is normally obtained in a single iteration, # making the method computationally effective. Running one or more extra # iterations will normally improve the reconstruction of sharp, high # frequency features and reduce the mean squared error at the expense of # increased high frequency noise (the user will need to decide on what number # of iterations is best suited to the problem at hand. The implementation in # ``skimage`` allows prior information of the form of a lower and upper # threshold on the reconstructed values to be supplied to the reconstruction. from skimage.transform import iradon_sart reconstruction_sart = iradon_sart(sinogram, theta=theta) error = reconstruction_sart - image print('SART (1 iteration) rms reconstruction error: %.3g' % np.sqrt(np.mean(error**2))) fig, axes = plt.subplots(2, 2, figsize=(8, 8.5), sharex=True, sharey=True, subplot_kw={'adjustable': 'box-forced'}) ax = axes.ravel() ax[0].set_title("Reconstruction\nSART") ax[0].imshow(reconstruction_sart, cmap=plt.cm.Greys_r) ax[1].set_title("Reconstruction error\nSART") ax[1].imshow(reconstruction_sart - image, cmap=plt.cm.Greys_r, **imkwargs) # Run a second iteration of SART by supplying the reconstruction # from the first iteration as an initial estimate reconstruction_sart2 = iradon_sart(sinogram, theta=theta, image=reconstruction_sart) error = reconstruction_sart2 - image print('SART (2 iterations) rms reconstruction error: %.3g' % np.sqrt(np.mean(error**2))) ax[2].set_title("Reconstruction\nSART, 2 iterations") ax[2].imshow(reconstruction_sart2, cmap=plt.cm.Greys_r) ax[3].set_title("Reconstruction error\nSART, 2 iterations") ax[3].imshow(reconstruction_sart2 - image, cmap=plt.cm.Greys_r, **imkwargs) plt.show()
bsd-3-clause
NUAAXXY/globOpt
evaluation/packages/polarPlot.py
2
8162
from pylab import * import argparse import packages.primitive as primitive import scipy.signal import packages.relationGraph as relgraph import packages.primitive as primitive import mpl_toolkits.axisartist.angle_helper as angle_helper from matplotlib.projections import PolarAxes from matplotlib.transforms import Affine2D from mpl_toolkits.axisartist.grid_helper_curvelinear import GridHelperCurveLinear from mpl_toolkits.axisartist import Subplot from mpl_toolkits.axisartist import SubplotHost, \ ParasiteAxesAuxTrans def generatePolarPlot(anglesInDegrees, filename, N=180): raise NotImplementedError(self.__class__.__name__ + '.generatePolarPlot') class mFormatterDMS(object): deg_mark = "" min_mark = "^{\prime}" sec_mark = "^{\prime\prime}" fmt_d = "$%d"+deg_mark+"$" fmt_ds = r"$%d.\!\!"+deg_mark+"%s$" # %s for signe fmt_d_m = r"$%s%d"+deg_mark+"\,%02d"+min_mark+"$" fmt_d_ms = r"$%s%d"+deg_mark+"\,%02d.\mkern-4mu"+min_mark+"%s$" fmt_d_m_partial = "$%s%d"+deg_mark+"\,%02d"+min_mark+"\," fmt_s_partial = "%02d"+sec_mark+"$" fmt_ss_partial = "%02d.\!\!"+sec_mark+"%s$" def _get_number_fraction(self, factor): ## check for fractional numbers number_fraction = None # check for 60 for threshold in [1, 60, 3600]: if factor <= threshold: break d = factor // threshold int_log_d = int(floor(math.log10(d))) if 10**int_log_d == d and d!=1: number_fraction = int_log_d factor = factor // 10**int_log_d return factor, number_fraction return factor, number_fraction def __call__(self, direction, factor, values): if len(values) == 0: return [] #ss = [[-1, 1][v>0] for v in values] #not py24 compliant values = np.asarray(values) ss = np.where(values>0, 1, -1) sign_map = {(-1, True):"-"} signs = [sign_map.get((s, v!=0), "") for s, v in zip(ss, values)] factor, number_fraction = self._get_number_fraction(factor) values = np.abs(values) if number_fraction is not None: values, frac_part = divmod(values, 10**number_fraction) frac_fmt = "%%0%dd" % (number_fraction,) frac_str = [frac_fmt % (f1,) for f1 in frac_part] if factor == 1: if number_fraction is None: return [self.fmt_d % (s*int(v),) for (s, v) in zip(ss, values)] else: return [self.fmt_ds % (s*int(v), f1) for (s, v, f1) in \ zip(ss, values, frac_str)] elif factor == 60: deg_part, min_part = divmod(values, 60) if number_fraction is None: return [self.fmt_d_m % (s1, d1, m1) \ for s1, d1, m1 in zip(signs, deg_part, min_part)] else: return [self.fmt_d_ms % (s, d1, m1, f1) \ for s, d1, m1, f1 in zip(signs, deg_part, min_part, frac_str)] elif factor == 3600: if ss[-1] == -1: inverse_order = True values = values[::-1] sings = signs[::-1] else: inverse_order = False l_hm_old = "" r = [] deg_part, min_part_ = divmod(values, 3600) min_part, sec_part = divmod(min_part_, 60) if number_fraction is None: sec_str = [self.fmt_s_partial % (s1,) for s1 in sec_part] else: sec_str = [self.fmt_ss_partial % (s1, f1) for s1, f1 in zip(sec_part, frac_str)] for s, d1, m1, s1 in zip(signs, deg_part, min_part, sec_str): l_hm = self.fmt_d_m_partial % (s, d1, m1) if l_hm != l_hm_old: l_hm_old = l_hm l = l_hm + s1 #l_s else: l = "$"+s1 #l_s r.append(l) if inverse_order: return r[::-1] else: return r else: # factor > 3600. return [r"$%s^{\circ}$" % (str(v),) for v in ss*values] fig = plt.figure(1, figsize=(7, 4)) fig.clf() #ax = axes([0.025,0.025,0.95,0.95], polar=True) preferred_angles = [90] best_num = 15 theta = np.arange(0.0, np.pi, np.pi/N) radii = np.zeros(N) for angle in anglesInDegrees: if (angle != -1): radii[int(N/360.*angle)] += 1 """ polar projection, but in a rectangular box. """ # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # polar projection, which involves cycle, and also has limits in # its coordinates, needs a special method to find the extremes # (min, max of the coordinate within the view). # 20, 20 : number of sampling points along x, y direction extreme_finder = angle_helper.ExtremeFinderCycle(20, 20, lon_cycle = 360, lat_cycle = None, lon_minmax = None, lat_minmax = (0, np.inf), ) grid_locator1 = angle_helper.LocatorDMS(3) # Find a grid values appropriate for the coordinate (degree, # minute, second). deg_mark = "^{\circ}" min_mark = "^{\prime}" sec_mark = "^{\prime\prime}" tick_formatter1 = mFormatterDMS() # And also uses an appropriate formatter. Note that,the # acceptable Locator and Formatter class is a bit different than # that of mpl's, and you cannot directly use mpl's Locator and # Formatter here (but may be possible in the future). grid_helper = GridHelperCurveLinear(tr, extreme_finder=extreme_finder, grid_locator1=grid_locator1, tick_formatter1=tick_formatter1 ) #ax1 = axes([0.025,0.025,0.95,0.95], grid_helper=grid_helper) ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) # make ticklabels of right and top axis visible. ax1.axis["right"].major_ticklabels.set_visible(True) ax1.axis["top"].major_ticklabels.set_visible(True) # let right axis shows ticklabels for 1st coordinate (angle) ax1.axis["right"].get_helper().nth_coord_ticks=0 ax1.axis["left"].get_helper().nth_coord_ticks=0 # let bottom axis shows ticklabels for 2nd coordinate (radius) ax1.axis["bottom"].get_helper().nth_coord_ticks=1 ax1.axis["bottom"].major_ticklabels.set_visible(False) fig.add_subplot(ax1) limitvalue=np.max(radii)+1 # A parasite axes with given transform ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal") # note that ax2.transData == tr + ax1.transData # Anthing you draw in ax2 will match the ticks and grids of ax1. ax1.parasites.append(ax2) intp = cbook.simple_linear_interpolation ax2.plot(intp(np.array([0, 180]), 50), intp(np.array([limitvalue, limitvalue]), 50), color='k') ax2.bar (360.*theta/np.pi, radii, 0.01*np.ones(N), color='k', linewidth=3) ax1.set_aspect(1.) ax1.set_xlim(limitvalue, -limitvalue) ax1.set_ylim(0, limitvalue) ax1.grid(True) savefig(filename[:-4]+'.svg', format="svg") #show()
apache-2.0
frank-tancf/scikit-learn
sklearn/semi_supervised/label_propagation.py
14
15965
# coding=utf8 """ Label propagation in the context of this module refers to a set of semisupervised classification algorithms. In the high level, these algorithms work by forming a fully-connected graph between all points given and solving for the steady-state distribution of labels at each point. These algorithms perform very well in practice. The cost of running can be very expensive, at approximately O(N^3) where N is the number of (labeled and unlabeled) points. The theory (why they perform so well) is motivated by intuitions from random walk algorithms and geometric relationships in the data. For more information see the references below. Model Features -------------- Label clamping: The algorithm tries to learn distributions of labels over the dataset. In the "Hard Clamp" mode, the true ground labels are never allowed to change. They are clamped into position. In the "Soft Clamp" mode, they are allowed some wiggle room, but some alpha of their original value will always be retained. Hard clamp is the same as soft clamping with alpha set to 1. Kernel: A function which projects a vector into some higher dimensional space. This implementation supprots RBF and KNN kernels. Using the RBF kernel generates a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of size O(k*N) which will run much faster. See the documentation for SVMs for more info on kernels. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) Notes ----- References: [1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216 [2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005 """ # Authors: Clay Woolam <[email protected]> # Licence: BSD from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from ..base import BaseEstimator, ClassifierMixin from ..externals import six from ..metrics.pairwise import rbf_kernel from ..neighbors.unsupervised import NearestNeighbors from ..utils.extmath import safe_sparse_dot from ..utils.graph import graph_laplacian from ..utils.multiclass import check_classification_targets from ..utils.validation import check_X_y, check_is_fitted, check_array # Helper functions def _not_converged(y_truth, y_prediction, tol=1e-3): """basic convergence check""" return np.abs(y_truth - y_prediction).sum() > tol class BaseLabelPropagation(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Base class for label propagation module. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_neighbors : integer > 0 Parameter for knn kernel n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iter=30, tol=1e-3, n_jobs=1): self.max_iter = max_iter self.tol = tol # kernel parameters self.kernel = kernel self.gamma = gamma self.n_neighbors = n_neighbors # clamping factor self.alpha = alpha self.n_jobs = n_jobs def _get_kernel(self, X, y=None): if self.kernel == "rbf": if y is None: return rbf_kernel(X, X, gamma=self.gamma) else: return rbf_kernel(X, y, gamma=self.gamma) elif self.kernel == "knn": if self.nn_fit is None: self.nn_fit = NearestNeighbors(self.n_neighbors, n_jobs=self.n_jobs).fit(X) if y is None: return self.nn_fit.kneighbors_graph(self.nn_fit._fit_X, self.n_neighbors, mode='connectivity') else: return self.nn_fit.kneighbors(y, return_distance=False) else: raise ValueError("%s is not a valid kernel. Only rbf and knn" " are supported at this time" % self.kernel) @abstractmethod def _build_graph(self): raise NotImplementedError("Graph construction must be implemented" " to fit a label propagation model.") def predict(self, X): """Performs inductive inference across the model. Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- y : array_like, shape = [n_samples] Predictions for input data """ probas = self.predict_proba(X) return self.classes_[np.argmax(probas, axis=1)].ravel() def predict_proba(self, X): """Predict probability for each possible outcome. Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution). Parameters ---------- X : array_like, shape = [n_samples, n_features] Returns ------- probabilities : array, shape = [n_samples, n_classes] Normalized probability distributions across class labels """ check_is_fitted(self, 'X_') X_2d = check_array(X, accept_sparse=['csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia']) weight_matrices = self._get_kernel(self.X_, X_2d) if self.kernel == 'knn': probabilities = [] for weight_matrix in weight_matrices: ine = np.sum(self.label_distributions_[weight_matrix], axis=0) probabilities.append(ine) probabilities = np.array(probabilities) else: weight_matrices = weight_matrices.T probabilities = np.dot(weight_matrices, self.label_distributions_) normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T probabilities /= normalizer return probabilities def fit(self, X, y): """Fit a semi-supervised label propagation model based All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples. Parameters ---------- X : array-like, shape = [n_samples, n_features] A {n_samples by n_samples} size matrix will be created from this y : array_like, shape = [n_samples] n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y) self.X_ = X check_classification_targets(y) # actual graph construction (implementations should override this) graph_matrix = self._build_graph() # label construction # construct a categorical distribution for classification only classes = np.unique(y) classes = (classes[classes != -1]) self.classes_ = classes n_samples, n_classes = len(y), len(classes) y = np.asarray(y) unlabeled = y == -1 clamp_weights = np.ones((n_samples, 1)) clamp_weights[unlabeled, 0] = self.alpha # initialize distributions self.label_distributions_ = np.zeros((n_samples, n_classes)) for label in classes: self.label_distributions_[y == label, classes == label] = 1 y_static = np.copy(self.label_distributions_) if self.alpha > 0.: y_static *= 1 - self.alpha y_static[unlabeled] = 0 l_previous = np.zeros((self.X_.shape[0], n_classes)) remaining_iter = self.max_iter if sparse.isspmatrix(graph_matrix): graph_matrix = graph_matrix.tocsr() while (_not_converged(self.label_distributions_, l_previous, self.tol) and remaining_iter > 1): l_previous = self.label_distributions_ self.label_distributions_ = safe_sparse_dot( graph_matrix, self.label_distributions_) # clamp self.label_distributions_ = np.multiply( clamp_weights, self.label_distributions_) + y_static remaining_iter -= 1 normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis] self.label_distributions_ /= normalizer # set the transduction item transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)] self.transduction_ = transduction.ravel() self.n_iter_ = self.max_iter - remaining_iter return self class LabelPropagation(BaseLabelPropagation): """Label Propagation classifier Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported.. gamma : float Parameter for rbf kernel n_neighbors : integer > 0 Parameter for knn kernel alpha : float Clamping factor max_iter : float Change maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelPropagation >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelPropagation(...) References ---------- Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf See Also -------- LabelSpreading : Alternate label propagation strategy more robust to noise """ def _build_graph(self): """Matrix representing a fully connected graph between each sample This basic implementation creates a non-stochastic affinity matrix, so class distributions will exceed 1 (normalization may be desired). """ if self.kernel == 'knn': self.nn_fit = None affinity_matrix = self._get_kernel(self.X_) normalizer = affinity_matrix.sum(axis=0) if sparse.isspmatrix(affinity_matrix): affinity_matrix.data /= np.diag(np.array(normalizer)) else: affinity_matrix /= normalizer[:, np.newaxis] return affinity_matrix class LabelSpreading(BaseLabelPropagation): """LabelSpreading model for semi-supervised learning This model is similar to the basic Label Propgation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels. Read more in the :ref:`User Guide <label_propagation>`. Parameters ---------- kernel : {'knn', 'rbf'} String identifier for kernel function to use. Only 'rbf' and 'knn' kernels are currently supported. gamma : float parameter for rbf kernel n_neighbors : integer > 0 parameter for knn kernel alpha : float clamping factor max_iter : float maximum number of iterations allowed tol : float Convergence tolerance: threshold to consider the system at steady state n_jobs : int, optional (default = 1) The number of parallel jobs to run. If ``-1``, then the number of jobs is set to the number of CPU cores. Attributes ---------- X_ : array, shape = [n_samples, n_features] Input array. classes_ : array, shape = [n_classes] The distinct labels used in classifying instances. label_distributions_ : array, shape = [n_samples, n_classes] Categorical distribution for each item. transduction_ : array, shape = [n_samples] Label assigned to each item via the transduction. n_iter_ : int Number of iterations run. Examples -------- >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS LabelSpreading(...) References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219 See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning """ def __init__(self, kernel='rbf', gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=1e-3, n_jobs=1): # this one has different base parameters super(LabelSpreading, self).__init__(kernel=kernel, gamma=gamma, n_neighbors=n_neighbors, alpha=alpha, max_iter=max_iter, tol=tol, n_jobs=n_jobs) def _build_graph(self): """Graph matrix for Label Spreading computes the graph laplacian""" # compute affinity matrix (or gram matrix) if self.kernel == 'knn': self.nn_fit = None n_samples = self.X_.shape[0] affinity_matrix = self._get_kernel(self.X_) laplacian = graph_laplacian(affinity_matrix, normed=True) laplacian = -laplacian if sparse.isspmatrix(laplacian): diag_mask = (laplacian.row == laplacian.col) laplacian.data[diag_mask] = 0.0 else: laplacian.flat[::n_samples + 1] = 0.0 # set diag to 0.0 return laplacian
bsd-3-clause
jstraub/bnp
python/dirHdpGenerative.py
1
15131
import numpy as np import libbnp as bnp import scipy.special as scisp import scipy.io as sio import matplotlib.pyplot as plt import pickle def stickBreaking(v): N = v.size prop = np.zeros(N+1) for i in range(0,N): if i == N-1: prop[i] = 1.0 else: prop[i]=v[i] for j in range(0,i): prop[i] *= (1.0-v[j]) return prop def logCat(x, pi): logP = 0.0 if x < pi.size: logP += np.log(pi[x]) for i in xrange(0,pi.size): if i != x: logP += np.log(1.0-pi[i]) return logP def logBeta(x, alpha, beta): if type(x) is np.ndarray: N=x.size # at these x the value is only 1/log(B(alpha,beta)) # because 0^0 = 1 issue=(x<1.0e-15)|(1.0-x<1.0e-15) # print('\t\talpha={}; beta={}'.format(alpha, beta)) # print('\t\tbetaln={}'.format(-N*scisp.betaln(alpha,beta))) # print('\t\talphaterm={}'.format((alpha-1.0)*np.sum(np.log(x)))) # print('\t\tbetaterm={}'.format((beta-1.0)*np.sum(np.log(1.0-x)))) # print('\t\tbetaterm={}'.format(np.sum(np.log(1.0-x[~issue])))) # print('\t\tbetaterm={}'.format(np.log(1.0-x[~issue]))) # print('\t\tbetaterm={}'.format(1.0-x)) # print('\t\tbetaterm={}'.format(x)) # CDF: - do not use! #print('\t\tterm={}'.format(np.log(scisp.betainc(alpha,beta,x)))) #return np.sum(np.log(scisp.betainc(alpha,beta,x))) if alpha == 1.0: return -N*scisp.betaln(alpha,beta) \ +(beta-1.0)*np.sum(np.log(1.0-x[~issue])) elif beta == 1.0: return -N*scisp.betaln(alpha,beta) \ +(alpha-1.0)*np.sum(np.log(x[~issue])) else: return -N*scisp.betaln(alpha,beta) \ +(alpha-1.0)*np.sum(np.log(x[~issue])) \ +(beta-1.0)*np.sum(np.log(1.0-x[~issue])) else: if (x<1.0e-15)|(1.0-x<1.0e-15): return -scisp.betaln(alpha,beta) else: return -scisp.betaln(alpha,beta) \ +(alpha-1.0)*np.log(x) \ +(beta-1.0)*np.log(1.0-x) def logDir(x, alpha): logP = 0.0 if alpha.size == x.size: logP = scisp.gammaln(np.sum(alpha)) for i in xrange(0, alpha.size): logP += -scisp.gammaln(alpha[i]) + (alpha[i]-1.0)*np.log(x[i]) return logP class HDP_base: # # parameters # c = [] # z = [] # beta = np.zeros(1) # v = np.zeros(1) # sigV = np.zeros(1) # pi = [] # sigPi = [] # # data # x_tr = [] # x_ho = [] # # results # perp = np.zeros(1) loaded = dict() def __init__(s, K=None,T=None,Nw=None,omega=None,alpha=None,base=None, pathToModel=None): s.scalars = ['K','T','Nw','omega','alpha','D_tr','D_te'] s.matrices = ['c','pi','sigPi','base','beta','sigV','v','perp'] s.listMatrices=['z','x_tr','x_te','logP_w'] s.shape=dict() # s.states=[] # s.states.expand(s.scalars) # s.states.expand(s.matrices) # s.states.expand(s.listMatrices) s.state=dict() if pathToModel is None: s.state['K'] = K s.state['T'] = T s.state['Nw'] = Nw # hyper parameters s.state['omega'] = omega s.state['alpha'] = alpha s.state['base'] = np.zeros(base.rowDim()) base.asRow(s.state['base']) print('in HDP_base setting K={}; T={}; Nw={}; omega={}; alpha={};'.format(s.state['K'],s.state['T'],s.state['Nw'],s.state['omega'],s.state['alpha'])) else: s.load(pathToModel) def save(s,path): pickle.dump(s.state,open(path,'w')) # sio.savemat(path,s.state,oned_as='row') def load(s,path): try: # s.loaded=sio.loadmat(path) s.state=pickle.load(open(path,'r')) print('Found model under {0}'.format(path)) except Exception, err: print('Did not find model under {0}'.format(path)) return False # print('--- loading state from mat file at {}'.format(path)) # if HDP_base.__parseLoad(s,s.loaded): # print('--- loaded state successfully!') # else: # print('--- error while loading state!') return True def __parseLoad(s,mat): print('mat.keys: {}'.format(mat.keys())) for scalar in s.scalars: s.state[scalar]=mat[scalar][0][0] print('loaded {}\t {}'.format(scalar,s.state[scalar])) for matrix in s.matrices: s.state[matrix]=mat[matrix] if s.state[matrix].shape[1] == 1: # savemat/loadmat puts vectors always as column vectors s.state[matrix] = s.state[matrix].ravel() print('loaded {}\t {}'.format(matrix,s.state[matrix].shape)) # have to be added to the appropriate matrices or listMatrices # s.state['x_tr'] = mat['x_tr'] # print('loaded x_tr\t {}'.format(s.state['x_tr'].shape)) # s.state['x_ho'] = mat['x_ho'] for listMatrix in s.listMatrices: s.state[listMatrix] = [] D=s.state['D_tr'] #mat[listMatrix].size if listMatrix == 'x_te': D=s.state['D_te'] print('{} D={}'.format(listMatrix,D)) if D==1: s.state[listMatrix].append(mat[listMatrix].ravel()) #print('loaded {}_{}\t {}'.format(listMatrix,d,s.state[listMatrix][0].shape)) else: for d in range(0,D): s.state[listMatrix].append(mat[listMatrix][d][0]) if len(s.state[listMatrix][d].shape) >1: if s.state[listMatrix][d].shape[1] == 1: # savemat/loadmat puts vectors always as column vectors s.state[listMatrix][d] = s.state[listMatrix][d].ravel() #print('loaded {}_{}\t {}'.format(listMatrix,d,s.state[listMatrix][d].shape)) print('loaded {}\t {}'.format(listMatrix,D)) return True def stateEquals(s,hdp): print('--- checking whether state of two hdps is equal') for key, val in s.state.iteritems(): print('checking {}'.format(key)) if key in s.scalars: if hdp.state[key] != val: print('keys {} differ'.format(key)) return False elif key in s.matrices: if np.any(hdp.state[key] != val): print('keys {} differ'.format(key)) print('{}\nvs\n{}'.format(val,hdp.state[key])) return False elif key in s.listMatrices: D=len(val) for d in range(0,D): if np.any(hdp.state[key][d] != val[d]): print('keys {} at d={} differ'.format(key,d)) print('{}\nvs\n{}'.format(val[d],hdp.state[key][d])) return False print('--- HDPs state is equal!') return True def loadHDPSample(s, x_tr, x_te, hdp): if isinstance(hdp,bnp.HDP_var_Dir) or isinstance(hdp,bnp.HDP_var_NIW) or isinstance(hdp,bnp.HDP_var_ss): print("---------------------- obtaining results -------------------------"); s.state['x_tr'] = x_tr s.state['x_te'] = x_te #print('{}'.format(s.state['x_tr'])) D_tr=s.state['D_tr']=len(s.state['x_tr']) D_te=s.state['D_te']=len(s.state['x_te']) print('D_tr={}; D_te={};'.format(s.state['D_tr'],s.state['D_te'])) s.state['sigV'] = np.zeros(s.state['K']+1,dtype=np.double) s.state['v'] = np.zeros(s.state['K'],dtype=np.double) hdp.getCorpTopicProportions(s.state['v'],s.state['sigV']) print('gotCorpTopicProportions {} {}'.format(s.state['v'].shape,s.state['sigV'].shape)) s.state['perp'] = np.zeros(D_tr) hdp.getPerplexity(s.state['perp']) print('Perplexity of iterations: {}'.format(s.state['perp'])) betaCols = hdp.getTopicsDescriptionLength() s.state['beta']= np.zeros((s.state['K'],betaCols),dtype=np.double) hdp.getCorpTopics(s.state['beta']) print('beta={}'.format(s.state['beta'].shape)) print('beta={}'.format(s.state['beta'])) s.state['sigPi']=np.zeros((D_tr,s.state['T']+1),dtype=np.double) s.state['pi']=np.zeros((D_tr,s.state['T']),dtype=np.double) s.state['c']=np.zeros((D_tr,s.state['T']),dtype=np.uint32) if hdp.getDocTopics(s.state['pi'],s.state['sigPi'],s.state['c']): print('pi: {}'.format(s.state['pi'].shape)) #print('pi: {}'.format(s.state['pi'])) print('sigPi: {}'.format(s.state['sigPi'].shape)) #print('sigPi: {}'.format(s.state['sigPi'])) else: print('error while loading pi, sigPi and c from C++ model') s.state['logP_w'] = [] #np.zeros((D_tr,s.state['Nw']),dtype=np.double) s.state['z']=[] # word indices to doc topics for d in range(0,D_tr): N_d = s.state['x_tr'][d].size #print('N_d={}'.format(N_d)) # print('getting {}'.format(d)) # hdp.getDocTopics(s.state['pi'][d,:],s.state['sigPi'][d,:],s.state['c'][d,:],d) #print('c({0}): {1}'.format(d,s.state['c'][d])) s.state['z'].append(np.zeros(N_d,dtype=np.uint32)) hdp.getWordTopics(s.state['z'][d],d) s.state['logP_w'].append(np.zeros(N_d,dtype=np.double)) hdp.getWordDistr(s.state['logP_w'][d],d) else: print('Error loading hdp of type {}'.format(type(hdp))) def checkSticks(s): print('--------------------- Checking Stick pieces -----------------') print('sigV = {0}; {1}'.format(s.state['sigV'],np.sum(self.sigV))) D=len(s.state['x_tr']) for d in range(0,D): np.sum(s.state['sigPi'][d]) print('sigPi = {0}; {1}'.format(s.state['sigPi'][d],np.sum(self.sigPi[d]))) # KL divergence def klD(s,logP,logQ): p = np.exp(logP) if len(logP.shape) > 1: kl = np.zeros(p.shape[0]) for i in range(0,logP.shape[0]): kl[i] = np.sum(p[i,:]*(logP[i,:]-logQ[i,:])) return kl else: return np.sum(p*(logP-logQ)) # symmeterised divergence def symKL(s,logP,logQ): return np.sum((logP-logQ)*(np.exp(logP)-np.exp(logQ))) def symKLImg(s): D_tr = s.state['D_tr'] K = s.state['K'] T = s.state['T'] # create image for topic symKLd = np.zeros((D_tr,D_tr)) logP = s.state['logP_w'] p = np.exp(logP) for di in range(0,D_tr): for dj in range(0,D_tr): symKLd[di,dj] = np.sum((logP[di,:]-logP[dj,:])*(p[di,:]-p[dj,:])) #s.symKL(s.state['logP_w'][di],s.state['logP_w'][dj]) return symKLd # Jensen-Shannon Divergence - def jsD(s,logP,logQ): p=np.exp(logP) q=np.exp(logQ) logM=-np.log(2)+np.log(p + q) return 0.5*np.sum(p*(logP-logM))+0.5*np.sum(q*(logQ-logM)) def jsDImg(s): D_tr = s.state['D_tr'] K = s.state['K'] T = s.state['T'] # create image for topic jsd = np.zeros((D_tr,D_tr)) for di in range(0,D_tr): for dj in range(0,D_tr): jsd[di,dj] = s.jsD(s.state['logP_w'][di],s.state['logP_w'][dj]) return jsd def docTopicsImg(s): D_tr = s.state['D_tr'] K = s.state['K'] T = s.state['T'] # create image for topic vT = np.zeros((K,D_tr)) for d in range(0,D_tr): for t in range(0,T): #print('{0} {1} c.shape={2}'.format(d,t,s.c[d].shape)) k=s.state['c'][d][t] vT[k,d] += s.state['sigPi'][d][t] # print('vT={0}'.format(vT)) # print('vT_norm={0}'.format(np.sum(vT,0))) # print('sigPi_d={0}'.format(s.sigPi[d])) return vT def plotTopics(s,minSupport=None): D = s.state['D_tr'] ks=np.zeros(D) for d in range(0,D): # necessary since topics may be selected several times! c_u=np.unique(s.state['c'][d,:]) sigPi_u = np.zeros(c_u.size) for i in range(0,c_u.size): #print('{}'.format(c_u[i] == s.c[d])) #print('{}'.format(s.sigPi[d])) sigPi_u[i] = np.sum(s.state['sigPi'][d,c_u[i] == s.state['c'][d,:]]) k_max = c_u[sigPi_u == np.max(sigPi_u)] # print('c={};'.format(s.c[d])) # print('sigPi={};'.format(s.sigPi[d])) print('sigPi_u = {};\tc_u={};\tk_max={}'.format(sigPi_u,c_u,k_max)) # t_max=np.nonzero(s.sigPi[d]==np.max(s.sigPi[d]))[0][0] # print('d={}; D={}'.format(d,D)) # print('t_max={};'.format(np.nonzero(s.sigPi[d]==np.max(s.sigPi[d])))) # print('sigPi={}; sum={}'.format(s.sigPi[d],np.sum(s.sigPi[d]))) # print('c[{}]={};'.format(d,s.c[d])) # if t_max < s.c[d].size: # k_max = s.c[d][t_max] # else: # k_max = np.nan # this means that we arre not selecting one of the estimated models!! (the last element in sigPi is 1-sum(sigPi(0:end-1)) and represents the "other" models ks[d]=k_max[0] ks_unique=np.unique(ks) ks_unique=ks_unique[~np.isnan(ks_unique)] if minSupport is not None: Np = ks_unique.size # numer of subplots #print('D{0} Np{1}'.format(D,Np)) sup = np.zeros(ks_unique.size) for d in range(0,D): sup[np.nonzero(ks_unique==ks[d])[0]] += 1 #print('sup={0} sum(sup)={1}'.format(sup,np.sum(sup))) delete = np.zeros(ks_unique.size,dtype=np.bool) for i in range(0,Np): if sup[i] < minSupport: delete[i]=True ks_unique = ks_unique[~delete] Np = ks_unique.size # numer of subplots print('D{0} Np{1}'.format(D,Np)) Nrow = np.ceil(np.sqrt(Np)) Ncol = np.ceil(np.sqrt(Np)) fig=plt.figure() for i in range(0,Np): plt.subplot(Ncol,Nrow,i+1) x = np.linspace(0,s.state['beta'][int(ks_unique[i])].size-1,s.state['beta'][int(ks_unique[i])].size) plt.stem(x,s.state['beta'][int(ks_unique[i])]) plt.ylim([0.0,1.0]) plt.xlabel('topic '+str(ks_unique[i])) return fig class HDP_sample(HDP_base): def generateDirHDPSample(s,D,N): # doc level s.state['D_tr'] = D s.state['x_tr']=[] # draw K topics from Dirichlet s.state['beta'] = np.random.dirichlet(s.state['base'],s.state['K']) # draw breaking proportions using Beta s.state['v'] = np.random.beta(1,s.state['omega'],s.state['K']) s.state['sigV'] = stickBreaking(s.state['v']) s.state['c']=[] # pointers to corp level topics s.state['pi']=[] # breaking proportions for selected doc level topics s.state['sigPi']=[] s.state['z']=[] s.state['c'] = np.zeros((D,s.state['T'])) s.state['pi'] = np.zeros((D,s.state['T'])) s.state['sigPi'] = np.zeros((D,s.state['T']+1)) s.state['logP_w']=np.ones((D,s.state['Nw']))*0.1 for d in range(0,D): # for each document # draw T doc level pointers to topics (multinomial) _, s.state['c'][d,:] = np.nonzero(np.random.multinomial(1,s.state['sigV'],s.state['T'])) # draw T doc level breaking proportions using Beta s.state['pi'][d,:] = np.random.beta(1,s.state['alpha'],s.state['T']) s.state['sigPi'][d,:] = stickBreaking(s.state['pi'][d,:]) s.state['x_tr'].append(np.zeros(N)) # draw topic assignment of word (multinomial) s.state['z'].append(np.zeros(N)) _, s.state['z'][d] = np.nonzero(np.random.multinomial(1,s.state['sigPi'][d,:],N)) for i in range(0,N): # for each word # draw words _, s.state['x_tr'][d][i] = np.nonzero(np.random.multinomial(1,s.state['beta'][ s.state['c'][d, s.state['z'][d][i]], :],1)) s.state['logP_w'][d, s.state['x_tr'][d][i]] +=1 s.state['x_tr'][d] = s.state['x_tr'][d].astype(np.uint32) s.state['logP_w'][d,:] /= np.sum(s.state['logP_w'][d,:]) s.state['logP_w'] = np.log(s.state['logP_w']) # for d in range(0,D): # print('d={0}: {1}'.format(d,s.state['x_tr'][d])) s.state['D_te'] = 0 s.state['perp'] = [] return s.state['x_tr'], s.state['sigV'], s.state['beta'], s.state['pi'], s.state['c']
mit
openclimatedata/pyhector
scripts/write_defaults.py
1
8913
#!/usr/bin/env python3 # Save Hector default config and emissions units as importable Python # modules. # Usage (requires Pandas): # Run this script as # ./write_defaults.py import ast import configparser import os import pandas as pd from pprint import pformat # Default config from `ini`-file default_config = os.path.join(os.path.dirname(__file__), '../pyhector/rcp_default.ini') config = configparser.ConfigParser(inline_comment_prefixes=(';')) config.optionxform = str config.read(default_config) output = '"""Dictionary with default config."""\n\n' parameters = {} for section in config.sections(): if len(config.options(section)) > 0: parameters[section] = {} for option in config.options(section): value = config.get(section, option) # Hector-specific ini property-value assignment with time index, # like 'Ftalbedo[1750]' will be turned into a list of tuples. if option.endswith("]"): split = option.split("[") name = split[0] year = int(split[1][:-1]) # leave out closing "]" if name not in parameters[section]: parameters[section][name] = [] parameters[section][name].append( (year, ast.literal_eval(value),) ) else: if option == 'run_name': value = "pyhector-run" elif option in ["enabled", "do_spinup"]: value = True if int(value) == 1 else False # Values containing a unit like "H0=35.0,pptv" are split and # turned into a tuple. elif "," in value: number, unit = tuple(value.split(",")) value = (ast.literal_eval(number), unit,) # Convert floats and ints to Python numbers else: value = ast.literal_eval(value) parameters[section][option] = value # Volcanic RF (from Volcanic_RF.csv) parameters["so2"]["SV"] = [ (1765, 0), (1766, 0.11622211), (1767, 0.23244422), (1768, 0.19744422), (1769, 0.13181922), (1770, 0.12744422), (1771, 0.17994422), (1772, 0.21494422), (1773, 0.22806922), (1774, 0.23244422), (1775, 0.23244422), (1776, 0.23244422), (1777, 0.23244422), (1778, 0.23244422), (1779, 0.23244422), (1780, 0.23244422), (1781, 0.23244422), (1782, 0.21056922), (1783, 0.11869422), (1784, 0.044319219), (1785, 0.10119422), (1786, 0.18869422), (1787, 0.22369422), (1788, 0.22806922), (1789, 0.12306922), (1790, -0.025680781), (1791, 0.009319219), (1792, 0.14056922), (1793, 0.20619422), (1794, 0.21494422), (1795, 0.19306922), (1796, 0.18869422), (1797, 0.21056922), (1798, 0.22806922), (1799, 0.23244422), (1800, 0.23244422), (1801, 0.23244422), (1802, 0.23244422), (1803, 0.23244422), (1804, 0.23244422), (1805, 0.23244422), (1806, 0.23244422), (1807, 0.23244422), (1808, -0.25755578), (1809, -1.3994308), (1810, -1.8019308), (1811, -1.0100558), (1812, -0.34068078), (1813, -0.14818078), (1814, -0.67755578), (1815, -2.1519308), (1816, -2.6638058), (1817, -1.4956808), (1818, -0.36255578), (1819, 0.092444219), (1820, 0.22369422), (1821, 0.23244422), (1822, 0.23244422), (1823, 0.23244422), (1824, 0.23244422), (1825, 0.23244422), (1826, 0.23244422), (1827, 0.23244422), (1828, 0.22806922), (1829, 0.19306922), (1830, -0.021305781), (1831, -0.39755578), (1832, -0.48505578), (1833, -0.18318078), (1834, -0.34505578), (1835, -0.98818078), (1836, -0.94880578), (1837, -0.34943078), (1838, 0.044319219), (1839, 0.17994422), (1840, 0.17994422), (1841, 0.17556922), (1842, 0.18869422), (1843, 0.16681922), (1844, 0.15369422), (1845, 0.18431922), (1846, 0.21494422), (1847, 0.22806922), (1848, 0.23244422), (1849, 0.21599422), (1850, 0.19200464), (1851, 0.19303276), (1852, 0.20879734), (1853, 0.2235338), (1854, 0.2317588), (1855, 0.10118693), (1856, -0.35667141), (1857, -0.61027557), (1858, -0.29772557), (1859, 0.028190052), (1860, 0.15053693), (1861, 0.13957026), (1862, 0.05526401), (1863, 0.06760151), (1864, 0.15087964), (1865, 0.19851609), (1866, 0.21907859), (1867, 0.22901714), (1868, 0.23107339), (1869, 0.22284839), (1870, 0.21873589), (1871, 0.2194213), (1872, 0.2070838), (1873, 0.19337547), (1874, 0.20125776), (1875, 0.19406089), (1876, 0.15293589), (1877, 0.14848068), (1878, 0.18035255), (1879, 0.20194318), (1880, 0.21565151), (1881, 0.22284839), (1882, 0.11112547), (1883, -0.80253495), (1884, -1.5373016), (1885, -0.94407349), (1886, -0.44851724), (1887, -0.32137245), (1888, -0.21102036), (1889, -0.27750578), (1890, -0.3316537), (1891, -0.2617412), (1892, -0.087645365), (1893, 0.060061927), (1894, 0.16938589), (1895, 0.1618463), (1896, 0.016537969), (1897, -0.064683906), (1898, 0.037785885), (1899, 0.15053693), (1900, 0.20194318), (1901, 0.19166193), (1902, -0.25694328), (1903, -0.65105786), (1904, -0.3563287), (1905, 0.002144219), (1906, 0.1001588), (1907, 0.076169219), (1908, 0.087821302), (1909, 0.15396401), (1910, 0.18892026), (1911, 0.19508901), (1912, -0.048576615), (1913, -0.15652974), (1914, 0.055606719), (1915, 0.15944734), (1916, 0.18754943), (1917, 0.19611714), (1918, 0.20194318), (1919, 0.1947463), (1920, 0.11078276), (1921, 0.095703594), (1922, 0.18103797), (1923, 0.20228589), (1924, 0.18926297), (1925, 0.18926297), (1926, 0.19714526), (1927, 0.19508901), (1928, 0.14573901), (1929, 0.096046302), (1930, 0.12174943), (1931, 0.14642443), (1932, 0.11489526), (1933, 0.12380568), (1934, 0.16218901), (1935, 0.16938589), (1936, 0.18069526), (1937, 0.17932443), (1938, 0.16321714), (1939, 0.16390255), (1940, 0.18377964), (1941, 0.19303276), (1942, 0.17144214), (1943, 0.16630151), (1944, 0.18926297), (1945, 0.19988693), (1946, 0.2070838), (1947, 0.1988588), (1948, 0.19680255), (1949, 0.18926297), (1950, 0.18686401), (1951, 0.1906338), (1952, 0.18446505), (1953, 0.17555464), (1954, 0.18069526), (1955, 0.2029713), (1956, 0.2153088), (1957, 0.22559005), (1958, 0.23073068), (1959, 0.22696089), (1960, 0.15190776), (1961, 0.060747344), (1962, -0.013963073), (1963, -0.49546828), (1964, -0.85325578), (1965, -0.53248078), (1966, -0.15001828), (1967, -0.021502656), (1968, -0.22027349), (1969, -0.29635474), (1970, -0.055430781), (1971, 0.11420984), (1972, 0.15327859), (1973, 0.10632755), (1974, -0.040694323), (1975, -0.14110786), (1976, -0.017390156), (1977, 0.13408693), (1978, 0.10906922), (1979, 0.093990052), (1980, 0.14813797), (1981, 0.079596302), (1982, -0.59142661), (1983, -0.87621724), (1984, -0.32000161), (1985, -0.023216198), (1986, 0.035044219), (1987, 0.065887969), (1988, 0.10598484), (1989, 0.12928901), (1990, 0.12654734), (1991, -0.81487245), (1992, -1.4197527), (1993, -0.68190161), (1994, -0.13151203), (1995, 0.058691094), (1996, 0.12380568), (1997, 0.15327859), (1998, 0.18754943), (1999, 0.21633693), (2000, 0.22867443), (2001, 0.23244422), (2002, 0.23244422), (2003, 0.23244422), (2004, 0.23244422), (2005, 0.18401834), (2006, 0.06779623), (2007,0), (2008,0), (2009,0), (2010,0) ] output += "_default_config = {\n " + \ pformat(parameters, indent=1, width=75)[1:-1].replace( "\n '", "\n '").replace( " '", " '") + \ "\n}\n" with open(os.path.join(os.path.dirname(__file__), '../pyhector/default_config.py'), 'w') as f: f.write(output) # Default units from input CSV units = pd.read_csv( os.path.join(os.path.dirname(__file__), '../pyhector/emissions/RCP26_emissions.csv'), skiprows=2, header=None) units = units.loc[:1, 1:].T.set_index(1).to_dict()[0] with open(os.path.join(os.path.dirname(__file__), "../pyhector/units.py"), "w") as f: f.write('"""') f.write('Dictionary of emissions and their expected units in Hector.') f.write('"""\n\n') f.write("units = {\n ") f.write(pformat(units, indent=4)[1:-1]) f.write("\n}\n")
agpl-3.0
kubeflow/kfp-tekton
sdk/python/tests/compiler/testdata/old_kfp_volume.py
1
38533
# Copyright 2020 kubeflow.org # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import kfp.dsl as dsl import json import kfp.components as comp from collections import OrderedDict from kubernetes import client as k8s_client def loaddata(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' path = "data/" PREDICTION_LABEL = 'Survived' test_df = pd.read_csv(path + "test.csv") train_df = pd.read_csv(path + "train.csv") ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(PREDICTION_LABEL, "PREDICTION_LABEL") _kale_marshal_utils.save(test_df, "test_df") _kale_marshal_utils.save(train_df, "train_df") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = ( block1, block2, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/loaddata.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('loaddata') _kale_mlmd_utils.call("mark_execution_complete") def datapreprocessing(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() test_df = _kale_marshal_utils.load("test_df") train_df = _kale_marshal_utils.load("train_df") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' data = [train_df, test_df] for dataset in data: dataset['relatives'] = dataset['SibSp'] + dataset['Parch'] dataset.loc[dataset['relatives'] > 0, 'not_alone'] = 0 dataset.loc[dataset['relatives'] == 0, 'not_alone'] = 1 dataset['not_alone'] = dataset['not_alone'].astype(int) train_df['not_alone'].value_counts() ''' block3 = ''' # This does not contribute to a person survival probability train_df = train_df.drop(['PassengerId'], axis=1) ''' block4 = ''' import re deck = {"A": 1, "B": 2, "C": 3, "D": 4, "E": 5, "F": 6, "G": 7, "U": 8} data = [train_df, test_df] for dataset in data: dataset['Cabin'] = dataset['Cabin'].fillna("U0") dataset['Deck'] = dataset['Cabin'].map(lambda x: re.compile("([a-zA-Z]+)").search(x).group()) dataset['Deck'] = dataset['Deck'].map(deck) dataset['Deck'] = dataset['Deck'].fillna(0) dataset['Deck'] = dataset['Deck'].astype(int) # we can now drop the cabin feature train_df = train_df.drop(['Cabin'], axis=1) test_df = test_df.drop(['Cabin'], axis=1) ''' block5 = ''' data = [train_df, test_df] for dataset in data: mean = train_df["Age"].mean() std = test_df["Age"].std() is_null = dataset["Age"].isnull().sum() # compute random numbers between the mean, std and is_null rand_age = np.random.randint(mean - std, mean + std, size = is_null) # fill NaN values in Age column with random values generated age_slice = dataset["Age"].copy() age_slice[np.isnan(age_slice)] = rand_age dataset["Age"] = age_slice dataset["Age"] = train_df["Age"].astype(int) train_df["Age"].isnull().sum() ''' block6 = ''' train_df['Embarked'].describe() ''' block7 = ''' # fill with most common value common_value = 'S' data = [train_df, test_df] for dataset in data: dataset['Embarked'] = dataset['Embarked'].fillna(common_value) ''' block8 = ''' train_df.info() ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(test_df, "test_df") _kale_marshal_utils.save(train_df, "train_df") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, block3, block4, block5, block6, block7, block8, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/datapreprocessing.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('datapreprocessing') _kale_mlmd_utils.call("mark_execution_complete") def featureengineering(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() PREDICTION_LABEL = _kale_marshal_utils.load("PREDICTION_LABEL") test_df = _kale_marshal_utils.load("test_df") train_df = _kale_marshal_utils.load("train_df") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' data = [train_df, test_df] for dataset in data: dataset['Fare'] = dataset['Fare'].fillna(0) dataset['Fare'] = dataset['Fare'].astype(int) ''' block3 = ''' data = [train_df, test_df] titles = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in data: # extract titles dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) # replace titles with a more common title or as Rare dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr',\\ 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') # convert titles into numbers dataset['Title'] = dataset['Title'].map(titles) # filling NaN with 0, to get safe dataset['Title'] = dataset['Title'].fillna(0) train_df = train_df.drop(['Name'], axis=1) test_df = test_df.drop(['Name'], axis=1) ''' block4 = ''' genders = {"male": 0, "female": 1} data = [train_df, test_df] for dataset in data: dataset['Sex'] = dataset['Sex'].map(genders) ''' block5 = ''' train_df = train_df.drop(['Ticket'], axis=1) test_df = test_df.drop(['Ticket'], axis=1) ''' block6 = ''' ports = {"S": 0, "C": 1, "Q": 2} data = [train_df, test_df] for dataset in data: dataset['Embarked'] = dataset['Embarked'].map(ports) ''' block7 = ''' data = [train_df, test_df] for dataset in data: dataset['Age'] = dataset['Age'].astype(int) dataset.loc[ dataset['Age'] <= 11, 'Age'] = 0 dataset.loc[(dataset['Age'] > 11) & (dataset['Age'] <= 18), 'Age'] = 1 dataset.loc[(dataset['Age'] > 18) & (dataset['Age'] <= 22), 'Age'] = 2 dataset.loc[(dataset['Age'] > 22) & (dataset['Age'] <= 27), 'Age'] = 3 dataset.loc[(dataset['Age'] > 27) & (dataset['Age'] <= 33), 'Age'] = 4 dataset.loc[(dataset['Age'] > 33) & (dataset['Age'] <= 40), 'Age'] = 5 dataset.loc[(dataset['Age'] > 40) & (dataset['Age'] <= 66), 'Age'] = 6 dataset.loc[ dataset['Age'] > 66, 'Age'] = 6 # let's see how it's distributed train_df['Age'].value_counts() ''' block8 = ''' data = [train_df, test_df] for dataset in data: dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[(dataset['Fare'] > 31) & (dataset['Fare'] <= 99), 'Fare'] = 3 dataset.loc[(dataset['Fare'] > 99) & (dataset['Fare'] <= 250), 'Fare'] = 4 dataset.loc[ dataset['Fare'] > 250, 'Fare'] = 5 dataset['Fare'] = dataset['Fare'].astype(int) ''' block9 = ''' data = [train_df, test_df] for dataset in data: dataset['Age_Class']= dataset['Age']* dataset['Pclass'] ''' block10 = ''' for dataset in data: dataset['Fare_Per_Person'] = dataset['Fare']/(dataset['relatives']+1) dataset['Fare_Per_Person'] = dataset['Fare_Per_Person'].astype(int) # Let's take a last look at the training set, before we start training the models. train_df.head(10) ''' block11 = ''' train_labels = train_df[PREDICTION_LABEL] train_df = train_df.drop(PREDICTION_LABEL, axis=1) ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(train_df, "train_df") _kale_marshal_utils.save(train_labels, "train_labels") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, block3, block4, block5, block6, block7, block8, block9, block10, block11, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/featureengineering.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('featureengineering') _kale_mlmd_utils.call("mark_execution_complete") def decisiontree(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() train_df = _kale_marshal_utils.load("train_df") train_labels = _kale_marshal_utils.load("train_labels") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' decision_tree = DecisionTreeClassifier() decision_tree.fit(train_df, train_labels) acc_decision_tree = round(decision_tree.score(train_df, train_labels) * 100, 2) ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(acc_decision_tree, "acc_decision_tree") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/decisiontree.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('decisiontree') _kale_mlmd_utils.call("mark_execution_complete") def svm(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() train_df = _kale_marshal_utils.load("train_df") train_labels = _kale_marshal_utils.load("train_labels") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' linear_svc = SVC(gamma='auto') linear_svc.fit(train_df, train_labels) acc_linear_svc = round(linear_svc.score(train_df, train_labels) * 100, 2) ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(acc_linear_svc, "acc_linear_svc") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/svm.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('svm') _kale_mlmd_utils.call("mark_execution_complete") def naivebayes(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() train_df = _kale_marshal_utils.load("train_df") train_labels = _kale_marshal_utils.load("train_labels") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' gaussian = GaussianNB() gaussian.fit(train_df, train_labels) acc_gaussian = round(gaussian.score(train_df, train_labels) * 100, 2) ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(acc_gaussian, "acc_gaussian") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/naivebayes.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('naivebayes') _kale_mlmd_utils.call("mark_execution_complete") def logisticregression(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() train_df = _kale_marshal_utils.load("train_df") train_labels = _kale_marshal_utils.load("train_labels") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' logreg = LogisticRegression(solver='lbfgs', max_iter=110) logreg.fit(train_df, train_labels) acc_log = round(logreg.score(train_df, train_labels) * 100, 2) ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(acc_log, "acc_log") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/logisticregression.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('logisticregression') _kale_mlmd_utils.call("mark_execution_complete") def randomforest(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() train_df = _kale_marshal_utils.load("train_df") train_labels = _kale_marshal_utils.load("train_labels") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(train_df, train_labels) acc_random_forest = round(random_forest.score(train_df, train_labels) * 100, 2) ''' data_saving_block = ''' # -----------------------DATA SAVING START--------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.save(acc_random_forest, "acc_random_forest") # -----------------------DATA SAVING END----------------------------------- ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, data_saving_block) html_artifact = _kale_run_code(blocks) with open("/randomforest.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('randomforest') _kale_mlmd_utils.call("mark_execution_complete") def results(): from kale.utils import mlmd_utils as _kale_mlmd_utils _kale_mlmd_utils.init_metadata() data_loading_block = ''' # -----------------------DATA LOADING START-------------------------------- from kale.marshal import utils as _kale_marshal_utils _kale_marshal_utils.set_kale_data_directory("/marshal") _kale_marshal_utils.set_kale_directory_file_names() acc_decision_tree = _kale_marshal_utils.load("acc_decision_tree") acc_gaussian = _kale_marshal_utils.load("acc_gaussian") acc_linear_svc = _kale_marshal_utils.load("acc_linear_svc") acc_log = _kale_marshal_utils.load("acc_log") acc_random_forest = _kale_marshal_utils.load("acc_random_forest") # -----------------------DATA LOADING END---------------------------------- ''' block1 = ''' import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB ''' block2 = ''' results = pd.DataFrame({ 'Model': ['Support Vector Machines', 'logistic Regression', 'Random Forest', 'Naive Bayes', 'Decision Tree'], 'Score': [acc_linear_svc, acc_log, acc_random_forest, acc_gaussian, acc_decision_tree]}) result_df = results.sort_values(by='Score', ascending=False) result_df = result_df.set_index('Score') print(result_df) ''' # run the code blocks inside a jupyter kernel from kale.utils.jupyter_utils import run_code as _kale_run_code from kale.utils.kfp_utils import \ update_uimetadata as _kale_update_uimetadata blocks = (data_loading_block, block1, block2, ) html_artifact = _kale_run_code(blocks) with open("/results.html", "w") as f: f.write(html_artifact) _kale_update_uimetadata('results') _kale_mlmd_utils.call("mark_execution_complete") loaddata_op = comp.func_to_container_op(loaddata) datapreprocessing_op = comp.func_to_container_op(datapreprocessing) featureengineering_op = comp.func_to_container_op(featureengineering) decisiontree_op = comp.func_to_container_op(decisiontree) svm_op = comp.func_to_container_op(svm) naivebayes_op = comp.func_to_container_op(naivebayes) logisticregression_op = comp.func_to_container_op(logisticregression) randomforest_op = comp.func_to_container_op(randomforest) results_op = comp.func_to_container_op(results) @dsl.pipeline( name='titanic-ml-gxj28', description='Predict which passengers survived the Titanic shipwreck' ) def auto_generated_pipeline(): pvolumes_dict = OrderedDict() volume_step_names = [] volume_name_parameters = [] marshal_vop = dsl.VolumeOp( name="kale-marshal-volume", resource_name="kale-marshal-pvc", modes=dsl.VOLUME_MODE_RWM, size="1Gi" ) volume_step_names.append(marshal_vop.name) volume_name_parameters.append(marshal_vop.outputs["name"].full_name) pvolumes_dict['/marshal'] = marshal_vop.volume volume_step_names.sort() volume_name_parameters.sort() loaddata_task = loaddata_op()\ .add_pvolumes(pvolumes_dict)\ .after() loaddata_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" loaddata_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'loaddata': '/loaddata.html'}) loaddata_task.output_artifact_paths.update(output_artifacts) loaddata_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = loaddata_task.dependent_names + volume_step_names loaddata_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: loaddata_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) datapreprocessing_task = datapreprocessing_op()\ .add_pvolumes(pvolumes_dict)\ .after(loaddata_task) datapreprocessing_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" datapreprocessing_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'datapreprocessing': '/datapreprocessing.html'}) datapreprocessing_task.output_artifact_paths.update(output_artifacts) datapreprocessing_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = datapreprocessing_task.dependent_names + volume_step_names datapreprocessing_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: datapreprocessing_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) featureengineering_task = featureengineering_op()\ .add_pvolumes(pvolumes_dict)\ .after(datapreprocessing_task) featureengineering_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" featureengineering_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'featureengineering': '/featureengineering.html'}) featureengineering_task.output_artifact_paths.update(output_artifacts) featureengineering_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = featureengineering_task.dependent_names + volume_step_names featureengineering_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: featureengineering_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) decisiontree_task = decisiontree_op()\ .add_pvolumes(pvolumes_dict)\ .after(featureengineering_task) decisiontree_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" decisiontree_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'decisiontree': '/decisiontree.html'}) decisiontree_task.output_artifact_paths.update(output_artifacts) decisiontree_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = decisiontree_task.dependent_names + volume_step_names decisiontree_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: decisiontree_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) svm_task = svm_op()\ .add_pvolumes(pvolumes_dict)\ .after(featureengineering_task) svm_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" svm_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'svm': '/svm.html'}) svm_task.output_artifact_paths.update(output_artifacts) svm_task.add_pod_label("pipelines.kubeflow.org/metadata_written", "true") dep_names = svm_task.dependent_names + volume_step_names svm_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: svm_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) naivebayes_task = naivebayes_op()\ .add_pvolumes(pvolumes_dict)\ .after(featureengineering_task) naivebayes_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" naivebayes_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'naivebayes': '/naivebayes.html'}) naivebayes_task.output_artifact_paths.update(output_artifacts) naivebayes_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = naivebayes_task.dependent_names + volume_step_names naivebayes_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: naivebayes_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) logisticregression_task = logisticregression_op()\ .add_pvolumes(pvolumes_dict)\ .after(featureengineering_task) logisticregression_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" logisticregression_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'logisticregression': '/logisticregression.html'}) logisticregression_task.output_artifact_paths.update(output_artifacts) logisticregression_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = logisticregression_task.dependent_names + volume_step_names logisticregression_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: logisticregression_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) randomforest_task = randomforest_op()\ .add_pvolumes(pvolumes_dict)\ .after(featureengineering_task) randomforest_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" randomforest_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'randomforest': '/randomforest.html'}) randomforest_task.output_artifact_paths.update(output_artifacts) randomforest_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = randomforest_task.dependent_names + volume_step_names randomforest_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: randomforest_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) results_task = results_op()\ .add_pvolumes(pvolumes_dict)\ .after(randomforest_task, logisticregression_task, naivebayes_task, svm_task, decisiontree_task) results_task.container.working_dir = "/Users/animeshsingh/go/src/github.com/kubeflow/kale/examples/titanic-ml-dataset" results_task.container.set_security_context( k8s_client.V1SecurityContext(run_as_user=0)) output_artifacts = {} output_artifacts.update( {'mlpipeline-ui-metadata': '/mlpipeline-ui-metadata.json'}) output_artifacts.update({'results': '/results.html'}) results_task.output_artifact_paths.update(output_artifacts) results_task.add_pod_label( "pipelines.kubeflow.org/metadata_written", "true") dep_names = results_task.dependent_names + volume_step_names results_task.add_pod_annotation( "kubeflow-kale.org/dependent-templates", json.dumps(dep_names)) if volume_name_parameters: results_task.add_pod_annotation( "kubeflow-kale.org/volume-name-parameters", json.dumps(volume_name_parameters)) if __name__ == "__main__": pipeline_func = auto_generated_pipeline pipeline_filename = pipeline_func.__name__ + '.pipeline.tar.gz' import kfp.compiler as compiler compiler.Compiler().compile(pipeline_func, pipeline_filename) # Get or create an experiment and submit a pipeline run import kfp client = kfp.Client() experiment = client.create_experiment('titanic') # Submit a pipeline run from kale.utils.kfp_utils import generate_run_name run_name = generate_run_name('titanic-ml-gxj28') run_result = client.run_pipeline( experiment.id, run_name, pipeline_filename, {})
apache-2.0
jasontlam/snorkel
snorkel/annotations.py
1
24365
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import * from future.utils import iteritems import numpy as np from pandas import DataFrame, Series import scipy.sparse as sparse from sqlalchemy.sql import bindparam, select from .features import get_span_feats from .models import ( GoldLabel, GoldLabelKey, Label, LabelKey, Feature, FeatureKey, Candidate, Marginal ) from .models.meta import new_sessionmaker from .udf import UDF, UDFRunner from .utils import ( matrix_conflicts, matrix_coverage, matrix_overlaps, matrix_tp, matrix_fp, matrix_fn, matrix_tn ) class csr_AnnotationMatrix(sparse.csr_matrix): """ An extension of the scipy.sparse.csr_matrix class for holding sparse annotation matrices and related helper methods. """ def __init__(self, arg1, **kwargs): # Note: Currently these need to return None if unset, otherwise matrix copy operations break... self.candidate_index = kwargs.pop('candidate_index', None) self.row_index = kwargs.pop('row_index', None) self.annotation_key_cls = kwargs.pop('annotation_key_cls', None) self.key_index = kwargs.pop('key_index', None) self.col_index = kwargs.pop('col_index', None) # Note that scipy relies on the first three letters of the class to define matrix type... super(csr_AnnotationMatrix, self).__init__(arg1, **kwargs) def get_candidate(self, session, i): """Return the Candidate object corresponding to row i""" return session.query(Candidate).filter(Candidate.id == self.row_index[i]).one() def get_row_index(self, candidate): """Return the row index of the Candidate""" return self.candidate_index[candidate.id] def get_key(self, session, j): """Return the AnnotationKey object corresponding to column j""" return session.query(self.annotation_key_cls)\ .filter(self.annotation_key_cls.id == self.col_index[j]).one() def get_col_index(self, key): """Return the cow index of the AnnotationKey""" return self.key_index[key.id] def _get_sliced_indexes(self, s, axis, index, inv_index): """ Remaps the indexes between matrix rows/cols and candidates/keys. Note: This becomes a massive performance bottleneck if not implemented properly, so be careful of changing! """ if isinstance(s, slice): # Check for empty slice if s.start is None and s.stop is None: return index, inv_index else: idxs = np.arange(self.shape[axis])[s] elif isinstance(s, int): idxs = np.array([s]) else: # s is an array of ints idxs = s # If s is the entire slice, skip the remapping step if np.array_equal(idxs, list(range(len(idxs)))): return index, inv_index index_new, inv_index_new = {}, {} for i_new, i in enumerate(idxs): k = index[i] index_new[i_new] = k inv_index_new[k] = i_new return index_new, inv_index_new def __getitem__(self, key): X = super(csr_AnnotationMatrix, self).__getitem__(key) # If X is an integer or float value, just return it if type(X) in [int, float] or issubclass(type(X), np.integer)\ or issubclass(type(X), np.float): return X # If X is a matrix, make sure it stays a csr_AnnotationMatrix elif not isinstance(X, csr_AnnotationMatrix): X = csr_AnnotationMatrix(X) # X must be a matrix, so update appropriate csr_AnnotationMatrix fields X.annotation_key_cls = self.annotation_key_cls row_slice, col_slice = self._unpack_index(key) X.row_index, X.candidate_index = self._get_sliced_indexes( row_slice, 0, self.row_index, self.candidate_index) X.col_index, X.key_index = self._get_sliced_indexes( col_slice, 1, self.col_index, self.key_index) return X def stats(self): """Return summary stats about the annotations""" raise NotImplementedError() try: class csr_LabelMatrix(csr_AnnotationMatrix): def lf_stats(self, session, labels=None, est_accs=None): """Returns a pandas DataFrame with the LFs and various per-LF statistics""" lf_names = [self.get_key(session, j).name for j in range(self.shape[1])] # Default LF stats col_names = ['j', 'Coverage', 'Overlaps', 'Conflicts'] d = { 'j' : list(range(self.shape[1])), 'Coverage' : Series(data=matrix_coverage(self), index=lf_names), 'Overlaps' : Series(data=matrix_overlaps(self), index=lf_names), 'Conflicts' : Series(data=matrix_conflicts(self), index=lf_names) } if labels is not None: col_names.extend(['TP', 'FP', 'FN', 'TN', 'Empirical Acc.']) ls = np.ravel(labels.todense() if sparse.issparse(labels) else labels) tp = matrix_tp(self, ls) fp = matrix_fp(self, ls) fn = matrix_fn(self, ls) tn = matrix_tn(self, ls) ac = (tp+tn) / (tp+tn+fp+fn) d['Empirical Acc.'] = Series(data=ac, index=lf_names) d['TP'] = Series(data=tp, index=lf_names) d['FP'] = Series(data=fp, index=lf_names) d['FN'] = Series(data=fn, index=lf_names) d['TN'] = Series(data=tn, index=lf_names) if est_accs is not None: col_names.append('Learned Acc.') d['Learned Acc.'] = est_accs d['Learned Acc.'].index = lf_names return DataFrame(data=d, index=lf_names)[col_names] # This is a hack for getting the documentation to build... except: class csr_LabelMatrix(object): def lf_stats(self, session, labels=None, est_accs=None): return None class Annotator(UDFRunner): """Abstract class for annotating candidates and persisting these annotations to DB""" def __init__(self, annotation_class, annotation_key_class, f_gen): self.annotation_class = annotation_class self.annotation_key_class = annotation_key_class super(Annotator, self).__init__(AnnotatorUDF, annotation_class=annotation_class, annotation_key_class=annotation_key_class, f_gen=f_gen) def apply(self, split=0, key_group=0, replace_key_set=True, cids_query=None, **kwargs): # If we are replacing the key set, make sure the reducer key id cache is cleared! if replace_key_set: self.reducer.key_cache = {} # Get the cids based on the split, and also the count SnorkelSession = new_sessionmaker() session = SnorkelSession() cids_query = cids_query or session.query(Candidate.id)\ .filter(Candidate.split == split) # Note: In the current UDFRunner implementation, we load all these into memory and fill a # multiprocessing JoinableQueue with them before starting... so might as well load them here and pass in. # Also, if we try to pass in a query iterator instead, with AUTOCOMMIT on, we get a TXN error... cids = cids_query.all() cids_count = len(cids) # Run the Annotator super(Annotator, self).apply(cids, split=split, key_group=key_group, replace_key_set=replace_key_set, cids_query=cids_query, count=cids_count, **kwargs) # Load the matrix return self.load_matrix(session, split=split, cids_query=cids_query, key_group=key_group) def clear(self, session, split=0, key_group=0, replace_key_set=True, cids_query=None, **kwargs): """ Deletes the Annotations for the Candidates in the given split. If replace_key_set=True, deletes *all* Annotations (of this Annotation sub-class) and also deletes all AnnotationKeys (of this sub-class) """ query = session.query(self.annotation_class) # If replace_key_set=False, then we just delete the annotations for candidates in our split if not replace_key_set: sub_query = cids_query or session.query(Candidate.id)\ .filter(Candidate.split == split) sub_query = sub_query.subquery() query = query.filter(self.annotation_class.candidate_id.in_(sub_query)) query.delete(synchronize_session='fetch') # If we are creating a new key set, delete all old annotation keys if replace_key_set: query = session.query(self.annotation_key_class) query = query.filter(self.annotation_key_class.group == key_group) query.delete(synchronize_session='fetch') def apply_existing(self, split=0, key_group=0, cids_query=None, **kwargs): """Alias for apply that emphasizes we are using an existing AnnotatorKey set.""" return self.apply(split=split, key_group=key_group, replace_key_set=False, cids_query=cids_query, **kwargs) def load_matrix(self, session, split=0, key_group=0, cids_query=None, **kwargs): raise NotImplementedError() class AnnotatorUDF(UDF): def __init__(self, annotation_class, annotation_key_class, f_gen, **kwargs): self.annotation_class = annotation_class self.annotation_key_class = annotation_key_class # AnnotatorUDF relies on a *generator function* which yields annotations # given a candidate input # NB: inspect.isgeneratorfunction is not sufficient to check if f_ger # is a generator (does not work with fns that wrap gen, e.g. partial) # So no check here at the moment... self.anno_generator = f_gen # For caching key ids during the reduce step self.key_cache = {} super(AnnotatorUDF, self).__init__(**kwargs) def apply(self, cid, **kwargs): """ Applies a given function to a Candidate, yielding a set of Annotations as key_name, value pairs Note: Accepts a candidate _id_ as argument, because of issues with putting Candidate subclasses into Queues (can't pickle...) """ seen = set() cid = cid[0] c = self.session.query(Candidate).filter(Candidate.id == cid).one() for key_name, value in self.anno_generator(c): # Note: Make sure no duplicates emitted here! if (cid, key_name) not in seen: seen.add((cid, key_name)) yield cid, key_name, value def reduce(self, y, clear, key_group, replace_key_set, **kwargs): """ Inserts Annotations into the database. For Annotations with unseen AnnotationKeys (in key_group, if not None), either adds these AnnotationKeys if create_new_keyset is True, else skips these Annotations. """ cid, key_name, value = y # Prepares queries # Annoation updating only needs to be done if clear=False if not clear: anno_update_query = self.annotation_class.__table__.update() anno_update_query = anno_update_query.where(self.annotation_class.candidate_id == bindparam('cid')) anno_update_query = anno_update_query.where(self.annotation_class.key_id == bindparam('kid')) anno_update_query = anno_update_query.values(value=bindparam('value')) # We only need to insert AnnotationKeys if replace_key_set=True # Note that in current configuration, we never update AnnotationKeys! if replace_key_set: key_insert_query = self.annotation_key_class.__table__.insert() # If we are replacing the AnnotationKeys (replace_key_set=True), then we assume they will # all have been handled by *this* reduce thread, and hence be in the cache already # So we only need key select queries if replace_key_set=False else: key_select_query = select([self.annotation_key_class.id])\ .where(self.annotation_key_class.name == bindparam('name')) if key_group is not None: key_select_query = key_select_query.where(self.annotation_key_class.group == key_group) anno_insert_query = self.annotation_class.__table__.insert() # Check if the AnnotationKey already exists, and gets its id key_id = None if key_name in self.key_cache: key_id = self.key_cache[key_name] else: key_args = {'name': key_name, 'group': key_group} if key_group else {'name': key_name} # If we are replacing the AnnotationKeys (replace_key_set=True), then we assume they will # all have been handled by *this* reduce thread, and hence be in the cache already if not replace_key_set: key_id = self.session.execute(key_select_query, key_args).first() # Key not in cache but exists in DB; add to cache if key_id is not None: key_id = key_id[0] self.key_cache[key_name] = key_id # Key not in cache or DB; add to both if create_new_keyset = True elif replace_key_set: key_id = self.session.execute(key_insert_query, key_args).inserted_primary_key[0] self.key_cache[key_name] = key_id # If AnnotationKey does not exist and create_new_keyset = False, skip if key_id is not None: # Updates the Annotation, assuming one might already exist, if try_update = True if not clear: res = self.session.execute(anno_update_query, {'cid': cid, 'kid': key_id, 'value': value}) # If Annotation does not exist, insert if (clear or res.rowcount == 0) and value != 0: self.session.execute(anno_insert_query, {'candidate_id': cid, 'key_id': key_id, 'value': value}) def load_matrix(matrix_class, annotation_key_class, annotation_class, session, split=0, cids_query=None, key_group=0, key_names=None, zero_one=False, load_as_array=False): """ Returns the annotations corresponding to a split of candidates with N members and an AnnotationKey group with M distinct keys as an N x M CSR sparse matrix. """ cid_query = cids_query or session.query(Candidate.id)\ .filter(Candidate.split == split) cid_query = cid_query.order_by(Candidate.id) keys_query = session.query(annotation_key_class.id) keys_query = keys_query.filter(annotation_key_class.group == key_group) if key_names is not None: keys_query = keys_query.filter(annotation_key_class.name.in_(frozenset(key_names))) keys_query = keys_query.order_by(annotation_key_class.id) # First, we query to construct the row index map cid_to_row = {} row_to_cid = {} for cid, in cid_query.all(): if cid not in cid_to_row: j = len(cid_to_row) # Create both mappings cid_to_row[cid] = j row_to_cid[j] = cid # Second, we query to construct the column index map kid_to_col = {} col_to_kid = {} for kid, in keys_query.all(): if kid not in kid_to_col: j = len(kid_to_col) # Create both mappings kid_to_col[kid] = j col_to_kid[j] = kid # Create sparse matrix in COO format for incremental construction row = [] columns = [] data = [] # Rely on the core for fast iteration annot_select_query = annotation_class.__table__.select() # Iteratively construct row index and output sparse matrix # Cycles through the entire table to load the data. # Perfornamce may slow down based on table size; however, negligible since # it takes 8min to go throuh 245M rows (pretty fast). for res in session.execute(annot_select_query): # NOTE: The order of return seems to be switched in Python 3??? # Either way, make sure the order is set here explicitly! cid, kid, val = res.candidate_id, res.key_id, res.value if cid in cid_to_row and kid in kid_to_col: # Optionally restricts val range to {0,1}, mapping -1 -> 0 if zero_one: val = 1 if val == 1 else 0 row.append(cid_to_row[cid]) columns.append(kid_to_col[kid]) data.append(int(val)) X = sparse.coo_matrix((data, (row, columns)), shape=(len(cid_to_row), len(kid_to_col))) # Return as an AnnotationMatrix Xr = matrix_class(X, candidate_index=cid_to_row, row_index=row_to_cid, annotation_key_cls=annotation_key_class, key_index=kid_to_col, col_index=col_to_kid) return np.squeeze(Xr.toarray()) if load_as_array else Xr def load_label_matrix(session, **kwargs): return load_matrix(csr_LabelMatrix, LabelKey, Label, session, **kwargs) def load_feature_matrix(session, **kwargs): return load_matrix(csr_AnnotationMatrix, FeatureKey, Feature, session, **kwargs) def load_gold_labels(session, annotator_name, **kwargs): return load_matrix(csr_LabelMatrix, GoldLabelKey, GoldLabel, session, key_names=[annotator_name], **kwargs) class LabelAnnotator(Annotator): """Apply labeling functions to the candidates, generating Label annotations :param lfs: A _list_ of labeling functions (LFs) """ def __init__(self, lfs=None, label_generator=None): if lfs is not None: labels = lambda c : [(lf.__name__, lf(c)) for lf in lfs] elif label_generator is not None: labels = lambda c : label_generator(c) else: raise ValueError("Must provide lfs or label_generator kwarg.") # Convert lfs to a generator function # In particular, catch verbose values and convert to integer ones def f_gen(c): for lf_key, label in labels(c): # Note: We assume if the LF output is an int, it is already # mapped correctly if isinstance(label, int): yield lf_key, label # None is a protected LF output value corresponding to 0, # representing LF abstaining elif label is None: yield lf_key, 0 elif label in c.values: if c.cardinality > 2: yield lf_key, c.values.index(label) + 1 # Note: Would be nice to not special-case here, but for # consistency we leave binary LF range as {-1,0,1} else: val = 1 if c.values.index(label) == 0 else -1 yield lf_key, val else: raise ValueError(""" Unable to parse label with value %s for candidate with values %s""" % (label, c.values)) super(LabelAnnotator, self).__init__(Label, LabelKey, f_gen) def load_matrix(self, session, **kwargs): return load_label_matrix(session, **kwargs) class FeatureAnnotator(Annotator): """Apply feature generators to the candidates, generating Feature annotations""" def __init__(self, f=get_span_feats): super(FeatureAnnotator, self).__init__(Feature, FeatureKey, f) def load_matrix(self, session, **kwargs): return load_feature_matrix(session, **kwargs) def save_marginals(session, X, marginals, training=True): """Save marginal probabilities for a set of Candidates to db. :param X: Either an M x N csr_AnnotationMatrix-class matrix, where M is number of candidates, N number of LFs/features; OR a list of arbitrary objects with candidate ids accessible via a .id attrib :param marginals: A dense M x K matrix of marginal probabilities, where K is the cardinality of the candidates, OR a M-dim list/array if K=2. :param training: If True, these are training marginals / labels; else they are saved as end model predictions. Note: The marginals for k=0 are not stored, only for k = 1,...,K """ # Make sure that we are working with a numpy array try: shape = marginals.shape except: marginals = np.array(marginals) shape = marginals.shape # Handle binary input as M x 1-dim array; assume elements represent # poksitive (k=1) class values if len(shape) == 1: marginals = np.vstack([1-marginals, marginals]).T # Only add values for classes k=1,...,K marginal_tuples = [] for i in range(shape[0]): for k in range(1, shape[1] if len(shape) > 1 else 2): if marginals[i, k] > 0: marginal_tuples.append((i, k, marginals[i, k])) # NOTE: This will delete all existing marginals of type `training` session.query(Marginal).filter(Marginal.training == training).\ delete(synchronize_session='fetch') # Prepare bulk INSERT query q = Marginal.__table__.insert() # Check whether X is an AnnotationMatrix or not anno_matrix = isinstance(X, csr_AnnotationMatrix) if not anno_matrix: X = list(X) # Prepare values insert_vals = [] for i, k, p in marginal_tuples: cid = X.get_candidate(session, i).id if anno_matrix else X[i].id insert_vals.append({ 'candidate_id': cid, 'training': training, 'value': k, # We cast p in case its a numpy type, which psycopg2 does not handle 'probability': float(p) }) # Execute update session.execute(q, insert_vals) session.commit() print("Saved %s marginals" % len(marginals)) def load_marginals(session, X=None, split=0, cids_query=None, training=True): """Load the marginal probs. for a given split of Candidates""" # For candidate ids subquery cids_query = cids_query or session.query(Candidate.id) \ .filter(Candidate.split == split) # Ensure ordering by CID cids_query = cids_query.order_by(Candidate.id) cids_sub_query = cids_query.subquery('cids') # Load marginal tuples from db marginal_tuples = session.query(Marginal.candidate_id, Marginal.value, Marginal.probability) \ .filter(Marginal.candidate_id == cids_sub_query.c.id) \ .filter(Marginal.training == training) \ .all() # If an AnnotationMatrix or list of candidates X is provided, we make sure # that the returned marginals are collated with X. if X is not None: # For now, handle feature matrix vs. list of objects with try / except # Handle AnnotationMatrix try: cardinality = X.get_candidate(session, 0).cardinality marginals = np.zeros((X.shape[0], cardinality)) cid_map = X.candidate_index # Handle list of Candidates except: cardinality = X[0].cardinality marginals = np.zeros((len(X), cardinality)) cid_map = dict([(x.id, i) for i, x in enumerate(X)]) # Otherwise if X is not provided, we sort by candidate id, using the # cids_query from above else: cardinality = session.query(Candidate) \ .get(marginal_tuples[0][0]).cardinality marginals = np.zeros((cids_query.count(), cardinality)) cid_map = dict([(cid, i) for i, (cid,) in enumerate(cids_query.all())]) # Assemble the marginals matrix according to the candidate index of X for cid, k, p in marginal_tuples: marginals[cid_map[cid], k] = p # Add first column if k > 2, else ravel if cardinality > 2: row_sums = marginals.sum(axis=1) for i in range(marginals.shape[0]): marginals[i, 0] = 1 - row_sums[i] else: marginals = np.ravel(marginals[:, 1]) return marginals
apache-2.0
GuessWhoSamFoo/pandas
pandas/tests/util/test_deprecate_kwarg.py
2
2080
# -*- coding: utf-8 -*- import pytest from pandas.util._decorators import deprecate_kwarg import pandas.util.testing as tm @deprecate_kwarg("old", "new") def _f1(new=False): return new _f2_mappings = {"yes": True, "no": False} @deprecate_kwarg("old", "new", _f2_mappings) def _f2(new=False): return new def _f3_mapping(x): return x + 1 @deprecate_kwarg("old", "new", _f3_mapping) def _f3(new=0): return new @pytest.mark.parametrize("key,klass", [ ("old", FutureWarning), ("new", None) ]) def test_deprecate_kwarg(key, klass): x = 78 with tm.assert_produces_warning(klass): assert _f1(**{key: x}) == x @pytest.mark.parametrize("key", list(_f2_mappings.keys())) def test_dict_deprecate_kwarg(key): with tm.assert_produces_warning(FutureWarning): assert _f2(old=key) == _f2_mappings[key] @pytest.mark.parametrize("key", ["bogus", 12345, -1.23]) def test_missing_deprecate_kwarg(key): with tm.assert_produces_warning(FutureWarning): assert _f2(old=key) == key @pytest.mark.parametrize("x", [1, -1.4, 0]) def test_callable_deprecate_kwarg(x): with tm.assert_produces_warning(FutureWarning): assert _f3(old=x) == _f3_mapping(x) def test_callable_deprecate_kwarg_fail(): msg = "((can only|cannot) concatenate)|(must be str)|(Can't convert)" with pytest.raises(TypeError, match=msg): _f3(old="hello") def test_bad_deprecate_kwarg(): msg = "mapping from old to new argument values must be dict or callable!" with pytest.raises(TypeError, match=msg): @deprecate_kwarg("old", "new", 0) def f4(new=None): return new @deprecate_kwarg("old", None) def _f4(old=True, unchanged=True): return old, unchanged @pytest.mark.parametrize("key", ["old", "unchanged"]) def test_deprecate_keyword(key): x = 9 if key == "old": klass = FutureWarning expected = (x, True) else: klass = None expected = (True, x) with tm.assert_produces_warning(klass): assert _f4(**{key: x}) == expected
bsd-3-clause
mjgrav2001/scikit-learn
examples/svm/plot_iris.py
225
3252
""" ================================================== Plot different SVM classifiers in the iris dataset ================================================== Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2 features of this dataset: - Sepal length - Sepal width This example shows how to plot the decision surface for four SVM classifiers with different kernels. The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly different decision boundaries. This can be a consequence of the following differences: - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the regular hinge loss. - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while ``SVC`` uses the One-vs-One multiclass reduction. Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models (polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind of kernel and its parameters. .. NOTE:: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding of their respective expressive power, be aware that those intuitions don't always generalize to more realistic high-dimensional problems. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors C = 1.0 # SVM regularization parameter svc = svm.SVC(kernel='linear', C=C).fit(X, y) rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C).fit(X, y) poly_svc = svm.SVC(kernel='poly', degree=3, C=C).fit(X, y) lin_svc = svm.LinearSVC(C=C).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['SVC with linear kernel', 'LinearSVC (linear kernel)', 'SVC with RBF kernel', 'SVC with polynomial (degree 3) kernel'] for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
bsd-3-clause
dcprojects/CoolProp
Web/scripts/fluid_properties.REFPROPcomparison.py
3
3518
from __future__ import print_function import os.path import CoolProp, CoolProp.CoolProp as CP import subprocess import sys web_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) root_dir = os.path.abspath(os.path.join(web_dir, '..')) fluids_path = os.path.join(web_dir,'fluid_properties','fluids') plots_path = os.path.join(web_dir,'fluid_properties','fluids','REFPROPplots') template = """ from __future__ import division, print_function import matplotlib matplotlib.use('Agg') # Use a non-GUI backend import numpy as np, matplotlib.pyplot as plt import CoolProp CP = CoolProp.CoolProp fluid = '{fluid:s}' fig, ax = plt.subplots() plt.ylim(10**-18, 10**2) not_in_REFPROP = False try: if CP.get_fluid_param_string(fluid, "REFPROP_name") == 'N/A': not_in_REFPROP = True else: RPfluid = 'REFPROP::' + CP.get_fluid_param_string(fluid, "REFPROP_name") CAS = CP.get_fluid_param_string(RPfluid, "CAS") except (RuntimeError,ValueError) as E: not_in_REFPROP = True if not_in_REFPROP: ax.set_xlim(0,1) xlims = ax.get_xlim() ylims = ax.get_ylim() ax.plot([xlims[0],xlims[1]],[ylims[0],ylims[1]],lw = 3,c = 'r') ax.plot([xlims[0],xlims[1]],[ylims[1],ylims[0]],lw = 3,c = 'r') x = 0.5 y = (ylims[0]*ylims[1])**0.5 ax.text(x,y,'Not\\nin\\nREFPROP',ha='center',va ='center',bbox = dict(fc = 'white')) else: RPfluid = 'REFPROP::' + CP.get_fluid_param_string(fluid, "REFPROP_name") symbols = ["o", "v", "^", "<", ">","8", "s","p","*","h","H","+","x"] T = np.min([1.01*CP.PropsSI(fluid, 'Tcrit'),CP.PropsSI(fluid, 'Tmax')]) rhoc = CP.PropsSI(fluid, 'rhomolar_critical') # Normal properties rho = np.linspace(1e-10, 2*rhoc) normalkeys = ['P','V','L','Cpmolar','Cvmolar'] RPdata = CP.PropsSI(normalkeys, 'T', T, 'Dmolar', rho, RPfluid) CPdata = CP.PropsSI(normalkeys, 'T', T, 'Dmolar', rho, fluid) for i, key in enumerate(normalkeys): plt.plot(rho/rhoc, np.abs(RPdata[:,i]/CPdata[:,i]-1)*100, lw = 0, label = key, marker = symbols[i%len(symbols)]) # Special properties rho = np.linspace(1e-10, 2*rhoc) keys = ['Hmolar','Smolar'] for i, key in enumerate(keys): RPdata = CP.PropsSI(key, 'T', T, 'Dmolar', rho, RPfluid) - CP.PropsSI(key, 'T', T, 'Dmolar', 1, RPfluid) CPdata = CP.PropsSI(key, 'T', T, 'Dmolar', rho, fluid) - CP.PropsSI(key, 'T', T, 'Dmolar', 1, fluid) plt.plot(rho/rhoc, np.abs(RPdata/CPdata-1)*100, lw = 0, label = key, marker = symbols[(i+len(normalkeys))%len(symbols)]) ax.legend(loc='best', ncol = 2) plt.xlabel(r'Reduced density [$\\rho/\\rho_c$]') plt.ylabel(r'Relative deviation $(y_{{CP}}/y_{{RP}}-1)\\times 100$ [%]') ax.set_yscale('log') plt.title('Comparison between CoolProp and REFPROP({rpv:s}) along T = 1.01*Tc') plt.savefig(fluid+'.png', dpi = 100) plt.savefig(fluid+'.pdf') plt.close('all') """ if not os.path.exists(plots_path): os.makedirs(plots_path) with open(os.path.join(plots_path, 'matplotlibrc'), 'w') as fp: fp.write("backend : agg\n") for fluid in CoolProp.__fluids__: print('fluid:', fluid) file_string = template.format(fluid = fluid, rpv = CP.get_global_param_string("REFPROP_version")) file_path = os.path.join(plots_path, fluid + '.py') print('Writing to', file_path) with open(file_path, 'w') as fp: fp.write(file_string) subprocess.check_call('python "' + fluid + '.py"', cwd = plots_path, stdout = sys.stdout, stderr = sys.stderr, shell = True)
mit
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/learn_io/io_test.py
20
5003
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tf.learn IO operation tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import tensorflow as tf from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.learn_io import * # pylint: enable=wildcard-import class IOTest(tf.test.TestCase): # pylint: disable=undefined-variable """tf.learn IO operation tests.""" def test_pandas_dataframe(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.DataFrame(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels[0], list(classifier.predict(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) else: print("No pandas installed. pandas-related tests are skipped.") def test_pandas_series(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.Series(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels, list(classifier.predict(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) def test_string_data_formats(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top with self.assertRaises(ValueError): learn.io.extract_pandas_data(pd.DataFrame({"Test": ["A", "B"]})) with self.assertRaises(ValueError): learn.io.extract_pandas_labels(pd.DataFrame({"Test": ["A", "B"]})) def test_dask_io(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top # test dask.dataframe df = pd.DataFrame( dict(a=list("aabbcc"), b=list(range(6))), index=pd.date_range(start="20100101", periods=6)) ddf = dd.from_pandas(df, npartitions=3) extracted_ddf = extract_dask_data(ddf) self.assertEqual( extracted_ddf.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_ddf.divisions)) self.assertEqual( extracted_ddf.columns.tolist(), ["a", "b"], "Failed with columns = {0}".format(extracted_ddf.columns)) # test dask.series labels = ddf["a"] extracted_labels = extract_dask_labels(labels) self.assertEqual( extracted_labels.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_labels.divisions)) # labels should only have one column with self.assertRaises(ValueError): extract_dask_labels(ddf) else: print("No dask installed. dask-related tests are skipped.") def test_dask_iris_classification(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) data = dd.from_pandas(data, npartitions=2) labels = pd.DataFrame(iris.target) labels = dd.from_pandas(labels, npartitions=2) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) predictions = data.map_partitions(classifier.predict).compute() score = accuracy_score(labels.compute(), predictions) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) if __name__ == "__main__": tf.test.main()
agpl-3.0
TimBizeps/BachelorAP
FP 2018/V51 Operationsverstärker/auswertung/auswertung2.py
1
2529
import matplotlib as mpl mpl.use('pgf') import numpy as np import scipy.constants as const import matplotlib.pyplot as plt from scipy.optimize import curve_fit from uncertainties import ufloat import uncertainties.unumpy as unp from uncertainties.unumpy import (nominal_values as noms, std_devs as stds) mpl.rcParams.update({ 'font.family': 'serif', 'text.usetex': True, 'pgf.rcfonts': False, 'pgf.texsystem': 'lualatex', 'pgf.preamble': r'\usepackage{unicode-math}\usepackage{siunitx}' }) f, Ua = np.genfromtxt('daten2.txt', unpack=True) f2, Ua2 = np.genfromtxt('daten22.txt', unpack=True) #für Fit alle Werte f und Vstrich logarithmieren und in nomalen Plot. Ue = 258 R1 = 468 RN = 996 Vstricheff = Ua/Ue Vstricheff2 = Ua2/Ue Vstrich = Ua[0]/Ue V = 1/((1/Vstrich)-(R1/RN)) print('V = ', V) Vstrbvg = Vstrich/np.sqrt(2) print('Vstrich = ', Vstrich) #print('Vstricheff = ', Vstricheff) logVstreff = np.log(Vstricheff) logf = np.log(f) logVstreff2 = np.log(Vstricheff2) logf2 = np.log(f2) logVstrich = np.log(Vstrich) logVstrbvg = np.log(Vstrbvg) #print('logVstreff = ', logVstreff) #print('logf = ', logf) #np.savetxt("logdaten2.txt", np.column_stack([logf,logVstreff])) #np.savetxt("logdaten22.txt", np.column_stack([logf2,logVstreff2])) print('logVstrbvg = ', logVstrbvg) def linear(x, m, b): return m*x+b def umkehr(y, m, b): return (y-b)/m #fit mit linearer Funktion für die entsprechenden Werte params, cov = curve_fit(linear, logf2, logVstreff2) errors = np.sqrt(np.diag(cov)) m = params[0] m_err = errors[0] b = params[1] b_err = errors[1] mmit = ufloat(m, m_err) bmit = ufloat(b, b_err) print('m = ', mmit) print('b = ', bmit) #umkehrfunktion mit log Vstrbvg aufrufen => v'g logvg = umkehr(logVstrbvg, mmit, bmit) #print('logvg = ', logvg) vg = unp.exp(logvg) print('vg = ', vg) Vstrmalvg = Vstrich*vg print('Vstrmalvg = ', Vstrmalvg) l = np.linspace(5.5, 7.5, 1000) plt.plot(logf, logVstreff, 'rx', label='doppelt logarithmische Messwerte') plt.plot(logf2, logVstreff2, 'kx', label='für den Fit verwendete Messwerte') plt.plot(l, linear(l,m,b), 'r-', label='Fit') plt.xlabel(r'$\log \nu$') plt.ylabel(r'$\log V^\prime_\text{eff}$') #plt.xlim(,) #plt.ylim(100, 400) plt.axhline(y=logVstrbvg, xmin=0, xmax=1, color='b', ls='-', label=r"$\log\frac{V^\prime}{\sqrt{2}}$", linewidth=1) plt.axhline(y=logVstrich, xmin=0, xmax=1, color='b', ls='--', label=r"$\log V^\prime$", linewidth=1) plt.legend(loc='best') plt.tight_layout() plt.savefig("plot2.pdf") #f_g etwa 775 kHz
gpl-3.0
schoolie/bokeh
bokeh/charts/builders/timeseries_builder.py
6
3961
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the TimeSeries chart, which provides a convenient interface for generating different charts using series-like data by transforming the data to a consistent format and producing renderers. """ # ----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- from __future__ import absolute_import from ..builder import create_and_build from .line_builder import LineBuilder, PointSeriesBuilder from .step_builder import StepBuilder # ----------------------------------------------------------------------------- # Classes and functions # ----------------------------------------------------------------------------- BUILDER_TYPES = { 'line': LineBuilder, 'step': StepBuilder, 'point': PointSeriesBuilder } def TimeSeries(data=None, x=None, y=None, builder_type=LineBuilder, **kws): """ Create a timeseries chart using :class:`LineBuilder <bokeh.charts.builder.line_builder.LineBuilder>` to produce the renderers from the inputs. The timeseries chart acts as a switchboard to produce charts for timeseries data with different glyph representations. Args: data (list(list), numpy.ndarray, pandas.DataFrame, list(pd.Series)): a 2d data source with columns of data for each stepped line. x (str or list(str), optional): specifies variable(s) to use for x axis y (str or list(str), optional): specifies variable(s) to use for y axis builder_type (str or `Builder`, optional): the type of builder to use to produce the renderers. Supported options are 'line', 'step', or 'point'. In addition to the parameters specific to this chart, :ref:`userguide_charts_defaults` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above import pandas as pd from bokeh.charts import TimeSeries, show, output_file from bokeh.layouts import column # read in some stock data from the Yahoo Finance API AAPL = pd.read_csv( "http://ichart.yahoo.com/table.csv?s=AAPL&a=0&b=1&c=2000&d=0&e=1&f=2010", parse_dates=['Date']) MSFT = pd.read_csv( "http://ichart.yahoo.com/table.csv?s=MSFT&a=0&b=1&c=2000&d=0&e=1&f=2010", parse_dates=['Date']) IBM = pd.read_csv( "http://ichart.yahoo.com/table.csv?s=IBM&a=0&b=1&c=2000&d=0&e=1&f=2010", parse_dates=['Date']) data = dict( AAPL=AAPL['Adj Close'], Date=AAPL['Date'], MSFT=MSFT['Adj Close'], IBM=IBM['Adj Close'], ) tsline = TimeSeries(data, x='Date', y=['IBM', 'MSFT', 'AAPL'], color=['IBM', 'MSFT', 'AAPL'], dash=['IBM', 'MSFT', 'AAPL'], title="Timeseries", ylabel='Stock Prices', legend=True) tspoint = TimeSeries(data, x='Date', y=['IBM', 'MSFT', 'AAPL'], color=['IBM', 'MSFT', 'AAPL'], dash=['IBM', 'MSFT', 'AAPL'], builder_type='point', title="Timeseries Points", ylabel='Stock Prices', legend=True) output_file("timeseries.html") show(column(tsline, tspoint)) """ builder_type = BUILDER_TYPES.get(builder_type, builder_type) kws['x'] = x kws['y'] = y return create_and_build(builder_type, data, **kws)
bsd-3-clause
bikash/pyhsmm
util/testing.py
1
3632
from __future__ import division import numpy as np from numpy import newaxis as na from matplotlib import pyplot as plt import stats, general ######################### # statistical testing # ######################### ### graphical def populations_eq_quantile_plot(pop1, pop2, fig=None, percentilecutoff=5): pop1, pop2 = stats.flattendata(pop1), stats.flattendata(pop2) assert pop1.ndim == pop2.ndim == 1 or \ (pop1.ndim == pop2.ndim == 2 and pop1.shape[1] == pop2.shape[1]), \ 'populations must have consistent dimensions' D = pop1.shape[1] if pop1.ndim == 2 else 1 # we want to have the same number of samples n1, n2 = pop1.shape[0], pop2.shape[0] if n1 != n2: # subsample, since interpolation is dangerous if n1 < n2: pop1, pop2 = pop2, pop1 np.random.shuffle(pop1) pop1 = pop1[:pop2.shape[0]] def plot_1d_scaled_quantiles(p1,p2,plot_midline=True): # scaled quantiles so that multiple calls line up p1.sort(), p2.sort() # NOTE: destructive! but that's cool xmin,xmax = general.scoreatpercentile(p1,percentilecutoff), \ general.scoreatpercentile(p1,100-percentilecutoff) ymin,ymax = general.scoreatpercentile(p2,percentilecutoff), \ general.scoreatpercentile(p2,100-percentilecutoff) plt.plot((p1-xmin)/(xmax-xmin),(p2-ymin)/(ymax-ymin)) if plot_midline: plt.plot((0,1),(0,1),'k--') plt.axis((0,1,0,1)) if D == 1: if fig is None: plt.figure() plot_1d_scaled_quantiles(pop1,pop2) else: if fig is None: fig = plt.figure() if not hasattr(fig,'_quantile_test_projs'): firsttime = True randprojs = np.random.randn(D,D) randprojs /= np.sqrt(np.sum(randprojs**2,axis=1))[:,na] projs = np.vstack((np.eye(D),randprojs)) fig._quantile_test_projs = projs else: firsttime = False projs = fig._quantile_test_projs ims1, ims2 = pop1.dot(projs.T), pop2.dot(projs.T) for i, (im1, im2) in enumerate(zip(ims1.T,ims2.T)): plt.subplot(2,D,i) plot_1d_scaled_quantiles(im1,im2,plot_midline=firsttime) ### numerical # NOTE: a random numerical test should be repeated at the OUTERMOST loop (with # exception catching) to see if its failures exceed the number expected # according to the specified pvalue (tests could be repeated via sample # bootstrapping inside the test, but that doesn't work reliably and random tests # should have no problem generating new randomness!) def assert_populations_eq(pop1, pop2): assert_populations_eq_moments(pop1,pop2) and \ assert_populations_eq_komolgorofsmirnov(pop1,pop2) def assert_populations_eq_moments(pop1, pop2, **kwargs): # just first two moments implemented; others are hard to estimate anyway! assert_populations_eq_means(pop1,pop2,**kwargs) and \ assert_populations_eq_variances(pop1,pop2,**kwargs) def assert_populations_eq_means(pop1, pop2, pval=0.05, msg=None): _,p = stats.two_sample_t_statistic(pop1,pop2) if np.any(p < pval): raise AssertionError(msg or "population means might be different at %0.3f" % pval) def assert_populations_eq_variances(pop1, pop2, pval=0.05, msg=None): _,p = stats.f_statistic(pop1, pop2) if np.any(p < pval): raise AssertionError(msg or "population variances might be different at %0.3f" % pval) def assert_populations_eq_komolgorofsmirnov(pop1, pop2, msg=None): raise NotImplementedError # TODO
mit
nck0405/MyOwn
modules/tests/smoke/broken_links.py
16
26739
""" Sahana Eden Test Framework @copyright: 2011-2015 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from time import time try: from cStringIO import StringIO # Faster, where available except: from StringIO import StringIO import sys import socket from tests.web2unittest import Web2UnitTest from gluon import current try: from twill import get_browser from twill import set_output from twill.browser import * except ImportError: raise NameError("Twill not installed") try: import mechanize #from mechanize import BrowserStateError #from mechanize import ControlNotFoundError except ImportError: raise NameError("Mechanize not installed") class BrokenLinkTest(Web2UnitTest): """ Smoke Test, visit every link it can find and report on the outcome """ def __init__(self): Web2UnitTest.__init__(self) self.b = get_browser() self.b_data = StringIO() set_output(self.b_data) self.clearRecord() # This string must exist in the URL for it to be followed # Useful to avoid going to linked sites self.homeURL = self.url # Link used to identify a URL to a ticket self.url_ticket = "/admin/default/ticket/" # Tuple of strings that if in the URL will be ignored # Useful to avoid dynamic URLs that trigger the same functionality self.include_ignore = ("_language=", "logout", "appadmin", "admin", "delete", ) # tuple of strings that should be removed from the URL before storing # Typically this will be some variables passed in via the URL self.strip_url = ("?_next=", ) self.reportOnly = False self.maxDepth = 16 # sanity check self.setThreshold(10) self.setUser("[email protected]/eden") self.total_visited = 0 self.broken_links_count = 0 def clearRecord(self): # the total url links visited self.totalLinks = 0 # The number of unique urls found at depth i, where i is the index self.linkDepth = [] # Dictionary of the parent for each URL self.urlParentList = {} # dictionary of ReportData objects indexed on the url self.results = {} def setReportOnly(self, action): self.reportOnly = action def setDepth(self, depth): self.maxDepth = depth def setUser(self, user): self.credentials = user.split(",") def setThreshold(self, value): value = float(value) self.threshold = value # socket.setdefaulttimeout(value*2) def login(self, credentials): if credentials == "UNAUTHENTICATED": url = "%s/default/user/logout" % self.homeURL self.b.go(url) return True try: (self.user, self.password) = credentials.split("/",1) except: msg = "Unable to split %s into a user name and password" % user self.reporter(msg) return False url = "%s/default/user/login" % self.homeURL self.b.go(url) forms = self.b.get_all_forms() for form in forms: try: if form["_formname"] == "login": self.b._browser.form = form form["email"] = self.user form["password"] = self.password self.b.submit("Login") # If login is successful then should be redirected to the homepage return self.b.get_url()[len(self.homeURL):] == "/default/index" except: # This should be a mechanize.ControlNotFoundError, but # for some unknown reason that isn't caught on Windows or Mac pass return False def addResults2Current(self): ''' Store the count links in gluon.current to be used by HTMLTestRunner for better reporting ''' smoke_results = {} smoke_results['working_links'] = self.total_visited - self.broken_links_count smoke_results['broken_links_count'] = self.broken_links_count current.data['smoke_results'] = smoke_results def runTest(self): """ Test to find all exposed links and check the http code returned. This test doesn't run any javascript so some false positives will be found. The test can also display an histogram depicting the number of links found at each depth. Failure or Success to be shown in the report is checked in addSuccess in TestResult class """ for user in self.credentials: self.clearRecord() if self.login(user): self.reporter("Smoke Test for user %s" % self.user) self.visitLinks() self.report() self.addResults2Current() else: raise Exception("Login Failed") def visitLinks(self): url = self.homeURL + "/default/index" to_visit = [url] start = time() self.total_visited = 0 if not self.reportOnly: for depth in range(self.maxDepth): if len(to_visit) == 0: break self.linkDepth.append(len(to_visit)) self.totalLinks += len(to_visit) visit_start = time() url_visited = "%d urls" % len(to_visit) self.total_visited += len(to_visit) to_visit = self.visit(to_visit, depth) msg = "%.2d Visited %s in %.3f seconds, %d more urls found" % (depth, url_visited, time()-visit_start, len(to_visit)) self.reporter(msg) if self.config.verbose >= 2: if self.config.verbose >= 3: print >> self.stdout if self.stdout.isatty(): # terminal should support colour msg = "%.2d Visited \033[1;32m%s\033[0m in %.3f seconds, \033[1;31m%d\033[0m more urls found" % (depth, url_visited, time()-visit_start, len(to_visit)) print >> self.stdout, msg if len(to_visit) > 0: self.linkDepth.append(len(to_visit)) finish = time() self.reporter("Finished took %.3f seconds" % (finish - start)) def visit(self, url_list, depth): repr_list = [".pdf", ".xls", ".rss", ".kml"] to_visit = [] record_data = self.config.verbose > 0 for visited_url in url_list: index_url = visited_url[len(self.homeURL):] if record_data: if index_url in self.results.keys(): print >> self.stdout, "Warning duplicated url: %s" % index_url self.results[index_url] = ReportData() current_results = self.results[index_url] current_results.depth = depth # Find out if the page can be visited open_novisit = False for repr in repr_list: if repr in index_url: open_novisit = True break try: if open_novisit: action = "open_novisit" else: action = "open" visit_start = time() self.b._journey(action, visited_url) http_code = self.b.get_code() duration = time() - visit_start if record_data: current_results.duration = duration if duration > self.threshold: if self.config.verbose >= 3: print >> self.stdout, "%s took %.3f seconds" % (visited_url, duration) except Exception as e: duration = time() - visit_start import traceback print traceback.format_exc() if record_data: current_results.broken = True current_results.exception = True current_results.duration = duration continue http_code = self.b.get_code() if http_code != 200: if record_data: current_results.broken = True current_results.http_code = http_code elif open_novisit: continue links = [] try: if self.b._browser.viewing_html(): links = self.b._browser.links() else: continue except Exception as e: import traceback print traceback.format_exc() if record_data: current_results.broken = True current_results.exception = True continue for link in (links): url = link.absolute_url if url.find(self.url_ticket) != -1: # A ticket was raised so... # capture the details and add to brokenLinks if record_data: current_results.broken = True current_results.ticket = url break # no need to check any other links on this page if url.find(self.homeURL) == -1: continue ignore_link = False for ignore in self.include_ignore: if url.find(ignore) != -1: ignore_link = True break if ignore_link: continue for strip in self.strip_url: location = url.find(strip) if location != -1: url = url[0:location] short_url = url[len(self.homeURL):] if url not in url_list and \ short_url != "" and \ short_url not in self.results.keys() and \ url not in to_visit: self.urlParentList[short_url] = index_url to_visit.append(url) return to_visit def report(self): self.reporter("%d URLs visited" % self.totalLinks) self.brokenReport() self.timeReport() if self.config.record_timings: if not self.reportOnly: self.record_timings() self.scatterplot() self.depthReport() def record_timings(self): import_error = "" try: import xlrd except: import_error += "ERROR: the xlrd modules is needed to record timings\n" try: import xlwt except: import_error += "ERROR: the xlwt modules is needed to record timings\n" if import_error != "": print >> self.stderr, import_error return rec_time_filename = self.config.record_timings_filename try: workbook = xlrd.open_workbook(filename=rec_time_filename, formatting_info=True) except: workbook = None summary = {} if workbook: summary = self.read_timings_sheet(workbook) if len(summary["date"]) > 100: # Need to rotate the file # 1) make a summary and save this self.report_timings_summary(summary, rec_time_filename) # 2) archive the file from zipfile import ZipFile import os zip_filename = os.path.join(self.config.path, "rec_time.zip") archive = ZipFile(zip_filename, "a") arc_name = "%s-%s.xls" % (rec_time_filename[len(self.config.path):-4], current.request.now.date() ) archive.write(rec_time_filename,arc_name) archive.close() # 3) clear the current file os.unlink(rec_time_filename) summary = {} if "date" not in summary: last_col = 0 summary["date"] = [current.request.now.date()] else: last_col = len(summary["date"]) summary["date"].append(current.request.now.date()) for (url, rd_obj) in self.results.items(): if url not in summary: summary[url] = [] # ensure that the row is as long as the number of dates shortage = last_col - len(summary[url]) if shortage > 0: summary[url] = summary[url] + ['']*shortage summary[url].append((rd_obj.get_duration(), rd_obj.is_broken())) self.write_timings_sheet(summary, rec_time_filename) def read_timings_sheet(self, workbook): """ This will extract all the details from the xls sheet """ sheet = workbook.sheet_by_name("Timings") summary = {} RED = 0x0A num_cells = sheet.ncols summary["date"] = [] for col in range(1, num_cells): summary["date"].append(sheet.cell_value(0, col)) for row in range(1,sheet.nrows): url = sheet.cell_value(row, 0) summary[url] = [] for col in range(1, num_cells): duration = sheet.cell_value(row, col) xf = sheet.cell_xf_index(row, col) bg = workbook.xf_list[xf].background broken = (bg.pattern_colour_index == RED) summary[url].append((duration, broken)) return summary def write_timings_sheet(self, summary, filename=None): import xlwt RED = 0x0A book = xlwt.Workbook(encoding="utf-8") sheet = book.add_sheet("Timings") stylebroken = xlwt.XFStyle() stylebroken.pattern.pattern = stylebroken.pattern.SOLID_PATTERN stylebroken.pattern.pattern_fore_colour = RED col = 1 for date in summary["date"]: sheet.write(0,col,str(date)) col += 1 row = 1 for (url, results) in summary.items(): if url == "date": continue sheet.write(row,0,url) col = 1 for data in results: if len(data) == 2 and data[1]: sheet.write(row,col,data[0],stylebroken) elif len(data) > 0: sheet.write(row,col,data[0]) col += 1 row += 1 if filename: book.save(filename) return book def report_timings_summary(self, summary, summary_file_name = None, mean_threshold = 1): """ This will extract the details from the sheet and optionally save them to a summary file summary: the summary details returned from the spreadsheet (read_timings_sheet) summary_file_name: name of the file to record the summary details (if required) mean_threshold: The minimum number of values required to include the mean in the regression calculations """ import numpy import datetime good_values = [] other_values = [] total_values = [] for date in summary["date"]: good_values.append([]) other_values.append([]) total_values.append([]) for (url,results) in summary.items(): if url == "date": continue else: cnt = 0 for (duration, broken) in results: if duration != "": total_values[cnt].append(duration) if broken: other_values[cnt].append(duration) else: good_values[cnt].append(duration) cnt += 1 # get the number of days each entry is after the first date # and calculate the average, if the average is NAN then ignore both date_summary = [] gv_mean = [] gv_std = [] gv_date = [] cnt = 0 start = datetime.datetime.strptime(summary["date"][0],"%Y-%m-%d") for list in good_values: if len(list) > mean_threshold: mean = numpy.mean(list) std = numpy.std(list) if not numpy.isnan(mean): this_date = datetime.datetime.strptime(summary["date"][cnt],"%Y-%m-%d") date_summary.append((this_date - start).days) gv_mean.append(mean) gv_std.append(std) gv_date.append(summary["date"][cnt]) cnt += 1 # calculate the regression line if len(gv_mean) > 2: (m,b) = numpy.polyfit(date_summary, gv_mean, 1) else: m = b = 0 if summary_file_name != None: book = self.write_timings_sheet(summary) sheet = book.add_sheet("summary") row = 0 for date in gv_date: sheet.write(row,0,str(date)) sheet.write(row,1,gv_mean[row]) row += 1 sheet.write(row,0,"Trend") sheet.write(row,1,m) # Save the details to the summary file book.save(summary_file_name) return (date_summary, gv_mean, gv_std, m, b) def report_model_url(self): print "Report breakdown by module" for (model, value) in self.model_url.items(): print model for ud in value: url = ud[0] depth = ud[1] parent = ud[2] tabs = "\t" * depth print "%s %s-%s (parent url - %s)" % (tabs, depth, url, parent) def brokenReport(self): self.reporter("Broken Links") as_html = current.test_config.html self.broken_links_count = 0 for (url, rd_obj) in self.results.items(): if as_html: print_url = "<a href=%s%s target=\"_blank\">%s</a>" % (self.homeURL, url, url) else: print_url = url if rd_obj.is_broken(): if rd_obj.threw_exception(): msg = "(Exception) %s" % print_url else: http_code = rd_obj.return_http_code() ticket = rd_obj.the_ticket(as_html) try: parent = self.urlParentList[url] if as_html: parent = "<a href=%s%s target=\"_blank\">Parent</a>" % (self.homeURL, parent) except: parent = "unknown" msg = "%3d. (%s - %s) %s called from %s" % (self.broken_links_count + 1, http_code, ticket, print_url, parent ) self.reporter(msg) self.broken_links_count += 1 def timeReport(self): from operator import itemgetter import numpy thresholdLink = {} linktimes = [] for (url, rd_obj) in self.results.items(): duration = rd_obj.get_duration() linktimes.append(duration) if duration > self.threshold: thresholdLink[url] = duration self.reporter("Time Analysis - Links beyond threshold") for (visited_url, duration) in sorted(thresholdLink.iteritems(), key=itemgetter(1), reverse=True): self.reporter( "%s took %.3f seconds" % (visited_url, duration)) self.reporter("Time Analysis - summary") total = len(linktimes) average = numpy.mean(linktimes) std = numpy.std(linktimes) msg = "%s links visited with an average time of %.3f and standard deviation of %.3f" % (total, average, std) self.reporter(msg) def scatterplot(self): """ Method to draw a scatterplot of the average time to download links against time. Add a regression line to show the trend over time. """ try: from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas self.FigureCanvas = FigureCanvas from matplotlib.figure import Figure self.Figure = Figure import numpy except ImportError: return try: import xlrd except: import_error += "ERROR: the xlrd modules is needed to record timings\n" rec_time_filename = self.config.record_timings_filename try: workbook = xlrd.open_workbook(filename=rec_time_filename, formatting_info=True) except: return import numpy # Only include the mean in the regression values if there are at least 10 URL timings summary = self.read_timings_sheet(workbook) (date_summary, gv_mean, gv_std, m, b) = self.report_timings_summary(summary, mean_threshold=10) if len(gv_mean) <= 2: return fig = Figure(figsize=(5, 2.5)) canvas = self.FigureCanvas(fig) ax = fig.add_subplot(111) linear = numpy.poly1d([m,b]) denom = numpy.max(gv_std)/50 size = gv_std/denom ax.scatter(date_summary, gv_mean, marker="d", s=size) ax.plot(date_summary, linear(date_summary), '--r') chart = StringIO() canvas.print_figure(chart) image = chart.getvalue() import base64 base64Img = base64.b64encode(image) image = "<img src=\"data:image/png;base64,%s\">" % base64Img self.reporter("Scatterplot of average link times per successful run") self.reporter(image) self.reporter("The trend line has a current slope of %s" % m) self.reporter("The y-intercept is %s seconds" % b) def depthReport(self): """ Method to draw a histogram of the number of new links discovered at each depth. (i.e. show how many links are required to reach a link) """ try: from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas self.FigureCanvas = FigureCanvas from matplotlib.figure import Figure self.Figure = Figure from numpy import arange except ImportError: return self.reporter("Analysis of link depth") fig = Figure(figsize=(4, 2.5)) # Draw a histogram width = 0.9 rect = [0.12, 0.08, 0.9, 0.85] ax = fig.add_axes(rect) left = arange(len(self.linkDepth)) plot = ax.bar(left, self.linkDepth, width=width) # Add the x axis labels ax.set_xticks(left+(width*0.5)) ax.set_xticklabels(left) chart = StringIO() canvas = self.FigureCanvas(fig) canvas.print_figure(chart) image = chart.getvalue() import base64 base64Img = base64.b64encode(image) image = "<img src=\"data:image/png;base64,%s\">" % base64Img self.reporter(image) class ReportData(): """ Class to hold the data collected from the smoke test ready for reporting Instances of this class will be held in the dictionary results which will be keyed on the url. This way, in an attempt to minimise the memory used, the url doesn't need to be stored in this class. The class will have the following properties broken: boolean exception: boolean http_code: integer ticket: URL of any ticket linked with this url parent: the parent URL of this url depth: how deep is this url duration: how long did it take to get the url """ def is_broken(self): if hasattr(self, "broken"): return self.broken return False def threw_exception(self): if hasattr(self, "exception"): return self.exception return False def return_http_code(self): if hasattr(self, "http_code"): return self.http_code return "-" def the_ticket(self, html): """ Should only have a ticket if it is broken, but won't always have a ticket to display. """ if hasattr(self, "ticket"): if html: return "<a href=%s target=\"_blank\">Ticket</a>" % (self.ticket) else: return "Ticket: %s" % (self.ticket) return "no ticket" def get_parent(self): if hasattr(self, "parent"): return self.parent return "" def get_depth(self): if hasattr(self, "depth"): return self.depth return 0 def get_duration(self): if hasattr(self, "duration"): return self.duration return 0
mit
hitszxp/scikit-learn
examples/manifold/plot_compare_methods.py
259
4031
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`example_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) except: ax = fig.add_subplot(251, projection='3d') plt.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(250) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
draperjames/bokeh
examples/howto/interactive_bubble/gapminder.py
3
4218
import io from jinja2 import Template import pandas as pd from bokeh.core.properties import field from bokeh.embed import file_html from bokeh.layouts import column from bokeh.models import ( ColumnDataSource, Plot, Circle, Range1d, LinearAxis, HoverTool, Text, SingleIntervalTicker, CustomJS, Slider, CategoricalColorMapper, Legend, LegendItem, ) from bokeh.models.annotations import Title from bokeh.palettes import Spectral6 from bokeh.resources import JSResources from bokeh.util.browser import view from data import process_data fertility_df, life_expectancy_df, population_df_size, regions_df, years, regions_list = process_data() sources = {} region_name = regions_df.Group region_name.name = 'region' for year in years: fertility = fertility_df[year] fertility.name = 'fertility' life = life_expectancy_df[year] life.name = 'life' population = population_df_size[year] population.name = 'population' new_df = pd.concat([fertility, life, population, region_name], axis=1) sources['_' + str(year)] = ColumnDataSource(new_df) dictionary_of_sources = dict(zip([x for x in years], ['_%s' % x for x in years])) js_source_array = str(dictionary_of_sources).replace("'", "") xdr = Range1d(1, 9) ydr = Range1d(20, 100) plot = Plot( x_range=xdr, y_range=ydr, title=Title(text=''), plot_width=800, plot_height=400, outline_line_color=None, toolbar_location=None, min_border=20, ) AXIS_FORMATS = dict( minor_tick_in=None, minor_tick_out=None, major_tick_in=None, major_label_text_font_size="10pt", major_label_text_font_style="normal", axis_label_text_font_size="10pt", axis_line_color='#AAAAAA', major_tick_line_color='#AAAAAA', major_label_text_color='#666666', major_tick_line_cap="round", axis_line_cap="round", axis_line_width=1, major_tick_line_width=1, ) xaxis = LinearAxis(ticker=SingleIntervalTicker(interval=1), axis_label="Children per woman (total fertility)", **AXIS_FORMATS) yaxis = LinearAxis(ticker=SingleIntervalTicker(interval=20), axis_label="Life expectancy at birth (years)", **AXIS_FORMATS) plot.add_layout(xaxis, 'below') plot.add_layout(yaxis, 'left') # ### Add the background year text # We add this first so it is below all the other glyphs text_source = ColumnDataSource({'year': ['%s' % years[0]]}) text = Text(x=2, y=35, text='year', text_font_size='150pt', text_color='#EEEEEE') plot.add_glyph(text_source, text) # Add the circle color_mapper = CategoricalColorMapper(palette=Spectral6, factors=regions_list) renderer_source = sources['_%s' % years[0]] circle_glyph = Circle( x='fertility', y='life', size='population', fill_color={'field': 'region', 'transform': color_mapper}, fill_alpha=0.8, line_color='#7c7e71', line_width=0.5, line_alpha=0.5) circle_renderer = plot.add_glyph(renderer_source, circle_glyph) # Add the hover (only against the circle and not other plot elements) tooltips = "@index" plot.add_tools(HoverTool(tooltips=tooltips, renderers=[circle_renderer])) plot.add_layout(Legend(items=[LegendItem(label=field('region'), renderers=[circle_renderer])])) # Add the slider code = """ var year = slider.value, sources = %s, new_source_data = sources[year].data; renderer_source.data = new_source_data; text_source.data = {'year': [String(year)]}; """ % js_source_array callback = CustomJS(args=sources, code=code) slider = Slider(start=years[0], end=years[-1], value=1, step=1, title="Year", callback=callback, name='testy') callback.args["renderer_source"] = renderer_source callback.args["slider"] = slider callback.args["text_source"] = text_source # Stick the plot and the slider together layout = column(plot, slider) # Open our custom template with open('gapminder_template.jinja', 'r') as f: template = Template(f.read()) # Use inline resources, render the html and open js_resources = JSResources(mode='inline') title = "Bokeh - Gapminder Bubble Plot" html = file_html(layout, resources=(js_resources, None), title=title, template=template) output_file = 'gapminder.html' with io.open(output_file, mode='w', encoding='utf-8') as f: f.write(html) view(output_file)
bsd-3-clause
scotgl/sonify
ver_dev/pichart.py
6
1425
from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets from IPython.display import display from gtts import gTTS import os import numpy as np import matplotlib.pyplot as plt #%matplotlib inline import pandas as pd import ctcsound pan = 0 index = 10 cs = ctcsound.Csound() csd = ''' <CsoundSynthesizer> <CsOptions> -odac -d </CsOptions> <CsInstruments> sr = 44100 ksmps = 32 nchnls = 2 0dbfs = 1 instr 1 ;aMod1 poscil 200, 700, 1 aMod1 poscil p4, p5, 1 ; p4 = amp1, p5 = f1, p6 = amp2, p7 = f2 ;aMod2 poscil 1800, 290, 1 aMod2 poscil p6, p7, 1 kenv linen p9 , 0.3 , p3, p9 aSig poscil kenv, 440+aMod1+aMod2, 1 outs aSig*(1-p8), aSig*p8 endin </CsInstruments> <CsScore> f 0 14400 f 1 0 1024 10 1 </CsScore> </CsoundSynthesizer> ''' cs.compileCsdText(csd) cs.start() pt = ctcsound.CsoundPerformanceThread(cs.csound()) pt.play() def pan_sonify(percentage): global index index = percentage in_min = 10 in_max = 100 out_min=690 out_max = 710 tts = gTTS(text=(str(index)+'percent'), lang='en') tts.save("num.mp3") os.system("afplay num.mp3") if (index>50): pan = 1 if (index<50): pan = 0 if (index==50): pan = 0.5 freq = (index - in_min) * (out_max - out_min) / (in_max - in_min) + out_min print(freq) pt.scoreEvent(False, 'i', (1, 0, 4, 200, 700, 200, freq, pan, 0.5))
gpl-3.0
awohns/selection
python_lib/lib/python3.4/site-packages/numpy/lib/npyio.py
23
73862
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter, index as opindex import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode, is_pathlib_path ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(file, *args, **kwargs): """ Create a ZipFile. Allows for Zip64, and the `file` argument can accept file, str, or pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile constructor. """ if is_pathlib_path(file): file = str(file) import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(file, *args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object, string, or pathlib.Path The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif is_pathlib_path(file): fid = file.open("rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of NumPy arrays is loaded # in. Pickle does not pass on the encoding information to # NumPy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) # If the file size is less than N, we need to make sure not # to seek past the beginning of the file fid.seek(-min(N, len(magic)), 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file, str, or pathlib.Path File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string or Path, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True elif is_pathlib_path(file): if not file.name.endswith('.npy'): file = file.parent / (file.name + '.npy') fid = file.open("wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' elif is_pathlib_path(file): if not file.name.endswith('.npz'): file = file.parent / (file.name + '.npz') namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. # Since target file might be big enough to exceed capacity of a global # temporary directory, create temp file side-by-side with the target file. file_dir, file_prefix = os.path.split(file) if _is_string_like(file) else (None, 'tmp') fd, tmpfile = tempfile.mkstemp(prefix=file_prefix, dir=file_dir, suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) except IOError as exc: raise IOError("Failed to write to %s: %s" % (tmpfile, exc)) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file, str, or pathlib.Path File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : int or sequence, optional Which columns to read, with 0 being the first. For example, usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. .. versionadded:: 1.11.0 Also when a single column has to be read it is possible to use an integer instead of a tuple. E.g ``usecols = 3`` reads the fourth column the same way as `usecols = (3,)`` would. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: # Allow usecols to be a single int or a sequence of ints try: usecols_as_list = list(usecols) except TypeError: usecols_as_list = [usecols] for col_idx in usecols_as_list: try: opindex(col_idx) except TypeError as e: e.args = ( "usecols must be an int or a sequence of ints but " "it contains at least one element of type %s" % type(col_idx), ) raise # Fall back to existing code usecols = usecols_as_list fown = False try: if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname, stacklevel=2) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, pathlib.Path, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] NumPy User Guide, section `I/O with NumPy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if is_pathlib_path(fname): fname = str(fname) if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning, stacklevel=2) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
mit
math4youbyusgroupillinois/givinggraph
setup.py
3
1147
from setuptools import setup, command import os import sys import urllib import tarfile '''setuptools works by triggering subcommands from higher level commands. The default commands 'install' and 'develop' trigger the following sequences: install: 1. build 2. build_py 3. install_lib 4. install_egg_info 5. egg_info 6. install_scripts develop: 1. egg_info 2. build_ext ''' setup( name='givinggraph', version='0.0.1', packages=['givinggraph'], install_requires=[ 'BeautifulSoup', 'celery', 'flask', 'gensim', 'goose-extractor', # see dependency link since not in pypi # 'matplotlib', # ignoring for now to see if travis stops complaining 'networkx', 'sqlalchemy', 'scikit-learn', ], dependency_links=[ 'http://github.com/grangier/python-goose/tarball/master/#egg=goose-extractor-1.0.1' ], entry_points={ 'console_scripts': [ 'givinggraph-api = givinggraph.api.app:main', ], }, tests_require=[ 'nose', 'pep8', 'pyflakes', ], test_suite='tests', )
mit
CASIANICA/brainDecodingToolbox
braincode/prf/vim1_pro.py
1
32785
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: import os import numpy as np import tables import bob.ip.gabor from joblib import Parallel, delayed from sklearn import linear_model from braincode.util import configParser from braincode.math import make_2d_gaussian, ridge from braincode.math.norm import zscore from braincode.prf import dataio from braincode.prf import util as vutil from braincode.pipeline import retinotopy def check_path(dir_path): if not os.path.exists(dir_path): os.makedirs(dir_path, 0755) def get_gabor_features(img): """Get Gabor features from input image.""" img = img.astype(np.float64) gwt = bob.ip.gabor.Transform(number_of_scales=9) trafo_img = gwt(img) out_feat = np.zeros((72, 500, 500)) for i in range(trafo_img.shape[0]): real_p = np.real(trafo_img[i, ...]) imag_p = np.imag(trafo_img[i, ...]) out_feat[i, ...] = np.sqrt(np.square(real_p)+np.square(imag_p)) return out_feat def get_stim_features(db_dir, feat_dir, data_type): """Stimuli processing.""" sti_dir = os.path.join(db_dir, 'stimuli') prefix = {'train': 'Stimuli_Trn_FullRes', 'val': 'Stimuli_Val_FullRes'} if data_type == 'train': for i in range(15): mat_file = os.path.join(sti_dir, prefix['train']+'_%02d.mat'%(i+1)) print 'Load file %s ...'%(mat_file) tf = tables.open_file(mat_file) imgs = tf.get_node('/stimTrn')[:] tf.close() # output matrix: image-number x channel x row x col print 'image size %s'%(imgs.shape[2]) out_features = np.zeros((imgs.shape[2], 72, 500, 500)) for j in range(imgs.shape[2]): x = imgs[..., j].T out_features[j, ...] = get_gabor_features(x) out_file = prefix['train']+'_%02d_gabor_features.npy'%(i+1) out_file = os.path.join(feat_dir, out_file) np.save(out_file, out_features) else: mat_file = os.path.join(sti_dir, prefix['val']+'.mat') print 'Load file %s ...'%(mat_file) tf = tables.open_file(mat_file) imgs = tf.get_node('/stimVal')[:] # output matrix: image-number x channel x row x col out_features = np.zeros((imgs.shape[2], 72, 500, 500)) for j in range(imgs.shape[2]): x = imgs[..., j].T out_features[j, ...] = get_gabor_features(x) out_file = prefix['val']+'_gabor_features.npy' out_file = os.path.join(feat_dir, out_file) np.save(out_file, out_features) def get_candidate_model(feat_dir, data_type): """Get gaussian kernel based on receptivefield features.""" # derived gauusian-kernel based features # candidate pooling centers are spaces 0.4 degrees apart (10 pixels) # candidate pooling fields included 17 radii (1, 5, 10, 15, 20, ..., # 55, 60, 70, 80, 90, 100 pixels) between 0.04 degree (1 pixel) and 4 # degree (100 pixels) prefix = {'train': 'Stimuli_Trn_FullRes', 'val': 'Stimuli_Val_FullRes'} if data_type=='train': time_count = 0 for i in range(15): tmp_file = os.path.join(feat_dir, prefix['train']+'_%02d_gabor_features.npy'%(i+1)) tmp = np.load(tmp_file, mmap_mode='r') time_count += tmp.shape[0] out_file = os.path.join(feat_dir, 'train_candidate_model_%02d.npy'%(i+1)) cand_model = np.memmap(out_file, dtype='float16', mode='w+', shape=(50*50*17, tmp.shape[0], 72)) Parallel(n_jobs=4)(delayed(model_pro)(tmp, cand_model, xi, yi, si) for si in range(17) for xi in range(50) for yi in range(50)) # save memmap object as a numpy.array model_array = np.array(cand_model) np.save(out_file, model_array) # merge parts print 'Time series length: %s'%(time_count) out_file = os.path.join(feat_dir, 'train_candidate_model.npy') cand_model = np.memmap(out_file, dtype='float16', mode='w+', shape=(50*50*17, time_count, 72)) c = 0 for i in range(15): pf = os.path.join(feat_dir, 'train_candidate_model_%02d.npy'%(i+1)) data = np.load(pf) cand_model[:, c:(c+data.shape[1]), :] = data c += data.shape[1] # save memmap object as a numpy.array model_array = np.array(cand_model) np.save(out_file, model_array) else: tmp_file = os.path.join(feat_dir, prefix['val']+'_gabor_features.npy') tmp = np.load(tmp_file, mmap_mode='r') time_count = tmp.shape[0] out_file = os.path.join(feat_dir, '%s_candidate_model.npy'%(data_type)) cand_model = np.memmap(out_file, dtype='float16', mode='w+', shape=(50*50*17, time_count, 72)) Parallel(n_jobs=4)(delayed(model_pro)(tmp, cand_model, xi, yi, si) for si in range(17) for xi in range(50) for yi in range(50)) # save memmap object as a numpy.array model_array = np.array(cand_model) np.save(out_file, model_array) def model_pro(feat, cand_model, xi, yi, si): """Sugar function for generating candidate model.""" mi = si*50*50 + xi*50 + yi center_x = np.arange(5, 500, 10) center_y = np.arange(5, 500, 10) sigma = [1] + [n*5 for n in range(1, 13)] + [70, 80, 90, 100] x0 = center_x[xi] y0 = center_y[yi] s = sigma[si] print 'Model %s : center - (%s, %s), sigma %s'%(mi, y0, x0, s) kernel = make_2d_gaussian(500, s, center=(x0, y0)) kernel = kernel.flatten() idx_head = 0 parts = feat.shape[0] / 10 for i in range(parts): tmp = feat[(i*10):(i*10+10), ...] tmp = tmp.reshape(720, 250000) res = tmp.dot(kernel).astype(np.float16) cand_model[mi, idx_head:(idx_head+10), ...] = res.reshape(10, 72) idx_head += 10 def get_candidate_model_new(db_dir, data_type): """Get gaussian kernel based on receptivefield features.""" # derived gauusian-kernel based features # candidate pooling centers are spaces 0.4 degrees apart (5 pixels) # candidate pooling fields included 10 radii (2, 4, 8, 16, 32, 60, # 70, 80, 90, 100 pixels) between 0.16 degree (0.08 per pixel) and 8 # degree (100 pixels) img_num = {'train': 1750, 'val': 120} feat_file = os.path.join(db_dir, data_type+'_gabor_feat.memdat') feat = np.memmap(feat_file, dtype='float32', mode='r', shape=(img_num[data_type], 250, 250, 72)) out_file = os.path.join(db_dir, '%s_candidate_model.npy'%(data_type)) cand_model = np.memmap(out_file, dtype='float16', mode='w+', shape=(50*50*10, img_num[data_type], 72)) Parallel(n_jobs=4)(delayed(model_pro_new)(feat, cand_model, xi, yi, si) for si in range(10) for xi in range(50) for yi in range(50)) # save memmap object as a numpy.array model_array = np.array(cand_model) np.save(out_file, model_array) def model_pro_new(feat, cand_model, xi, yi, si): """Sugar function for generating candidate model.""" mi = si*50*50 + xi*50 + yi center_x = np.arange(2, 250, 5) center_y = np.arange(2, 250, 5) sigma = [2, 4, 8, 16, 32, 60, 70, 80, 90, 100] x0 = center_x[xi] y0 = center_y[yi] s = sigma[si] print 'Model %s : center - (%s, %s), sigma %s'%(mi, y0, x0, s) kernel = make_2d_gaussian(250, s, center=(x0, y0)) kernel = kernel.flatten() idx_head = 0 parts = feat.shape[0] / 10 for i in range(parts): tmp = feat[(i*10):(i*10+10), ...] tmp = np.transpose(tmp, (0, 3, 1, 2)) tmp = tmp.reshape(720, 62500) res = tmp.dot(kernel).astype(np.float16) cand_model[mi, idx_head:(idx_head+10), ...] = res.reshape(10, 72) idx_head += 10 def get_vxl_idx(prf_dir, db_dir, subj_id, roi): """Get voxel index in specific ROI""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) print 'Voxel number: %s'%(len(vxl_idx)) roi_dir = os.path.join(prf_dir, roi) check_path(roi_dir) np.save(os.path.join(roi_dir, 'vxl_idx.npy'), vxl_idx) def ridge_fitting(feat_dir, prf_dir, db_dir, subj_id, roi): """pRF model fitting using ridge regression. 90% trainning data used for model tuning, and another 10% data used for model seletion. """ # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del val_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load candidate models train_models = np.load(os.path.join(feat_dir, 'train_candidate_model.npy'), mmap_mode='r') # output directory config roi_dir = os.path.join(prf_dir, roi) check_path(roi_dir) # model seletion and tuning ALPHA_NUM = 20 BOOTS_NUM = 15 paras_file = os.path.join(roi_dir, 'reg_paras.npy') paras = np.memmap(paras_file, dtype='float64', mode='w+', shape=(42500, len(vxl_idx), 72)) mcorr_file= os.path.join(roi_dir, 'reg_model_corr.npy') mcorr = np.memmap(mcorr_file, dtype='float64', mode='w+', shape=(42500, len(vxl_idx))) alphas_file = os.path.join(roi_dir, 'reg_alphas.npy') alphas = np.memmap(alphas_file, dtype='float64', mode='w+', shape=(42500, len(vxl_idx))) # fMRI data z-score print 'fmri data temporal z-score' m = np.mean(train_fmri_ts, axis=1, keepdims=True) s = np.std(train_fmri_ts, axis=1, keepdims=True) train_fmri_ts = (train_fmri_ts - m) / (1e-10 + s) # split training dataset into model tunning set and model selection set tune_fmri_ts = train_fmri_ts[:, :int(1750*0.9)] sel_fmri_ts = train_fmri_ts[:, int(1750*0.9):] # model testing for i in range(42500): print 'Model %s'%(i) # remove models which centered outside the 20 degree of visual angle xi = (i % 2500) / 50 yi = (i % 2500) % 50 x0 = np.arange(5, 500, 10)[xi] y0 = np.arange(5, 500, 10)[yi] d = np.sqrt(np.square(x0-250)+np.square(y0-250)) if d > 249: print 'Model center outside the visual angle' paras[i, ...] = np.NaN mcorr[i] = np.NaN alphas[i] = np.NaN continue train_x = np.array(train_models[i, ...]).astype(np.float64) train_x = zscore(train_x.T).T # split training dataset into model tunning and selection sets tune_x = train_x[:int(1750*0.9), :] sel_x = train_x[int(1750*0.9):, :] wt, r, alpha, bscores, valinds = ridge.bootstrap_ridge( tune_x, tune_fmri_ts.T, sel_x, sel_fmri_ts.T, alphas=np.logspace(-2, 3, ALPHA_NUM), nboots=BOOTS_NUM, chunklen=175, nchunks=1, single_alpha=False, use_corr=False) paras[i, ...] = wt.T mcorr[i] = r alphas[i] = alpha # save output paras = np.array(paras) np.save(paras_file, paras) mcorr = np.array(mcorr) np.save(mcorr_file, mcorr) alphas = np.array(alphas) np.save(alphas_file, alphas) def ridge_regression(prf_dir, db_dir, subj_id, roi): """pRF model fitting using ridge regression. 90% trainning data used for model tuning, and another 10% data used for model seletion. """ # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del val_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load candidate models train_models = np.load(os.path.join(db_dir, 'train_candidate_model.npy'), mmap_mode='r') # output directory config roi_dir = os.path.join(prf_dir, roi) check_path(roi_dir) # model seletion and tuning ALPHA_NUM = 10 paras_file = os.path.join(roi_dir, 'reg_paras.npy') paras = np.memmap(paras_file, dtype='float64', mode='w+', shape=(len(vxl_idx), 73)) val_r2_file= os.path.join(roi_dir, 'reg_val_r2.npy') val_r2 = np.memmap(val_r2_file, dtype='float64', mode='w+', shape=(len(vxl_idx), 25000, ALPHA_NUM)) alphas_file = os.path.join(roi_dir, 'reg_alphas.npy') alphas = np.memmap(alphas_file, dtype='float64', mode='w+', shape=(len(vxl_idx))) # fMRI data z-score print 'fmri data temporal z-score' m = np.mean(train_fmri_ts, axis=1, keepdims=True) s = np.std(train_fmri_ts, axis=1, keepdims=True) train_fmri_ts = (train_fmri_ts - m) / (1e-5 + s) # split training dataset into model tunning set and model selection set tune_fmri_ts = train_fmri_ts[:, :int(1750*0.9)] sel_fmri_ts = train_fmri_ts[:, int(1750*0.9):] # model fitting for i in range(len(vxl_idx)): print '-----------------' print 'Voxel %s'%(i) for j in range(25000): #print 'Model %s'%(j) # remove models which centered outside the 20 degree of visual angle xi = (j % 2500) / 50 yi = (j % 2500) % 50 x0 = np.arange(2, 250, 5)[xi] y0 = np.arange(2, 250, 5)[yi] d = np.sqrt(np.square(x0-125)+np.square(y0-125)) if d > 124: #print 'Model center outside the visual angle' paras[i, ...] = np.NaN val_r2[i, j, :] = np.NaN continue train_x = np.array(train_models[j, ...]).astype(np.float64) # split training dataset into model tunning and selection sets tune_x = train_x[:int(1750*0.9), :] sel_x = train_x[int(1750*0.9):, :] for a in range(ALPHA_NUM): alpha_list = np.logspace(-2, 3, ALPHA_NUM) # model fitting reg = linear_model.Ridge(alpha=alpha_list[a]) reg.fit(tune_x, tune_fmri_ts[i]) val_pred = reg.predict(sel_x) ss_tol = np.var(sel_fmri_ts[i]) * 175 r2 = 1.0 - np.sum(np.square(sel_fmri_ts[i] - val_pred))/ss_tol val_r2[i, j, a] = r2 # select best model vxl_r2 = np.nan_to_num(val_r2[i, ...]) sel_mdl_i, sel_alpha_i = np.unravel_index(vxl_r2.argmax(), vxl_r2.shape) train_x = np.array(train_models[sel_mdl_i, ...]).astype(np.float64) # split training dataset into model tunning and selection sets tune_x = train_x[:int(1750*0.9), :] sel_x = train_x[int(1750*0.9):, :] alpha_list = np.logspace(-2, 3, ALPHA_NUM) # selected model fitting reg = linear_model.Ridge(alpha=alpha_list[sel_alpha_i]) reg.fit(tune_x, tune_fmri_ts[i]) val_pred = reg.predict(sel_x) ss_tol = np.var(sel_fmri_ts[i]) * 175 r2 = 1.0 - np.sum(np.square(sel_fmri_ts[i] - val_pred))/ss_tol print 'r-square recal: %s'%(r2) #print 'r-square cal: %s'%(vxl_r2.max()) paras[i, ...] = np.concatenate((np.array([reg.intercept_]), reg.coef_)) alphas[i] = alpha_list[sel_alpha_i] # save output paras = np.array(paras) np.save(paras_file, paras) val_r2 = np.array(val_r2) np.save(val_r2_file, val_r2) alphas = np.array(alphas) np.save(alphas_file, alphas) def ridge_regression_model_test(prf_dir, db_dir, subj_id, roi): """Test pRF model derived from ridge regression with test dataset.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load candidate models val_models = np.load(os.path.join(db_dir, 'val_candidate_model.npy'), mmap_mode='r') # fMRI data z-score print 'fmri data temporal z-score' m = np.mean(val_fmri_ts, axis=1, keepdims=True) s = np.std(val_fmri_ts, axis=1, keepdims=True) val_fmri_ts = (val_fmri_ts - m) / (1e-5 + s) # output directory config roi_dir = os.path.join(prf_dir, roi) check_path(roi_dir) # load selected models and the corresponding parameters val_r2_file = os.path.join(roi_dir, 'reg_val_r2.npy') val_r2 = np.load(val_r2_file, mmap_mode='r') paras_file = os.path.join(roi_dir, 'reg_paras.npy') paras = np.load(paras_file) alphas_file = os.path.join(roi_dir, 'reg_alphas.npy') alphas = np.load(alphas_file) # output var test_r2 = np.zeros(len(vxl_idx)) prf_pos = np.zeros((len(vxl_idx), 3)) # parameter candidates alpha_list = np.logspace(-2, 3, 10) sigma = [2, 4, 8, 16, 32, 60, 70, 80, 90, 100] for i in range(len(vxl_idx)): print '----------------' print 'Voxel %s'%(i) vxl_r2 = np.nan_to_num(val_r2[i, ...]) sel_mdl_i, sel_alpha_i = np.unravel_index(vxl_r2.argmax(), vxl_r2.shape) print 'Select model %s'%(sel_mdl_i) print 'Select alpha value %s - %s'%(alpha_list[sel_alpha_i], alphas[i]) # get model position info xi = (sel_mdl_i % 2500) / 50 yi = (sel_mdl_i % 2500) % 50 x0 = np.arange(2, 250, 5)[xi] y0 = np.arange(2, 250, 5)[yi] s = sigma[sel_mdl_i / 2500] prf_pos[i] = np.array([y0, x0, s]) # compute r^2 using test dataset test_x = np.array(val_models[sel_mdl_i, ...]).astype(np.float64) test_x = np.concatenate((np.ones((120, 1)), test_x), axis=1) val_pred = test_x.dot(paras[i]) ss_tol = np.var(val_fmri_ts[i]) * 120 r2 = 1.0 - np.sum(np.square(val_fmri_ts[i] - val_pred))/ss_tol print 'r-square on test dataset: %s'%(r2) test_r2[i] = r2 # save output np.save(os.path.join(roi_dir, 'reg_prf_test_r2.npy'), test_r2) np.save(os.path.join(roi_dir, 'sel_reg_prf_pos.npy'), prf_pos) def prf_selection(feat_dir, prf_dir, db_dir, subj_id, roi): """Select best model for each voxel and validating.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load candidate models val_models = np.load(os.path.join(feat_dir, 'val_candidate_model.npy'), mmap_mode='r') # output directory config roi_dir = os.path.join(prf_dir, roi) # load candidate model parameters paras = np.load(os.path.join(roi_dir, 'reg_paras.npy')) mcorr = np.load(os.path.join(roi_dir, 'reg_model_corr.npy')) alphas = np.load(os.path.join(roi_dir, 'reg_alphas.npy')) sel_paras = np.zeros((mcorr.shape[1], 72)) sel_model = np.zeros(mcorr.shape[1]) sel_model_corr = np.zeros(mcorr.shape[1]) for i in range(mcorr.shape[1]): maxi = np.argmax(np.nan_to_num(mcorr[:, i])) print 'Voxel %s - Max corr %s - Model %s'%(i, mcorr[maxi, i], maxi) print 'Alpha : %s'%(alphas[maxi, i]) sel_paras[i] = paras[maxi, i] sel_model[i] = maxi feats = np.array(val_models[maxi, ...]).astype(np.float64) feats = zscore(feats.T).T pred = np.dot(feats, sel_paras[i]) sel_model_corr[i] = np.corrcoef(pred, val_fmri_ts[i])[0, 1] print 'Val Corr : %s'%(sel_model_corr[i]) np.save(os.path.join(roi_dir, 'reg_sel_paras.npy'), sel_paras) np.save(os.path.join(roi_dir, 'reg_sel_model.npy'), sel_model) np.save(os.path.join(roi_dir, 'reg_sel_model_corr.npy'), sel_model_corr) def null_distribution_prf_tunning(feat_dir, prf_dir, db_dir, subj_id, roi): """Generate Null distribution of pRF model tunning using validation data.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load candidate models val_models = np.load(os.path.join(feat_dir, 'val_candidate_model.npy'), mmap_mode='r') # output directory config roi_dir = os.path.join(prf_dir, roi) # load selected model parameters paras = np.load(os.path.join(roi_dir, 'reg_sel_paras.npy')) sel_model = np.load(os.path.join(roi_dir, 'reg_sel_model.npy')) null_corr = np.zeros((paras.shape[0], 1000)) for i in range(paras.shape[0]): print 'Voxel %s'%(i) # load features feats = np.array(val_models[int(sel_model[i]), ...]).astype(np.float64) feats = zscore(feats.T).T pred = np.dot(feats, paras[i]) for j in range(1000): shuffled_val_ts = np.random.permutation(val_fmri_ts[i]) null_corr[i, j] = np.corrcoef(pred, shuffled_val_ts)[0, 1] np.save(os.path.join(roi_dir, 'random_corr.npy'), null_corr) def gabor_contribution2prf(feat_dir, prf_dir, db_dir, subj_id, roi): """Calculate tunning contribution of each gabor sub-banks.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load candidate models val_models = np.load(os.path.join(feat_dir, 'val_candidate_model.npy'), mmap_mode='r') # load selected model parameters roi_dir = os.path.join(prf_dir, roi) paras = np.load(os.path.join(roi_dir, 'reg_sel_paras.npy')) sel_model = np.load(os.path.join(roi_dir, 'reg_sel_model.npy')) gabor_corr = np.zeros((paras.shape[0], 9)) for i in range(paras.shape[0]): print 'Voxel %s'%(i) # load features feats = np.array(val_models[int(sel_model[i]), ...]).astype(np.float64) feats = zscore(feats.T).T for j in range(9): pred = np.dot(feats[:, (j*8):(j*8+8)], paras[i, (j*8):(j*8+8)]) gabor_corr[i, j] = np.corrcoef(pred, val_fmri_ts[i])[0, 1] np.save(os.path.join(roi_dir, 'gabor_contributes.npy'), gabor_corr) def orient_selectivity(prf_dir, roi): """Calculate orientation selectivity index for each voxel.""" # load selected model parameters roi_dir = os.path.join(prf_dir, roi) paras = np.load(os.path.join(roi_dir, 'reg_sel_paras.npy')) osi = np.zeros(paras.shape[0]) for i in range(paras.shape[0]): print 'Voxel %s'%(i) # load features sel_paras = paras[i].reshape(9, 8) orient = sel_paras.sum(axis=0) osi[i] = orient.max() - (orient.sum() - orient.max())/7 np.save(os.path.join(roi_dir, 'orient_selectivity.npy'), osi) def prf_recon(prf_dir, db_dir, subj_id, roi): """Reconstruct pRF based on selected model.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts del val_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # output directory config roi_dir = os.path.join(prf_dir, roi) # pRF estimate sel_models = np.load(os.path.join(roi_dir, 'reg_sel_model.npy')) sel_paras = np.load(os.path.join(roi_dir, 'reg_sel_paras.npy')) sel_model_corr = np.load(os.path.join(roi_dir, 'reg_sel_model_corr.npy')) prfs = np.zeros((sel_models.shape[0], 500, 500)) fig_dir = os.path.join(roi_dir, 'figs') check_path(fig_dir) for i in range(sel_models.shape[0]): # get pRF print 'Voxel %s, Val Corr %s'%(i, sel_model_corr[i]) model_idx = int(sel_models[i]) # get gaussian pooling field parameters si = model_idx / 2500 xi = (model_idx % 2500) / 50 yi = (model_idx % 2500) % 50 x0 = np.arange(5, 500, 10)[xi] y0 = np.arange(5, 500, 10)[yi] sigma = [1] + [n*5 for n in range(1, 13)] + [70, 80, 90, 100] s = sigma[si] kernel = make_2d_gaussian(500, s, center=(x0, y0)) kpos = np.nonzero(kernel) paras = sel_paras[i] for f in range(9): fwt = np.sum(paras[(f*8):(f*8+8)]) fs = np.sqrt(2)**f*4 for p in range(kpos[0].shape[0]): tmp = make_2d_gaussian(500, fs, center=(kpos[1][p], kpos[0][p])) prfs[i] += fwt * kernel[kpos[0][p], kpos[1][p]] * tmp if sel_model_corr[i]>=0.24: prf_file = os.path.join(fig_dir,'Voxel_%s_%s.png'%(i+1, vxl_idx[i])) vutil.save_imshow(prfs[i], prf_file) np.save(os.path.join(roi_dir, 'prfs.npy'), prfs) def filter_recon(prf_dir, db_dir, subj_id, roi): """Reconstruct filter map of each voxel based on selected model.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts del val_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # output config roi_dir = os.path.join(prf_dir, roi) # pRF estimate sel_models = np.load(os.path.join(roi_dir, 'reg_sel_model.npy')) sel_paras = np.load(os.path.join(roi_dir, 'reg_sel_paras.npy')) sel_model_corr = np.load(os.path.join(roi_dir, 'reg_sel_model_corr.npy')) filters = np.zeros((sel_models.shape[0], 500, 500)) fig_dir = os.path.join(roi_dir, 'filters') check_path(fig_dir) thr = 0.24 # gabor bank generation gwt = bob.ip.gabor.Transform(number_of_scales=9) gwt.generate_wavelets(500, 500) spatial_gabors = np.zeros((72, 500, 500)) for i in range(72): w = bob.ip.gabor.Wavelet(resolution=(500, 500), frequency=gwt.wavelet_frequencies[i]) sw = bob.sp.ifft(w.wavelet.astype(np.complex128)) spatial_gabors[i, ...] = np.roll(np.roll(np.real(sw), 250, 0), 250, 1) for i in range(sel_models.shape[0]): if sel_model_corr[i]<thr: continue print 'Voxel %s, Val Corr %s'%(i, sel_model_corr[i]) model_idx = int(sel_models[i]) # get gaussian pooling field parameters si = model_idx / 2500 xi = (model_idx % 2500) / 50 yi = (model_idx % 2500) % 50 x0 = np.arange(5, 500, 10)[xi] y0 = np.arange(5, 500, 10)[yi] sigma = [1] + [n*5 for n in range(1, 13)] + [70, 80, 90, 100] s = sigma[si] print 'center: %s, %s, sigma: %s'%(y0, x0, s) kernel = make_2d_gaussian(500, s, center=(x0, y0)) kpos = np.nonzero(kernel>0.00000001) paras = sel_paras[i] tmp_file = os.path.join(fig_dir, 'tmp_kernel.npy') tmp_filter = np.memmap(tmp_file, dtype='float64', mode='w+', shape=(72, 500, 500)) Parallel(n_jobs=25)(delayed(filter_pro)(tmp_filter, paras, kernel, kpos, spatial_gabors, gwt_idx) for gwt_idx in range(72)) tmp_filter = np.array(tmp_filter) filters[i] = tmp_filter.sum(axis=0) os.system('rm %s'%(tmp_file)) im_file = os.path.join(fig_dir, 'Voxel_%s_%s.png'%(i+1, vxl_idx[i])) vutil.save_imshow(filters[i], im_file) np.save(os.path.join(roi_dir, 'filters.npy'), filters) def filter_pro(tmp_filter, paras, kernel, kpos, spatial_gabors, gwt_idx): data = np.zeros((500, 500)) wt = paras[gwt_idx] arsw = spatial_gabors[gwt_idx] for p in range(kpos[0].shape[0]): tmp = img_offset(arsw, (kpos[0][p], kpos[1][p])) data += wt * kernel[kpos[0][p], kpos[1][p]] * tmp tmp_filter[gwt_idx] = data def stimuli_recon(prf_dir, db_dir, subj_id, roi): """Reconstruct stimulus based on pRF model.""" # load fmri response vxl_idx, train_fmri_ts, val_fmri_ts = dataio.load_vim1_fmri(db_dir, subj_id, roi=roi) del train_fmri_ts print 'Voxel number: %s'%(len(vxl_idx)) # load model parameters roi_dir = os.path.join(prf_dir, roi) val_corr = np.load(os.path.join(roi_dir, 'reg_sel_model_corr.npy')) filters = np.load(os.path.join(roi_dir, 'filters.npy')) recon_imgs = np.zeros((val_fmri_ts.shape[1], 500, 500)) # fMRI data z-score print 'fmri data temporal z-score' m = np.mean(val_fmri_ts, axis=1, keepdims=True) s = np.std(val_fmri_ts, axis=1, keepdims=True) val_fmri_ts = (val_fmri_ts - m) / (1e-10 + s) # select significant predicted voxels sel_vxls = np.nonzero(val_corr>=0.24)[0] for i in range(val_fmri_ts.shape[1]): print 'Reconstruct stimilus %s'%(i+1) tmp = np.zeros((500, 500)) for j in sel_vxls: tmp += val_fmri_ts[int(j), int(i)] * filters[j] recon_imgs[i] = tmp np.save(os.path.join(roi_dir, 'recon_img.npy'), recon_imgs) def retinotopic_mapping(prf_dir, roi): """Get eccentricity and angle based on pRF center for each voxel.""" roi_dir = os.path.join(prf_dir, roi) # load selected model index sel_models = np.load(os.path.join(roi_dir, 'reg_sel_model.npy')) # output variables ecc = np.zeros_like(sel_models) angle = np.zeros_like(sel_models) coords = np.zeros((sel_models.shape[0], 2)) for i in range(sel_models.shape[0]): print 'Voxel %s'%(i+1) model_idx = int(sel_models[i]) xi = (model_idx % 2500) / 50 yi = (model_idx % 2500) % 50 # col x0 = np.arange(5, 500, 10)[xi] # row y0 = np.arange(5, 500, 10)[yi] coords[i] = [y0, x0] # get ecc and angle ecc = retinotopy.coord2ecc(coords, 500, 20) angle = retinotopy.coord2angle(coords, 500) np.save(os.path.join(roi_dir, 'ecc.npy'), ecc) np.save(os.path.join(roi_dir, 'angle.npy'), angle) def img_offset(orig_img, new_center): """Move original image to new position based on new center coordinate. new_center is (x0, y0), x0 indicates row coordinate, y0 indicates col coordinate. """ img_r, img_c = orig_img.shape new_img = np.zeros_like(orig_img) # move image position based on new center coordinates old_x0 = img_r // 2 old_y0 = img_c // 2 offset0 = int(np.rint(new_center[0] - old_x0)) offset1 = int(np.rint(new_center[1] - old_y0)) pixs = np.mgrid[0:img_r, 0:img_c].reshape(2, img_r*img_c) new_x = pixs[0] + offset0 new_y = pixs[1] + offset1 pix_idx = (new_x>=0) * (new_x<img_r) * (new_y>=0) * (new_y<img_c) new_img[new_x[pix_idx], new_y[pix_idx]] = orig_img[pixs[0, pix_idx], pixs[1, pix_idx]] return new_img if __name__ == '__main__': """Main function.""" # config parser cf = configParser.Config('config') # database directory config #db_dir = os.path.join(cf.get('database', 'path'), 'vim1') # directory config for analysis root_dir = cf.get('base', 'path') feat_dir = os.path.join(root_dir, 'sfeatures', 'vim1') res_dir = os.path.join(root_dir, 'subjects') db_dir = os.path.join(root_dir, 'db', 'vim1') # get gabor features #get_stim_features(db_dir, feat_dir, 'train') # get candidate models #get_candidate_model(feat_dir, 'val') #get_candidate_model_new(db_dir, 'train') #-- general config subj_id = 1 roi = 'v1' # directory config subj_dir = os.path.join(res_dir, 'vim1_S%s'%(subj_id)) prf_dir = os.path.join(subj_dir, 'regress_prf') #-- pRF model fitting # pRF model tunning #get_vxl_idx(prf_dir, db_dir, subj_id, roi) #ridge_fitting(feat_dir, prf_dir, db_dir, subj_id, roi) #prf_selection(feat_dir, prf_dir, db_dir, subj_id, roi) #ridge_regression(prf_dir, db_dir, subj_id, roi) ridge_regression_model_test(prf_dir, db_dir, subj_id, roi) # get null distribution of tunning performance #null_distribution_prf_tunning(feat_dir, prf_dir, db_dir, subj_id, roi) # calculate tunning contribution of each gabor sub-banks #gabor_contribution2prf(feat_dir, prf_dir, db_dir, subj_id, roi) # pRF reconstruction #prf_recon(prf_dir, db_dir, subj_id, roi) # filter reconstruction #filter_recon(prf_dir, db_dir, subj_id, roi) # validation stimuli reconstruction #stimuli_recon(prf_dir, db_dir, subj_id, roi) # retinotopic mapping #retinotopic_mapping(prf_dir, roi)
bsd-3-clause
skdaccess/skdaccess
skdaccess/geo/grace/data_fetcher.py
2
9674
# The MIT License (MIT) # Copyright (c) 2016 Massachusetts Institute of Technology # # Authors: Victor Pankratius, Justin Li, Cody Rude # This software has been created in projects supported by the US National # Science Foundation and NASA (PI: Pankratius) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # """@package GRACE # Provides classes for accessing GRACE data. # """ # mithagi required Base imports from skdaccess.framework.data_class import DataFetcherStorage, TableWrapper from skdaccess.utilities.grace_util import readTellusData, getStartEndDate # standard library imports import re from ftplib import FTP import os import glob from collections import OrderedDict from configparser import NoSectionError, NoOptionError from glob import glob from math import floor # 3rd party package imports import pandas as pd import numpy as np from tqdm import tqdm class DataFetcher(DataFetcherStorage): ''' Data Fetcher for GRACE data ''' def __init__(self, ap_paramList, start_date = None, end_date = None): ''' Construct a Grace Data Fetcher @param ap_paramList[geo_point]: AutoList of geographic location tuples (lat,lon) @param start_date: Beginning date @param end_date: Ending date ''' self.start_date = start_date self.end_date = end_date super(DataFetcher, self).__init__(ap_paramList) def output(self): ''' Create data wrapper of grace data for specified geopoints. @return Grace Data Wrapper ''' conf = DataFetcher.getConfig() try: data_location = conf.get('grace', 'data_location') csr_filename = conf.get('grace', 'csr_filename') jpl_filename = conf.get('grace', 'jpl_filename') gfz_filename = conf.get('grace', 'gfz_filename') scale_factor_filename = conf.get('grace', 'scale_factor_filename') except (NoOptionError, NoSectionError) as exc: print('No data information available, please run: skdaccess grace') raise exc geo_point_list = self.ap_paramList[0]() csr_data, csr_meta, lat_bounds, lon_bounds = readTellusData(os.path.join(data_location, csr_filename), geo_point_list, 'lat','lon', 'lwe_thickness', 'CSR','time') jpl_data, jpl_meta, = readTellusData(os.path.join(data_location, jpl_filename), geo_point_list, 'lat','lon', 'lwe_thickness', 'JPL','time', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] gfz_data, gfz_meta, = readTellusData(os.path.join(data_location, gfz_filename), geo_point_list, 'lat','lon', 'lwe_thickness', 'GFZ','time', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] scale_factor_data, scale_factor_meta, = readTellusData(os.path.join(data_location, scale_factor_filename), geo_point_list, 'Latitude', 'Longitude', 'SCALE_FACTOR', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] leakage_error_data, leakage_error_meta, = readTellusData(os.path.join(data_location, scale_factor_filename), geo_point_list, 'Latitude', 'Longitude', 'LEAKAGE_ERROR', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] measurement_error_data, measurement_error_meta, = readTellusData(os.path.join(data_location, scale_factor_filename), geo_point_list, 'Latitude', 'Longitude', 'MEASUREMENT_ERROR', lat_bounds=lat_bounds, lon_bounds=lon_bounds)[:2] # Get appropriate time range start_date = self.start_date end_date = self.end_date def getMaskedValue(in_value): ''' Retrieve the value if not masked, otherwise return np.nan @param in_value: Input value to check @return input value or nan ''' if np.ma.is_masked(in_value): return np.nan else: return in_value if start_date == None or end_date == None: csr_start_date, csr_end_date = getStartEndDate(csr_data) jpl_start_date, jpl_end_date = getStartEndDate(jpl_data) gfz_start_date, gfz_end_date = getStartEndDate(gfz_data) if start_date == None: start_date = np.min([csr_start_date, jpl_start_date, gfz_start_date]) if end_date == None: end_date = np.max([csr_end_date, jpl_end_date, gfz_end_date]) data_dict = OrderedDict() metadata_dict = OrderedDict() for (csr_label, csr_frame), (jpl_label, jpl_frame), (gfz_label, gfz_frame) in zip(csr_data.items(), jpl_data.items(), gfz_data.items()): data = pd.concat([csr_frame.loc[start_date:end_date], jpl_frame.loc[start_date:end_date], gfz_frame.loc[start_date:end_date]], axis=1) data.index.name = 'Date' label = csr_label metadata_dict[label] = pd.Series({'scale_factor' : getMaskedValue(scale_factor_data[csr_label]), 'measurement_error' : getMaskedValue(measurement_error_data[csr_label]), 'leakage_error' : getMaskedValue(leakage_error_data[csr_label])}) data_dict[label] = data metadata_frame = pd.DataFrame.from_dict(metadata_dict) return(TableWrapper(data_dict,meta_data = metadata_frame,default_columns=['CSR','JPL','GFZ'])) def __str__(self): ''' String representation of data fetcher @return String listing the name and geopoint of data fetcher ''' return 'Grace Data Fetcher' + super(DataFetcher, self).__str__() @classmethod def downloadFullDataset(cls, out_file = 'grace.h5', use_file = None): ''' Download and parse data from the Gravity Recovery and Climate Experiment. @param out_file: Output filename for parsed data @param use_file: Directory of already downloaded data. If None, data will be downloaded. @return Absolute path of parsed data ''' # Get date of grace data from filename def setConfigFile(filename): if re.search('SCALE_FACTOR', filename): DataFetcher.setDataLocation('grace', filename, key='scale_factor_filename') elif re.search('CSR', filename): DataFetcher.setDataLocation('grace', filename, key='csr_filename') elif re.search('GFZ', filename): DataFetcher.setDataLocation('grace', filename, key='gfz_filename') elif re.search('JPL', filename): DataFetcher.setDataLocation('grace', filename, key='jpl_filename') else: return False return True if use_file is None: print("Downloading GRACE Land Mass Data") ftp = FTP("podaac-ftp.jpl.nasa.gov") ftp.login() ftp.cwd('/allData/tellus/L3/land_mass/RL05/netcdf') dir_list = list(ftp.nlst('')) file_list = [file for file in dir_list if re.search('.nc$', file)] for filename in tqdm(file_list): status = setConfigFile(filename) if status == False: print("Uknown file:", filename) continue ftp.retrbinary('RETR ' + filename, open(filename, 'wb').write) ftp.quit() DataFetcher.setDataLocation('grace', os.path.abspath('./')) else: files = glob(os.path.join(use_file, '*.nc')) for filename in files: status = setConfigFile(filename) if status == False: print('Unknown file') DataFetcher.setDataLocation('grace', os.path.abspath(use_file))
mit
UNR-AERIAL/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
98
20870
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.cross_validation import train_test_split from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.utils import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains # correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = estimator.decision_function(X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually garantied in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False) def test_lars_path_positive_constraint(): # this is the main test for the positive parameter on the lars_path method # the estimator classes just make use of this function # we do the test on the diabetes dataset # ensure that we get negative coefficients when positive=False # and all positive when positive=True # for method 'lar' (default) and lasso for method in ['lar', 'lasso']: alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=False) assert_true(coefs.min() < 0) alpha, active, coefs = \ linear_model.lars_path(diabetes['data'], diabetes['target'], return_path=True, method=method, positive=True) assert_true(coefs.min() >= 0) # now we gonna test the positive option for all estimator classes default_parameter = {'fit_intercept': False} estimator_parameter_map = {'Lars': {'n_nonzero_coefs': 5}, 'LassoLars': {'alpha': 0.1}, 'LarsCV': {}, 'LassoLarsCV': {}, 'LassoLarsIC': {}} def test_estimatorclasses_positive_constraint(): # testing the transmissibility for the positive option of all estimator # classes in this same function here for estname in estimator_parameter_map: params = default_parameter.copy() params.update(estimator_parameter_map[estname]) estimator = getattr(linear_model, estname)(positive=False, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(estimator.coef_.min() < 0) estimator = getattr(linear_model, estname)(positive=True, **params) estimator.fit(diabetes['data'], diabetes['target']) assert_true(min(estimator.coef_) >= 0) def test_lasso_lars_vs_lasso_cd_positive(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when using the positive option # This test is basically a copy of the above with additional positive # option. However for the middle part, the comparison of coefficient values # for a range of alphas, we had to make an adaptations. See below. # not normalized data X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8, positive=True) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # The range of alphas chosen for coefficient comparison here is restricted # as compared with the above test without the positive option. This is due # to the circumstance that the Lars-Lasso algorithm does not converge to # the least-squares-solution for small alphas, see 'Least Angle Regression' # by Efron et al 2004. The coefficients are typically in congruence up to # the smallest alpha reached by the Lars-Lasso algorithm and start to # diverge thereafter. See # https://gist.github.com/michigraber/7e7d7c75eca694c7a6ff for alpha in np.linspace(6e-1, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(fit_intercept=False, alpha=alpha, normalize=False, positive=True).fit(X, y) clf2 = linear_model.Lasso(fit_intercept=False, alpha=alpha, tol=1e-8, normalize=False, positive=True).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', positive=True) lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8, positive=True) for c, a in zip(lasso_path.T[:-1], alphas[:-1]): # don't include alpha=0 lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01)
bsd-3-clause
wohlert/agnosia
atone/preprocessing.py
2
5672
""" preprocessing Provides routines for preprocessing of data. """ import numpy as np from scipy.signal import savgol_filter def scale(input_matrix: np.array) -> np.array: """ Scale the unit of measure from femtotesla to tesla. """ return input_matrix * 1e12 def normalise(input_matrix: np.array, axis=0) -> np.array: """ Normalises the data for input in certain classifiers. """ from scipy.stats import zscore return zscore(input_matrix, axis=axis) def min_max(x) -> np.array: """ Uses minmax normalisation to scale input to the interval of 0-1. """ return np.abs((np.min(x) - x) / (np.max(x) - np.min(x))) def smooth(input_matrix: np.array, window: int=17, order: int=2) -> np.array: """ Apply Savitzky-Golay filtering to smooth the signal. """ assert window % 2 == 1, "Window size must be odd" return savgol_filter(input_matrix, window, order) def remove_baseline(input_matrix: np.array, start: int) -> np.array: """ Removes baseline noise from a signals. """ start = int(start) baseline = np.mean(input_matrix[:, :, :start], axis=-1) return input_matrix - baseline[:, :, None] def dropout_channels_monte_carlo(input_matrix: np.array, output_labels: np.array) -> np.array: """ Perform 10 fold shuffle split on the data and do cross validation to find channels with highest correlation to the output variable. """ from sklearn.svm import SVC clf = SVC(C=1, kernel='linear') trials, channels, samples = np.shape(input_matrix) def monte_carlo_channel(channel): from sklearn.cross_validation import ShuffleSplit, cross_val_score from .features import pool cross_validation = ShuffleSplit(trials, n_iter=5, test_size=0.2) input_pooled = pool(input_matrix[:, [channel]]) scores = cross_val_score(clf, input_pooled, output_labels, cv=cross_validation) return np.mean(scores) channel_list = np.arange(channels) accuracies = np.array([monte_carlo_channel(c) for c in channel_list]) return accuracies def dropout_channels_tanh(input_matrix: np.array) -> np.array: """ Finds channels to dropout based on the hyperbolic tangent along with the standard deviation of these tangents. ! input must be normalised. """ tangents = np.tanh(input_matrix) cross_sample = np.std(tangents, axis=0) cross_trial = np.mean(cross_sample, axis=1) return cross_trial > 0.4 def dropout_channels_norm(input_matrix: np.array, threshold: float=0.05) -> np.array: """ Identifies channels with a low signal-to-noise ratio (snr) and returns a list of the channels with quality higher than `threshold` of all signals. """ from scipy.special import ndtr trials, channels, _ = np.shape(input_matrix) snr_channels = {} for trial in range(trials): for channel in range(channels): samples = input_matrix[trial, channel] mu = np.mean(samples) sigma = np.std(samples) # Signal to noise ratio snr = mu/sigma if channel not in snr_channels or snr_channels[channel] > snr: snr_channels[channel] = snr ratios = list(snr_channels.values()) point_estimate = np.mean(ratios) standard_dev = np.std(ratios) def approved(x) -> bool: """ Function to measure of value is above p = threshold """ zscore = (point_estimate - x)/standard_dev if ndtr(zscore) >= threshold: return True return False valid_channels = [k for k, v in snr_channels.items() if approved(v)] return np.array(valid_channels) def get_magnetometers(file: str) -> np.array: """ Returns the input matrix with only the data from the magnetometers. Expected no. of magnetometers: 102 """ meters = np.load(file) find_magnetometers = np.vectorize(lambda x: bool(x.endswith("1"))) (magnetometers,) = np.where(find_magnetometers(meters)) return magnetometers def get_gradiometers(file: str) -> np.array: """ Returns the input matrix with only the data from the gradiometers. Expected no. of gradiometers: 204 """ meters = np.load(file) find_gradiometers = np.vectorize(lambda x: bool(not x.endswith("1"))) (gradiometers,) = np.where(find_gradiometers(meters)) return gradiometers def keep_channels(input_matrix: np.array, type: str) -> np.array: """ Remove channels from matrix that are not contained in channels. """ channels = None if type == "gradiometers": channels = get_gradiometers("channel_names.npy") elif type == "magnetometers": channels = get_magnetometers("channel_names.npy") return input_matrix[:, channels, :] def cut(input_matrix: np.array, start: int, end: int=None) -> np.array: """ Removes samples before a given point, such as before stimuli. Can also trim from both sides. """ _, _, samples = np.shape(input_matrix) start = int(start) if end != None: end = int(end) assert start < samples return input_matrix[:, :, start:end].copy() def cut_m170(input_matrix: np.array, start: float, sfreq: int, window_size: float=5.0) -> np.array: """ Cuts the samples around M170. window_size is the number of ms before and after n170. """ window = window_size*0.01 impulse = abs(start) prime = impulse + 0.170 nmin = prime - window nmax = prime + window area = range(int(nmin*sfreq), int(nmax*sfreq)) return input_matrix[:, :, area].copy()
apache-2.0
rohit21122012/DCASE2013
runs/2016/dnn2016med_traps/traps28/src/evaluation.py
56
43426
#!/usr/bin/env python # -*- coding: utf-8 -*- import math import numpy import sys from sklearn import metrics class DCASE2016_SceneClassification_Metrics(): """DCASE 2016 scene classification metrics Examples -------- >>> dcase2016_scene_metric = DCASE2016_SceneClassification_Metrics(class_list=dataset.scene_labels) >>> for fold in dataset.folds(mode=dataset_evaluation_mode): >>> results = [] >>> result_filename = get_result_filename(fold=fold, path=result_path) >>> >>> if os.path.isfile(result_filename): >>> with open(result_filename, 'rt') as f: >>> for row in csv.reader(f, delimiter='\t'): >>> results.append(row) >>> >>> y_true = [] >>> y_pred = [] >>> for result in results: >>> y_true.append(dataset.file_meta(result[0])[0]['scene_label']) >>> y_pred.append(result[1]) >>> >>> dcase2016_scene_metric.evaluate(system_output=y_pred, annotated_ground_truth=y_true) >>> >>> results = dcase2016_scene_metric.results() """ def __init__(self, class_list): """__init__ method. Parameters ---------- class_list : list Evaluated scene labels in the list """ self.accuracies_per_class = None self.Nsys = None self.Nref = None self.class_list = class_list self.eps = numpy.spacing(1) def __enter__(self): return self def __exit__(self, type, value, traceback): return self.results() def accuracies(self, y_true, y_pred, labels): """Calculate accuracy Parameters ---------- y_true : numpy.array Ground truth array, list of scene labels y_pred : numpy.array System output array, list of scene labels labels : list list of scene labels Returns ------- array : numpy.array [shape=(number of scene labels,)] Accuracy per scene label class """ confusion_matrix = metrics.confusion_matrix(y_true=y_true, y_pred=y_pred, labels=labels).astype(float) return numpy.divide(numpy.diag(confusion_matrix), numpy.sum(confusion_matrix, 1) + self.eps) def evaluate(self, annotated_ground_truth, system_output): """Evaluate system output and annotated ground truth pair. Use results method to get results. Parameters ---------- annotated_ground_truth : numpy.array Ground truth array, list of scene labels system_output : numpy.array System output array, list of scene labels Returns ------- nothing """ accuracies_per_class = self.accuracies(y_pred=system_output, y_true=annotated_ground_truth, labels=self.class_list) if self.accuracies_per_class is None: self.accuracies_per_class = accuracies_per_class else: self.accuracies_per_class = numpy.vstack((self.accuracies_per_class, accuracies_per_class)) Nref = numpy.zeros(len(self.class_list)) Nsys = numpy.zeros(len(self.class_list)) for class_id, class_label in enumerate(self.class_list): for item in system_output: if item == class_label: Nsys[class_id] += 1 for item in annotated_ground_truth: if item == class_label: Nref[class_id] += 1 if self.Nref is None: self.Nref = Nref else: self.Nref = numpy.vstack((self.Nref, Nref)) if self.Nsys is None: self.Nsys = Nsys else: self.Nsys = numpy.vstack((self.Nsys, Nsys)) def results(self): """Get results Outputs results in dict, format: { 'class_wise_data': { 'office': { 'Nsys': 10, 'Nref': 7, }, } 'class_wise_accuracy': { 'office': 0.6, 'home': 0.4, } 'overall_accuracy': numpy.mean(self.accuracies_per_class) 'Nsys': 100, 'Nref': 100, } Parameters ---------- nothing Returns ------- results : dict Results dict """ results = { 'class_wise_data': {}, 'class_wise_accuracy': {}, 'overall_accuracy': numpy.mean(self.accuracies_per_class) } if len(self.Nsys.shape) == 2: results['Nsys'] = int(sum(sum(self.Nsys))) results['Nref'] = int(sum(sum(self.Nref))) else: results['Nsys'] = int(sum(self.Nsys)) results['Nref'] = int(sum(self.Nref)) for class_id, class_label in enumerate(self.class_list): if len(self.accuracies_per_class.shape) == 2: results['class_wise_accuracy'][class_label] = numpy.mean(self.accuracies_per_class[:, class_id]) results['class_wise_data'][class_label] = { 'Nsys': int(sum(self.Nsys[:, class_id])), 'Nref': int(sum(self.Nref[:, class_id])), } else: results['class_wise_accuracy'][class_label] = numpy.mean(self.accuracies_per_class[class_id]) results['class_wise_data'][class_label] = { 'Nsys': int(self.Nsys[class_id]), 'Nref': int(self.Nref[class_id]), } return results class EventDetectionMetrics(object): """Baseclass for sound event metric classes. """ def __init__(self, class_list): """__init__ method. Parameters ---------- class_list : list List of class labels to be evaluated. """ self.class_list = class_list self.eps = numpy.spacing(1) def max_event_offset(self, data): """Get maximum event offset from event list Parameters ---------- data : list Event list, list of event dicts Returns ------- max : float > 0 Maximum event offset """ max = 0 for event in data: if event['event_offset'] > max: max = event['event_offset'] return max def list_to_roll(self, data, time_resolution=0.01): """Convert event list into event roll. Event roll is binary matrix indicating event activity withing time segment defined by time_resolution. Parameters ---------- data : list Event list, list of event dicts time_resolution : float > 0 Time resolution used when converting event into event roll. Returns ------- event_roll : numpy.ndarray [shape=(math.ceil(data_length * 1 / time_resolution) + 1, amount of classes)] Event roll """ # Initialize data_length = self.max_event_offset(data) event_roll = numpy.zeros((math.ceil(data_length * 1 / time_resolution) + 1, len(self.class_list))) # Fill-in event_roll for event in data: pos = self.class_list.index(event['event_label'].rstrip()) onset = math.floor(event['event_onset'] * 1 / time_resolution) offset = math.ceil(event['event_offset'] * 1 / time_resolution) + 1 event_roll[onset:offset, pos] = 1 return event_roll class DCASE2016_EventDetection_SegmentBasedMetrics(EventDetectionMetrics): """DCASE2016 Segment based metrics for sound event detection Supported metrics: - Overall - Error rate (ER), Substitutions (S), Insertions (I), Deletions (D) - F-score (F1) - Class-wise - Error rate (ER), Insertions (I), Deletions (D) - F-score (F1) Examples -------- >>> overall_metrics_per_scene = {} >>> for scene_id, scene_label in enumerate(dataset.scene_labels): >>> dcase2016_segment_based_metric = DCASE2016_EventDetection_SegmentBasedMetrics(class_list=dataset.event_labels(scene_label=scene_label)) >>> for fold in dataset.folds(mode=dataset_evaluation_mode): >>> results = [] >>> result_filename = get_result_filename(fold=fold, scene_label=scene_label, path=result_path) >>> >>> if os.path.isfile(result_filename): >>> with open(result_filename, 'rt') as f: >>> for row in csv.reader(f, delimiter='\t'): >>> results.append(row) >>> >>> for file_id, item in enumerate(dataset.test(fold,scene_label=scene_label)): >>> current_file_results = [] >>> for result_line in results: >>> if result_line[0] == dataset.absolute_to_relative(item['file']): >>> current_file_results.append( >>> {'file': result_line[0], >>> 'event_onset': float(result_line[1]), >>> 'event_offset': float(result_line[2]), >>> 'event_label': result_line[3] >>> } >>> ) >>> meta = dataset.file_meta(dataset.absolute_to_relative(item['file'])) >>> dcase2016_segment_based_metric.evaluate(system_output=current_file_results, annotated_ground_truth=meta) >>> overall_metrics_per_scene[scene_label]['segment_based_metrics'] = dcase2016_segment_based_metric.results() """ def __init__(self, class_list, time_resolution=1.0): """__init__ method. Parameters ---------- class_list : list List of class labels to be evaluated. time_resolution : float > 0 Time resolution used when converting event into event roll. (Default value = 1.0) """ self.time_resolution = time_resolution self.overall = { 'Ntp': 0.0, 'Ntn': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, 'Nref': 0.0, 'Nsys': 0.0, 'ER': 0.0, 'S': 0.0, 'D': 0.0, 'I': 0.0, } self.class_wise = {} for class_label in class_list: self.class_wise[class_label] = { 'Ntp': 0.0, 'Ntn': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, 'Nref': 0.0, 'Nsys': 0.0, } EventDetectionMetrics.__init__(self, class_list=class_list) def __enter__(self): # Initialize class and return it return self def __exit__(self, type, value, traceback): # Finalize evaluation and return results return self.results() def evaluate(self, annotated_ground_truth, system_output): """Evaluate system output and annotated ground truth pair. Use results method to get results. Parameters ---------- annotated_ground_truth : numpy.array Ground truth array, list of scene labels system_output : numpy.array System output array, list of scene labels Returns ------- nothing """ # Convert event list into frame-based representation system_event_roll = self.list_to_roll(data=system_output, time_resolution=self.time_resolution) annotated_event_roll = self.list_to_roll(data=annotated_ground_truth, time_resolution=self.time_resolution) # Fix durations of both event_rolls to be equal if annotated_event_roll.shape[0] > system_event_roll.shape[0]: padding = numpy.zeros((annotated_event_roll.shape[0] - system_event_roll.shape[0], len(self.class_list))) system_event_roll = numpy.vstack((system_event_roll, padding)) if system_event_roll.shape[0] > annotated_event_roll.shape[0]: padding = numpy.zeros((system_event_roll.shape[0] - annotated_event_roll.shape[0], len(self.class_list))) annotated_event_roll = numpy.vstack((annotated_event_roll, padding)) # Compute segment-based overall metrics for segment_id in range(0, annotated_event_roll.shape[0]): annotated_segment = annotated_event_roll[segment_id, :] system_segment = system_event_roll[segment_id, :] Ntp = sum(system_segment + annotated_segment > 1) Ntn = sum(system_segment + annotated_segment == 0) Nfp = sum(system_segment - annotated_segment > 0) Nfn = sum(annotated_segment - system_segment > 0) Nref = sum(annotated_segment) Nsys = sum(system_segment) S = min(Nref, Nsys) - Ntp D = max(0, Nref - Nsys) I = max(0, Nsys - Nref) ER = max(Nref, Nsys) - Ntp self.overall['Ntp'] += Ntp self.overall['Ntn'] += Ntn self.overall['Nfp'] += Nfp self.overall['Nfn'] += Nfn self.overall['Nref'] += Nref self.overall['Nsys'] += Nsys self.overall['S'] += S self.overall['D'] += D self.overall['I'] += I self.overall['ER'] += ER for class_id, class_label in enumerate(self.class_list): annotated_segment = annotated_event_roll[:, class_id] system_segment = system_event_roll[:, class_id] Ntp = sum(system_segment + annotated_segment > 1) Ntn = sum(system_segment + annotated_segment == 0) Nfp = sum(system_segment - annotated_segment > 0) Nfn = sum(annotated_segment - system_segment > 0) Nref = sum(annotated_segment) Nsys = sum(system_segment) self.class_wise[class_label]['Ntp'] += Ntp self.class_wise[class_label]['Ntn'] += Ntn self.class_wise[class_label]['Nfp'] += Nfp self.class_wise[class_label]['Nfn'] += Nfn self.class_wise[class_label]['Nref'] += Nref self.class_wise[class_label]['Nsys'] += Nsys return self def results(self): """Get results Outputs results in dict, format: { 'overall': { 'Pre': 'Rec': 'F': 'ER': 'S': 'D': 'I': } 'class_wise': { 'office': { 'Pre': 'Rec': 'F': 'ER': 'D': 'I': 'Nref': 'Nsys': 'Ntp': 'Nfn': 'Nfp': }, } 'class_wise_average': { 'F': 'ER': } } Parameters ---------- nothing Returns ------- results : dict Results dict """ results = {'overall': {}, 'class_wise': {}, 'class_wise_average': {}, } # Overall metrics results['overall']['Pre'] = self.overall['Ntp'] / (self.overall['Nsys'] + self.eps) results['overall']['Rec'] = self.overall['Ntp'] / self.overall['Nref'] results['overall']['F'] = 2 * ((results['overall']['Pre'] * results['overall']['Rec']) / ( results['overall']['Pre'] + results['overall']['Rec'] + self.eps)) results['overall']['ER'] = self.overall['ER'] / self.overall['Nref'] results['overall']['S'] = self.overall['S'] / self.overall['Nref'] results['overall']['D'] = self.overall['D'] / self.overall['Nref'] results['overall']['I'] = self.overall['I'] / self.overall['Nref'] # Class-wise metrics class_wise_F = [] class_wise_ER = [] for class_id, class_label in enumerate(self.class_list): if class_label not in results['class_wise']: results['class_wise'][class_label] = {} results['class_wise'][class_label]['Pre'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nsys'] + self.eps) results['class_wise'][class_label]['Rec'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['F'] = 2 * ( (results['class_wise'][class_label]['Pre'] * results['class_wise'][class_label]['Rec']) / ( results['class_wise'][class_label]['Pre'] + results['class_wise'][class_label]['Rec'] + self.eps)) results['class_wise'][class_label]['ER'] = (self.class_wise[class_label]['Nfn'] + self.class_wise[class_label]['Nfp']) / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['D'] = self.class_wise[class_label]['Nfn'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['I'] = self.class_wise[class_label]['Nfp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['Nref'] = self.class_wise[class_label]['Nref'] results['class_wise'][class_label]['Nsys'] = self.class_wise[class_label]['Nsys'] results['class_wise'][class_label]['Ntp'] = self.class_wise[class_label]['Ntp'] results['class_wise'][class_label]['Nfn'] = self.class_wise[class_label]['Nfn'] results['class_wise'][class_label]['Nfp'] = self.class_wise[class_label]['Nfp'] class_wise_F.append(results['class_wise'][class_label]['F']) class_wise_ER.append(results['class_wise'][class_label]['ER']) results['class_wise_average']['F'] = numpy.mean(class_wise_F) results['class_wise_average']['ER'] = numpy.mean(class_wise_ER) return results class DCASE2016_EventDetection_EventBasedMetrics(EventDetectionMetrics): """DCASE2016 Event based metrics for sound event detection Supported metrics: - Overall - Error rate (ER), Substitutions (S), Insertions (I), Deletions (D) - F-score (F1) - Class-wise - Error rate (ER), Insertions (I), Deletions (D) - F-score (F1) Examples -------- >>> overall_metrics_per_scene = {} >>> for scene_id, scene_label in enumerate(dataset.scene_labels): >>> dcase2016_event_based_metric = DCASE2016_EventDetection_EventBasedMetrics(class_list=dataset.event_labels(scene_label=scene_label)) >>> for fold in dataset.folds(mode=dataset_evaluation_mode): >>> results = [] >>> result_filename = get_result_filename(fold=fold, scene_label=scene_label, path=result_path) >>> >>> if os.path.isfile(result_filename): >>> with open(result_filename, 'rt') as f: >>> for row in csv.reader(f, delimiter='\t'): >>> results.append(row) >>> >>> for file_id, item in enumerate(dataset.test(fold,scene_label=scene_label)): >>> current_file_results = [] >>> for result_line in results: >>> if result_line[0] == dataset.absolute_to_relative(item['file']): >>> current_file_results.append( >>> {'file': result_line[0], >>> 'event_onset': float(result_line[1]), >>> 'event_offset': float(result_line[2]), >>> 'event_label': result_line[3] >>> } >>> ) >>> meta = dataset.file_meta(dataset.absolute_to_relative(item['file'])) >>> dcase2016_event_based_metric.evaluate(system_output=current_file_results, annotated_ground_truth=meta) >>> overall_metrics_per_scene[scene_label]['event_based_metrics'] = dcase2016_event_based_metric.results() """ def __init__(self, class_list, time_resolution=1.0, t_collar=0.2): """__init__ method. Parameters ---------- class_list : list List of class labels to be evaluated. time_resolution : float > 0 Time resolution used when converting event into event roll. (Default value = 1.0) t_collar : float > 0 Time collar for event onset and offset condition (Default value = 0.2) """ self.time_resolution = time_resolution self.t_collar = t_collar self.overall = { 'Nref': 0.0, 'Nsys': 0.0, 'Nsubs': 0.0, 'Ntp': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, } self.class_wise = {} for class_label in class_list: self.class_wise[class_label] = { 'Nref': 0.0, 'Nsys': 0.0, 'Ntp': 0.0, 'Ntn': 0.0, 'Nfp': 0.0, 'Nfn': 0.0, } EventDetectionMetrics.__init__(self, class_list=class_list) def __enter__(self): # Initialize class and return it return self def __exit__(self, type, value, traceback): # Finalize evaluation and return results return self.results() def evaluate(self, annotated_ground_truth, system_output): """Evaluate system output and annotated ground truth pair. Use results method to get results. Parameters ---------- annotated_ground_truth : numpy.array Ground truth array, list of scene labels system_output : numpy.array System output array, list of scene labels Returns ------- nothing """ # Overall metrics # Total number of detected and reference events Nsys = len(system_output) Nref = len(annotated_ground_truth) sys_correct = numpy.zeros(Nsys, dtype=bool) ref_correct = numpy.zeros(Nref, dtype=bool) # Number of correctly transcribed events, onset/offset within a t_collar range for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): label_condition = annotated_ground_truth[j]['event_label'] == system_output[i]['event_label'] onset_condition = self.onset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) offset_condition = self.offset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) if label_condition and onset_condition and offset_condition: ref_correct[j] = True sys_correct[i] = True break Ntp = numpy.sum(sys_correct) sys_leftover = numpy.nonzero(numpy.negative(sys_correct))[0] ref_leftover = numpy.nonzero(numpy.negative(ref_correct))[0] # Substitutions Nsubs = 0 for j in ref_leftover: for i in sys_leftover: onset_condition = self.onset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) offset_condition = self.offset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) if onset_condition and offset_condition: Nsubs += 1 break Nfp = Nsys - Ntp - Nsubs Nfn = Nref - Ntp - Nsubs self.overall['Nref'] += Nref self.overall['Nsys'] += Nsys self.overall['Ntp'] += Ntp self.overall['Nsubs'] += Nsubs self.overall['Nfp'] += Nfp self.overall['Nfn'] += Nfn # Class-wise metrics for class_id, class_label in enumerate(self.class_list): Nref = 0.0 Nsys = 0.0 Ntp = 0.0 # Count event frequencies in the ground truth for i in range(0, len(annotated_ground_truth)): if annotated_ground_truth[i]['event_label'] == class_label: Nref += 1 # Count event frequencies in the system output for i in range(0, len(system_output)): if system_output[i]['event_label'] == class_label: Nsys += 1 for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): if annotated_ground_truth[j]['event_label'] == class_label and system_output[i][ 'event_label'] == class_label: onset_condition = self.onset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) offset_condition = self.offset_condition(annotated_event=annotated_ground_truth[j], system_event=system_output[i], t_collar=self.t_collar) if onset_condition and offset_condition: Ntp += 1 break Nfp = Nsys - Ntp Nfn = Nref - Ntp self.class_wise[class_label]['Nref'] += Nref self.class_wise[class_label]['Nsys'] += Nsys self.class_wise[class_label]['Ntp'] += Ntp self.class_wise[class_label]['Nfp'] += Nfp self.class_wise[class_label]['Nfn'] += Nfn def onset_condition(self, annotated_event, system_event, t_collar=0.200): """Onset condition, checked does the event pair fulfill condition Condition: - event onsets are within t_collar each other Parameters ---------- annotated_event : dict Event dict system_event : dict Event dict t_collar : float > 0 Defines how close event onsets have to be in order to be considered match. In seconds. (Default value = 0.2) Returns ------- result : bool Condition result """ return math.fabs(annotated_event['event_onset'] - system_event['event_onset']) <= t_collar def offset_condition(self, annotated_event, system_event, t_collar=0.200, percentage_of_length=0.5): """Offset condition, checking does the event pair fulfill condition Condition: - event offsets are within t_collar each other or - system event offset is within the percentage_of_length*annotated event_length Parameters ---------- annotated_event : dict Event dict system_event : dict Event dict t_collar : float > 0 Defines how close event onsets have to be in order to be considered match. In seconds. (Default value = 0.2) percentage_of_length : float [0-1] Returns ------- result : bool Condition result """ annotated_length = annotated_event['event_offset'] - annotated_event['event_onset'] return math.fabs(annotated_event['event_offset'] - system_event['event_offset']) <= max(t_collar, percentage_of_length * annotated_length) def results(self): """Get results Outputs results in dict, format: { 'overall': { 'Pre': 'Rec': 'F': 'ER': 'S': 'D': 'I': } 'class_wise': { 'office': { 'Pre': 'Rec': 'F': 'ER': 'D': 'I': 'Nref': 'Nsys': 'Ntp': 'Nfn': 'Nfp': }, } 'class_wise_average': { 'F': 'ER': } } Parameters ---------- nothing Returns ------- results : dict Results dict """ results = { 'overall': {}, 'class_wise': {}, 'class_wise_average': {}, } # Overall metrics results['overall']['Pre'] = self.overall['Ntp'] / (self.overall['Nsys'] + self.eps) results['overall']['Rec'] = self.overall['Ntp'] / self.overall['Nref'] results['overall']['F'] = 2 * ((results['overall']['Pre'] * results['overall']['Rec']) / ( results['overall']['Pre'] + results['overall']['Rec'] + self.eps)) results['overall']['ER'] = (self.overall['Nfn'] + self.overall['Nfp'] + self.overall['Nsubs']) / self.overall[ 'Nref'] results['overall']['S'] = self.overall['Nsubs'] / self.overall['Nref'] results['overall']['D'] = self.overall['Nfn'] / self.overall['Nref'] results['overall']['I'] = self.overall['Nfp'] / self.overall['Nref'] # Class-wise metrics class_wise_F = [] class_wise_ER = [] for class_label in self.class_list: if class_label not in results['class_wise']: results['class_wise'][class_label] = {} results['class_wise'][class_label]['Pre'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nsys'] + self.eps) results['class_wise'][class_label]['Rec'] = self.class_wise[class_label]['Ntp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['F'] = 2 * ( (results['class_wise'][class_label]['Pre'] * results['class_wise'][class_label]['Rec']) / ( results['class_wise'][class_label]['Pre'] + results['class_wise'][class_label]['Rec'] + self.eps)) results['class_wise'][class_label]['ER'] = (self.class_wise[class_label]['Nfn'] + self.class_wise[class_label]['Nfp']) / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['D'] = self.class_wise[class_label]['Nfn'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['I'] = self.class_wise[class_label]['Nfp'] / ( self.class_wise[class_label]['Nref'] + self.eps) results['class_wise'][class_label]['Nref'] = self.class_wise[class_label]['Nref'] results['class_wise'][class_label]['Nsys'] = self.class_wise[class_label]['Nsys'] results['class_wise'][class_label]['Ntp'] = self.class_wise[class_label]['Ntp'] results['class_wise'][class_label]['Nfn'] = self.class_wise[class_label]['Nfn'] results['class_wise'][class_label]['Nfp'] = self.class_wise[class_label]['Nfp'] class_wise_F.append(results['class_wise'][class_label]['F']) class_wise_ER.append(results['class_wise'][class_label]['ER']) # Class-wise average results['class_wise_average']['F'] = numpy.mean(class_wise_F) results['class_wise_average']['ER'] = numpy.mean(class_wise_ER) return results class DCASE2013_EventDetection_Metrics(EventDetectionMetrics): """Lecagy DCASE2013 metrics, converted from the provided Matlab implementation Supported metrics: - Frame based - F-score (F) - AEER - Event based - Onset - F-Score (F) - AEER - Onset-offset - F-Score (F) - AEER - Class based - Onset - F-Score (F) - AEER - Onset-offset - F-Score (F) - AEER """ # def frame_based(self, annotated_ground_truth, system_output, resolution=0.01): # Convert event list into frame-based representation system_event_roll = self.list_to_roll(data=system_output, time_resolution=resolution) annotated_event_roll = self.list_to_roll(data=annotated_ground_truth, time_resolution=resolution) # Fix durations of both event_rolls to be equal if annotated_event_roll.shape[0] > system_event_roll.shape[0]: padding = numpy.zeros((annotated_event_roll.shape[0] - system_event_roll.shape[0], len(self.class_list))) system_event_roll = numpy.vstack((system_event_roll, padding)) if system_event_roll.shape[0] > annotated_event_roll.shape[0]: padding = numpy.zeros((system_event_roll.shape[0] - annotated_event_roll.shape[0], len(self.class_list))) annotated_event_roll = numpy.vstack((annotated_event_roll, padding)) # Compute frame-based metrics Nref = sum(sum(annotated_event_roll)) Ntot = sum(sum(system_event_roll)) Ntp = sum(sum(system_event_roll + annotated_event_roll > 1)) Nfp = sum(sum(system_event_roll - annotated_event_roll > 0)) Nfn = sum(sum(annotated_event_roll - system_event_roll > 0)) Nsubs = min(Nfp, Nfn) eps = numpy.spacing(1) results = dict() results['Rec'] = Ntp / (Nref + eps) results['Pre'] = Ntp / (Ntot + eps) results['F'] = 2 * ((results['Pre'] * results['Rec']) / (results['Pre'] + results['Rec'] + eps)) results['AEER'] = (Nfn + Nfp + Nsubs) / (Nref + eps) return results def event_based(self, annotated_ground_truth, system_output): # Event-based evaluation for event detection task # outputFile: the output of the event detection system # GTFile: the ground truth list of events # Total number of detected and reference events Ntot = len(system_output) Nref = len(annotated_ground_truth) # Number of correctly transcribed events, onset within a +/-100 ms range Ncorr = 0 NcorrOff = 0 for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): if annotated_ground_truth[j]['event_label'] == system_output[i]['event_label'] and ( math.fabs(annotated_ground_truth[j]['event_onset'] - system_output[i]['event_onset']) <= 0.1): Ncorr += 1 # If offset within a +/-100 ms range or within 50% of ground-truth event's duration if math.fabs(annotated_ground_truth[j]['event_offset'] - system_output[i]['event_offset']) <= max( 0.1, 0.5 * ( annotated_ground_truth[j]['event_offset'] - annotated_ground_truth[j]['event_onset'])): NcorrOff += 1 break # In order to not evaluate duplicates # Compute onset-only event-based metrics eps = numpy.spacing(1) results = { 'onset': {}, 'onset-offset': {}, } Nfp = Ntot - Ncorr Nfn = Nref - Ncorr Nsubs = min(Nfp, Nfn) results['onset']['Rec'] = Ncorr / (Nref + eps) results['onset']['Pre'] = Ncorr / (Ntot + eps) results['onset']['F'] = 2 * ( (results['onset']['Pre'] * results['onset']['Rec']) / ( results['onset']['Pre'] + results['onset']['Rec'] + eps)) results['onset']['AEER'] = (Nfn + Nfp + Nsubs) / (Nref + eps) # Compute onset-offset event-based metrics NfpOff = Ntot - NcorrOff NfnOff = Nref - NcorrOff NsubsOff = min(NfpOff, NfnOff) results['onset-offset']['Rec'] = NcorrOff / (Nref + eps) results['onset-offset']['Pre'] = NcorrOff / (Ntot + eps) results['onset-offset']['F'] = 2 * ((results['onset-offset']['Pre'] * results['onset-offset']['Rec']) / ( results['onset-offset']['Pre'] + results['onset-offset']['Rec'] + eps)) results['onset-offset']['AEER'] = (NfnOff + NfpOff + NsubsOff) / (Nref + eps) return results def class_based(self, annotated_ground_truth, system_output): # Class-wise event-based evaluation for event detection task # outputFile: the output of the event detection system # GTFile: the ground truth list of events # Total number of detected and reference events per class Ntot = numpy.zeros((len(self.class_list), 1)) for event in system_output: pos = self.class_list.index(event['event_label']) Ntot[pos] += 1 Nref = numpy.zeros((len(self.class_list), 1)) for event in annotated_ground_truth: pos = self.class_list.index(event['event_label']) Nref[pos] += 1 I = (Nref > 0).nonzero()[0] # index for classes present in ground-truth # Number of correctly transcribed events per class, onset within a +/-100 ms range Ncorr = numpy.zeros((len(self.class_list), 1)) NcorrOff = numpy.zeros((len(self.class_list), 1)) for j in range(0, len(annotated_ground_truth)): for i in range(0, len(system_output)): if annotated_ground_truth[j]['event_label'] == system_output[i]['event_label'] and ( math.fabs( annotated_ground_truth[j]['event_onset'] - system_output[i]['event_onset']) <= 0.1): pos = self.class_list.index(system_output[i]['event_label']) Ncorr[pos] += 1 # If offset within a +/-100 ms range or within 50% of ground-truth event's duration if math.fabs(annotated_ground_truth[j]['event_offset'] - system_output[i]['event_offset']) <= max( 0.1, 0.5 * ( annotated_ground_truth[j]['event_offset'] - annotated_ground_truth[j][ 'event_onset'])): pos = self.class_list.index(system_output[i]['event_label']) NcorrOff[pos] += 1 break # In order to not evaluate duplicates # Compute onset-only class-wise event-based metrics eps = numpy.spacing(1) results = { 'onset': {}, 'onset-offset': {}, } Nfp = Ntot - Ncorr Nfn = Nref - Ncorr Nsubs = numpy.minimum(Nfp, Nfn) tempRec = Ncorr[I] / (Nref[I] + eps) tempPre = Ncorr[I] / (Ntot[I] + eps) results['onset']['Rec'] = numpy.mean(tempRec) results['onset']['Pre'] = numpy.mean(tempPre) tempF = 2 * ((tempPre * tempRec) / (tempPre + tempRec + eps)) results['onset']['F'] = numpy.mean(tempF) tempAEER = (Nfn[I] + Nfp[I] + Nsubs[I]) / (Nref[I] + eps) results['onset']['AEER'] = numpy.mean(tempAEER) # Compute onset-offset class-wise event-based metrics NfpOff = Ntot - NcorrOff NfnOff = Nref - NcorrOff NsubsOff = numpy.minimum(NfpOff, NfnOff) tempRecOff = NcorrOff[I] / (Nref[I] + eps) tempPreOff = NcorrOff[I] / (Ntot[I] + eps) results['onset-offset']['Rec'] = numpy.mean(tempRecOff) results['onset-offset']['Pre'] = numpy.mean(tempPreOff) tempFOff = 2 * ((tempPreOff * tempRecOff) / (tempPreOff + tempRecOff + eps)) results['onset-offset']['F'] = numpy.mean(tempFOff) tempAEEROff = (NfnOff[I] + NfpOff[I] + NsubsOff[I]) / (Nref[I] + eps) results['onset-offset']['AEER'] = numpy.mean(tempAEEROff) return results def main(argv): # Examples to show usage and required data structures class_list = ['class1', 'class2', 'class3'] system_output = [ { 'event_label': 'class1', 'event_onset': 0.1, 'event_offset': 1.0 }, { 'event_label': 'class2', 'event_onset': 4.1, 'event_offset': 4.7 }, { 'event_label': 'class3', 'event_onset': 5.5, 'event_offset': 6.7 } ] annotated_groundtruth = [ { 'event_label': 'class1', 'event_onset': 0.1, 'event_offset': 1.0 }, { 'event_label': 'class2', 'event_onset': 4.2, 'event_offset': 5.4 }, { 'event_label': 'class3', 'event_onset': 5.5, 'event_offset': 6.7 } ] dcase2013metric = DCASE2013_EventDetection_Metrics(class_list=class_list) print 'DCASE2013' print 'Frame-based:', dcase2013metric.frame_based(system_output=system_output, annotated_ground_truth=annotated_groundtruth) print 'Event-based:', dcase2013metric.event_based(system_output=system_output, annotated_ground_truth=annotated_groundtruth) print 'Class-based:', dcase2013metric.class_based(system_output=system_output, annotated_ground_truth=annotated_groundtruth) dcase2016_metric = DCASE2016_EventDetection_SegmentBasedMetrics(class_list=class_list) print 'DCASE2016' print dcase2016_metric.evaluate(system_output=system_output, annotated_ground_truth=annotated_groundtruth).results() if __name__ == "__main__": sys.exit(main(sys.argv))
mit
NunoEdgarGub1/scikit-learn
examples/classification/plot_classification_probability.py
242
2624
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial' )} n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause