repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
seg/2016-ml-contest
geoLEARN/Feature_Engineering.py
2
12059
# -*- coding: utf-8 -*- """ Created on Fri Dec 16 09:15:54 2016 @author: Antoine Caté """ import pandas as pd import numpy as np ###### Import packages needed for the make_vars functions from scipy.interpolate import interp1d import pywt from skimage.filters.rank import entropy from skimage.morphology import rectangle from skimage.util import img_as_ubyte def make_dwt_vars_cD(wells_df,logs,levels,wavelet): wave= pywt.Wavelet(wavelet) grouped = wells_df.groupby(['Well Name']) new_df = pd.DataFrame() for key in grouped.groups.keys(): depth = grouped.get_group(key)['Depth'] temp_df = pd.DataFrame() temp_df['Depth'] = depth for log in logs: temp_data = grouped.get_group(key)[log] cA_4, cD_4, cD_3, cD_2, cD_1 = pywt.wavedec(temp_data,wave,level=4,mode='symmetric') dict_cD_levels = {1:cD_1, 2:cD_2, 3:cD_3, 4:cD_4} for i in levels: new_depth = np.linspace(min(depth),max(depth),len(dict_cD_levels[i])) fA = interp1d(new_depth,dict_cD_levels[i],kind='nearest') temp_df[log + '_cD_level_' + str(i)] = fA(depth) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_dwt_vars_cA(wells_df,logs,levels,wavelet): wave= pywt.Wavelet(wavelet) grouped = wells_df.groupby(['Well Name']) new_df = pd.DataFrame() for key in grouped.groups.keys(): depth = grouped.get_group(key)['Depth'] temp_df = pd.DataFrame() temp_df['Depth'] = depth for log in logs: temp_data = grouped.get_group(key)[log] for i in levels: cA_cD = pywt.wavedec(temp_data,wave,level=i,mode='symmetric') cA = cA_cD[0] new_depth = np.linspace(min(depth),max(depth),len(cA)) fA = interp1d(new_depth,cA,kind='nearest') temp_df[log + '_cA_level_' + str(i)] = fA(depth) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_entropy_vars(wells_df,logs,l_foots): new_df = pd.DataFrame() grouped = wells_df.groupby(['Well Name']) for key in grouped.groups.keys(): depth = grouped.get_group(key)['Depth'] temp_df = pd.DataFrame() temp_df['Depth'] = depth for log in logs: temp_data = grouped.get_group(key)[log] image = np.vstack((temp_data,temp_data,temp_data)) image -= np.median(image) image /= np.max(np.abs(image)) image = img_as_ubyte(image) for l_foot in l_foots: footprint = rectangle(l_foot,3) temp_df[log + '_entropy_foot' + str(l_foot)] = entropy(image,footprint)[0,:] new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_gradient_vars(wells_df,logs,dx_list): new_df = pd.DataFrame() grouped = wells_df.groupby(['Well Name']) for key in grouped.groups.keys(): depth = grouped.get_group(key)['Depth'] temp_df = pd.DataFrame() temp_df['Depth'] = depth for log in logs: temp_data = grouped.get_group(key)[log] for dx in dx_list: temp_df[log + 'gradient_dx' + str(dx)] = np.gradient(temp_data,dx) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_moving_av_vars(wells_df,logs,windows): new_df = pd.DataFrame() grouped = wells_df.groupby(['Well Name']) for key in grouped.groups.keys(): temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] for log in logs: temp_data = grouped.get_group(key)[log] for window in windows: temp_df[log + '_moving_av_' + str(window) + 'ft'] = pd.rolling_mean(arg=temp_data, window=window, min_periods=1, center=True) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_moving_std_vars(wells_df,logs,windows): new_df = pd.DataFrame() grouped = wells_df.groupby(['Well Name']) for key in grouped.groups.keys(): temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] for log in logs: temp_data = grouped.get_group(key)[log] for window in windows: temp_df[log + '_moving_std_' + str(window) + 'ft'] = pd.rolling_std(arg=temp_data, window=window, min_periods=1, center=True) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_moving_max_vars(wells_df,logs,windows): new_df = pd.DataFrame() grouped = wells_df.groupby(['Well Name']) for key in grouped.groups.keys(): temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] for log in logs: temp_data = grouped.get_group(key)[log] for window in windows: temp_df[log + '_moving_max_' + str(window) + 'ft'] = pd.rolling_max(arg=temp_data, window=window, min_periods=1, center=True) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_moving_min_vars(wells_df,logs,windows): new_df = pd.DataFrame() grouped = wells_df.groupby(['Well Name']) for key in grouped.groups.keys(): temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] for log in logs: temp_data = grouped.get_group(key)[log] for window in windows: temp_df[log + '_moving_min_' + str(window) + 'ft'] = pd.rolling_min(arg=temp_data, window=window, min_periods=1, center=True) new_df = new_df.append(temp_df) new_df = new_df.sort_index() new_df = new_df.drop(['Depth'],axis=1) return new_df def make_rolling_marine_ratio_vars(wells_df, windows): grouped = wells_df.groupby(['Well Name']) new_var = pd.DataFrame() for key in grouped.groups.keys(): depth = grouped.get_group(key)['Depth'] temp_df = pd.DataFrame() temp_df['Depth'] = depth NM_M = grouped.get_group(key)['NM_M'] for window in windows: temp_df['Depth'] = grouped.get_group(key)['Depth'] temp_df['Well Name'] = [key for _ in range(len(NM_M))] temp_df['NM_M'] = grouped.get_group(key)['NM_M'] #We initialize a new variable temp_df['Marine_ratio_' + str(window) + '_centered'] = pd.rolling_mean(arg=temp_df['NM_M'], window=window, min_periods=1, center=True) new_var = new_var.append(temp_df) new_var = new_var.sort_index() new_var =new_var.drop(['Well Name', 'Depth','NM_M'],axis=1) return new_var def make_distance_to_M_up_vars(wells_df): grouped = wells_df.groupby(['Well Name']) new_var = pd.DataFrame() for key in grouped.groups.keys(): NM_M = grouped.get_group(key)['NM_M'].values #We create a temporary dataframe that we reset for every well temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] temp_df['Well Name'] = [key for _ in range(len(NM_M))] #We initialize a new variable dist_mar_up = np.zeros(len(NM_M)) # A variable counting the interval from the ipper marine deposit # We initialize it to -99999 since we do not know what's abpve the first log count = -1 for i in range(len(NM_M)): if ((NM_M[i] == 1) & (count>-1)): count+=0.5 dist_mar_up[i] += count elif NM_M[i] == 2: count=0 else: dist_mar_up[i] = count temp_df['dist_M_up'] = dist_mar_up # We append each well variable to a larger dataframe # We use a dataframe to preserve the index new_var = new_var.append(temp_df) new_var = new_var.sort_index() new_var =new_var.drop(['Well Name','Depth'],axis=1) return new_var def make_distance_to_M_down_vars(wells_df): grouped = wells_df.groupby(['Well Name']) new_var = pd.DataFrame() for key in grouped.groups.keys(): NM_M = grouped.get_group(key)['NM_M'].values temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] temp_df['Well Name'] = [key for _ in range(len(NM_M))] dist_mar_down = np.zeros(len(NM_M)) count = -1 for i in range(len(NM_M)-1,-1,-1): if ((NM_M[i] == 1) & (count>-1)): count+=0.5 dist_mar_down[i] += count elif NM_M[i] == 2: count=0 else: dist_mar_down[i] = count temp_df['dist_M_down'] = dist_mar_down new_var = new_var.append(temp_df) new_var = new_var.sort_index() new_var =new_var.drop(['Well Name','Depth'],axis=1) return new_var def make_distance_to_NM_up_vars(wells_df): grouped = wells_df.groupby(['Well Name']) new_var = pd.DataFrame() for key in grouped.groups.keys(): NM_M = grouped.get_group(key)['NM_M'].values #We create a temporary dataframe that we reset for every well temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] temp_df['Well Name'] = [key for _ in range(len(NM_M))] #We initialize a new variable dist_mar_up = np.zeros(len(NM_M)) # A variable counting the interval from the ipper marine deposit # We initialize it to -99999 since we do not know what's abpve the first log count = -1 for i in range(len(NM_M)): if ((NM_M[i] == 2) & (count>-1)): count+=0.5 dist_mar_up[i] += count elif NM_M[i] == 1: count=0 else: dist_mar_up[i] = count temp_df['dist_NM_up'] = dist_mar_up # We append each well variable to a larger dataframe # We use a dataframe to preserve the index new_var = new_var.append(temp_df) new_var = new_var.sort_index() new_var =new_var.drop(['Well Name','Depth'],axis=1) return new_var def make_distance_to_NM_down_vars(wells_df): grouped = wells_df.groupby(['Well Name']) new_var = pd.DataFrame() for key in grouped.groups.keys(): NM_M = grouped.get_group(key)['NM_M'].values temp_df = pd.DataFrame() temp_df['Depth'] = grouped.get_group(key)['Depth'] temp_df['Well Name'] = [key for _ in range(len(NM_M))] dist_mar_down = np.zeros(len(NM_M)) count = -1 for i in range(len(NM_M)-1,-1,-1): if ((NM_M[i] == 2) & (count>-1)): count+=0.5 dist_mar_down[i] += count elif NM_M[i] == 1: count=0 else: dist_mar_down[i] = count temp_df['dist_NM_down'] = dist_mar_down new_var = new_var.append(temp_df) new_var = new_var.sort_index() new_var =new_var.drop(['Well Name','Depth'],axis=1) return new_var
apache-2.0
pypot/scikit-learn
sklearn/utils/tests/test_shortest_path.py
88
2828
from collections import defaultdict import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.utils.graph import (graph_shortest_path, single_source_shortest_path_length) def floyd_warshall_slow(graph, directed=False): N = graph.shape[0] #set nonzero entries to infinity graph[np.where(graph == 0)] = np.inf #set diagonal to zero graph.flat[::N + 1] = 0 if not directed: graph = np.minimum(graph, graph.T) for k in range(N): for i in range(N): for j in range(N): graph[i, j] = min(graph[i, j], graph[i, k] + graph[k, j]) graph[np.where(np.isinf(graph))] = 0 return graph def generate_graph(N=20): #sparse grid of distances rng = np.random.RandomState(0) dist_matrix = rng.random_sample((N, N)) #make symmetric: distances are not direction-dependent dist_matrix += dist_matrix.T #make graph sparse i = (rng.randint(N, size=N * N // 2), rng.randint(N, size=N * N // 2)) dist_matrix[i] = 0 #set diagonal to zero dist_matrix.flat[::N + 1] = 0 return dist_matrix def test_floyd_warshall(): dist_matrix = generate_graph(20) for directed in (True, False): graph_FW = graph_shortest_path(dist_matrix, directed, 'FW') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_FW, graph_py) def test_dijkstra(): dist_matrix = generate_graph(20) for directed in (True, False): graph_D = graph_shortest_path(dist_matrix, directed, 'D') graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) assert_array_almost_equal(graph_D, graph_py) def test_shortest_path(): dist_matrix = generate_graph(20) # We compare path length and not costs (-> set distances to 0 or 1) dist_matrix[dist_matrix != 0] = 1 for directed in (True, False): if not directed: dist_matrix = np.minimum(dist_matrix, dist_matrix.T) graph_py = floyd_warshall_slow(dist_matrix.copy(), directed) for i in range(dist_matrix.shape[0]): # Non-reachable nodes have distance 0 in graph_py dist_dict = defaultdict(int) dist_dict.update(single_source_shortest_path_length(dist_matrix, i)) for j in range(graph_py[i].shape[0]): assert_array_almost_equal(dist_dict[j], graph_py[i, j]) def test_dijkstra_bug_fix(): X = np.array([[0., 0., 4.], [1., 0., 2.], [0., 5., 0.]]) dist_FW = graph_shortest_path(X, directed=False, method='FW') dist_D = graph_shortest_path(X, directed=False, method='D') assert_array_almost_equal(dist_D, dist_FW)
bsd-3-clause
RomainBrault/scikit-learn
sklearn/ensemble/tests/test_forest.py
9
43013
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.94, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", "mae", "friedman_mse")): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse", "mae"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) # Ignore warnings from switching to more power iterations in randomized_svd @ignore_warnings def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Using a Python 2.x list as the sample_weight parameter used to raise # an exception. This test makes sure such code will now run correctly. clf = ForestClassifier() sample_weight = [1.] * len(iris.data) clf.fit(iris.data, iris.target, sample_weight=sample_weight) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='balanced', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name def test_min_impurity_split(): # Test if min_impurity_split of base estimators is set # Regression test for #8006 X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [RandomForestClassifier, RandomForestRegressor, ExtraTreesClassifier, ExtraTreesRegressor] for Estimator in all_estimators: est = Estimator(min_impurity_split=0.1) est = assert_warns_message(DeprecationWarning, "min_impurity_decrease", est.fit, X, y) for tree in est.estimators_: assert_equal(tree.min_impurity_split, 0.1) def test_min_impurity_decrease(): X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [RandomForestClassifier, RandomForestRegressor, ExtraTreesClassifier, ExtraTreesRegressor] for Estimator in all_estimators: est = Estimator(min_impurity_decrease=0.1) est.fit(X, y) for tree in est.estimators_: # Simply check if the parameter is passed on correctly. Tree tests # will suffice for the actual working of this param assert_equal(tree.min_impurity_decrease, 0.1)
bsd-3-clause
gfyoung/pandas
pandas/tests/io/test_parquet.py
1
36752
""" test parquet compat """ import datetime from distutils.version import LooseVersion from io import BytesIO import os import pathlib from warnings import catch_warnings import numpy as np import pytest from pandas.compat import PY38, is_platform_windows import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.io.parquet import ( FastParquetImpl, PyArrowImpl, get_engine, read_parquet, to_parquet, ) try: import pyarrow _HAVE_PYARROW = True except ImportError: _HAVE_PYARROW = False try: import fastparquet _HAVE_FASTPARQUET = True except ImportError: _HAVE_FASTPARQUET = False pytestmark = pytest.mark.filterwarnings( "ignore:RangeIndex.* is deprecated:DeprecationWarning" ) # setup engines & skips @pytest.fixture( params=[ pytest.param( "fastparquet", marks=pytest.mark.skipif( not _HAVE_FASTPARQUET, reason="fastparquet is not installed" ), ), pytest.param( "pyarrow", marks=pytest.mark.skipif( not _HAVE_PYARROW, reason="pyarrow is not installed" ), ), ] ) def engine(request): return request.param @pytest.fixture def pa(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") return "pyarrow" @pytest.fixture def fp(): if not _HAVE_FASTPARQUET: pytest.skip("fastparquet is not installed") return "fastparquet" @pytest.fixture def df_compat(): return pd.DataFrame({"A": [1, 2, 3], "B": "foo"}) @pytest.fixture def df_cross_compat(): df = pd.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), # 'c': np.arange(3, 6).astype('u1'), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), # 'g': pd.date_range('20130101', periods=3, # tz='US/Eastern'), # 'h': pd.date_range('20130101', periods=3, freq='ns') } ) return df @pytest.fixture def df_full(): return pd.DataFrame( { "string": list("abc"), "string_with_nan": ["a", np.nan, "c"], "string_with_none": ["a", None, "c"], "bytes": [b"foo", b"bar", b"baz"], "unicode": ["foo", "bar", "baz"], "int": list(range(1, 4)), "uint": np.arange(3, 6).astype("u1"), "float": np.arange(4.0, 7.0, dtype="float64"), "float_with_nan": [2.0, np.nan, 3.0], "bool": [True, False, True], "datetime": pd.date_range("20130101", periods=3), "datetime_with_nat": [ pd.Timestamp("20130101"), pd.NaT, pd.Timestamp("20130103"), ], } ) @pytest.fixture( params=[ datetime.datetime.now(datetime.timezone.utc), datetime.datetime.now(datetime.timezone.min), datetime.datetime.now(datetime.timezone.max), datetime.datetime.strptime("2019-01-04T16:41:24+0200", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24+0215", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24-0200", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24-0215", "%Y-%m-%dT%H:%M:%S%z"), ] ) def timezone_aware_date_list(request): return request.param def check_round_trip( df, engine=None, path=None, write_kwargs=None, read_kwargs=None, expected=None, check_names=True, check_like=False, check_dtype=True, repeat=2, ): """Verify parquet serializer and deserializer produce the same results. Performs a pandas to disk and disk to pandas round trip, then compares the 2 resulting DataFrames to verify equality. Parameters ---------- df: Dataframe engine: str, optional 'pyarrow' or 'fastparquet' path: str, optional write_kwargs: dict of str:str, optional read_kwargs: dict of str:str, optional expected: DataFrame, optional Expected deserialization result, otherwise will be equal to `df` check_names: list of str, optional Closed set of column names to be compared check_like: bool, optional If True, ignore the order of index & columns. repeat: int, optional How many times to repeat the test """ write_kwargs = write_kwargs or {"compression": None} read_kwargs = read_kwargs or {} if expected is None: expected = df if engine: write_kwargs["engine"] = engine read_kwargs["engine"] = engine def compare(repeat): for _ in range(repeat): df.to_parquet(path, **write_kwargs) with catch_warnings(record=True): actual = read_parquet(path, **read_kwargs) tm.assert_frame_equal( expected, actual, check_names=check_names, check_like=check_like, check_dtype=check_dtype, ) if path is None: with tm.ensure_clean() as path: compare(repeat) else: compare(repeat) def test_invalid_engine(df_compat): msg = "engine must be one of 'pyarrow', 'fastparquet'" with pytest.raises(ValueError, match=msg): check_round_trip(df_compat, "foo", "bar") def test_options_py(df_compat, pa): # use the set option with pd.option_context("io.parquet.engine", "pyarrow"): check_round_trip(df_compat) def test_options_fp(df_compat, fp): # use the set option with pd.option_context("io.parquet.engine", "fastparquet"): check_round_trip(df_compat) def test_options_auto(df_compat, fp, pa): # use the set option with pd.option_context("io.parquet.engine", "auto"): check_round_trip(df_compat) def test_options_get_engine(fp, pa): assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "pyarrow"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "fastparquet"): assert isinstance(get_engine("auto"), FastParquetImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "auto"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) def test_get_engine_auto_error_message(): # Expect different error messages from get_engine(engine="auto") # if engines aren't installed vs. are installed but bad version from pandas.compat._optional import VERSIONS # Do we have engines installed, but a bad version of them? pa_min_ver = VERSIONS.get("pyarrow") fp_min_ver = VERSIONS.get("fastparquet") have_pa_bad_version = ( False if not _HAVE_PYARROW else LooseVersion(pyarrow.__version__) < LooseVersion(pa_min_ver) ) have_fp_bad_version = ( False if not _HAVE_FASTPARQUET else LooseVersion(fastparquet.__version__) < LooseVersion(fp_min_ver) ) # Do we have usable engines installed? have_usable_pa = _HAVE_PYARROW and not have_pa_bad_version have_usable_fp = _HAVE_FASTPARQUET and not have_fp_bad_version if not have_usable_pa and not have_usable_fp: # No usable engines found. if have_pa_bad_version: match = f"Pandas requires version .{pa_min_ver}. or newer of .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") if have_fp_bad_version: match = f"Pandas requires version .{fp_min_ver}. or newer of .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") def test_cross_engine_pa_fp(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=pa, compression=None) result = read_parquet(path, engine=fp) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=fp, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) def test_cross_engine_fp_pa(request, df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines if ( LooseVersion(pyarrow.__version__) < "0.15" and LooseVersion(pyarrow.__version__) >= "0.13" ): request.node.add_marker( pytest.mark.xfail( "Reading fastparquet with pyarrow in 0.14 fails: " "https://issues.apache.org/jira/browse/ARROW-6492" ) ) df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=fp, compression=None) with catch_warnings(record=True): result = read_parquet(path, engine=pa) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=pa, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) class Base: def check_error_on_write(self, df, engine, exc, err_msg): # check that we are raising the exception on writing with tm.ensure_clean() as path: with pytest.raises(exc, match=err_msg): to_parquet(df, path, engine, compression=None) def check_external_error_on_write(self, df, engine, exc): # check that an external library is raising the exception on writing with tm.ensure_clean() as path: with tm.external_error_raised(exc): to_parquet(df, path, engine, compression=None) @tm.network def test_parquet_read_from_url(self, df_compat, engine): if engine != "auto": pytest.importorskip(engine) url = ( "https://raw.githubusercontent.com/pandas-dev/pandas/" "master/pandas/tests/io/data/parquet/simple.parquet" ) df = pd.read_parquet(url) tm.assert_frame_equal(df, df_compat) class TestBasic(Base): def test_error(self, engine): for obj in [ pd.Series([1, 2, 3]), 1, "foo", pd.Timestamp("20130101"), np.array([1, 2, 3]), ]: msg = "to_parquet only supports IO with DataFrames" self.check_error_on_write(obj, engine, ValueError, msg) def test_columns_dtypes(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) # unicode df.columns = ["foo", "bar"] check_round_trip(df, engine) def test_columns_dtypes_invalid(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) msg = "parquet must have string column names" # numeric df.columns = [0, 1] self.check_error_on_write(df, engine, ValueError, msg) # bytes df.columns = [b"foo", b"bar"] self.check_error_on_write(df, engine, ValueError, msg) # python object df.columns = [ datetime.datetime(2011, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 1, 1), ] self.check_error_on_write(df, engine, ValueError, msg) @pytest.mark.parametrize("compression", [None, "gzip", "snappy", "brotli"]) def test_compression(self, engine, compression): if compression == "snappy": pytest.importorskip("snappy") elif compression == "brotli": pytest.importorskip("brotli") df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine, write_kwargs={"compression": compression}) def test_read_columns(self, engine): # GH18154 df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) expected = pd.DataFrame({"string": list("abc")}) check_round_trip( df, engine, expected=expected, read_kwargs={"columns": ["string"]} ) def test_write_index(self, engine): check_names = engine != "fastparquet" df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine) indexes = [ [2, 3, 4], pd.date_range("20130101", periods=3), list("abc"), [1, 3, 4], ] # non-default index for index in indexes: df.index = index if isinstance(index, pd.DatetimeIndex): df.index = df.index._with_freq(None) # freq doesnt round-trip check_round_trip(df, engine, check_names=check_names) # index with meta-data df.index = [0, 1, 2] df.index.name = "foo" check_round_trip(df, engine) def test_write_multiindex(self, pa): # Not supported in fastparquet as of 0.1.3 or older pyarrow version engine = pa df = pd.DataFrame({"A": [1, 2, 3]}) index = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df.index = index check_round_trip(df, engine) def test_multiindex_with_columns(self, pa): engine = pa dates = pd.date_range("01-Jan-2018", "01-Dec-2018", freq="MS") df = pd.DataFrame(np.random.randn(2 * len(dates), 3), columns=list("ABC")) index1 = pd.MultiIndex.from_product( [["Level1", "Level2"], dates], names=["level", "date"] ) index2 = index1.copy(names=None) for index in [index1, index2]: df.index = index check_round_trip(df, engine) check_round_trip( df, engine, read_kwargs={"columns": ["A", "B"]}, expected=df[["A", "B"]] ) def test_write_ignoring_index(self, engine): # ENH 20768 # Ensure index=False omits the index from the written Parquet file. df = pd.DataFrame({"a": [1, 2, 3], "b": ["q", "r", "s"]}) write_kwargs = {"compression": None, "index": False} # Because we're dropping the index, we expect the loaded dataframe to # have the default integer index. expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore custom index df = pd.DataFrame( {"a": [1, 2, 3], "b": ["q", "r", "s"]}, index=["zyx", "wvu", "tsr"] ) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore multi-indexes as well. arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = pd.DataFrame( {"one": list(range(8)), "two": [-i for i in range(8)]}, index=arrays ) expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) def test_write_column_multiindex(self, engine): # Not able to write column multi-indexes with non-string column names. mi_columns = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df = pd.DataFrame(np.random.randn(4, 3), columns=mi_columns) msg = ( r"\s*parquet must have string column names for all values in\s*" "each level of the MultiIndex" ) self.check_error_on_write(df, engine, ValueError, msg) def test_write_column_multiindex_nonstring(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Not able to write column multi-indexes with non-string column names arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], [1, 2, 1, 2, 1, 2, 1, 2], ] df = pd.DataFrame(np.random.randn(8, 8), columns=arrays) df.columns.names = ["Level1", "Level2"] msg = ( r"\s*parquet must have string column names for all values in\s*" "each level of the MultiIndex" ) self.check_error_on_write(df, engine, ValueError, msg) def test_write_column_multiindex_string(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column multi-indexes with string column names arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = pd.DataFrame(np.random.randn(8, 8), columns=arrays) df.columns.names = ["ColLevel1", "ColLevel2"] check_round_trip(df, engine) def test_write_column_index_string(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column indexes with string column names arrays = ["bar", "baz", "foo", "qux"] df = pd.DataFrame(np.random.randn(8, 4), columns=arrays) df.columns.name = "StringCol" check_round_trip(df, engine) def test_write_column_index_nonstring(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column indexes with string column names arrays = [1, 2, 3, 4] df = pd.DataFrame(np.random.randn(8, 4), columns=arrays) df.columns.name = "NonStringCol" msg = r"parquet must have string column names" self.check_error_on_write(df, engine, ValueError, msg) class TestParquetPyArrow(Base): def test_basic(self, pa, df_full): df = df_full # additional supported types for pyarrow dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels") dti = dti._with_freq(None) # freq doesnt round-trip df["datetime_tz"] = dti df["bool_with_none"] = [True, None, True] check_round_trip(df, pa) def test_basic_subset_columns(self, pa, df_full): # GH18628 df = df_full # additional supported types for pyarrow df["datetime_tz"] = pd.date_range("20130101", periods=3, tz="Europe/Brussels") check_round_trip( df, pa, expected=df[["string", "int"]], read_kwargs={"columns": ["string", "int"]}, ) def test_to_bytes_without_path_or_buf_provided(self, pa, df_full): # GH 37105 buf_bytes = df_full.to_parquet(engine=pa) assert isinstance(buf_bytes, bytes) buf_stream = BytesIO(buf_bytes) res = pd.read_parquet(buf_stream) tm.assert_frame_equal(df_full, res) def test_duplicate_columns(self, pa): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() self.check_error_on_write(df, pa, ValueError, "Duplicate column names found") def test_unsupported(self, pa): if LooseVersion(pyarrow.__version__) < LooseVersion("0.15.1.dev"): # period - will be supported using an extension type with pyarrow 1.0 df = pd.DataFrame({"a": pd.period_range("2013", freq="M", periods=3)}) # pyarrow 0.11 raises ArrowTypeError # older pyarrows raise ArrowInvalid self.check_external_error_on_write(df, pa, pyarrow.ArrowException) # timedelta df = pd.DataFrame({"a": pd.timedelta_range("1 day", periods=3)}) self.check_external_error_on_write(df, pa, NotImplementedError) # mixed python objects df = pd.DataFrame({"a": ["a", 1, 2.0]}) # pyarrow 0.11 raises ArrowTypeError # older pyarrows raise ArrowInvalid self.check_external_error_on_write(df, pa, pyarrow.ArrowException) def test_categorical(self, pa): # supported in >= 0.7.0 df = pd.DataFrame() df["a"] = pd.Categorical(list("abcdef")) # test for null, out-of-order values, and unobserved category df["b"] = pd.Categorical( ["bar", "foo", "foo", "bar", None, "bar"], dtype=pd.CategoricalDtype(["foo", "bar", "baz"]), ) # test for ordered flag df["c"] = pd.Categorical( ["a", "b", "c", "a", "c", "b"], categories=["b", "c", "d"], ordered=True ) if LooseVersion(pyarrow.__version__) >= LooseVersion("0.15.0"): check_round_trip(df, pa) else: # de-serialized as object for pyarrow < 0.15 expected = df.astype(object) check_round_trip(df, pa, expected=expected) @pytest.mark.xfail( is_platform_windows() and PY38, reason="localhost connection rejected", strict=False, ) def test_s3_roundtrip_explicit_fs(self, df_compat, s3_resource, pa, s3so): s3fs = pytest.importorskip("s3fs") if LooseVersion(pyarrow.__version__) <= LooseVersion("0.17.0"): pytest.skip() s3 = s3fs.S3FileSystem(**s3so) kw = {"filesystem": s3} check_round_trip( df_compat, pa, path="pandas-test/pyarrow.parquet", read_kwargs=kw, write_kwargs=kw, ) def test_s3_roundtrip(self, df_compat, s3_resource, pa, s3so): if LooseVersion(pyarrow.__version__) <= LooseVersion("0.17.0"): pytest.skip() # GH #19134 s3so = {"storage_options": s3so} check_round_trip( df_compat, pa, path="s3://pandas-test/pyarrow.parquet", read_kwargs=s3so, write_kwargs=s3so, ) @td.skip_if_no("s3fs") # also requires flask @pytest.mark.parametrize( "partition_col", [ ["A"], [], ], ) def test_s3_roundtrip_for_dir( self, df_compat, s3_resource, pa, partition_col, s3so ): # GH #26388 expected_df = df_compat.copy() # GH #35791 # read_table uses the new Arrow Datasets API since pyarrow 1.0.0 # Previous behaviour was pyarrow partitioned columns become 'category' dtypes # These are added to back of dataframe on read. In new API category dtype is # only used if partition field is string, but this changed again to use # category dtype for all types (not only strings) in pyarrow 2.0.0 pa10 = (LooseVersion(pyarrow.__version__) >= LooseVersion("1.0.0")) and ( LooseVersion(pyarrow.__version__) < LooseVersion("2.0.0") ) if partition_col: if pa10: partition_col_type = "int32" else: partition_col_type = "category" expected_df[partition_col] = expected_df[partition_col].astype( partition_col_type ) check_round_trip( df_compat, pa, expected=expected_df, path="s3://pandas-test/parquet_dir", read_kwargs={"storage_options": s3so}, write_kwargs={ "partition_cols": partition_col, "compression": None, "storage_options": s3so, }, check_like=True, repeat=1, ) @td.skip_if_no("pyarrow") def test_read_file_like_obj_support(self, df_compat): buffer = BytesIO() df_compat.to_parquet(buffer) df_from_buf = pd.read_parquet(buffer) tm.assert_frame_equal(df_compat, df_from_buf) @td.skip_if_no("pyarrow") def test_expand_user(self, df_compat, monkeypatch): monkeypatch.setenv("HOME", "TestingUser") monkeypatch.setenv("USERPROFILE", "TestingUser") with pytest.raises(OSError, match=r".*TestingUser.*"): pd.read_parquet("~/file.parquet") with pytest.raises(OSError, match=r".*TestingUser.*"): df_compat.to_parquet("~/file.parquet") def test_partition_cols_supported(self, pa, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet(path, partition_cols=partition_cols, compression=None) import pyarrow.parquet as pq dataset = pq.ParquetDataset(path, validate_schema=False) assert len(dataset.partitions.partition_names) == 2 assert dataset.partitions.partition_names == set(partition_cols) assert read_parquet(path).shape == df.shape def test_partition_cols_string(self, pa, df_full): # GH #27117 partition_cols = "bool" partition_cols_list = [partition_cols] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet(path, partition_cols=partition_cols, compression=None) import pyarrow.parquet as pq dataset = pq.ParquetDataset(path, validate_schema=False) assert len(dataset.partitions.partition_names) == 1 assert dataset.partitions.partition_names == set(partition_cols_list) assert read_parquet(path).shape == df.shape @pytest.mark.parametrize("path_type", [str, pathlib.Path]) def test_partition_cols_pathlib(self, pa, df_compat, path_type): # GH 35902 partition_cols = "B" partition_cols_list = [partition_cols] df = df_compat with tm.ensure_clean_dir() as path_str: path = path_type(path_str) df.to_parquet(path, partition_cols=partition_cols_list) assert read_parquet(path).shape == df.shape def test_empty_dataframe(self, pa): # GH #27339 df = pd.DataFrame() check_round_trip(df, pa) def test_write_with_schema(self, pa): import pyarrow df = pd.DataFrame({"x": [0, 1]}) schema = pyarrow.schema([pyarrow.field("x", type=pyarrow.bool_())]) out_df = df.astype(bool) check_round_trip(df, pa, write_kwargs={"schema": schema}, expected=out_df) @td.skip_if_no("pyarrow", min_version="0.15.0") def test_additional_extension_arrays(self, pa): # test additional ExtensionArrays that are supported through the # __arrow_array__ protocol df = pd.DataFrame( { "a": pd.Series([1, 2, 3], dtype="Int64"), "b": pd.Series([1, 2, 3], dtype="UInt32"), "c": pd.Series(["a", None, "c"], dtype="string"), } ) if LooseVersion(pyarrow.__version__) >= LooseVersion("0.16.0"): expected = df else: # de-serialized as plain int / object expected = df.assign( a=df.a.astype("int64"), b=df.b.astype("int64"), c=df.c.astype("object") ) check_round_trip(df, pa, expected=expected) df = pd.DataFrame({"a": pd.Series([1, 2, 3, None], dtype="Int64")}) if LooseVersion(pyarrow.__version__) >= LooseVersion("0.16.0"): expected = df else: # if missing values in integer, currently de-serialized as float expected = df.assign(a=df.a.astype("float64")) check_round_trip(df, pa, expected=expected) @td.skip_if_no("pyarrow", min_version="0.16.0") def test_additional_extension_types(self, pa): # test additional ExtensionArrays that are supported through the # __arrow_array__ protocol + by defining a custom ExtensionType df = pd.DataFrame( { # Arrow does not yet support struct in writing to Parquet (ARROW-1644) # "c": pd.arrays.IntervalArray.from_tuples([(0, 1), (1, 2), (3, 4)]), "d": pd.period_range("2012-01-01", periods=3, freq="D"), } ) check_round_trip(df, pa) @td.skip_if_no("pyarrow", min_version="0.16") def test_use_nullable_dtypes(self, pa): import pyarrow.parquet as pq table = pyarrow.table( { "a": pyarrow.array([1, 2, 3, None], "int64"), "b": pyarrow.array([1, 2, 3, None], "uint8"), "c": pyarrow.array(["a", "b", "c", None]), "d": pyarrow.array([True, False, True, None]), } ) with tm.ensure_clean() as path: # write manually with pyarrow to write integers pq.write_table(table, path) result1 = read_parquet(path) result2 = read_parquet(path, use_nullable_dtypes=True) assert result1["a"].dtype == np.dtype("float64") expected = pd.DataFrame( { "a": pd.array([1, 2, 3, None], dtype="Int64"), "b": pd.array([1, 2, 3, None], dtype="UInt8"), "c": pd.array(["a", "b", "c", None], dtype="string"), "d": pd.array([True, False, True, None], dtype="boolean"), } ) tm.assert_frame_equal(result2, expected) @td.skip_if_no("pyarrow", min_version="0.14") def test_timestamp_nanoseconds(self, pa): # with version 2.0, pyarrow defaults to writing the nanoseconds, so # this should work without error df = pd.DataFrame({"a": pd.date_range("2017-01-01", freq="1n", periods=10)}) check_round_trip(df, pa, write_kwargs={"version": "2.0"}) def test_timezone_aware_index(self, pa, timezone_aware_date_list): if LooseVersion(pyarrow.__version__) >= LooseVersion("2.0.0"): # temporary skip this test until it is properly resolved # https://github.com/pandas-dev/pandas/issues/37286 pytest.skip() idx = 5 * [timezone_aware_date_list] df = pd.DataFrame(index=idx, data={"index_as_col": idx}) # see gh-36004 # compare time(zone) values only, skip their class: # pyarrow always creates fixed offset timezones using pytz.FixedOffset() # even if it was datetime.timezone() originally # # technically they are the same: # they both implement datetime.tzinfo # they both wrap datetime.timedelta() # this use-case sets the resolution to 1 minute check_round_trip(df, pa, check_dtype=False) @td.skip_if_no("pyarrow", min_version="1.0.0") def test_filter_row_groups(self, pa): # https://github.com/pandas-dev/pandas/issues/26551 df = pd.DataFrame({"a": list(range(0, 3))}) with tm.ensure_clean() as path: df.to_parquet(path, pa) result = read_parquet( path, pa, filters=[("a", "==", 0)], use_legacy_dataset=False ) assert len(result) == 1 class TestParquetFastParquet(Base): @td.skip_if_no("fastparquet", min_version="0.3.2") def test_basic(self, fp, df_full): df = df_full dti = pd.date_range("20130101", periods=3, tz="US/Eastern") dti = dti._with_freq(None) # freq doesnt round-trip df["datetime_tz"] = dti df["timedelta"] = pd.timedelta_range("1 day", periods=3) check_round_trip(df, fp) @pytest.mark.skip(reason="not supported") def test_duplicate_columns(self, fp): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() msg = "Cannot create parquet dataset with duplicate column names" self.check_error_on_write(df, fp, ValueError, msg) def test_bool_with_none(self, fp): df = pd.DataFrame({"a": [True, None, False]}) expected = pd.DataFrame({"a": [1.0, np.nan, 0.0]}, dtype="float16") check_round_trip(df, fp, expected=expected) def test_unsupported(self, fp): # period df = pd.DataFrame({"a": pd.period_range("2013", freq="M", periods=3)}) self.check_error_on_write(df, fp, ValueError, "cannot infer type for") # mixed df = pd.DataFrame({"a": ["a", 1, 2.0]}) msg = "Can't infer object conversion type" self.check_error_on_write(df, fp, ValueError, msg) def test_categorical(self, fp): df = pd.DataFrame({"a": pd.Categorical(list("abc"))}) check_round_trip(df, fp) def test_filter_row_groups(self, fp): d = {"a": list(range(0, 3))} df = pd.DataFrame(d) with tm.ensure_clean() as path: df.to_parquet(path, fp, compression=None, row_group_offsets=1) result = read_parquet(path, fp, filters=[("a", "==", 0)]) assert len(result) == 1 def test_s3_roundtrip(self, df_compat, s3_resource, fp, s3so): # GH #19134 check_round_trip( df_compat, fp, path="s3://pandas-test/fastparquet.parquet", read_kwargs={"storage_options": s3so}, write_kwargs={"compression": None, "storage_options": s3so}, ) def test_partition_cols_supported(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", partition_cols=partition_cols, compression=None, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 2 def test_partition_cols_string(self, fp, df_full): # GH #27117 partition_cols = "bool" df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", partition_cols=partition_cols, compression=None, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 1 def test_partition_on_supported(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", compression=None, partition_on=partition_cols, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 2 def test_error_on_using_partition_cols_and_partition_on(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full msg = ( "Cannot use both partition_on and partition_cols. Use partition_cols for " "partitioning data" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", compression=None, partition_on=partition_cols, partition_cols=partition_cols, ) def test_empty_dataframe(self, fp): # GH #27339 df = pd.DataFrame() expected = df.copy() expected.index.name = "index" check_round_trip(df, fp, expected=expected) def test_timezone_aware_index(self, fp, timezone_aware_date_list): idx = 5 * [timezone_aware_date_list] df = pd.DataFrame(index=idx, data={"index_as_col": idx}) expected = df.copy() expected.index.name = "index" check_round_trip(df, fp, expected=expected) def test_use_nullable_dtypes_not_supported(self, fp): df = pd.DataFrame({"a": [1, 2]}) with tm.ensure_clean() as path: df.to_parquet(path) with pytest.raises(ValueError, match="not supported for the fastparquet"): read_parquet(path, engine="fastparquet", use_nullable_dtypes=True)
bsd-3-clause
arahuja/scikit-learn
sklearn/manifold/isomap.py
36
7119
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
dshen1/trading-with-python
spreadApp/makeDist.py
77
1720
from distutils.core import setup import py2exe manifest_template = ''' <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0"> <assemblyIdentity version="5.0.0.0" processorArchitecture="x86" name="%(prog)s" type="win32" /> <description>%(prog)s Program</description> <dependency> <dependentAssembly> <assemblyIdentity type="win32" name="Microsoft.Windows.Common-Controls" version="6.0.0.0" processorArchitecture="X86" publicKeyToken="6595b64144ccf1df" language="*" /> </dependentAssembly> </dependency> </assembly> ''' RT_MANIFEST = 24 import matplotlib opts = { 'py2exe': { "compressed": 1, "bundle_files" : 3, "includes" : ["sip", "matplotlib.backends", "matplotlib.backends.backend_qt4agg", "pylab", "numpy", "matplotlib.backends.backend_tkagg"], 'excludes': ['_gtkagg', '_tkagg', '_agg2', '_cairo', '_cocoaagg', '_fltkagg', '_gtk', '_gtkcairo', ], 'dll_excludes': ['libgdk-win32-2.0-0.dll', 'libgobject-2.0-0.dll'] } } setup(name="triton", version = "0.1", scripts=["spreadScanner.pyw"], windows=[{"script": "spreadScanner.pyw"}], options=opts, data_files=matplotlib.get_py2exe_datafiles(), other_resources = [(RT_MANIFEST, 1, manifest_template % dict(prog="spreadDetective"))], zipfile = None)
bsd-3-clause
rahuldhote/scikit-learn
examples/classification/plot_lda_qda.py
164
4806
""" ==================================================================== Linear and Quadratic Discriminant Analysis with confidence ellipsoid ==================================================================== Plot the confidence ellipsoids of each class and decision boundary """ print(__doc__) from scipy import linalg import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.lda import LDA from sklearn.qda import QDA ############################################################################### # colormap cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = plt.subplot(2, 2, fig_index) if fig_index == 1: plt.title('Linear Discriminant Analysis') plt.ylabel('Data with fixed covariance') elif fig_index == 2: plt.title('Quadratic Discriminant Analysis') elif fig_index == 3: plt.ylabel('Data with varying covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[~tp0] X1_tp, X1_fp = X1[tp1], X1[~tp1] xmin, xmax = X[:, 0].min(), X[:, 0].max() ymin, ymax = X[:, 1].min(), X[:, 1].max() # class 0: dots plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', color='red') plt.plot(X0_fp[:, 0], X0_fp[:, 1], '.', color='#990000') # dark red # class 1: dots plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', color='blue') plt.plot(X1_fp[:, 0], X1_fp[:, 1], '.', color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means plt.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) plt.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees # filled Gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) splot.set_xticks(()) splot.set_yticks(()) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # LDA lda = LDA(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight') # QDA qda = QDA() y_pred = qda.fit(X, y, store_covariances=True).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) plt.axis('tight') plt.suptitle('LDA vs QDA') plt.show()
bsd-3-clause
joshbohde/scikit-learn
examples/cluster/plot_mean_shift.py
7
1795
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print __doc__ import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print "number of estimated clusters : %d" % n_clusters_ ############################################################################### # Plot result import pylab as pl from itertools import cycle pl.figure(1) pl.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] pl.plot(X[my_members, 0], X[my_members, 1], col + '.') pl.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) pl.title('Estimated number of clusters: %d' % n_clusters_) pl.show()
bsd-3-clause
jms-dipadua/financial-forecasting
file_mergers.py
1
7182
import numpy as np import pandas as pd from glob import glob # TODO: add in directory of files to loop through... #import sys from collections import defaultdict import csv import math class Calendar: def __init__(self): self.month_max_days = { 1: 31, 2: 28, 3: 31, 4: 30, 5: 31, 6: 30, 7: 31, 8: 31, 9: 30, 10: 31, 11: 30, 12: 31 } def max_days_in_month(self, month_num): return self.month_max_days[month_num] def is_leap_yr(self, year_num): if year_num % 4 > 0: return False def max_days_yr(self): if self.is_leap_yr(self.year_num) == True: return 366 else: return 365 def split_dates(self, date): date_els = date.split('/') month = int(date_els[0]) day = int(date_els[1]) year = int(date_els[2]) return day, month, year def create_dates(self, day, month, year, days_in_month, periodicity): date_array = [] day = int(day) month = int(month) year = int(year) # put the first date into the array date = str(month) +'/'+ str(day) + '/' + str(year) date_array.append(date) # now make the remainder of the days for i in range(1, periodicity): day += 1 if day > days_in_month: day = 1 month += 1 if month > 12: month = 1 year += 1 date = str(month) +'/'+ str(day) + '/' + str(year) #date = date.strip() # was just to make sure. probably don't need. date_array.append(date) return date_array class Source: def __init__(self): self.calendar = Calendar() # we'll use this generic calendar as a look-up helper class self.get_params() self.read_file(self.base_file, 1) # base file self.initial_data_drop() # i.e. drop IDs from df """ BULK OF WORK HERE # LOOP THROUGH EACH MERGE file # READ IT, MATCH IT (AND CREATE ALT DATES AS NEEDED) """ for merge_f in self.merge_files: self.read_file(merge_f, 2) merge_periodicity = self.merge_f_dict[merge_f] if merge_periodicity > 1: # create all the alternate dates merge_dataframe = self.expand_raw_merge_data(merge_periodicity) else: merge_dataframe = self.raw_data_merge # with a "cleanish" dataframe in hand, merge the data self.merge_data(merge_dataframe) print self.dataframe.shape self.calc_PE() self.write_finished_file() def get_params(self): # self.base_files = [] TO DO... (faster / less-error pron than manually one-at-a-time) self.base_file = raw_input("BASE file: ") # base file #self.base_file_period = int(raw_input("period of original file: 1 == daily, 2 == weekly, 3 == monthly, 4 == quarterly")) # base file #financials_file = raw_input("MERGE file name, NO directory: ") # financials file (earnings, etc) company_ticker = raw_input("Company Ticker: ") self.financials_file = "financials/financials-"+company_ticker+".csv" self.merge_files = [ '10-yr-tres.csv', 'brent.csv', 'civil-labor-part-rate.csv', 'civil-unemployment-rate.csv', 'cpi.csv', 'fed-debt-to-GDP.csv', 'housing-start.csv', 'initial-claims.csv', 'libor.csv', 'personal-consumption-expend.csv', 'personal-savings-rate.csv', 'real-gdp.csv', #'real-median-hh-income.csv', # this is pending 2015 release!! 'sp500.csv', 'usd-euro.csv' ] self.merge_files.append(self.financials_file) self.merge_f_dict = { # 1: daily, 7: weekly, 31: monthly, 91: quarterly, 365: annual # we assign the numbers like this because we're going to use them later...saves a conversion step '10-yr-tres.csv': 1, 'brent.csv': 1, 'civil-labor-part-rate.csv': 32, 'civil-unemployment-rate.csv': 32, 'cpi.csv':32, 'fed-debt-to-GDP.csv':93, 'housing-start.csv': 32, 'initial-claims.csv': 7, 'libor.csv':1, 'personal-consumption-expend.csv': 32, 'personal-savings-rate.csv': 32, 'real-gdp.csv': 93, 'real-median-hh-income.csv': 365, 'sp500.csv': 1, 'usd-euro.csv': 1, self.financials_file: 93 } self.root_base = 'data/transformed/v5/' # this is where we'll version things self.root_merge = 'data/fundamentals/v5/' self.fin_file_name = raw_input("Name for Final File: ") self.fin_file_name = 'data/working/v5/' + self.fin_file_name def read_file(self, file_name, f_type): # TYPE: base (1) vs merge (2) # Read data print "reading file data for % r" % file_name if f_type == 1: self.raw_data_base = pd.read_csv(self.root_base+file_name, dtype = str) elif f_type == 2: self.raw_data_merge = pd.read_csv(self.root_merge+file_name, dtype = str) def initial_data_drop(self): columns = list(self.raw_data_base.columns.values) if 'id' in columns: self.dataframe = self.raw_data_base.drop(['id'], axis=1) else: self.dataframe = self.raw_data_base def merge_data(self, merge_dataframe): self.dataframe = self.dataframe.merge(merge_dataframe, how='inner', on='Date') self.dataframe.drop_duplicates(subset='Date', keep='last', inplace=True) def expand_raw_merge_data(self, periodicity): dates = self.raw_data_merge['Date'] # two empty arrays that we'll append values to # then, later, make into np.arrays and then create a dataframe with all_dates = [] all_date_vals = [] for date in dates: #print date day, month, year = self.calendar.split_dates(date) # <-- need a way to get the "previous day" so that you can fix the information leak # get the original date from the merge data frame (to get its "cell" value) tmp_df = self.raw_data_merge.loc[self.raw_data_merge['Date'] == date] # dataframe row tmp_df_cols = list(tmp_df.columns.values) # column headers, also used below #print tmp_df_cols date_value = tmp_df.iloc[0][tmp_df_cols[1:]] # the value of that specific date # <- THIS IS WHERE YOU CAN NAB THE FULL DATA SET...RATHER THAN JUST ONE COL #print "%r %r %r" % (day, month, year) days_in_month = self.calendar.max_days_in_month(month) if (month == 2 and self.calendar.is_leap_yr(year) == True): # annoying control for leap years days_in_month += 1 new_dates = self.calendar.create_dates(day, month, year, days_in_month, periodicity) # new_dates is an array # we want to get single value entries so we have to loop through them (unfortunately) for nd in new_dates: all_date_vals.append(date_value) all_dates.append(nd) # then make a dataframe with all this stuff all_dates = np.array([all_dates]) # this will make a row vector # we transpose to get the column vector all_dates = np.transpose(all_dates) all_date_vals = np.array(all_date_vals) #print all_dates.shape #print all_date_vals.shape merged_dates_date_vals = np.hstack((all_dates, all_date_vals)) new_merge_df = pd.DataFrame(merged_dates_date_vals, columns = tmp_df_cols) #print new_merge_df # return it to the calling function return new_merge_df def calc_PE(self): self.dataframe['PE'] = pd.to_numeric(self.dataframe['Close']) / pd.to_numeric(self.dataframe['EPS']) def write_finished_file(self): print self.dataframe.shape final_file = self.dataframe.to_csv(self.fin_file_name,index_label='id') if __name__ == "__main__": transformation = Source()
gpl-3.0
jseabold/statsmodels
statsmodels/stats/tests/test_sandwich.py
5
3592
# -*- coding: utf-8 -*- """Tests for sandwich robust covariance estimation see also in regression for cov_hac compared to Gretl and sandbox.panel test_random_panel for comparing cov_cluster, cov_hac_panel and cov_white Created on Sat Dec 17 08:39:16 2011 Author: Josef Perktold """ import numpy as np from numpy.testing import assert_almost_equal from statsmodels.regression.linear_model import OLS from statsmodels.tools.tools import add_constant import statsmodels.stats.sandwich_covariance as sw def test_cov_cluster_2groups(): #comparing cluster robust standard errors to Peterson #requires Petersen's test_data #http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.txt import os cur_dir = os.path.abspath(os.path.dirname(__file__)) fpath = os.path.join(cur_dir,"test_data.txt") pet = np.genfromtxt(fpath) endog = pet[:,-1] group = pet[:,0].astype(int) time = pet[:,1].astype(int) exog = add_constant(pet[:,2]) res = OLS(endog, exog).fit() cov01, covg, covt = sw.cov_cluster_2groups(res, group, group2=time) #Reference number from Petersen #http://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm bse_petw = [0.0284, 0.0284] bse_pet0 = [0.0670, 0.0506] bse_pet1 = [0.0234, 0.0334] #year bse_pet01 = [0.0651, 0.0536] #firm and year bse_0 = sw.se_cov(covg) bse_1 = sw.se_cov(covt) bse_01 = sw.se_cov(cov01) #print res.HC0_se, bse_petw - res.HC0_se #print bse_0, bse_0 - bse_pet0 #print bse_1, bse_1 - bse_pet1 #print bse_01, bse_01 - bse_pet01 assert_almost_equal(bse_petw, res.HC0_se, decimal=4) assert_almost_equal(bse_0, bse_pet0, decimal=4) assert_almost_equal(bse_1, bse_pet1, decimal=4) assert_almost_equal(bse_01, bse_pet01, decimal=4) def test_hac_simple(): from statsmodels.datasets import macrodata d2 = macrodata.load_pandas().data g_gdp = 400*np.diff(np.log(d2['realgdp'].values)) g_inv = 400*np.diff(np.log(d2['realinv'].values)) exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values]) res_olsg = OLS(g_inv, exogg).fit() #> NeweyWest(fm, lag = 4, prewhite = FALSE, sandwich = TRUE, verbose=TRUE, adjust=TRUE) #Lag truncation parameter chosen: 4 # (Intercept) ggdp lint cov1_r = [[ 1.40643899878678802, -0.3180328707083329709, -0.060621111216488610], [ -0.31803287070833292, 0.1097308348999818661, 0.000395311760301478], [ -0.06062111121648865, 0.0003953117603014895, 0.087511528912470993]] #> NeweyWest(fm, lag = 4, prewhite = FALSE, sandwich = TRUE, verbose=TRUE, adjust=FALSE) #Lag truncation parameter chosen: 4 # (Intercept) ggdp lint cov2_r = [[ 1.3855512908840137, -0.313309610252268500, -0.059720797683570477], [ -0.3133096102522685, 0.108101169035130618, 0.000389440793564339], [ -0.0597207976835705, 0.000389440793564336, 0.086211852740503622]] cov1 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=True) se1 = sw.se_cov(cov1) cov2 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=False) se2 = sw.se_cov(cov2) assert_almost_equal(cov1, cov1_r, decimal=14) assert_almost_equal(cov2, cov2_r, decimal=14) # compare default for nlags cov3 = sw.cov_hac_simple(res_olsg, use_correction=False) cov4 = sw.cov_hac_simple(res_olsg, nlags=4, use_correction=False) assert_almost_equal(cov3, cov4, decimal=14)
bsd-3-clause
sargas/scipy
scipy/signal/waveforms.py
1
14473
# Author: Travis Oliphant # 2003 # # Feb. 2010: Updated by Warren Weckesser: # Rewrote much of chirp() # Added sweep_poly() from __future__ import division, print_function, absolute_import from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ exp, cos, sin, polyval, polyint __all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly'] def sawtooth(t, width=1): """ Return a periodic sawtooth or triangle waveform. The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like Time. width : array_like, optional Width of the rising ramp as a proportion of the total cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. `t` = 0.5 produces a triangle wave. If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the sawtooth waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500) >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t)) """ t, w = asarray(t), asarray(width) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # take t modulo 2*pi tmod = mod(t, 2 * pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1 - mask1) & (tmod < w * 2 * pi) tsub = extract(mask2, tmod) wsub = extract(mask2, w) place(y, mask2, tsub / (pi * wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) tsub = extract(mask3, tmod) wsub = extract(mask3, w) place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub))) return y def square(t, duty=0.5): """ Return a periodic square-wave waveform. The square wave has a period ``2*pi``, has value +1 from 0 to ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in the interval [0,1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like The input time array. duty : array_like, optional Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the square waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500, endpoint=False) >>> plt.plot(t, signal.square(2 * np.pi * 5 * t)) >>> plt.ylim(-2, 2) A pulse-width modulated sine wave: >>> sig = np.sin(2 * np.pi * t) >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2) >>> plt.subplot(2, 1, 1) >>> plt.plot(t, sig) >>> plt.subplot(2, 1, 2) >>> plt.plot(t, pwm) >>> plt.ylim(-1.5, 1.5) """ t, w = asarray(t), asarray(duty) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # on the interval 0 to duty*2*pi function is 1 tmod = mod(t, 2 * pi) mask2 = (1 - mask1) & (tmod < w * 2 * pi) place(y, mask2, 1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) place(y, mask3, -1) return y def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False): """ Return a Gaussian modulated sinusoid: ``exp(-a t^2) exp(1j*2*pi*fc*t).`` If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid. Parameters ---------- t : ndarray or the string 'cutoff' Input array. fc : int, optional Center frequency (e.g. Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5. bwr : float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False. Returns ------- yI : ndarray Real part of signal. Always returned. yQ : ndarray Imaginary part of signal. Only returned if `retquad` is True. yenv : ndarray Envelope of signal. Only returned if `retenv` is True. See Also -------- scipy.signal.morlet Examples -------- Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False) >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True) >>> plt.plot(t, i, t, q, t, e, '--') """ if fc < 0: raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) if bw <= 0: raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) if bwr >= 0: raise ValueError("Reference level for bandwidth (bwr=%.2f) must " "be < 0 dB" % bwr) # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) ref = pow(10.0, bwr / 20.0) # fdel = fc*bw/2: g(fdel) = ref --- solve this for a # # pi^2/a * fc^2 * bw^2 /4=-log(ref) a = -(pi * fc * bw) ** 2 / (4.0 * log(ref)) if t == 'cutoff': # compute cut_off point # Solve exp(-a tc**2) = tref for tc # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) if tpr >= 0: raise ValueError("Reference level for time cutoff must be < 0 dB") tref = pow(10.0, tpr / 20.0) return sqrt(-log(tref) / a) yenv = exp(-a * t * t) yI = yenv * cos(2 * pi * fc * t) yQ = yenv * sin(2 * pi * fc * t) if not retquad and not retenv: return yI if not retquad and retenv: return yI, yenv if retquad and not retenv: return yI, yQ if retquad and retenv: return yI, yQ, yenv def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): """Frequency-swept cosine generator. In the following, 'Hz' should be interpreted as 'cycles per unit'; there is no requirement here that the unit is one second. The important distinction is that the units of rotation are cycles, not radians. Likewise, `t` could be a measurement of space instead of time. Parameters ---------- t : ndarray Times at which to evaluate the waveform. f0 : float Frequency (e.g. Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (e.g. Hz) of the waveform at time `t1`. method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1. Returns ------- y : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below. See Also -------- sweep_poly Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used. linear, lin, li: ``f(t) = f0 + (f1 - f0) * t / t1`` quadratic, quad, q: The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is: if vertex_zero is True: ``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` else: ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.waveforms.sweep_poly`. logarithmic, log, lo: ``f(t) = f0 * (f1/f0)**(t/t1)`` f0 and f1 must be nonzero and have the same sign. This signal is also known as a geometric or exponential chirp. hyperbolic, hyp: ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` f1 must be positive, and f0 must be greater than f1. """ # 'phase' is computed in _chirp_phase, to make testing easier. phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) # Convert phi to radians. phi *= pi / 180 return cos(phase + phi) def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): """ Calculate the phase used by chirp_phase to generate its output. See `chirp_phase` for a description of the arguments. """ f0 = float(f0) t1 = float(t1) f1 = float(f1) if method in ['linear', 'lin', 'li']: beta = (f1 - f0) / t1 phase = 2 * pi * (f0 * t + 0.5 * beta * t * t) elif method in ['quadratic', 'quad', 'q']: beta = (f1 - f0) / (t1 ** 2) if vertex_zero: phase = 2 * pi * (f0 * t + beta * t ** 3 / 3) else: phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3) elif method in ['logarithmic', 'log', 'lo']: if f0 * f1 <= 0.0: raise ValueError("For a geometric chirp, f0 and f1 must be " "nonzero and have the same sign.") if f0 == f1: phase = 2 * pi * f0 * t else: beta = t1 / log(f1 / f0) phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0) elif method in ['hyperbolic', 'hyp']: if f1 <= 0.0 or f0 <= f1: raise ValueError("hyperbolic chirp requires f0 > f1 > 0.0.") c = f1 * t1 df = f0 - f1 phase = 2 * pi * (f0 * c / df) * log((df * t + c) / c) else: raise ValueError("method must be 'linear', 'quadratic', 'logarithmic'," " or 'hyperbolic', but a value of %r was given." % method) return phase def sweep_poly(t, poly, phi=0): """ Frequency-swept cosine generator, with a time-dependent frequency. This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`. Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1-D array-like or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is ``f(t) = poly(t)`` phi : float, optional Phase offset, in degrees, Default: 0. Returns ------- sweep_poly : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. See Also -------- chirp Notes ----- .. versionadded:: 0.8.0 If `poly` is a list or ndarray of length `n`, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is: ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of `numpy.poly1d`, then the instantaneous frequency is: ``f(t) = poly(t)`` Finally, the output `s` is: ``cos(phase + (pi/180)*phi)`` where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``, ``f(t)`` as defined above. """ # 'phase' is computed in _sweep_poly_phase, to make testing easier. phase = _sweep_poly_phase(t, poly) # Convert to radians. phi *= pi / 180 return cos(phase + phi) def _sweep_poly_phase(t, poly): """ Calculate the phase used by sweep_poly to generate its output. See `sweep_poly` for a description of the arguments. """ # polyint handles lists, ndarrays and instances of poly1d automatically. intpoly = polyint(poly) phase = 2 * pi * polyval(intpoly, t) return phase
bsd-3-clause
poryfly/scikit-learn
sklearn/utils/metaestimators.py
283
2353
"""Utilities for meta-estimators""" # Author: Joel Nothman # Andreas Mueller # Licence: BSD from operator import attrgetter from functools import update_wrapper __all__ = ['if_delegate_has_method'] class _IffHasAttrDescriptor(object): """Implements a conditional property using the descriptor protocol. Using this class to create a decorator will raise an ``AttributeError`` if the ``attribute_name`` is not present on the base object. This allows ducktyping of the decorated method based on ``attribute_name``. See https://docs.python.org/3/howto/descriptor.html for an explanation of descriptors. """ def __init__(self, fn, attribute_name): self.fn = fn self.get_attribute = attrgetter(attribute_name) # update the docstring of the descriptor update_wrapper(self, fn) def __get__(self, obj, type=None): # raise an AttributeError if the attribute is not present on the object if obj is not None: # delegate only on instances, not the classes. # this is to allow access to the docstrings. self.get_attribute(obj) # lambda, but not partial, allows help() to work with update_wrapper out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs) # update the docstring of the returned function update_wrapper(out, self.fn) return out def if_delegate_has_method(delegate): """Create a decorator for methods that are delegated to a sub-estimator This enables ducktyping by hasattr returning True according to the sub-estimator. >>> from sklearn.utils.metaestimators import if_delegate_has_method >>> >>> >>> class MetaEst(object): ... def __init__(self, sub_est): ... self.sub_est = sub_est ... ... @if_delegate_has_method(delegate='sub_est') ... def predict(self, X): ... return self.sub_est.predict(X) ... >>> class HasPredict(object): ... def predict(self, X): ... return X.sum(axis=1) ... >>> class HasNoPredict(object): ... pass ... >>> hasattr(MetaEst(HasPredict()), 'predict') True >>> hasattr(MetaEst(HasNoPredict()), 'predict') False """ return lambda fn: _IffHasAttrDescriptor(fn, '%s.%s' % (delegate, fn.__name__))
bsd-3-clause
joshgabriel/dft-crossfilter
CompleteApp/crossfilter_app/main.py
1
25701
import os from os.path import dirname, join from collections import OrderedDict import pandas as pd import numpy as np import json from bokeh.io import curdoc from bokeh.layouts import row, widgetbox, column, gridplot, layout from bokeh.models import Select, Div, Column, \ HoverTool, ColumnDataSource, Button, RadioButtonGroup,\ MultiSelect #from bokeh.models.widgets import RangeSlider from bokeh.plotting import figure from bokeh.sampledata.periodic_table import elements import requests plottables = ['k-point', 'value', 'perc_precisions'] x_select = Select(title='X-Axis', value='k-point', options=plottables) y_select = Select(title='Y-Axis', value='value', options=plottables) ############## Header Content from description.html ################# content_filename1 = join(dirname(__file__), "ptable.html") description1 = Div(text=open(content_filename1).read(), render_as_text=False, width=600) content_filename2 = join(dirname(__file__), "HomePage.html") description2 = Div(text=open(content_filename2).read(), render_as_text=False, width=600) # periodic table widget romans = ["I", "II", "III", "IV", "V", "VI", "VII"] elements["atomic mass"] = elements["atomic mass"].astype(str) print("Table---") #print(elements.period) print("---Table") try: elements["period"] = [romans[x-1] for x in elements.period] except: pass elements = elements[elements.group != "-"] group_range = [str(x) for x in range(1, 19)] colormap = { "c" : "#ffa07a", "nc" : "#A9A9A9" } elems_colorpair = {'H':'nc','He':'nc', 'Li':'nc','Be':'nc','B':'nc','C':'nc', 'N':'nc', 'O':'nc','F':'nc','Ne':'nc', 'Na':'nc','Mg':'nc', 'Al':'c','Si':'nc','P':'nc','S':'nc','Cl':'nc','Ar':'nc', 'K': 'nc', 'Ca':'nc','Sc':'c', 'Ti':'c' ,'V':'c' , 'Cr':'c', 'Mn':'c', 'Fe':'c', 'Co':'c', 'Ni':'c', 'Cu':'c', 'Zn':'c', 'Rb':'nc', 'Sr':'nc','Y':'c', 'Zr':'c', 'Nb':'c', 'Mo':'c', 'Tc':'c', 'Ru':'c', 'Rh':'c', 'Pd':'c', 'Ag':'c','Cd': 'c', 'Cs':'nc', 'Ba':'nc', 'Hf':'c', 'Ta':'c', 'W':'c', 'Re':'c', 'Os':'c', 'Ir':'c', 'Pt':'c', 'Au':'c', 'Hg':'c' } elems_colorpair.update( { key:'nc' for key in list(elements['symbol']) if key not in list(elems_colorpair.keys()) } ) print ([ colormap[elems_colorpair[x]] for x in elements['symbol'] ]) source = ColumnDataSource( data=dict( group=[str(x) for x in elements["group"]], period=[str(y) for y in elements["period"]], symx=[str(x)+":0.1" for x in elements["group"]], numbery=[str(x)+":0.8" for x in elements["period"]], massy=[str(x)+":0.15" for x in elements["period"]], namey=[str(x)+":0.3" for x in elements["period"]], sym=elements["symbol"], name=elements["name"], # cpk=elements["CPK"], atomic_number=elements["atomic number"], # electronic=elements["electronic configuration"], # mass=elements["atomic mass"], B=['B' for x in elements["atomic mass"]], dB=['dB' for x in elements["atomic mass"]], V0=['V0' for x in elements["atomic mass"]], E0=['E0' for x in elements["atomic mass"]], # type=elements["metal"], type_color=[ colormap[elems_colorpair[x]] for x in elements['symbol'] ], ) ) # plot the periodic layout #name = source.data["name"] #B = source.data["B"] # Display Table #ptable1 = figure(title="Periodic Table", tools="hover", # x_range=group_range, y_range=list(reversed(romans))) #ptable1.plot_width = 1500 #ptable1.toolbar_location = None #ptable1.outline_line_color = None #ptable1.background_fill_color = 'white' #ptable1.rect("group", "period", 0.9, 0.9, source=source, # fill_alpha=0.3, color='type_color') text_props = { "source": source, "angle": 0, "color": "black", "text_align": "left", "text_baseline": "middle" } #ptable1.text(x="symx", y="period", text="sym", # text_font_style="bold", text_font_size="22pt", **text_props) #ptable1.text(x="symx", y="numbery", text="atomic_number", # text_font_size="9pt", **text_props) #ptable1.grid.grid_line_color = None #ptable1.select_one(HoverTool).tooltips = [ # ("name", "@name"), # ("V0 (A^3 per atom)", "@V0"), # ("B (GPa)", "@B"), # ("dB/dP", "@dB") #] #Interactive table ptable2 = figure(title="Periodic Table", tools="hover", x_range=group_range, y_range=list(reversed(romans))) ptable2.plot_width = 1500 ptable2.toolbar_location = None ptable2.outline_line_color = None ptable2.background_fill_color = 'white' ptable2.rect("group", "period", 0.9, 0.9, source=source, fill_alpha=0.3, color='type_color') ptable2.text(x="symx", y="period", text="sym", text_font_style="bold", text_font_size="22pt", **text_props) ptable2.text(x="symx", y="numbery", text="atomic_number", text_font_size="9pt", **text_props) ptable2.grid.grid_line_color = None ptable2.select_one(HoverTool).tooltips = [ ("name", "@name"), ("V0 (A^3 per atom)", "@V0"), ("B (GPa)", "@B"), ("dB/dP", "@dB") ] ######### CREATES CROSSFILTER ########################## # decide if all columns or crossfilter down to sub properties #source_data = pd.DataFrame({})#ColumnDataSource(data=dict()) class CrossFiltDFs(): def __init__(self,query_dict={'code':'VASP','exchange':'PBE',\ 'element':'Au','structure':'fcc','properties':'B'},plot_data=None): self.query_dict = query_dict self.plot_data = plot_data def crossfilter_by_tag(self,df, tag): """ a crossfilter that can recursivly update the unique options in the UI based on prioir selections returns crossfiltered by tag crossfilter {'element': 'Ag'} """ col,spec= list(tag.items())[0] return df[df[col]==spec] def update_ptable(self): """ update the periodic table highlighted elements """ from bokeh.sampledata.periodic_table import elements romans = ["I", "II", "III", "IV", "V", "VI", "VII"] elements["atomic mass"] = elements["atomic mass"].astype(str) elements["period"] = [x for x in elements.period] elements = elements[elements.group != "-"] group_range = [str(x) for x in range(1, 19)] print ('reaches colormap def') colormap = { "c" : "#ffa07a", "nc" : "#A9A9A9" } elems_colorpair = {} fcc_B_extrapol_props = {} fcc_dB_extrapol_props = {} fcc_V0_extrapol_props = {} fcc_E0_extrapol_props = {} bcc_B_extrapol_props = {} bcc_dB_extrapol_props = {} bcc_V0_extrapol_props = {} bcc_E0_extrapol_props = {} hcp_B_extrapol_props = {} hcp_dB_extrapol_props = {} hcp_V0_extrapol_props = {} hcp_E0_extrapol_props = {} available_elems = [] for e in elements["symbol"]: if e in np.unique(list(self.plot_data['element'])): available_elems.append(e) for s in np.unique(list(self.plot_data['structure'])): plot_struct = self.plot_data[self.plot_data['structure']==s] plot_struct_elem = plot_struct[plot_struct['element']==e] if s=='fcc': try: fcc_B_extrapol_props.update({e:list(plot_struct_elem['B'])[0]}) fcc_dB_extrapol_props.update({e:list(plot_struct_elem['BP'])[0]}) fcc_V0_extrapol_props.update({e:list(plot_struct_elem['V0'])[0]}) fcc_E0_extrapol_props.update({e:list(plot_struct_elem['E0'])[0]}) except: pass elif s=='bcc': try: bcc_B_extrapol_props.update({e:list(plot_struct_elem['B'])[0]}) bcc_dB_extrapol_props.update({e:list(plot_struct_elem['BP'])[0]}) bcc_V0_extrapol_props.update({e:list(plot_struct_elem['V0'])[0]}) bcc_E0_extrapol_props.update({e:list(plot_struct_elem['E0'])[0]}) except: pass elif s=='hcp': try: hcp_B_extrapol_props.update({e:list(plot_struct_elem['B'])[0]}) hcp_dB_extrapol_props.update({e:list(plot_struct_elem['BP'])[0]}) hcp_V0_extrapol_props.update({e:list(plot_struct_elem['V0'])[0]}) hcp_E0_extrapol_props.update({e:list(plot_struct_elem['E0'])[0]}) except: pass fcc_E0_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in fcc_E0_extrapol_props}) fcc_V0_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in fcc_V0_extrapol_props}) fcc_B_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in fcc_B_extrapol_props}) fcc_dB_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in fcc_dB_extrapol_props}) bcc_E0_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in bcc_E0_extrapol_props}) bcc_V0_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in bcc_V0_extrapol_props}) bcc_B_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in bcc_B_extrapol_props}) bcc_dB_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in bcc_dB_extrapol_props}) hcp_E0_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in hcp_E0_extrapol_props}) hcp_V0_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in hcp_V0_extrapol_props}) hcp_B_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in hcp_B_extrapol_props}) hcp_dB_extrapol_props.update({k:'xxx' for k in elements['symbol'] if k not in hcp_dB_extrapol_props}) elems_colorpair.update( { key:'c' for key in np.unique(available_elems) } ) elems_colorpair.update( { key:'nc' for key in list(elements['symbol']) if key not in list(elems_colorpair.keys()) } ) print ([ colormap[elems_colorpair[x]] for x in elements['symbol'] ]) source = ColumnDataSource( data=dict( group=[str(x) for x in elements["group"]], period=[str(y) for y in elements["period"]], symx=[str(x)+":0.1" for x in elements["group"]], numbery=[str(x)+":0.8" for x in elements["period"]], massy=[str(x)+":0.15" for x in elements["period"]], namey=[str(x)+":0.3" for x in elements["period"]], sym=elements["symbol"], name=elements["name"], # cpk=elements["CPK"], atomic_number=elements["atomic number"], # electronic=elements["electronic configuration"], fcc_B=[fcc_B_extrapol_props[x] for x in elements["symbol"]], fcc_dB=[fcc_dB_extrapol_props[x] for x in elements["symbol"]], fcc_V0=[fcc_V0_extrapol_props[x] for x in elements["symbol"]], fcc_E0=[fcc_E0_extrapol_props[x] for x in elements["symbol"]], bcc_B=[bcc_B_extrapol_props[x] for x in elements["symbol"]], bcc_dB=[bcc_dB_extrapol_props[x] for x in elements["symbol"]], bcc_V0=[bcc_V0_extrapol_props[x] for x in elements["symbol"]], bcc_E0=[bcc_E0_extrapol_props[x] for x in elements["symbol"]], hcp_B=[hcp_B_extrapol_props[x] for x in elements["symbol"]], hcp_dB=[hcp_dB_extrapol_props[x] for x in elements["symbol"]], hcp_V0=[hcp_V0_extrapol_props[x] for x in elements["symbol"]], hcp_E0=[hcp_E0_extrapol_props[x] for x in elements["symbol"]], type=elements["metal"], type_color=[ colormap[elems_colorpair[x]] for x in elements['symbol'] ], ) ) # plot the periodic layout #name = source.data["name"] #B = source.data["B"] ptable = figure(title="Periodic Table", tools="hover", x_range=group_range, y_range=list(reversed(romans))) ptable.background_fill_color='white' ptable.plot_width = 1500 ptable.toolbar_location = None ptable.outline_line_color = None ptable.rect("group", "period", 0.9, 0.9, source=source, fill_alpha=0.3, color='type_color') text_props = { "source": source, "angle": 0, "color": "black", "text_align": "left", "text_baseline": "middle" } ptable.text(x="symx", y="period", text="sym", text_font_style="bold", text_font_size="22pt", **text_props) ptable.text(x="symx", y="numbery", text="atomic_number", text_font_size="9pt", **text_props) # ptable.text(x="symx", y="namey", text="name", # text_font_size="6pt", **text_props) # ptable.text(x="symx", y="massy", text="mass", # text_font_size="5pt", **text_props) ptable.grid.grid_line_color = None ptable.select_one(HoverTool).tooltips = [ ("name", "@name"), ("fcc, V0 (A^3 per atom)", "@fcc_V0"), ("fcc, B (GPa)", "@fcc_B"), ("fcc, dB/dP", "@fcc_dB"), ("bcc, V0 (A^3 per atom)", "@bcc_V0"), ("bcc, B (GPa)", "@bcc_B"), ("bcc, dB/dP", "@bcc_dB"), ("hcp, V0 (A^3 per atom)", "@hcp_V0"), ("hcp, B (GPa)", "@hcp_B"), ("hcp, dB/dP", "@hcp_dB")] return ptable def convert_multi_query_to_dicts(self,user_query): """ """ for k in user_query: self.query_api(endpoint='precvalue') pass def plot_prec_value(self): print ('Triggering crossfilter') print ('executes this on startup') layout.children[6] = self.multi_2Dplot_pade_figure(self.plot_data) def multi_2Dplot_pade_figure(self,datasets): """ method which plots multiple curves of different color on the same bokeh figure canvas. Will receive query results from the precvalue end point on the E0k, V0k, Bk, BPk, kpoints data. x is always kpoints data log scaled Example user query is {'code':'VASP','exchange':'PBE','element':'Al','structure':'fcc','property':'B'} + {'code':'VASP','exchange':'PBE','element':'Al','structure':'hcp','property':'B'} + {'code':'DMol3','exchange':'LDA','element':'Al','structure':'fcc', 'property':'B'} + {'code':'DMol3','exchange':'LDA','element':'Al','structure':'hcp', 'property':'B'} """ # receive a dict of datasets: {'Plot1':{'x':[],'y':[], 'x_title': None, 'y_title': None, # 'Characteristic':'VASP_PBE_Al_fcc_B'}, 'Plot2':{'x':[],'y':[], 'x_title': None, 'y_title': None}} def color_marker_divider(characteristics): cm_keys= {'00':('red','*'),'01':('red','-.-'),'02':('red','*'),'03':('red','^'),\ '10':('blue','*'),'11':('blue','-.-'),'12':('blue','*'),'13':('blue','^') } DictCharacters = \ [{n:att for n,att in enumerate(c.split('_'))} for c in characteristics] # one or two char value different and same code and exchange: same color different marker # else different color and marker. return cm_keys kw = {} kw['title'] = 'Pade Analysis Plots' kw['x_axis_type'] = 'log' self.p1 = figure(plot_height=600, plot_width=800, tools='pan,wheel_zoom,box_zoom,reset,hover', **kw) self.p1.xaxis.axis_label = x_title self.p1.yaxis.axis_label = y_title #color_marker_divider(characteristics) for dset in datasets: xs = datasets[dset]['x'] ys = datasets[dset]['y'] #c,m = color_marker_divider(characteristics)['00'] self.p1.scatter(x=xs, y=ys)#, alpha=1.0, hover_color='blue', hover_alpha=1.0) return self.p1 def multi_precisions_correlate(self, datasets): """ method which allows the user to plot various precisions against each other. Also prints out the M-value and intercepts of precision at 1 meV/atom, 0.1 meV/atom and 0.01 meV/atom """ pass def kpoints_interactive_selector(self, dataset): """ method which creates a pareto optimal plot for the chosen structure, material, code and exchange and with the user input of desired precision returns the kpoints per atom choice. """ pass def pade_visualize(self,dataset): """ method which creates the Pade contour interpolation over the raw evk data. Receives query result from the evk endpoint """ pass def create_figure(self,dataset,datplot='Init',plot_type=None): """ figure and plot creation for a given dataset TODO: enable support for multiple selection refactor to a simple figure creator and add helper functions for the plots """ kw = dict() x_title = x_select.value.title() + ' Density per atom' # hack for labels now if isinstance(dataset,pd.DataFrame): if np.unique(list(dataset['properties']))[0]=='B': y_title = 'Bulk Modulus (GPa) '+y_select.value.title() elif np.unique(list(dataset['properties']))[0]=='dB': y_title = 'dB/dP '+y_select.value.title() elif np.unique(list(dataset['properties']))[0]=='v0': y_title = 'Volume per atom (A^3) '+y_select.value.title() elif np.unique(list(dataset['properties']))[0]=='E0': y_title = 'DFT Energy per atom (eV/atom) '+y_select.value.title() else: y_title = 'Pade Prediction' kw['title'] = "%s vs %s" % (y_title, x_title) #if x_select.value=='k-point': kw['x_axis_type'] = 'log' if x_select.value == 'perc_precisions' and y_select.value == 'perc_precisions': kw['y_axis_type'] = 'log' self.p = figure(plot_height=600, plot_width=800, tools='pan,wheel_zoom,box_zoom,reset,hover', **kw) # sets the axes self.p.xaxis.axis_label = x_title self.p.yaxis.axis_label = y_title #if x_select.value in continuous: self.p.xaxis.major_label_orientation = pd.np.pi / 4 #print (dataset) if datplot=='Init': # if data is to be plotted xs = [1,2,3,4]#dataset[x_select.value].values ys = [1,2,3,4]#dataset[y_select.value].values self.xs_init = xs self.ys_init = ys self.p.scatter(x=xs, y=ys)#, alpha=1.0, hover_color='blue', hover_alpha=1.0) return self.p elif datplot == 'Add': # add a plot to figure, from statistical analysis if plot_type == 'plot_pade': #pade_order = self.analysis_results['Order'] #pade_extrapolate = self.analysis_results['Extrapolate'] #print (pade_extrapolate, float(pade_extrapolate)) # create precisions based on the extrapolate #print (self.add_data) xs = self.add_data[0] ys = self.add_data[1]#[abs(y-pade_extrapolate) for y in self.ys_init] #print (ys) # print (xs,ys,len(xs),len(ys)) print ("Plots a line supposedly") #print (len(self.ys_init), len(ys)) #l = min([len(self.ys_init), len(ys), len(self.xs_init),len(xs)]) #self.plot_layout.scatter(x=self.xs_init[0:l], y=self.ys_init[0:l])#, alpha=1.0, hover_color='blue', hover_alpha=1.0) #print (type(self.plot_layout)) #self.p.self.plot self.p = figure(plot_height=600, plot_width=800, tools='pan,wheel_zoom,box_zoom,reset,box_zoom, hover', **kw) print('executes till re-figure') self.p.circle(x=self.xs_init,y=self.ys_init) print('executes till circle') self.p.line(x=xs, y=ys, line_color='red') #self.p.line_color='red' print('executes till line') return self.p else: # clear the figure by plotting an empty figure xs = [] ys = [] self.p = figure(plot_height=600, plot_width=800, tools='pan,wheel_zoom,box_zoom,reset,hover', **kw) self.p.scatter(x=xs, y=ys)#, alpha=1.0, hover_color='blue', hover_alpha=1.0) return self.p # The crossfilter widgets def update(self, attr, old, new): print ('Attribute', attr, 'OLD', old, 'NEW', new) print ('executes here on update')#, exchange_df) def update_code(self): """ update for the code selection """ print ('update code') self.query_dict.update({'code':code.value}) def update_exchange(self): """ update the exchange """ print ('update exchange') self.query_dict.update({'exchange':exchange.value}) def update_element(self,new): print ('Updating element down selection for properties',element.active[0]) self.query_dict.update({'element':element.active[0]}) def update_struct(self): print ('Updating struct down selection for element') self.query_dict.update({'structure':struct.value}) print ('Updating ptable with structure selection') layout.children[1] = self.update_ptable() print ('finished callback to update layout') def update_prop(self): self.query_dict.update({'properties':prop.value}) def update_kpoints(self): pass def update_x(self): self.x = x.value pass def update_y(self): self.y = y.value pass def query_api(self,endpoint): r = requests.post(url='http://0.0.0.0:6400/bench/v1/query_{}'.\ format(endpoint),data=json.dumps(self.query_dict)) ListOfDicts = r.json()['content'] self.plot_data = pd.concat([pd.DataFrame({k:[ld[k]] for k in list(ld.keys())}) for ld in ListOfDicts]) def clear_crossfilter(self): """ clear the figure and crossfilter """ print ('Trigger clear') self.plot_data = None layout.children[6] = self.create_figure(self.plot_data) def analysis_callback(self): """ calls the Pade analysis on the current plot data TODO: NOTE: check if this is a data set that is a single scatter FEATUREs that could be added: plot the Pade for multiple selections """ print ('called Pade analysis') # writes out the crossfiltered plot data on the server crossfilt = self.plot_data[['k-point','value']] crossfilt.columns=['Kpt','P'] crossfilt.to_csv('crossfilter_app/Rdata.csv') print ('wrote out data file') os.system('Rscript crossfilter_app/non_err_weighted_nls.R') self.analysis_results = pd.read_csv('crossfilter_app/Result.csv') #self.add_data = [ list(self.xs_init), list(self.predict_results['Preds....c.predict.m2..']) ] ext_values = list(self.analysis_results['Extrapolate....extrapolates']) error_values = list(self.analysis_results['Error....errors']) self.ext_min_error = ext_values[error_values.index(min(error_values))] print ('executed R script on crossfiltered data') if error_values.index(min(error_values))==0: self.predict_results = pd.read_csv('crossfilter_app/Pade1.csv') self.add_data = [list(self.predict_results['Px....x_plot']), list(self.predict_results['Py....pade1.x_plot.'])] elif error_values.index(min(error_values))==1: self.predict_results = pd.read_csv('crossfilter_app/Pade2.csv') self.add_data = [list(self.predict_results['Px....x_plot']), list(self.predict_results['Py....pade2.x_plot.'])] print ('ADD DATA', self.add_data) layout.children[4] = self.create_figure(self.add_data, datplot='Add', plot_type='plot_pade') def update(): pass #source_data = CF.plot_data CF = CrossFiltDFs(query_dict={'code':'VASP','exchange':'PBE'}) # first query for the periodic table data CF.query_api(endpoint='extrapolate') print (CF.plot_data) # for the first table to display VASP PBE all structures Pade extrapolates for all properties # as a bonus with some error bar too ptable1 = CF.update_ptable() layout_doc = column(description1, ptable1, description2) #layout_doc = layout([description1],\ # [ptable1],\ # [description2],\ # row([element,code,exchange,struct]),\ # row([element,code,exchange,struct]),\ # row([element,code,exchange,struct]),\ # row([element,code,exchange,struct]),\ # sizing_mode='stretch_both' # ) #column(description1, ptable1, description2, controls1, ptable2, controls2) print ('executed till here') curdoc().add_root(layout_doc) curdoc().title = "DFT Benchmark" update()
mit
wzbozon/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
nguyentu1602/statsmodels
statsmodels/examples/try_polytrend.py
33
1477
from __future__ import print_function import numpy as np #import statsmodels.linear_model.regression as smreg from scipy import special import statsmodels.api as sm from statsmodels.datasets.macrodata import data dta = data.load() gdp = np.log(dta.data['realgdp']) from numpy import polynomial from scipy import special maxorder = 20 polybase = special.chebyt polybase = special.legendre t = np.linspace(-1,1,len(gdp)) exog = np.column_stack([polybase(i)(t) for i in range(maxorder)]) fitted = [sm.OLS(gdp, exog[:, :maxr]).fit().fittedvalues for maxr in range(2,maxorder)] print((np.corrcoef(exog[:,1:6], rowvar=0)*10000).astype(int)) import matplotlib.pyplot as plt plt.figure() plt.plot(gdp, 'o') for i in range(maxorder-2): plt.plot(fitted[i]) plt.figure() #plt.plot(gdp, 'o') for i in range(maxorder-4, maxorder-2): #plt.figure() plt.plot(gdp - fitted[i]) plt.title(str(i+2)) plt.figure() plt.plot(gdp, '.') plt.plot(fitted[-1], lw=2, color='r') plt.plot(fitted[0], lw=2, color='g') plt.title('GDP and Polynomial Trend') plt.figure() plt.plot(gdp - fitted[-1], lw=2, color='r') plt.plot(gdp - fitted[0], lw=2, color='g') plt.title('Residual GDP minus Polynomial Trend (green: linear, red: legendre(20))') #orthonormalize an exog using QR ex2 = t[:,None]**np.arange(6) #np.vander has columns reversed q2,r2 = np.linalg.qr(ex2, mode='full') np.max(np.abs(np.dot(q2.T, q2)-np.eye(6))) plt.figure() plt.plot(q2, lw=2) plt.show()
bsd-3-clause
vermouthmjl/scikit-learn
examples/linear_model/plot_iris_logistic.py
3
1679
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
mortbauer/openfoam-extend-Breeder-other-scripting-PyFoam
PyFoam/Basics/XkcdMatplotlibTimelines.py
2
1338
# ICE Revision: $Id$ """Plots a collection of timelines""" from PyFoam.Error import warning,error from .MatplotlibTimelines import MatplotlibTimelines class XkcdMatplotlibTimelines(MatplotlibTimelines): """This class opens a matplotlib window, modifies it to XKCD-mode and plots a timelines-collection in it""" def __init__(self, timelines, custom, showWindow=True, registry=None): """@param timelines: The timelines object @type timelines: TimeLineCollection @param custom: A CustomplotInfo-object. Values in this object usually override the other options """ MatplotlibTimelines.__init__(self, timelines, custom, showWindow=showWindow, registry=registry ) from matplotlib import pyplot try: pyplot.xkcd() except AttributeError: from matplotlib import __version__ warning("Installed version",__version__, " of Matplotlib does not support XKCD-mode (this is supported starting with version 1.3). Falling back to normal operations") # Should work with Python3 and Python2
gpl-2.0
mindriot101/bokeh
bokeh/core/json_encoder.py
3
9053
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide a functions and classes to implement a custom JSON encoder for serializing objects for BokehJS. The primary interface is provided by the |serialize_json| function, which uses the custom |BokehJSONEncoder| to produce JSON output. In general, functions in this module convert values in the following way: * Datetime values (Python, Pandas, NumPy) are converted to floating point milliseconds since epoch. * TimeDelta values are converted to absolute floating point milliseconds. * RelativeDelta values are converted to dictionaries. * Decimal values are converted to floating point. * Sequences (Pandas Series, NumPy arrays, python sequences) that are passed though this interface are converted to lists. Note, however, that arrays in data sources inside Bokeh Documents are converted elsewhere, and by default use a binary encoded format. * Bokeh ``Model`` instances are usually serialized elsewhere in the context of an entire Bokeh Document. Models passed trough this interface are converted to references. * ``HasProps`` (that are not Bokeh models) are converted to key/value dicts or all their properties and values. * ``Color`` instances are converted to CSS color values. .. |serialize_json| replace:: :class:`~bokeh.core.json_encoder.serialize_json` .. |BokehJSONEncoder| replace:: :class:`~bokeh.core.json_encoder.BokehJSONEncoder` ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import collections import decimal import json # External imports import numpy as np # Bokeh imports from ..settings import settings from ..util.dependencies import import_optional from ..util.serialization import convert_datetime_type, convert_timedelta_type, is_datetime_type, is_timedelta_type, transform_series, transform_array #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- rd = import_optional("dateutil.relativedelta") pd = import_optional('pandas') __all__ = ( 'BokehJSONEncoder', 'serialize_json', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- def serialize_json(obj, pretty=None, indent=None, **kwargs): ''' Return a serialized JSON representation of objects, suitable to send to BokehJS. This function is typically used to serialize single python objects in the manner expected by BokehJS. In particular, many datetime values are automatically normalized to an expected format. Some Bokeh objects can also be passed, but note that Bokeh models are typically properly serialized in the context of an entire Bokeh document. The resulting JSON always has sorted keys. By default. the output is as compact as possible unless pretty output or indentation is requested. Args: obj (obj) : the object to serialize to JSON format pretty (bool, optional) : Whether to generate prettified output. If ``True``, spaces are added after added after separators, and indentation and newlines are applied. (default: False) Pretty output can also be enabled with the environment variable ``BOKEH_PRETTY``, which overrides this argument, if set. indent (int or None, optional) : Amount of indentation to use in generated JSON output. If ``None`` then no indentation is used, unless pretty output is enabled, in which case two spaces are used. (default: None) Any additional keyword arguments are passed to ``json.dumps``, except for some that are computed internally, and cannot be overridden: * allow_nan * indent * separators * sort_keys Examples: .. code-block:: python >>> data = dict(b=np.datetime64('2017-01-01'), a = np.arange(3)) >>>print(serialize_json(data)) {"a":[0,1,2],"b":1483228800000.0} >>> print(serialize_json(data, pretty=True)) { "a": [ 0, 1, 2 ], "b": 1483228800000.0 } ''' # these args to json.dumps are computed internally and should not be passed along for name in ['allow_nan', 'separators', 'sort_keys']: if name in kwargs: raise ValueError("The value of %r is computed internally, overriding is not permissable." % name) if pretty is None: pretty = settings.pretty(False) if pretty: separators=(",", ": ") else: separators=(",", ":") if pretty and indent is None: indent = 2 return json.dumps(obj, cls=BokehJSONEncoder, allow_nan=False, indent=indent, separators=separators, sort_keys=True, **kwargs) #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class BokehJSONEncoder(json.JSONEncoder): ''' A custom ``json.JSONEncoder`` subclass for encoding objects in accordance with the BokehJS protocol. ''' def transform_python_types(self, obj): ''' Handle special scalars such as (Python, NumPy, or Pandas) datetimes, or Decimal values. Args: obj (obj) : The object to encode. Anything not specifically handled in this method is passed on to the default system JSON encoder. ''' # date/time values that get serialized as milliseconds if is_datetime_type(obj): return convert_datetime_type(obj) if is_timedelta_type(obj): return convert_timedelta_type(obj) # slice objects elif isinstance(obj, slice): return dict(start=obj.start, stop=obj.stop, step=obj.step) # NumPy scalars elif np.issubdtype(type(obj), np.floating): return float(obj) elif np.issubdtype(type(obj), np.integer): return int(obj) elif np.issubdtype(type(obj), np.bool_): return bool(obj) # Decimal values elif isinstance(obj, decimal.Decimal): return float(obj) # RelativeDelta gets serialized as a dict elif rd and isinstance(obj, rd.relativedelta): return dict(years=obj.years, months=obj.months, days=obj.days, hours=obj.hours, minutes=obj.minutes, seconds=obj.seconds, microseconds=obj.microseconds) else: return super(BokehJSONEncoder, self).default(obj) def default(self, obj): ''' The required ``default`` method for JSONEncoder subclasses. Args: obj (obj) : The object to encode. Anything not specifically handled in this method is passed on to the default system JSON encoder. ''' from ..model import Model from ..colors import Color from .has_props import HasProps # array types -- use force_list here, only binary # encoding CDS columns for now if pd and isinstance(obj, (pd.Series, pd.Index)): return transform_series(obj, force_list=True) elif isinstance(obj, np.ndarray): return transform_array(obj, force_list=True) elif isinstance(obj, collections.deque): return list(map(self.default, obj)) elif isinstance(obj, Model): return obj.ref elif isinstance(obj, HasProps): return obj.properties_with_values(include_defaults=False) elif isinstance(obj, Color): return obj.to_css() else: return self.transform_python_types(obj) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
bsd-3-clause
meerkat-code/meerkat_api
api_background/api_background/export_data.py
1
40520
""" Functions to export data """ import gettext import shelve import csv import json import logging import xlsxwriter import os import yaml from sqlalchemy.orm import aliased from sqlalchemy import text, or_, func, Float from dateutil.parser import parse from datetime import datetime from celery import task import requests import pandas from api_background._populate_locations import set_empty_locations, populate_row_locations from api_background.xls_csv_writer import XlsCsvFileWriter from meerkat_abacus import config from meerkat_abacus.model import DownloadDataFiles, AggregationVariables from meerkat_abacus.model import form_tables, Data, Links from meerkat_abacus.util import all_location_data, get_db_engine, get_links from meerkat_abacus.util import get_locations, is_child from meerkat_abacus.util.epi_week import epi_week_for_date from api_background.celery_app import app import meerkat_libs base_folder = os.path.dirname(os.path.realpath(__file__)) @app.task def export_data(uuid, allowed_location, use_loc_ids=False, param_config_yaml=yaml.dump(config)): """ Exports the data table from db Inserts finished file in to databse Args: uuid: uuid for download use_loc_ids: If we use names are location ids """ db, session = get_db_engine() status = DownloadDataFiles( uuid=uuid, generation_time=datetime.now(), type="data", success=0, status=0 ) session.add(status) session.commit() results = session.query( func.distinct( func.jsonb_object_keys(Data.variables))) variables = [] for row in results: variables.append(row[0]) locs = get_locations(session) fieldnames = ["id", "zone", "country", "region", "district", "clinic", "zone_id", "country_id", "region_id", "district_id", "clinic_id", "clinic_type", "geolocation", "date", "uuid"] + list(variables) dict_rows = [] filename = base_folder + "/exported_data/" + uuid + "/data" os.mkdir(base_folder + "/exported_data/" + uuid) output = open(filename + ".csv", "w") writer = csv.DictWriter(output, fieldnames, extrasaction="ignore") writer.writeheader() results = session.query(Data).yield_per(500) i = 0 for row in results: dict_row = dict( (col, getattr(row, col)) for col in row.__table__.columns.keys() ) for l in ["country", "zone", "region", "district", "clinic"]: if dict_row[l]: dict_row[l + "_id"] = dict_row[l] dict_row[l] = locs[dict_row[l]].name dict_row.update(dict_row.pop("variables")) dict_rows.append(dict_row) if i % 1000 == 0: writer.writerows(dict_rows) dict_rows = [] i += 1 writer.writerows(dict_rows) status.status = 1 status.success = 1 session.commit() return True @app.task def export_category(uuid, form_name, category, download_name, variables, data_type, allowed_location, start_date=None, end_date=None, language="en", param_config_yaml=yaml.dump(config)): """ We take a variable dictionary of form field name: display_name. There are some special commands that can be given in the form field name: * icd_name$category will translate an icd code in icd_code to names given by the variables in category * clinic,region and district will give this location information * the $translate keyword can be used to translate row values to other ones. I.e to change gender from male, female to M, F * field$month, field$year, field$epi_week: will extract the month, year or epi_week from the field * alert_links$alert_investigation$field: will get the field in the c orrepsonding alert_investigation Inserts the resulting csv file in the database Args:\n category: category to match\n variables: variable dictionary\n """ # Runner loads the config object through a function parameter. param_config = yaml.load(param_config_yaml) country_config = param_config.country_config config_directory = param_config.config_directory # Some strings in download data need to be translated translation_dir = country_config.get("translation_dir", None) t = get_translator(param_config, language) db, session = get_db_engine() db2, session2 = get_db_engine() status = DownloadDataFiles( uuid=uuid, generation_time=datetime.now(), type=download_name, success=0, status=0 ) session.add(status) session.commit() res = session.query(AggregationVariables).filter( AggregationVariables.category.has_key(category) ) locs = get_locations(session) data_keys = [] cat_variables = {} for r in res: data_keys.append(r.id) cat_variables[r.id] = r if len(data_keys) == 0: status.status = 1 session.commit() return_keys = [] translation_dict = {} icd_code_to_name = {} link_ids = [] min_translation = {} def add_translations_from_file(details): # Load the csv file and reader file_path = '{}api/{}'.format(config_directory, details['dict_file']) csv_file = open(file_path, 'rt') reader = csv.reader(csv_file) # Establish which column in each row we're translating from and to. headers = next(reader) from_index = headers.index(details['from']) to_index = headers.index(details['to']) # Add translations to the translation dictionary. trans_dict = {} for row in reader: trans_dict[row[from_index]] = row[to_index] return trans_dict # DB conditions conditions = [ or_(Data.variables.has_key(key) for key in data_keys) ] if data_type: conditions.append(Data.type == data_type) if start_date: conditions.append(Data.date >= parse(start_date)) if end_date: conditions.append(Data.date <= parse(end_date)) # Set up icd_code_to_name if needed and determine if # alert_links are included query_links = False to_columns_translations = {} for v in variables: if "every$" in v[0]: # Want to include all the fields in the dictionary # in v[1] for all the links in the name # First determine the maximum number of links link_name = v[0].split("$")[1] length_q = session.query( func.max(func.jsonb_array_length(Data.links[link_name]))).filter( *conditions) length = length_q.first()[0] for i in range(length): for variable in v[1]: name = link_name + "_" + str(i) + " " + variable[1] return_keys.append(name) translation_dict[name] = "many_links&" + link_name + "&" + str(i) + "&" + variable[0] query_links = link_name else: return_keys.append(v[1]) translation_dict[v[1]] = v[0] if "icd_name$" in v[0]: category = v[0].split("$")[-1] cat_variables = {} res = session.query(AggregationVariables).filter( AggregationVariables.category.has_key(category) ) for r in res: cat_variables.setdefault(r.id, []) cat_variables[r.id].append(r) icd_code_to_name[v[0]] = {} for i in cat_variables.keys(): for var in cat_variables[i]: condition = var.condition if ";" in condition: condition = condition.split(";")[0] if "," in condition: # If a variable have many icd codes # we take all of them into account codes = condition.split(",") else: codes = [condition] for c in codes: if c: icd_code_to_name[v[0]][c.strip()] = var.name if "$translate" in v[0]: split = v[0].split("$") field = "$".join(split[:-1]) trans = split[-1] tr_dict = json.loads(trans.split(";")[1].replace("'", '"')) # If the json specifies file details, load translation from file. if tr_dict.get('dict_file', False): min_translation[v[1]] = add_translations_from_file(tr_dict) else: min_translation[v[1]] = tr_dict v[0] = field translation_dict[v[1]] = v[0] if "$to_columns" in v[0]: # Create columns of every possible value split = v[0].split("$") field = "$".join(split[:-1]) trans = split[-1] tr_dict = {} if ";" in trans: tr_dict = json.loads(trans.split(";")[1].replace("'", '"')) # If the json specifies file details, load translation from file. # Get all possible options from the DB results = session2.query( func.distinct( func.regexp_split_to_table( form_tables(param_config)[form_name].data[field].astext, ' '))).join( Data, Data.uuid == form_tables(param_config)[form_name].uuid).filter( *conditions).all() if tr_dict.get('dict_file', False): translations = add_translations_from_file(tr_dict) else: translations = {} return_keys.pop() for r in results: if r[0]: name = v[1] + " " + translations.get(r[0], r[0]) if name not in return_keys: return_keys.append(name) if name in translation_dict: translation_dict[name] = translation_dict[name] + "," + r[0] else: translation_dict[name] = field + "$to_columns$" + r[0] if "gen_link$" in v[0]: link_ids.append(v[0].split("$")[1]) if "uuid" not in return_keys: return_keys.append("uuid") translation_dict["uuid"] = "meta/instanceID" link_ids = set(link_ids) links_by_type, links_by_name = get_links(config_directory + country_config["links_file"]) # DB query, with yield_per(200) for memory reasons columns = [Data, form_tables(param_config)[form_name]] link_id_index = {} joins = [] if query_links: link_data = shelve.open(base_folder + "/exported_data/" + uuid) link_data_query = session.query(Links).filter(Links.type == link_name).yield_per(300) for row in link_data_query: link_data[row.uuid_to] = row.data_to for i, l in enumerate(link_ids): form = aliased(form_tables(param_config)[links_by_name[l]["to_form"]]) joins.append((form, Data.links[(l, -1)].astext == form.uuid)) link_id_index[l] = i + 2 columns.append(form.data) number_query = session2.query(func.count(Data.id)).join( form_tables(param_config)[form_name], Data.uuid == form_tables(param_config)[form_name].uuid) results = session2.query(*columns).join( form_tables(param_config)[form_name], Data.uuid == form_tables(param_config)[form_name].uuid) for join in joins: results = results.outerjoin(join[0], join[1]) total_number = number_query.filter(*conditions).first()[0] results = results.filter(*conditions).yield_per(200) locs = get_locations(session) list_rows = [] filename = base_folder + "/exported_data/" + uuid + "/" + download_name os.mkdir(base_folder + "/exported_data/" + uuid) csv_content = open(filename + ".csv", "w") csv_writer = csv.writer(csv_content) csv_writer.writerows([return_keys]) # XlsxWriter with "constant_memory" set to true, flushes mem after each row xls_content = open(filename + ".xlsx", "wb") xls_book = xlsxwriter.Workbook(xls_content, {'constant_memory': True}) xls_sheet = xls_book.add_worksheet() # xls_sheet = pyexcel.Sheet([keys]) # Little utility function write a row to file. def write_xls_row(data, row, sheet): for cell in range(len(data)): xls_sheet.write(row, cell, data[cell]) write_xls_row(return_keys, 0, xls_sheet) i = 0 def _list_category_variables(category, data_row): """ Lists the variables from the specified category that are assigned to the specified row. This can be used to create data columns such as 'Age Group' using 'category$ncd_age'. """ # Get the category's variables' data, indexed by ID. cat_variables = {} variable_list = "" db_results = session.query(AggregationVariables).filter( AggregationVariables.category.has_key(category) ) for variable in db_results: cat_variables[variable.id] = variable # Build a string listing the row's variables from specified category. for var_id, var in cat_variables.items(): if var_id in r[0].variables: variable_list += var.name + ", " # Remove the last comma and space. return variable_list[:-2] # Prepare each row for r in results: list_row = [''] * len(return_keys) if not is_child(allowed_location, r[0].clinic, locs): continue dates = {} for k in return_keys: form_var = translation_dict[k] index = return_keys.index(k) raw_data = r[1].data if "many_links&" in form_var: link_name, number, form_var = form_var.split("&")[1:] number = int(number) if link_name in r[0].links: links = r[0].links[link_name] if len(links) >= number + 1: link_uuid = links[number] raw_data = link_data[link_uuid] else: list_row[index] = None continue else: list_row[index] = None continue if "icd_name$" in form_var: fields = form_var.split("$") if len(fields) > 2: field = fields[1] else: field = "icd_code" if raw_data[field] in icd_code_to_name[form_var]: list_row[index] = icd_code_to_name[form_var][raw_data[ field]] else: list_row[index] = None elif form_var == "clinic": list_row[index] = locs[r[0].clinic].name elif form_var == "region": list_row[index] = locs[r[0].region].name elif form_var == "zone": list_row[index] = locs[r[0].zone].name elif form_var == "district": if r[0].district: list_row[index] = locs[r[0].district].name else: list_row[index] = None elif "$year" in form_var: field = form_var.split("$")[0] if field in raw_data and raw_data[field]: if field not in dates: dates[field] = parse(raw_data[field]) list_row[index] = dates[field].year else: list_row[index] = None elif "$month" in form_var: field = form_var.split("$")[0] if field in raw_data and raw_data[field]: if field not in dates: dates[field] = parse(raw_data[field]) list_row[index] = dates[field].month else: list_row[index] = None elif "$day" in form_var: field = form_var.split("$")[0] if field in raw_data and raw_data[field]: if field not in dates: dates[field] = parse(raw_data[field]) list_row[index] = dates[field].day else: list_row[index] = None elif "$quarter" in form_var: field = form_var.split("$")[0] if raw_data.get(field): if field not in dates: dates[field] = parse(raw_data[field]) quarter = 1 + (dates[field].month - 1)//3 list_row[index] = quarter else: list_row[index] = None elif "$epi_week" in form_var: field = form_var.split("$")[0] if field in raw_data and raw_data[field]: if field not in dates: dates[field] = parse(raw_data[field]) list_row[index] = epi_week_for_date(dates[field])[1] else: list_row[index] = None # A general framework for referencing links in the # download data. # link$<link id>$<linked form field> elif "gen_link$" in form_var: link = form_var.split("$")[1] link_index = link_id_index[link] if r[link_index]: list_row[index] = r[link_index].get( form_var.split("$")[2], None ) else: list_row[index] = None elif "code" == form_var.split("$")[0]: # code$cod_1,cod_2,Text_1,Text_2$default_value split = form_var.split("$") codes = split[1].split(",") text = split[2].split(",") if len(split) > 3: default_value = split[3] else: default_value = None final_text = [] for j in range(len(codes)): if codes[j] in r[0].variables: final_text.append(text[j]) if len(final_text) > 0: list_row[index] = " ".join(final_text) else: list_row[index] = default_value elif "category" == form_var.split("$")[0]: list_row[index] = _list_category_variables( form_var.split("$")[1], r ) elif "code_value" == form_var.split("$")[0]: code = form_var.split("$")[1] if code in r[0].variables: list_row[index] = float(r[0].variables[code]) else: list_row[index] = None elif "value" == form_var.split(":")[0]: list_row[index] = form_var.split(":")[1] elif "$to_columns$" in form_var: int_has_code = 0 field = form_var.split("$")[0] codes = form_var.split("$")[-1].split(",") str_elements = raw_data.get(field) if type(str_elements) == str: elements = str_elements.split(" ") has_code = any(code in elements for code in codes) int_has_code = int(has_code) list_row[index] = int_has_code else: if form_var.split("$")[0] in raw_data: list_row[index] = raw_data[form_var.split("$")[0]] else: list_row[index] = None # Standardise date formating if "$date" in form_var: field = form_var.split("$")[0] if list_row[index]: if field not in dates: dates[field] = parse(list_row[index]) list_row[index] = dates[field].strftime( "%d/%m/%Y" ) else: list_row[index] = None # If the final value is a float, round to 2 dp. # This proceedure ensures integers are shown as integers. # Also accepts string values. try: a = float(list_row[index]) b = int(float(list_row[index])) if a == b: list_row[index] = b else: list_row[index] = round(a, 2) except (ValueError, TypeError): pass # If a translation dictionary is defined in which the key exists... if min_translation and k in min_translation and list_row[index]: tr_dict = min_translation[k] if list_row[index] in tr_dict: list_row[index] = tr_dict[list_row[index]] else: parts = [x.strip() for x in str(list_row[index]).split(' ')] for x in range(len(parts)): # Get the translation using the appropriate key. # If that doesn't exist get the wild card key: * # If that doesn't exist just return the value parts[x] = str( tr_dict.get(parts[x], tr_dict.get('*', parts[x])) ) list_row[index] = ' '.join(list(filter(bool, parts))) if translation_dir and language != "en" and list_row[index]: list_row[index] = t.gettext(list_row[index]) list_rows.append(list_row) # Can write row immediately to xls file as memory is flushed after. write_xls_row(list_row, i + 1, xls_sheet) # Append the row to list of rows to be written to csv. if i % 1000 == 0: logging.warning("{} rows completed...".format(i)) csv_writer.writerows(list_rows) list_rows = [] status.status = i / total_number session.commit() i += 1 csv_writer.writerows(list_rows) csv_content.close() xls_book.close() xls_content.close() status.status = 1 status.success = 1 session.commit() if query_links: link_data.close() dir_path = os.path.dirname(os.path.realpath(__file__)) filename = dir_path + "/exported_data/" + uuid logging.warning("Filename: " + filename) if os.path.exists(filename + ".dir"): os.remove(filename + ".dir") if os.path.exists(filename + ".dat"): os.remove(filename + ".dat") return True def construct_completeness_call(variable_config, sublevel, start_date, end_date): """ Construct the correct completess calls based on the dates Args:\n variable_config: The base api call sublevel: The level to aggregate over start_date: Start date end_date: End date """ api_calls = [] for year in range(start_date.year, end_date.year + 1): year_start_week = 1 year_end_date_str = "{}-12-31".format(year) if year == start_date.year: year_start_week = epi_week_for_date(start_date)[1] if year_start_week > 52: year_start_week = 1 if year == end_date.year: year_end_date_str = end_date.isoformat() api_call = variable_config.split(":")[1] api_call = api_call.replace("<start_week>", str(year_start_week)) api_call = api_call.replace("<end_date>", str(year_end_date_str)) api_call += "?sublevel={}".format(sublevel) api_calls.append((api_call, year, year_start_week)) return api_calls def _export_week_level_completeness(uuid, download_name, level, completeness_config, translator, param_config, start_date=None, end_date=None, wide_data_format=False): """ Exports completeness data by location and week ( and year), Args:\n uuid: uuid for the download process download_name: Name of download file level: level of location competeness_config: Specified the completeness call we want to make translator: Translator param_config: param config start_date: The date to start the data set end_date: End date for the aggregation wide_data_format: If true the data is returned in the wide format, else in long format """ db, session = get_db_engine() locs = get_locations(session) operation_status = OperationStatus(download_name, uuid) if start_date: start_date = parse(start_date).replace(tzinfo=None) if end_date: end_date = parse(end_date).replace(tzinfo=None) completeness_calls = construct_completeness_call(completeness_config[0], level, start_date, end_date) jwt_auth_token = meerkat_libs.authenticate( username=param_config.server_auth_username, password=param_config.server_auth_password, auth_root=param_config.auth_root) if not jwt_auth_token: raise AttributeError("Not sucessfully logged in for api access") headers = {'content-type': 'application/json', 'authorization': 'Bearer {}'.format(jwt_auth_token)} data = [] year_label = translator.gettext("Year") location_label = translator.gettext(level.title()) week_label = translator.gettext("Week") district_label = translator.gettext("District") completeness_config_label = translator.gettext(completeness_config[1]) for call, year, start_week in completeness_calls: api_result = requests.get(param_config.api_root + call, headers=headers) timeline = api_result.json()["timeline"] max_per_week = int(call.split("/")[4]) # Extract the maximum number from api call for location in timeline: loc_id = int(location) for week in range(len(timeline[location]["weeks"])): week_start_day = datetime.strptime(timeline[location]["weeks"][week], '%Y-%m-%dT%H:%M:%S') data.append({year_label: year, location_label: locs[loc_id].name, week_label: epi_week_for_date(week_start_day)[1], completeness_config_label: timeline[location]["values"][week] / max_per_week * 100 }) if level == "clinic" and loc_id != 1: data[-1][district_label] = locs[locs[loc_id].parent_location].name filename = base_folder + "/exported_data/" + uuid + "/" + download_name os.mkdir(base_folder + "/exported_data/" + uuid) df = pandas.DataFrame(data) if wide_data_format: if level == "clinic": index_labels = [year_label, district_label, location_label, week_label] else: index_labels = [year_label, location_label, week_label] df = df.set_index(index_labels).unstack() df.to_csv(filename + ".csv") df.to_excel(filename + ".xlsx") operation_status.submit_operation_success() def get_translator(param_config, language): translation_dir = param_config.country_config.get("translation_dir", None) if translation_dir: try: t = gettext.translation('messages', translation_dir, languages=["en", "fr"]) except (FileNotFoundError, OSError): logging.warning("Translations not found", exc_info=True) t = gettext.NullTranslations() else: t = gettext.NullTranslations() if language != "en": os.environ["LANGUAGE"] = language return t @app.task def export_week_level(uuid, download_name, level, variable_config, start_date=None, end_date=None, wide_data_format=False, language="en", param_config_yaml=yaml.dump(config)): """ Export aggregated data by location and week ( and year), Args:\n uuid: uuid for the download process download_name: Name of download file level: level of location variable_config: the variable we want to aggregate data_orientation: long or wide data set start_date: The date to start the data set end_date: End date for the aggregation wide_data_format: If true the data is returned in the wide format, else in long format param_config: The configuration values """ param_config = yaml.load(param_config_yaml) translator = get_translator(param_config, language) if "completeness" in variable_config[0]: _export_week_level_completeness(uuid, download_name, level, variable_config, translator, param_config, start_date=start_date, end_date=end_date, wide_data_format=wide_data_format) else: _export_week_level_variable(uuid, download_name, level, variable_config, translator, start_date=start_date, end_date=end_date, wide_data_format=wide_data_format, param_config_yaml=param_config_yaml) def _export_week_level_variable(uuid, download_name, level, variable_config, translator, start_date=None, end_date=None, wide_data_format=False, param_config_yaml=yaml.dump(config)): """ Export aggregated data by location and week ( and year), Args:\n uuid: uuid for the download process download_name: Name of download file level: level of location variable_config: the variable we want to aggregate. Consits of the restrict_by, variable to aggregate and the display name data_orientation: long or wide data set start_date: The date to start the data set end_date: End date for the aggregation wide_data_format: If true the data is returned in the wide format, else in long format param_config: The configuration values """ restrict_by, variable, display_name = variable_config if level == "clinic": group_by = [["epi_year", translator.gettext("Year")], ["district:location", translator.gettext("District")], [level + ":location", translator.gettext(level.title())], ["epi_week", translator.gettext("Week")] ] else: group_by = [["epi_year", translator.gettext("Year")], [level + ":location", translator.gettext(level.title())], ["epi_week", translator.gettext("Week")] ] return export_data_table(uuid, download_name, restrict_by, [[variable, display_name]], group_by, start_date=start_date, end_date=end_date, wide_data_format=wide_data_format, param_config_yaml=param_config_yaml) @app.task def export_data_table(uuid, download_name, restrict_by, variables, group_by, location_conditions=None, start_date=None, end_date=None, wide_data_format=False, param_config_yaml=yaml.dump(config)): """ Export an aggregated data table restricted by restrict by, Args:\n uuid: uuid for the download process variables: the variables we want to aggregate group_by: The data to group by (clinic, epi_week) data_orientation: long or wide data set start_date: The date to start the data set end_date: End date for the aggregation wide_data_format: If true the data is returned in the wide format, else in long format param_config: The configuration values """ return_keys = [] db, session = get_db_engine() locs = get_locations(session) list_rows = [] operation_status = OperationStatus(download_name, uuid) level = "region" columns = [] groups = [] location_subs = [] only_latest_from_clinic_in_week = False if "only_latest_from_clinic_in_week:" in restrict_by: restrict_by_variable = restrict_by.split(":")[1] only_latest_from_clinic_in_week = True else: restrict_by_variable = restrict_by for i, v in enumerate(group_by): field = v[0] if ":location" in field: field_column = field.split(":")[0] level = field_column location_subs.append(i) else: field_column = field columns.append(getattr(Data, field_column)) groups.append(getattr(Data, field_column)) return_keys.append(v[1]) conditions = [Data.variables.has_key(restrict_by_variable)] if start_date: start_date = parse(start_date).replace(tzinfo=None) conditions.append(Data.date >= start_date) if end_date: end_date = parse(end_date).replace(tzinfo=None) conditions.append(Data.date <= end_date) for v in variables: if only_latest_from_clinic_in_week: columns.append(Data.variables[v[0]].astext.cast(Float)) else: columns.append(func.sum(Data.variables[v[0]].astext.cast(Float))) return_keys.append(v[1]) if only_latest_from_clinic_in_week: conditions.append(Data.variables.has_key(restrict_by_variable)) result = session.query(*columns).distinct(Data.clinic).filter(*conditions).order_by(Data.clinic).order_by(Data.date.desc()) else: result = session.query(*columns).filter(*conditions).group_by(*groups) filename = base_folder + "/exported_data/" + uuid + "/" + download_name os.mkdir(base_folder + "/exported_data/" + uuid) i = 0 for row in result: row_list = list(row) location_condition = True for l in location_subs: if row_list[l]: if location_conditions: tmp = getattr(locs[row_list[l]], location_conditions[0][0]) if location_conditions[0][1] in tmp: location_condition = False row_list[l] = locs[row_list[l]].name if location_condition: row_list = [x if x is not None else 0 for x in row_list] list_rows.append(row_list) i += 1 df = pandas.DataFrame(list_rows, columns=return_keys) if wide_data_format: df = df.set_index(return_keys[:-len(variables)]).unstack().fillna(0) df.to_csv(filename + ".csv") df.to_excel(filename + ".xlsx") operation_status.submit_operation_success() return True @app.task def export_form(uuid, form, allowed_location, fields=None, param_config_yaml=yaml.dump(config)): """ Export a form. If fields is in the request variable we only include those fields. Starts background export Args:\n uuid: uuid of download\n form: the form to export\n allowed_location: will extract result only for this location fields: Fields from form to export\n Returns:\n bool: The return value. True for success, False otherwise.\n """ # Runner loads the config object through a function parameter. param_config = yaml.load(param_config_yaml) db, session = get_db_engine() operation_status = OperationStatus(form, uuid) if form not in form_tables(param_config): operation_status.submit_operation_failure() return False location_data = all_location_data(session) locs_by_deviceid = location_data[1] if locs_by_deviceid is None: operation_status.submit_operation_failure() return False if fields: keys = fields else: keys = __get_keys_from_db(db, form, param_config) xls_csv_writer = XlsCsvFileWriter(base_folder, form, uuid) xls_csv_writer.write_xls_row(keys) xls_csv_writer.write_csv_row(keys) query_form_data = session.query(form_tables(param_config)[form].data) __save_form_data(xls_csv_writer, query_form_data, operation_status, keys, allowed_location, location_data) operation_status.submit_operation_success() xls_csv_writer.flush_csv_buffer() xls_csv_writer.close_cvs_xls_buffers() return True def __get_keys_from_db(db, form, param_config=config): keys = ["clinic", "region", "district"] sql = text(f"SELECT DISTINCT(jsonb_object_keys(data)) from {form_tables(param_config)[form].__tablename__}") results = db.execute(sql) for r in results: keys.append(r[0]) return keys class OperationStatus: def __init__(self, form, uuid): self.db, self.session = get_db_engine() self.__initialize(form, uuid) def __initialize(self, form, uuid): self.download_data_file = DownloadDataFiles(uuid=uuid, generation_time=datetime.now(), type=form, success=0, status=0.0) self.session.add(self.download_data_file) self.session.commit() def update_operation_status(self, status): self.download_data_file.status = status self.download_data_file.success = 0 self.session.commit() def submit_operation_success(self): self.download_data_file.status = 1.0 self.download_data_file.success = 1 self.session.commit() def submit_operation_failure(self): self.download_data_file.status = 1.0 self.download_data_file.success = 0 self.session.commit() def __save_form_data(xls_csv_writer, query_form_data, operation_status, keys, allowed_location, location_data): (locations, locs_by_deviceid, zones, regions, districts, devices) = location_data results = query_form_data.yield_per(1000) results_count = query_form_data.count() for i, result in enumerate(results): if not result: logging.error("Skipping result %d which is None", i) continue if not result.data: logging.error("Skipping result %d. Data is None", i) continue if not isinstance(result.data, dict): logging.error("Skipping result %d which data is not of a dictionary type", i) continue # Initialise empty result for header line row = [] for key in keys: try: row.append(result.data.get(key, '')) except AttributeError: logging.exception("Error while parsing row %s with data:\n%s", result, result.data, exc_info=True) # Add the location data if it has been requested and exists. if 'deviceid' in result.data: clinic_id = locs_by_deviceid.get(result.data["deviceid"], None) if not is_child(allowed_location, clinic_id, locations): continue populate_row_locations(row, keys, clinic_id, location_data) else: if allowed_location != 1: continue set_empty_locations(keys, row) xls_csv_writer.write_xls_row(row) xls_csv_writer.write_csv_row(row) five_percent_progress = i % (results_count / 20) == 0 if five_percent_progress: new_status = float(i) / results_count operation_status.update_operation_status(new_status) if __name__ == "__main__": import uuid export_data_table( str(uuid.uuid4()), "test", "reg_1", [["reg_2", "Consultations"]], [["epi_year", "year"], ["clinic:location", "clinic"], ["epi_week", "week"]], location_conditions=[["case_type", "SARI"]] )
mit
JeanKossaifi/scikit-learn
examples/cluster/plot_cluster_comparison.py
246
4684
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example aims at showing characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this behavior. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler np.random.seed(0) # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'SpectralClustering', 'Ward', 'AgglomerativeClustering', 'DBSCAN', 'Birch'] plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 datasets = [noisy_circles, noisy_moons, blobs, no_structure] for i_dataset, dataset in enumerate(datasets): X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=2) ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.2) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=2, connectivity=connectivity) birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ two_means, affinity_propagation, ms, spectral, ward, average_linkage, dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
bsd-3-clause
lfairchild/PmagPy
pmagpy_tests/test_imports3.py
1
65257
#!/usr/bin/env python import unittest import os #import sys from pmagpy import pmag from pmagpy import contribution_builder as cb from pmagpy import convert_2_magic as convert WD = pmag.get_test_WD() class Test2g_bin_magic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): #input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', #'IODP_jr6_magic') #files = ['test.magic', 'other_er_samples.txt'] files = ['mn001-1a.magic', 'samples.txt', 'sites.txt', 'measurements.txt', 'locations.txt', 'specimens.txt'] pmag.remove_files(files, WD) pmag.remove_files(['custom_specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'], 'data_files') pmag.remove_files(files, os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1')) os.chdir(WD) def test_2g_with_no_files(self): options = {} program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'mag file is required input') def test_2g_with_files(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'measurements.txt') self.assertTrue(os.path.isfile(outfile)) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_2g_fail_option4(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '4' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'option [4] must be in form 4-Z where Z is an integer') def test_2g_succeed_option4(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '4-3' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'measurements.txt') def test_2g_fail_option7(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '7' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'option [7] must be in form 7-Z where Z is an integer') def test_2g_succeed_option7(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '7-3' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'measurements.txt') def test_2g_fail_option6(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['samp_con'] = '6' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, 'Naming convention option [6] not currently supported') def test_2g_with_bad_file(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1ax.dat' program_ran, error_message = convert._2g_bin(**options) self.assertFalse(program_ran) self.assertEqual(error_message, "bad mag file") def test_2g_with_options(self): options = {} options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') options['mag_file'] = 'mn001-1a.dat' options['meas_file'] = 'mn001-1a.magic' options['samp_con'] = '4-3' options['inst'] = 'instrument' options['noave'] = 0 options['specnum'] = 2 options['location'] = 'location' options['or_con'] = '4' options['gmeths'] = 'FS-LOC-MAP:SO-POM' program_ran, outfile = convert._2g_bin(**options) self.assertTrue(program_ran) self.assertEqual(os.path.split(outfile)[1], 'mn001-1a.magic') def test_2g_with_path(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', '2g_bin_magic', 'mn1') #options['input_dir'] = os.path.join(WD, 'data_files', 'convert_2_magic', # '2g_bin_magic', 'mn1') options['mag_file'] = os.path.join(input_dir, 'mn001-1a.dat') options['meas_file'] = os.path.join(input_dir, 'mn001-1a.magic') options['spec_file'] = os.path.join('data_files', 'custom_specimens.txt') options['dir_path'] = 'data_files' program_ran, outfile = convert._2g_bin(**options) self.assertEqual(outfile, options['meas_file']) self.assertTrue(os.path.exists(options['meas_file'])) self.assertTrue(os.path.exists(os.path.join('data_files', 'sites.txt'))) class TestAgmMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'agm_magic_example.magic', 'agm_magic_example_locations.txt', 'agm_magic_example_specimens.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'agm_magic') program_ran, filename = convert.agm('agm_magic_example.agm', meas_outfile='agm_magic_example.magic', input_dir_path=input_dir, fmt="old") self.assertTrue(program_ran) def test_backfield_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'agm_magic') program_ran, filename = convert.agm('agm_magic_example.irm', meas_outfile='agm_magic_example.magic', input_dir_path=input_dir, fmt="old", bak=True, instrument="SIO-FLO") class TestBgcMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'bgc_magic') def tearDown(self): filelist = ['96MT.05.01.magic', 'BC0-3A.magic', 'measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt'] pmag.remove_files(filelist, self.input_dir) filelist = ['specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_bgc_with_no_files(self): with self.assertRaises(TypeError): convert.bgc() def test_bgc_success(self): options = {'input_dir_path': self.input_dir, 'mag_file': '96MT.05.01'} program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_bgc_with_path(self): options = {} options['mag_file'] = os.path.join(self.input_dir, '96MT.05.01') options['spec_file'] = os.path.join(WD, 'custom_specimens.txt') options['dir_path'] = 'data_files' program_ran, outfile = convert.bgc(**options) self.assertEqual(outfile, os.path.join(WD, 'data_files', 'measurements.txt')) self.assertTrue(os.path.isfile(options['spec_file'])) self.assertTrue(os.path.isfile(os.path.join(WD, 'data_files', 'samples.txt'))) def test_bgc_alternate_infile(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'BC0-3A'} program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'measurements.txt')) def test_bgc_with_append(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'BC0-3A'} program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) options['append'] = True program_ran, outfile = convert.bgc(**options) self.assertTrue(program_ran) lines, file_type = pmag.magic_read(os.path.join(WD, 'specimens.txt')) self.assertEqual(len(lines), 2) class TestCitMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) #loc_file = 'custom_locations.txt' filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'custom_locations.txt'] dir_path = os.path.join(WD, 'data_files') pmag.remove_files(filelist, dir_path) samp_file = 'custom_samples.txt' dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') pmag.remove_files([samp_file], dir_path) os.chdir(WD) def test_cit_with_no_files(self): program_ran, error_message = convert.cit() self.assertFalse(program_ran) self.assertEqual(error_message, 'bad sam file name') def test_cit_magic_with_file(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_cit_magic_with_path(self): options = {} #options['input_dir_path'] = os.path.join(WD, 'data_files', # 'convert_2_magic', # 'cit_magic', 'PI47')pppp options['magfile'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47', 'PI47-.sam') options['loc_file'] = 'custom_locations.txt' options['samp_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47', 'custom_samples.txt') options['dir_path'] = os.path.join(WD, 'data_files') program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) for fname in [os.path.join(WD, 'data_files', options['loc_file']), options['samp_file'], os.path.join(WD, 'data_files', 'specimens.txt')]: self.assertTrue(os.path.isfile(fname)) def test_cit_magic_fail_option4(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '4' program_ran, error_message = convert.cit(**options) self.assertFalse(program_ran) self.assertEqual(error_message, "naming convention option [4] must be in form 4-Z where Z is an integer") def test_cit_magic_succeed_option4(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '4-3' program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) def test_cit_magic_with_options(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '2' options['methods'] = ['SO-SM:SO-MAG'] options['locname'] = 'location' options['noave'] = 1 options['specnum'] = 2 program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) def test_cit_magic_with_other_data(self): options = {} options['input_dir_path'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'cit_magic', 'PI47') options['magfile'] = 'PI47-.sam' options['samp_con'] = '1' options['methods'] = ['SO-SM:SO-MAG'] options['locname'] = 'location' options['noave'] = 1 options['specnum'] = 2 program_ran, outfile = convert.cit(**options) self.assertTrue(program_ran) expected_file = os.path.join('measurements.txt') self.assertEqual(outfile, expected_file) class TestGenericMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['generic_magic_example.magic'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'generic_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_generic_magic_no_exp(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'generic_magic') options = {} options['magfile'] = os.path.join(dir_path, 'generic_magic_example.txt') options['meas_file'] = os.path.join(dir_path, 'generic_magic_example.magic') program_ran, error_message = convert.generic(**options) self.assertFalse(program_ran) no_exp_error = "Must provide experiment. Please provide experiment type of: Demag, PI, ATRM n (n of positions), CR (see help for format), NLT" self.assertEqual(no_exp_error, error_message) def test_generic_magic_success(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'generic_magic') options = {} options['magfile'] = os.path.join(dir_path, 'generic_magic_example.txt') options['meas_file'] = os.path.join(dir_path, 'generic_magic_example.magic') options['experiment'] = 'Demag' program_ran, outfile_name = convert.generic(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile_name), os.path.realpath(options['meas_file'])) class TestHujiMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['Massada_AF_HUJI_new_format.magic'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'Massada_AF_HUJI_new_format.magic'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_with_bad_file(self): program_ran, error_msg = convert.huji() self.assertFalse(program_ran) self.assertEqual(error_msg, "mag_file field is a required option") program_ran, error_msg = convert.huji("fake") self.assertFalse(program_ran) self.assertEqual(error_msg, "bad mag file name") def test_huji_magic_success(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'huji_magic') full_file = os.path.join(dir_path, "Massada_AF_HUJI_new_format.txt") options = {} options['input_dir_path'] = dir_path options['magfile'] = "Massada_AF_HUJI_new_format.txt" options['meas_file'] = "Massada_AF_HUJI_new_format.magic" options['codelist'] = 'AF' program_ran, outfile = convert.huji(**options) self.assertTrue(program_ran) self.assertEqual(outfile, options['meas_file']) def test_with_options(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'huji_magic') options = {} options['dir_path'] = dir_path options['magfile'] = "Massada_AF_HUJI_new_format.txt" options['meas_file'] = "Massada_AF_HUJI_new_format.magic" options['codelist'] = "AF" options['location'] = "Massada" options['noave'] = True options['user'] = "me" options['labfield'] = 40 options['phi'] = 0 options['theta'] = 90 program_ran, outfile = convert.huji(**options) self.assertTrue(program_ran) self.assertEqual(outfile, options['meas_file']) def test_with_no_exp_type(self): dir_path = os.path.join('data_files', 'convert_2_magic', 'huji_magic') mag_file = "Massada_AF_HUJI_new_format.txt" res, error = convert.huji(mag_file, dir_path) self.assertFalse(res) self.assertEqual(error, "Must select experiment type (codelist/-LP, options are: [AF, T, ANI, TRM, CR])") class TestHujiSampleMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['samples.txt', 'sites.txt'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'Massada_AF_HUJI_new_format.magic'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_success(self): res, outfile = convert.huji_sample("magdelkrum_datafile.txt", dir_path=os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic')) self.assertTrue(res) self.assertEqual(outfile, os.path.join(WD, 'data_files', 'convert_2_magic', 'huji_magic', 'samples.txt')) class TestIodpSrmMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'IODP_LIMS_SRMsection_366_U1494.csv.magic', 'IODP_LIMS_SRMsection_366_U1494_locations.txt', 'IODP_LIMS_SRMsection_366_U1494_samples.txt', 'IODP_LIMS_SRMsection_366_U1494_sites.txt', 'IODP_LIMS_SRMsection_366_U1494_specimens.txt'] dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') #directory = os.path.join(WD) pmag.remove_files(filelist, dir_path) dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_srm_magic') pmag.remove_files(filelist, dir_path) dir_path = WD pmag.remove_files(filelist, dir_path) os.chdir(WD) def test_iodp_with_no_files(self): program_ran, error_message = convert.iodp_srm() self.assertFalse(program_ran) self.assertEqual(error_message, 'No .csv files were found') #@unittest.skip("iodp_srm_magic is missing an example datafile") def test_iodp_with_files(self): options = {} dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_srm_magic') options['dir_path'] = dir_path files = os.listdir(dir_path) files = ['IODP_Janus_312_U1256.csv', 'SRM_318_U1359_B_A.csv' ] # this one takes way too long: IODP_LIMS_SRMsection_344_1414A.csv info = [] for f in files: if f.endswith('csv') and 'summary' not in f and 'discrete' not in f and 'sample' not in f: options['csv_file'] = f program_ran, outfile = convert.iodp_srm(**options) meas_df = cb.MagicDataFrame(pmag.resolve_file_name(outfile, dir_path)) self.assertTrue(len(meas_df.df) > 0) #@unittest.skip("iodp_srm_magic is missing an example datafile") def test_iodp_with_one_file(self): options = {} #dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', # 'iodp_srm_magic') dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') options['dir_path'] = dir_path options['input_dir_path'] = dir_path options['csv_file'] = 'srmsection-XXX-UTEST-A.csv' program_ran, outfile = convert.iodp_srm(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, os.path.join('measurements.txt')) meas_df = cb.MagicDataFrame(os.path.join(dir_path, outfile)) self.assertIn('sequence', meas_df.df.columns) def test_iodp_with_one_file_with_path(self): options = {} dir_path = os.path.join('data_files', 'UTESTA', 'SRM_data') #options['dir_path'] = dir_path options['dir_path'] = WD #dir_path options['input_dir_path'] = "fake/path" options['csv_file'] = os.path.join(dir_path, 'srmsection-XXX-UTEST-A.csv') program_ran, outfile = convert.iodp_srm(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, os.path.join('measurements.txt')) class TestIodpDscrMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_samples.txt'] #directory = os.path.join(WD) pmag.remove_files(filelist, WD) pmag.remove_files(['custom_measurements.txt'], os.path.join(WD, 'data_files')) os.chdir(WD) def test_iodp_with_no_files(self): program_ran, error_message = convert.iodp_dscr() self.assertFalse(program_ran) self.assertEqual(error_message, 'No .csv files were found') #@unittest.skip("iodp_srm_magic is missing an example datafile") def test_iodp_with_one_file(self): options = {} #dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', #'iodp_srm_magic') dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') options['input_dir_path'] = dir_path options['csv_file'] = 'srmdiscrete-XXX-UTEST-A.csv' program_ran, outfile = convert.iodp_dscr(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, 'measurements.txt') def test_iodp_with_path(self): options = {} #dir_path = os.path.join(WD, 'data_files', 'convert_2_magic', #'iodp_srm_magic') dir_path = os.path.join(WD, 'data_files', 'UTESTA', 'SRM_data') #options['input_dir_path'] = dir_path options['csv_file'] = os.path.join('data_files', 'UTESTA', 'SRM_data', 'srmdiscrete-XXX-UTEST-A.csv') options['meas_file'] = os.path.join(WD, 'data_files', 'custom_measurements.txt') options['samp_file'] = 'custom_samples.txt' program_ran, outfile = convert.iodp_dscr(**options) self.assertEqual(program_ran, True) self.assertEqual(outfile, os.path.join(WD, 'data_files', 'custom_measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) class TestIodpJr6Magic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): files = ['test.magic', 'other_er_samples.txt', 'custom_locations.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'measurements.txt', 'specimens.txt'] pmag.remove_files(files, WD) # then, make sure that hidden_er_samples.txt has been successfully renamed to er_samples.txt input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') hidden_sampfile = os.path.join(input_dir, 'hidden_er_samples.txt') sampfile = os.path.join(input_dir, 'er_samples.txt') if os.path.exists(hidden_sampfile): os.rename(hidden_sampfile, sampfile) pmag.remove_files(['custom_specimens.txt'], 'data_files') os.chdir(WD) def test_iodp_jr6_with_no_files(self): with self.assertRaises(TypeError): convert.iodp_jr6() def test_iodp_jr6_with_invalid_mag_file(self): options = {'mag_file': 'fake'} program_ran, error_message = convert.iodp_jr6(**options) expected_msg = 'The input file you provided: {} does not exist.\nMake sure you have specified the correct filename AND correct input directory name.'.format(os.path.realpath(os.path.join('.', 'fake'))) self.assertFalse(program_ran) self.assertEqual(error_message, expected_msg) #@unittest.skipIf('win32' in sys.platform or 'win62' in sys.platform, "Requires up to date version of pandas") def test_iodp_jr6_with_magfile(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') options['input_dir_path'] = input_dir mag_file = 'test.jr6' options['mag_file'] = 'test.jr6' meas_file = 'test.magic' options['meas_file'] = meas_file program_ran, outfile = convert.iodp_jr6(**options) self.assertTrue(program_ran) self.assertEqual(outfile, meas_file) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_iodp_jr6_with_path(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') #options['input_dir_path'] = input_dir mag_file = os.path.join('data_files', 'convert_2_magic', 'iodp_jr6_magic', 'test.jr6') options['mag_file'] = mag_file #'test.jr6' options['spec_file'] = os.path.join('data_files', 'custom_specimens.txt') options['loc_file'] = 'custom_locations.txt' meas_file = 'test.magic' options['meas_file'] = meas_file program_ran, outfile = convert.iodp_jr6(**options) self.assertTrue(program_ran) self.assertEqual(outfile, meas_file) for fname in [options['loc_file'], options['spec_file']]: self.assertTrue(os.path.isfile(fname)) #@unittest.skipIf('win32' in sys.platform or 'win62' in sys.platform, "Requires up to date version of pandas") def test_iodp_jr6_with_options(self): options = {} input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_jr6_magic') options['input_dir_path'] = input_dir mag_file = 'test.jr6' options['mag_file'] = 'test.jr6' meas_file = 'test.magic' options['meas_file'] = meas_file options['noave'] = 1 options['lat'] = 3 options['lon'] = 5 options['volume'] = 3 program_ran, outfile = convert.iodp_jr6(**options) self.assertTrue(program_ran) self.assertEqual(outfile, meas_file) class TestIodpSamplesMagic(unittest.TestCase): def setUp(self): self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'iodp_srm_magic') def tearDown(self): os.chdir(WD) filelist = ['er_samples.txt'] pmag.remove_files(filelist, WD) def test_with_wrong_format(self): infile = os.path.join(self.input_dir, 'GCR_U1359_B_coresummary.csv') program_ran, error_message = convert.iodp_samples(infile) self.assertFalse(program_ran) expected_error = 'Could not extract the necessary data from your input file.\nPlease make sure you are providing a correctly formated IODP samples csv file.' self.assertEqual(error_message, expected_error) def test_with_right_format(self): reference_file = os.path.join(WD, 'testing', 'odp_magic', 'odp_magic_er_samples.txt') infile = os.path.join(self.input_dir, 'samples_318_U1359_B.csv') program_ran, outfile = convert.iodp_samples(infile, data_model_num=2) self.assertTrue(program_ran) expected_file = os.path.join('.', 'er_samples.txt') self.assertEqual(outfile, expected_file) self.assertTrue(os.path.isfile(outfile)) def test_content_with_right_format(self): reference_file = os.path.join(WD, 'data_files', 'testing', 'odp_magic', 'odp_magic_er_samples.txt') infile = os.path.join(self.input_dir, 'samples_318_U1359_B.csv') program_ran, outfile = convert.iodp_samples(infile, data_model_num=2) with open(reference_file) as ref_file: ref_lines = ref_file.readlines() with open(outfile) as out_file: out_lines = out_file.readlines() self.assertTrue(program_ran) self.assertEqual(ref_lines, out_lines) def test_with_data_model3(self): infile = os.path.join(self.input_dir, 'samples_318_U1359_B.csv') program_ran, outfile = convert.iodp_samples(infile, data_model_num=3) self.assertTrue(program_ran) self.assertEqual(os.path.realpath('samples.txt'), os.path.realpath(outfile)) class TestJr6TxtMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): files = ['test.magic', 'other_er_samples.txt', 'custom_locations.txt', 'samples.txt', 'sites.txt', 'measurements.txt', 'locations.txt', 'specimens.txt'] pmag.remove_files(files, WD) def test_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') output = convert.jr6_txt(**{'mag_file': 'AP12.txt', 'input_dir_path': input_dir}) self.assertTrue(output[0]) self.assertEqual(output[1], 'measurements.txt') def test_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') options = {'mag_file': 'AP12.txt', 'input_dir_path': input_dir} options['meas_file'] = "test.magic" options['lat'] = 1 options['lon'] = 2 options['noave'] = True output = convert.jr6_txt(**options) self.assertTrue(output[0]) self.assertEqual(output[1], 'test.magic') site_df = cb.MagicDataFrame(os.path.join(WD, 'sites.txt')) self.assertEqual(1, site_df.df.lat.values[0]) class TestJr6Jr6Magic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): files = ['test.magic', 'other_er_samples.txt', 'custom_locations.txt', 'samples.txt', 'sites.txt', 'measurements.txt', 'locations.txt', 'specimens.txt'] pmag.remove_files(files, WD) def test_success(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') output = convert.jr6_jr6(**{'mag_file': 'AF.jr6', 'input_dir_path': input_dir}) self.assertTrue(output[0]) self.assertEqual(os.path.realpath(output[1]), os.path.realpath('measurements.txt')) def test_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'jr6_magic') options = {'mag_file': 'SML07.JR6', 'input_dir_path': input_dir} options['meas_file'] = "test.magic" options['lat'] = 1 options['lon'] = 2 options['noave'] = True output = convert.jr6_jr6(**options) self.assertTrue(output[0]) self.assertEqual(os.path.realpath(output[1]), os.path.realpath('test.magic')) site_df = cb.MagicDataFrame(os.path.join(WD, 'sites.txt')) self.assertEqual(1, site_df.df.lat.values[0]) class TestKly4sMagic(unittest.TestCase): def setUp(self): pass def tearDown(self): filelist= ['magic_measurements.txt', 'my_magic_measurements.txt', 'er_specimens.txt', 'er_samples.txt', 'er_sites.txt', 'rmag_anisotropy.txt', 'my_rmag_anisotropy.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_kly4s_without_infile(self): with self.assertRaises(TypeError): convert.kly4s() def test_kly4s_with_invalid_infile(self): program_ran, error_message = convert.kly4s('hello.txt') expected_file = os.path.join('.', 'hello.txt') self.assertFalse(program_ran) self.assertEqual(error_message, 'Error opening file: {}'.format(expected_file)) def test_kly4s_with_valid_infile(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'magic_measurements.txt')) def test_kly4s_fail_option4(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, error_message = convert.kly4s('KLY4S_magic_example.dat', samp_con="4", dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, "option [4] must be in form 4-Z where Z is an integer") def test_kly4s_succeed_option4(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', samp_con="4-2", dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'magic_measurements.txt')) self.assertTrue(os.path.isfile(os.path.join(WD, 'magic_measurements.txt'))) def test_kly4s_with_options(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', specnum=1, locname="location", inst="instrument", samp_con=3, or_con=2, measfile='my_magic_measurements.txt', aniso_outfile="my_rmag_anisotropy.txt", dir_path=WD, input_dir_path=in_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join(WD, 'my_magic_measurements.txt')) self.assertTrue(os.path.isfile(os.path.join(WD, 'my_rmag_anisotropy.txt'))) def test_kly4s_with_valid_infile_data_model3(self): in_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'kly4s_magic') program_ran, outfile = convert.kly4s('KLY4S_magic_example.dat', dir_path=WD, input_dir_path=in_dir, data_model_num=3) con = cb.Contribution(WD) self.assertEqual(['measurements', 'samples', 'sites', 'specimens'], sorted(con.tables)) class TestK15Magic(unittest.TestCase): def setUp(self): pass def tearDown(self): filelist = ['magic_measurements.txt', 'my_magic_measurements.txt', 'er_specimens.txt', 'er_samples.txt', 'my_er_samples.txt', 'er_sites.txt', 'rmag_anisotropy.txt', 'my_rmag_anisotropy.txt', 'rmag_results.txt', 'my_rmag_results.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_k15_with_files(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath('magic_measurements.txt')) def test_k15_fail_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, error_message = convert.k15('k15_example.dat', sample_naming_con="4", input_dir_path=input_dir, data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, "option [4] must be in form 4-Z where Z is an integer") def test_k15_succeed_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', sample_naming_con="4-2", input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath("magic_measurements.txt")) def test_k15_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', specnum=2, sample_naming_con="3", location="Here", meas_file="my_magic_measurements.txt", samp_file="my_er_samples.txt", aniso_outfile="my_rmag_anisotropy.txt", result_file="my_rmag_results.txt", input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.realpath("my_magic_measurements.txt")) def test_data_model3(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'k15_magic') program_ran, outfile = convert.k15('k15_example.dat', specnum=2, input_dir_path=input_dir) self.assertTrue(program_ran) self.assertEqual(os.path.realpath('./measurements.txt'), os.path.realpath(outfile)) class TestLdeoMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'ldeo_magic') def tearDown(self): #filelist = ['measurements.txt', 'specimens.txt', # 'samples.txt', 'sites.txt'] #pmag.remove_files(filelist, self.input_dir) filelist = ['specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_specimens.txt', 'measurements.txt', 'custom_measurements.txt'] pmag.remove_files(filelist, WD) #pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_ldeo_with_no_files(self): with self.assertRaises(TypeError): convert.ldeo() def test_ldeo_success(self): options = {'input_dir_path': self.input_dir, 'magfile': 'ldeo_magic_example.dat'} program_ran, outfile = convert.ldeo(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_ldeo_options(self): options = {'input_dir_path': self.input_dir, 'magfile': 'ldeo_magic_example.dat'} options['noave'] = 1 options['specnum'] = 2 options['samp_con'] = 2 options['meas_file'] = "custom_measurements.txt" options['location'] = "new place" options['labfield'], options['phi'], options['theta'] = 40, 0, 90 program_ran, outfile = convert.ldeo(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(options['meas_file']), os.path.realpath(outfile)) class TestLivdbMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'livdb_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) #filelist = ['specimens.txt', 'samples.txt', 'sites.txt', # 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] #pmag.remove_files(filelist, '.') #pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_livdb_success(self): res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+")) self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("measurements.txt")) def test_livdb_all_experiment_types(self): for folder in ["TH_IZZI+", "MW_C+", "MW_IZZI+andC++", "MW_OT+", "MW_P"]: res, meas_file = convert.livdb(os.path.join(self.input_dir, folder)) self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("measurements.txt")) def test_with_options(self): # naming con 1 res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=1, meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual("ATPIPV04-1A", df.df.loc["ATPIPV04-1A"]['sample']) # naming con 2 without chars res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=2, site_name_con=2, meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual("ATPIPV04-1A", df.df.loc['ATPIPV04-1A']['sample']) df = cb.MagicDataFrame(os.path.join(WD, "samples.txt")) self.assertEqual("ATPIPV04-1A", df.df.loc['ATPIPV04-1A']['site']) def test_naming_con_2(self): res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=2, samp_num_chars=1, meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual("ATPIPV04-1", df.df.loc["ATPIPV04-1A"]['sample']) def test_naming_con_3(self): res, meas_file = convert.livdb(os.path.join(self.input_dir, "TH_IZZI+"), location_name="place", samp_name_con=3, samp_num_chars="-", meas_out="custom.txt") self.assertTrue(res) self.assertEqual(meas_file, os.path.realpath("custom.txt")) df = cb.MagicDataFrame(os.path.join(WD, "specimens.txt")) self.assertEqual(df.df.loc['ATPIPV04-1A']['sample'], 'ATPIPV04') df = cb.MagicDataFrame(os.path.join(WD, "samples.txt")) self.assertEqual(df.df.loc['ATPIPV04']['site'], "ATPIPV04") class TestMstMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'mst_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) #filelist = ['specimens.txt', 'samples.txt', 'sites.txt', # 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] pmag.remove_files(filelist, '.') pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_mst_with_no_files(self): with self.assertRaises(TypeError): convert.mst() def test_mst_success(self): options = {'input_dir_path': self.input_dir, 'infile': 'curie_example.dat'} options['spec_name'] = 'abcde' options['location'] = 'place' program_ran, outfile = convert.mst(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) self.assertEqual(meas_df.df.location.values[0], 'place') con = cb.Contribution(WD) for table in ['measurements', 'specimens', 'samples', 'sites', 'locations']: self.assertIn(table, con.tables) def test_mst_synthetic(self): options = {'input_dir_path': self.input_dir, 'infile': 'curie_example.dat'} options['spec_name'] = 'abcde' options['syn'] = True program_ran, outfile = convert.mst(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) class TestMiniMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'mini_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) def test_bad_file(self): program_ran, error = convert.mini('fake_file') self.assertFalse(program_ran) self.assertEqual(error, "bad mag file name") def test_success(self): magfile = os.path.join(self.input_dir, "Peru_rev1.txt") program_ran, outfile = convert.mini(magfile) self.assertTrue(program_ran) self.assertEqual(outfile, "measurements.txt") def test_options(self): magfile = os.path.join(self.input_dir, "Peru_rev1.txt") program_ran, outfile = convert.mini(magfile, meas_file="custom.out", user="me", noave=1, volume=15, methcode="LP:FAKE") self.assertTrue(program_ran) self.assertEqual(outfile, "custom.out") def test_dm_2(self): magfile = os.path.join(self.input_dir, "Peru_rev1.txt") program_ran, outfile = convert.mini(magfile, meas_file="custom.out", user="me", noave=1, volume=15, methcode="LP:FAKE", data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, "custom.out") class TestPmdMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'pmd_magic', 'PMD', ) def tearDown(self): filelist = ['specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom_specimens.txt', 'measurements.txt', 'custom_meas.txt'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, ".") os.chdir(WD) def test_pmd_with_no_files(self): with self.assertRaises(TypeError): convert.pmd() def test_pmd_success(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'ss0207a.pmd'} program_ran, outfile = convert.pmd(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns) def test_pmd_options(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'ss0207a.pmd'} options['lat'], options['lon'] = 5, 10 options['specnum'] = 2 options['location'] = 'place' options['meas_file'] = 'custom_meas.txt' program_ran, outfile = convert.pmd(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'custom_meas.txt')) loc_df = cb.MagicDataFrame(os.path.join(WD, 'locations.txt')) self.assertEqual(loc_df.df.index.values[0], 'place') class TestSioMagic(unittest.TestCase): def setUp(self): os.chdir(WD) def tearDown(self): filelist = ['sio_af_example.magic'] directory = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic') pmag.remove_files(filelist, directory) filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_sio_magic_no_files(self): with self.assertRaises(TypeError): convert.sio() def test_sio_magic_success(self): options = {} dir_path = os.path.join('data_files', 'convert_2_magic', 'sio_magic') options['mag_file'] = os.path.join(dir_path, 'sio_af_example.dat') options['meas_file'] = os.path.join(dir_path, 'sio_af_example.magic') program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(file_name), os.path.realpath(options['meas_file'])) meas_df = cb.MagicDataFrame(os.path.realpath(options['meas_file'])) self.assertIn('sequence', meas_df.df.columns) self.assertEqual(0, meas_df.df.iloc[0]['sequence']) def test_sio_magic_success_with_wd(self): options = {} dir_path = os.path.join('data_files', 'convert_2_magic', 'sio_magic') options['mag_file'] = os.path.join('sio_af_example.dat') options['meas_file'] = os.path.join('sio_af_example.magic') options['dir_path'] = dir_path program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(file_name), os.path.realpath(os.path.join(dir_path, options['meas_file']))) def test_sio_magic_fail_option4(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['samp_con'] = '4' program_ran, error_message = convert.sio(**options) self.assertFalse(program_ran) self.assertEqual(error_message, "naming convention option [4] must be in form 4-Z where Z is an integer") def test_sio_magic_succeed_option4(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['samp_con'] = '4-2' program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(file_name, meas_file) def test_sio_magic_fail_with_coil(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['coil'] = 4 program_ran, error_message = convert.sio(**options) self.assertFalse(program_ran) self.assertEqual(error_message, '4 is not a valid coil specification') def test_sio_magic_succeed_with_coil(self): options = {} options['mag_file'] = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.dat') meas_file = os.path.join(WD, 'data_files', 'convert_2_magic', 'sio_magic', 'sio_af_example.magic') options['meas_file'] = meas_file options['coil'] = '1' program_ran, file_name = convert.sio(**options) self.assertTrue(program_ran) self.assertEqual(file_name, meas_file) class TestSMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 's_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, self.input_dir) def test_with_invalid_file(self): res, error_msg = convert.s_magic('fake.txt') self.assertFalse(res) expected_file = os.path.join(WD, "fake.txt") self.assertEqual(error_msg, "No such file: {}".format(expected_file)) def test_success(self): res, outfile = convert.s_magic("s_magic_example.dat", dir_path=self.input_dir) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "specimens.txt")) def test_with_options(self): res, outfile = convert.s_magic("s_magic_example.dat", dir_path=self.input_dir, specnum=1, location="place", spec="abcd-efg", user="me", samp_con=2) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "specimens.txt")) self.assertTrue(os.path.exists(os.path.join(self.input_dir, "sites.txt"))) con = cb.Contribution(self.input_dir) self.assertIn('sites', con.tables) self.assertEqual('place', con.tables['sites'].df.loc[:, 'location'].values[0]) class TestSufarAscMagic(unittest.TestCase): def setUp(self): pass def tearDown(self): filelist = ['magic_measurements.txt', 'my_magic_measurements.txt', 'er_specimens.txt', 'er_samples.txt', 'my_er_samples.txt', 'er_sites.txt', 'rmag_anisotropy.txt', 'my_rmag_anisotropy.txt', 'rmag_results.txt', 'my_rmag_results.txt', 'measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt'] pmag.remove_files(filelist, WD) os.chdir(WD) def test_sufar4_with_no_files(self): with self.assertRaises(TypeError): convert.sufar4() def test_sufar4_with_invalid_file(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'fake_sufar4-asc_magic_example.txt' program_ran, error_message = convert.sufar4(infile, input_dir_path=input_dir, data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, 'Error opening file: {}'.format(os.path.join(input_dir, infile))) def test_sufar4_with_infile(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, outfile = convert.sufar4(infile, input_dir_path=input_dir, data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join('.', 'magic_measurements.txt')) with open(outfile, 'r') as ofile: lines = ofile.readlines() self.assertEqual(292, len(lines)) def test_sufar4_succeed_data_model3(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, outfile = convert.sufar4(infile, input_dir_path=input_dir) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join('.', 'measurements.txt')) with open(outfile, 'r') as ofile: lines = ofile.readlines() self.assertEqual(292, len(lines)) self.assertEqual('measurements', lines[0].split('\t')[1].strip()) con = cb.Contribution(WD) self.assertEqual(sorted(con.tables), sorted(['measurements', 'specimens', 'samples', 'sites'])) def test_sufar4_fail_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, error_message = convert.sufar4(infile, input_dir_path=input_dir, sample_naming_con='4', data_model_num=2) self.assertFalse(program_ran) self.assertEqual(error_message, "option [4] must be in form 4-Z where Z is an integer") def test_sufar4_succeed_option4(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' ofile = 'my_magic_measurements.txt' program_ran, outfile = convert.sufar4(infile, meas_output=ofile, input_dir_path=input_dir, sample_naming_con='4-2', data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join('.', ofile)) def test_sufar4_with_options(self): input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'sufar_asc_magic') infile = 'sufar4-asc_magic_example.txt' program_ran, outfile = convert.sufar4(infile, meas_output='my_magic_measurements.txt', aniso_output="my_rmag_anisotropy.txt", specnum=2, locname="Here", instrument="INST", static_15_position_mode=True, input_dir_path=input_dir, sample_naming_con='5', data_model_num=2) self.assertTrue(program_ran) self.assertEqual(outfile, os.path.join('.', 'my_magic_measurements.txt')) class TestTdtMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'tdt_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) pmag.remove_files(filelist, '.') pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_success(self): res, outfile = convert.tdt(self.input_dir) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "measurements.txt")) def test_with_options(self): res, outfile = convert.tdt(self.input_dir, meas_file_name="custom.out", location="here", user="me", samp_name_con=2, samp_name_chars=1, site_name_con=2, site_name_chars=1, volume=15., lab_inc=-90) self.assertTrue(res) self.assertEqual(outfile, os.path.join(self.input_dir, "custom.out")) df = cb.MagicDataFrame(os.path.join(self.input_dir, "samples.txt")) self.assertEqual("MG", df.df["site"].values[0]) self.assertEqual("MGH", df.df["sample"].values[0]) class TestUtrechtMagic(unittest.TestCase): def setUp(self): os.chdir(WD) self.input_dir = os.path.join(WD, 'data_files', 'convert_2_magic', 'utrecht_magic') def tearDown(self): filelist = ['measurements.txt', 'specimens.txt', 'samples.txt', 'sites.txt', 'locations.txt', 'custom.out'] pmag.remove_files(filelist, WD) #filelist = ['specimens.txt', 'samples.txt', 'sites.txt', # 'locations.txt', 'custom_specimens.txt', 'measurements.txt'] pmag.remove_files(filelist, '.') pmag.remove_files(filelist, os.path.join(WD, 'data_files')) os.chdir(WD) def test_utrecht_with_no_files(self): with self.assertRaises(TypeError): convert.utrecht() def test_utrecht_success(self): options = {'input_dir_path': self.input_dir, 'mag_file': 'Utrecht_Example.af'} program_ran, outfile = convert.utrecht(**options) self.assertTrue(program_ran) self.assertEqual(os.path.realpath(outfile), os.path.join(WD, 'measurements.txt')) meas_df = cb.MagicDataFrame(outfile) self.assertIn('sequence', meas_df.df.columns)
bsd-3-clause
nkmk/python-snippets
notebook/pandas_to_csv.py
1
1404
import pandas as pd df = pd.read_csv('data/src/sample_pandas_normal.csv', index_col=0) print(df) # age state point # name # Alice 24 NY 64 # Bob 42 CA 92 # Charlie 18 CA 70 # Dave 68 TX 70 # Ellen 24 CA 88 # Frank 30 NY 57 df.to_csv('data/dst/to_csv_out.csv') df.to_csv('data/dst/to_csv_out_columns.csv', columns=['age']) df.to_csv('data/dst/to_csv_out_header_index.csv', header=False, index=False) df.to_csv('data/dst/to_csv_out.tsv', sep='\t') df.to_csv('data/dst/to_csv_out_a.csv') df.to_csv('data/dst/to_csv_out_a.csv', mode='a', header=False) df.to_csv('data/dst/to_csv_out_a_new_column.csv') df = pd.read_csv('data/dst/to_csv_out_a_new_column.csv', index_col=0) print(df) # age state point # name # Alice 24 NY 64 # Bob 42 CA 92 # Charlie 18 CA 70 # Dave 68 TX 70 # Ellen 24 CA 88 # Frank 30 NY 57 df['new_col'] = 'new data' print(df) # age state point new_col # name # Alice 24 NY 64 new data # Bob 42 CA 92 new data # Charlie 18 CA 70 new data # Dave 68 TX 70 new data # Ellen 24 CA 88 new data # Frank 30 NY 57 new data df.to_csv('data/dst/to_csv_out_a_new_column.csv')
mit
Gaia3D/QGIS
python/plugins/processing/algs/qgis/RasterLayerHistogram.py
1
3248
# -*- coding: utf-8 -*- """ *************************************************************************** RasterLayerHistogram.py --------------------- Date : January 2013 Copyright : (C) 2013 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'January 2013' __copyright__ = '(C) 2013, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import matplotlib.pyplot as plt import matplotlib.pylab as lab from PyQt4.QtCore import QVariant from qgis.core import QgsField from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterNumber from processing.core.parameters import ParameterRaster from processing.core.outputs import OutputTable from processing.core.outputs import OutputHTML from processing.tools import dataobjects from processing.tools import raster class RasterLayerHistogram(GeoAlgorithm): INPUT = 'INPUT' PLOT = 'PLOT' TABLE = 'TABLE' BINS = 'BINS' def defineCharacteristics(self): self.name = 'Raster layer histogram' self.group = 'Graphics' self.addParameter(ParameterRaster(self.INPUT, self.tr('Input layer'))) self.addParameter(ParameterNumber(self.BINS, self.tr('Number of bins'), 2, None, 10)) self.addOutput(OutputHTML(self.PLOT, self.tr('Output plot'))) self.addOutput(OutputTable(self.TABLE, self.tr('Output table'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT)) nbins = self.getParameterValue(self.BINS) outputplot = self.getOutputValue(self.PLOT) outputtable = self.getOutputFromName(self.TABLE) values = raster.scanraster(layer, progress) # ALERT: this is potentially blocking if the layer is too big plt.close() valueslist = [] for v in values: if v is not None: valueslist.append(v) (n, bins, values) = plt.hist(valueslist, nbins) fields = [QgsField('CENTER_VALUE', QVariant.Double), QgsField('NUM_ELEM', QVariant.Double)] writer = outputtable.getTableWriter(fields) for i in xrange(len(values)): writer.addRecord([str(bins[i]) + '-' + str(bins[i + 1]), n[i]]) plotFilename = outputplot + '.png' lab.savefig(plotFilename) f = open(outputplot, 'w') f.write('<html><img src="' + plotFilename + '"/></html>') f.close()
gpl-2.0
OpenDataAnalytics/etl
recon_to_xyzv_parq.py
1
1700
#!/usr/bin/env python # -*- coding: utf-8 -*- # Imports from skimage import io import pandas as pd import fastparquet as fp import numpy as np import os import tempfile def readTiff(filename): """Read data from the tiff file and return a Pandas dataframe""" filenamePrefix = os.path.splitext(os.path.basename(filename))[0] im = io.imread(filename) # Reshape 3D to one giant 1D imgdata1d = im.reshape(im.shape[0] * im.shape[1] * im.shape[2]) dataSize = im.shape[0] * im.shape[1] * im.shape[2] sliceSize = im.shape[2] * im.shape[1] data = { 'x': [(i % im.shape[2]) for i in range(0, dataSize)], 'y': [(i / im.shape[2] % im.shape[1]) for i in range(0, dataSize)], 'z': [int(i / sliceSize) for i in range(0, dataSize)], 'value': imgdata1d.astype(np.int32), } # Convert to Pandas dataframe df = pd.DataFrame(data) return df def writeParquet(inputFilename, df): """Export Pandas dataframe as Parquet""" filenamePrefix = os.path.splitext(os.path.basename(inputFilename))[0] outFilepath = os.path.join(tempfile.gettempdir(), ''.join([filenamePrefix, '.parq'])) fp.write(outFilepath, df, compression='GZIP') print outFilepath return outFilepath if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Script to convert data in tiff format to Parquet format') parser.add_argument('--tiff', dest='filename', help='input tiff file') args = parser.parse_args() # Read TIFF file and convert it into a Pandas dataframe df = readTiff(args.filename) # Export dataframe as parquet outFilepath = writeParquet(args.filename, df)
apache-2.0
Alex2114/Deb-3df
redeem/BedCompensation.py
2
7939
""" Author: Elias Bakken email: elias(dot)bakken(at)gmail(dot)com Website: http://www.thing-printer.com License: GNU GPL v3: http://www.gnu.org/copyleft/gpl.html Redeem is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Redeem is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Redeem. If not, see <http://www.gnu.org/licenses/>. """ import numpy as np import copy class BedCompensation: @staticmethod def create_rotation_matrix(probe_points, probe_heights): probe_points = copy.deepcopy(probe_points) """ http://math.stackexchange.com/a/476311 """ if len(probe_points) == 3: P0 = np.array([probe_points[0]["X"]/1000.0, probe_points[0]["Y"]/1000.0, probe_heights[0]/1000.0]) P1 = np.array([probe_points[1]["X"]/1000.0, probe_points[1]["Y"]/1000.0, probe_heights[1]/1000.0]) P2 = np.array([probe_points[2]["X"]/1000.0, probe_points[2]["Y"]/1000.0, probe_heights[2]/1000.0]) else: # Add Z (height) to the probe points for k, v in enumerate(probe_points): probe_points[k]["X"] /= 1000.0 probe_points[k]["Y"] /= 1000.0 probe_points[k]["Z"] = probe_heights[k]/1000.0 (P0, P1, P2) = BedCompensation.create_plane_from_points(probe_points) # calculate the bed normal vector P10 = BedCompensation.normalize(P0-P1) P21 = BedCompensation.normalize(P2-P1) bed_normal = BedCompensation.normalize(np.cross(P10, P21)) # calculate a normal vector in world space in the same direction as the bed normal ideal_normal = np.array([0.0, 0.0, np.sign(bed_normal[2])]) # calculate the rotation matrix that will align the ideal normal # with the bed normal v = np.cross(bed_normal, ideal_normal) c = np.dot(bed_normal, ideal_normal) s = np.linalg.norm(v) ssc = np.array([[0.0, -v[2], v[1]], [v[2], 0.0, -v[0]], [-v[1], v[0], 0.0]]) R = np.eye(3) + ssc + (ssc**2)*(1.0 - c)/(s**2) # check if the rotation matrix is valid, if not then return identity matrix if np.all(np.isfinite(R)): return R #TODO: This makes no sense, it should be R, not R/4 return R*0.25 + np.eye(3)*0.75 else: return np.eye(3) @staticmethod def normalize(vec): return vec/np.linalg.norm(vec) @staticmethod def create_plane_from_points(points): """ This method uses linear regression (least squares) to fit a plane to a set of data points. This is useful if the number of probe points is > 3. The plane is then used to sample three new points. """ x = [] y = [] z = [] for p in points: x.append(p["X"]) y.append(p["Y"]) z.append(p["Z"]) A = np.column_stack((np.ones(len(x)), x, y)) # Solve for a least squares estimate (coeffs, residuals, rank, sing_vals) = np.linalg.lstsq(A, z) X = np.linspace(min(x), max(x), 3) Y = np.linspace(min(y), max(y), 3) X, Y = np.meshgrid(X, Y) Z = coeffs[0]+coeffs[1]*X + coeffs[2]*Y # Resample the probe points based on the least squares plane found. P0 = np.array([min(x), min(y), coeffs[0]+coeffs[1]*min(x)+coeffs[2]*min(y)]) P1 = np.array([min(x), max(y), coeffs[0]+coeffs[1]*min(x)+coeffs[2]*max(y)]) P2 = np.array([(max(x)-min(x))/2.0, max(y), coeffs[0]+coeffs[1]*(max(x)-min(x))/2.0+coeffs[2]*max(y)]) return (P0, P1, P2) if __name__ == "__main__": import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import json points = [{"Y": 0.0, "X": 65.0, "Z": -1.6499999999999995}, {"Y": 32.5, "X": 56.29, "Z": -1.0625}, {"Y": 56.29, "X": 32.5, "Z": -0.56249999999999967}, {"Y": 65.0, "X": 0.0, "Z": -0.40000000000000019}, {"Y": 56.29, "X": -32.5, "Z": -0.67500000000000027}, {"Y": 32.5, "X": -56.29, "Z": -1.1875000000000002}, {"Y": 0.0, "X": -65.0, "Z": -1.7499999999999998}, {"Y": -32.5, "X": -56.29, "Z": -2.1624999999999996}, {"Y": -56.29, "X": -32.5, "Z": -2.4250000000000003}, {"Y": -65.0, "X": -0.0, "Z": -2.4375000000000004}, {"Y": -56.29, "X": 32.5, "Z": -2.3374999999999995}, {"Y": -32.5, "X": 56.29, "Z": -2.0999999999999996}, {"Y": 0.0, "X": 32.5, "Z": -1.5624999999999996}, {"Y": 16.25, "X": 28.15, "Z": -1.2624999999999997}, {"Y": 28.15, "X": 16.25, "Z": -1.0375000000000003}, {"Y": 32.5, "X": 0.0, "Z": -0.9750000000000002}, {"Y": 28.15, "X": -16.25, "Z": -1.0874999999999999}, {"Y": 16.25, "X": -28.15, "Z": -1.3499999999999996}, {"Y": 0.0, "X": -32.5, "Z": -1.6624999999999999}, {"Y": -16.25, "X": -28.15, "Z": -1.9249999999999996}, {"Y": -28.15, "X": -16.25, "Z": -2.0625}, {"Y": -32.5, "X": -0.0, "Z": -2.087499999999999}, {"Y": -28.15, "X": 16.25, "Z": -2.0}, {"Y": -16.25, "X": 28.15, "Z": -1.8250000000000002}, {"Y": 0.0, "X": 0.0, "Z": -1.575}] fixed = [{"Y": 0.0, "X": 65.0, "Z": -1.7000000000000002}, {"Y": 32.5, "X": 56.29, "Z": -1.6249999999999998}, {"Y": 56.29, "X": 32.5, "Z": -1.4749999999999996}, {"Y": 65.0, "X": 0.0, "Z": -1.425}, {"Y": 56.29, "X": -32.5, "Z": -1.5374999999999999}, {"Y": 32.5, "X": -56.29, "Z": -1.6375000000000002}, {"Y": 0.0, "X": -65.0, "Z": -1.6874999999999998}, {"Y": -32.5, "X": -56.29, "Z": -1.5624999999999996}, {"Y": -56.29, "X": -32.5, "Z": -1.4999999999999996}, {"Y": -65.0, "X": -0.0, "Z": -1.3749999999999996}, {"Y": -56.29, "X": 32.5, "Z": -1.45}, {"Y": -32.5, "X": 56.29, "Z": -1.6249999999999998}, {"Y": 0.0, "X": 32.5, "Z": -1.575}, {"Y": 16.25, "X": 28.15, "Z": -1.5249999999999995}, {"Y": 28.15, "X": 16.25, "Z": -1.4749999999999996}, {"Y": 32.5, "X": 0.0, "Z": -1.45}, {"Y": 28.15, "X": -16.25, "Z": -1.4749999999999996}, {"Y": 16.25, "X": -28.15, "Z": -1.5374999999999999}, {"Y": 0.0, "X": -32.5, "Z": -1.5874999999999995}, {"Y": -16.25, "X": -28.15, "Z": -1.5999999999999999}, {"Y": -28.15, "X": -16.25, "Z": -1.575}, {"Y": -32.5, "X": -0.0, "Z": -1.5500000000000003}, {"Y": -28.15, "X": 16.25, "Z": -1.5374999999999999}, {"Y": -16.25, "X": 28.15, "Z": -1.5624999999999996}, {"Y": 0.0, "X": 0.0, "Z": -1.5500000000000003}] add = points[-1]["Z"] x1, y1, z1 = map(list, zip(*map(lambda d: tuple(np.array([d['X'], d['Y'], d['Z']])), points))) x3, y3, z3 = map(list, zip(*map(lambda d: tuple(np.array([d['X'], d['Y'], d['Z']])), fixed))) z = map(lambda d: d['Z'], points) Rn = BedCompensation.create_rotation_matrix(points, z) x2, y2, z2 = map(list, zip(*map(lambda d: tuple(np.array([d['X'], d['Y'], add ]).dot(Rn)), points ))) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(x1, y1, z1, linestyle="none", marker="o", mfc="none", markeredgecolor="red") ax.plot(x2, y2, z2, linestyle="none", marker=".", mfc="none", markeredgecolor="green") ax.plot(x3, y3, z3, linestyle="none", marker="o", mfc="none", markeredgecolor="blue") ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') print "Level bed max diff before: "+str(max(z1)-min(z1))+" after: "+str(max(z3)-min(z3)) print "var matrix = "+json.dumps(Rn.tolist())+";" probe = {"x": x1, "y": y1, "z": z1} print "var probe = "+json.dumps(probe)+";" fixed = {"x": x3, "y": y3, "z": z3} print "var fixed = "+json.dumps(fixed)+";" plt.show()
gpl-3.0
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/ipython-2.2.0-py2.7.egg/IPython/core/usage.py
7
23187
# -*- coding: utf-8 -*- """Usage information for the main IPython applications. """ #----------------------------------------------------------------------------- # Copyright (C) 2008-2011 The IPython Development Team # Copyright (C) 2001-2007 Fernando Perez. <[email protected]> # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- import sys from IPython.core import release cl_usage = """\ ========= IPython ========= Tools for Interactive Computing in Python ========================================= A Python shell with automatic history (input and output), dynamic object introspection, easier configuration, command completion, access to the system shell and more. IPython can also be embedded in running programs. Usage ipython [subcommand] [options] [-c cmd | -m mod | file] [--] [arg] ... If invoked with no options, it executes the file and exits, passing the remaining arguments to the script, just as if you had specified the same command with python. You may need to specify `--` before args to be passed to the script, to prevent IPython from attempting to parse them. If you specify the option `-i` before the filename, it will enter an interactive IPython session after running the script, rather than exiting. Files ending in .py will be treated as normal Python, but files ending in .ipy can contain special IPython syntax (magic commands, shell expansions, etc.). Almost all configuration in IPython is available via the command-line. Do `ipython --help-all` to see all available options. For persistent configuration, look into your `ipython_config.py` configuration file for details. This file is typically installed in the `IPYTHONDIR` directory, and there is a separate configuration directory for each profile. The default profile directory will be located in $IPYTHONDIR/profile_default. IPYTHONDIR defaults to to `$HOME/.ipython`. For Windows users, $HOME resolves to C:\\Documents and Settings\\YourUserName in most instances. To initialize a profile with the default configuration file, do:: $> ipython profile create and start editing `IPYTHONDIR/profile_default/ipython_config.py` In IPython's documentation, we will refer to this directory as `IPYTHONDIR`, you can change its default location by creating an environment variable with this name and setting it to the desired path. For more information, see the manual available in HTML and PDF in your installation, or online at http://ipython.org/documentation.html. """ interactive_usage = """ IPython -- An enhanced Interactive Python ========================================= IPython offers a combination of convenient shell features, special commands and a history mechanism for both input (command history) and output (results caching, similar to Mathematica). It is intended to be a fully compatible replacement for the standard Python interpreter, while offering vastly improved functionality and flexibility. At your system command line, type 'ipython -h' to see the command line options available. This document only describes interactive features. MAIN FEATURES ------------- * Access to the standard Python help. As of Python 2.1, a help system is available with access to object docstrings and the Python manuals. Simply type 'help' (no quotes) to access it. * Magic commands: type %magic for information on the magic subsystem. * System command aliases, via the %alias command or the configuration file(s). * Dynamic object information: Typing ?word or word? prints detailed information about an object. If certain strings in the object are too long (docstrings, code, etc.) they get snipped in the center for brevity. Typing ??word or word?? gives access to the full information without snipping long strings. Long strings are sent to the screen through the less pager if longer than the screen, printed otherwise. The ?/?? system gives access to the full source code for any object (if available), shows function prototypes and other useful information. If you just want to see an object's docstring, type '%pdoc object' (without quotes, and without % if you have automagic on). Both %pdoc and ?/?? give you access to documentation even on things which are not explicitely defined. Try for example typing {}.get? or after import os, type os.path.abspath??. The magic functions %pdef, %source and %file operate similarly. * Completion in the local namespace, by typing TAB at the prompt. At any time, hitting tab will complete any available python commands or variable names, and show you a list of the possible completions if there's no unambiguous one. It will also complete filenames in the current directory. This feature requires the readline and rlcomplete modules, so it won't work if your Python lacks readline support (such as under Windows). * Search previous command history in two ways (also requires readline): - Start typing, and then use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through only the history items that match what you've typed so far. If you use Ctrl-p/Ctrl-n at a blank prompt, they just behave like normal arrow keys. - Hit Ctrl-r: opens a search prompt. Begin typing and the system searches your history for lines that match what you've typed so far, completing as much as it can. - %hist: search history by index (this does *not* require readline). * Persistent command history across sessions. * Logging of input with the ability to save and restore a working session. * System escape with !. Typing !ls will run 'ls' in the current directory. * The reload command does a 'deep' reload of a module: changes made to the module since you imported will actually be available without having to exit. * Verbose and colored exception traceback printouts. See the magic xmode and xcolor functions for details (just type %magic). * Input caching system: IPython offers numbered prompts (In/Out) with input and output caching. All input is saved and can be retrieved as variables (besides the usual arrow key recall). The following GLOBAL variables always exist (so don't overwrite them!): _i: stores previous input. _ii: next previous. _iii: next-next previous. _ih : a list of all input _ih[n] is the input from line n. Additionally, global variables named _i<n> are dynamically created (<n> being the prompt counter), such that _i<n> == _ih[<n>] For example, what you typed at prompt 14 is available as _i14 and _ih[14]. You can create macros which contain multiple input lines from this history, for later re-execution, with the %macro function. The history function %hist allows you to see any part of your input history by printing a range of the _i variables. Note that inputs which contain magic functions (%) appear in the history with a prepended comment. This is because they aren't really valid Python code, so you can't exec them. * Output caching system: For output that is returned from actions, a system similar to the input cache exists but using _ instead of _i. Only actions that produce a result (NOT assignments, for example) are cached. If you are familiar with Mathematica, IPython's _ variables behave exactly like Mathematica's % variables. The following GLOBAL variables always exist (so don't overwrite them!): _ (one underscore): previous output. __ (two underscores): next previous. ___ (three underscores): next-next previous. Global variables named _<n> are dynamically created (<n> being the prompt counter), such that the result of output <n> is always available as _<n>. Finally, a global dictionary named _oh exists with entries for all lines which generated output. * Directory history: Your history of visited directories is kept in the global list _dh, and the magic %cd command can be used to go to any entry in that list. * Auto-parentheses and auto-quotes (adapted from Nathan Gray's LazyPython) 1. Auto-parentheses Callable objects (i.e. functions, methods, etc) can be invoked like this (notice the commas between the arguments):: In [1]: callable_ob arg1, arg2, arg3 and the input will be translated to this:: callable_ob(arg1, arg2, arg3) This feature is off by default (in rare cases it can produce undesirable side-effects), but you can activate it at the command-line by starting IPython with `--autocall 1`, set it permanently in your configuration file, or turn on at runtime with `%autocall 1`. You can force auto-parentheses by using '/' as the first character of a line. For example:: In [1]: /globals # becomes 'globals()' Note that the '/' MUST be the first character on the line! This won't work:: In [2]: print /globals # syntax error In most cases the automatic algorithm should work, so you should rarely need to explicitly invoke /. One notable exception is if you are trying to call a function with a list of tuples as arguments (the parenthesis will confuse IPython):: In [1]: zip (1,2,3),(4,5,6) # won't work but this will work:: In [2]: /zip (1,2,3),(4,5,6) ------> zip ((1,2,3),(4,5,6)) Out[2]= [(1, 4), (2, 5), (3, 6)] IPython tells you that it has altered your command line by displaying the new command line preceded by -->. e.g.:: In [18]: callable list -------> callable (list) 2. Auto-Quoting You can force auto-quoting of a function's arguments by using ',' as the first character of a line. For example:: In [1]: ,my_function /home/me # becomes my_function("/home/me") If you use ';' instead, the whole argument is quoted as a single string (while ',' splits on whitespace):: In [2]: ,my_function a b c # becomes my_function("a","b","c") In [3]: ;my_function a b c # becomes my_function("a b c") Note that the ',' MUST be the first character on the line! This won't work:: In [4]: x = ,my_function /home/me # syntax error """ interactive_usage_min = """\ An enhanced console for Python. Some of its features are: - Readline support if the readline library is present. - Tab completion in the local namespace. - Logging of input, see command-line options. - System shell escape via ! , eg !ls. - Magic commands, starting with a % (like %ls, %pwd, %cd, etc.) - Keeps track of locally defined variables via %who, %whos. - Show object information with a ? eg ?x or x? (use ?? for more info). """ quick_reference = r""" IPython -- An enhanced Interactive Python - Quick Reference Card ================================================================ obj?, obj?? : Get help, or more help for object (also works as ?obj, ??obj). ?foo.*abc* : List names in 'foo' containing 'abc' in them. %magic : Information about IPython's 'magic' % functions. Magic functions are prefixed by % or %%, and typically take their arguments without parentheses, quotes or even commas for convenience. Line magics take a single % and cell magics are prefixed with two %%. Example magic function calls: %alias d ls -F : 'd' is now an alias for 'ls -F' alias d ls -F : Works if 'alias' not a python name alist = %alias : Get list of aliases to 'alist' cd /usr/share : Obvious. cd -<tab> to choose from visited dirs. %cd?? : See help AND source for magic %cd %timeit x=10 : time the 'x=10' statement with high precision. %%timeit x=2**100 x**100 : time 'x*100' with a setup of 'x=2**100'; setup code is not counted. This is an example of a cell magic. System commands: !cp a.txt b/ : System command escape, calls os.system() cp a.txt b/ : after %rehashx, most system commands work without ! cp ${f}.txt $bar : Variable expansion in magics and system commands files = !ls /usr : Capture sytem command output files.s, files.l, files.n: "a b c", ['a','b','c'], 'a\nb\nc' History: _i, _ii, _iii : Previous, next previous, next next previous input _i4, _ih[2:5] : Input history line 4, lines 2-4 exec _i81 : Execute input history line #81 again %rep 81 : Edit input history line #81 _, __, ___ : previous, next previous, next next previous output _dh : Directory history _oh : Output history %hist : Command history. '%hist -g foo' search history for 'foo' Autocall: f 1,2 : f(1,2) # Off by default, enable with %autocall magic. /f 1,2 : f(1,2) (forced autoparen) ,f 1 2 : f("1","2") ;f 1 2 : f("1 2") Remember: TAB completion works in many contexts, not just file names or python names. The following magic functions are currently available: """ gui_reference = """\ =============================== The graphical IPython console =============================== This console is designed to emulate the look, feel and workflow of a terminal environment, while adding a number of enhancements that are simply not possible in a real terminal, such as inline syntax highlighting, true multiline editing, inline graphics and much more. This quick reference document contains the basic information you'll need to know to make the most efficient use of it. For the various command line options available at startup, type ``ipython qtconsole --help`` at the command line. Multiline editing ================= The graphical console is capable of true multiline editing, but it also tries to behave intuitively like a terminal when possible. If you are used to IPython's old terminal behavior, you should find the transition painless, and once you learn a few basic keybindings it will be a much more efficient environment. For single expressions or indented blocks, the console behaves almost like the terminal IPython: single expressions are immediately evaluated, and indented blocks are evaluated once a single blank line is entered:: In [1]: print "Hello IPython!" # Enter was pressed at the end of the line Hello IPython! In [2]: for i in range(10): ...: print i, ...: 0 1 2 3 4 5 6 7 8 9 If you want to enter more than one expression in a single input block (something not possible in the terminal), you can use ``Control-Enter`` at the end of your first line instead of ``Enter``. At that point the console goes into 'cell mode' and even if your inputs are not indented, it will continue accepting arbitrarily many lines until either you enter an extra blank line or you hit ``Shift-Enter`` (the key binding that forces execution). When a multiline cell is entered, IPython analyzes it and executes its code producing an ``Out[n]`` prompt only for the last expression in it, while the rest of the cell is executed as if it was a script. An example should clarify this:: In [3]: x=1 # Hit C-Enter here ...: y=2 # from now on, regular Enter is sufficient ...: z=3 ...: x**2 # This does *not* produce an Out[] value ...: x+y+z # Only the last expression does ...: Out[3]: 6 The behavior where an extra blank line forces execution is only active if you are actually typing at the keyboard each line, and is meant to make it mimic the IPython terminal behavior. If you paste a long chunk of input (for example a long script copied form an editor or web browser), it can contain arbitrarily many intermediate blank lines and they won't cause any problems. As always, you can then make it execute by appending a blank line *at the end* or hitting ``Shift-Enter`` anywhere within the cell. With the up arrow key, you can retrieve previous blocks of input that contain multiple lines. You can move inside of a multiline cell like you would in any text editor. When you want it executed, the simplest thing to do is to hit the force execution key, ``Shift-Enter`` (though you can also navigate to the end and append a blank line by using ``Enter`` twice). If you've edited a multiline cell and accidentally navigate out of it with the up or down arrow keys, IPython will clear the cell and replace it with the contents of the one above or below that you navigated to. If this was an accident and you want to retrieve the cell you were editing, use the Undo keybinding, ``Control-z``. Key bindings ============ The IPython console supports most of the basic Emacs line-oriented keybindings, in addition to some of its own. The keybinding prefixes mean: - ``C``: Control - ``S``: Shift - ``M``: Meta (typically the Alt key) The keybindings themselves are: - ``Enter``: insert new line (may cause execution, see above). - ``C-Enter``: *force* new line, *never* causes execution. - ``S-Enter``: *force* execution regardless of where cursor is, no newline added. - ``Up``: step backwards through the history. - ``Down``: step forwards through the history. - ``S-Up``: search backwards through the history (like ``C-r`` in bash). - ``S-Down``: search forwards through the history. - ``C-c``: copy highlighted text to clipboard (prompts are automatically stripped). - ``C-S-c``: copy highlighted text to clipboard (prompts are not stripped). - ``C-v``: paste text from clipboard. - ``C-z``: undo (retrieves lost text if you move out of a cell with the arrows). - ``C-S-z``: redo. - ``C-o``: move to 'other' area, between pager and terminal. - ``C-l``: clear terminal. - ``C-a``: go to beginning of line. - ``C-e``: go to end of line. - ``C-u``: kill from cursor to the begining of the line. - ``C-k``: kill from cursor to the end of the line. - ``C-y``: yank (paste) - ``C-p``: previous line (like up arrow) - ``C-n``: next line (like down arrow) - ``C-f``: forward (like right arrow) - ``C-b``: back (like left arrow) - ``C-d``: delete next character, or exits if input is empty - ``M-<``: move to the beginning of the input region. - ``M->``: move to the end of the input region. - ``M-d``: delete next word. - ``M-Backspace``: delete previous word. - ``C-.``: force a kernel restart (a confirmation dialog appears). - ``C-+``: increase font size. - ``C--``: decrease font size. - ``C-M-Space``: toggle full screen. (Command-Control-Space on Mac OS X) The IPython pager ================= IPython will show long blocks of text from many sources using a builtin pager. You can control where this pager appears with the ``--paging`` command-line flag: - ``inside`` [default]: the pager is overlaid on top of the main terminal. You must quit the pager to get back to the terminal (similar to how a pager such as ``less`` or ``more`` works). - ``vsplit``: the console is made double-tall, and the pager appears on the bottom area when needed. You can view its contents while using the terminal. - ``hsplit``: the console is made double-wide, and the pager appears on the right area when needed. You can view its contents while using the terminal. - ``none``: the console never pages output. If you use the vertical or horizontal paging modes, you can navigate between terminal and pager as follows: - Tab key: goes from pager to terminal (but not the other way around). - Control-o: goes from one to another always. - Mouse: click on either. In all cases, the ``q`` or ``Escape`` keys quit the pager (when used with the focus on the pager area). Running subprocesses ==================== The graphical IPython console uses the ``pexpect`` module to run subprocesses when you type ``!command``. This has a number of advantages (true asynchronous output from subprocesses as well as very robust termination of rogue subprocesses with ``Control-C``), as well as some limitations. The main limitation is that you can *not* interact back with the subprocess, so anything that invokes a pager or expects you to type input into it will block and hang (you can kill it with ``Control-C``). We have provided as magics ``%less`` to page files (aliased to ``%more``), ``%clear`` to clear the terminal, and ``%man`` on Linux/OSX. These cover the most common commands you'd want to call in your subshell and that would cause problems if invoked via ``!cmd``, but you need to be aware of this limitation. Display ======= The IPython console can now display objects in a variety of formats, including HTML, PNG and SVG. This is accomplished using the display functions in ``IPython.core.display``:: In [4]: from IPython.core.display import display, display_html In [5]: from IPython.core.display import display_png, display_svg Python objects can simply be passed to these functions and the appropriate representations will be displayed in the console as long as the objects know how to compute those representations. The easiest way of teaching objects how to format themselves in various representations is to define special methods such as: ``_repr_html_``, ``_repr_svg_`` and ``_repr_png_``. IPython's display formatters can also be given custom formatter functions for various types:: In [6]: ip = get_ipython() In [7]: html_formatter = ip.display_formatter.formatters['text/html'] In [8]: html_formatter.for_type(Foo, foo_to_html) For further details, see ``IPython.core.formatters``. Inline matplotlib graphics ========================== The IPython console is capable of displaying matplotlib figures inline, in SVG or PNG format. If started with the ``matplotlib=inline``, then all figures are rendered inline automatically (PNG by default). If started with ``--matplotlib`` or ``matplotlib=<your backend>``, then a GUI backend will be used, but IPython's ``display()`` and ``getfigs()`` functions can be used to view plots inline:: In [9]: display(*getfigs()) # display all figures inline In[10]: display(*getfigs(1,2)) # display figures 1 and 2 inline """ quick_guide = """\ ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. """ gui_note = """\ %guiref -> A brief reference about the graphical user interface. """ default_banner_parts = [ 'Python %s\n' % (sys.version.split('\n')[0],), 'Type "copyright", "credits" or "license" for more information.\n\n', 'IPython {version} -- An enhanced Interactive Python.\n'.format( version=release.version, ), quick_guide ] default_gui_banner_parts = default_banner_parts + [gui_note] default_banner = ''.join(default_banner_parts) default_gui_banner = ''.join(default_gui_banner_parts) # page GUI Reference, for use as a magic: def page_guiref(arg_s=None): """Show a basic reference about the GUI Console.""" from IPython.core import page page.page(gui_reference, auto_html=True)
apache-2.0
ltiao/scikit-learn
sklearn/manifold/setup.py
99
1243
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
glorizen/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/ticker.py
69
37420
""" Tick locating and formatting ============================ This module contains classes to support completely configurable tick locating and formatting. Although the locators know nothing about major or minor ticks, they are used by the Axis class to support major and minor tick locating and formatting. Generic tick locators and formatters are provided, as well as domain specific custom ones.. Tick locating ------------- The Locator class is the base class for all tick locators. The locators handle autoscaling of the view limits based on the data limits, and the choosing of tick locations. A useful semi-automatic tick locator is MultipleLocator. You initialize this with a base, eg 10, and it picks axis limits and ticks that are multiples of your base. The Locator subclasses defined here are :class:`NullLocator` No ticks :class:`FixedLocator` Tick locations are fixed :class:`IndexLocator` locator for index plots (eg. where x = range(len(y))) :class:`LinearLocator` evenly spaced ticks from min to max :class:`LogLocator` logarithmically ticks from min to max :class:`MultipleLocator` ticks and range are a multiple of base; either integer or float :class:`OldAutoLocator` choose a MultipleLocator and dyamically reassign it for intelligent ticking during navigation :class:`MaxNLocator` finds up to a max number of ticks at nice locations :class:`AutoLocator` :class:`MaxNLocator` with simple defaults. This is the default tick locator for most plotting. There are a number of locators specialized for date locations - see the dates module You can define your own locator by deriving from Locator. You must override the __call__ method, which returns a sequence of locations, and you will probably want to override the autoscale method to set the view limits from the data limits. If you want to override the default locator, use one of the above or a custom locator and pass it to the x or y axis instance. The relevant methods are:: ax.xaxis.set_major_locator( xmajorLocator ) ax.xaxis.set_minor_locator( xminorLocator ) ax.yaxis.set_major_locator( ymajorLocator ) ax.yaxis.set_minor_locator( yminorLocator ) The default minor locator is the NullLocator, eg no minor ticks on by default. Tick formatting --------------- Tick formatting is controlled by classes derived from Formatter. The formatter operates on a single tick value and returns a string to the axis. :class:`NullFormatter` no labels on the ticks :class:`FixedFormatter` set the strings manually for the labels :class:`FuncFormatter` user defined function sets the labels :class:`FormatStrFormatter` use a sprintf format string :class:`ScalarFormatter` default formatter for scalars; autopick the fmt string :class:`LogFormatter` formatter for log axes You can derive your own formatter from the Formatter base class by simply overriding the ``__call__`` method. The formatter class has access to the axis view and data limits. To control the major and minor tick label formats, use one of the following methods:: ax.xaxis.set_major_formatter( xmajorFormatter ) ax.xaxis.set_minor_formatter( xminorFormatter ) ax.yaxis.set_major_formatter( ymajorFormatter ) ax.yaxis.set_minor_formatter( yminorFormatter ) See :ref:`pylab_examples-major_minor_demo1` for an example of setting major an minor ticks. See the :mod:`matplotlib.dates` module for more information and examples of using date locators and formatters. """ from __future__ import division import math import numpy as np from matplotlib import rcParams from matplotlib import cbook from matplotlib import transforms as mtransforms class TickHelper: axis = None class DummyAxis: def __init__(self): self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() def get_view_interval(self): return self.viewLim.intervalx def set_view_interval(self, vmin, vmax): self.viewLim.intervalx = vmin, vmax def get_data_interval(self): return self.dataLim.intervalx def set_data_interval(self, vmin, vmax): self.dataLim.intervalx = vmin, vmax def set_axis(self, axis): self.axis = axis def create_dummy_axis(self): if self.axis is None: self.axis = self.DummyAxis() def set_view_interval(self, vmin, vmax): self.axis.set_view_interval(vmin, vmax) def set_data_interval(self, vmin, vmax): self.axis.set_data_interval(vmin, vmax) def set_bounds(self, vmin, vmax): self.set_view_interval(vmin, vmax) self.set_data_interval(vmin, vmax) class Formatter(TickHelper): """ Convert the tick location to a string """ # some classes want to see all the locs to help format # individual ones locs = [] def __call__(self, x, pos=None): 'Return the format for tick val x at position pos; pos=None indicated unspecified' raise NotImplementedError('Derived must overide') def format_data(self,value): return self.__call__(value) def format_data_short(self,value): 'return a short string version' return self.format_data(value) def get_offset(self): return '' def set_locs(self, locs): self.locs = locs def fix_minus(self, s): """ some classes may want to replace a hyphen for minus with the proper unicode symbol as described `here <http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720>`_. The default is to do nothing Note, if you use this method, eg in :meth`format_data` or call, you probably don't want to use it for :meth:`format_data_short` since the toolbar uses this for interative coord reporting and I doubt we can expect GUIs across platforms will handle the unicode correctly. So for now the classes that override :meth:`fix_minus` should have an explicit :meth:`format_data_short` method """ return s class NullFormatter(Formatter): 'Always return the empty string' def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' return '' class FixedFormatter(Formatter): 'Return fixed strings for tick labels' def __init__(self, seq): """ seq is a sequence of strings. For positions `i<len(seq)` return *seq[i]* regardless of *x*. Otherwise return '' """ self.seq = seq self.offset_string = '' def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' if pos is None or pos>=len(self.seq): return '' else: return self.seq[pos] def get_offset(self): return self.offset_string def set_offset_string(self, ofs): self.offset_string = ofs class FuncFormatter(Formatter): """ User defined function for formatting """ def __init__(self, func): self.func = func def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' return self.func(x, pos) class FormatStrFormatter(Formatter): """ Use a format string to format the tick """ def __init__(self, fmt): self.fmt = fmt def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' return self.fmt % x class OldScalarFormatter(Formatter): """ Tick location is a plain old number. """ def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' xmin, xmax = self.axis.get_view_interval() d = abs(xmax - xmin) return self.pprint_val(x,d) def pprint_val(self, x, d): #if the number is not too big and it's an int, format it as an #int if abs(x)<1e4 and x==int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10 : fmt = '%1.1f' elif d > 1 : fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x #print d, x, fmt, s tup = s.split('e') if len(tup)==2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' %(mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s class ScalarFormatter(Formatter): """ Tick location is a plain old number. If useOffset==True and the data range is much smaller than the data average, then an offset will be determined such that the tick labels are meaningful. Scientific notation is used for data < 1e-3 or data >= 1e4. """ def __init__(self, useOffset=True, useMathText=False): # useOffset allows plotting small data ranges with large offsets: # for example: [1+1e-9,1+2e-9,1+3e-9] # useMathText will render the offset and scientific notation in mathtext self._useOffset = useOffset self._usetex = rcParams['text.usetex'] self._useMathText = useMathText self.offset = 0 self.orderOfMagnitude = 0 self.format = '' self._scientific = True self._powerlimits = rcParams['axes.formatter.limits'] def fix_minus(self, s): 'use a unicode minus rather than hyphen' if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']: return s else: return s.replace('-', u'\u2212') def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' if len(self.locs)==0: return '' else: s = self.pprint_val(x) return self.fix_minus(s) def set_scientific(self, b): '''True or False to turn scientific notation on or off see also :meth:`set_powerlimits` ''' self._scientific = bool(b) def set_powerlimits(self, lims): ''' Sets size thresholds for scientific notation. e.g. ``xaxis.set_powerlimits((-3, 4))`` sets the pre-2007 default in which scientific notation is used for numbers less than 1e-3 or greater than 1e4. See also :meth:`set_scientific`. ''' assert len(lims) == 2, "argument must be a sequence of length 2" self._powerlimits = lims def format_data_short(self,value): 'return a short formatted string representation of a number' return '%1.3g'%value def format_data(self,value): 'return a formatted string representation of a number' s = self._formatSciNotation('%1.10e'% value) return self.fix_minus(s) def get_offset(self): """Return scientific notation, plus offset""" if len(self.locs)==0: return '' s = '' if self.orderOfMagnitude or self.offset: offsetStr = '' sciNotStr = '' if self.offset: offsetStr = self.format_data(self.offset) if self.offset > 0: offsetStr = '+' + offsetStr if self.orderOfMagnitude: if self._usetex or self._useMathText: sciNotStr = self.format_data(10**self.orderOfMagnitude) else: sciNotStr = '1e%d'% self.orderOfMagnitude if self._useMathText: if sciNotStr != '': sciNotStr = r'\times\mathdefault{%s}' % sciNotStr s = ''.join(('$',sciNotStr,r'\mathdefault{',offsetStr,'}$')) elif self._usetex: if sciNotStr != '': sciNotStr = r'\times%s' % sciNotStr s = ''.join(('$',sciNotStr,offsetStr,'$')) else: s = ''.join((sciNotStr,offsetStr)) return self.fix_minus(s) def set_locs(self, locs): 'set the locations of the ticks' self.locs = locs if len(self.locs) > 0: vmin, vmax = self.axis.get_view_interval() d = abs(vmax-vmin) if self._useOffset: self._set_offset(d) self._set_orderOfMagnitude(d) self._set_format() def _set_offset(self, range): # offset of 20,001 is 20,000, for example locs = self.locs if locs is None or not len(locs) or range == 0: self.offset = 0 return ave_loc = np.mean(locs) if ave_loc: # dont want to take log10(0) ave_oom = math.floor(math.log10(np.mean(np.absolute(locs)))) range_oom = math.floor(math.log10(range)) if np.absolute(ave_oom-range_oom) >= 3: # four sig-figs if ave_loc < 0: self.offset = math.ceil(np.max(locs)/10**range_oom)*10**range_oom else: self.offset = math.floor(np.min(locs)/10**(range_oom))*10**(range_oom) else: self.offset = 0 def _set_orderOfMagnitude(self,range): # if scientific notation is to be used, find the appropriate exponent # if using an numerical offset, find the exponent after applying the offset if not self._scientific: self.orderOfMagnitude = 0 return locs = np.absolute(self.locs) if self.offset: oom = math.floor(math.log10(range)) else: if locs[0] > locs[-1]: val = locs[0] else: val = locs[-1] if val == 0: oom = 0 else: oom = math.floor(math.log10(val)) if oom <= self._powerlimits[0]: self.orderOfMagnitude = oom elif oom >= self._powerlimits[1]: self.orderOfMagnitude = oom else: self.orderOfMagnitude = 0 def _set_format(self): # set the format string to format all the ticklabels # The floating point black magic (adding 1e-15 and formatting # to 8 digits) may warrant review and cleanup. locs = (np.asarray(self.locs)-self.offset) / 10**self.orderOfMagnitude+1e-15 sigfigs = [len(str('%1.8f'% loc).split('.')[1].rstrip('0')) \ for loc in locs] sigfigs.sort() self.format = '%1.' + str(sigfigs[-1]) + 'f' if self._usetex: self.format = '$%s$' % self.format elif self._useMathText: self.format = '$\mathdefault{%s}$' % self.format def pprint_val(self, x): xp = (x-self.offset)/10**self.orderOfMagnitude if np.absolute(xp) < 1e-8: xp = 0 return self.format % xp def _formatSciNotation(self, s): # transform 1e+004 into 1e4, for example tup = s.split('e') try: significand = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') if self._useMathText or self._usetex: if significand == '1': # reformat 1x10^y as 10^y significand = '' if exponent: exponent = '10^{%s%s}'%(sign, exponent) if significand and exponent: return r'%s{\times}%s'%(significand, exponent) else: return r'%s%s'%(significand, exponent) else: s = ('%se%s%s' %(significand, sign, exponent)).rstrip('e') return s except IndexError, msg: return s class LogFormatter(Formatter): """ Format values for log axis; if attribute *decadeOnly* is True, only the decades will be labelled. """ def __init__(self, base=10.0, labelOnlyBase = True): """ *base* is used to locate the decade tick, which will be the only one to be labeled if *labelOnlyBase* is ``False`` """ self._base = base+0.0 self.labelOnlyBase=labelOnlyBase self.decadeOnly = True def base(self,base): 'change the *base* for labeling - warning: should always match the base used for :class:`LogLocator`' self._base=base def label_minor(self,labelOnlyBase): 'switch on/off minor ticks labeling' self.labelOnlyBase=labelOnlyBase def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' vmin, vmax = self.axis.get_view_interval() d = abs(vmax - vmin) b=self._base if x == 0.0: return '0' sign = np.sign(x) # only label the decades fx = math.log(abs(x))/math.log(b) isDecade = self.is_decade(fx) if not isDecade and self.labelOnlyBase: s = '' elif x>10000: s= '%1.0e'%x elif x<1: s = '%1.0e'%x else : s = self.pprint_val(x,d) if sign == -1: s = '-%s' % s return self.fix_minus(s) def format_data(self,value): self.labelOnlyBase = False value = cbook.strip_math(self.__call__(value)) self.labelOnlyBase = True return value def format_data_short(self,value): 'return a short formatted string representation of a number' return '%1.3g'%value def is_decade(self, x): n = self.nearest_long(x) return abs(x-n)<1e-10 def nearest_long(self, x): if x==0: return 0L elif x>0: return long(x+0.5) else: return long(x-0.5) def pprint_val(self, x, d): #if the number is not too big and it's an int, format it as an #int if abs(x)<1e4 and x==int(x): return '%d' % x if d < 1e-2: fmt = '%1.3e' elif d < 1e-1: fmt = '%1.3f' elif d > 1e5: fmt = '%1.1e' elif d > 10 : fmt = '%1.1f' elif d > 1 : fmt = '%1.2f' else: fmt = '%1.3f' s = fmt % x #print d, x, fmt, s tup = s.split('e') if len(tup)==2: mantissa = tup[0].rstrip('0').rstrip('.') sign = tup[1][0].replace('+', '') exponent = tup[1][1:].lstrip('0') s = '%se%s%s' %(mantissa, sign, exponent) else: s = s.rstrip('0').rstrip('.') return s class LogFormatterExponent(LogFormatter): """ Format values for log axis; using ``exponent = log_base(value)`` """ def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) d = abs(vmax-vmin) b=self._base if x == 0: return '0' sign = np.sign(x) # only label the decades fx = math.log(abs(x))/math.log(b) isDecade = self.is_decade(fx) if not isDecade and self.labelOnlyBase: s = '' #if 0: pass elif fx>10000: s= '%1.0e'%fx #elif x<1: s = '$10^{%d}$'%fx #elif x<1: s = '10^%d'%fx elif fx<1: s = '%1.0e'%fx else : s = self.pprint_val(fx,d) if sign == -1: s = '-%s' % s return self.fix_minus(s) class LogFormatterMathtext(LogFormatter): """ Format values for log axis; using ``exponent = log_base(value)`` """ def __call__(self, x, pos=None): 'Return the format for tick val *x* at position *pos*' b = self._base # only label the decades if x == 0: return '$0$' sign = np.sign(x) fx = math.log(abs(x))/math.log(b) isDecade = self.is_decade(fx) usetex = rcParams['text.usetex'] if sign == -1: sign_string = '-' else: sign_string = '' if not isDecade and self.labelOnlyBase: s = '' elif not isDecade: if usetex: s = r'$%s%d^{%.2f}$'% (sign_string, b, fx) else: s = '$\mathdefault{%s%d^{%.2f}}$'% (sign_string, b, fx) else: if usetex: s = r'$%s%d^{%d}$'% (sign_string, b, self.nearest_long(fx)) else: s = r'$\mathdefault{%s%d^{%d}}$'% (sign_string, b, self.nearest_long(fx)) return s class Locator(TickHelper): """ Determine the tick locations; Note, you should not use the same locator between different :class:`~matplotlib.axis.Axis` because the locator stores references to the Axis data and view limits """ def __call__(self): 'Return the locations of the ticks' raise NotImplementedError('Derived must override') def view_limits(self, vmin, vmax): """ select a scale for the range from vmin to vmax Normally This will be overridden. """ return mtransforms.nonsingular(vmin, vmax) def autoscale(self): 'autoscale the view limits' return self.view_limits(*self.axis.get_view_interval()) def pan(self, numsteps): 'Pan numticks (can be positive or negative)' ticks = self() numticks = len(ticks) vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) if numticks>2: step = numsteps*abs(ticks[0]-ticks[1]) else: d = abs(vmax-vmin) step = numsteps*d/6. vmin += step vmax += step self.axis.set_view_interval(vmin, vmax, ignore=True) def zoom(self, direction): "Zoom in/out on axis; if direction is >0 zoom in, else zoom out" vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) interval = abs(vmax-vmin) step = 0.1*interval*direction self.axis.set_view_interval(vmin + step, vmax - step, ignore=True) def refresh(self): 'refresh internal information based on current lim' pass class IndexLocator(Locator): """ Place a tick on every multiple of some base number of points plotted, eg on every 5th point. It is assumed that you are doing index plotting; ie the axis is 0, len(data). This is mainly useful for x ticks. """ def __init__(self, base, offset): 'place ticks on the i-th data points where (i-offset)%base==0' self._base = base self.offset = offset def __call__(self): 'Return the locations of the ticks' dmin, dmax = self.axis.get_data_interval() return np.arange(dmin + self.offset, dmax+1, self._base) class FixedLocator(Locator): """ Tick locations are fixed. If nbins is not None, the array of possible positions will be subsampled to keep the number of ticks <= nbins +1. """ def __init__(self, locs, nbins=None): self.locs = locs self.nbins = nbins if self.nbins is not None: self.nbins = max(self.nbins, 2) def __call__(self): 'Return the locations of the ticks' if self.nbins is None: return self.locs step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1) return self.locs[::step] class NullLocator(Locator): """ No ticks """ def __call__(self): 'Return the locations of the ticks' return [] class LinearLocator(Locator): """ Determine the tick locations The first time this function is called it will try to set the number of ticks to make a nice tick partitioning. Thereafter the number of ticks will be fixed so that interactive navigation will be nice """ def __init__(self, numticks = None, presets=None): """ Use presets to set locs based on lom. A dict mapping vmin, vmax->locs """ self.numticks = numticks if presets is None: self.presets = {} else: self.presets = presets def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) if vmax<vmin: vmin, vmax = vmax, vmin if (vmin, vmax) in self.presets: return self.presets[(vmin, vmax)] if self.numticks is None: self._set_numticks() if self.numticks==0: return [] ticklocs = np.linspace(vmin, vmax, self.numticks) return ticklocs def _set_numticks(self): self.numticks = 11 # todo; be smart here; this is just for dev def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' if vmax<vmin: vmin, vmax = vmax, vmin if vmin==vmax: vmin-=1 vmax+=1 exponent, remainder = divmod(math.log10(vmax - vmin), 1) if remainder < 0.5: exponent -= 1 scale = 10**(-exponent) vmin = math.floor(scale*vmin)/scale vmax = math.ceil(scale*vmax)/scale return mtransforms.nonsingular(vmin, vmax) def closeto(x,y): if abs(x-y)<1e-10: return True else: return False class Base: 'this solution has some hacks to deal with floating point inaccuracies' def __init__(self, base): assert(base>0) self._base = base def lt(self, x): 'return the largest multiple of base < x' d,m = divmod(x, self._base) if closeto(m,0) and not closeto(m/self._base,1): return (d-1)*self._base return d*self._base def le(self, x): 'return the largest multiple of base <= x' d,m = divmod(x, self._base) if closeto(m/self._base,1): # was closeto(m, self._base) #looks like floating point error return (d+1)*self._base return d*self._base def gt(self, x): 'return the smallest multiple of base > x' d,m = divmod(x, self._base) if closeto(m/self._base,1): #looks like floating point error return (d+2)*self._base return (d+1)*self._base def ge(self, x): 'return the smallest multiple of base >= x' d,m = divmod(x, self._base) if closeto(m,0) and not closeto(m/self._base,1): return d*self._base return (d+1)*self._base def get_base(self): return self._base class MultipleLocator(Locator): """ Set a tick on every integer that is multiple of base in the view interval """ def __init__(self, base=1.0): self._base = Base(base) def __call__(self): 'Return the locations of the ticks' vmin, vmax = self.axis.get_view_interval() if vmax<vmin: vmin, vmax = vmax, vmin vmin = self._base.ge(vmin) base = self._base.get_base() n = (vmax - vmin + 0.001*base)//base locs = vmin + np.arange(n+1) * base return locs def view_limits(self, dmin, dmax): """ Set the view limits to the nearest multiples of base that contain the data """ vmin = self._base.le(dmin) vmax = self._base.ge(dmax) if vmin==vmax: vmin -=1 vmax +=1 return mtransforms.nonsingular(vmin, vmax) def scale_range(vmin, vmax, n = 1, threshold=100): dv = abs(vmax - vmin) maxabsv = max(abs(vmin), abs(vmax)) if maxabsv == 0 or dv/maxabsv < 1e-12: return 1.0, 0.0 meanv = 0.5*(vmax+vmin) if abs(meanv)/dv < threshold: offset = 0 elif meanv > 0: ex = divmod(math.log10(meanv), 1)[0] offset = 10**ex else: ex = divmod(math.log10(-meanv), 1)[0] offset = -10**ex ex = divmod(math.log10(dv/n), 1)[0] scale = 10**ex return scale, offset class MaxNLocator(Locator): """ Select no more than N intervals at nice locations. """ def __init__(self, nbins = 10, steps = None, trim = True, integer=False, symmetric=False): self._nbins = int(nbins) self._trim = trim self._integer = integer self._symmetric = symmetric if steps is None: self._steps = [1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10] else: if int(steps[-1]) != 10: steps = list(steps) steps.append(10) self._steps = steps if integer: self._steps = [n for n in self._steps if divmod(n,1)[1] < 0.001] def bin_boundaries(self, vmin, vmax): nbins = self._nbins scale, offset = scale_range(vmin, vmax, nbins) if self._integer: scale = max(1, scale) vmin -= offset vmax -= offset raw_step = (vmax-vmin)/nbins scaled_raw_step = raw_step/scale for step in self._steps: if step < scaled_raw_step: continue step *= scale best_vmin = step*divmod(vmin, step)[0] best_vmax = best_vmin + step*nbins if (best_vmax >= vmax): break if self._trim: extra_bins = int(divmod((best_vmax - vmax), step)[0]) nbins -= extra_bins return (np.arange(nbins+1) * step + best_vmin + offset) def __call__(self): vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) return self.bin_boundaries(vmin, vmax) def view_limits(self, dmin, dmax): if self._symmetric: maxabs = max(abs(dmin), abs(dmax)) dmin = -maxabs dmax = maxabs dmin, dmax = mtransforms.nonsingular(dmin, dmax, expander = 0.05) return np.take(self.bin_boundaries(dmin, dmax), [0,-1]) def decade_down(x, base=10): 'floor x to the nearest lower decade' lx = math.floor(math.log(x)/math.log(base)) return base**lx def decade_up(x, base=10): 'ceil x to the nearest higher decade' lx = math.ceil(math.log(x)/math.log(base)) return base**lx def is_decade(x,base=10): lx = math.log(x)/math.log(base) return lx==int(lx) class LogLocator(Locator): """ Determine the tick locations for log axes """ def __init__(self, base=10.0, subs=[1.0]): """ place ticks on the location= base**i*subs[j] """ self.base(base) self.subs(subs) self.numticks = 15 def base(self,base): """ set the base of the log scaling (major tick every base**i, i interger) """ self._base=base+0.0 def subs(self,subs): """ set the minor ticks the log scaling every base**i*subs[j] """ if subs is None: self._subs = None # autosub else: self._subs = np.asarray(subs)+0.0 def _set_numticks(self): self.numticks = 15 # todo; be smart here; this is just for dev def __call__(self): 'Return the locations of the ticks' b=self._base vmin, vmax = self.axis.get_view_interval() if vmin <= 0.0: vmin = self.axis.get_minpos() if vmin <= 0.0: raise ValueError( "Data has no positive values, and therefore can not be log-scaled.") vmin = math.log(vmin)/math.log(b) vmax = math.log(vmax)/math.log(b) if vmax<vmin: vmin, vmax = vmax, vmin numdec = math.floor(vmax)-math.ceil(vmin) if self._subs is None: # autosub if numdec>10: subs = np.array([1.0]) elif numdec>6: subs = np.arange(2.0, b, 2.0) else: subs = np.arange(2.0, b) else: subs = self._subs stride = 1 while numdec/stride+1 > self.numticks: stride += 1 decades = np.arange(math.floor(vmin), math.ceil(vmax)+stride, stride) if len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0): ticklocs = [] for decadeStart in b**decades: ticklocs.extend( subs*decadeStart ) else: ticklocs = b**decades return np.array(ticklocs) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' if vmax<vmin: vmin, vmax = vmax, vmin minpos = self.axis.get_minpos() if minpos<=0: raise ValueError( "Data has no positive values, and therefore can not be log-scaled.") if vmin <= minpos: vmin = minpos if not is_decade(vmin,self._base): vmin = decade_down(vmin,self._base) if not is_decade(vmax,self._base): vmax = decade_up(vmax,self._base) if vmin==vmax: vmin = decade_down(vmin,self._base) vmax = decade_up(vmax,self._base) result = mtransforms.nonsingular(vmin, vmax) return result class SymmetricalLogLocator(Locator): """ Determine the tick locations for log axes """ def __init__(self, transform, subs=[1.0]): """ place ticks on the location= base**i*subs[j] """ self._transform = transform self._subs = subs self.numticks = 15 def _set_numticks(self): self.numticks = 15 # todo; be smart here; this is just for dev def __call__(self): 'Return the locations of the ticks' b = self._transform.base vmin, vmax = self.axis.get_view_interval() vmin, vmax = self._transform.transform((vmin, vmax)) if vmax<vmin: vmin, vmax = vmax, vmin numdec = math.floor(vmax)-math.ceil(vmin) if self._subs is None: if numdec>10: subs = np.array([1.0]) elif numdec>6: subs = np.arange(2.0, b, 2.0) else: subs = np.arange(2.0, b) else: subs = np.asarray(self._subs) stride = 1 while numdec/stride+1 > self.numticks: stride += 1 decades = np.arange(math.floor(vmin), math.ceil(vmax)+stride, stride) if len(subs) > 1 or subs[0] != 1.0: ticklocs = [] for decade in decades: ticklocs.extend(subs * (np.sign(decade) * b ** np.abs(decade))) else: ticklocs = np.sign(decades) * b ** np.abs(decades) return np.array(ticklocs) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' b = self._transform.base if vmax<vmin: vmin, vmax = vmax, vmin if not is_decade(abs(vmin), b): if vmin < 0: vmin = -decade_up(-vmin, b) else: vmin = decade_down(vmin, b) if not is_decade(abs(vmax), b): if vmax < 0: vmax = -decade_down(-vmax, b) else: vmax = decade_up(vmax, b) if vmin == vmax: if vmin < 0: vmin = -decade_up(-vmin, b) vmax = -decade_down(-vmax, b) else: vmin = decade_down(vmin, b) vmax = decade_up(vmax, b) result = mtransforms.nonsingular(vmin, vmax) return result class AutoLocator(MaxNLocator): def __init__(self): MaxNLocator.__init__(self, nbins=9, steps=[1, 2, 5, 10]) class OldAutoLocator(Locator): """ On autoscale this class picks the best MultipleLocator to set the view limits and the tick locs. """ def __init__(self): self._locator = LinearLocator() def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator() def refresh(self): 'refresh internal information based on current lim' vmin, vmax = self.axis.get_view_interval() vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05) d = abs(vmax-vmin) self._locator = self.get_locator(d) def view_limits(self, vmin, vmax): 'Try to choose the view limits intelligently' d = abs(vmax-vmin) self._locator = self.get_locator(d) return self._locator.view_limits(vmin, vmax) def get_locator(self, d): 'pick the best locator based on a distance' d = abs(d) if d<=0: locator = MultipleLocator(0.2) else: try: ld = math.log10(d) except OverflowError: raise RuntimeError('AutoLocator illegal data interval range') fld = math.floor(ld) base = 10**fld #if ld==fld: base = 10**(fld-1) #else: base = 10**fld if d >= 5*base : ticksize = base elif d >= 2*base : ticksize = base/2.0 else : ticksize = base/5.0 locator = MultipleLocator(ticksize) return locator __all__ = ('TickHelper', 'Formatter', 'FixedFormatter', 'NullFormatter', 'FuncFormatter', 'FormatStrFormatter', 'ScalarFormatter', 'LogFormatter', 'LogFormatterExponent', 'LogFormatterMathtext', 'Locator', 'IndexLocator', 'FixedLocator', 'NullLocator', 'LinearLocator', 'LogLocator', 'AutoLocator', 'MultipleLocator', 'MaxNLocator', )
agpl-3.0
rrohan/scikit-learn
examples/missing_values.py
233
3056
""" ====================================================== Imputing missing values before building an estimator ====================================================== This example shows that imputing the missing values can give better results than discarding the samples containing any missing value. Imputing does not always improve the predictions, so please check via cross-validation. Sometimes dropping rows or using marker values is more effective. Missing values can be replaced by the mean, the median or the most frequent value using the ``strategy`` hyper-parameter. The median is a more robust estimator for data with high magnitude variables which could dominate results (otherwise known as a 'long tail'). Script output:: Score with the entire dataset = 0.56 Score without the samples containing missing values = 0.48 Score after imputation of the missing values = 0.55 In this case, imputing helps the classifier get close to the original score. """ import numpy as np from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer from sklearn.cross_validation import cross_val_score rng = np.random.RandomState(0) dataset = load_boston() X_full, y_full = dataset.data, dataset.target n_samples = X_full.shape[0] n_features = X_full.shape[1] # Estimate the score on the entire dataset, with no missing values estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_full, y_full).mean() print("Score with the entire dataset = %.2f" % score) # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = np.floor(n_samples * missing_rate) missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples, dtype=np.bool), np.ones(n_missing_samples, dtype=np.bool))) rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) # Estimate the score without the lines containing missing values X_filtered = X_full[~missing_samples, :] y_filtered = y_full[~missing_samples] estimator = RandomForestRegressor(random_state=0, n_estimators=100) score = cross_val_score(estimator, X_filtered, y_filtered).mean() print("Score without the samples containing missing values = %.2f" % score) # Estimate the score after imputation of the missing values X_missing = X_full.copy() X_missing[np.where(missing_samples)[0], missing_features] = 0 y_missing = y_full.copy() estimator = Pipeline([("imputer", Imputer(missing_values=0, strategy="mean", axis=0)), ("forest", RandomForestRegressor(random_state=0, n_estimators=100))]) score = cross_val_score(estimator, X_missing, y_missing).mean() print("Score after imputation of the missing values = %.2f" % score)
bsd-3-clause
mayblue9/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
murven/malmo
Malmo/samples/Python_examples/render_speed_test.py
3
8837
# ------------------------------------------------------------------------------------------------ # Copyright (c) 2016 Microsoft Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT # NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ------------------------------------------------------------------------------------------------ # Tests overclocking the render speed by running a very simple task at a series of different frame sizes. import MalmoPython import os import random import sys import time import json import errno from timeit import default_timer as timer def GetMissionXML( width, height, prioritiseOffscreen ): return '''<?xml version="1.0" encoding="UTF-8" ?> <Mission xmlns="http://ProjectMalmo.microsoft.com" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <About> <Summary>Let's run! Size: ''' + width + ''' x ''' + height + '''</Summary> </About> <ModSettings> <PrioritiseOffscreenRendering>''' + prioritiseOffscreen + '''</PrioritiseOffscreenRendering> </ModSettings> <ServerSection> <ServerInitialConditions> <AllowSpawning>false</AllowSpawning> <Time> <StartTime>1000</StartTime> <AllowPassageOfTime>false</AllowPassageOfTime> </Time> <Weather>clear</Weather> </ServerInitialConditions> <ServerHandlers> <FlatWorldGenerator generatorString="3;7,220*1,5*3,121;3;biome_1" /> <DrawingDecorator> <DrawCuboid x1="0" y1="226" z1="0" x2="0" y2="226" z2="1000" type="stone" variant="smooth_granite"/> <DrawBlock x="0" y="226" z="130" type="emerald_block"/> </DrawingDecorator> <ServerQuitFromTimeUp timeLimitMs="''' + str(MISSION_LENGTH * 1000) + '''"/> <ServerQuitWhenAnyAgentFinishes /> </ServerHandlers> </ServerSection> <AgentSection mode="Survival"> <Name>Picasso</Name> <AgentStart> <Placement x="0.5" y="227.0" z="0.5"/> </AgentStart> <AgentHandlers> <ContinuousMovementCommands turnSpeedDegs="240"/> <ObservationFromDistance> <Marker name="Start" x="0.5" y="227.0" z="0.5"/> </ObservationFromDistance> <AgentQuitFromTouchingBlockType> <Block type="redstone_block" /> </AgentQuitFromTouchingBlockType> <VideoProducer> <Width>''' + width + '''</Width> <Height>''' + height + '''</Height> </VideoProducer> </AgentHandlers> </AgentSection> </Mission>''' sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # flush print output immediately agent_host = MalmoPython.AgentHost() try: agent_host.parse( sys.argv ) except RuntimeError as e: print 'ERROR:',e print agent_host.getUsage() exit(1) if agent_host.receivedArgument("help"): print agent_host.getUsage() exit(0) if agent_host.receivedArgument("test"): MISSION_LENGTH=5 SHOW_PLOT=False else: MISSION_LENGTH=10 SHOW_PLOT=True if SHOW_PLOT: import matplotlib import numpy import pylab validate = True sizes = [(1920,1200), (1280, 920), (1024,768), (860,480), (640,256), (400,400), (400,300), (432,240), (320,240), (256,256), (224,144), (84,84), (80,80), (80,60)] num_pixels=[] fps_offscreen=[] fps_onscreen=[] datarate_offscreen=[] datarate_onscreen=[] agent_host.setObservationsPolicy(MalmoPython.ObservationsPolicy.LATEST_OBSERVATION_ONLY) recordingsDirectory="Render_Speed_Test_Recordings" try: os.makedirs(recordingsDirectory) except OSError as exception: if exception.errno != errno.EEXIST: # ignore error if already existed raise print "WELCOME TO THE RENDER SPEED TEST" print "================================" print "This will run the same simple mission with " + str(len(sizes)) + " different frame sizes." for iRepeat in range(len(sizes) * 2): prioritiseOffscreen = "true" if iRepeat % 2 else "false" width,height = sizes[iRepeat/2] if iRepeat % 2: num_pixels.append(width*height) my_mission = MalmoPython.MissionSpec(GetMissionXML(str(width), str(height), prioritiseOffscreen), validate) # Set up a recording - MUST be done once for each mission - don't do this outside the loop! my_mission_record = MalmoPython.MissionRecordSpec(recordingsDirectory + "//RenderSpeed_Test" + str(iRepeat) + ".tgz"); my_mission_record.recordRewards() my_mission_record.recordObservations() my_mission_record.recordMP4(120,1200000) # Attempt to record at 120fps max_retries = 3 for retry in range(max_retries): try: agent_host.startMission( my_mission, my_mission_record ) break except RuntimeError as e: if retry == max_retries - 1: print "Error starting mission:",e exit(1) else: time.sleep(2) world_state = agent_host.getWorldState() while not world_state.is_mission_running: time.sleep(0.1) world_state = agent_host.getWorldState() if len(world_state.errors): print for error in world_state.errors: print "Error:",error.text exit() print # main loop: agent_host.sendCommand("move 1") # just go forwards, max speed. numFrames=0 start = timer() while world_state.is_mission_running: world_state = agent_host.getWorldState() if world_state.number_of_video_frames_since_last_state > 0: numFrames = numFrames + world_state.number_of_video_frames_since_last_state end = timer() missionTimeMs = (end - start) * 1000 dataShifted = (width * height * 3 * numFrames) / (1024*1024) averagefps = numFrames * 1000 / missionTimeMs datarate = dataShifted * 1000 / missionTimeMs print "===============================================================================================" print "Result of test " + str(iRepeat + 1) + ":" print "===============================================================================================" print "Frame size: " + str(width) + " x " + str(height) print "Prioritising offscreen rendering: " + prioritiseOffscreen print "Frames received: " + str(numFrames) print "Average fps: " + "{0:.2f}".format(averagefps) print "Frame data transferred: " + "{0:.2f}".format(dataShifted) + "MB" print "Data transfer rate: " + "{0:.2f}".format(datarate) + "MB/s" print "===============================================================================================" print if iRepeat % 2: fps_offscreen.append(averagefps) datarate_offscreen.append(datarate) else: fps_onscreen.append(averagefps) datarate_onscreen.append(datarate) time.sleep(0.5) # Give mod a little time to get back to dormant state. if SHOW_PLOT: # Now plot some graphs: plot_fpsoff = pylab.plot(num_pixels, fps_offscreen, 'r', label='render speed (no onscreen updates)') plot_fpson = pylab.plot(num_pixels, fps_onscreen, 'g', label='render speed (with onscreen updates)') plot_dataoff = pylab.plot(num_pixels, datarate_offscreen, 'b', label='data transfer speed (no onscreen updates)') plot_dataon = pylab.plot(num_pixels, datarate_onscreen, 'y', label='data transfer speed (with onscreen updates)') pylab.xlabel("Frame size (pixels)") pylab.ylabel("MB/s or frames/s") pylab.legend() pylab.title("Plot of render and data-transfer speeds for varying frame sizes, with and without onscreen rendering") pylab.show()
mit
shusenl/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
Amndeep7/DrexelCSDepartmentAnalysisTool
pie.py
1
2446
from matplotlib.pylab import figure, axes, pie, title, savefig, clf import argparse import csv import sys #To run from command line # python pie.py CSV_FileName Name_Of_Grade Minimum_Threshold Maximum_Threshold def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument('results') parser.add_argument('grade_column') parser.add_argument('lower_threshold', type=float) parser.add_argument('higher_threshold', type=float) return parser.parse_args() # Read CSV to define dictionaries for total students and students that met the threshold within each major def read_csv(filename): total_students = dict() met_students = dict() with open(filename, newline='', encoding='utf-8') as csvfile: inputcsv = csv.DictReader(csvfile) for row in inputcsv: total_students[row['Major']] = int(row['Total Students']) met_students[row['Major']] = int(row['Met Threshold']) return total_students, met_students def create_piecharts(grade, total_students, met_students, min_threshold, max_threshold): for major, total in total_students.items(): # Make a square figure and axes figure(1, figsize=(6,6)) ax = axes([0.1, 0.1, 0.8, 0.8]) # The slices will be ordered and plotted counter-clockwise. labels = 'Met threshold', 'Did not meet threshold' fracs = [met_students[major]/total, (total-met_students[major])/total] # Pop the slice of the pie out for emphasis explode=(0.1, 0) pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) title('%s Students Between %s-%s for Assignment %s' % (major, min_threshold, max_threshold, grade), bbox={'facecolor':'0.8', 'pad':5}) # Save the figure as a png savefig("piechart_%s_%s_%s-%s.png" % (grade, major, min_threshold, max_threshold), bbox_inches="tight") clf() def main(): #System arguments should be as follows # sys.argv[1] = Filename of CSV generated from range.py # sys.argv[2] = Name of Grade # sys.argv[3] = Minimum Threshold value # sys.argv[4] = Maximum Threshold value args = get_arguments() total_students, met_students = read_csv(args.results) create_piecharts(args.grade_column, total_students, met_students, args.lower_threshold, args.higher_threshold) if __name__ == "__main__": main()
mit
RhysU/suzerain
postproc/plot_stats.py
1
15061
#!/usr/bin/env python """Usage: plot_stats.py HDF5FILE Plot wall-normal profiles averaged over (X,Z) directions from HDF5FILE. Options: -f --file_ext Output file extension. Default is 'eps'. -h --help This help message. --plot_all Generate secondary 'debug' type of plots. """ # TODO: Add ability to plot things other than bar_rho. import sys import getopt import h5py import numpy as np import gb import matplotlib matplotlib.use('Agg') from matplotlib import pyplot from scipy.interpolate import interp1d def plot(hdf5file, fileext, ifile, plot_all): print "Plotting", hdf5file # Load a stats file f = h5py.File(hdf5file,'r') # Grab number of collocation points and B-spline order Ny=f['Ny'].value[0] k=f['k'].value[0] # Grab collocation points y = f['collocation_points_y'].value # Grab number of species Ns=f['antioch_constitutive_data'].attrs['Ns'][0] # Grab species names sname= np.chararray(Ns, itemsize=5) for s in xrange(0,Ns): sname[s]=f['antioch_constitutive_data'].attrs['Species_'+str(s)] # Get "mass" matrix and convert to dense format D0T_gb = f['Dy0T'].value D0T = gb.gb2ge(D0T_gb, Ny, k-2) # Get "mass" matrix and convert to dense format D1T_gb = f['Dy1T'].value D1T = gb.gb2ge(D1T_gb, Ny, k-2) # Get "mass" matrix and convert to dense format D2T_gb = f['Dy2T'].value D2T = gb.gb2ge(D2T_gb, Ny, k-2) # Grab rho coefficients rho_coeff = f['bar_rho'].value rho_coeff = np.array(rho_coeff).reshape(Ny,1) # Grab rho_u coefficients rho_u_coeff = f['bar_rho_u'].value rho_u_coeff = np.array(rho_u_coeff).transpose().reshape(Ny,3) # Grab rho_E coefficients rho_E_coeff = f['bar_rho_E'].value rho_E_coeff = np.array(rho_E_coeff).reshape(Ny,1) # Grab T coefficients T_coeff = f['bar_T'].value T_coeff = np.array(T_coeff).reshape(Ny,1) # Grab T coefficients T_T_coeff = f['bar_T_T'].value T_T_coeff = np.array(T_T_coeff).reshape(Ny,1) # Grab rho_u_u coefficients rho_u_u_coeff = f['bar_rho_u_u'].value rho_u_u_coeff = np.array(rho_u_u_coeff).transpose().reshape(Ny,6) # Grab rho_s coefficients rho_s_coeff = f['bar_rho_s'].value rho_s_coeff = np.array(rho_s_coeff).transpose().reshape(Ny,Ns) # Grab reaction rate coefficients om_s_coeff = f['bar_om_s'].value om_s_coeff = np.array(om_s_coeff).transpose().reshape(Ny,Ns) # Grab p coefficients p_coeff = f['bar_p'].value p_coeff = np.array(p_coeff).reshape(Ny,1) # Grab a coefficients a_coeff = f['bar_a'].value a_coeff = np.array(a_coeff).reshape(Ny,1) # Grid delta y, colocation points dy = np.diff(y) dy = np.append(dy,dy[Ny-2]) dy = np.array(dy).reshape(Ny,1) # Grab mu coefficients mu_coeff = f['bar_mu'].value mu_coeff = np.array(mu_coeff).reshape(Ny,1) # Grab nu coefficients nu_coeff = f['bar_nu'].value nu_coeff = np.array(nu_coeff).reshape(Ny,1) # Grab breakpoints yb = f['breakpoints_y'].value # Grid delta y, breakpoints dyb = np.diff(yb) dyb = np.append(dyb,dyb[Ny-6]) dyb = np.array(dyb).reshape(Ny-4,1) # load baseflow coefficients base_rho = None base_rho_u = None base_rho_v = None base_rho_w = None base_rho_E = None base_p = None if "largo_baseflow" in f: if f['largo_baseflow'].attrs['coefficient_base'] == 'polynomial': baseflow_coeff = f['largo_baseflow'].value # print 'baseflow coefficients loaded' npoly = baseflow_coeff.shape[1] base_rho = np.zeros((Ny,1)) base_rho_u = np.zeros((Ny,1)) base_rho_v = np.zeros((Ny,1)) base_rho_w = np.zeros((Ny,1)) base_rho_E = np.zeros((Ny,1)) base_p = np.zeros((Ny,1)) for i in xrange(0,npoly): for j in xrange(0, Ny): y_power_i = np.power(y[j,],i) base_rho [j,0] += y_power_i * baseflow_coeff[0,i] base_rho_u[j,0] += y_power_i * baseflow_coeff[1,i] base_rho_v[j,0] += y_power_i * baseflow_coeff[2,i] base_rho_w[j,0] += y_power_i * baseflow_coeff[3,i] base_rho_E[j,0] += y_power_i * baseflow_coeff[4,i] base_p [j,0] += y_power_i * baseflow_coeff[5,i] #else: # skip loading # print 'baseflow coefficients not polynomial' # Done getting data f.close() D0 = D0T.transpose() D1 = D1T.transpose() D2 = D2T.transpose() # Coefficients -> Collocation points rho_col = D0*rho_coeff rho_u_col = D0*rho_u_coeff rho_E_col = D0*rho_E_coeff T_col = D0*T_coeff T_T_col = D0*T_T_coeff rho_u_u_col = D0*rho_u_u_coeff rho_s_col = D0*rho_s_coeff om_s_col = D0*om_s_coeff mu_col = D0*mu_coeff nu_col = D0*nu_coeff p_col = D0*p_coeff a_col = D0*a_coeff rho_E_col_y = D1*rho_E_coeff rho_E_col_yy = D2*rho_E_coeff p_col_y = D1*p_coeff p_col_yy = D2*p_coeff rho_col_y = D1*rho_coeff rho_col_yy = D2*rho_coeff # Computed quantities # - Favre averages fav_u = np.array(rho_u_col[:,0]/rho_col[:,0]).reshape(Ny,1) fav_v = np.array(rho_u_col[:,1]/rho_col[:,0]).reshape(Ny,1) fav_w = np.array(rho_u_col[:,2]/rho_col[:,0]).reshape(Ny,1) fav_H = np.array((rho_E_col[:,0] + p_col[:,0])/rho_col[:,0]).reshape(Ny,1) if (plot_all): # d(d(\fav{H})/dy)/dy rho_col_2 = np.multiply(rho_col [:,0], rho_col [:,0]).reshape(Ny,1) rho_col_3 = np.multiply(rho_col_2[:,0], rho_col [:,0]).reshape(Ny,1) rho_col_y2 = np.multiply(rho_col_y[:,0], rho_col_y[:,0]).reshape(Ny,1) fav_H_yy = np.array ((rho_E_col_yy[:,0] + p_col_yy[:,0])/rho_col [:,0] ).reshape(Ny,1) fav_H_yy -= 2.*np.multiply((rho_E_col_y [:,0] + p_col_y [:,0])/rho_col_2[:,0], rho_col_y [:,0]).reshape(Ny,1) fav_H_yy -= np.multiply((rho_E_col [:,0] + p_col [:,0])/rho_col_2[:,0], rho_col_yy[:,0]).reshape(Ny,1) fav_H_yy += 2.*np.multiply((rho_E_col [:,0] + p_col [:,0])/rho_col_3[:,0], rho_col_y2[:,0]).reshape(Ny,1) # - Bar rho_upp # rho_upp = np.array(np.ravel(rho_col) * np.ravel(fav_u)).reshape(Ny,1) rho_upp = rho_u_col[:,0] - np.array(np.ravel(rho_col) * np.ravel(fav_u)).reshape(Ny,1) rho_vpp = rho_u_col[:,1] - np.array(np.ravel(rho_col) * np.ravel(fav_v)).reshape(Ny,1) rho_wpp = rho_u_col[:,2] - np.array(np.ravel(rho_col) * np.ravel(fav_w)).reshape(Ny,1) # - Reynolds stresses R_u_u_col = rho_u_u_col[:,0] - np.multiply(np.multiply(rho_u_col[:,0], rho_u_col[:,0]).reshape(Ny,1), 1/rho_col[:,0]) R_u_u_col += 2.0 * np.array(np.ravel(rho_upp) * np.ravel(fav_u)).reshape(Ny,1) R_u_v_col = rho_u_u_col[:,1] - np.multiply(np.multiply(rho_u_col[:,0], rho_u_col[:,1]).reshape(Ny,1), 1/rho_col[:,0]) R_u_v_col += np.array(np.ravel(rho_upp) * np.ravel(fav_v)).reshape(Ny,1) + np.array(np.ravel(rho_vpp) * np.ravel(fav_u)).reshape(Ny,1) R_v_v_col = rho_u_u_col[:,3] - np.multiply(np.multiply(rho_u_col[:,1], rho_u_col[:,1]).reshape(Ny,1), 1/rho_col[:,0]) R_v_v_col += 2.0 * np.array(np.ravel(rho_vpp) * np.ravel(fav_v)).reshape(Ny,1) R_w_w_col = rho_u_u_col[:,5] - np.multiply(np.multiply(rho_u_col[:,2], rho_u_col[:,2]).reshape(Ny,1), 1/rho_col[:,0]) R_w_w_col += 2.0 * np.array(np.ravel(rho_wpp) * np.ravel(fav_w)).reshape(Ny,1) # - Viscous ts nub = np.interp(yb,y,np.ravel(nu_col)) nub = np.array(nub).reshape(Ny-4,1) inv_nub = 1/nub dssqr_over_2nu = np.multiply(dyb[:,0], dyb[:,0]).reshape(Ny-4,1) dssqr_over_2nu = np.multiply(dssqr_over_2nu[:,0], 1/nub[:,0]).reshape(Ny-4,1) * 0.5 # - Temperature rms Tp_Tp = T_T_col - np.multiply(T_col,T_col).reshape(Ny,1) # Plots figid = 0 figid += 1 pyplot.figure(figid) key = "bar_rho_" + str(ifile) if (ifile == 0 and base_rho is not None): pyplot.plot(y, base_rho[:,0], linewidth=1) pyplot.plot(y, rho_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_rho.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_rho_u" + str(ifile) if (ifile == 0 and base_rho_u is not None): pyplot.plot(y, base_rho_u[:,0], linewidth=1) pyplot.plot(y, rho_u_col[:,0], linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_rho_u.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_rho_v" + str(ifile) if (ifile == 0 and base_rho_v is not None): pyplot.plot(y, base_rho_v[:,0], linewidth=1) pyplot.semilogx(y, rho_u_col[:,1], linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_rho_v.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_rho_w" + str(ifile) if (ifile == 0 and base_rho_w is not None): pyplot.plot(y, base_rho_w[:,0], linewidth=1) pyplot.plot(y, rho_u_col[:,2], linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_rho_w.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_rho_E" + str(ifile) if (ifile == 0 and base_rho_E is not None): pyplot.plot(y, base_rho_E[:,0], linewidth=1) pyplot.plot(y, rho_E_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_rho_E.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_T" + str(ifile) pyplot.semilogx(y, T_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_T.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "sqrt_Tp_Tp" + str(ifile) pyplot.semilogx(y, np.sqrt(Tp_Tp)/T_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('sqrt_Tp_Tp.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_p" + str(ifile) if (ifile == 0 and base_p is not None): pyplot.plot(y, base_p[:,0], linewidth=1) pyplot.semilogx(y, p_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_p.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_a" + str(ifile) pyplot.semilogx(y, a_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_a.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "R_u_u" + str(ifile) pyplot.semilogx(y, R_u_u_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('R_u_u.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "R_u_v" + str(ifile) pyplot.semilogx(y, R_u_v_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('R_u_v.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "R_v_v" + str(ifile) pyplot.semilogx(y, R_v_v_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('R_v_v.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "R_w_w" + str(ifile) pyplot.semilogx(y, R_w_w_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('R_w_w.' + fileext, bbox_inches='tight') for s in xrange(0,Ns): figid += 1 pyplot.figure(figid) key = "rho_" + sname[s] + "_" + str(ifile) pyplot.semilogx(y, rho_s_col[:,s], linewidth=3, label=key) pyplot.legend(loc=0) rho_file = "rho_" + sname[s] + "." + fileext pyplot.savefig(rho_file, bbox_inches='tight') for s in xrange(0,Ns): figid += 1 pyplot.figure(figid) key = "om_" + sname[s] + "_" + str(ifile) pyplot.semilogx(y, om_s_col[:,s], linewidth=3, label=key) pyplot.legend(loc=0) rho_file = "om_" + sname[s] + "." + fileext pyplot.savefig(rho_file, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "dy_collocation" + str(ifile) pyplot.loglog(y, dy, 'o-', linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('dy.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "dy_break" + str(ifile) pyplot.loglog(yb, dyb, 'o-', linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('dyb.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_mu" + str(ifile) pyplot.semilogx(y, mu_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_mu.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "bar_nu" + str(ifile) pyplot.semilogx(y, nu_col, linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('bar_nu.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "dssqr_over_2nu" + str(ifile) pyplot.loglog(yb, dssqr_over_2nu[:,0], linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('dssqr_over_2nu.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "fav_u" + str(ifile) pyplot.plot(y, fav_u[:,0], linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('fav_u.' + fileext, bbox_inches='tight') figid += 1 pyplot.figure(figid) key = "fav_H" + str(ifile) pyplot.plot(y, fav_H[:,0], linewidth=3, label=key) pyplot.legend(loc=0) pyplot.savefig('fav_H.' + fileext, bbox_inches='tight') if (plot_all): figid += 1 pyplot.figure(figid) key = "fav_H_yy" + str(ifile) pyplot.plot(y, fav_H_yy[:,0], linewidth=0.1, label=key) pyplot.axhline(linewidth=0.1, color='r') pyplot.legend(loc=0) pyplot.savefig('fav_H_yy.' + fileext, bbox_inches='tight') def main(argv=None): # Permit interactive use if argv is None: argv = sys.argv # File extension (eps is default) fileext="eps" # Plot all stuff # ... include "debug" type plots one may want to see/declare plot_all = False # Parse and check incoming command line arguments try: try: opts, args = getopt.getopt(argv[1:], "hf:n", ["help", "file_ext=", "plot_all"]) except getopt.error as msg: raise Usage(msg) for o, a in opts: if o in ("-h", "--help"): print __doc__ return 0 if o in ("-f", "--file_ext"): fileext=a if o in ("-f", "--plot_all"): plot_all = True if len(args) < 1: print >>sys.stderr, "Incorrect number of arguments. See --help." return 2 except Usage as err: print >>sys.stderr, err.msg return 2 # Process each file in turn hdf5files = args # Plot multiple files ifile = 0 for hdf5file in hdf5files: plot(hdf5file, fileext, ifile, plot_all) ifile += 1 if __name__ == "__main__": sys.exit(main())
gpl-3.0
madjelan/scikit-learn
sklearn/linear_model/bayes.py
220
15248
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) n_samples, n_features = X.shape ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 ### Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): ### Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, None]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) ### Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) ### Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ self._set_intercept(X_mean, y_mean, X_std) return self ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) ### Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None ### Iterative procedure of ARDRegression for iter_ in range(self.n_iter): ### Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) ### Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 ### Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) ### Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_mean, y_mean, X_std) return self
bsd-3-clause
fmv1992/data_utilities
data_utilities/matplotlib_utilities.py
1
29366
"""Matplotlib utilities for common plotting procedures. All the functions should follow matplotlib, pandas and numpy's guidelines: Pandas: (1) Return a copy of the object; use keyword argument 'inplace' if changing is to be done inplace. Numpy: (1) Use the 'size' or 'shape' interface to determine the size of arrays. This module: (1) Functions should work out of the box whenever possible (for example for creating dataframes). (2) Keyword arguments should be turned off by default. """ import itertools import os import random import warnings from data_utilities.pandas_utilities import object_columns_to_category from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.mplot3d import Axes3D import sklearn.preprocessing import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns # pylama: ignore=W0611,D301 # pylama: ignore=D406,D407 # TODO: add this too def scale_axes_axis(axes, scale_xy_axis=False, scale_z_axis=False): """Set axes to the same scale. Arguments: axes (matplotlib.axes.Axes): input axes to have its axis scaled. scale_xy_axis (bool): True to scale both x and y axis. scale_z_axis (bool): True to scale z axis. Returns: None: axes are scaled inplace. Examples: >>> import matplotlib_utilities as mu >>> from mpl_toolkits.mplot3d import Axes3D >>> from mpl_toolkits.mplot3d.art3d import Path3DCollection >>> x = np.arange(0, 5) >>> y = x.copy() >>> xx, yy = np.meshgrid(x, y) >>> z = xx * yy >>> fig = plt.figure() >>> ax = fig.gca(projection='3d') >>> isinstance(ax.scatter3D(xx, yy, z), Path3DCollection) True >>> mu.scale_axes_axis(ax, scale_xy_axis=True, scale_z_axis=False) >>> fig.tight_layout() >>> fig.savefig('/tmp/doctest_{0}.png'.format('scale_axes_axis'), \ dpi=500) """ if hasattr(axes, 'get_zlim'): dimenesions = 3 else: dimenesions = 2 xlim = tuple(axes.get_xlim3d()) ylim = tuple(axes.get_ylim3d()) zlim = tuple(axes.get_zlim3d()) xmean = np.mean(xlim) ymean = np.mean(ylim) zmean = np.mean(zlim) # Get the maximum absolute difference between the limits in all 3 axis and # the mean of the respective axis. plot_radius = max(abs(lim - mean_) for lims, mean_ in ((xlim, xmean), (ylim, ymean), (zlim, zmean)) for lim in lims) # Set the span of the axis to be 2 * plot radius for all the plots. if scale_xy_axis: axes.set_xlim3d([xmean - plot_radius, xmean + plot_radius]) axes.set_ylim3d([ymean - plot_radius, ymean + plot_radius]) if dimenesions == 3 and scale_z_axis: axes.set_zlim3d([zmean - plot_radius, zmean + plot_radius]) return None def plot_3d(series, colormap_callable=plt.cm.viridis, include_colorbar=False): """Create a 3d-barchart axes for a given 2-level-multi-index series. Return a 3d axes object given a series with a multiindex with 2 categorical levels. Arguments: series (pandas.Series): the 2-level-index series to generate the plot. colormap_callable (matplotlib.colors.ListedColormap): Colormap object generated from a list of colors. include_colorbar (bool): True to include a colorbar. Returns: matplotlib.axes.Axes: the 3d axis object. Examples: >>> import itertools >>> import pandas as pd >>> fig = plt.figure() >>> s_index = pd.MultiIndex.from_tuples( \ tuple(itertools.product(range(6), list('abc'))), \ names=('x1', 'x2')) >>> s = pd.Series(data=np.arange(18), index=s_index) >>> ax = plot_3d(s, include_colorbar=True) >>> fig.tight_layout() >>> fig.savefig('/tmp/{0}.png'.format('plot3d'), dpi=500) """ # Create a copy of the list to avoid changing the original. series = series.copy(deep=True) series.sort_values(inplace=True, ascending=False) # Set constants. # Some groupby objects will produce a dataframe. Not nice going over duck # typing but oh well... # If it is a dataframe with one column then transform it to series. if isinstance(series, pd.DataFrame) and series.shape[1] == 1: series = series.ix[:, 0] # Error handling phase. # Track if index has correct shape. if len(series.index.levshape) != 2: raise ValueError('The index level shape should ' 'be 2 and it is {}.'.format(series.index.levshape)) # Check for duplicate indexes. if series.index.duplicated().sum(): series = series.groupby(level=series.index.names).sum() if series.index.duplicated().sum(): raise ValueError('series has duplicate values.') # Handling the index of the received series. level1_index, level2_index = tuple(zip(*series.index.get_values())) level1_index = sorted(set(level1_index)) level2_index = sorted(set(level2_index)) # Populate the series with all index combinations, even if they are zero. all_index_combinations = tuple(itertools.product( level1_index, level2_index)) index_names = series.index.names new_index = pd.MultiIndex.from_tuples(all_index_combinations, names=index_names) all_values_series = pd.Series(0, index=new_index, name=series.name) series = (series + all_values_series).fillna(0) # Generate the z values z_list = [] for _, group in series.groupby(level=1): z_list.append(group) z_list = np.hstack(z_list).ravel() z = z_list del z_list # Starts manipulating the axes fig = plt.gcf() ax = fig.add_subplot(111, projection='3d') # Create the axis and their labels xlabels = series.index.get_level_values(index_names[0]).unique().tolist() ylabels = series.index.get_level_values(index_names[1]).unique().tolist() xlabels = [''.join(list(filter(str.isalnum, str(value)))) for value in xlabels] ylabels = [''.join(list(filter(str.isalnum, str(value)))) for value in ylabels] x = np.arange(len(xlabels)) y = np.arange(len(ylabels)) xlabels = [z.title() for z in xlabels] ylabels = [z.title() for z in ylabels] # Adjust tick posistions and labels. ax.w_xaxis.set_ticks(x + 0.5/2.) ax.w_yaxis.set_ticks(y + 0.5/2.) ax.w_yaxis.set_ticklabels(ylabels) # Color. pp_color_values = sklearn.preprocessing.minmax_scale(z) colormap = colormap_callable(pp_color_values) # Create the 3d plot. x_mesh, y_mesh = np.meshgrid(x, y, copy=False) ax.bar3d(x_mesh.ravel(), y_mesh.ravel(), z*0, dx=0.5, dy=0.5, dz=z, color=colormap) # Set convenient z limits. # From z ticks make it include all extreme values in excess of 0.5 tick. z_min = z.min() z_max = z.max() z_ticks = ax.get_zticks() z_stride = z_ticks[1] - z_ticks[0] z_min_lim = z_min - 0.5 * z_stride z_max_lim = z_max + 0.5 * z_stride if 0 < z_min_lim: z_min_lim = 0 elif 0 > z_max_lim: z_max_lim = 0 ax.set_zlim3d(z_min_lim, z_max_lim) if include_colorbar: scalar_mappable = plt.cm.ScalarMappable(cmap=colormap_callable) scalar_mappable.set_array([min(z), max(z)]) scalar_mappable.set_clim(vmin=min(z), vmax=max(z)) ticks = np.linspace(z_min, z_max, 5) colorbar = fig.colorbar(scalar_mappable, drawedges=True, ticks=ticks) # Add border to the colorbar. colorbar.outline.set_visible(True) colorbar.outline.set_edgecolor('black') mpl_params = matplotlib.rc_params() colorbar.outline.set_linewidth(mpl_params['lines.linewidth']) # Add ticks to the colorbar. colorbar.ax.yaxis.set_tick_params( width=mpl_params['ytick.major.width'], size=mpl_params['ytick.major.size']) return ax def label_containers(axes, containers=None, string_formatting=None, label_height_increment=0.01, adjust_yaxis_limit=True): """Attach text labels to axes. Arguments: axes (matplotlib.axes.Axes): Axes in which text labels will be added. containers (list): List of matplotlib.container.Container objects. string_fomratting (str): string that will be passed to str.format function. label_height_increment (float): height to increment the label to avoid coincidence with bar's top line. Returns: list: list of text objects generated by the axes.text method. Examples: >>> import matplotlib.pyplot as plt >>> from matplotlib_utilities import label_containers >>> fig = plt.figure(num=0, figsize=(12, 9)) >>> ax = fig.add_subplot(1,1,1) >>> x = range(10) >>> y = range(10) >>> isinstance(ax.bar(x, y), matplotlib.container.Container) True >>> isinstance(label_containers(ax), list) True >>> fig.tight_layout() >>> fig.savefig('/tmp/{0}.png'.format('label_containers')) """ if containers is None: containers = axes.containers[0] height = np.fromiter( (x.get_height() for x in containers), float) if string_formatting is None: if np.all(np.equal(np.mod(height, 1), 0)): string_formatting = '{0:d}' height = height.astype('int') else: string_formatting = '{0:1.1f}' height_increment = height.max() * label_height_increment # Adjust y axis limit to avoid text out of chart area. if adjust_yaxis_limit: y0, y1 = axes.get_ylim() y1 += 2 * height_increment axes.set_ylim(y0, y1) # Plot the labels. bar_labels = [] for i, rect in enumerate(containers): label_height = height[i] + height_increment text = axes.text( rect.get_x() + rect.get_width()/2., label_height, string_formatting.format(height[i]), ha='center', va='bottom') bar_labels.append(text) return bar_labels def histogram_of_categorical(a, *args, **sns_distplot_kwargs): """Plot a histogram of categorical with sane defauts. Arguments: a (pd.Series): Categorical series to create a histogram plot. Returns: matplotlib.axes.Axes: the plotted axes. Examples: >>> import pandas_utilities as pu >>> cat_serie = pu.dummy_dataframe().categorical_0 >>> fig = plt.figure() >>> axes = histogram_of_categorical(cat_serie, kde=False) >>> isinstance(axes, matplotlib.axes.Axes) True >>> fig.savefig('/tmp/doctest_{0}.png'.format( \ 'histogram_of_categorical'), dpi=500) """ # Create a dictionary of labels from categories. labels = dict(enumerate(a.cat.categories)) # Pass the arguments to the histogram of integers function. axes = histogram_of_integers(a.cat.codes, *args, **sns_distplot_kwargs) # Restore the labels. new_labels = tuple(map( lambda x: labels[x] if x in labels.keys() else '', axes.get_xticks())) # Set rotation for the ticklabels. # TODO: only set rotation in one place. if any(map(lambda x: x > 4, labels)): rotation = -90 else: rotation = 0 axes.set_xticklabels(new_labels, rotation=rotation) return axes def histogram_of_floats(a, *args, **sns_distplot_kwargs): """Plot a histogram of floats with sane defauts. Arguments: a (pd.Series): Float series to create a histogram plot. Returns: matplotlib.axes.Axes: the plotted axes. Examples: >>> import pandas_utilities as pu >>> float_serie = pu.dummy_dataframe().float_0 >>> fig = plt.figure() >>> axes = histogram_of_floats(float_serie, kde=False) >>> isinstance(axes, matplotlib.axes.Axes) True >>> fig.savefig('/tmp/doctest_{0}.png'.format( \ 'histogram_of_floats'), dpi=500) """ axes = sns.distplot( a, *args, **sns_distplot_kwargs) return axes def histogram_of_integers(a, *args, **sns_distplot_kwargs): """Plot a histogram of integers with sane defauts. Arguments: a (pd.Series): Integer series to create a histogram plot. Returns: matplotlib.axes.Axes: the plotted axes. Examples: >>> import pandas_utilities as pu >>> int_serie = pu.dummy_dataframe().int_0 >>> fig = plt.figure() >>> axes = histogram_of_integers(int_serie, kde=False) >>> isinstance(axes, matplotlib.axes.Axes) True >>> fig.savefig('/tmp/doctest_{0}.png'.format( \ 'histogram_of_ints'), dpi=500) """ # Data transformation: if not isinstance(a, pd.Series): a = pd.Series(a) # If there are various different integers plot them as float. THRESHOLD_TO_CONSIDER_FLOAT = 100 unique = np.unique(a).shape[0] if unique > THRESHOLD_TO_CONSIDER_FLOAT: return histogram_of_floats( a, *args, **sns_distplot_kwargs) # Mask values if the range between maximum and minimum is too big. if a.max() - a.min() > THRESHOLD_TO_CONSIDER_FLOAT: unique_values = np.sort(a.unique()) mask_values = dict(zip(unique_values, range(len(unique_values)))) a = a.map(mask_values) # Specify default options for histogram. if 'hist_kws' not in sns_distplot_kwargs: sns_distplot_kwargs['hist_kws'] = dict() hist_kws = sns_distplot_kwargs['hist_kws'] DEFAULT_HIST_KWARGS = { 'align': 'mid', 'rwidth': 0.5} # Update kwargs to matplotlib histogram which were not specified. for absent_key in filter(lambda x: x not in hist_kws.keys(), DEFAULT_HIST_KWARGS.keys()): hist_kws[absent_key] = DEFAULT_HIST_KWARGS[absent_key] xlabels = np.arange(a.min() - 2, a.max() + 3) axes = sns.distplot( a, bins=xlabels - 0.5, *args, **sns_distplot_kwargs) axes.set_xticks(xlabels) # If it is the case of having mapped the values. try: mask_values a = a.map({v: k for k, v in mask_values.items()}) xlabels = np.concatenate(( np.arange(a.min() - 2, a.min()), np.sort(np.unique(a)), np.arange(a.max() + 1, a.max() + 3))) except NameError: pass # Apply rotation to labels if they are numerous. # TODO: rotate categorical names if they are too many. if max(a) >= 100: rotation = -45 else: rotation = 0 axes.set_xticklabels(xlabels, rotation=rotation) return axes def histogram_of_dataframe(dataframe, output_path=None, weights=None, *args, **sns_distplot_kwargs): """Draw a histogram for each column of the dataframe. Provide a quick summary of each series in the dataframe: - Draw a histogram for each column of the dataframe using the seaborn 'distplot' function. - Create an artist box with some summary statistics: - max - min - average - nans - n The dataframe may contain nans. This function assumes that the input dataframe has already received treatment such as outlier treatment. Arguments: dataframe (pandas.DataFrame): The dataframe whose columns will be plotted. output_path (str): The outputh path to place the plotted histograms. If None then no file is written. weights (list): The list of numpy.array weights to weight each of the histogram entry. Returns: tuple: a tuple containing a figure and an axes for each dataframe. Examples: >>> from data_utilities import pandas_utilities as pu >>> from data_utilities import matplotlib_utilities as mu >>> dummy_df = pu.dummy_dataframe(shape=200) >>> df_columns = tuple(x for x in dummy_df.columns if 'object_' \ not in x) >>> dummy_df = dummy_df.loc[:, df_columns] >>> isinstance(mu.histogram_of_dataframe(dummy_df, '/tmp/'), tuple) True """ # This function assumes that the dataframe has received treatment. If there # is an object column then raise exceptions. However nan's are welcome as # they are part of the informative box. if (dataframe.dtypes == object).sum() > 0: raise TypeError("Dataframe must not have object columns:\n{0:d}.", dataframe.dtypes) n_nulls = dataframe.isnull().sum().sum() if n_nulls > 0: warnings.warn("Dataframe has {0:d} null values.".format(n_nulls), UserWarning) del n_nulls list_of_figures = list() # Iterate over columns. for i, column in enumerate(dataframe.columns): fig, axes = plt.subplots(nrows=1, ncols=1) series = dataframe[column] # Since numpy dtypes seem not to be organized in a hierarchy of data # types (eg int8, int32 etc are instances of a int) we resort to a # string representation of data types. series_str_dtype = str(series.dtypes) # . # ├── categorical (x) # └── number # ├── bool # ├── float # ├── datetime # └── int if series_str_dtype == 'category': axes = histogram_of_categorical( series, **sns_distplot_kwargs) # . # ├── categorical # └── number (x) # ├── bool # ├── float # ├── datetime # └── int # # Series with nans cannot be passed to sns.distplot. So this should be # sent separetely to add_summary_statistics_textbox elif ('bool' in series_str_dtype or 'int' in series_str_dtype or 'float' in series_str_dtype or 'datetime' in series_str_dtype): # Null values if passed to seaborn.distplot raise ValueError. series_not_null = series[~series.isnull()] # . # ├── categorical # └── number # ├── bool (x) # ├── float # ├── datetime # └── int if 'bool' in series_str_dtype: axes = histogram_of_categorical( series_not_null.astype('category'), **sns_distplot_kwargs) # . # ├── categorical # └── number # ├── bool # ├── float (x) # ├── datetime # └── int if 'float' in series_str_dtype: axes = histogram_of_floats( series_not_null, **sns_distplot_kwargs) # TODO: improve # . # ├── categorical # └── number # ├── bool # ├── float # ├── datetime (x) # └── int if 'datetime' in series_str_dtype: series_not_null = pd.to_numeric(series_not_null) series = pd.to_numeric(series) # TODO XXX to fix # add_summ_tbox on datetime axes = histogram_of_floats( series_not_null, **sns_distplot_kwargs) # . # ├── categorical # └── number # ├── bool # ├── float # ├── datetime # └── int (x) if 'int' in series_str_dtype: axes = histogram_of_integers( series_not_null, **sns_distplot_kwargs) # Add summary statistics for all numeric cases. text = add_summary_statistics_textbox(series, axes) # noqa # TODO: having problems displays text boxes for Coursera Capstone # Project. # If it is neither a number nor a categorical data type raise error. else: raise TypeError("Datatype {0} not covered in this" " function".format(series_str_dtype)) # Adjust figure size. PATCHES_LEN = len(axes.patches) PATCHES_STRIDE = 0.2 FIGSIZE = fig.get_size_inches() fig.set_size_inches( FIGSIZE[0] + PATCHES_LEN * PATCHES_STRIDE, FIGSIZE[1] ) list_of_figures.append(fig) # Save the plotting. if output_path is not None: fig.tight_layout() fig.savefig( os.path.join( output_path, '{0}'.format(column)) + '.png', dpi=300) plt.close(fig) return tuple(list_of_figures) def add_summary_statistics_textbox(series, axes, include_mean=True, include_max=True, include_min=True, include_n=True, include_nans=True, include_stddevs=True, include_stddevp=False): """Add a summary statistic textbox to your figure. Arguments: series (pd.Series): Series to have summary statistics computed on. axes (matplotlib.axes.Axes): axes which will receive the text. various inclues (bool): To include or not to include various summary statistics. Returns: matplotlib.text.Text: The drawed text object. Examples: >>> import pandas_utilities as pu >>> serie = pu.dummy_dataframe().int_0 >>> fig = plt.figure() >>> axes = histogram_of_integers(serie, kde=False) >>> text = add_summary_statistics_textbox(serie, axes) >>> fig.savefig('/tmp/doctest_{0}.png'.format( \ 'add_summary_statistics_textbox'), dpi=500) """ def find_best_placement_for_summary_in_histogram(axes): """Find the best placement for summary in histogram. Arguments: axes (matplotlib.axes.Axes): histogram axes with the patches properties. Returns: tuple: A tuple with the (x, y) coordinates for box placement. """ # Find best position for the text box. # # This session of the code finds the best placement of the text box. It # works by finding a sequence of patches that are either above half the # y axis or below it. If it finds such a sequences then it places the # box halfway of the first patch of this sequence. This minimizes the # chances of having it placed in an unsuitable positon. n_bins = len(axes.patches) stride = axes.patches[0].get_width() hist_xlim = (axes.patches[0].get_x(), axes.patches[0].get_x() + n_bins * stride) x0 = hist_xlim[0] y_half = axes.get_ylim()[1] / 2 fraction_of_patches_to_halt = 1/4 contiguous_patches_to_halt = int(n_bins * fraction_of_patches_to_halt) patches_height = (x.get_height() for x in axes.patches) height_greater_than_half = map(lambda x: x > y_half, patches_height) state = height_greater_than_half.__next__() seq = 1 flipped_on = 1 for i, greater in enumerate(height_greater_than_half, 1): if greater == state: seq += 1 else: seq = 1 state = greater flipped_on = i if seq >= contiguous_patches_to_halt: if greater: y_placement = 0.3 # as a fraction of the ylimits. else: y_placement = 0.95 # as a fraction of the ylimits. # Place the box on the best place: half stride in the patch # which happened to 'flip' (y_half_greater -> y_half_smaller or # vice versa). x_placement = ((i - contiguous_patches_to_halt + flipped_on) * stride + x0 + 0.5 * stride) break else: # TODO: not elegant at all. try: x_placement except NameError: x_placement = 0.05 try: y_placement except NameError: y_placement = 0.95 axes_ylim = axes.get_ylim() # Correct the placement of the box to absolute units. y_placement = axes_ylim[0] + y_placement * (axes_ylim[1] - axes_ylim[0]) return (x_placement, y_placement) if not isinstance(axes, matplotlib.axes.Axes): axes = plt.gca() mean = series.mean() summary_max = series.max() summary_min = series.min() n = series.shape[0] nans = series.isnull().sum() stddevs = series.std(ddof=1) stddevp = series.std(ddof=0) # Numbers and figures should have the same order of magnitude. # That is, avoid: # mean: 1e7 # std: 1e5 # max: 1e9 metrics = np.fromiter( (x for x in (mean, summary_max, summary_min, stddevs, stddevp) if x != 0), # Removes the divide by zero warning. dtype=float) if len(metrics) != 0: min_order = np.floor(np.log10(np.abs(metrics))).min() if abs(min_order) == float('inf'): min_order = 0 else: min_order = 0 min_order = np.int(min_order) expo = 10 ** min_order # Float. text_mean = ('mean = {0:1.2f}' + 'e{1:d}').format(mean/expo, min_order) text_max = ('max = {0:1.2f}' + 'e{1:d}').format(summary_max/expo, min_order) text_min = ('min = {0:1.2f}' + 'e{1:d}').format(summary_min/expo, min_order) text_stddevp = ('stddevp = {0:1.2f}' + 'e{1:d}').format(stddevp/expo, min_order) # Integers. text_n = 'n = {0:d}'.format(n) text_nans = 'nans = {0:d} ({1:1.1%} of n)'.format(nans, nans/n) text = (text_mean, text_max, text_min, text_n, text_nans, text_stddevp) if axes.patches: x_placement, y_placement = \ find_best_placement_for_summary_in_histogram(axes) else: offset = .1 x_placement, y_placement = offset, 1 - offset # Set the box style for the text. props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # Place the text. text = axes.text( x_placement, y_placement, '\n'.join(text), verticalalignment='top', alpha=0.5, transform=axes.transAxes, # make it relative to axes coords. bbox=props) return text def list_usable_backends(): """List all usable backends for matplotlib. Arguments: (empty) Returns: list: a list of usable backends for current environment. Examples: >>> import matplotlib_utilities as mu >>> available_backends = mu.list_usable_backends() >>> 'agg' in available_backends True """ backend_string = ("import matplotlib; matplotlib.use(\"{0}\");" "import matplotlib.pyplot as plt") command_string = 'python3 -c \'{0}\' 2>/dev/null' usable_backends = [] for backend in matplotlib.rcsetup.all_backends: backend_call = backend_string.format(backend) command_call = command_string.format(backend_call) return_value = os.system(command_call) if return_value == 0: usable_backends.append(backend) return usable_backends color = { 'standard': (223, 229, 239), 'gold': (255, 200, 31), 'platinum': (192, 192, 192), 'black': (0, 0, 0), 'pseudo_black': (90, 90, 90), 'business': (119, 202, 141), } color = {k: (v[0]/255, v[1]/255, v[2]/255) for k, v in color.items()} if __name__ == '__main__': import doctest doctest.testmod() # doctest.run_docstring_examples(func, globals())
gpl-3.0
dblalock/bolt
tests/test_encoder.py
1
9581
#!/usr/bin/env python from __future__ import print_function import numpy as np from sklearn.datasets import load_digits import timeit import bolt # ================================================================ utils def _dists_sq(X, q): diffs = X - q return np.sum(diffs * diffs, axis=-1) def _dists_l1(X, q): diffs = np.abs(X - q) return np.sum(diffs, axis=-1) def _element_size_bytes(x): return np.dtype(x.dtype).itemsize def _corr(x, y): x, y = x.astype(np.float64), y.astype(np.float64) x = x.ravel() - np.mean(x) y = y.ravel() - np.mean(y) r = np.mean(x * y) / (np.std(x) * np.std(y)) assert -1.00001 <= r <= 1.00001 return r def _sq_dists_to_vectors(X, queries, rowNorms=None, queryNorms=None): Q = queries.shape[0] mat_size = X.shape[0] * Q mat_size_bytes = _element_size_bytes(X[0] + queries[0]) if mat_size_bytes > int(1e9): print("WARNING: _sq_dists_to_vectors: attempting to create a matrix" "of size {} ({}B)".format(mat_size, mat_size_bytes)) if rowNorms is None: rowNorms = np.sum(X * X, axis=1, keepdims=True) if queryNorms is None: queryNorms = np.sum(queries * queries, axis=1) dotProds = np.dot(X, queries.T) return (-2 * dotProds) + rowNorms + queryNorms # len(X) x len(queries) def top_k_idxs(elements, k, smaller_better=True, axis=-1): if smaller_better: # return indices of lowest elements which_nn = np.arange(k) return np.argpartition(elements, kth=which_nn, axis=axis)[:k] else: # return indices of highest elements which_nn = (elements.shape[axis] - 1 - np.arange(k))[::-1] # print "elements.shape", elements.shape # print "using which_nn: ", which_nn return np.argpartition(elements, kth=which_nn, axis=axis)[-k:][::-1] def _knn(X, Q, k=1000, print_every=5, block_sz=128): nqueries = Q.shape[0] nblocks = int(np.ceil(nqueries / float(block_sz))) truth = np.full((nqueries, k), -999, dtype=np.int32) if nqueries <= block_sz: dists = _sq_dists_to_vectors(Q, X) assert dists.shape == (Q.shape[0], X.shape[0]) for i in range(nqueries): truth[i, :] = top_k_idxs(dists[i, :], k) return truth for b in range(nblocks): # recurse to fill in knn for each block start = b * block_sz end = min(start + block_sz, nqueries) rows = Q[start:end, :] truth[start:end, :] = _knn(X, rows, k=k, block_sz=block_sz) if b % print_every == 0: print("computing top k for query block " \ "{} (queries {}-{})...".format(b, start, end)) assert np.all(truth != -999) return truth def _create_randn_encoder(Ntrain=100, Ntest=20, D=64): enc = bolt.Encoder() X_train = np.random.randn(Ntrain, D) X_test = np.random.randn(Ntest, D) enc.fit(X_train, just_train=True) enc.set_data(X_test) return enc # ================================================================ tests def test_smoketest(): """Test that `bolt.Encoder`'s methods don't crash""" D = 64 enc = _create_randn_encoder(D=D) Nqueries = 5 Q = np.random.randn(Nqueries, D) [enc.transform(q) for q in Q] for k in [1, 3]: [enc.knn(q, k) for q in Q] def _fmt_float(x): return '{}.'.format(int(x)) if x == int(x) else '{:.3f}'.format(x) def _load_digits_X_Q(nqueries): X, _ = load_digits(return_X_y=True) return X[:-nqueries], X[-nqueries:] # X, Q def test_time_space_savings(): # mostly to verify readme code np.set_printoptions(formatter={'float_kind': _fmt_float}) nqueries = 20 X, Q = _load_digits_X_Q(nqueries) enc = bolt.Encoder(accuracy='lowest', reduction=bolt.Reductions.DOT_PRODUCT) enc.fit(X) # massive space savings print("original space usage: {}B".format(X.nbytes)) # 1777 * 64 * 8B = 909KB print("bolt space usage: {}B".format(enc.nbytes)) # 1777 * 2B = 3.55KB # massive time savings (~10x here, but often >100x on larger datasets # with less Python overhead; see the Bolt paper) t_np = timeit.Timer(lambda: [np.dot(X, q) for q in Q]).timeit(5) # ~8ms t_bolt = timeit.Timer(lambda: [enc.transform(q) for q in Q]).timeit(5) # ~800us print("Numpy / BLAS time, Bolt time: {:.3f}ms, {:.3f}ms".format( t_np * 1000, t_bolt * 1000)) def test_unquantize(): X, Q = _load_digits_X_Q(nqueries=20) enc = bolt.Encoder('dot', accuracy='high').fit(X) dots_true = [np.dot(X, q) for q in Q] dots_bolt = [enc.transform(q, unquantize=True) for q in Q] diffs = [true_vals - bolt_vals for true_vals, bolt_vals in zip(dots_true, dots_bolt)] mse = np.mean([np.mean(diff*diff) for diff in diffs]) var = np.mean([np.var(true_vals) for true_vals in dots_true]) print("dot product unquantize mse / variance: ", mse / var) assert (mse / var) < .01 # print "true, bolt dot prods" # print dots_true[0][:20].astype(np.int32) # print dots_bolt[0][:20].astype(np.int32) enc = bolt.Encoder('l2', accuracy='high').fit(X) dists_true = [_dists_sq(X, q) for q in Q] dists_bolt = [enc.transform(q, unquantize=True) for q in Q] diffs = [true_vals - bolt_vals for true_vals, bolt_vals in zip(dists_true, dists_bolt)] mse = np.mean([np.mean(diff*diff) for diff in diffs]) var = np.mean([np.var(true_vals) for true_vals in dots_true]) print("squared l2 unquantize mse / variance: ", mse / var) assert (mse / var) < .01 def test_basic(): # np.set_printoptions(precision=3) np.set_printoptions(formatter={'float_kind': _fmt_float}) nqueries = 20 # nqueries = 10 # nqueries = 3 X, Q = _load_digits_X_Q(nqueries) # TODO rm this block # shift = 100. # shift = 100 # scaleby = 1. # scaleby = 3.5 # acc goes to **** at accelerating rate as this gets larger... # scaleby = 4 # scaleby = 1.0 # X, Q = X + shift, Q + shift # X, Q = X * scaleby, Q * scaleby # X = X[:200] # X = X[:50] # X = X[:20] # X, _ = load_digits(return_X_y=True) # Q = X[-nqueries:] # X = X[:-nqueries] # print "X.shape", X.shape # print "X nbytes", X.nbytes # ------------------------------------------------ squared l2 enc = bolt.Encoder(accuracy='low', reduction=bolt.Reductions.SQUARED_EUCLIDEAN) enc.fit(X) l2_corrs = np.empty(len(Q)) for i, q in enumerate(Q): l2_true = _dists_sq(X, q).astype(np.int) l2_bolt = enc.transform(q) l2_corrs[i] = _corr(l2_true, l2_bolt) if i == nqueries - 1: print("l2 true: ", l2_true) print("l2 bolt: ", l2_bolt) print("corr: ", l2_corrs[i]) mean_l2 = np.mean(l2_corrs) std_l2 = np.std(l2_corrs) assert mean_l2 > .95 print("--> squared l2 dist correlation: {} +/- {}".format(mean_l2, std_l2)) # return # ------------------------------------------------ dot product enc = bolt.Encoder(accuracy='low', reduction=bolt.Reductions.DOT_PRODUCT) enc.fit(X) dot_corrs = np.empty(nqueries) for i, q in enumerate(Q): dots_true = np.dot(X, q) dots_bolt = enc.transform(q) dot_corrs[i] = _corr(dots_true, dots_bolt) mean_dot = np.mean(dot_corrs) std_dot = np.std(dot_corrs) assert mean_dot > .95 print("--> dot product correlation: {} +/- {}".format(mean_dot, std_dot)) # ------------------------------------------------ l2 knn enc = bolt.Encoder(accuracy='low', reduction='l2') enc.fit(X) k_bolt = 10 # tell bolt to search for true knn k_true = 10 # compute this many true neighbors true_knn = _knn(X, Q, k_true) bolt_knn = [enc.knn(q, k_bolt) for q in Q] contained = np.empty((nqueries, k_bolt), dtype=np.bool) for i in range(nqueries): true_neighbors = true_knn[i] bolt_neighbors = bolt_knn[i] for j in range(k_bolt): contained[i, j] = bolt_neighbors[j] in true_neighbors precision = np.mean(contained) print("--> l2 knn precision@{}: {}".format(k_bolt, precision)) assert precision > .6 # # print "true_knn, bolt_knn:" # # print true_knn[:20, :20] # # print bolt_knn[:20] # ------------------------------------------------ dot knn enc = bolt.Encoder(accuracy='low', reduction='dot') # enc = bolt.Encoder(accuracy='high', reduction='dot') enc.fit(X) k_bolt = 10 # tell bolt to search for true knn k_true = 10 # compute this many true neighbors true_dists = np.dot(X, Q.T) # true_dists = [np.dot(X, q) for q in Q] true_knn = np.empty((nqueries, k_true), dtype=np.int64) for i in range(nqueries): true_knn[i, :] = top_k_idxs( true_dists[:, i], k_true, smaller_better=False) bolt_knn = [enc.knn(q, k_bolt) for q in Q] contained = np.empty((len(Q), k_bolt), dtype=np.bool) for i in range(len(Q)): true_neighbors = true_knn[i] # bolt_dists = enc.transform(Q[i]) # bolt_neighbors = top_k_idxs(bolt_dists, k_bolt, smaller_better=True) bolt_neighbors = bolt_knn[i] # TODO uncomment for j in range(k_bolt): contained[i, j] = bolt_neighbors[j] in true_neighbors precision = np.mean(contained) print("--> max inner product knn precision@{}: {}".format( k_bolt, precision)) assert precision > .6 # print("true_knn, bolt_knn:") # print(true_knn[:5]) # print(bolt_knn[:5]) if __name__ == '__main__': test_basic()
mpl-2.0
Laurae2/LightGBM
examples/python-guide/sklearn_example.py
4
1449
# coding: utf-8 # pylint: disable = invalid-name, C0111 import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV # load or create your dataset print('Load data...') df_train = pd.read_csv('../regression/regression.train', header=None, sep='\t') df_test = pd.read_csv('../regression/regression.test', header=None, sep='\t') y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values print('Start training...') # train gbm = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20) gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='l1', early_stopping_rounds=5) print('Start predicting...') # predict y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_) # eval print('The rmse of prediction is:', mean_squared_error(y_test, y_pred) ** 0.5) # feature importances print('Feature importances:', list(gbm.feature_importances_)) # other scikit-learn modules estimator = lgb.LGBMRegressor(num_leaves=31) param_grid = { 'learning_rate': [0.01, 0.1, 1], 'n_estimators': [20, 40] } gbm = GridSearchCV(estimator, param_grid) gbm.fit(X_train, y_train) print('Best parameters found by grid search are:', gbm.best_params_)
mit
kmike/scikit-learn
sklearn/manifold/tests/test_spectral_embedding.py
6
8149
import warnings from nose.tools import assert_true from nose.tools import assert_equal from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from nose.plugins.skip import SkipTest from sklearn.manifold.spectral_embedding import SpectralEmbedding from sklearn.manifold.spectral_embedding import _graph_is_connected from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics import normalized_mutual_info_score from sklearn.cluster import KMeans from sklearn.datasets.samples_generator import make_blobs # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [0.0, 0.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 1000 n_clusters, n_features = centers.shape S, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_spectral_embedding_two_components(seed=36): """Test spectral embedding with two components""" random_state = np.random.RandomState(seed) n_sample = 100 affinity = np.zeros(shape=[n_sample * 2, n_sample * 2]) # first component affinity[0:n_sample, 0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # second component affinity[n_sample::, n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2 # connection affinity[0, n_sample + 1] = 1 affinity[n_sample + 1, 0] = 1 affinity.flat[::2 * n_sample + 1] = 0 affinity = 0.5 * (affinity + affinity.T) true_label = np.zeros(shape=2 * n_sample) true_label[0:n_sample] = 1 se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed)) embedded_coordinate = se_precomp.fit_transform(affinity) # thresholding on the first components using 0. label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float") assert_equal(normalized_mutual_info_score(true_label, label_), 1.0) # test that we can still import spectral embedding from sklearn.cluster import spectral_embedding as se_deprecated with warnings.catch_warnings(record=True) as warning_list: embedded_depr = se_deprecated(affinity, n_components=1, random_state=np.random.RandomState(seed)) assert_equal(len(warning_list), 1) assert_true(_check_with_col_sign_flipping(embedded_coordinate, embedded_depr, 0.05)) def test_spectral_embedding_precomputed_affinity(seed=36): """Test spectral embedding with precomputed kernel""" gamma = 1.0 se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed", random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_precomp = se_precomp.fit_transform(rbf_kernel(S, gamma=gamma)) embed_rbf = se_rbf.fit_transform(S) assert_array_almost_equal( se_precomp.affinity_matrix_, se_rbf.affinity_matrix_) assert_true(_check_with_col_sign_flipping(embed_precomp, embed_rbf, 0.05)) def test_spectral_embedding_callable_affinity(seed=36): """Test spectral embedding with callable affinity""" gamma = 0.9 kern = rbf_kernel(S, gamma=gamma) se_callable = SpectralEmbedding(n_components=2, affinity=( lambda x: rbf_kernel(x, gamma=gamma)), gamma=gamma, random_state=np.random.RandomState(seed)) se_rbf = SpectralEmbedding(n_components=2, affinity="rbf", gamma=gamma, random_state=np.random.RandomState(seed)) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) embed_rbf = se_rbf.fit_transform(S) embed_callable = se_callable.fit_transform(S) assert_array_almost_equal( se_callable.affinity_matrix_, se_rbf.affinity_matrix_) assert_array_almost_equal(kern, se_rbf.affinity_matrix_) assert_true( _check_with_col_sign_flipping(embed_rbf, embed_callable, 0.05)) def test_spectral_embedding_amg_solver(seed=36): """Test spectral embedding with amg solver""" try: from pyamg import smoothed_aggregation_solver except ImportError: raise SkipTest se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="amg", n_neighbors=5, random_state=np.random.RandomState(seed)) se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors", eigen_solver="arpack", n_neighbors=5, random_state=np.random.RandomState(seed)) embed_amg = se_amg.fit_transform(S) embed_arpack = se_arpack.fit_transform(S) assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)) def test_pipline_spectral_clustering(seed=36): """Test using pipline to do spectral clustering""" random_state = np.random.RandomState(seed) se_rbf = SpectralEmbedding(n_components=n_clusters, affinity="rbf", random_state=random_state) se_knn = SpectralEmbedding(n_components=n_clusters, affinity="nearest_neighbors", n_neighbors=5, random_state=random_state) for se in [se_rbf, se_knn]: km = KMeans(n_clusters=n_clusters, random_state=random_state) km.fit(se.fit_transform(S)) assert_array_almost_equal( normalized_mutual_info_score( km.labels_, true_labels), 1.0, 2) def test_spectral_embedding_unknown_eigensolver(seed=36): """Test that SpectralClustering fails with an unknown eigensolver""" se = SpectralEmbedding(n_components=1, affinity="precomputed", random_state=np.random.RandomState(seed), eigen_solver="<unknown>") assert_raises(ValueError, se.fit, S) def test_spectral_embedding_unknown_affinity(seed=36): """Test that SpectralClustering fails with an unknown affinity type""" se = SpectralEmbedding(n_components=1, affinity="<unknown>", random_state=np.random.RandomState(seed)) assert_raises(ValueError, se.fit, S) def test_connectivity(seed=36): """Test that graph connectivity test works as expected""" graph = np.array([[1, 0, 0, 0, 0], [0, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), False) assert_equal(_graph_is_connected(csr_matrix(graph)), False) assert_equal(_graph_is_connected(csc_matrix(graph)), False) graph = np.array([[1, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [0, 0, 0, 1, 1]]) assert_equal(_graph_is_connected(graph), True) assert_equal(_graph_is_connected(csr_matrix(graph)), True) assert_equal(_graph_is_connected(csc_matrix(graph)), True)
bsd-3-clause
ricsatjr/mplstereonet
examples/axial_plane.py
1
2063
""" Illustrates fitting an axial plane to two clusters of dip measurements. In this case, we're faking it by using Anglier's fault orientation data, but pretend these were bedding dips in two limbs of a fold instead of fault orientations. The steps mimic what you'd do graphically: 1. Find the centers of the two modes of the bedding measurements 2. Fit a girdle to them to find the plunge axis of the fold 3. Find the midpoint along that girdle between the two centers 4. The axial plane will be the girdle that fits the midpoint and plunge axis of the fold. """ import matplotlib.pyplot as plt import mplstereonet import parse_angelier_data # Load data from Angelier, 1979 strike, dip, rake = parse_angelier_data.load() # Plot the raw data and contour it: fig, ax = mplstereonet.subplots() ax.density_contour(strike, dip, rake, measurement='rakes', cmap='gist_earth', sigma=1.5) ax.rake(strike, dip, rake, marker='.', color='black') # Find the two modes centers = mplstereonet.kmeans(strike, dip, rake, num=2, measurement='rakes') strike_cent, dip_cent = mplstereonet.geographic2pole(*zip(*centers)) ax.pole(strike_cent, dip_cent, 'ro', ms=12) # Fit a girdle to the two modes # The pole of this plane will be the plunge of the fold axis axis_s, axis_d = mplstereonet.fit_girdle(*zip(*centers), measurement='radians') ax.plane(axis_s, axis_d, color='green') ax.pole(axis_s, axis_d, color='green', marker='o', ms=15) # Now we'll find the midpoint. We could project the centers as rakes on the # plane we just fit, but it's easier to get their mean vector instead. mid, _ = mplstereonet.find_mean_vector(*zip(*centers), measurement='radians') midx, midy = mplstereonet.line(*mid) # Now let's find the axial plane by fitting another girdle to the midpoint # and the pole of the plunge axis. xp, yp = mplstereonet.pole(axis_s, axis_d) x, y = [xp[0], midx], [yp[0], midy] axial_s, axial_dip = mplstereonet.fit_girdle(x, y, measurement='radians') ax.plane(axial_s, axial_dip, color='lightblue', lw=3) plt.show()
mit
cauchycui/scikit-learn
sklearn/linear_model/logistic.py
105
56686
""" Logistic Regression """ # Author: Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Manoj Kumar <[email protected]> # Lars Buitinck # Simon Wu <[email protected]> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils import check_random_state from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, squared_norm) from ..utils.optimize import newton_cg from ..utils.validation import (as_float_array, DataConversionWarning, check_X_y) from ..utils.fixes import expit from ..externals.joblib import Parallel, delayed from ..cross_validation import check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c return w, c, y * z def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ _, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the gradient and the Hessian, in the case of a logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return grad, hessp def _check_solver_option(solver, multi_class, penalty, dual): if solver not in ['liblinear', 'newton-cg', 'lbfgs']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg and lbfgs solvers, got %s" % solver) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class should be either multinomial or " "ovr, got %s" % multi_class) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s does not support " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("Solver %s supports only l2 penalties, " "got %s penalty." % (solver, penalty)) if dual: raise ValueError("Solver %s supports only " "dual=False, got dual=%s" % (solver, dual)) def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=True, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr', random_state=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when logistic_regression_path is called repeatedly with the same data, as y is modified along the path. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solvers. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. Notes ----- You might get slighly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) _check_solver_option(solver, multi_class, penalty, dual) # Preprocessing. X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) _, n_features = X.shape check_consistent_length(X, y) classes = np.unique(y) random_state = check_random_state(random_state) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "auto", then # the class_weights are assigned after masking the labels with a OvR. sample_weight = np.ones(X.shape[0]) le = LabelEncoder() if isinstance(class_weight, dict): if solver == "liblinear": if classes.size == 2: # Reconstruct the weights with keys 1 and -1 temp = {1: class_weight[pos_class], -1: class_weight[classes[0]]} class_weight = temp.copy() else: raise ValueError("In LogisticRegressionCV the liblinear " "solver cannot handle multiclass with " "class_weight of type dict. Use the lbfgs, " "newton-cg solvers or set " "class_weight='auto'") else: class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight = class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = [-1, 1] mask = (y == pos_class) y[mask] = 1 y[~mask] = -1 # To take care of object dtypes, i.e 1 and -1 are in the form of # strings. y = as_float_array(y, copy=False) else: lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) if Y_bin.shape[1] == 1: Y_bin = np.hstack([1 - Y_bin, Y_bin]) w0 = np.zeros((Y_bin.shape[1], n_features + int(fit_intercept)), order='F') mask_classes = classes if class_weight == "auto": class_weight_ = compute_class_weight(class_weight, mask_classes, y) sample_weight = class_weight_[le.fit_transform(y)] if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_vectors = classes.size if n_vectors == 2: n_vectors = 1 if (coef.shape[0] != n_vectors or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. w0 = w0.ravel() target = Y_bin if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess else: target = y if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess coefs = list() for C in Cs: if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0 = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, _, = _fit_liblinear( X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, random_state) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0) return coefs, np.array(Cs) # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, copy=True, intercept_scaling=1., multi_class='ovr'): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when ``_log_reg_scoring_path`` is called repeatedly with the same data, as y is modified along the path. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. """ _check_solver_option(solver, multi_class, penalty, dual) log_reg = LogisticRegression(fit_intercept=fit_intercept) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test[mask] = 1 y_test[~mask] = -1 # To deal with object dtypes, we need to convert into an array of floats. y_test = as_float_array(y_test, copy=False) coefs, Cs = logistic_regression_path(X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, copy=copy, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores) class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr' and uses the cross-entropy loss, if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs' and 'newton-cg' solvers.) This class implements regularized logistic regression using the `liblinear` library, newton-cg and lbfgs solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, optional (default=1.0) Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. intercept_scaling : float, default: 1 Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` max_iter : int Useful only for the newton-cg and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : int Maximum of the actual number of iterations across all classes. Valid only for the liblinear solver. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf See also -------- sklearn.linear_model.SGDClassifier """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ if not isinstance(self.C, numbers.Number) or self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if self.solver == 'liblinear': self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state) return self n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] for ind, class_ in enumerate(classes_): coef_, _ = logistic_regression_path( X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight) self.coef_.append(coef_[0]) self.coef_ = np.squeeze(self.coef_) # For the binary case, this get squeezed to a 1-D array. if self.coef_.ndim == 1: self.coef_ = self.coef_[np.newaxis, :] self.coef_ = np.asarray(self.coef_) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return self._predict_proba_lr(X) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg or LBFGS optimizer. The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to be faster for high-dimensional dense data. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.cross_validation` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. intercept_scaling : float, default 1. Useful only if solver is liblinear. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \ ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr'): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, dtype=None) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = check_cv(self.cv, X, y, classifier=True) folds = list(cv) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight in ['balanced', 'auto']): raise ValueError("class_weight provided should be a " "dict or 'balanced'") path_func = delayed(_log_reg_scoring_path) fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=self.class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] else: coefs_paths, Cs, scores = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, penalty=self.penalty, class_weight=self.class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1)) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([coefs_paths[i][best_indices[i]] for i in range(len(folds))], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
S0MEC0DE/v1
setup.py
1
2987
#! /usr/bin/env python # import os # temporarily redirect config directory to prevent matplotlib importing # testing that for writeable directory which results in sandbox error in # certain easy_install versions os.environ["MPLCONFIGDIR"] = "." DESCRIPTION = "Somecode Twitter Science and Research Platform" LONG_DESCRIPTION = """\ SOMECODE is a research platform for serious observation and analysis of Twitter data. SOMECODE brings together 9 years of unbroken continuity in developing social media research tools. Previous tools and processes developed by the contributor team are in daily use by many FORTUNE100 companies and major advertising agencies. SOMECODE is the solution we always wanted to build, but due to the kinds of restraints commercial entities have, never got to. """ DISTNAME = 'somecode' MAINTAINER = 'Mikko Kotila' MAINTAINER_EMAIL = '[email protected]' URL = 'http://botlab.io' LICENSE = 'MIT' DOWNLOAD_URL = 'https://github.com/S0MEC0DE/' VERSION = '0.9.9' try: from setuptools import setup _has_setuptools = True except ImportError: from distutils.core import setup def check_dependencies(): install_requires = [] # Just make sure dependencies exist, I haven't rigorously # tested what the minimal versions that will work are # (help on that would be awesome) try: import numpy except ImportError: install_requires.append('numpy') try: import seaborn except ImportError: install_requires.append('seaborn') try: import matplotlib except ImportError: install_requires.append('matplotlib') try: import pandas except ImportError: install_requires.append('pandas') try: import nltk except ImportError: install_requires.append('nltk') try: import tweepy except ImportError: install_requires.append('tweepy') try: import twython except ImportError: install_requires.append('twython') try: import IPython except ImportError: install_requires.append('IPython') install_requires.append('python-tk') return install_requires if __name__ == "__main__": install_requires = check_dependencies() setup(name=DISTNAME, author=MAINTAINER, author_email=MAINTAINER_EMAIL, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, long_description=LONG_DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, install_requires=install_requires, packages=['somecode'], classifiers=[ 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 2.7', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS'], )
mit
CartoDB/crankshaft
release/python/0.2.0/crankshaft/crankshaft/segmentation/segmentation.py
15
7186
""" Segmentation creation and prediction """ import sklearn import numpy as np import plpy from sklearn.ensemble import GradientBoostingRegressor from sklearn import metrics from sklearn.cross_validation import train_test_split # Lower level functions #---------------------- def replace_nan_with_mean(array): """ Input: @param array: an array of floats which may have null-valued entries Output: array with nans filled in with the mean of the dataset """ # returns an array of rows and column indices indices = np.where(np.isnan(array)) # iterate through entries which have nan values for row, col in zip(*indices): array[row, col] = np.mean(array[~np.isnan(array[:, col]), col]) return array def get_data(variable, feature_columns, query): """ Fetch data from the database, clean, and package into numpy arrays Input: @param variable: name of the target variable @param feature_columns: list of column names @param query: subquery that data is pulled from for the packaging Output: prepared data, packaged into NumPy arrays """ columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns]) try: data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format( variable=variable, columns=columns, query=query)) except Exception, e: plpy.error('Failed to access data to build segmentation model: %s' % e) # extract target data from plpy object target = np.array(data[0]['target']) # put n feature data arrays into an n x m array of arrays features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns]) return replace_nan_with_mean(target), replace_nan_with_mean(features) # High level interface # -------------------- def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters): """ Version of create_and_predict_segment that works on arrays that come stright form the SQL calling the function. Input: @param target: The 1D array of lenth NSamples containing the target variable we want the model to predict @param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model @param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from @param model_parameters: A dictionary containing parameters for the model. """ clean_target = replace_nan_with_mean(target) clean_features = replace_nan_with_mean(features) target_features = replace_nan_with_mean(target_features) model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2) prediction = model.predict(target_features) accuracy_array = [accuracy]*prediction.shape[0] return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array)) def create_and_predict_segment(query, variable, target_query, model_params): """ generate a segment with machine learning Stuart Lynn """ ## fetch column names try: columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys() except Exception, e: plpy.error('Failed to build segmentation model: %s' % e) ## extract column names to be used in building the segmentation model feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator']) ## get data from database target, features = get_data(variable, feature_columns, query) model, accuracy = train_model(target, features, model_params, 0.2) cartodb_ids, result = predict_segment(model, feature_columns, target_query) accuracy_array = [accuracy]*result.shape[0] return zip(cartodb_ids, result, accuracy_array) def train_model(target, features, model_params, test_split): """ Train the Gradient Boosting model on the provided data and calculate the accuracy of the model Input: @param target: 1D Array of the variable that the model is to be trianed to predict @param features: 2D Array NSamples * NFeatures to use in trining the model @param model_params: A dictionary of model parameters, the full specification can be found on the scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html) @parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray """ features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split) model = GradientBoostingRegressor(**model_params) model.fit(features_train, target_train) accuracy = calculate_model_accuracy(model, features, target) return model, accuracy def calculate_model_accuracy(model, features, target): """ Calculate the mean squared error of the model prediction Input: @param model: model trained from input features @param features: features to make a prediction from @param target: target to compare prediction to Output: mean squared error of the model prection compared to the target """ prediction = model.predict(features) return metrics.mean_squared_error(prediction, target) def predict_segment(model, features, target_query): """ Use the provided model to predict the values for the new feature set Input: @param model: The pretrained model @features: A list of features to use in the model prediction (list of column names) @target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it. """ batch_size = 1000 joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features]) try: cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format( joined_features=joined_features, target_query=target_query)) except Exception, e: plpy.error('Failed to build segmentation model: %s' % e) results = [] while True: rows = cursor.fetch(batch_size) if not rows: break batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows]) #Need to fix this. Should be global mean. This will cause weird effects batch = replace_nan_with_mean(batch) prediction = model.predict(batch) results.append(prediction) try: cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids'] except Exception, e: plpy.error('Failed to build segmentation model: %s' % e) return cartodb_ids, np.concatenate(results)
bsd-3-clause
nvoron23/scikit-learn
examples/mixture/plot_gmm.py
248
2817
""" ================================= Gaussian Mixture Model Ellipsoids ================================= Plot the confidence ellipsoids of a mixture of two Gaussians with EM and variational Dirichlet process. Both models have access to five components with which to fit the data. Note that the EM model will necessarily use all five components while the DP model will effectively only use as many as are needed for a good fit. This is a property of the Dirichlet Process prior. Here we can see that the EM model splits some components arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state automatically. This example doesn't show it, as we're in a low-dimensional space, but another advantage of the Dirichlet process model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are dimensions in the data, due to regularization properties of the inference algorithm. """ import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] # Fit a mixture of Gaussians with EM using five components gmm = mixture.GMM(n_components=5, covariance_type='full') gmm.fit(X) # Fit a Dirichlet process mixture of Gaussians using five components dpgmm = mixture.DPGMM(n_components=5, covariance_type='full') dpgmm.fit(X) color_iter = itertools.cycle(['r', 'g', 'b', 'c', 'm']) for i, (clf, title) in enumerate([(gmm, 'GMM'), (dpgmm, 'Dirichlet Process GMM')]): splot = plt.subplot(2, 1, 1 + i) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip( clf.means_, clf._get_covars(), color_iter)): v, w = linalg.eigh(covar) u = w[0] / linalg.norm(w[0]) # as the DP will not use every component it has access to # unless it needs it, we shouldn't plot the redundant # components. if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title(title) plt.show()
bsd-3-clause
katiehamren/splash
splash/zspec_information.py
1
5360
import os import re import pdb import warnings import numpy as np import pandas as pd from astropy.io import fits from utils import _parse_filename warnings.filterwarnings('ignore') zspec_tags = ['Z', 'ZQUAL','ZSNR','ABAND','MJD','AIRM'] def zquality(zspec_path, spec1d_files, tags, serendip_file=None): ''' Return the values associated with "tags" for the stars in spec1d_files :param zspec_path: path to zspec files :param spec1d_files: list/array of spec1d_files :param tags: list/array of tags to return. :param serendip_file: file (with path) containing serendip information :return: A dataframe that contains those tags from the "tags" input that can be accomplished with a ''' if (zspec_path is None) or not os.path.isdir(zspec_path): raise AttributeError("zspec path does not exist") if (type(spec1d_files) != list) & (type(spec1d_files) != np.ndarray): raise AttributeError('spec1d_files must be a list or array') elif type(spec1d_files) == list: spec1d_files = np.array(spec1d_files) if serendip_file is None: print 'skipping serendips' elif serendip_file == 'Default': if os.path.isfile('%s/SLIT.goodFormat' %(zspec_path)): serendip_file = '%s/SLIT.goodFormat' %(zspec_path) print 'using default serendip file' else: raise IOError('no default serendip file') else: if not os.path.isfile(serendip_file): raise IOError('input serendip file does not exist') # Get the masks associated with these spec1d files, so as to go mask by mask all_masks = np.array([_parse_filename(sf)[0] for sf in spec1d_files]) # Go mask by mask and get a dataframe of all zspec-related tags df_list = [] for m in all_masks: zfile = '%s/zspec.%s.fits' %(zspec_path, m) sfiles = spec1d_files[all_masks == m] df = read_zspec_fits(zfile, sfiles, serendip_file) df_list.append(df) # Concatenate dataframes into a master full_df = pd.concat(df_list) # Include all tags that are either included in the desired list OR are necessary later # Things that will matter later include # - Z, ZQUAL (for shift & stitch) # - MJD, ABAND (for kinematics) return full_df[[c for c in full_df.columns if (c in tags) | (c in ['Z','ZQUAL','MJD','ABAND'])]] def read_zspec_fits(zfile, spec1d_files, serendip_file): ''' Given an input zspec file and a list of spec1d_files, return a dataframe containing all possible tags :param zfile: zspec file :param spec1d_files: list of spec1d_files associated with the input zfile :return: ''' mask = re.split('\.', zfile)[1] if os.path.isfile(zfile): hduZ = fits.open(zfile) zspec = hduZ[1].data else: raise ValueError('invalid zfile, does not exist') df = pd.DataFrame(columns=zspec_tags, index=spec1d_files) # walk through each spec1d_file one at a time for sf in spec1d_files: # find the relevant entry in the zspec file by using the spec1d_file tag (where available) if 'SPEC1D_FILE' in hduZ[1].columns.names: charInds = np.core.defchararray.find(zspec.SPEC1D_FILE,sf) ind = np.argwhere(charInds != -1) else: zspec_spec1d_file = np.array(['spec1d.%s.%s.%s.fits.gz' %(mask, s.zfill(3), o) for s, o in zip(zspec.SLITNAME, zspec.OBJNAME)]) charInds = np.core.defchararray.find(zspec_spec1d_file,sf) ind = np.argwhere(charInds != -1) try: i = ind[0][0] z = zspec.Z[i] zqual = zspec.ZQUALITY[i] snr = zspec.SN[i] if 'ABAND' in hduZ[1].columns.names: aband = zspec.ABAND[i] else: aband = np.nan if 'MJD' in hduZ[1].columns.names: mjd = zspec.MJD[i] else: mjd = np.nan if 'AIRMASS' in hduZ[1].columns.names: airm = zspec.AIRMASS[i] else: airm = np.nan except IndexError: # Test if this is a serendip if serendip_file is None: airm = mjd = aband = snr = zqual = z = np.nan else: z = read_serendip_zqual(sf, serendip_file) zqual = 3 airm = mjd = aband = snr = np.nan # This part determines if there are -1s in the zspec file. If there *are*, then zquality = 1 is a # manual velocity determination. If there *aren't*, then zquality = 1 is crap if zqual == 1: zq = zspec.ZQUALITY if -1 not in zq: zqual = 0 # Write this star into the df df.loc[sf] = pd.Series({'Z':z, 'ZQUAL':zqual,'ZSNR':snr,'ABAND':aband,'MJD':mjd,'AIRM':airm}) return df def read_serendip_zqual(spec1d_file, serendip_file): ''' Get z value from serendip file :param spec1d_file: :param serendip_file: :return: z ''' try: zfile, z = np.loadtxt(serendip_file, usecols = (0,1), dtype = 'S30,f', unpack = True) except: raise ValueError('could not read serendip file') if spec1d_file in zfile: return z[file == zfile] else: return np.nan
mit
rspavel/spack
var/spack/repos/builtin/packages/py-astropy/package.py
3
4192
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * import os class PyAstropy(PythonPackage): """The Astropy Project is a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages.""" homepage = 'https://astropy.org/' url = 'https://pypi.io/packages/source/a/astropy/astropy-4.0.1.post1.tar.gz' install_time_test_callbacks = ['install_test', 'import_module_test'] version('4.0.1.post1', sha256='5c304a6c1845ca426e7bc319412b0363fccb4928cb4ba59298acd1918eec44b5') version('3.2.1', sha256='706c0457789c78285e5464a5a336f5f0b058d646d60f4e5f5ba1f7d5bf424b28') version('2.0.14', sha256='618807068609a4d8aeb403a07624e9984f566adc0dc0f5d6b477c3658f31aeb6') version('1.1.2', sha256='6f0d84cd7dfb304bb437dda666406a1d42208c16204043bc920308ff8ffdfad1') version('1.1.post1', sha256='64427ec132620aeb038e4d8df94d6c30df4cc8b1c42a6d8c5b09907a31566a21') variant('extras', default=False, description='Enable extra functionality') # Required dependencies depends_on('[email protected]:', when='@4.0:', type=('build', 'run')) depends_on('[email protected]:', when='@3.0:', type=('build', 'run')) depends_on('[email protected]:2.8,3.4:', when='@2.0:', type=('build', 'run')) depends_on('[email protected]:2.8,3.3:', when='@1.2:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-setuptools', type='build') depends_on('[email protected]:', type='build') depends_on('[email protected]:', when='@4.0:', type=('build', 'run')) depends_on('[email protected]:', when='@3.1:', type=('build', 'run')) depends_on('[email protected]:', when='@3.0:', type=('build', 'run')) depends_on('[email protected]:', when='@2.0:', type=('build', 'run')) depends_on('[email protected]:', when='@1.2:', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) depends_on('pkgconfig', type='build') # Optional dependencies depends_on('[email protected]:', when='+extras', type=('build', 'run')) depends_on('py-h5py', when='+extras', type=('build', 'run')) depends_on('py-beautifulsoup4', when='+extras', type=('build', 'run')) depends_on('py-html5lib', when='+extras', type=('build', 'run')) depends_on('py-bleach', when='+extras', type=('build', 'run')) depends_on('py-pyyaml', when='+extras', type=('build', 'run')) depends_on('py-pandas', when='+extras', type=('build', 'run')) depends_on('py-bintrees', when='+extras', type=('build', 'run')) depends_on('py-sortedcontainers', when='+extras', type=('build', 'run')) depends_on('py-pytz', when='+extras', type=('build', 'run')) depends_on('py-jplephem', when='+extras', type=('build', 'run')) depends_on('[email protected]:', when='+extras', type=('build', 'run')) depends_on('py-scikit-image', when='+extras', type=('build', 'run')) depends_on('py-mpmath', when='+extras', type=('build', 'run')) depends_on('[email protected]:', when='+extras', type=('build', 'run')) depends_on('py-bottleneck', when='+extras', type=('build', 'run')) depends_on('py-pytest', when='+extras', type=('build', 'run')) # System dependencies depends_on('erfa') depends_on('wcslib') depends_on('cfitsio') depends_on('expat') def patch(self): # forces the rebuild of files with cython # avoids issues with PyCode_New() in newer # versions of python in the distributed # cython-ized files os.remove('astropy/cython_version.py') def build_args(self, spec, prefix): args = [ '--use-system-libraries', '--use-system-erfa', '--use-system-wcslib', '--use-system-cfitsio', '--use-system-expat' ] if spec.satisfies('^python@3:'): args.extend(['-j', str(make_jobs)]) return args def install_test(self): with working_dir('spack-test', create=True): python('-c', 'import astropy; astropy.test()')
lgpl-2.1
RPGOne/scikit-learn
sklearn/tests/test_common.py
5
9222
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <[email protected]> # Gael Varoquaux [email protected] # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import re import pkgutil from sklearn.externals.six import PY3 from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import _named_check import sklearn from sklearn.cluster.bicluster import BiclusterMixin from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( _yield_all_checks, CROSS_DECOMPOSITION, check_parameters_default_constructible, check_class_weight_balanced_linear_classifier, check_transformer_n_iter, check_non_transformer_estimators_n_iter, check_get_params_invariance) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, cloneable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield (_named_check(check_parameters_default_constructible, name), name, Estimator) def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.startswith("_"): continue for check in _yield_all_checks(name, Estimator): yield _named_check(check, name), name, Estimator def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_balanced_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if ('class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin))] for name, Classifier in linear_classifiers: yield _named_check(check_class_weight_balanced_linear_classifier, name), name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_all_tests_are_importable(): # Ensure that for each contentful subpackage, there is a test directory # within it that is also a subpackage (i.e. a directory with __init__.py) HAS_TESTS_EXCEPTIONS = re.compile(r'''(?x) \.externals(\.|$)| \.tests(\.|$)| \._ ''') lookup = dict((name, ispkg) for _, name, ispkg in pkgutil.walk_packages(sklearn.__path__, prefix='sklearn.')) missing_tests = [name for name, ispkg in lookup.items() if ispkg and not HAS_TESTS_EXCEPTIONS.search(name) and name + '.tests' not in lookup] assert_equal(missing_tests, [], '{0} do not have `tests` subpackages. Perhaps they require ' '__init__.py or an add_subpackage directive in the parent ' 'setup.py'.format(missing_tests)) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: with ignore_warnings(category=DeprecationWarning): estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (_named_check( check_non_transformer_estimators_n_iter, name), name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: with ignore_warnings(category=DeprecationWarning): estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: yield _named_check( check_transformer_n_iter, name), name, estimator def test_get_params_invariance(): # Test for estimators that support get_params, that # get_params(deep=False) is a subset of get_params(deep=True) # Related to issue #4465 estimators = all_estimators(include_meta_estimators=False, include_other=True) for name, Estimator in estimators: if hasattr(Estimator, 'get_params'): # If class is deprecated, ignore deprecated warnings if hasattr(Estimator.__init__, "deprecated_original"): with ignore_warnings(): yield _named_check( check_get_params_invariance, name), name, Estimator else: yield _named_check( check_get_params_invariance, name), name, Estimator
bsd-3-clause
kaltwang/latenttrees
latenttrees/lt_model.py
1
118932
import collections, copy, random, warnings, sys, builtins, time, datetime from itertools import chain import numpy as np import networkx as nx from scipy.stats import gaussian_kde import matplotlib.pyplot as plt #from latenttrees.lt_helper import * from latenttrees.lt_helper import is_message_1to2, calc_lklhd_parent_messages, imshow_values, \ NanSelect, select_max_undecorated, select_weighted_random_undecorated, select_random_undecorated, \ select_random_metropolis_undecorated from misc.numpy_helper import normalize_convex, is_obj_array, ProgressLine, has_equiv_shape, cut_max, norm_logpdf, \ normalize_convex_log, expand_array, obj_array_get_N from misc.python_helper import has_elements, isequal_or_none, get_and_set_attr # profile magic: define @profile decorator on the fly, if not defined by the kernprof script # see http://stackoverflow.com/questions/18229628/python-profiling-using-line-profiler-clever-way-to-remove-profile-statements try: builtins.profile except AttributeError: # No line profiler, provide a pass-through version def profile(func): return func builtins.profile = profile class ObjectRoot(object): def __init__(self): # type(self).print_enabled = True # static (class) variable self.print_enabled = True # static (class) variable def _print(self, str_): if self.print_enabled: print(self._print_prefix() + str_) def _print_prefix(self): classname = type(self).__name__ timestr = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') prefix = timestr + " [" + classname + "] " return prefix class GraphObject(ObjectRoot): COPY_PREFIX = '_copy_' def __init__(self): super(GraphObject, self).__init__() def clear(self, prop_set): for p in prop_set: setattr(self, p, None) def copy(self, prop_set): for p in prop_set: value_copy = copy.deepcopy(getattr(self, p)) setattr(self, GraphObject.COPY_PREFIX + p, value_copy) def recover_copy(self, prop_set): for p in prop_set: value_copy = getattr(self, GraphObject.COPY_PREFIX + p) setattr(self, p, value_copy) delattr(self, GraphObject.COPY_PREFIX + p) class Node(GraphObject): def __init__(self, k_): self.k = k_ self.prior = None self.layer = 0 self.create_new_prior() def create_new_prior(self): self.prior = DistribFactory.random(1, self.k) def set_k(self, k_): self.k = k_ if self.prior is not None: self.create_new_prior() class Edge(GraphObject): def __init__(self, k1_, k2_): if k1_ > 1: self.k1 = k1_ self.k2 = k2_ self.distrib = DistribFactory.random(k1_, k2_) else: raise ValueError('k1_={} must be greater than 1 (parents always need to be categorical)!'.format(k1_)) def set_k1(self, k1_): self.__init__(k1_, self.k2) def set_k2(self, k2_): self.__init__(self.k1, k2_) class NodeEdgeFactory(object): def __init__(self, properties_=None): self._instances_created = False if properties_ is not None: self._properties = set(properties_) # string list of property names else: self._properties = set() def _init_properties(self, obj): obj.clear(self._properties) self._instances_created = True def register_properties(self, prop_set): # check first if any element from prop_set is actually new if not self._properties >= prop_set: if self._instances_created: raise RuntimeError('Properties must be added before the first class instantiation!') self._properties.update(prop_set) class NodeFactory(NodeEdgeFactory): def __init__(self, properties_=None): super(NodeFactory, self).__init__(properties_) def create_node(self, k): result = Node(k) super(NodeFactory, self)._init_properties(result) return result class EdgeFactory(NodeEdgeFactory): def __init__(self, properties_=None): super(EdgeFactory, self).__init__(properties_) def create_edge(self, k1, k2): result = Edge(k1, k2) super(EdgeFactory, self)._init_properties(result) return result class Graph(GraphObject): OBJ_STR = 'obj' # dictionary key string that is used to access node and edge objects within networkx graph def __init__(self): super(Graph, self).__init__() self.__id_node_next = 0 self.__nxgraph = nx.DiGraph() self.__node_factory = NodeFactory() self.__edge_factory = EdgeFactory() self.__id_roots = set() self.required_axes_total = 0 self.axes = None self.figure = None self.required_axes = 1 self.id_axes = self.register_axes(self.required_axes) self.print_enabled = False def get_dof(self, id_node): dof = 0 prior = self.node(id_node).prior if prior is not None: dof += prior.get_dof() for id_node1, id_node2, edge in self.edges_iter(nbunch=id_node, data=True): dof_act = edge.distrib.get_dof() dof += dof_act return dof def set_k(self, id_node, k): node = self.node(id_node) node.set_k(k) for id_node1, id_node2, edge in self.edges_iter(nbunch=id_node, data=True): if id_node1 == id_node: edge.set_k1(k) else: assert id_node2 == id_node edge.set_k2(k) def get_axes(self, id_axes): if self.figure is None or (not plt.fignum_exists(self.figure.number)): # create figure and axes self.figure, self.axes = plt.subplots(nrows=1, ncols=self.required_axes_total, squeeze=True, figsize=(20, 6.66)) axes_curr = [self.axes[id] for id in id_axes] for ax in axes_curr: ax.cla() return axes_curr def register_axes(self, required_axes): id_axes_new = [x for x in range(self.required_axes_total, self.required_axes_total+required_axes)] self.required_axes_total += required_axes return id_axes_new def get_id_node_next(self): return self.__id_node_next def has_node(self, id_node): return self.__nxgraph.has_node(id_node) def number_of_nodes(self): return self.__nxgraph.number_of_nodes() def has_edge(self, id_node1, id_node2): return self.__nxgraph.has_edge(id_node1, id_node2) def has_parent(self, id_node): edges = self.in_edges_iter(id_node, data=False) return has_elements(edges) def get_parent(self, id_node): id_parents = [x for x in self.in_edges_iter(id_node, data=False)] num_parents = len(id_parents) assert num_parents <= 1 # tree structure allows one parent at most if num_parents == 1: return id_parents[0] else: return None def get_root(self, id_node): id_parent = self.get_parent(id_node) if id_parent is None: return id_node else: return self.get_root(id_parent) def get_id_roots(self): return self.__id_roots def get_num_roots(self): return len(self.__id_roots) def degree(self, id_node): return self.__nxgraph.degree(id_node) def out_degree(self, id_node): return self.__nxgraph.out_degree(id_node) def node(self, id_node): """Access node object. :param id_node: the node id """ return self.__nxgraph.node[id_node][Graph.OBJ_STR] def edge(self, id_node1, id_node2): """Access edge object for edge from id_node1 to id_node2. :param id_node1: edge origin :param id_node2: edge destination """ return self.__nxgraph[id_node1][id_node2][Graph.OBJ_STR] def add_node(self, k): """Adds a new node to the graph. :param k: cardinality of the node (k==1 for Gaussian and k>1 for categorical random variables) """ id_node = self.__id_node_next self.__id_node_next += 1 node_ = self.__node_factory.create_node(k) self.__nxgraph.add_node(id_node, {Graph.OBJ_STR: node_}) # side effects self.__add_root(id_node) # initially, every node is a root self._print("add id_node={}".format(id_node)) return id_node def add_nodes(self, K): """Create nodes defined by the types vector k :param K: iterable that contains k values for all nodes to create """ self._print("adding {} nodes".format(len(K))) id_nodes = [self.add_node(k) for k in K] return id_nodes def remove_node(self, id_node): self._print("remove id_node={}".format(id_node)) assert self.has_node(id_node) # side effects self.__remove_root(id_node) g = self.__nxgraph degree = g.degree(id_node) if degree > 0: raise ValueError( 'id_node={} has edges connected to it. Remove all edges first before removing the node!'.format( id_node)) g.remove_node(id_node) def add_edge(self, id_node1, id_node2): """Adds a new edge to the graph. :param id_node1: edge origin :param id_node2: edge destination """ self._print("add edge=({},{})".format(id_node1, id_node2)) # check the structure self.__check_potential_edge(id_node1, id_node2) # side effects self.__remove_root(id_node2) # not root anymore node1 = self.node(id_node1) node2 = self.node(id_node2) edge_ = self.__edge_factory.create_edge(node1.k, node2.k) self.__nxgraph.add_edge(id_node1, id_node2, {Graph.OBJ_STR: edge_}) # q needs to be recomputed node1.q_dirty = True node2.q_dirty = True # layer of node1 might change # node1.layer = max(node1.layer, node2.layer+1) self.__update_layer_recursive(id_node2, node2) def __update_layer_recursive(self, id_node, node): id_parent = self.get_parent(id_node) if id_parent is not None: parent = self.node(id_parent) parent.layer = max(parent.layer, node.layer+1) self.__update_layer_recursive(id_parent, parent) def remove_edge(self, id_node1, id_node2): """Removes an edge from the graph. :param id_node1: edge origin :param id_node2: edge destination """ self._print("remove edge=({},{})".format(id_node1, id_node2)) assert self.has_edge(id_node1, id_node2) self.__nxgraph.remove_edge(id_node1, id_node2) # side effects # by the structure restriction, id_node2 has only one parent and thus becomes a root self.__add_root(id_node2) # q needs to be recomputed self.node(id_node1).q_dirty = True self.node(id_node2).q_dirty = True # layer of node1 might change self.__recalculate_layer(id_node1) def __recalculate_layer(self, id_node): layer_options = [self.node(id_child).layer + 1 for id_child in self.out_edges_iter(id_node)] + [0] layer_new = max(layer_options) if self.node(id_node).layer != layer_new: self.node(id_node).layer = layer_new # we need to recursively check the next parent id_parent = self.get_parent(id_node) if id_parent is not None: self.__recalculate_layer(id_parent) def __check_potential_edge(self, id_node1, id_node2): """This functions ensures that each node has at most one parent, when adding a potential edge. (Note: this function does not prevent the graph from having cycles!) :param id_node1: edge origin :param id_node2: edge destination """ # first check that both nodes exist assert self.has_node(id_node1) assert self.has_node(id_node2) # then assert the id_node2 does not have a parent yet in_degree_node2 = self.__nxgraph.in_degree(id_node2) assert in_degree_node2 == 0 def __add_root(self, id_root): self.__id_roots.add(id_root) # add prior again node = self.node(id_root) if node.prior is None: node.create_new_prior() def __remove_root(self, id_root): self.__id_roots.discard(id_root) # remove prior node = self.node(id_root) node.prior = None def is_root(self, id_node): return id_node in self.__id_roots def draw(self, id_highlight=None): fig, ax = plt.subplots(1,self.required_axes) if not isinstance(ax, collections.Iterable): ax = [ax] self.draw_axes(ax, id_highlight) fig.tight_layout(pad=0, w_pad=0, h_pad=0) plt.show() def draw_axes(self, ax=None, id_highlight=None): # plt.ion() # interactive mode on (doesn't work with pycharm) g = self.__nxgraph # new call format for networkx 1.11 (uses pygraphviz, which does not support Python 3!) # pos = nx.drawing.nx_agraph.graphviz_layout(g, prog='dot') # old call format for networkx 1.10 # pos = nx.graphviz_layout(g, prog='dot') # new call format for networkx 1.11 (uses pydot) pos = nx.drawing.nx_pydot.graphviz_layout(g, prog='dot') if ax is None: ax = self.get_axes(self.id_axes) assert len(ax) == self.required_axes nx.draw(g, pos, ax=ax[0], hold=True, with_labels=True, arrows=True) # nx.draw_networkx(self.__graph) # plot the roots if id_highlight is None: id_highlight = self.__id_roots for r in id_highlight: ax[0].scatter(pos[r][0], pos[r][1], s=500) for id_node, node in self.nodes_iter(data=True): c = "{}".format(node.layer) ax[0].text(pos[id_node][0], pos[id_node][1], "\n" + c, va='top', ha='center', color='blue') # plt.show() # this call blocks further execution until window is closed def print_distrib(self): pass def nodes(self, data=False): nx = self.__nxgraph.nodes(data=data) if data: n = map(lambda x: (x[0], x[1][self.OBJ_STR]), nx) else: n = nx return n def nodes_iter(self, data=False): nx_iter = self.__nxgraph.nodes_iter(data=data) """nx_iter returns tuples where the first element is the id_node and the second element is a dictionary of the node data""" if data: iter_ = map(lambda x: (x[0], x[1][self.OBJ_STR]), nx_iter) else: iter_ = nx_iter return iter_ def edges_iter(self, nbunch=None, data=False): nx_iter_out = self.__nxgraph.out_edges_iter(nbunch=nbunch, data=data) nx_iter_in = self.__nxgraph.in_edges_iter(nbunch=nbunch, data=data) nx_iter = chain(nx_iter_out, nx_iter_in) """nx_iter returns triples where the first two elements are id_node1 and id_node2 and the third element is a dictionary of the edge data""" if data: iter_ = map(lambda x: (x[0], x[1], x[2][self.OBJ_STR]), nx_iter) else: iter_ = nx_iter return iter_ def edges_iter_except(self, id_node, id_except, data=False): iter_ = self.edges_iter(nbunch=id_node, data=data) if id_except is not None: iter_ = filter(lambda x: (x[0] != id_except) and (x[1] != id_except), iter_) return iter_ def out_edges_iter(self, id_node, data=False): nx_iter = self.__nxgraph.out_edges_iter(nbunch=(id_node,), data=data) if data: iter_ = map(lambda x: (x[1], x[2][self.OBJ_STR]), nx_iter) else: iter_ = map(lambda x: x[1], nx_iter) return iter_ def in_edges_iter(self, id_node, data=False): nx_iter = self.__nxgraph.in_edges_iter(nbunch=(id_node,), data=data) if data: iter_ = map(lambda x: (x[0], x[2][self.OBJ_STR]), nx_iter) else: iter_ = map(lambda x: x[0], nx_iter) return iter_ def register_properties(self, prop_graph, prop_node, prop_edge): self.clear(prop_graph) self.__node_factory.register_properties(prop_node) self.__edge_factory.register_properties(prop_edge) def clear_properties(self, prop_graph, prop_node, prop_edge): """Clear properties from nodes and edges. :param prop_graph: set of strings with graph properties :param prop_node: set of strings with node properties :param prop_edge: set of strings with edge properties """ self.clear(prop_graph) for node_id, node in self.nodes_iter(data=True): node.clear(prop_node) for node_id1, node_id2, edge in self.edges_iter(data=True): edge.clear(prop_edge) def properties_func(self, id_root, func, recursive=True, prop_node=None, prop_edge=None): if prop_node is not None: func_node = lambda id, node: func(node, prop_node) else: func_node = None if prop_edge is not None: func_edge = lambda id1, id2, edge: func(edge, prop_edge) else: func_edge = None self.func_iter(id_root, recursive=recursive, func_node=func_node, func_edge=func_edge) def func_iter(self, id_roots=None, recursive=True, func_node=None, func_edge=None): g = self if id_roots is None: id_roots = g.get_id_roots() elif not isinstance(id_roots, collections.Iterable): id_roots = (id_roots, ) for id_root in id_roots: self.__func_iter(id_root, recursive=recursive, id_except=None, func_node=func_node, func_edge=func_edge) def __func_iter(self, id_node, recursive=True, id_except=None, func_node=None, func_edge=None): if func_node is not None: node = self.node(id_node) func_node(id_node, node) edges = self.edges_iter_except(id_node, id_except, data=True) for id_node1, id_node2, edge in edges: if func_edge is not None: func_edge(id_node1, id_node2, edge) if recursive: _, id_next = is_message_1to2(id_node1, id_node2, id_node) self.__func_iter(id_next, recursive=recursive, id_except=id_node, func_node=func_node, func_edge=func_edge) def get_adjlist(self): # the returned adjacency list is guaranteed to be ordered in a way, that all targets in each line have been # defined before. #gen = nx.generate_adjlist(self.nxgraph) dict_of_lists = nx.to_dict_of_lists(self.__nxgraph) # sort according id1 (the second sort below is stable, thus this will be the secondary order) # sorting key is the first item, i.e. id1 list_of_tuples = sorted(dict_of_lists.items(), key=lambda x: x[0]) adjlist = [] layer = [] for id1, ids2 in list_of_tuples: lay = self.node(id1).layer adjlist.append([id1] + ids2) layer.append(lay) # sort according layer # sorting key is the first item, i.e. the layer adjlist_reordered = [i[0] for i in sorted(zip(adjlist, layer), key=lambda x:x[1])] # rename the ids to id new, which use consecutive numbers starting from 0 id_nodes = [line[0] for line in adjlist_reordered] id2idn = {} # idn: id new for idn, id in enumerate(id_nodes): id2idn[id] = idn # rename all ids from id to idn and sort them adjlist_renamed = [] for line in adjlist_reordered: line_renamed = [id2idn[id] for id in line] line_renamed = [line_renamed[0]] + sorted(line_renamed[1:]) adjlist_renamed.append(line_renamed) return adjlist_renamed class GraphManipulator(ObjectRoot): """Interface class for all graph manipulators (data, inference, parameter_update and structure_update)""" def __init__(self, graph): super(GraphManipulator, self).__init__() assert isinstance(graph, Graph) self._graph = graph self._prop_graph = set() self._prop_node = set() self._prop_edge = set() self.required_axes = 0 self.id_axes = None def _register_properties(self): g = self._graph g.register_properties(self._prop_graph, self._prop_node, self._prop_edge) if self.required_axes > 0: self.id_axes = g.register_axes(self.required_axes) def clear_properties(self): self._graph.clear_properties(self._prop_graph, self._prop_node, self._prop_edge) def run(self, id_roots=None, recursive=True): g = self._graph if id_roots is None: id_roots = g.get_id_roots() elif not isinstance(id_roots, collections.Iterable): id_roots = (id_roots, ) # self._print('id_roots={}'.format(id_roots)) lklhd = 0 for id_root in id_roots: lklhd_root = self._run(id_root, recursive=recursive) # call the run method of the child class if lklhd_root is not None: lklhd += lklhd_root return lklhd def draw(self): fig, ax = plt.subplots(1,self.required_axes) self.draw_axes(ax) plt.show() class Data(GraphManipulator): """This class handles the input of observed data and the output of inferred data.""" def __init__(self, graph): super(Data, self).__init__(graph) # x contains the observed data for the corresponding node and None otherwise. self._prop_node = {'x'} self._prop_graph = {'N'} self._register_properties() self.gauss_init_std = 1 self.gauss_init_std_rand = 0 def __insert_samples(self, id_node, samples): """Insert data x for specific node. :param id_node: 1x1 node identifier :param samples: Nx1 numpy array """ g = self._graph node = g.node(id_node) assert isinstance(samples, np.ndarray) # check is samples are a cat. distribution or values if is_obj_array(samples): # object array with shape (1,) samples = samples[0] N = samples.shape[0] if samples.ndim == 1: # samples are values distrib = DistribFactory.from_samples(samples, node.k) elif node.k >= 2 and node.k == samples.shape[1]: #samples describe categorical distributions distrib = DistribFactory.empty(N, node.k) distrib.init_data(samples) else: raise ValueError("samples have wrong shape={}, for k={}".format(samples.shape, node.k)) else: N = samples.shape[0] distrib = DistribFactory.from_samples(samples, node.k) assert isequal_or_none(N, g.N) g.N = N node.x = distrib def insert_samples(self, id_nodes, samples): """Insert data x for multiple nodes. :param id_nodes: Mx1 node identifier :param samples: NxM numpy array """ self._print("inserting N={} samples into M={} nodes".format(obj_array_get_N(samples), len(id_nodes))) for i, id_node in enumerate(id_nodes): self.__insert_samples(id_node, samples[:, i]) def __distrib_init(self, id_node): """Initialize prior of id_node and outgoing edges by using observed data x :param id_node: node ID """ g = self._graph node = g.node(id_node) # initialize id_node prior, if id_node has prior if g.is_root(id_node): if node.x is not None: node.prior.init_distrib_idx(node.x, idx=None) else: node.prior.init_random() # initialize all outgoing edges (id_node, id_child_n) num_edges = g.out_degree(id_node) edges = g.out_edges_iter(id_node, data=True) idx = np.random.choice(g.N, size=(node.k,), replace=False) for id_child, edge in edges: child = g.node(id_child) has_data = child.x is not None # only use random idx of datapoints for Gaussians # (Cat datapoints usually are collapsed distributions to a single state) is_gaussian = child.k == 1 if has_data and is_gaussian: if num_edges > 1: edge.distrib.init_distrib_idx(child.x, idx) else: edge.distrib.init_distrib_equidistant_rand(child.x, self.gauss_init_std, self.gauss_init_std_rand) else: edge.distrib.init_random() child.q_dirty = True node.q_dirty = True # def _run(self, id_root, recursive, id_except=None): # self.__distrib_init(id_root) # # if recursive: # edges = self._graph.edges_iter_except(id_root, id_except) # for id_node1, id_node2 in edges: # _, id_next = is_message_1to2(id_node1, id_node2, id_root) # self._run(id_next, recursive, id_except=id_root) def _run(self, id_root, recursive, id_except=None): func_node = lambda id, node: self.__distrib_init(id) self._graph.func_iter(id_root, recursive, func_node) class BeliefPropagation(GraphManipulator): """This class handles the belief propagation inference algorithm.""" def __init__(self, graph): super(BeliefPropagation, self).__init__(graph) # lklhd: N x 1 (conditional) log-likelihoods of the datapoints # q: N x k posterior distribution of the node # q_dirty: Boolean flag that determines if q needs to be recalculated # message_1to2 (alpha): message id_node1 -> id_node2 (from parent to child) # message_2to1 (beta): message id_node1 <- id_node2 (from child to parent) self._prop_node = {'lklhd', 'q', 'q_dirty'} self._prop_edge = {'message_1to2', 'message_2to1'} # requires prop_graph: N # requires prop_node: x, prior # requires prop_edge: distrib self._register_properties() self.extract_samples_mode = 'max' @profile def _run(self, id_root, recursive): if recursive: rec = sys.maxsize else: rec = 1 self.__inward_pass(id_center=id_root, id_in=None, recursive=rec) self.__outward_pass(id_center=id_root, id_in=None, recursive=rec) lklhd = self.get_lklhd(id_root) return lklhd @profile def get_message(self, id_src, id_dest): g = self._graph if g.has_edge(id_src, id_dest): return g.edge(id_src, id_dest).message_1to2 else: assert g.has_edge(id_dest, id_src) return g.edge(id_dest, id_src).message_2to1 @classmethod @profile def __get_message_from_edge(cls, id_node1, id_node2, edge, id_dest): is_message_1to2_, id_src = is_message_1to2(id_node1, id_node2, id_dest) if is_message_1to2_: return edge.message_1to2 else: return edge.message_2to1 @profile def __set_message(self, id_dest, id_src, messages_prod): # messages_prod : N x k_node # message: N x k_origin g = self._graph if g.has_edge(id_src, id_dest): # update alpha message # edge.distrib: k_node x k_origin # for alpha message, we need to renormalize first # since each distrib is normalized, we only need to set the log_constant to zero edge = g.edge(id_src, id_dest) messages_prod.set_log_const_zero() edge.message_1to2 = messages_prod.dot(edge.distrib) else: # update beta message # edge.distrib: k_origin x k_node edge = g.edge(id_dest, id_src) edge.message_2to1 = messages_prod.dot_transpose(edge.distrib) node = g.node(id_dest) node.q_dirty = True # incoming messages have changed, thus q has changed @profile def get_messages_prod(self, id_node, id_except, include_prior=True): g = self._graph node = g.node(id_node) messages = [] if node.x is not None: messages.append(node.x) if (node.prior is not None) and include_prior: messages.append(node.prior) edges = g.edges_iter_except(id_node, id_except, data=True) for id_node1, id_node2, edge in edges: message = self.__get_message_from_edge(id_node1, id_node2, edge, id_node) messages.append(message) if (len(messages) == 1) and (messages[0].get_k1() == g.N): # this is just for speedup, the later 'else' statement would also work messages_prod = messages[0].copy() else: messages_prod = DistribFactory.uniform(g.N, node.k) messages_prod.prod(messages) return messages_prod @profile def __inward_pass(self, id_center, id_in=None, recursive=sys.maxsize): # beta_ci pass # sets message that runs towards id_in from id_center # to start with a root # call __inward_pass(id_root, recursive=1) for non-recursive and # call __inward_pass(id_root, recursive=sys.maxsize) for recursive calls g = self._graph if recursive > 0: edges_oc = g.edges_iter_except(id_center, id_in, data=False) for id_node1, id_node2 in edges_oc: _, id_out = is_message_1to2(id_node1, id_node2, id_center) self.__inward_pass(id_center=id_out, id_in=id_center, recursive=recursive-1) if id_in is not None: # only if there is a destination for the message messages_oc_prod = self.get_messages_prod(id_center, id_in) self.__set_message(id_in, id_center, messages_oc_prod) # Maybe: save here the product of all incoming messages, in order to be able to calculate later q() and the # conditional likelihood C() @profile def __outward_pass(self, id_center, id_in=None, recursive=sys.maxsize): # sets message that run towards id_center from id_in g = self._graph if id_in is not None: # only if there is a source of the message (otherwise it is the root) # in the outward pass, id_in and id_center roles are switched (in comparison to the inward pass) messages_prod = self.get_messages_prod(id_in, id_center) self.__set_message(id_center, id_in, messages_prod) if recursive > 0: edges_oc = g.edges_iter_except(id_center, id_in, data=False) for id_node1, id_node2 in edges_oc: _, id_out = is_message_1to2(id_node1, id_node2, id_center) self.__outward_pass(id_center=id_out, id_in=id_center, recursive=recursive-1) @profile def get_lklhd(self, id_node): node = self._graph.node(id_node) self.__calc_q_single(id_node) lklhd = np.mean(node.lklhd) # normalized log-likelihood; the mean divides implicitly by N return lklhd @profile def get_q(self, id_node): node = self._graph.node(id_node) self.__calc_q_single(id_node) return node.q @profile def get_lklhd_all(self): g = self._graph id_roots = g.get_id_roots() lklhd = 0 for id_root in id_roots: lklhd += self.get_lklhd(id_root) return lklhd @profile def __calc_q_single(self, id_node): g = self._graph node = g.node(id_node) if (node.q_dirty is not None) and (not node.q_dirty): # lazy calculation of q return messages_prod = self.get_messages_prod(id_node, id_except=None) if isinstance(messages_prod, DistribCat): lklhd = messages_prod.get_log_const().copy() # messages_prod.set_log_const_zero() # id_parent = g.get_parent(id_node) # if id_parent is not None: # # just to double check # lklhd2 = self.__calc_lklhd_parent(id_node, id_parent) # assert np.allclose(lklhd, lklhd2) else: id_parent = g.get_parent(id_node) assert id_parent is not None # each Gaussian node must have exactly one parent # this calculation is only possible if the Gaussian node has exactly one parent. lklhd = self.calc_lklhd_parent(id_node, id_parent) q = messages_prod node.q = q node.q_dirty = False # q has just been updated node.lklhd = lklhd @profile def calc_lklhd_parent(self, id_node, id_parent, message_child2parent_pot=None): messages_prod = self.get_messages_prod(id_parent, id_except=id_node) if message_child2parent_pot is not None: messages_prod.prod([message_child2parent_pot]) message = self.get_message(id_node, id_parent) lklhd = calc_lklhd_parent_messages(messages_prod, message) return lklhd @profile def __extract_samples(self, id_node): q = self.get_q(id_node) samples = q.extract_samples(mode=self.extract_samples_mode) return samples @profile def extract_samples(self, id_nodes): N = self._graph.N M = len(id_nodes) samples = np.zeros((N, M)) for i, id_node in enumerate(id_nodes): samples[:,i:(i+1)] = self.__extract_samples(id_node) return samples @profile def visual_gauss_edge(self, id_node1, id_node2): g = self._graph xs, ds = g.node(id_node2).x.visual_get_kde() mu = g.node(id_node2).x.get_mu() dens = g.edge(id_node1,id_node2).distrib.visual_get_density(xs) plt.plot(xs,np.concatenate((ds[:, np.newaxis], dens), axis=1)) plt.scatter(mu, np.zeros_like(mu)) plt.show() class Distrib(object): def __init__(self, k1, k2): self._k1 = k1 self._k2 = k2 def get_k1(self): return self._k1 def get_k2(self): return self._k2 # dot(Cat, Cat) # dot(Cat, Gauss) # dot(Gauss, Gauss) # dot(Gauss, Cat) # transpose(Cat) class DistribCat(Distrib): def __init__(self, k1, k2): assert k2 > 1 super(DistribCat, self).__init__(k1, k2) # values = values_norm * exp( log_const ) self.__values_norm = None # k1 x k2 self.__log_const = None # k1 x 1 def get_dof(self): dof = self._k1 * (self._k2 - 1) return dof @profile def copy(self): distrib = DistribFactory.empty(self._k1, self._k2) distrib.init_data_raw(self.__values_norm.copy(), self.__log_const.copy()) return distrib def get_values(self): return self.__values_norm * np.exp(self.__log_const) def get_values_norm(self): return self.__values_norm def get_log_const(self): return self.__log_const def set_log_const_zero(self): self.__log_const.fill(0) @profile def prod(self, distribs): for distrib in distribs: self.__values_norm *= distrib.get_values_norm() self.__log_const += distrib.get_log_const() self.__normalize_convex() @profile def dot(self, distrib): # self: N x k1 (Cat) # distrib: k1 x k2 (Cat / Gauss) # out: N x k2 (Cat / Gauss) assert (self.get_log_const() == 0).all() # alpha message should have been normalized values_norm = self.__values_norm # N x k1 if isinstance(distrib, DistribCat): assert (distrib.get_log_const() == 0).all() values = values_norm.dot(distrib.get_values_norm()) result = DistribCat(values.shape[0], values.shape[1]) result.init_data_unnormalized(values) else: assert isinstance(distrib, DistribGauss) mu = distrib.get_mu() # k1 x 1 std = distrib.get_std() # k1 x 1 # means are calculated by the same dot product as Cat data_m = values_norm.dot(mu) # N x 1 # variance within components var_within = values_norm.dot(np.square(std)) # variance between components var_between = np.sum(values_norm * np.square(data_m - mu.reshape((1, -1))), axis=1, keepdims=True) data_s = np.sqrt(var_within + var_between) result = DistribGauss(values_norm.shape[0]) result.init_data(data_m, data_s) return result @profile def dot_transpose(self, distrib): # self: N x k2 # distrib: k1 x k2 # out = self * distrib^T: N x k1 assert isinstance(distrib, DistribCat) # should never be called for DistribGauss assert (distrib.get_log_const() == 0).all() values = self.__values_norm.dot(distrib.get_values_norm().transpose()) result = DistribCat(values.shape[0], values.shape[1]) result.init_data_unnormalized(values, self.__log_const) return result @profile def init_samples(self, samples, k): assert k > 1 values_norm = self.__samples2distrib(samples, k) self.init_data(values_norm) @profile def extract_samples(self, mode): if mode == 'max': samples = self.__distrib2samples_max(self.__values_norm) elif mode == 'exp': samples = self.__distrib2samples_exp(self.__values_norm) else: assert False return samples @profile def init_uniform(self): self.__values_norm = np.empty((self._k1, self._k2)) self.__values_norm.fill(1/self._k2) self.__log_const = np.empty((self._k1, 1)) # uniform means in this case a distribution of all ones! # this ensures that the likelihood corresponds to an unobserved message. self.__log_const.fill(np.log(self._k2)) @profile def init_random(self): values_norm = np.ones((self._k1, self._k2)) / self._k2 self.__add_random(values_norm, 0.2) self.init_data(values_norm) @profile def init_data_unnormalized(self, values_norm, log_const=None): if log_const is None: log_const = np.zeros((values_norm.shape[0], 1)) log_const += np.log(normalize_convex(values_norm, axis=1)) self.init_data_raw(values_norm, log_const) @profile def init_data_raw(self, values_norm, log_const): self.__values_norm = values_norm self.__log_const = log_const @profile def init_data(self, values_norm, log_const=None): assert has_equiv_shape(values_norm, (self._k1, self._k2)) assert np.allclose(np.sum(values_norm, axis=1), 1) if log_const is not None: assert has_equiv_shape(log_const, (self._k1, 1)) else: log_const = np.zeros((self._k1, 1)) self.__values_norm = values_norm self.__log_const = log_const @profile def init_distrib_idx(self, distrib, idx=None): assert isinstance(distrib, DistribCat) x = distrib.get_values_norm() if idx is None: # initialize prior and thus average over all cases assert self._k1 == 1 values_norm = np.mean(x, axis=0, keepdims=True) else: # select cases idx x_idx = x[idx,:] assert self._k1 == x_idx.shape[0] values_norm = np.copy(x_idx) self.__add_random(values_norm, 0.1) self.init_data(values_norm) @profile def update_prior(self, distrib, N_0): # self: 1 x k2 # distrib: N x k2 M2 = distrib.get_values_norm() M2_t = M2[:,:,np.newaxis].transpose((2, 1, 0)) # 1 x k2 x N values_norm = self.__normalize_prior(M2_t, N_0) self.init_data(values_norm) @profile def update_cpd(self, distrib1, distrib2, N_0, exclude_self=False): # self=x: k1 x k2 # M1: N x k1 # M2: N x k2 M1 = distrib1.get_values_norm() M2 = distrib2.get_values_norm() M1_t = M1[:,:,np.newaxis].transpose((1, 2, 0)) # k1 x 1 x N M2_t = M2[:,:,np.newaxis].transpose((2, 1, 0)) # 1 x k2 x N if not exclude_self: x = self.get_values_norm() x_t = x[:,:,np.newaxis] # k1 x k2 x 1 q = M1_t * M2_t * x_t # k1 x k2 x N else: q = M1_t * M2_t # k1 x k2 x N q /= np.sum(q, axis=(0, 1), keepdims=True) values_norm = self.__normalize_prior(q, N_0) assert np.all(np.isfinite(values_norm)) self.init_data(values_norm) def as_str(self, num=None): values_norm = cut_max(self.__values_norm, num) log_const = cut_max(self.__log_const, num) result = 'values_norm=\n{}'.format(values_norm) result +='\nlog_const={}\n'.format(log_const.ravel()) return result def plot(self): fig, ax = plt.subplots() cax = ax.imshow(self.__values_norm, interpolation='nearest', aspect='auto', vmin=0, vmax=1) fig.colorbar(cax) @profile def __normalize_convex(self): self.__log_const += np.log(normalize_convex(self.__values_norm, axis=1)) @staticmethod @profile def __normalize_prior(q, N_0): # see Murphy (2012) Machine Learning - A Probabilistic Perspective, p.80 Eq. (3.47) # uniform alpha: alpha_k = alpha -> alpha_0 = K # N_0 = K(a-1) (pseudo counts) # q: k1 x k2 x N K = q.shape[1] k1 = q.shape[0] values_biased = np.sum(q, axis=2, keepdims=True).squeeze(axis=(2,)) # k1 x k2 N = np.sum(values_biased, axis=1, keepdims=True) # k1 x 1 values_uniform = np.ones((1, K)) / K values = values_biased * (1 / (N + N_0)) values += values_uniform * (N_0 / (N + N_0)) # # N_0 = K (alpha-1) -> alpha = (N_0 / K) + 1 # # A pseudo-count of N_0 corresponds to a Dirichlet prior with alpha = (N_0 / K) + 1 # alpha = (N_0 / K) + 1 # alpha_all = np.ones((K,))*alpha # lklhd_prior = dirichlet.logpdf(values.T, alpha_all).reshape(k1, 1) # lklhd_mode = dirichlet.logpdf(values_uniform.T, alpha_all) # lklhd_prior -= lklhd_mode return values @staticmethod @profile def __samples2distrib(samples, k): N = samples.shape[0] isnan = np.isnan(samples) notnan = np.logical_not(isnan) x_real = samples[notnan] assert np.all(np.equal(np.mod(x_real, 1), 0)) # all values must be integer assert np.all((x_real >= 0) & (x_real < k)) # all values must be within (0, k-1) values_norm = np.zeros((N, k)) ind1 = np.arange(N)[notnan] ind2 = x_real.astype(int) values_norm[ind1, ind2] = 1. values_norm[isnan, :] = 1. / k return values_norm @staticmethod @profile def __distrib2samples_max(values_norm): idx = np.argmax(values_norm, axis=1) samples = idx[:, np.newaxis] return samples @staticmethod @profile def __distrib2samples_exp(values_norm): k = values_norm.shape[1] zero2k = np.arange(k)[:, np.newaxis] # k x 1 samples = values_norm.dot(zero2k) # N x 1 return samples @staticmethod @profile def __add_random(dist, perc): k1 = dist.shape[0] k2 = dist.shape[1] dist_rand = np.random.rand(k1, k2) normalize_convex(dist_rand, axis=1) dist *= (1-perc) dist += perc * dist_rand class DistribGauss(Distrib): def __init__(self, k1): super(DistribGauss, self).__init__(k1, 1) self.__mu = None # k1 x 1 mean self.__std = None # k1 x 1 standard deviation def get_dof(self): dof = self._k1 * 2 return dof def copy(self): distrib = DistribFactory.empty(self._k1, self._k2) distrib.init_data(self.__mu.copy(), self.__std.copy()) return distrib def get_mu(self): return self.__mu def get_std(self): return self.__std @profile def __prod_single(self, distrib): mu1 = self.__mu std1 = self.__std mu2 = distrib.get_mu() std2 = distrib.get_std() assert has_equiv_shape(mu1, mu2.shape) assert mu1.shape[0] == 1 or mu2.shape[0] == 1 or mu1.shape[0] == mu2.shape[0] assert mu1.shape[1] == 1 or mu2.shape[1] == 1 or mu1.shape[1] == mu2.shape[1] if mu1.shape[0] == 1 and mu2.shape[0] > 1: mu1 = np.tile(mu1, (mu2.shape[0],1)) std1 = np.tile(std1, (mu2.shape[0],1)) # currently, I did not implement the true product of two Gaussian distributions, only the special cases for # either std=Inf or std=0 # possible cases: # std1=Inf -> mu=mu2, std=std2 # std1=0 -> mu=mu1, std=std1, assert std2!=0 # 0<std1<Inf -> std2=Inf -> mu=mu1, std=std1 # std2=0 -> mu=mu2, std=std2 # assert std==Inf or 0 is_inf1 = np.isinf(std1).ravel() is_zero1 = (std1 == 0).ravel() is_real1 = ~(is_inf1 | is_zero1) is_inf2 = np.isinf(std2).ravel() is_zero2 = (std2 == 0).ravel() is_real2 = ~(is_inf2 | is_zero2) assert np.all(~(is_zero1 & is_zero2)) assert np.all(~(is_real1 & is_real2)) # all right hand sides use fancy indexing, thus we do not need to explicitly copy the slices. if mu1.shape[0] > 1 and mu2.shape[0] == 1: mu1[is_inf1,:] = mu2[0,:] std1[is_inf1,:] = std2[0,:] if is_zero2: mu1[:,:] = mu2[0,:] std1[:,:] = std2[0,:] else: mu1[is_inf1,:] = mu2[is_inf1,:] std1[is_inf1,:] = std2[is_inf1,:] mu1[is_zero2,:] = mu2[is_zero2,:] std1[is_zero2,:] = std2[is_zero2,:] # we need the explicit assignment, since the francy indexing above created copies self.__mu = mu1 self.__std = std1 @profile def prod(self, distribs): for distrib in distribs: self.__prod_single(distrib) def dot(self, distrib): # self: N x 1 (Gauss) # distrib: 1 x k2 (Gauss) # out: N x k2 (Cat) # should never be called since we never calculate an outgoing alpha from a Gaussian node assert False @profile def dot_transpose(self, distrib): # self: N x 1 (Gauss) # distrib: k1 x 1 (Gauss) # out: N x k1 (Cat) assert isinstance(distrib, DistribGauss) k1 = distrib.get_k1() mu = distrib.get_mu().reshape((1, -1)) # 1 x k1 std = distrib.get_std().reshape((1, -1)) # 1 x k1 N = self.get_k1() data_m = self.get_mu() # N x 1 data_s = self.get_std() # N x 1 values_log = np.empty((N, k1)) # handle unobserved data isinf = np.isinf(data_s).ravel() if np.any(isinf): isnotinf = np.logical_not(isinf) # scipy_d = norm(mu, std) # scipy normal distribution # values_log[isnotinf, :] = scipy_d.logpdf(data_m[isnotinf, :]) # this is ~100 times faster than the scipy implementation values_log[isnotinf, :] = norm_logpdf(data_m[isnotinf, :], mu, std) values_log[isinf, :] = 0 else: values_log = norm_logpdf(data_m, mu, std) log_const = normalize_convex_log(values_log, axis=1) distrib_res = DistribCat(N, k1) distrib_res.init_data_raw(values_log, log_const) return distrib_res @profile def init_samples(self, samples, k): assert k == 1 mu, std = self.__samples2distrib(samples) self.init_data(mu, std) @profile def extract_samples(self, mode): samples = self.__mu return samples @profile def init_uniform(self): self.__mu = np.zeros((self._k1, 1)) self.__std = np.empty((self._k1, 1)) self.__std.fill(np.inf) @profile def init_random(self): mu = np.random.randn(self._k1, 1) * 0.05 std = (np.abs(np.random.randn(self._k1, 1)) * 0.05) + 1 self.init_data(mu, std) @profile def init_data_raw(self, mu, std): self.__mu = mu self.__std = std @profile def init_data(self, mu, std=None): assert has_equiv_shape(mu, (self._k1, 1)) if std is not None: assert has_equiv_shape(std, (self._k1, 1)) self.__mu = mu self.__std = std @profile def init_distrib_idx(self, distrib, idx=None): assert isinstance(distrib, DistribGauss) x = distrib.get_mu() if idx is None: # initialize prior and thus average over all cases mu = np.nanmean(x, axis=0, keepdims=True) else: # select cases idx mu = x[idx, :] idx_nan = np.isnan(mu) if np.any(idx_nan): # we need to randomly select new values for all NaNs idx_good = np.ones_like(idx, dtype=bool) idx_good[idx, :] = False idx_good[np.isnan(x)] = False x_good = x[idx_good, :] num_nan = np.count_nonzero(idx_nan) mu[idx_nan] = np.random.choice(x_good, num_nan, replace=False) mu = np.copy(mu) # make sure to not overwrite data std = np.empty_like(mu) std.fill(np.asscalar(np.nanstd(x))) self.init_data(mu, std) @profile def init_distrib_percentiles(self, distrib): assert isinstance(distrib, DistribGauss) x = distrib.get_mu() k = self._k1 percentiles = 100 * (np.array(range(k)) + 0.5) / k mu = np.nanpercentile(x, percentiles)[:,np.newaxis] mu = np.copy(mu) # make sure to not overwrite data std = np.empty_like(mu) std.fill(np.asscalar(np.nanstd(x))) self.init_data(mu, std) @profile def init_distrib_equidistant(self, distrib, std_rel=1): assert isinstance(distrib, DistribGauss) x = distrib.get_mu() k = self._k1 percentiles = 1 * (np.array(range(k)) + 0.5) / k min_x = np.min(x) max_x = np.max(x) range_x = max_x - min_x mu = min_x + (percentiles * range_x) mu = mu[:,np.newaxis] std = np.empty_like(mu) std.fill(np.asscalar(std_rel * np.nanstd(x) / k)) self.init_data(mu, std) @profile def init_distrib_equidistant_rand(self, distrib, std=1, std_rand=0.5): self.init_distrib_equidistant(distrib, std) x = distrib.get_mu() k = self._k1 self.__mu += np.random.randn(k, 1) * (std_rand * np.nanstd(x) / k) # @profile # def update_prior(self, distrib, N_0): # # self: 1 x k2=1 # # distrib: N x k2=1 # mu = distrib.get_mu() # std = distrib.get_std() # assert np.all(std == 0) # # self.init_data(np.mean(mu).reshape(1,1), np.std(mu).reshape(1,1)) @profile def update_cpd(self, cat, gauss, N_0, exclude_self=False): # self: k1 x 1 (mean + std) # cat: N x k1 # gauss: N x 1 (mean + std) if not exclude_self: # SPEEDUP possibility: this cat message has been already calculated during inference; could reuse that value message_GaussToCat = gauss.dot_transpose(self) cat.prod([message_GaussToCat]) q = cat.get_values_norm().T # k1 x N data_m = gauss.get_mu().T # 1 x N data_s = gauss.get_std().T # 1 x N # ignore unobserved data isnotinf = ~np.isinf(data_s).ravel() if not np.all(isnotinf): q = q[:,isnotinf] data_m = data_m[:,isnotinf] data_s = data_s[:,isnotinf] N_k = np.sum(q, axis=1, keepdims=True) # k1 x 1 N_safe = N_k.copy() N_safe[N_k == 0] = 1 mu = q.dot(data_m.T) / N_safe # k1 x 1 d_data_sq = (data_m - mu)**2 # k1 x N var_biased = np.sum(q * d_data_sq, axis=1, keepdims=True) / (N_k + N_0) var_all = np.var(data_m, keepdims=True) var = var_biased + (var_all * N_0 / (N_k + N_0)) std = np.sqrt(var) # # A pseudo-count of N_0 and prior variance var_all is equivalent of an inverse-gamma prior with # alpha = N_0 / 2 # scale = var_all * ((N_0 / 2) + 1) # (=beta) # lklhd_prior = invgamma.pdf(var, alpha, 0, scale) # lklhd_mode = invgamma.pdf(var_all, alpha, 0, scale) # lklhd_prior -= lklhd_mode assert np.all(np.isfinite(mu)) assert np.all(np.isfinite(std)) assert np.all(std>0) self.init_data(mu, std) def as_str(self, num=None): mu = cut_max(self.__mu, num) std = cut_max(self.__std, num) result = 'mu={}'.format(mu) result += '\nstd={}\n'.format(std) return result def visual_get_kde(self): mu = self.__mu.ravel() density = gaussian_kde(mu) xs = np.linspace(mu.min(),mu.max(),200) density.covariance_factor = lambda : .25 density._compute_covariance() return xs, density(xs) def visual_get_density(self, xs): xs_distrib = DistribFactory.from_samples(xs, 1) # DistribGauss dens_distrib = xs_distrib.dot_transpose(self) dens = dens_distrib.get_values() return dens @staticmethod @profile def __samples2distrib(samples): # continuous case assert np.issubsctype(samples, np.float) N = samples.shape[0] mu = samples.copy().reshape((N, 1)) std = np.zeros_like(mu) # handle NaNs isnan_mu = np.isnan(mu) std[isnan_mu] = np.inf mu[isnan_mu] = np.nan return mu, std class DistribFactory(object): @staticmethod def empty(k1, k2): # k2 = 1 => DistribGauss # k2 > 2 => DistribCat # k1 = 1 => Prior or N=1 # k1 > 1 => CPD or N>1 if k2 == 1: # DistribGauss distrib = DistribGauss(k1) else: # DistribCat distrib = DistribCat(k1, k2) return distrib @classmethod def random(cls, k1, k2): distrib = cls.empty(k1, k2) distrib.init_random() return distrib @classmethod def uniform(cls, k1, k2): distrib = cls.empty(k1, k2) distrib.init_uniform() return distrib @classmethod def from_samples(cls, samples, k): has_equiv_shape(samples, (None, 1)) N = samples.shape[0] distrib = cls.empty(N, k) distrib.init_samples(samples, k) return distrib """ Init (id_parent, id_child) distribution: - needs x (beta) of all children - init prior of id_parent - init edge of (id_parent, id_child) Init Cat prior / CPD: - random Init Gauss prior: - use data from actual node Init Gauss CPD: - use data from all children with common parent (only observed nodes!) """ class ParameterUpdate(GraphManipulator): """This class handles the parameter update step.""" def __init__(self, graph, inference): super(ParameterUpdate, self).__init__(graph) assert isinstance(inference, BeliefPropagation) # requires prop_graph: N # requires prop_node: x, prior # requires prop_edge: message_1to2, message_2to1 # updates prop_edge: distrib self._register_properties() # requires get_messages_prod() from the inference algorithm self._inference = inference self.N_0 = 1 self.print_distrib = False # pseudo count for categorical/variance prior # (sensible range: 0 <= N_0 < Inf) # N_0 = 0: no prior, fallback to ML solution (warning: might lead to infinite variances!) @profile def _run(self, id_root, recursive): self.__update_pass(id_root, id_except=None, recursive=recursive) @profile def __update_pass(self, id_node, id_except, recursive): g = self._graph func_node = lambda id, node: self.__update_prior(id, node) func_edge = lambda id1, id2, edge: self.__update_distrib(id1, id2, edge) g.func_iter(id_node, recursive, func_node, func_edge) @profile def __update_prior(self, id_node, node): if node.prior is not None: i = self._inference messages_prod = i.get_messages_prod(id_node, id_except=None) if self.print_distrib: self._print('update prior of id_node={}'.format(id_node)) #self._print(' BEFORE: ' + node.prior.as_str()) node.prior.update_prior(messages_prod, N_0=self.N_0) # if self.print_distrib: # self._print(' AFTER: ' + node.prior.as_str()) node.q_dirty = True @profile def __update_distrib(self, id_node1, id_node2, edge): i = self._inference messages_prod1 = i.get_messages_prod(id_node1, id_except=id_node2) # M1: N x k1 messages_prod2 = i.get_messages_prod(id_node2, id_except=id_node1) # M2: N x k2 distrib = edge.distrib # distrib: k1 x k2 if self.print_distrib: self._print('update distrib of id_nodes=({},{})'.format(id_node1, id_node2)) #self._print(' BEFORE: ' + distrib.as_str()) distrib.update_cpd(messages_prod1, messages_prod2, N_0=self.N_0) # if self.print_distrib: # self._print(' AFTER: ' + distrib.as_str()) self._graph.node(id_node1).q_dirty = True self._graph.node(id_node2).q_dirty = True class ParameterLearning(GraphManipulator): """This class handles the parameter update step.""" def __init__(self, graph, data, inference, parameter_update): super(ParameterLearning, self).__init__(graph) assert isinstance(data, Data) assert isinstance(inference, BeliefPropagation) assert isinstance(parameter_update, ParameterUpdate) self._prop_graph = set() self._prop_node = set() self._prop_edge = set() self._register_properties() # requires run() from the inference algorithm and parameter_updates self._data = data self._inference = inference self._parameter_update = parameter_update self.lklhd_mindiff = 1e-3 self.count_max = 100 self.restarts = 2 self.print_restarts = True self.print_every = 10 self.print_em = False self.restart_recursive = True self.draw_density = False self._copy_prop_node = {'prior'} self._copy_prop_edge = {'distrib'} @profile def _run(self, id_root, recursive): result = self._find_best_restart(id_root, recursive) return result @profile def find_best_k(self, id_root): g = self._graph K = 2 step_log = -1 increase = True K_max = 64 K_best = None bic_best = -np.inf cont = True print_restarts_bak = self.print_restarts self.print_restarts = False while K <= K_max: g.set_k(id_root, K) self._data.run(id_root, recursive=False) lklhd = self._find_best_restart(id_root, recursive=False) # calculate BIC dof = g.get_dof(id_root) bic = g.N * lklhd - (dof * np.log(g.N) / 2) self._print('binary search: K={}, BIC={}, lklhd={}, dof={}, N={}'.format(K, bic, lklhd, dof, g.N)) if bic > bic_best: K_best = K bic_best = bic forward = True else: increase = False forward = False step_log += 1 if increase else -1 if step_log < 0: break step = np.power(2,step_log) K += step if forward else -step pass self._print('binary search: K_best={}, BIC_best={}'.format(K_best, bic_best)) g.set_k(id_root, K_best) self._data.run(id_root, recursive=False) self.print_restarts = print_restarts_bak lklhd = self._find_best_restart(id_root, recursive=False) return lklhd @profile def _find_best_restart(self, id_root, recursive): if not recursive: restart_recursive = False else: restart_recursive = self.restart_recursive if self.restarts > 0: lklhd = self.__expectation_maximization(id_root, restart_recursive) lklhd_best = lklhd num_best = 0 lklhds = [lklhd] self.__parameters_copy(id_root, restart_recursive) for num in range(1, self.restarts+1): self._data.run(id_root, restart_recursive) lklhd = self.__expectation_maximization(id_root, restart_recursive) lklhds.append(lklhd) if lklhd > lklhd_best: lklhd_best = lklhd num_best = num self.__parameters_copy(id_root, restart_recursive) lklhd = lklhd_best self.__parameters_recover_copy(id_root, restart_recursive) lklhd2 = self._inference.run(id_root, restart_recursive) assert np.allclose(lklhd, lklhd2) # just to double-check if self.print_restarts: self._print('EM restarts: id_root={}, best of {} is {} with lklhd={} (max diff={}); recursive={}; restart_recursive={}'.format(id_root, len(lklhds), num_best+1, lklhd, lklhd - min(lklhds), recursive, restart_recursive)) # finally do a full recursive run if ((not restart_recursive) and recursive) or (self.restarts == 0): lklhd = self.__expectation_maximization(id_root, recursive) return lklhd def __parameters_copy(self, id_root, recursive): g = self._graph g.properties_func(id_root, GraphObject.copy, recursive, self._copy_prop_node, self._copy_prop_edge) def __parameters_recover_copy(self, id_root, recursive): g = self._graph #g.properties_func(id_root, GraphObject.recover_copy, recursive, self.__copy_prop_node, self.__copy_prop_edge) def func_node(id, node): GraphObject.recover_copy(node, self._copy_prop_node) node.q_dirty = True def func_edge(id1, id2, edge): GraphObject.recover_copy(edge, self._copy_prop_edge) g.func_iter(id_root, recursive=recursive, func_node=func_node, func_edge=func_edge) @profile def __expectation_maximization(self, id_root, recursive): lklhd_last = self._inference.run(id_root, recursive) if self.print_em: self._print('id_root={}, recursive={}, lklhd={}'.format(id_root, recursive, lklhd_last)) if self.draw_density: self.__draw_density(id_root) count = 1 continue_condition = True while continue_condition: self._parameter_update.run(id_root, recursive) lklhd = self._inference.run(id_root, recursive) lklhd_diff = lklhd - lklhd_last condition_lklhd = lklhd_diff > self.lklhd_mindiff condition_count = count < self.count_max continue_condition = condition_count & condition_lklhd if self.print_em: if (~continue_condition) | (count % self.print_every == 0) | (lklhd_diff < 0): self._print('count={}, lklhd={}, lklhd_diff={}'.format(count, lklhd, lklhd_diff)) if self.draw_density: self.__draw_density(id_root) if not condition_lklhd: self._print('Terminate because lklhd_diff <= mindiff.') if not condition_count: self._print('Terminate because count_max is reached.') count += 1 lklhd_last = lklhd if self.draw_density: plt.cla() #self.__draw_density(id_root) return lklhd def __draw_density(self, id_root): # draw the density of the first child, if it is continuous children = [id for id in self._graph.out_edges_iter(id_root)] if len(children) > 0 and self._graph.node(children[0]).k == 1: self._inference.visual_gauss_edge(id_root, children[0]) plt.gca().set_prop_cycle(None) class StructureUpdate(GraphManipulator): """Updates graph structure.""" def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdate, self).__init__(graph) assert isinstance(data, Data) self._data = data assert isinstance(inference, BeliefPropagation) self._inference = inference assert isinstance(parameter_learning, ParameterLearning) self._parameter_learning = parameter_learning self.required_axes = 2 # for lklhd_pot_diff and lklhd_pot_diff_siblings # updates graph structure self.k_default = 10 # default k for new hidden nodes self.N_0 = 1 # should be the same N_0 as in ParameterUpdate, should find better solution to share the same value self.__lklhd_pot_diff = np.zeros((0, 0)) self.lklhd_pot_diff_root = np.zeros((0,)) self.lklhd_pot_diff_siblings = np.zeros((0, 0)) self.lklhd_pot_diff_dirty = np.zeros((0,), dtype=bool) self.is_observed = np.zeros((0,)) self.draw_figure = False self.show_value_text = False self.keep_old_parents = False self.max_of_cp_and_pc = False self.balance_k = False # balance the lklhd_pot_diff value according K of each node; does not seem to work well self.find_best_k = False @profile def add_gaussian_parents(self): # add gaussian parents nodes = self._graph.nodes() for id_node in nodes: self.__gaussian_add_parent(id_node) @profile def remove_gaussian_parents(self): g = self._graph num_removed = 0 # can't use iterator, since nodes are deleted while iterating nodes_data = g.nodes(data=True) for id_node, node in nodes_data: if node.k == 1: id_parent = g.get_parent(id_node) if self._is_single_continuous_parent(id_parent): g.remove_edge(id_parent, id_node) g.remove_node(id_parent) num_removed += 1 self._print('removed {} gaussian parents'.format(num_removed)) @profile def run(self): # TODO: # - proper update for removing edges: we need to calculate the lklhd_diff for the siblings of the # parent_old as regularization condition # - lazy calculation of lklhd_pot_diff and lklhd_pot_diff_siblings (V) # - speedup of get_messages_prod() # - speedup of update_lklhd_pot_diff!!! i = self._inference g = self._graph lklhd_old = i.get_lklhd_all() # self._print('lklhd_pot_diff_dirty={}'.format(np.where(self.lklhd_pot_diff_dirty)[0])) self.update_lklhd_pot_diff() if self.draw_figure: g.draw_axes() self.draw_axes() plt.show() id_parent, id_child, create_node = self.select_update() if id_parent is not None: same_tree = g.get_root(id_parent) == g.get_root(id_child) pot_diff = self.__lklhd_pot_diff[id_parent, id_child] else: same_tree = True pot_diff = None self._print("select=({},{}); create_node={}; same_tree={}; pot_diff={}".format(id_parent, id_child, create_node, same_tree, pot_diff)) id_roots_changed = set() if (id_parent is not None) or (id_child is not None): assert id_child is not None # update dirty self._update_lklhd_pot_diff_dirty(id_parent) self._update_lklhd_pot_diff_dirty(id_child) #pot_diff = self.lklhd_pot_diff[id_parent, id_child] # this fails if (id_parent = None) and child.k == 1 child_is_gauss = g.node(id_child).k == 1 if id_parent is None and child_is_gauss: distrib_new = None else: _, _, distrib_new = self.__calc_lklhd_pot(id_parent, id_child) id_roots_changed |= self.__remove_old_parent(id_child) if not create_node: # we need to add an edge to the new parent self.__add_edge_and_init(id_parent, id_child, distrib_new ) else: assert id_parent is not None # should never happen that we create a new node and only add a single child # first remove the possible old_parent of parent id_roots_changed |= self.__remove_old_parent(id_parent) # we need to create a new hidden node and two new edges id_parent_2nd = g.add_node(self.k_default) g.add_edge(id_parent_2nd, id_parent) g.add_edge(id_parent_2nd, id_child) # TODO: do here non-recursive parameter optimization; then we should be able to guarantee the lklhd_diff in the assert below! if self.find_best_k: self._parameter_learning.find_best_k(id_parent_2nd) else: self._data.run(id_parent_2nd, recursive=False) id_roots_changed |= {g.get_root(id_child)} self._print('id_roots_changed={}'.format(id_roots_changed)) i.run(id_roots_changed) # run inference on all changed trees lklhd = i.get_lklhd_all() # double check that out predicted difference is close to the real difference lklhd_diff = lklhd - lklhd_old if (not create_node) and (not same_tree): # if we create a new node, then the increase is only guaranteed after parameter optimization # assert np.isclose(lklhd_diff, pot_diff) or (lklhd_diff - pot_diff > 0) if not (np.isclose(lklhd_diff, pot_diff) or (lklhd_diff - pot_diff > 0)): warnings.warn("lklhd_diff - pot_diff = {}".format(lklhd_diff - pot_diff)) # probably happens when an old_parent is removed and a new edge from parent_parent to siblig is created: # the edge nodes are within the same tree and thus the true distribution needs to be obtained by sending a message between them -> costly! else: lklhd = None return lklhd, id_roots_changed @profile def __add_edge_and_init(self, id_node1, id_node2, distrib_new): # TODO: implemet this function and use it all times a new edge is added. # Maybe: use similar function for initializing new node. g = self._graph i = self._inference if id_node1 is not None: g.add_edge(id_node1, id_node2) g.edge(id_node1, id_node2).distrib = distrib_new # init the edge messages, for the rare case that afterwards another __remove_old_parent() is called that # uses the same node i.run(id_roots=id_node1, recursive=False) else: # id_node2 might be gaussian, then we need to add a new parent id_parent_new = self.__gaussian_add_parent(id_node2) if id_parent_new is None: # if not, then we can initialize with distrib_new g.node(id_node2).prior = distrib_new else: self._data.run(id_roots=id_parent_new, recursive=False) @profile def __remove_old_parent(self, id_node): g = self._graph id_parent = g.get_parent(id_node) id_roots_changed = set() if id_parent is not None: # we need to remove the edge to the old parent first g.remove_edge(id_parent, id_node) if self.keep_old_parents: # nothing else to do, since all parents are kept return {g.get_root(id_parent)} out_degree_parent = g.out_degree(id_parent) id_parent_parent = g.get_parent(id_parent) if id_parent_parent is not None: parent_has_parent = True else: parent_has_parent = False if out_degree_parent == 1: id_sibling = [id for id in g.out_edges_iter(id_parent)][0] sibling_continuous = g.node(id_sibling).x is not None else: id_sibling = None sibling_continuous = False parent = g.node(id_parent) if out_degree_parent <= 1 and not (out_degree_parent==1 and not parent_has_parent and sibling_continuous): # case 1: out_degree_parent==0 & parent_has_parent -> (1a) delete edge between parent_parent and parent (1b) delete node parent # case 2: out_degree_parent==0 & ~parent_has_parent -> (2a) delete node parent # case 3: out_degree_parent==1 & parent_has_parent -> (3a) delete edge between parent_parent and parent, (3b) remove edge between parent and sibling, (3c) add edge between parent_parent and sibling (3d) delete node parent # (V) case 4: out_degree_parent==1 & ~parent_has_parent & sibling_continuous -> do nothing # case 5: out_degree_parent==1 & ~parent_has_parent & ~sibling_continuous -> (4a) delete edge between parent and sibling and (4b) delete node parent if parent_has_parent: # (1a, 3a) delete edge between parent_parent and parent if out_degree_parent==1: g.remove_edge(id_parent_parent, id_parent) # (3b) remove edge between parent and sibling _, _, distrib_new = self.__calc_lklhd_pot(id_parent_parent, id_sibling) g.remove_edge(id_parent, id_sibling) # (3c) add edge between parent_parent and sibling self.__add_edge_and_init(id_parent_parent, id_sibling, distrib_new) id_roots_changed |= {g.get_root(id_parent_parent)} else: # recursively remove the old parent id_roots_changed |= self.__remove_old_parent(id_parent) else: if out_degree_parent==1: assert not sibling_continuous # just to double check, this case should have been excluded in the first 'if' # (4a) delete edge between parent and sibling g.remove_edge(id_parent, id_sibling) id_roots_changed |= {id_sibling} # (1b, 2a, 3d, 4b) delete node parent g.remove_node(id_parent) else: id_roots_changed |= {g.get_root(id_parent)} return id_roots_changed @profile def __gaussian_add_parent(self, id_node): g = self._graph node = g.node(id_node) id_parent = None if node.k == 1: # only for gaussian nodes if not g.has_parent(id_node): # add new hidden parent if node does not have one id_parent = self.__add_node_with_children([id_node]) return id_parent @profile def __add_node_with_children(self, id_children): g = self._graph id_node = g.add_node(self.k_default) for id_child in id_children: g.add_edge(id_node, id_child) return id_node @profile def add_nodes_from_adjlist(self, adjlist): # adjlist must obey the rules: # - already existing nodes must have no children # - new nodes must have ids in increasing order # - ids are only allowed as child if they have been defined before self._print('adding {} nodes from adjacency list'.format(len(adjlist))) ide2id = {} for line in adjlist: ide_node = line[0] ide_children = line[1:] # these checks assume a tree structure if self._graph.has_node(ide_node): # if node already exists, then it must be one of the data input ones and thus doesn't have children assert not ide_children ide2id[ide_node] = ide_node else: # if node does not exist yet, then it should be one of the hidden nodes and thus must have children if ide_children: # map ide to id id_children = [ide2id[ide] for ide in ide_children if ide2id[ide] is not None] id_node = self.__add_node_with_children(id_children) ide2id[ide_node] = id_node else: # otherwise ignore node ide2id[ide_node] = None self._print('ide_node={} does not have children, leave it out'.format(ide_node)) # # assert id consistency # assert ide_node == id_node pass @profile def update_lklhd_pot_diff(self): g = self._graph i = self._inference id_node_next = g.get_id_node_next() self.__lklhd_pot_diff = expand_array(self.__lklhd_pot_diff, (id_node_next, id_node_next)) self.lklhd_pot_diff_root = expand_array(self.lklhd_pot_diff_root, (id_node_next,)) self.lklhd_pot_diff_siblings = expand_array(self.lklhd_pot_diff_siblings, (id_node_next, id_node_next)) self.is_observed = expand_array(self.is_observed, (id_node_next,)) self.lklhd_pot_diff_dirty = expand_array(self.lklhd_pot_diff_dirty, (id_node_next,), True) pl = ProgressLine(prefix=self._print_prefix() + "update_lklhd_pot_diff ") for id_child in range(id_node_next): # case of new root node (i.e. removing the actual parent) if self.lklhd_pot_diff_dirty[id_child]: if self.is_allowed_root(id_child): diff_root, _ = self.calc_lklhd_pot_diff(None, id_child) else: diff_root = np.nan self.lklhd_pot_diff_root[id_child] = diff_root # case of adding new edge if self.is_allowed_child(id_child): for id_parent in range(id_node_next): if self.lklhd_pot_diff_dirty[id_parent] or self.lklhd_pot_diff_dirty[id_child]: # self._print('update lklhd_pot_diff({},{})'.format(id_parent, id_child)) if self.is_allowed(id_parent, id_child): diff, message_child2parent_pot = self.calc_lklhd_pot_diff(id_parent, id_child) diff_siblings = self.calc_lklhd_pot_diff_siblings(id_parent, message_child2parent_pot) if diff_siblings.size == 0: diff_siblings_min = np.nan # nan for no siblings else: diff_siblings_min = np.min(diff_siblings) if g.has_parent(id_child): if self.is_allowed_root(id_child): # we need to add the diff_root, since the old parent will be removed diff_root = self.lklhd_pot_diff_root[id_child] assert not np.isnan(diff_root) diff += diff_root else: diff = np.nan diff_siblings_min = np.nan self.__lklhd_pot_diff[id_parent, id_child] = diff self.lklhd_pot_diff_siblings[id_parent, id_child] = diff_siblings_min else: self.__lklhd_pot_diff[:, id_child] = np.nan self.lklhd_pot_diff_siblings[:, id_child] = np.nan perc = int(np.round(100 * (id_child + 1) / id_node_next)) pl.progress(perc) pl.finish() # fill in the is_observed variable #parents = g.nodes_iter() for id_parent in range(id_node_next): if g.has_node(id_parent): if g.node(id_parent).x is not None: is_observed = True else: is_observed = False else: is_observed = np.nan self.is_observed[id_parent] = is_observed self.lklhd_pot_diff_dirty = np.zeros_like(self.lklhd_pot_diff_dirty, dtype=bool) @profile def calc_lklhd_pot_diff(self, id_parent_pot, id_child): i = self._inference lklhd = i.get_lklhd(id_child) lklhd_pot, message_child2parent_pot, _ = self.__calc_lklhd_pot(id_parent_pot, id_child) lklhd_pot = np.mean(lklhd_pot) lklhd_pot_diff = lklhd_pot - lklhd return lklhd_pot_diff, message_child2parent_pot @profile def calc_lklhd_pot_diff_sibling(self, id_parent_pot, id_sibling, message_child2parent_pot): i = self._inference lklhd = i.get_lklhd(id_sibling) lklhd_pot = i.calc_lklhd_parent(id_sibling, id_parent_pot, message_child2parent_pot) lklhd_pot = np.mean(lklhd_pot) lklhd_pot_diff = lklhd_pot - lklhd return lklhd_pot_diff @profile def calc_lklhd_pot_diff_siblings(self, id_parent_pot, message_child2parent_pot): g = self._graph edges = g.out_edges_iter(id_parent_pot) lklhd_pot_diff = [self.calc_lklhd_pot_diff_sibling(id_parent_pot, id_sibling, message_child2parent_pot) for id_sibling in edges] return np.array(lklhd_pot_diff) @profile def _get_lklhd_pot_diff(self): lklhd_pot_diff = self.__lklhd_pot_diff.copy() if self.max_of_cp_and_pc: tmp = lklhd_pot_diff.flatten() tmpT = lklhd_pot_diff.T.flatten() idx = (~np.isnan(tmp)) & (~np.isnan(tmpT)) tmp[idx] = np.maximum(tmp[idx], tmpT[idx]) tmp = np.reshape(tmp, lklhd_pot_diff.shape) lklhd_pot_diff = tmp if self.balance_k: k = self._get_node_infos(self._k) lklhd_pot_diff *= np.sqrt(k[:,np.newaxis]) * np.sqrt(k[np.newaxis,:]) return lklhd_pot_diff @profile def __calc_lklhd_pot_messages(self, messages_prod1, messages_prod2, message_1to2_old): """ :param messages_prod1: q(parent_pot) (WARNING: this variable is changed in-place) :param messages_prod2: beta(child) :param message_1to2_old: alpha^before(child) :return: """ if messages_prod1 is not None: k1 = messages_prod1.get_k2() else: k1 = 1 k2 = messages_prod2.get_k2() distrib = DistribFactory.empty(k1, k2) # distrib: k1 x k2 messages_prod2_all = messages_prod2.copy() messages_prod2_all.prod([message_1to2_old]) # q(child) if messages_prod1 is not None: # exclude_self needs to be true, since we calculate the CPD without having an edge between the nodes distrib.update_cpd(messages_prod1, messages_prod2_all, N_0=self.N_0, exclude_self=True) # node is gaussian -> we need to sum over parent_pot # (if none of the above applies, then we can sum over either node or parent_pot) # we need message node -> parent_pot, i.e. we calculate the lklhd from the parent message_child2parent_pot = messages_prod2.dot_transpose(distrib) messages_prod1.set_log_const_zero() messages_prod1.prod([message_child2parent_pot]) messages_prod = messages_prod1 else: distrib.update_prior(messages_prod2_all, N_0=self.N_0) # parent_pot is None -> we need to sum over node # no message exists and we only need to multiply with the prior messages_prod2.prod([distrib]) messages_prod = messages_prod2 message_child2parent_pot = None lklhd = messages_prod.get_log_const() return (lklhd, message_child2parent_pot, distrib) @profile def __calc_lklhd_pot(self, id_parent_pot, id_child): g = self._graph i = self._inference id_parent = g.get_parent(id_child) # might be None # get potential distrib for (parent_pot, node) # the child needs to remove its old parent message (either from parent or prior) messages_prod2 = i.get_messages_prod(id_child, id_except=id_parent, include_prior=False) # M2: N x k2 if id_parent is not None: message_1to2_old = i.get_message(id_parent, id_child) else: message_1to2_old = g.node(id_child).prior if id_parent_pot is not None: # the potential parent uses all its incoming messages messages_prod1 = i.get_messages_prod(id_parent_pot, id_except=None) # M1: N x k1 else: messages_prod1 = None lklhd, message_child2parent_pot, distrib = self.__calc_lklhd_pot_messages(messages_prod1, messages_prod2, message_1to2_old) return lklhd, message_child2parent_pot, distrib def _update_lklhd_pot_diff_dirty(self, id_node): if id_node is None: return g = self._graph id_root = g.get_root(id_node) def func_node(id_node_, node_): self.lklhd_pot_diff_dirty[id_node_] = True g.func_iter(id_roots=id_root, func_node=func_node) @profile def draw(self): fig, ax = plt.subplots(1,self.required_axes) if not isinstance(ax, collections.Iterable): ax = [ax] self.draw_axes(ax) plt.show() @profile def draw_axes(self, ax=None): # concatenate lklhd_pot_diff and lklhd_pot_diff_root lpd = self.__lklhd_pot_diff lpdr = self.lklhd_pot_diff_root[np.newaxis,:] pad = np.full_like(lpdr, np.nan) data = np.concatenate((lpd, pad, lpdr), axis=0) lpds = self.lklhd_pot_diff_siblings if ax is None: ax = self._graph.get_axes(self.id_axes) assert len(ax) == self.required_axes # imshow lklhd_pot_diff ax[0].set_anchor('N') imshow_values(data, ax[0], show_value_text=self.show_value_text) # imshow lklhd_pot_diff_siblings ax[1].set_anchor('N') imshow_values(lpds, ax[1], show_value_text=self.show_value_text) @profile def _is_single_continuous_parent(self, id_node): g = self._graph if g.has_node(id_node): id_children = [x for x in g.out_edges_iter(id_node)] result = (len(id_children) == 1) and (g.node(id_children[0]).k ==1) else: result = False return result @profile def _is_observed(self, id_node): g = self._graph if g.has_node(id_node): result = g.node(id_node).x is not None else: result = False return result @profile def _layer(self, id_node): g = self._graph if g.has_node(id_node): result = g.node(id_node).layer else: result = np.Inf return result @profile def _k(self, id_node): g = self._graph if g.has_node(id_node): result = g.node(id_node).k else: result = np.NaN return result @profile def _get_node_infos(self, func): num_nodes = self.__lklhd_pot_diff.shape[0] l = [func(id_node) for id_node in range(num_nodes)] ar = np.array(l) return ar # decorator substitute that is pickle-safe select_max = NanSelect(select_max_undecorated) select_weighted_random = NanSelect(select_weighted_random_undecorated) select_random = NanSelect(select_random_undecorated) select_random_metropolis = NanSelect(select_random_metropolis_undecorated) @profile def is_allowed_child(self, id_child): return True @profile def is_allowed_root(self, id_child): return False class StructureUpdatePredefined(StructureUpdate): def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdatePredefined, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.adjlist = None self.__done = False def run(self): if self.adjlist is None: raise ValueError('The variable adjlist is empty, but an adjacency list was expected!') if not self.__done: self.remove_gaussian_parents() self.add_nodes_from_adjlist(self.adjlist) self._data.run() lklhd = self._inference.run() self.__done = True # set restart_recursive to True (otherwise we would only learn a part of the tree self._parameter_learning.restart_recursive = True else: # already done adding nodes lklhd = None id_roots_changed = None return lklhd, id_roots_changed #ToDo: # Implement within run() method: # (1) remove gaussian parents (opposite of add_gaussian_parents()) # (2) add_nodes_from_adjlist # (3) init distributions class StructureUpdateCVPR2015(StructureUpdate): """This class handles the parameter update step.""" def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdateCVPR2015, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.lklhd_mindiff = 0.01 self.lklhd_mindiff_siblings = -0.1 self.select_strategy = StructureUpdate.select_max self.new_node_layer_plusone = True self.force_full_tree = False @profile def is_allowed_child(self, id_child): g = self._graph if not g.has_node(id_child): return False child = g.node(id_child) if not g.is_root(id_child): # check if child's parent is a single parent of a continuous node if child.k == 1 and g.out_degree(g.get_parent(id_child)) == 1: return True else: return False # check if child is a single parent of a continuous node if g.out_degree(id_child) == 1: # this check is sufficient, since all other nodes have either degree=0 or degree>1 return False return True @profile def is_allowed(self, id_parent, id_child): g = self._graph if not g.has_node(id_parent): return False if not g.has_node(id_child): return False parent = g.node(id_parent) child = g.node(id_child) if parent.k == 1: # continuous parents are not allowed return False if id_parent == id_child: # parent and child must be different return False if g.get_root(id_parent) == g.get_root(id_child): # parent and child must be in different subtrees return False if not g.is_root(id_parent): return False if not g.is_root(id_child): # check if child's parent is a single parent of a continuous node if child.k == 1 and g.out_degree(g.get_parent(id_child)) == 1: return True else: return False # check if child is a single parent of a continuous node if g.out_degree(id_child) == 1: # this check is sufficient, since all other nodes have either degree=0 or degree>1 return False return True @profile @staticmethod def _calc_closed(lklhd_pot_diff, cond_is_observed): changed = True is_closed = np.all(np.isnan(lklhd_pot_diff), axis=1) # closed are the nodes that cannot add any other node as child # observed nodes are always closed is_closed = is_closed | cond_is_observed count = 0 while changed: lklhd_pot_diff_excl_open_children = lklhd_pot_diff.copy() lklhd_pot_diff_excl_open_children[:, ~is_closed] = np.nan # open nodes cannot be added as child is_closed_new = np.all(np.isnan(lklhd_pot_diff_excl_open_children), axis=1) is_closed_new = is_closed | is_closed_new if np.all(is_closed == is_closed_new): changed = False is_closed = is_closed_new count += 1 assert count < 999 # just to debug, this should never fail return is_closed @profile def _get_cond_mindiff(self, lklhd_pot_diff): with np.errstate(invalid='ignore'): cond_mindiff = np.isnan(lklhd_pot_diff) | (lklhd_pot_diff > self.lklhd_mindiff) cond_siblings_mindiff = np.isnan(self.lklhd_pot_diff_siblings) | \ (self.lklhd_pot_diff_siblings > self.lklhd_mindiff_siblings) return cond_mindiff, cond_siblings_mindiff @profile def select_update(self): lklhd_pot_diff = self._get_lklhd_pot_diff() is_observed = self._get_node_infos(self._is_observed) layer = self._get_node_infos(self._layer) cond_mindiff, cond_siblings_mindiff = self._get_cond_mindiff(lklhd_pot_diff) # exclude edges that do not fulfill cond_mindiff lklhd_pot_diff[~(cond_mindiff)] = np.nan is_closed = self._calc_closed(lklhd_pot_diff, is_observed) lklhd_pot_diff[:,~is_closed] = np.nan # exclude children that are open eligible_cond = ~np.isnan(lklhd_pot_diff) layer_max = np.maximum(layer[:, np.newaxis], layer[np.newaxis, :]) # new node is created either if cond_siblings is not fulfilled or if the new parent is observed new_node_cond = (~cond_siblings_mindiff) | is_observed[:,np.newaxis] if self.new_node_layer_plusone: # if we create a new node, then it will be one layer higher # this is different from the original cvpr algorithm layer_max[new_node_cond] += 1 if np.any(eligible_cond): layer_min_eligible = np.min(layer_max[eligible_cond]) # priority_cond = (~new_node_cond) & (~is_single_continuous_parent[:,np.newaxis]) priority_cond = layer_max == layer_min_eligible if np.any(eligible_cond & priority_cond): # check if we can continue within the priority conditions lklhd_pot_diff[~priority_cond] = np.nan id_parent, id_child = self.select_strategy(lklhd_pot_diff) create_node = new_node_cond[id_parent, id_child] else: id_parent, id_child, create_node = None, None, None # debug printout lklhd_pot_diff_orig = self._get_lklhd_pot_diff() if np.any(~np.isnan(lklhd_pot_diff_orig)): id_parent_max, id_child_max = StructureUpdate.select_max(lklhd_pot_diff_orig) self._print('select_max=({},{}); lklhd_pot_diff={}; is_closed[id_child_max]={}'.format( id_parent_max, id_child_max, lklhd_pot_diff_orig[id_parent_max, id_child_max], is_closed[id_child_max])) if self.force_full_tree: id_parent, id_child = id_parent_max, id_child_max create_node = new_node_cond[id_parent, id_child] else: self._print('select_max=(None,None)') return id_parent, id_child, create_node class StructureUpdateCVPR2015Closer(StructureUpdateCVPR2015): """This class handles the parameter update step.""" def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdateCVPR2015Closer, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.__is_closed_last = np.zeros((0,)) @profile def update_lklhd_pot_diff(self): super(StructureUpdateCVPR2015Closer, self).update_lklhd_pot_diff() # get is_closed array lklhd_pot_diff = self._get_lklhd_pot_diff() is_observed = self._get_node_infos(self._is_observed) cond_mindiff, _ = self._get_cond_mindiff(lklhd_pot_diff) lklhd_pot_diff[~(cond_mindiff)] = np.nan # exclude edges that do not fulfill cond_mindiff is_closed = self._calc_closed(lklhd_pot_diff, is_observed) # get newly closed nodes id_newly_closed = set() for id_root in self._graph.get_id_roots(): open_last = (id_root >= len(self.__is_closed_last)) or (not self.__is_closed_last[id_root]) open_now = (id_root >= len(is_closed)) or (not is_closed[id_root]) if open_last and not open_now: id_newly_closed.add(id_root) self.__is_closed_last = is_closed if id_newly_closed: id_newly_closed = sorted(id_newly_closed) self._print("recursive EM on id_newly_closed={}".format(id_newly_closed)) for id_root in id_newly_closed: self._parameter_learning.run(id_roots=id_root, recursive=True) self._update_lklhd_pot_diff_dirty(id_root) super(StructureUpdateCVPR2015Closer, self).update_lklhd_pot_diff() @profile def select_update(self): lklhd_pot_diff = self._get_lklhd_pot_diff() is_observed = self._get_node_infos(self._is_observed) layer = self._get_node_infos(self._layer) cond_mindiff, cond_siblings_mindiff = self._get_cond_mindiff(lklhd_pot_diff) lklhd_pot_diff[~(cond_mindiff)] = np.nan # exclude edges that do not fulfill cond_mindiff is_closed = self._calc_closed(lklhd_pot_diff, is_observed) lklhd_pot_diff[:,~is_closed] = np.nan # exclude children that are open eligible_cond = ~np.isnan(lklhd_pot_diff) layer_max = np.maximum(layer[:, np.newaxis], layer[np.newaxis, :]) # new node is created either if cond_siblings is not fulfilled or if the new parent is observed new_node_cond = (~cond_siblings_mindiff) | is_observed[:,np.newaxis] if self.new_node_layer_plusone: # if we create a new node, then it will be one layer higher # this is different from the original cvpr algorithm layer_max[new_node_cond] += 1 if np.any(eligible_cond): layer_min_eligible = np.min(layer_max[eligible_cond]) # priority_cond = (~new_node_cond) & (~is_single_continuous_parent[:,np.newaxis]) priority_cond = layer_max == layer_min_eligible if np.any(eligible_cond & priority_cond): # check if we can continue within the priority conditions lklhd_pot_diff[~priority_cond] = np.nan id_parent, id_child = self.select_strategy(lklhd_pot_diff) create_node = new_node_cond[id_parent, id_child] else: id_parent, id_child, create_node = None, None, None return id_parent, id_child, create_node class StructureUpdateSampling(StructureUpdate): """This class handles the parameter update step.""" # TODO: implement case to change edges within the same tree def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdateSampling, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.select_strategy = StructureUpdate.select_weighted_random @profile def is_allowed(self, id_parent, id_child): g = self._graph if not g.has_node(id_parent): return False if not g.has_node(id_child): return False if id_parent == id_child: # parent and child must be different return False parent = g.node(id_parent) if parent.k == 1: # continuous parents are not allowed return False child = g.node(id_child) if not ((parent.layer == child.layer) or (parent.layer == child.layer+1)): return False if (parent.layer == child.layer): # if a new node is created (i.e. parent.layer == child.layer), then the parent should not be a single parent of a continuous node if g.out_degree(id_parent) == 1: return False # if g.get_root(id_parent) == g.get_root(id_child): # # parent and child must be in different subtrees # return False if g.out_degree(id_child) == 1: # the child should not be a single parent of a continuous node # this check is sufficient, since all other nodes have either degree=0 or degree>1 return False if g.has_edge(id_parent, id_child): # the edge should not already be in the tree return False id_parent_parent = g.get_parent(id_parent) if id_parent_parent == g.get_parent(id_child) and id_parent_parent is not None: # the nodes should not have already the same parent return False return True @profile def is_allowed_root(self, id_child): g = self._graph if not g.has_node(id_child): return False if g.is_root(id_child): return False child = g.node(id_child) if child.k == 1: # continuous children without parent are not allowed return False return True @profile def select_update(self): # TODO: # - include removing parent option # - better lklhd_pot_diff calculation: if old_parents are removed, this needs to be incorporated (for both, parent and child) lklhd_pot_diff = self._get_lklhd_pot_diff() # lklhd_pot_diff_root = self.lklhd_pot_diff_root.copy() layer = self._get_node_infos(self._layer) # maybe: include lklhd_pot_diff_root, i.e. the possibility to remove an edge # if np.any(~np.isnan(lklhd_pot_diff)) or np.any(~np.isnan(lklhd_pot_diff_root)): id_parent, id_child = self.select_strategy(lklhd_pot_diff) # id_parent, id_child = self._select_random(lklhd_pot_diff) if (id_parent is not None) and (id_child is not None): create_node = layer[id_parent] == layer[id_child] else: create_node = None return id_parent, id_child, create_node class StructureUpdateSamplingFixedLayers(StructureUpdate): """This class handles the parameter update step.""" def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdateSamplingFixedLayers, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.select_strategy = StructureUpdate.select_weighted_random self.__init_fixed_layers() @profile def __init_fixed_layers(self): g = self._graph id_node_next = g.get_id_node_next() self.__layer = np.zeros((id_node_next,)) for id_node, node in g.nodes_iter(data=True): self.__layer[id_node] = node.layer @profile def is_allowed(self, id_parent, id_child): g = self._graph if not g.has_node(id_parent): return False if not g.has_node(id_child): return False if id_parent == id_child: # parent and child must be different return False parent = g.node(id_parent) if parent.k == 1: # continuous parents are not allowed return False if not (self.__layer[id_parent] > self.__layer[id_child]): return False if g.has_edge(id_parent, id_child): # the edge should not already be in the tree return False return True @profile def select_update(self): lklhd_pot_diff = self._get_lklhd_pot_diff() id_parent, id_child = self.select_strategy(lklhd_pot_diff) create_node = False return id_parent, id_child, create_node class StructureUpdateSamplingIterative(StructureUpdate): """This class handles the parameter update step.""" def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdateSamplingIterative, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.select_strategy = StructureUpdate.select_max self.id_node_last = None self.id_parent_last = None self.id_nodes_next = [] self.__init_nodes_next() self.__keep_old_parents_bak = None @profile def __init_nodes_next(self): if not self.id_nodes_next: self.id_nodes_next = [] for id_node in self._graph.nodes_iter(): if self.__is_allowed_root(id_node): self.id_nodes_next.append(id_node) # randomize order random.shuffle(self.id_nodes_next) @profile def is_allowed(self, id_parent, id_child): if self.id_node_last is None: return False if self.id_node_last != id_child: return False g = self._graph if not g.has_node(id_parent): return False if not g.has_node(id_child): return False if id_parent == id_child: # parent and child must be different return False parent = g.node(id_parent) if parent.k == 1: # continuous parents are not allowed return False if parent.x is not None: # observed parents are not allowed return False if g.get_root(id_parent) == g.get_root(id_child): # parent and child must be in different subtrees return False return True @profile def is_allowed_child(self, id_child): if self.id_node_last is None: return False if self.id_node_last != id_child: return False g = self._graph if not g.has_node(id_child): return False return True @profile def __is_allowed_root(self, id_child): g = self._graph if not g.has_node(id_child): return False if g.is_root(id_child): return False return True @profile def select_update(self): lklhd_pot_diff = self._get_lklhd_pot_diff() if self.id_node_last is not None: id_parent, id_child = self.select_strategy(lklhd_pot_diff) self.id_node_last = None self.__keep_old_parents_bak = self.keep_old_parents # in this step, it needs to be set to False, in order to remove single parents of a Gaussian node self.keep_old_parents = False if id_parent == self.id_parent_last: self._print("connected back to previous parent") else: self._print("found new parent!") else: id_parent = None id_child = self.id_nodes_next.pop(0) self.id_node_last = id_child if self.__keep_old_parents_bak is not None: self.keep_old_parents = self.__keep_old_parents_bak self.id_parent_last = self._graph.get_parent(id_child) create_node = False self.__init_nodes_next() return id_parent, id_child, create_node class StructureUpdateGreedyBinary(StructureUpdate): """This class handles the parameter update step.""" def __init__(self, graph, data, inference, parameter_learning): super(StructureUpdateGreedyBinary, self).__init__(graph, data, inference, parameter_learning) self._register_properties() self.select_strategy = StructureUpdate.select_max self.find_best_k = True @profile def is_allowed(self, id_parent, id_child): g = self._graph if not g.has_node(id_parent): return False if not g.has_node(id_child): return False if id_parent == id_child: # parent and child must be different return False if not g.is_root(id_parent): return False if not g.is_root(id_child): return False return True @profile def is_allowed_root(self, id_child): return False @profile def select_update(self): lklhd_pot_diff = self._get_lklhd_pot_diff() id_parent, id_child = self.select_strategy(lklhd_pot_diff) if (id_parent is not None) and (id_child is not None): create_node = True else: create_node = None return id_parent, id_child, create_node class LogEntry(object): ATTR_ORDERED = ['count', 'num_roots', 'lklhd','lklhd_diff','structure_diff','parameter_diff', 'num_nodes'] def __init__(self, *args): assert len(args) == len(self.ATTR_ORDERED) for i, attr in enumerate(self.ATTR_ORDERED): setattr(self, attr, args[i]) def as_str(self): string = '' for attr in self.ATTR_ORDERED: value = getattr(self, attr) string += attr + "={} ".format(value) return string class Log(object): def __init__(self): self.log_entries = [] def append(self, log_entry): assert isinstance(log_entry, LogEntry) self.log_entries.append(log_entry) def as_vector(self, attr): result = np.zeros((len(self.log_entries),)) for i, entry in enumerate(self.log_entries): result[i] = getattr(entry, attr) return result class StructureLearning(GraphManipulator): def __init__(self, graph, inference, parameter_learning, structure_update): super(StructureLearning, self).__init__(graph) assert isinstance(inference, BeliefPropagation) assert isinstance(parameter_learning, ParameterLearning) assert isinstance(structure_update, StructureUpdate) self._register_properties() self._inference = inference self._parameter_learning = parameter_learning self._structure_update = structure_update self.lklhd_mindiff = 1.e-6 self.count_max = 999999 self.log = Log() self.pl_recursive = True def __do_logging(self, count, lklhd_parameters, lklhd_structure, lklhd_last): lklhd_diff = lklhd_parameters - lklhd_last lklhd_diff_structure = lklhd_structure - lklhd_last lklhd_diff_parameters = lklhd_parameters - lklhd_structure log_entry = LogEntry(count, self._graph.get_num_roots(), lklhd_parameters, lklhd_diff, lklhd_diff_structure, lklhd_diff_parameters, self._graph.number_of_nodes()) self._print(log_entry.as_str()) self.log.append(log_entry) @profile def run(self): pl = self._parameter_learning su = self._structure_update lklhd_last = pl.run() self._print('lklhd={}'.format(lklhd_last)) count = 1 continue_condition = count-1 < self.count_max while continue_condition: lklhd_structure, id_roots = su.run() if lklhd_structure is not None: # only run the parameter learning on the changed subtrees pl.run(id_roots=id_roots, recursive=self.pl_recursive) lklhd_parameters = self._inference.get_lklhd_all() lklhd_diff = lklhd_parameters - lklhd_last condition_lklhd = lklhd_diff > self.lklhd_mindiff condition_count = count < self.count_max continue_condition = condition_count & condition_lklhd self.__do_logging(count, lklhd_parameters, lklhd_structure, lklhd_last) lklhd_last = lklhd_parameters count += 1 if not condition_lklhd: self._print('Terminate because lklhd_diff <= mindiff.') if not condition_count: self._print('Terminate because count_max is reached.') else: continue_condition = False self._print('No more possible structure updates.') # flush stdout # (for some reason otherwise no stdout is written during this stage, when streams are redirected to a # network file) sys.stdout.flush() # final parameter optimization self._print('Do final recursive parameter optimization.') # change the parameter learning variables: parameters_new = {'restart_recursive':True, 'lklhd_mindiff':1e-5, 'count_max':1000, 'print_every':100, 'print_em':True} parameters_original = get_and_set_attr(pl, parameters_new) lklhd_structure = lklhd_last lklhd_parameters = pl.run() self.__do_logging(count, lklhd_parameters, lklhd_structure, lklhd_last) # restore old parameters: get_and_set_attr(pl, parameters_original) return lklhd_last class LatentTree(ObjectRoot): def __init__(self, structure_update=StructureUpdateCVPR2015): super(LatentTree, self).__init__() # init LT objects self.graph = Graph() self.data = Data(self.graph) self.inference = BeliefPropagation(self.graph) self.parameter_update = ParameterUpdate(self.graph, self.inference) self.parameter_learning = ParameterLearning(self.graph, self.data, self.inference, self.parameter_update) self.structure_update = structure_update(self.graph, self.data, self.inference, self.parameter_learning) self.structure_learning = StructureLearning(self.graph, self.inference, self.parameter_learning, self.structure_update) @profile def set_structure_update(self, structure_update, attr_dict=None): self.structure_update = structure_update(self.graph, self.data, self.inference, self.parameter_learning) self.structure_learning._structure_update = self.structure_update if attr_dict is not None: for key, val in attr_dict.items(): setattr(self.structure_update, key, val) @profile def training(self, X, K, clear_properties=True): # training start_time = time.time() id_nodes = self.graph.add_nodes(K) # create the observed nodes self.data.insert_samples(id_nodes, X) # insert the data self.structure_update.add_gaussian_parents() # add gaussian single parents self.data.run() # init distributions random or from data self.lklhd = self.structure_learning.run() # learn the structure elapsed_time = time.time() - start_time self._print("elapsed training time: {:.1f} min".format(elapsed_time / 60)) if clear_properties: # clean up self.clear_properties() @profile def testing(self, X_o, id_o, id_u, clear_properties=True): # testing self.data.insert_samples(id_o, X_o) lklhd = self.inference.run() X_u = self.inference.extract_samples(id_u) if clear_properties: # clean up self.clear_properties() return X_u, lklhd def clear_properties(self): self.data.clear_properties() self.inference.clear_properties() self.parameter_update.clear_properties() self.parameter_learning.clear_properties() self.structure_update.clear_properties() self.structure_learning.clear_properties()
bsd-3-clause
jmetzen/scikit-learn
examples/linear_model/plot_polynomial_interpolation.py
168
2088
#!/usr/bin/env python """ ======================== Polynomial interpolation ======================== This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x n_degree+1 and has the following form: [[1, x_1, x_1 ** 2, x_1 ** 3, ...], [1, x_2, x_2 ** 2, x_2 ** 3, ...], ...] Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix is akin to (but different from) the matrix induced by a polynomial kernel. This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces. """ print(__doc__) # Author: Mathieu Blondel # Jake Vanderplas # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline def f(x): """ function to approximate by polynomial interpolation""" return x * np.sin(x) # generate points used to plot x_plot = np.linspace(0, 10, 100) # generate points and keep a subset of them x = np.linspace(0, 10, 100) rng = np.random.RandomState(0) rng.shuffle(x) x = np.sort(x[:20]) y = f(x) # create matrix versions of these arrays X = x[:, np.newaxis] X_plot = x_plot[:, np.newaxis] colors = ['teal', 'yellowgreen', 'gold'] lw = 2 plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw, label="ground truth") plt.scatter(x, y, color='navy', s=30, marker='o', label="training points") for count, degree in enumerate([3, 4, 5]): model = make_pipeline(PolynomialFeatures(degree), Ridge()) model.fit(X, y) y_plot = model.predict(X_plot) plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw, label="degree %d" % degree) plt.legend(loc='lower left') plt.show()
bsd-3-clause
heplesser/nest-simulator
extras/ConnPlotter/colormaps.py
6
6919
# -*- coding: utf-8 -*- # # colormaps.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # ConnPlotter --- A Tool to Generate Connectivity Pattern Matrices """ Colormaps for ConnPlotter. Provides the following functions and colormaps: - make_colormap: based on color specification, create colormap running from from white to fully saturated color - redblue: from fully saturated red to white to fully saturated blue - bluered: from fully saturated blue to white to fully saturated red For all colormaps, "bad" values (NaN) are mapped to white. Provides also ZeroCenterNorm, mapping negative values to 0..0.5, positive to 0.5..1. """ # ---------------------------------------------------------------------------- import matplotlib.colors as mc import matplotlib.cbook as cbook import numpy as np __all__ = ['ZeroCenterNorm', 'make_colormap', 'redblue', 'bluered', 'bad_color'] # ---------------------------------------------------------------------------- bad_color = (1.0, 1.0, 0.9) # ---------------------------------------------------------------------------- class ZeroCenterNorm(mc.Normalize): """ Normalize so that value 0 is always at 0.5. Code from matplotlib.colors.Normalize. Copyright (c) 2002-2009 John D. Hunter; All Rights Reserved http://matplotlib.sourceforge.net/users/license.html """ # ------------------------------------------------------------------------ def __call__(self, value, clip=None): """ Normalize given values to [0,1]. Returns data in same form as passed in. value can be scalar or array. """ if clip is not None and clip is not False: assert (False) # clip not supported if cbook.iterable(value): vtype = 'array' val = np.ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = np.ma.array([value]).astype(np.float) self.autoscale_None(val) self.vmin = min(0, self.vmin) self.vmax = max(0, self.vmax) # imshow expects masked arrays # fill entire array with 0.5 result = np.ma.array(0.5 * np.ma.asarray(np.ones(np.shape(val))), dtype=np.float, mask=val.mask) # change values != 0 result[val < 0] = 0.5 * (self.vmin - val[val < 0]) / self.vmin result[val > 0] = 0.5 + 0.5 * val[val > 0] / self.vmax if vtype == 'scalar': result = result[0] return result # ------------------------------------------------------------------------ def inverse(self, value): """ Invert color map. Required by colorbar(). """ if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = np.asarray(value) res = np.zeros(np.shape(val)) res[val < 0.5] = vmin - 2 * vmin * val[val < 0.5] res[val > 0.5] = 2 * (val[val > 0.5] - 0.5) * vmax return res else: if value == 0.5: return 0 elif value < 0.5: return vmin - 2 * vmin * value # vmin < 0 else: return 2 * (value - 0.5) * vmax # ---------------------------------------------------------------------------- def make_colormap(color): """ Create LinearSegmentedColormap ranging from white to the given color. Color can be given in any legal color format. Bad color is set to white. """ try: r, g, b = mc.colorConverter.to_rgb(color) except Exception: raise ValueError('Illegal color specification: %s' % color.__repr__) cm = mc.LinearSegmentedColormap(color.__str__(), {'red': [(0.0, 1.0, 1.0), (1.0, r, r)], 'green': [(0.0, 1.0, 1.0), (1.0, g, g)], 'blue': [(0.0, 1.0, 1.0), (1.0, b, b)]}) cm.set_bad(color=bad_color) # light yellow return cm # ---------------------------------------------------------------------------- redblue = mc.LinearSegmentedColormap('redblue', {'red': [(0.0, 0.0, 1.0), (0.5, 1.0, 1.0), (1.0, 0.0, 0.0)], 'green': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 0.0, 0.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)]}) redblue.set_bad(color=bad_color) # ---------------------------------------------------------------------------- bluered = mc.LinearSegmentedColormap('bluered', {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 0.0, 0.0)], 'blue': [(0.0, 1.0, 1.0), (0.5, 1.0, 1.0), (1.0, 0.0, 0.0)]}) bluered.set_bad(color=bad_color) # ---------------------------------------------------------------------------- if __name__ == '__main__': # this should be proper unit tests n1 = ZeroCenterNorm() if (n1([-1, -0.5, 0.0, 0.5, 1.0]).data == np.array( [0, 0.25, 0.5, 0.75, 1.0])).all(): print("n1 ok") else: print("n1 failed.") n2 = ZeroCenterNorm(-1, 2) if (n2([-1, -0.5, 0.0, 1.0, 2.0]).data == np.array( [0, 0.25, 0.5, 0.75, 1.0])).all(): print("n2 ok") else: print("n2 failed.")
gpl-2.0
alexeyche/ego
tests/testfuncs.py
1
3182
#!/usr/bin/env python import numpy as np import random import egopy as ego from egopy import Cov, Mean, Lik, Inf, Model, Acq from math import pi, cos, sin, pow from matplotlib import pyplot as plt ego.setDebugLogLevel() def scale_to(x, minv=None, maxv=None, a=0.0, b=1.0): if minv is None: minv = min(x) if maxv is None: maxv = max(x) return ((b-a)*(x - minv)/(maxv-minv)) + a def plot_mins(X, Y, plot_spec): minY = min(Y) minYIds = np.where(Y == minY)[0] plt.plot(X[minYIds], [minY]*minYIds.shape[0], plot_spec) seed = 9 if not seed is None: rng = np.random.RandomState(seed) else: rng = np.random.RandomState() def lhs_sample(n, rng): return (rng.permutation(range(1,n+1)) - rng.random_sample(n))/float(n) def rosen(x): a = 1 b = 100 return ((a - x[0])**2 + b * (x[1]- x[0]*x[0])**2)/100.0 def branin(x): """ % Min = 0.1239 0.8183 % Min = 0.5428 0.1517 => 0.3979 % Min = 0.9617 0.1650 """ a = x[0] * 15 - 5; b = x[1] * 15; return ((b-(5.1/(4*pi**2))*a**2+5*a/pi-6)**2+10*(1-1/(8*pi))*cos(a)+10) def periodic1d(x): """ Opt: 0.23719 """ return (x-0.3)*(x-0.3) + sin(20*x)*0.2 def sq1d(x): return (0.5-x)**2 D, fopt = 1, sq1d cov = Cov("cSqExpISO", D, [np.log(1.0), np.log(1.0)]) mean = Mean("mConst", D, [1.0]) lik = Lik("lGauss", D, [np.log(0.01)]) inf = Inf("iExact") acq = Acq("aEI", D, [0.0]) model = Model(mean, cov, lik, inf, acq) init_size = 5 X = np.zeros((init_size, D)) for di in range(D): X[:, di] = lhs_sample(init_size, rng) Y = np.asarray([ fopt(x) for x in X ]) #np.savetxt("/var/tmp/testfuncs.csv", np.hstack((X, np.asarray([Y]).T)), delimiter=',') np.savetxt("/var/tmp/testfuncs.csv", np.hstack((X, Y)), delimiter=',') model.setData(X, Y) #model.optimizeHyp() #gridSize = pow(1000, 1.0/D) gridSize = 1000 #gridSize = 100 grid = list() for di in range(D): grid.append(np.linspace(0.0, 1.0, gridSize)) if D>1: points = np.vstack(np.meshgrid(*grid)).reshape(len(grid), -1).T else: points = grid[0] Ygrid = np.asarray([ fopt(x) for x in points ]) preds = model.getPrediction(points) Ymean = np.asarray([ y.getMean() for y in preds ]) Ysd = np.asarray([ y.getSd() for y in preds ]) ev, dev = acq.evaluateCriteria(points) ev = scale_to(ev) ev = ev.reshape(len(ev)) if D == 1: plt.figure(1) plt.plot(points, Ymean, '-', color='green', linewidth=2.0) plt.plot(points, Ygrid, '-', color='blue') plt.fill_between(points, Ymean-Ysd, Ymean+Ysd, facecolor='green', interpolate=True, alpha=0.2) plt.plot(X, Y, 'bp') plt.plot(points, ev, '-', color='red') plot_mins(points, ev, 'rd') plot_mins(points, Ymean, 'bd') else: ev = ev.reshape((gridSize, gridSize)) Ymean = Ymean.reshape((gridSize, gridSize)) Ysd = Ysd.reshape((gridSize, gridSize)) Ygrid = Ygrid.reshape((gridSize, gridSize)) plt.figure(1) plt.contourf(grid[0], grid[1], Ygrid, alpha=0.5) plt.contour(grid[0], grid[1], Ymean, linestyles='dashed') plt.figure(2) plt.contourf(grid[0], grid[1], ev) #ego.optimizeModel(model, "CG", {"MaxEval": 100}) #model.optimize(fopt) #X, Y = model.getData()
gpl-2.0
drandykass/fatiando
gallery/gravmag/euler_moving_window.py
7
3054
""" .. _gallery_euler_mw: Euler deconvolution with a moving window ---------------------------------------- Euler deconvolution attempts to estimate the coordinates of simple (idealized) sources from the input potential field data. There is a strong assumption that the sources have simple geometries, like spheres, vertical pipes, vertical planes, etc. So it wouldn't be much of a surprise if the solutions aren't great when sources are complex. Let's test the Euler deconvolution using a moving window scheme, a very common approach used in all industry software. This is implemented in :class:`fatiando.gravmag.euler.EulerDeconvMW`. """ from __future__ import print_function from fatiando.gravmag import sphere, transform, euler from fatiando import gridder, utils, mesher import matplotlib.pyplot as plt # Make some synthetic magnetic data to test our Euler deconvolution. # The regional field inc, dec = -45, 0 # Make a model of two spheres magnetized by induction only model = [ mesher.Sphere(x=-1000, y=-1000, z=1500, radius=1000, props={'magnetization': utils.ang2vec(2, inc, dec)}), mesher.Sphere(x=1000, y=1500, z=1000, radius=1000, props={'magnetization': utils.ang2vec(1, inc, dec)})] print("Centers of the model spheres:") print(model[0].center) print(model[1].center) # Generate some magnetic data from the model shape = (100, 100) area = [-5000, 5000, -5000, 5000] x, y, z = gridder.regular(area, shape, z=-150) data = sphere.tf(x, y, z, model, inc, dec) # We also need the derivatives of our data xderiv = transform.derivx(x, y, data, shape) yderiv = transform.derivy(x, y, data, shape) zderiv = transform.derivz(x, y, data, shape) # Now we can run our Euler deconv solver on a moving window over the data. # Each window will produce an estimated point for the source. # We use a structural index of 3 to indicate that we think the sources are # spheres. # Run the Euler deconvolution on moving windows to produce a set of solutions # by running the solver on 10 x 10 windows of size 1000 x 1000 m solver = euler.EulerDeconvMW(x, y, z, data, xderiv, yderiv, zderiv, structural_index=3, windows=(10, 10), size=(1000, 1000)) # Use the fit() method to obtain the estimates solver.fit() # The estimated positions are stored as a list of [x, y, z] coordinates # (actually a 2D numpy array) print('Kept Euler solutions after the moving window scheme:') print(solver.estimate_) # Plot the solutions on top of the magnetic data. Remember that the true depths # of the center of these sources is 1500 m and 1000 m. plt.figure(figsize=(6, 5)) plt.title('Euler deconvolution with a moving window') plt.contourf(y.reshape(shape), x.reshape(shape), data.reshape(shape), 30, cmap="RdBu_r") plt.scatter(solver.estimate_[:, 1], solver.estimate_[:, 0], s=50, c=solver.estimate_[:, 2], cmap='cubehelix') plt.colorbar(pad=0).set_label('Depth (m)') plt.xlim(area[2:]) plt.ylim(area[:2]) plt.tight_layout() plt.show()
bsd-3-clause
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/matplotlib/backends/backend_gtkcairo.py
21
2348
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print('backend_gtkcairo.%s()' % fn_name()) FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasGTKCairo(figure) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.gc.ctx = pixmap.cairo_create() else: def set_pixmap (self, pixmap): self.gc.ctx = cairo.gtk.gdk_cairo_create (pixmap) class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print('%s.%s()' % (self.__class__.__name__, _fn_name())) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig) FigureCanvas = FigureCanvasGTKCairo FigureManager = FigureManagerGTKCairo
gpl-3.0
FRESNA/atlite
atlite/gis.py
1
23075
# -*- coding: utf-8 -*- # SPDX-FileCopyrightText: 2016-2020 The Atlite Authors # # SPDX-License-Identifier: GPL-3.0-or-later """ Functions for Geographic Information System. """ import numpy as np import pandas as pd import xarray as xr import scipy as sp import scipy.sparse import geopandas as gpd import rasterio as rio import rasterio.warp import multiprocessing as mp from collections import OrderedDict from pathlib import Path from warnings import warn from pyproj import CRS, Transformer from shapely.ops import transform from rasterio.warp import reproject, transform_bounds from rasterio.mask import mask from rasterio.features import geometry_mask from scipy.ndimage.morphology import binary_dilation as dilation from numpy import isin, empty from shapely.strtree import STRtree from tqdm import tqdm import logging logger = logging.getLogger(__name__) def get_coords(x, y, time, dx=0.25, dy=0.25, dt='h', **kwargs): """ Create an cutout coordinate system on the basis of slices and step sizes. Parameters ---------- x : slice Numerical slices with lower and upper bound of the x dimension. y : slice Numerical slices with lower and upper bound of the y dimension. time : slice Slice with strings with lower and upper bound of the time dimension. dx : float, optional Step size of the x coordinate. The default is 0.25. dy : float, optional Step size of the y coordinate. The default is 0.25. dt : str, optional Frequency of the time coordinate. The default is 'h'. Valid are all pandas offset aliases. Returns ------- ds : xarray.Dataset Dataset with x, y and time variables, representing the whole coordinate system. """ x = slice(*sorted([x.start, x.stop])) y = slice(*sorted([y.start, y.stop])) ds = xr.Dataset({'x': np.round(np.arange(-180, 180, dx), 9), 'y': np.round(np.arange(-90, 90, dy), 9), 'time': pd.date_range(start="1979", end="now", freq=dt)}) ds = ds.assign_coords(lon=ds.coords['x'], lat=ds.coords['y']) ds = ds.sel(x=x, y=y, time=time) return ds def spdiag(v): """Create a sparse diagonal matrix from a 1-dimensional array.""" N = len(v) inds = np.arange(N + 1, dtype=np.int32) return sp.sparse.csr_matrix((v, inds[:-1], inds), (N, N)) def reproject_shapes(shapes, crs1, crs2): """Project a collection of shapes from one crs to another.""" transformer = Transformer.from_crs(crs1, crs2) def _reproject_shape(shape): return transform(transformer.transform, shape) if isinstance(shapes, pd.Series): return shapes.map(_reproject_shape) elif isinstance(shapes, dict): return OrderedDict((k, _reproject_shape(v)) for k, v in shapes.items()) else: return list(map(_reproject_shape, shapes)) def reproject(shapes, p1, p2): """ Project a collection of shapes from one crs to another. Deprecated since version 0.2. """ warn("reproject has been renamed to reproject_shapes", DeprecationWarning) return reproject_shapes(shapes, p1, p2) reproject.__doc__ = reproject_shapes.__doc__ def compute_indicatormatrix(orig, dest, orig_crs=4326, dest_crs=4326): """ Compute the indicatormatrix. The indicatormatrix I[i,j] is a sparse representation of the ratio of the area in orig[j] lying in dest[i], where orig and dest are collections of polygons, i.e. A value of I[i,j] = 1 indicates that the shape orig[j] is fully contained in shape dest[j]. Note that the polygons must be in the same crs. Parameters ---------- orig : Collection of shapely polygons dest : Collection of shapely polygons Returns ------- I : sp.sparse.lil_matrix Indicatormatrix """ orig = orig.geometry if isinstance(orig, gpd.GeoDataFrame) else orig dest = dest.geometry if isinstance(dest, gpd.GeoDataFrame) else dest dest = reproject_shapes(dest, dest_crs, orig_crs) indicator = sp.sparse.lil_matrix((len(dest), len(orig)), dtype=float) tree = STRtree(orig) idx = dict((id(o), i) for i, o in enumerate(orig)) for i, d in enumerate(dest): for o in tree.query(d): if o.intersects(d): j = idx[id(o)] area = d.intersection(o).area indicator[i, j] = area / o.area return indicator class ExclusionContainer: """Container for exclusion objects and meta data.""" def __init__(self, crs=3035, res=100): """Initialize a container for excluded areas. Parameters ---------- crs : rasterio.CRS/proj.CRS/EPSG, optional Base crs of the raster collection. All rasters and geometries diverging from this crs will be converted to it. The default is 3035. res : float, optional Resolution of the base raster. All diverging rasters will be resampled using the gdal Resampling method 'nearest'. The default is 100. """ self.rasters = [] self.geometries = [] self.crs = crs self.res = res def add_raster(self, raster, codes=None, buffer=0, invert=False, nodata=255, allow_no_overlap=False, crs=None): """ Register a raster to the ExclusionContainer. Parameters ---------- raster : str/rasterio.DatasetReader Raster or path to raster which to exclude. codes : int/list/function, optional Codes in the raster which to exclude. Can be a callable function which takes the mask (np.array) as argument and performs a elementwise condition (must not change the shape). The default is 1. buffer : int, optional Buffer around the excluded areas in units of ExclusionContainer.crs. Use this to create a buffer around the excluded/included area. The default is 0. invert : bool, optional Whether to exclude (False) or include (True) the specified areas of the raster. The default is False. allow_no_overlap: Allow that a raster and a shape (for which the raster will be used as a mask) do not overlap. In this case an array with only `nodata` is returned. crs : rasterio.CRS/EPSG CRS of the raster. Specify this if the raster has invalid crs. """ d = dict(raster=raster, codes=codes, buffer=buffer, invert=invert, nodata=nodata, allow_no_overlap=allow_no_overlap, crs=crs) self.rasters.append(d) def add_geometry(self, geometry, buffer=0, invert=False): """ Register a collection of geometries to the ExclusionContainer. Parameters ---------- geometry : str/path/geopandas.GeoDataFrame Path to geometries or geometries which to exclude. buffer : float, optional Buffer around the excluded areas in units of ExclusionContainer.crs. The default is 0. invert : bool, optional Whether to exclude (False) or include (True) the specified areas of the geometries. The default is False. """ d = dict(geometry=geometry, buffer=buffer, invert=invert) self.geometries.append(d) def open_files(self): """Open rasters and load geometries.""" for d in self.rasters: raster = d['raster'] if isinstance(raster, (str, Path)): raster = rio.open(raster) else: assert isinstance(raster, rio.DatasetReader) if (not raster.crs.is_valid if raster.crs is not None else True): if d['crs']: raster._crs = CRS(d['crs']) else: raise ValueError(f'CRS of {raster} is invalid, please ' 'provide it.') d['raster'] = raster for d in self.geometries: geometry = d['geometry'] if isinstance(geometry, (str, Path)): geometry = gpd.read_file(geometry) if isinstance(geometry, gpd.GeoDataFrame): geometry = geometry.geometry assert isinstance(geometry, gpd.GeoSeries) assert geometry.crs is not None geometry = geometry.to_crs(self.crs) if d.get('buffer', 0) and not d.get('_buffered', False): geometry = geometry.buffer(d['buffer']) d['_buffered'] = True d['geometry'] = geometry @property def all_closed(self): """Check whether all files in the raster container are closed.""" return all(isinstance(d['raster'], (str, Path)) for d in self.rasters) @property def all_open(self): """Check whether all files in the raster container are open.""" return all(isinstance(d['raster'], rio.DatasetReader) for d in self.rasters) def __repr__(self): return (f"Exclusion Container" f"\n registered rasters: {len(self.rasters)} " f"\n registered geometry collections: {len(self.geometries)}" f"\n CRS: {self.crs} - Resolution: {self.res}") def padded_transform_and_shape(bounds, res): """ Get the (transform, shape) tuple of a raster with resolution `res` and bounds `bounds`. """ left, bottom = [(b // res)* res for b in bounds[:2]] right, top = [(b // res + 1) * res for b in bounds[2:]] shape = int((top - bottom) / res), int((right - left) / res) return rio.Affine(res, 0, left, 0, -res, top), shape def projected_mask(raster, geom, transform=None, shape=None, crs=None, allow_no_overlap=False, **kwargs): """Load a mask and optionally project it to target resolution and shape.""" nodata = kwargs.get('nodata', 255) kwargs.setdefault('indexes', 1) if geom.crs != raster.crs: geom = geom.to_crs(raster.crs) if allow_no_overlap: try: masked, transform_ = mask(raster, geom, crop=True, **kwargs) except ValueError: res = raster.res[0] transform_, shape = padded_transform_and_shape(geom.total_bounds, res) masked = np.full(shape, nodata) else: masked, transform_ = mask(raster, geom, crop=True, **kwargs) if transform is None or (transform_ == transform and shape == masked.shape): return masked, transform_ assert shape is not None and crs is not None return rio.warp.reproject(masked, empty(shape), src_crs=raster.crs, dst_crs=crs, src_transform=transform_, dst_transform=transform, dst_nodata=nodata) def pad_extent(src, src_transform, dst_transform, src_crs, dst_crs, **kwargs): """ Pad the extent of `src` by an equivalent of one cell of the target raster. This ensures that the array is large enough to not be treated as nodata in all cells of the destination raster. If src.ndim > 2, the function expects the last two dimensions to be y,x. Additional keyword arguments are used in `np.pad()`. """ if src.size == 0: return src, src_transform left, top, right, bottom = *(src_transform*(0,0)), *(src_transform*(1,1)) covered = transform_bounds(src_crs, dst_crs, left, bottom, right, top) covered_res = min(abs(covered[2] - covered[0]), abs(covered[3] - covered[1])) pad = int(dst_transform[0] // covered_res * 1.1) kwargs.setdefault('mode', 'constant') if src.ndim == 2: return rio.pad(src, src_transform, pad, **kwargs) npad = ((0,0),) * (src.ndim - 2) + ((pad, pad), (pad, pad)) padded = np.pad(src, npad, **kwargs) transform = list(src_transform) transform[2] -= pad * transform[0] transform[5] -= pad * transform[4] return padded, rio.Affine(*transform[:6]) def shape_availability(geometry, excluder): """ Compute the eligible area in one or more geometries. Parameters ---------- geometry : geopandas.Series Geometry of which the eligible area is computed. If the series contains more than one geometry, the eligble area of the combined geometries is computed. excluder : atlite.gis.ExclusionContainer Container of all meta data or objects which to exclude, i.e. rasters and geometries. Returns ------- masked : np.array Mask whith eligible raster cells indicated by 1 and excluded cells by 0. transform : rasterion.Affine Affine transform of the mask. """ exclusions = [] if not excluder.all_open: excluder.open_files() assert geometry.crs == excluder.crs bounds = rio.features.bounds(geometry) transform, shape = padded_transform_and_shape(bounds, res=excluder.res) masked = geometry_mask(geometry, shape, transform).astype(int) exclusions.append(masked) # For the following: 0 is eligible, 1 in excluded raster = None for d in excluder.rasters: # allow reusing preloaded raster with different post-processing if raster != d['raster']: raster = d['raster'] kwargs_keys = ['allow_no_overlap', 'nodata'] kwargs = {k: v for k, v in d.items() if k in kwargs_keys} masked, transform = projected_mask(d['raster'], geometry, transform, shape, excluder.crs, **kwargs) if d['codes']: if callable(d['codes']): masked_ = d['codes'](masked) else: masked_ = isin(masked, d['codes']) else: masked_ = masked if d['invert']: masked_ = ~(masked_).astype(bool) if d['buffer']: iterations = int(d['buffer'] / excluder.res) + 1 masked_ = dilation(masked_, iterations=iterations).astype(int) exclusions.append(masked_.astype(int)) for d in excluder.geometries: masked = ~geometry_mask(d['geometry'], shape, transform, invert=d['invert']) exclusions.append(masked.astype(int)) return (sum(exclusions) == 0).astype(float), transform def shape_availability_reprojected(geometry, excluder, dst_transform, dst_crs, dst_shape): """ Compute and reproject the eligible area of one or more geometries. The function executes `shape_availability` and reprojects the calculated mask onto a new raster defined by (dst_transform, dst_crs, dst_shape). Before reprojecting, the function pads the mask such all non-nodata data points are projected in full cells of the target raster. The ensures that all data within the mask are projected correclty (GDAL inherent 'problem'). ---------- geometry : geopandas.Series Geometry in which the eligible area is computed. If the series contains more than one geometry, the eligble area of the combined geometries is computed. excluder : atlite.gis.ExclusionContainer Container of all meta data or objects which to exclude, i.e. rasters and geometries. dst_transform : rasterio.Affine Transform of the target raster. dst_crs : rasterio.CRS/proj.CRS CRS of the target raster. dst_shape : tuple Shape of the target raster. masked : np.array Average share of available area per grid cell. 0 indicates excluded, 1 is fully included. transform : rasterio.Affine Affine transform of the mask. """ masked, transform = shape_availability(geometry, excluder) masked, transform = pad_extent(masked, transform, dst_transform, excluder.crs, dst_crs) return rio.warp.reproject(masked, empty(dst_shape), resampling=5, src_transform=transform, dst_transform=dst_transform, src_crs=excluder.crs, dst_crs=dst_crs,) def _init_process(shapes_, excluder_, dst_transform_, dst_crs_, dst_shapes_): global shapes, excluder, dst_transform, dst_crs, dst_shapes shapes, excluder = shapes_, excluder_ dst_transform, dst_crs, dst_shapes = dst_transform_, dst_crs_, dst_shapes_ def _process_func(i): args = (excluder, dst_transform, dst_crs, dst_shapes) return shape_availability_reprojected(shapes.loc[[i]], *args)[0] def compute_availabilitymatrix(cutout, shapes, excluder, nprocesses=None, disable_progressbar=False): """ Compute the eligible share within cutout cells in the overlap with shapes. For parallel calculation (nprocesses not None) the excluder must not be initialized and all raster references must be strings. Otherwise processes are colliding when reading from one common rasterio.DatasetReader. Parameters ---------- cutout : atlite.Cutout Cutout which the availability matrix is aligned to. shapes : geopandas.Series/geopandas.DataFrame Geometries for which the availabilities are calculated. excluder : atlite.gis.ExclusionContainer Container of all meta data or objects which to exclude, i.e. rasters and geometries. nprocesses : int, optional Number of processes to use for calculating the matrix. The paralle- lization can heavily boost the calculation speed. The default is None. disable_progressbar: bool, optional Disable the progressbar if nprocesses is not None. Then the `map` function instead of the `imap` function is used for the multiprocessing pool. This speeds up the calculation. Returns ------- availabilities : xr.DataArray DataArray of shape (|shapes|, |y|, |x|) containing all the eligible share of cutout cell (x,y) in the overlap with shape i. Notes ----- The rasterio (or GDAL) average downsampling returns different results dependent on how the target raster (the cutout raster) is spanned. Either it is spanned from the top left going downwards, e.g. Affine(0.25, 0, 0, 0, -0.25, 50), or starting in the lower left corner and going up, e.g. Affine(0.25, 0, 0, 0, 0.25, 50). Here we stick to the top down version which is why we use `cutout.transform_r` and flipping the y-axis in the end. """ availability = [] shapes = shapes.geometry if isinstance(shapes, gpd.GeoDataFrame) else shapes shapes = shapes.to_crs(excluder.crs) args = (excluder, cutout.transform_r, cutout.crs, cutout.shape) tqdm_kwargs = dict(ascii=False, unit=' gridcells', total=len(shapes), desc='Compute availability matrix') if nprocesses is None: for i in tqdm(shapes.index, **tqdm_kwargs): _ = shape_availability_reprojected(shapes.loc[[i]], *args)[0] availability.append(_) else: assert excluder.all_closed, ('For parallelization all raster files ' 'in excluder must be closed') kwargs = {'initializer': _init_process, 'initargs': (shapes, *args), 'maxtasksperchild': 20, 'processes': nprocesses} with mp.get_context('spawn').Pool(**kwargs) as pool: if disable_progressbar: availability = list(pool.map(_process_func, shapes.index)) else: availability = list(tqdm(pool.imap(_process_func, shapes.index), **tqdm_kwargs)) availability = np.stack(availability)[:, ::-1] # flip axis, see Notes coords=[(shapes.index), ('y', cutout.data.y.data), ('x', cutout.data.x.data)] return xr.DataArray(availability, coords=coords) def maybe_swap_spatial_dims(ds, namex='x', namey='y'): """Swap order of spatial dimensions according to atlite concention.""" swaps = {} lx, rx = ds.indexes[namex][[0, -1]] ly, uy = ds.indexes[namey][[0, -1]] if lx > rx: swaps[namex] = slice(None, None, -1) if uy < ly: swaps[namey] = slice(None, None, -1) return ds.isel(**swaps) if swaps else ds def _as_transform(x, y): lx, rx = x[[0, -1]] ly, uy = y[[0, -1]] dx = float(rx - lx) / float(len(x) - 1) dy = float(uy - ly) / float(len(y) - 1) return rio.Affine(dx, 0, lx - dx/2, 0, dy, ly - dy/2) def regrid(ds, dimx, dimy, **kwargs): """ Interpolate Dataset or DataArray `ds` to a new grid, using rasterio's reproject facility. See also: https://mapbox.github.io/rasterio/topics/resampling.html Parameters ---------- ds : xr.Dataset|xr.DataArray N-dim data on a spatial grid dimx : pd.Index New x-coordinates in destination crs. dimx.name MUST refer to x-coord of ds. dimy : pd.Index New y-coordinates in destination crs. dimy.name MUST refer to y-coord of ds. **kwargs : Arguments passed to rio.wrap.reproject; of note: - resampling is one of gis.Resampling.{average,cubic,bilinear,nearest} - src_crs, dst_crs define the different crs (default: EPSG 4326, ie latlong) """ namex = dimx.name namey = dimy.name ds = maybe_swap_spatial_dims(ds, namex, namey) src_transform = _as_transform(ds.indexes[namex], ds.indexes[namey]) dst_transform = _as_transform(dimx, dimy) dst_shape = len(dimy), len(dimx) kwargs.update(dst_transform=dst_transform) kwargs.setdefault("src_crs", CRS.from_epsg(4326)) kwargs.setdefault("dst_crs", CRS.from_epsg(4326)) def _reproject(src, **kwargs): shape = src.shape[:-2] + dst_shape src, trans = pad_extent(src, src_transform, dst_transform, kwargs['src_crs'], kwargs['dst_crs'], mode='edge') return rio.warp.reproject(src, empty(shape), src_transform=trans, **kwargs)[0] data_vars = ds.data_vars.values() if isinstance(ds, xr.Dataset) else (ds,) dtypes = {da.dtype for da in data_vars} assert len(dtypes) == 1, \ "regrid can only reproject datasets with homogeneous dtype" return (xr.apply_ufunc(_reproject, ds, input_core_dims=[[namey, namex]], output_core_dims=[['yout', 'xout']], output_dtypes=[dtypes.pop()], dask_gufunc_kwargs = dict(output_sizes={'yout': dst_shape[0], 'xout': dst_shape[1]}), dask='parallelized', kwargs=kwargs) .rename({'yout': namey, 'xout': namex}) .assign_coords(**{namey: (namey, dimy.data, ds.coords[namey].attrs), namex: (namex, dimx.data, ds.coords[namex].attrs)}) .assign_attrs(**ds.attrs))
gpl-3.0
annayqho/TheCannon
code/lamost/xcalib_5labels/cross_validation.py
1
6860
""" Divide 9952 training objects into eight groups, and do an 8-fold leave-1/8 out. """ import numpy as np import glob import matplotlib.pyplot as plt import sys sys.path.insert(0, '/home/annaho/aida41040/annaho/TheCannon/TheCannon') sys.path.insert(0, '/home/annaho/aida41040/annaho/TheCannon') from TheCannon import dataset from TheCannon import model from TheCannon import lamost from astropy.table import Table from matplotlib.colors import LogNorm from matplotlib import rc rc('font', family='serif') rc('text', usetex=True) import os import pyfits direc_ref = "/Users/annaho/TheCannon/data/lamost_paper" def group_data(): """ Load the reference data, and assign each object a random integer from 0 to 7. Save the IDs. """ tr_obj = np.load("%s/ref_id.npz" %direc_ref)['arr_0'] groups = np.random.randint(0, 8, size=len(tr_obj)) np.savez("ref_groups.npz", groups) def train(ds, ii): """ Run the training step, given a dataset object. """ print("Loading model") m = model.CannonModel(2) print("Training...") m.fit(ds) np.savez("./ex%s_coeffs.npz" %ii, m.coeffs) np.savez("./ex%s_scatters.npz" %ii, m.scatters) np.savez("./ex%s_chisqs.npz" %ii, m.chisqs) np.savez("./ex%s_pivots.npz" %ii, m.pivots) fig = m.diagnostics_leading_coeffs(ds) plt.savefig("ex%s_leading_coeffs.png" %ii) # m.diagnostics_leading_coeffs_triangle(ds) # m.diagnostics_plot_chisq(ds) return m def load_model(ii): print("Loading model") m = model.CannonModel(2) m.coeffs = np.load("./ex%s_coeffs.npz" %ii)['arr_0'] m.scatters = np.load("./ex%s_scatters.npz" %ii)['arr_0'] m.chisqs = np.load("./ex%s_chisqs.npz" %ii)['arr_0'] m.pivots = np.load("./ex%s_pivots.npz" %ii)['arr_0'] return m def test(ds, m, group): nguesses = 7 nobj = len(ds.test_ID) nlabels = len(m.pivots) choose = np.random.randint(0,nobj,size=nguesses) tr_label = ds.tr_label print("nlab") print(nlabels) print("nobj") print(nobj) print("tr label shape") print(tr_label.shape) print("m pivots shape") print(m.pivots.shape) starting_guesses = tr_label[choose]-m.pivots labels = np.zeros((nguesses, nobj, nlabels)) chisq = np.zeros((nguesses, nobj)) errs = np.zeros(labels.shape) for ii,guess in enumerate(starting_guesses): a,b,c = test_step_iteration(ds,m,starting_guesses[ii]) labels[ii,:] = a chisq[ii,:] = b errs[ii,:] = c np.savez("ex%s_labels_all_starting_vals.npz" %group, labels) np.savez("ex%s_chisq_all_starting_vals.npz" %group, chisq) np.savez("ex%s_errs_all_starting_vals.npz" %group, errs) choose = np.argmin(chisq, axis=0) best_chisq = np.min(chisq, axis=0) best_labels = np.zeros(tr_label.shape) best_errs = np.zeros(best_labels.shape) for jj,val in enumerate(choose): best_labels[jj,:] = labels[:,jj,:][val] best_errs[jj,:] = errs[:,jj,:][val] np.savez("./ex%s_cannon_label_vals.npz" %group, best_labels) np.savez("./ex%s_cannon_label_chisq.npz" %group, best_chisq) np.savez("./ex%s_cannon_label_errs.npz" %group, best_errs) ds.test_label_vals = best_labels ds.diagnostics_survey_labels() ds.diagnostics_1to1(figname = "ex%s_1to1_test_label" %group) def infer_spectra(ds, m): m.infer_spectra(ds) return m.model_spectra def test_step_iteration(ds, m, starting_guess): errs, chisq = m.infer_labels(ds, starting_guess) return ds.test_label_vals, chisq, errs def load_dataset(ii): ("loading data") groups = np.load("ref_groups.npz")['arr_0'] ref_label = np.load("%s/ref_label.npz" %direc_ref)['arr_0'] ref_id = np.load("%s/ref_id.npz" %direc_ref)['arr_0'] ref_flux = np.load("%s/ref_flux.npz" %direc_ref)['arr_0'] ref_ivar = np.load("%s/ref_ivar.npz" %direc_ref)['arr_0'] wl = np.load("%s/wl.npz" %direc_ref)['arr_0'] print("Leaving out group %s" %ii) train_on = groups != ii test_on = groups == ii tr_label = ref_label[train_on] tr_id = ref_id[train_on] tr_flux = ref_flux[train_on] tr_ivar = ref_ivar[train_on] print("Training on %s objects" %len(tr_id)) test_label = ref_label[test_on] test_id = ref_id[test_on] test_flux = ref_flux[test_on] test_ivar = ref_ivar[test_on] print("Testing on %s objects" %len(test_id)) print("Loading dataset...") ds = dataset.Dataset( wl, tr_id, tr_flux, tr_ivar, tr_label, test_id, test_flux, test_ivar) ds.test_label_vals = np.load("./ex%s_cannon_label_vals.npz" %group)['arr_0'] print(ds.test_label_vals.shape) ds.set_label_names( ['T_{eff}', '\log g', '[M/H]', '[\\alpha/Fe]', 'AKWISE']) fig = ds.diagnostics_SNR() plt.savefig("ex%s_SNR.png" %ii) fig = ds.diagnostics_ref_labels() plt.savefig("ex%s_ref_label_triangle.png" %ii) np.savez("ex%s_tr_snr.npz" %ii, ds.tr_SNR) return ds def xvalidate(): """ Train a model, leaving out a group corresponding to a random integer from 0 to 7, e.g. leave out 0. Test on the remaining 1/8 of the sample. """ print("Loading data") groups = np.load("ref_groups.npz")['arr_0'] ref_label = np.load("%s/ref_label.npz" %direc_ref)['arr_0'] ref_id = np.load("%s/ref_id.npz" %direc_ref)['arr_0'] ref_flux = np.load("%s/ref_flux.npz" %direc_ref)['arr_0'] ref_ivar = np.load("%s/ref_ivar.npz" %direc_ref)['arr_0'] wl = np.load("%s/wl.npz" %direc_ref)['arr_0'] num_models = 8 for ii in np.arange(num_models): print("Leaving out group %s" %ii) train_on = groups != ii test_on = groups == ii tr_label = ref_label[train_on] tr_id = ref_id[train_on] tr_flux = ref_flux[train_on] tr_ivar = ref_ivar[train_on] print("Training on %s objects" %len(tr_id)) test_label = ref_label[test_on] test_id = ref_id[test_on] test_flux = ref_flux[test_on] test_ivar = ref_ivar[test_on] print("Testing on %s objects" %len(test_id)) print("Loading dataset...") ds = dataset.Dataset( wl, tr_id, tr_flux, tr_ivar, tr_label, test_id, test_flux, test_ivar) ds.set_label_names( ['T_{eff}', '\log g', '[M/H]', '[\\alpha/Fe]', 'AKWISE']) fig = ds.diagnostics_SNR() plt.savefig("ex%s_SNR.png" %ii) fig = ds.diagnostics_ref_labels() plt.savefig("ex%s_ref_label_triangle.png" %ii) np.savez("ex%s_tr_snr.npz" %ii, ds.tr_SNR) # train a model m = train(ds, ii) # test step ds.tr_label = test_label # to compare the results test(ds, m, ii) if __name__=="__main__": group = 2 ds = load_dataset(group) m = load_model(group) model_spectra = infer_spectra(ds, m)
mit
Lawrence-Liu/scikit-learn
examples/model_selection/plot_roc_crossval.py
247
3253
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.cross_validation.cross_val_score`, :ref:`example_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
asanfilippo7/osf.io
scripts/analytics/utils.py
2
2982
# -*- coding: utf-8 -*- import os import unicodecsv as csv from bson import ObjectId import matplotlib.pyplot as plt import matplotlib.dates as mdates import requests from website import util from website import settings as website_settings def oid_to_datetime(oid): return ObjectId(oid).generation_time def mkdirp(path): try: os.makedirs(path) except OSError: pass def plot_dates(dates, *args, **kwargs): if dates is None or len(dates) == 0: return -1 """Plot date histogram.""" fig = plt.figure() ax = fig.add_subplot(111) ax.hist( [mdates.date2num(each) for each in dates], *args, **kwargs ) fig.autofmt_xdate() ax.format_xdata = mdates.DateFormatter('%Y-%m-%d') ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) return fig def make_csv(fp, rows, headers=None): writer = csv.writer(fp) if headers: writer.writerow(headers) writer.writerows(rows) def send_file(name, content_type, stream, node, user, create=True, path='/'): """Upload file to OSF using waterbutler v1 api :param str name: The name of the requested file :param str content_type: Content-Type :param StringIO stream: file-like stream to be uploaded :param Node node: Project Node :param User user: User whose cookie will be used :param Bool create: Create or update file :param str path: Waterbutler V1 path of the requested file """ if not node: return node_id = node._id if not user: return cookies = {website_settings.COOKIE_NAME:user.get_or_create_cookie()} # create a new folder if stream is None: upload_url = util.waterbutler_api_url_for(node_id, 'osfstorage', path, kind='folder', name=name) print('create folder: url={}'.format(upload_url)) resp = requests.put( upload_url, headers={'Content-Type': content_type}, cookies=cookies, ) if resp.status_code != 201: resp.raise_for_status() return resp # create or update a file stream.seek(0) if create: upload_url = util.waterbutler_api_url_for(node_id, 'osfstorage', path, kind='file', name=name) print('create file: url={}'.format(upload_url)) else: path = '/{}'.format(name) upload_url = util.waterbutler_api_url_for(node_id, 'osfstorage', path, kind='file') print('update file: url={}'.format(upload_url)) resp = requests.put( upload_url, data=stream, headers={'Content-Type': content_type}, cookies=cookies, ) if resp.status_code not in [200, 201, 503, 409]: resp.raise_for_status() if resp.status_code == 503: pass # forward 503 error back to the caller elif resp.status_code == 409: print('I/O Warning: cannot create new file/folder that already exists.') # this should never appear return resp
apache-2.0
NvanAdrichem/networkx
networkx/convert_matrix.py
2
33323
"""Functions to convert NetworkX graphs to and from numpy/scipy matrices. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. Examples -------- Create a 10 node random graph from a numpy matrix >>> import numpy >>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10)) >>> D = nx.DiGraph(a) or equivalently >>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph()) See Also -------- nx_agraph, nx_pydot """ # Copyright (C) 2006-2014 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import warnings import itertools import networkx as nx from networkx.convert import _prep_create_using from networkx.utils import not_implemented_for __author__ = """\n""".join(['Aric Hagberg <[email protected]>', 'Pieter Swart ([email protected])', 'Dan Schult([email protected])']) __all__ = ['from_numpy_matrix', 'to_numpy_matrix', 'from_pandas_dataframe', 'to_pandas_dataframe', 'to_numpy_recarray', 'from_scipy_sparse_matrix', 'to_scipy_sparse_matrix'] def to_pandas_dataframe(G, nodelist=None, dtype=None, order=None, multigraph_weight=sum, weight='weight', nonedge=0.0): """Return the graph adjacency matrix as a Pandas DataFrame. Parameters ---------- G : graph The NetworkX graph used to construct the Pandas DataFrame. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). multigraph_weight : {sum, min, max}, optional An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. weight : string or None, optional The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. nonedge : float, optional The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns ------- df : Pandas DataFrame Graph adjacency matrix Notes ----- The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the 'multigraph_weight' parameter. The default is to sum the weight attributes for each of the parallel edges. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows: >>> import pandas as pd >>> import numpy as np >>> G = nx.Graph([(1,1)]) >>> df = nx.to_pandas_dataframe(G, dtype=int) >>> df 1 1 1 >>> df.values[np.diag_indices_from(df)] *= 2 >>> df 1 1 2 Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_pandas_dataframe(G, nodelist=[0,1,2], dtype=int) 0 1 2 0 0 2 0 1 1 0 0 2 0 0 4 """ import pandas as pd M = to_numpy_matrix(G, nodelist=nodelist, dtype=dtype, order=order, multigraph_weight=multigraph_weight, weight=weight, nonedge=nonedge) if nodelist is None: nodelist = list(G) return pd.DataFrame(data=M, index=nodelist, columns=nodelist) def from_pandas_dataframe(df, source, target, edge_attr=None, create_using=None): """Return a graph from Pandas DataFrame. The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance. Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example. Parameters ---------- df : Pandas DataFrame An edge list representation of a graph source : str or int A valid column name (string or iteger) for the source nodes (for the directed case). target : str or int A valid column name (string or iteger) for the target nodes (for the directed case). edge_attr : str or int, iterable, True A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If `True`, all of the remaining columns will be added. create_using : NetworkX graph Use specified graph for result. The default is Graph() See Also -------- to_pandas_dataframe Examples -------- Simple integer weights on edges: >>> import pandas as pd >>> import numpy as np >>> r = np.random.RandomState(seed=5) >>> ints = r.random_integers(1, 10, size=(3,2)) >>> a = ['A', 'B', 'C'] >>> b = ['D', 'A', 'E'] >>> df = pd.DataFrame(ints, columns=['weight', 'cost']) >>> df[0] = a >>> df['b'] = b >>> df weight cost 0 b 0 4 7 A D 1 7 1 B A 2 10 9 C E >>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost']) >>> G['E']['C']['weight'] 10 >>> G['E']['C']['cost'] 9 """ g = _prep_create_using(create_using) # Index of source and target src_i = df.columns.get_loc(source) tar_i = df.columns.get_loc(target) if edge_attr: # If all additional columns requested, build up a list of tuples # [(name, index),...] if edge_attr is True: # Create a list of all columns indices, ignore nodes edge_i = [] for i, col in enumerate(df.columns): if col is not source and col is not target: edge_i.append((col, i)) # If a list or tuple of name is requested elif isinstance(edge_attr, (list, tuple)): edge_i = [(i, df.columns.get_loc(i)) for i in edge_attr] # If a string or int is passed else: edge_i = [(edge_attr, df.columns.get_loc(edge_attr)),] # Iteration on values returns the rows as Numpy arrays for row in df.values: g.add_edge(row[src_i], row[tar_i], attr_dict={i:row[j] for i, j in edge_i}) # If no column names are given, then just return the edges. else: for row in df.values: g.add_edge(row[src_i], row[tar_i]) return g def to_numpy_matrix(G, nodelist=None, dtype=None, order=None, multigraph_weight=sum, weight='weight', nonedge=0.0): """Return the graph adjacency matrix as a NumPy matrix. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data type, optional A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. multigraph_weight : {sum, min, max}, optional An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. weight : string or None optional (default = 'weight') The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. nonedge : float (default = 0.0) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns ------- M : NumPy matrix Graph adjacency matrix See Also -------- to_numpy_recarray, from_numpy_matrix Notes ----- The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the `multigraph_weight` parameter. The default is to sum the weight attributes for each of the parallel edges. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows: >>> import numpy as np >>> G = nx.Graph([(1, 1)]) >>> A = nx.to_numpy_matrix(G) >>> A matrix([[ 1.]]) >>> A.A[np.diag_indices_from(A)] *= 2 >>> A matrix([[ 2.]]) Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_numpy_matrix(G, nodelist=[0,1,2]) matrix([[ 0., 2., 0.], [ 1., 0., 0.], [ 0., 0., 4.]]) """ import numpy as np if nodelist is None: nodelist = list(G) nodeset = set(nodelist) if len(nodelist) != len(nodeset): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) nlen=len(nodelist) undirected = not G.is_directed() index=dict(zip(nodelist,range(nlen))) # Initially, we start with an array of nans. Then we populate the matrix # using data from the graph. Afterwards, any leftover nans will be # converted to the value of `nonedge`. Note, we use nans initially, # instead of zero, for two reasons: # # 1) It can be important to distinguish a real edge with the value 0 # from a nonedge with the value 0. # # 2) When working with multi(di)graphs, we must combine the values of all # edges between any two nodes in some manner. This often takes the # form of a sum, min, or max. Using the value 0 for a nonedge would # have undesirable effects with min and max, but using nanmin and # nanmax with initially nan values is not problematic at all. # # That said, there are still some drawbacks to this approach. Namely, if # a real edge is nan, then that value is a) not distinguishable from # nonedges and b) is ignored by the default combinator (nansum, nanmin, # nanmax) functions used for multi(di)graphs. If this becomes an issue, # an alternative approach is to use masked arrays. Initially, every # element is masked and set to some `initial` value. As we populate the # graph, elements are unmasked (automatically) when we combine the initial # value with the values given by real edges. At the end, we convert all # masked values to `nonedge`. Using masked arrays fully addresses reason 1, # but for reason 2, we would still have the issue with min and max if the # initial values were 0.0. Note: an initial value of +inf is appropriate # for min, while an initial value of -inf is appropriate for max. When # working with sum, an initial value of zero is appropriate. Ideally then, # we'd want to allow users to specify both a value for nonedges and also # an initial value. For multi(di)graphs, the choice of the initial value # will, in general, depend on the combinator function---sensible defaults # can be provided. if G.is_multigraph(): # Handle MultiGraphs and MultiDiGraphs M = np.zeros((nlen, nlen), dtype=dtype, order=order) + np.nan # use numpy nan-aware operations operator={sum:np.nansum, min:np.nanmin, max:np.nanmax} try: op=operator[multigraph_weight] except: raise ValueError('multigraph_weight must be sum, min, or max') for u,v,attrs in G.edges(data=True): if (u in nodeset) and (v in nodeset): i, j = index[u], index[v] e_weight = attrs.get(weight, 1) M[i,j] = op([e_weight, M[i,j]]) if undirected: M[j,i] = M[i,j] else: # Graph or DiGraph, this is much faster than above M = np.zeros((nlen,nlen), dtype=dtype, order=order) + np.nan for u,nbrdict in G.adjacency(): for v,d in nbrdict.items(): try: M[index[u],index[v]] = d.get(weight,1) except KeyError: # This occurs when there are fewer desired nodes than # there are nodes in the graph: len(nodelist) < len(G) pass M[np.isnan(M)] = nonedge M = np.asmatrix(M, dtype=dtype) return M def from_numpy_matrix(A, parallel_edges=False, create_using=None): """Return a graph from numpy matrix. The numpy matrix is interpreted as an adjacency matrix for the graph. Parameters ---------- A : numpy matrix An adjacency matrix representation of a graph parallel_edges : Boolean If this is True, `create_using` is a multigraph, and `A` is an integer matrix, then entry *(i, j)* in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. create_using : NetworkX graph Use specified graph for result. The default is Graph() Notes ----- If `create_using` is an instance of :class:`networkx.MultiGraph` or :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the entries of `A` are of type :class:`int`, then this function returns a multigraph (of the same type as `create_using`) with parallel edges. If `create_using` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix `A` will be added to the graph. If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type. If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph. See Also -------- to_numpy_matrix, to_numpy_recarray Examples -------- Simple integer weights on edges: >>> import numpy >>> A=numpy.matrix([[1, 1], [2, 1]]) >>> G=nx.from_numpy_matrix(A) If `create_using` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} If `create_using` is a multigraph and the matrix has only integer entries but `parallel_edges` is True, then the entries will be interpreted as the number of parallel edges joining those two vertices: >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> temp = nx.MultiGraph() >>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} User defined compound data type on edges: >>> import numpy >>> dt = [('weight', float), ('cost', int)] >>> A = numpy.matrix([[(1.0, 2)]], dtype = dt) >>> G = nx.from_numpy_matrix(A) >>> list(G.edges()) [(0, 0)] >>> G[0][0]['cost'] 2 >>> G[0][0]['weight'] 1.0 """ # This should never fail if you have created a numpy matrix with numpy... import numpy as np kind_to_python_type={'f':float, 'i':int, 'u':int, 'b':bool, 'c':complex, 'S':str, 'V':'void'} try: # Python 3.x blurb = chr(1245) # just to trigger the exception kind_to_python_type['U']=str except ValueError: # Python 2.6+ kind_to_python_type['U']=unicode G=_prep_create_using(create_using) n,m=A.shape if n!=m: raise nx.NetworkXError("Adjacency matrix is not square.", "nx,ny=%s"%(A.shape,)) dt=A.dtype try: python_type=kind_to_python_type[dt.kind] except: raise TypeError("Unknown numpy data type: %s"%dt) # Make sure we get even the isolated nodes of the graph. G.add_nodes_from(range(n)) # Get a list of all the entries in the matrix with nonzero entries. These # coordinates will become the edges in the graph. edges = zip(*(np.asarray(A).nonzero())) # handle numpy constructed data type if python_type is 'void': # Sort the fields by their offset, then by dtype, then by name. fields = sorted((offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()) triples = ((u, v, {name: kind_to_python_type[dtype.kind](val) for (_, dtype, name), val in zip(fields, A[u, v])}) for u, v in edges) # If the entries in the adjacency matrix are integers, the graph is a # multigraph, and parallel_edges is True, then create parallel edges, each # with weight 1, for each entry in the adjacency matrix. Otherwise, create # one edge for each positive entry in the adjacency matrix and set the # weight of that edge to be the entry in the matrix. elif python_type is int and G.is_multigraph() and parallel_edges: chain = itertools.chain.from_iterable # The following line is equivalent to: # # for (u, v) in edges: # for d in range(A[u, v]): # G.add_edge(u, v, weight=1) # triples = chain(((u, v, dict(weight=1)) for d in range(A[u, v])) for (u, v) in edges) else: # basic data type triples = ((u, v, dict(weight=python_type(A[u, v]))) for u, v in edges) # If we are creating an undirected multigraph, only add the edges from the # upper triangle of the matrix. Otherwise, add all the edges. This relies # on the fact that the vertices created in the # `_generated_weighted_edges()` function are actually the row/column # indices for the matrix `A`. # # Without this check, we run into a problem where each edge is added twice # when `G.add_edges_from()` is invoked below. if G.is_multigraph() and not G.is_directed(): triples = ((u, v, d) for u, v, d in triples if u <= v) G.add_edges_from(triples) return G @not_implemented_for('multigraph') def to_numpy_recarray(G, nodelist=None, dtype=None, order=None): """Return the graph adjacency matrix as a NumPy recarray. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data-type, optional A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. Returns ------- M : NumPy recarray The graph with specified edge data as a Numpy recarray Notes ----- When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. Examples -------- >>> G = nx.Graph() >>> G.add_edge(1,2,weight=7.0,cost=5) >>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)]) >>> print(A.weight) [[ 0. 7.] [ 7. 0.]] >>> print(A.cost) [[0 5] [5 0]] """ if dtype is None: dtype = [('weight', float)] import numpy as np if nodelist is None: nodelist = list(G) nodeset = set(nodelist) if len(nodelist) != len(nodeset): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) nlen=len(nodelist) undirected = not G.is_directed() index=dict(zip(nodelist,range(nlen))) M = np.zeros((nlen,nlen), dtype=dtype, order=order) names=M.dtype.names for u,v,attrs in G.edges(data=True): if (u in nodeset) and (v in nodeset): i,j = index[u],index[v] values=tuple([attrs[n] for n in names]) M[i,j] = values if undirected: M[j,i] = M[i,j] return M.view(np.recarray) def to_scipy_sparse_matrix(G, nodelist=None, dtype=None, weight='weight', format='csr'): """Return the graph adjacency matrix as a SciPy sparse matrix. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data-type, optional A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'} The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See [1]_ for details. Returns ------- M : SciPy sparse matrix Graph adjacency matrix. Notes ----- The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1. For multiple edges the matrix values are the sums of the edge weights. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. Uses coo_matrix format. To convert to other formats specify the format= keyword. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.to_scipy_sparse_matrix(G) >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2]) >>> print(S.todense()) [[0 2 0] [1 0 0] [0 0 4]] References ---------- .. [1] Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html """ from scipy import sparse if nodelist is None: nodelist = list(G) nlen = len(nodelist) if nlen == 0: raise nx.NetworkXError("Graph has no nodes or edges") if len(nodelist) != len(set(nodelist)): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) index = dict(zip(nodelist,range(nlen))) if G.number_of_edges() == 0: row,col,data=[],[],[] else: row,col,data = zip(*((index[u],index[v],d.get(weight,1)) for u,v,d in G.edges(nodelist, data=True) if u in index and v in index)) if G.is_directed(): M = sparse.coo_matrix((data,(row,col)), shape=(nlen,nlen), dtype=dtype) else: # symmetrize matrix d = data + data r = row + col c = col + row # selfloop entries get double counted when symmetrizing # so we subtract the data on the diagonal selfloops = list(G.selfloop_edges(data=True)) if selfloops: diag_index,diag_data = zip(*((index[u],-d.get(weight,1)) for u,v,d in selfloops if u in index and v in index)) d += diag_data r += diag_index c += diag_index M = sparse.coo_matrix((d, (r, c)), shape=(nlen,nlen), dtype=dtype) try: return M.asformat(format) except AttributeError: raise nx.NetworkXError("Unknown sparse matrix format: %s"%format) def _csr_gen_triples(A): """Converts a SciPy sparse matrix in **Compressed Sparse Row** format to an iterable of weighted edge triples. """ nrows = A.shape[0] data, indices, indptr = A.data, A.indices, A.indptr for i in range(nrows): for j in range(indptr[i], indptr[i+1]): yield i, indices[j], data[j] def _csc_gen_triples(A): """Converts a SciPy sparse matrix in **Compressed Sparse Column** format to an iterable of weighted edge triples. """ ncols = A.shape[1] data, indices, indptr = A.data, A.indices, A.indptr for i in range(ncols): for j in range(indptr[i], indptr[i+1]): yield indices[j], i, data[j] def _coo_gen_triples(A): """Converts a SciPy sparse matrix in **Coordinate** format to an iterable of weighted edge triples. """ row, col, data = A.row, A.col, A.data return zip(row, col, data) def _dok_gen_triples(A): """Converts a SciPy sparse matrix in **Dictionary of Keys** format to an iterable of weighted edge triples. """ for (r, c), v in A.items(): yield r, c, v def _generate_weighted_edges(A): """Returns an iterable over (u, v, w) triples, where u and v are adjacent vertices and w is the weight of the edge joining u and v. `A` is a SciPy sparse matrix (in any format). """ if A.format == 'csr': return _csr_gen_triples(A) if A.format == 'csc': return _csc_gen_triples(A) if A.format == 'dok': return _dok_gen_triples(A) # If A is in any other format (including COO), convert it to COO format. return _coo_gen_triples(A.tocoo()) def from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute='weight'): """Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. Parameters ---------- A: scipy sparse matrix An adjacency matrix representation of a graph parallel_edges : Boolean If this is True, `create_using` is a multigraph, and `A` is an integer matrix, then entry *(i, j)* in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. create_using: NetworkX graph Use specified graph for result. The default is Graph() edge_attribute: string Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). Notes ----- If `create_using` is an instance of :class:`networkx.MultiGraph` or :class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the entries of `A` are of type :class:`int`, then this function returns a multigraph (of the same type as `create_using`) with parallel edges. In this case, `edge_attribute` will be ignored. If `create_using` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix `A` will be added to the graph. Examples -------- >>> import scipy.sparse >>> A = scipy.sparse.eye(2,2,1) >>> G = nx.from_scipy_sparse_matrix(A) If `create_using` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} If `create_using` is a multigraph and the matrix has only integer entries but `parallel_edges` is True, then the entries will be interpreted as the number of parallel edges joining those two vertices: >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True, ... create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} """ G = _prep_create_using(create_using) n,m = A.shape if n != m: raise nx.NetworkXError(\ "Adjacency matrix is not square. nx,ny=%s"%(A.shape,)) # Make sure we get even the isolated nodes of the graph. G.add_nodes_from(range(n)) # Create an iterable over (u, v, w) triples and for each triple, add an # edge from u to v with weight w. triples = _generate_weighted_edges(A) # If the entries in the adjacency matrix are integers, the graph is a # multigraph, and parallel_edges is True, then create parallel edges, each # with weight 1, for each entry in the adjacency matrix. Otherwise, create # one edge for each positive entry in the adjacency matrix and set the # weight of that edge to be the entry in the matrix. if A.dtype.kind in ('i', 'u') and G.is_multigraph() and parallel_edges: chain = itertools.chain.from_iterable # The following line is equivalent to: # # for (u, v) in edges: # for d in range(A[u, v]): # G.add_edge(u, v, weight=1) # triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples) # If we are creating an undirected multigraph, only add the edges from the # upper triangle of the matrix. Otherwise, add all the edges. This relies # on the fact that the vertices created in the # `_generated_weighted_edges()` function are actually the row/column # indices for the matrix `A`. # # Without this check, we run into a problem where each edge is added twice # when `G.add_weighted_edges_from()` is invoked below. if G.is_multigraph() and not G.is_directed(): triples = ((u, v, d) for u, v, d in triples if u <= v) G.add_weighted_edges_from(triples, weight=edge_attribute) return G # fixture for nose tests def setup_module(module): from nose import SkipTest try: import numpy except: raise SkipTest("NumPy not available") try: import scipy except: raise SkipTest("SciPy not available")
bsd-3-clause
AtsushiSakai/PythonRobotics
PathPlanning/DepthFirstSearch/depth_first_search.py
1
7598
""" Depth-First grid planning author: Erwin Lejeune (@spida_rwin) See Wikipedia article (https://en.wikipedia.org/wiki/Depth-first_search) """ import math import matplotlib.pyplot as plt show_animation = True class DepthFirstSearchPlanner: def __init__(self, ox, oy, reso, rr): """ Initialize grid map for Depth-First planning ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] resolution: grid resolution [m] rr: robot radius[m] """ self.reso = reso self.rr = rr self.calc_obstacle_map(ox, oy) self.motion = self.get_motion_model() class Node: def __init__(self, x, y, cost, parent_index, parent): self.x = x # index of grid self.y = y # index of grid self.cost = cost self.parent_index = parent_index self.parent = parent def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ Depth First search input: s_x: start x position [m] s_y: start y position [m] gx: goal x position [m] gy: goal y position [m] output: rx: x position list of the final path ry: y position list of the final path """ nstart = self.Node(self.calc_xyindex(sx, self.minx), self.calc_xyindex(sy, self.miny), 0.0, -1, None) ngoal = self.Node(self.calc_xyindex(gx, self.minx), self.calc_xyindex(gy, self.miny), 0.0, -1, None) open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(nstart)] = nstart while 1: if len(open_set) == 0: print("Open set is empty..") break current = open_set.pop(list(open_set.keys())[-1]) c_id = self.calc_grid_index(current) # show graph if show_animation: # pragma: no cover plt.plot(self.calc_grid_position(current.x, self.minx), self.calc_grid_position(current.y, self.miny), "xc") # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect('key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) plt.pause(0.01) if current.x == ngoal.x and current.y == ngoal.y: print("Find goal") ngoal.parent_index = current.parent_index ngoal.cost = current.cost break # expand_grid search grid based on motion model for i, _ in enumerate(self.motion): node = self.Node(current.x + self.motion[i][0], current.y + self.motion[i][1], current.cost + self.motion[i][2], c_id, None) n_id = self.calc_grid_index(node) # If the node is not safe, do nothing if not self.verify_node(node): continue if n_id not in closed_set: open_set[n_id] = node closed_set[n_id] = node node.parent = current rx, ry = self.calc_final_path(ngoal, closed_set) return rx, ry def calc_final_path(self, ngoal, closedset): # generate final course rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ self.calc_grid_position(ngoal.y, self.miny)] n = closedset[ngoal.parent_index] while n is not None: rx.append(self.calc_grid_position(n.x, self.minx)) ry.append(self.calc_grid_position(n.y, self.miny)) n = n.parent return rx, ry def calc_grid_position(self, index, minp): """ calc grid position :param index: :param minp: :return: """ pos = index * self.reso + minp return pos def calc_xyindex(self, position, min_pos): return round((position - min_pos) / self.reso) def calc_grid_index(self, node): return (node.y - self.miny) * self.xwidth + (node.x - self.minx) def verify_node(self, node): px = self.calc_grid_position(node.x, self.minx) py = self.calc_grid_position(node.y, self.miny) if px < self.minx: return False elif py < self.miny: return False elif px >= self.maxx: return False elif py >= self.maxy: return False # collision check if self.obmap[node.x][node.y]: return False return True def calc_obstacle_map(self, ox, oy): self.minx = round(min(ox)) self.miny = round(min(oy)) self.maxx = round(max(ox)) self.maxy = round(max(oy)) print("min_x:", self.minx) print("min_y:", self.miny) print("max_x:", self.maxx) print("max_y:", self.maxy) self.xwidth = round((self.maxx - self.minx) / self.reso) self.ywidth = round((self.maxy - self.miny) / self.reso) print("x_width:", self.xwidth) print("y_width:", self.ywidth) # obstacle map generation self.obmap = [[False for _ in range(self.ywidth)] for _ in range(self.xwidth)] for ix in range(self.xwidth): x = self.calc_grid_position(ix, self.minx) for iy in range(self.ywidth): y = self.calc_grid_position(iy, self.miny) for iox, ioy in zip(ox, oy): d = math.hypot(iox - x, ioy - y) if d <= self.rr: self.obmap[ix][iy] = True break @staticmethod def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 2.0 # [m] robot_radius = 1.0 # [m] # set obstacle positions ox, oy = [], [] for i in range(-10, 60): ox.append(i) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) oy.append(i) for i in range(-10, 61): ox.append(i) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) oy.append(i) for i in range(-10, 40): ox.append(20.0) oy.append(i) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) if show_animation: # pragma: no cover plt.plot(ox, oy, ".k") plt.plot(sx, sy, "og") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") dfs = DepthFirstSearchPlanner(ox, oy, grid_size, robot_radius) rx, ry = dfs.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") plt.pause(0.01) plt.show() if __name__ == '__main__': main()
mit
rheinheimer/HydraApp-WEAPImport
weap_template.py
1
10766
# import import pandas as pd from os.path import join import xml.etree.ElementTree as ET import os import zipfile from pypxlib import Table from collections import OrderedDict import shutil ''' a shortcut to ET.SubElenment(parent, child).text ( and *.text = text ) ''' def add_node(parent, child, text): if type(text)==str: ET.SubElement(parent, child).text = text else: ET.SubElement(parent, child) # add resource attribute def add_attribute(resources, resource_name, attr_dict): for resource in resources: if resource.find('name').text == resource_name: attr = ET.SubElement(resource, 'attribute') for attr_name, attr_text in attr_dict.items(): add_node(attr, attr_name, attr_text) ''' pretty print xml from http://effbot.org/zone/element-lib.htm#prettyprint ''' def indent(elem, level=0): i = "\n" + level*" " if len(elem): if not elem.text or not elem.text.strip(): elem.text = i + " " if not elem.tail or not elem.tail.strip(): elem.tail = i for elem in elem: indent(elem, level+1) if not elem.tail or not elem.tail.strip(): elem.tail = i else: if level and (not elem.tail or not elem.tail.strip()): elem.tail = i ''' zip a directory - pilfered from the internet ''' def zipdir(path, ziph): # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file)) def create_xml_template(tpl_name): # load features and variables from csv features_all = pd.read_csv('./WEAP_default_features.csv') variables_all = pd.read_csv('./WEAP_default_variables.csv') var_features = variables_all.feature.unique() cat_features = features_all.feature.unique() # template name tpl = ET.Element('template_definition') #tree = ET.ElementTree(tpl) ET.SubElement(tpl, 'template_name').text = tpl_name # define link lines width = 4 linkstyle = {} linkstyle['river'] = ['solid', 'blue', width] linkstyle['diversion'] = ['solid', 'orange', width] linkstyle['transmission_link'] = ['solid', 'green', width] linkstyle['return_flow'] = ['solid', 'red', width] linkstyle['runoff_infiltration'] = ['dashed', 'blue', width] # add layout layout = ET.SubElement(tpl, 'layout') item = ET.SubElement(layout, 'item') add_node(item, 'name', 'grouping') value = ET.SubElement(item, 'value') add_node(value, 'name', tpl_name) add_node(value, 'description', tpl_name) categories = ET.SubElement(value, 'categories') cats = features_all.category.unique() for cat in cats: category = ET.SubElement(categories, 'category') for attr in ['name', 'description', 'displayname']: add_node(category, attr, cat) groups = ET.SubElement(category, 'groups') features = features_all[features_all.category==cat] for f in features.itertuples(): if f.feature not in var_features: pass group = ET.SubElement(groups, 'group') add_node(group, 'name', f.feature) add_node(group, 'description', f.description) add_node(group, 'displayname', f.displayname) add_node(group, 'image', 'images\\%s.png' % f.feature) # add resources resources = ET.SubElement(tpl, 'resources') # add a blank NETWORK resource if no NETWORK variables exist if 'NETWORK' not in categories: resource = ET.SubElement(resources, 'resource') add_node(resource, 'type', 'NETWORK') add_node(resource, 'name', 'key_assumptions') # add features and variables #for feature in var_features: for f in features_all.itertuples(): if f.feature=='catchment': pass if f.feature not in cat_features: continue # get resource category category = features_all[features_all.feature==f.feature].category.iloc[0][:-1].upper() # add the resource subelement resource = ET.SubElement(resources, 'resource') # add resource layout info add_node(resource, 'type', category) add_node(resource, 'name', f.feature) layout = ET.SubElement(resource, 'layout') item = ET.SubElement(layout, 'item') add_node(item, 'name', 'image') add_node(item, 'value', 'images\\'+f.feature+'.png') if category == 'LINK': for i, iname in enumerate(['symbol','colour','line_weight']): item = ET.SubElement(layout, 'item') add_node(item, 'name', iname) add_node(item, 'value', str(linkstyle[f.feature][i])) item = ET.SubElement(layout, 'item') add_node(item, 'name', 'group') add_node(item, 'value', f.feature) # add variables feature_variables = variables_all[variables_all.feature == f.feature] for v in feature_variables.itertuples(): if v.variable_type=='Water Quality': continue attr = ET.SubElement(resource, 'attribute') add_node(attr, 'name', v.variable_name.replace(' ', '_')) add_node(attr, 'dimension', v.dimension) add_node(attr, 'unit', v.hydra_unit) add_node(attr, 'is_var', 'N') add_node(attr, 'data_type', 'descriptor') # add basic result variables - inflow/outflow for v in ['inflow','outflow']: attr = ET.SubElement(resource, 'attribute') add_node(attr, 'name', v) add_node(attr, 'dimension', 'Volume') add_node(attr, 'unit', '1e6 m^3') add_node(attr, 'is_var', 'Y') add_node(attr, 'data_type', 'timeseries') return tpl#, tree def make_type_dict(weapdir): typedefs = Table(join(weapdir, '_Dictionary', 'NodeTypes.DB')) type_dict = {} for t in typedefs: type_dict[t.TypeID] = str(t.Name.lower()).replace(' ','_').replace('/','_') return type_dict ''' convert paradox db to pandas df ''' def px_to_df(pxdb): with Table(pxdb) as units: fields = list(units.fields) rows = [(row[fields[0]], [row[field] for field in fields[1:]]) for row in units] df = pd.DataFrame.from_items(rows, orient='index', columns=fields[1:]) return df def add_custom_variables(tpl, weapdir, area): areadir = join(weapdir, area) # lookup dataframes for... # type: type_df = px_to_df(pxdb = join(weapdir, '_Dictionary', 'NodeTypes.DB')) # catagory: category_df = px_to_df(pxdb = join(weapdir, '_Dictionary', 'Category.DB')) # units: units_df = px_to_df(pxdb = join(areadir, 'Units.DB')) # weap-hydra units weap_hydra_units_df = pd.read_csv('weap_hydra_units.csv', index_col=0) resources = tpl.find('resources') # read user variables database with Table(file_path=join(areadir, 'UserVariables.db')) as uservariables: # loop through all user variables and add them to the template for v in uservariables: attr_dict = {} # feature name if v.TypeID: resource_name = str(type_df.loc[v.TypeID].Name).lower().replace(' ','_').replace('/', '_') else: category = category_df.loc[v.CategoryID].Name if category == 'Treatment': resource_name = 'Wastewater_Treatment_Plant' elif category == 'Water Use': resource_name = 'Demand_Site' # need to add more categories if needed, perhaps from lookup table # determine units weap_unit_name = units_df.loc[-v.NumUnitFieldID].Name hydra_unit_abbr = weap_hydra_units_df.loc[weap_unit_name].Hydra_abbr # data type if v.IsInteger: v_data_type = 'scalar' else: v_data_type = 'timeseries' # write the variable info to a dictionary attr_dict = OrderedDict() attr_dict['name'] = str(v.DisplayLabel).replace(' ','_') #attr_dict['description'] = v.GridComment attr_dict['dimension'] = 'Volume' attr_dict['unit'] = hydra_unit_abbr attr_dict['is_var'] = 'Y' attr_dict['data_type'] = v_data_type # write the variables to template, under resources add_attribute(resources, resource_name, attr_dict) def write_template_xml(tpl, tree, tpl_name): # prettify indent(tpl) # write to file fout = join(tpl_name, './template/template.xml') tree.write(fout) def create_template_zipfile(tpl_name): # create the zipfile zipf = zipfile.ZipFile(tpl_name + '.zip', 'w', zipfile.ZIP_DEFLATED) zipd = tpl_name + '/template' zipdir(zipd, zipf) zipf.close() def main(tpl_name, custom_area, weapdir, write_template=True, direct_import=True, outdir=None): # check if input requirements are met if write_template and outdir==None: return # create template xml tpl = create_xml_template(tpl_name) # update template from specific model if custom_area: add_custom_variables(tpl, weapdir, custom_area) # create tree tree = ET.ElementTree(tpl) ## 1. write template to xml file and create hydra-friendly zip file if write_template: # remove old template directory tpl_path = join(outdir, tpl_name) if os.path.exists(tpl_path): shutil.rmtree(tpl_path) # create new template directory os.mkdir(tpl_path) shutil.copytree(src='template', dst=join(tpl_path, 'template')) # write template xml to file write_template_xml(tpl, tree, tpl_name) # create template zipfile for import to Hydra create_template_zipfile(tpl_name) ## 2. import xml directly if __name__ == '__main__': weapdir = r'C:\Users\L03060467\Documents\WEAP Areas' #custom_area = 'Weaping River Basin' custom_area = None if custom_area: tpl_name = custom_area else: tpl_name = 'WEAP' outdir = '.' write_template = True direct_import = False main(tpl_name, custom_area, weapdir=weapdir, write_template=True, direct_import=False, outdir=outdir) print('finished')
mit
homeslike/OpticalTweezer
scripts/p0.8_at0.05/vCOMhistogram.py
28
2448
import math import sys import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab from subprocess import call from scipy.stats import norm # proc = call("ls *.dat",shell=True) # datetime = "170123_2033_" datetime = sys.argv[1]+"_" gasTempDataIn = np.genfromtxt(datetime+"gasTempData.dat",usecols=0,skip_header=100) gasTempDataOut = np.genfromtxt(datetime+"gasTempData.dat",usecols=1,skip_header=100) vCOMData_x = np.genfromtxt(datetime+"vCOMData.dat",usecols=0,skip_header=100) vCOMData_y = np.genfromtxt(datetime+"vCOMData.dat",usecols=1,skip_header=100) vCOMData_z = np.genfromtxt(datetime+"vCOMData.dat",usecols=2,skip_header=100) N = 32 vSqd = [] for i in range(0,len(vCOMData_x)): vSqd.append((vCOMData_x[i]*vCOMData_x[i]+vCOMData_x[i]*vCOMData_x[i]+vCOMData_x[i]*vCOMData_x[i])*0.5) vSqdMean = np.mean(vSqd) histogram_x,bins_x = np.histogram(vCOMData_x,bins=100,normed=True) histogram_y,bins_y = np.histogram(vCOMData_y,bins=100,normed=True) histogram_z,bins_z = np.histogram(vCOMData_z,bins=100,normed=True) inTemp = np.mean(gasTempDataIn) outTemp = np.mean(gasTempDataOut) statistics = open(datetime+"statistics.dat","w") statistics.write("GasIn: " + str(inTemp)+"\n") statistics.write("GasOut: " + str(outTemp)+"\n") statistics.write("T_COM: " + str(2./3. * vSqdMean)+"\n") statistics.write("Mu_x " + str(np.mean(vCOMData_x))+"\n") statistics.write("Sigma_x: " + str(np.std(vCOMData_x))+"\n") statistics.write("Mu_y " + str(np.mean(vCOMData_y))+"\n") statistics.write("Sigma_y: " + str(np.std(vCOMData_y))+"\n") statistics.write("Mu_z " + str(np.mean(vCOMData_z))+"\n") statistics.write("Sigma_z: " + str(np.std(vCOMData_z))+"\n") histogram_x_file = open(datetime+"histogram_vx.dat","w") histogram_y_file = open(datetime+"histogram_vy.dat","w") histogram_z_file = open(datetime+"histogram_vz.dat","w") for i in range(0,len(histogram_x)): histogram_x_file.write(str(bins_x[i]) + "\t" + str(histogram_x[i]) + "\n") histogram_y_file.write(str(bins_y[i]) + "\t" + str(histogram_y[i]) + "\n") histogram_z_file.write(str(bins_z[i]) + "\t" + str(histogram_z[i]) + "\n") # plt.figure(1) # plt.hist(vCOMData_x,bins=100) # plt.figure(2) # plt.hist(vCOMData_y,bins=100) # plt.figure(3) # plt.hist(vCOMData_z,bins=100) # plt.show() # plt.figure(1) # plt.plot(vSqd) # plt.plot((0,700),(vSqdMean,vSqdMean)) # plt.figure(2) # plt.hist(vCOMData_x,bins=100,normed=True) # plt.plot(x,gasInPDF) # plt.show()
mit
Lucas-Armand/genetic-algorithm
dev/9ºSemana/testes of speed.py
5
3255
# -*- coding: utf-8 -*- import os import csv import random import numpy as np import timeit import time as Time import matplotlib.pyplot as plt import matplotlib.animation as animation from itertools import product, combinations class Block: def __init__(self,point,a,b,c,weight,btype): self.p=point self.a=a self.b=b self.c=c self.w=weight self.t=btype def csv_read(name): #Metodo de leitura, transforma um arquivo CSV em um vetor CSV=open(name,'r') dados=CSV.read() dados=dados.replace(',','.') dados=dados.replace(';',',') CSV.close() CSV=open("temp.csv",'w') CSV.write(dados) CSV.close() CSV=open("temp.csv",'r') dados=csv.reader(CSV) v=[] for i in dados: I=[] for j in i: try: j = float(j) except: pass I.append(j) v.append(I) CSV.close() os.remove("temp.csv") return (v) def defineGeometry(name): vect = csv_read(name) blockNumber ={} for i in vect: a = i[1] b = i[2] c = i[3] point = [i[4],i[5],i[6]] weight = i[7] btype = i[-1] block = Block(point,a,b,c,weight,btype) blockNumber[i[0]] = block return blockNumber bNumb=defineGeometry('GeometriaNavio.csv') # Define vicinity #deck vicinity={1:[2]} for i in range(2,16): vicinity[i] = [i-1,i+1] vicinity[16] = [15] #side vicinity[17] = [18,19] vicinity[18] = [17,20] for i in range(19,31): v = i-1 if i%2==0 else i+1 vicinity[i] = [v,i-2,i+2] vicinity[31] = [29,32] vicinity[32] = [30,31] #bott vicinity[33] = [34,35] vicinity[34] = [33,36] for i in range(35,63): v = i-1 if i%2==0 else i+1 vicinity[i] = [v,i-2,i+2] vicinity[63] = [61,64] vicinity[64] = [63,62] #coff vicinity[65] = [66] for i in range(66,70): vicinity[i] = [i-1,i+1] vicinity[70] = [69] alfa = 10 beta = 1 built = [] time = 0 append = built.append def order(x): return vicinity[x] def time(bNumb,vicinity,chromo): t_time = Time.time() alfa = 1 built = [] time = 0 append = built.append def time_vector(x,y): for i in y: if i in built: time = alfa break try:time except: time = 10*alfa append(x) return time vic = [vicinity[x] for x in chromo] time = sum((time_vector(x,y) for x,y in zip(chromo,vic))) return time chromo = [44, 39, 56, 47, 49, 37, 42, 46, 51, 58, 60, 62, 52, 41, 35, 33, 50, 61, 54, 34, 59, 43, 48, 45, 55, 53, 38, 57, 64, 67, 68, 63, 40, 36, 21, 66, 22, 6, 20, 65, 18, 5, 17, 69, 28, 27, 70, 29, 1, 12, 30, 13, 14, 26, 31, 24, 19, 2, 3, 4, 25, 11, 32, 10, 15, 16, 9, 23, 7, 8] import cProfile cProfile.run('time(bNumb,vicinity,chromo)') ## ##print timeit.timeit(setup='from __main__ import chromo;'+ ## 'from __main__ import bNumb;'+ ## 'from __main__ import time;'+ ## 'from __main__ import vicinity ' ## ,stmt='time(bNumb,vicinity,chromo)') #print t.timeit(number = 1000000)
gpl-3.0
ljbade/libswiftnav
python/docs/extensions/ipython_directive.py
31
27191
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import cStringIO import os import re import sys import tempfile import ast # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive matplotlib.use('Agg') # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = cStringIO.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? seen_docs = [i for i in os.listdir(tempfile.tempdir) if i.startswith('seen_doc')] if seen_docs: fname = os.path.join(tempfile.tempdir, seen_docs[0]) docs = open(fname).read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fd, fname = tempfile.mkstemp(prefix="seen_doc", text=True) fout = open(fname, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print '\n'.join(lines) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup self.teardown() return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print 'All OK? Check figures in _static/'
lgpl-3.0
alexeyum/scikit-learn
examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py
87
3903
""" ============================================== Feature agglomeration vs. univariate selection ============================================== This example compares 2 dimensionality reduction strategies: - univariate feature selection with Anova - feature agglomeration with Ward hierarchical clustering Both methods are compared in a regression problem using a BayesianRidge as supervised estimator. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import shutil import tempfile import numpy as np import matplotlib.pyplot as plt from scipy import linalg, ndimage from sklearn.feature_extraction.image import grid_to_graph from sklearn import feature_selection from sklearn.cluster import FeatureAgglomeration from sklearn.linear_model import BayesianRidge from sklearn.pipeline import Pipeline from sklearn.externals.joblib import Memory from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold ############################################################################### # Generate data n_samples = 200 size = 40 # image size roi_size = 15 snr = 5. np.random.seed(0) mask = np.ones([size, size], dtype=np.bool) coef = np.zeros((size, size)) coef[0:roi_size, 0:roi_size] = -1. coef[-roi_size:, -roi_size:] = 1. X = np.random.randn(n_samples, size ** 2) for x in X: # smooth data x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel() X -= X.mean(axis=0) X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise ############################################################################### # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(cachedir=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)]) # Select the optimal percentage of features with grid search clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1)) coef_selection_ = coef_.reshape(size, size) ############################################################################### # Inverse the transformation to plot the results on an image plt.close('all') plt.figure(figsize=(7.3, 2.7)) plt.subplot(1, 3, 1) plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("True weights") plt.subplot(1, 3, 2) plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Selection") plt.subplot(1, 3, 3) plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r) plt.title("Feature Agglomeration") plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26) plt.show() # Attempt to remove the temporary cachedir, but don't worry if it fails shutil.rmtree(cachedir, ignore_errors=True)
bsd-3-clause
AlexRobson/scikit-learn
sklearn/tests/test_multiclass.py
72
24581
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.multiclass import OneVsRestClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import fit_ovr from sklearn.multiclass import fit_ovo from sklearn.multiclass import fit_ecoc from sklearn.multiclass import predict_ovr from sklearn.multiclass import predict_ovo from sklearn.multiclass import predict_ecoc from sklearn.multiclass import predict_proba_ovr from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import LabelBinarizer from sklearn.svm import LinearSVC, SVC from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge, Perceptron, LogisticRegression) from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn import svm from sklearn import datasets from sklearn.externals.six.moves import zip iris = datasets.load_iris() rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] n_classes = 3 def test_ovr_exceptions(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovr.predict, []) with ignore_warnings(): assert_raises(ValueError, predict_ovr, [LinearSVC(), MultinomialNB()], LabelBinarizer(), []) # Fail on multioutput data assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1, 2], [3, 1]])) assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit, np.array([[1, 0], [0, 1]]), np.array([[1.5, 2.4], [3.1, 0.8]])) def test_ovr_fit_predict(): # A classifier which implements decision_function. ovr = OneVsRestClassifier(LinearSVC(random_state=0)) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) clf = LinearSVC(random_state=0) pred2 = clf.fit(iris.data, iris.target).predict(iris.data) assert_equal(np.mean(iris.target == pred), np.mean(iris.target == pred2)) # A classifier which implements predict_proba. ovr = OneVsRestClassifier(MultinomialNB()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_greater(np.mean(iris.target == pred), 0.65) def test_ovr_ovo_regressor(): # test that ovr and ovo work on regressors which don't have a decision_function ovr = OneVsRestClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) ovr = OneVsOneClassifier(DecisionTreeRegressor()) pred = ovr.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovr.estimators_), n_classes * (n_classes - 1) / 2) assert_array_equal(np.unique(pred), [0, 1, 2]) # we are doing something sensible assert_greater(np.mean(pred == iris.target), .9) def test_ovr_fit_predict_sparse(): for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: base_clf = MultinomialNB(alpha=1) X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train)) Y_pred_sprs = clf_sprs.predict(X_test) assert_true(clf.multilabel_) assert_true(sp.issparse(Y_pred_sprs)) assert_array_equal(Y_pred_sprs.toarray(), Y_pred) # Test predict_proba Y_proba = clf_sprs.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred_sprs.toarray()) # Test decision_function clf_sprs = OneVsRestClassifier(svm.SVC()).fit(X_train, sparse(Y_train)) dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int) assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray()) def test_ovr_always_present(): # Test that ovr works with classes that are always present or absent. # Note: tests is the case where _ConstantPredictor is utilised X = np.ones((10, 2)) X[:5, :] = 0 # Build an indicator matrix where two features are always on. # As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)] y = np.zeros((10, 3)) y[5:, 0] = 1 y[:, 1] = 1 y[:, 2] = 1 ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict(X) assert_array_equal(np.array(y_pred), np.array(y)) y_pred = ovr.decision_function(X) assert_equal(np.unique(y_pred[:, -2:]), 1) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.ones(X.shape[0])) # y has a constantly absent label y = np.zeros((10, 2)) y[5:, 0] = 1 # variable label ovr = OneVsRestClassifier(LogisticRegression()) assert_warns(UserWarning, ovr.fit, X, y) y_pred = ovr.predict_proba(X) assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0])) def test_ovr_multiclass(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "ham", "eggs", "ham"] Y = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 0, 4]])[0] assert_array_equal(y_pred, [0, 0, 1]) def test_ovr_binary(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]]) y = ["eggs", "spam", "spam", "eggs", "spam"] Y = np.array([[0, 1, 1, 0, 1]]).T classes = set("eggs spam".split()) def conduct_test(base_clf, test_predict_proba=False): clf = OneVsRestClassifier(base_clf).fit(X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict(np.array([[0, 0, 4]]))[0] assert_equal(set(y_pred), set("eggs")) if test_predict_proba: X_test = np.array([[0, 0, 4]]) probabilities = clf.predict_proba(X_test) assert_equal(2, len(probabilities[0])) assert_equal(clf.classes_[np.argmax(probabilities, axis=1)], clf.predict(X_test)) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[3, 0, 0]])[0] assert_equal(y_pred, 1) for base_clf in (LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet()): conduct_test(base_clf) for base_clf in (MultinomialNB(), SVC(probability=True), LogisticRegression()): conduct_test(base_clf, test_predict_proba=True) @ignore_warnings def test_ovr_multilabel(): # Toy dataset where features correspond directly to labels. X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]]) y = [["spam", "eggs"], ["spam"], ["ham", "eggs", "spam"], ["ham", "eggs"], ["ham"]] # y = [[1, 2], [1], [0, 1, 2], [0, 2], [0]] Y = np.array([[0, 1, 1], [0, 1, 0], [1, 1, 1], [1, 0, 1], [1, 0, 0]]) classes = set("ham eggs spam".split()) for base_clf in (MultinomialNB(), LinearSVC(random_state=0), LinearRegression(), Ridge(), ElasticNet(), Lasso(alpha=0.5)): # test input as lists of tuples clf = assert_warns(DeprecationWarning, OneVsRestClassifier(base_clf).fit, X, y) assert_equal(set(clf.classes_), classes) y_pred = clf.predict([[0, 4, 4]])[0] assert_equal(set(y_pred), set(["spam", "eggs"])) assert_true(clf.multilabel_) # test input as label indicator matrix clf = OneVsRestClassifier(base_clf).fit(X, Y) y_pred = clf.predict([[0, 4, 4]])[0] assert_array_equal(y_pred, [0, 1, 1]) assert_true(clf.multilabel_) def test_ovr_fit_predict_svc(): ovr = OneVsRestClassifier(svm.SVC()) ovr.fit(iris.data, iris.target) assert_equal(len(ovr.estimators_), 3) assert_greater(ovr.score(iris.data, iris.target), .9) def test_ovr_multilabel_dataset(): base_clf = MultinomialNB(alpha=1) for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test, Y_test = X[80:], Y[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) Y_pred = clf.predict(X_test) assert_true(clf.multilabel_) assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"), prec, decimal=2) assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"), recall, decimal=2) def test_ovr_multilabel_predict_proba(): base_clf = MultinomialNB(alpha=1) for au in (False, True): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=au, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) # Estimator with predict_proba disabled, depending on parameters. decision_only = OneVsRestClassifier(svm.SVC(probability=False)) decision_only.fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = Y_proba > .5 assert_array_equal(pred, Y_pred) def test_ovr_single_label_predict_proba(): base_clf = MultinomialNB(alpha=1) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train) # decision function only estimator. Fails in current implementation. decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train) assert_raises(AttributeError, decision_only.predict_proba, X_test) Y_pred = clf.predict(X_test) Y_proba = clf.predict_proba(X_test) assert_almost_equal(Y_proba.sum(axis=1), 1.0) # predict assigns a label if the probability that the # sample has the label is greater than 0.5. pred = np.array([l.argmax() for l in Y_proba]) assert_false((pred - Y_pred).any()) def test_ovr_multilabel_decision_function(): X, Y = datasets.make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=3, length=50, allow_unlabeled=True, return_indicator=True, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal((clf.decision_function(X_test) > 0).astype(int), clf.predict(X_test)) def test_ovr_single_label_decision_function(): X, Y = datasets.make_classification(n_samples=100, n_features=20, random_state=0) X_train, Y_train = X[:80], Y[:80] X_test = X[80:] clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train) assert_array_equal(clf.decision_function(X_test).ravel() > 0, clf.predict(X_test)) def test_ovr_gridsearch(): ovr = OneVsRestClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovr, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovr_pipeline(): # Test with pipeline of length one # This test is needed because the multiclass estimators may fail to detect # the presence of predict_proba or decision_function. clf = Pipeline([("tree", DecisionTreeClassifier())]) ovr_pipe = OneVsRestClassifier(clf) ovr_pipe.fit(iris.data, iris.target) ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data)) def test_ovr_coef_(): for base_classifier in [SVC(kernel='linear', random_state=0), LinearSVC(random_state=0)]: # SVC has sparse coef with sparse input data ovr = OneVsRestClassifier(base_classifier) for X in [iris.data, sp.csr_matrix(iris.data)]: # test with dense and sparse coef ovr.fit(X, iris.target) shape = ovr.coef_.shape assert_equal(shape[0], n_classes) assert_equal(shape[1], iris.data.shape[1]) # don't densify sparse coefficients assert_equal(sp.issparse(ovr.estimators_[0].coef_), sp.issparse(ovr.coef_)) def test_ovr_coef_exceptions(): # Not fitted exception! ovr = OneVsRestClassifier(LinearSVC(random_state=0)) # lambda is needed because we don't want coef_ to be evaluated right away assert_raises(ValueError, lambda x: ovr.coef_, None) # Doesn't have coef_ exception! ovr = OneVsRestClassifier(DecisionTreeClassifier()) ovr.fit(iris.data, iris.target) assert_raises(AttributeError, lambda x: ovr.coef_, None) def test_ovo_exceptions(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ovo.predict, []) def test_ovo_fit_on_list(): # Test that OneVsOne fitting works with a list of targets and yields the # same output as predict from an array ovo = OneVsOneClassifier(LinearSVC(random_state=0)) prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data) prediction_from_list = ovo.fit(iris.data, list(iris.target)).predict(iris.data) assert_array_equal(prediction_from_array, prediction_from_list) def test_ovo_fit_predict(): # A classifier which implements decision_function. ovo = OneVsOneClassifier(LinearSVC(random_state=0)) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) # A classifier which implements predict_proba. ovo = OneVsOneClassifier(MultinomialNB()) ovo.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ovo.estimators_), n_classes * (n_classes - 1) / 2) def test_ovo_decision_function(): n_samples = iris.data.shape[0] ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0)) ovo_clf.fit(iris.data, iris.target) decisions = ovo_clf.decision_function(iris.data) assert_equal(decisions.shape, (n_samples, n_classes)) assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data)) # Compute the votes votes = np.zeros((n_samples, n_classes)) k = 0 for i in range(n_classes): for j in range(i + 1, n_classes): pred = ovo_clf.estimators_[k].predict(iris.data) votes[pred == 0, i] += 1 votes[pred == 1, j] += 1 k += 1 # Extract votes and verify assert_array_equal(votes, np.round(decisions)) for class_idx in range(n_classes): # For each sample and each class, there only 3 possible vote levels # because they are only 3 distinct class pairs thus 3 distinct # binary classifiers. # Therefore, sorting predictions based on votes would yield # mostly tied predictions: assert_true(set(votes[:, class_idx]).issubset(set([0., 1., 2.]))) # The OVO decision function on the other hand is able to resolve # most of the ties on this data as it combines both the vote counts # and the aggregated confidence levels of the binary classifiers # to compute the aggregate decision function. The iris dataset # has 150 samples with a couple of duplicates. The OvO decisions # can resolve most of the ties: assert_greater(len(np.unique(decisions[:, class_idx])), 146) def test_ovo_gridsearch(): ovo = OneVsOneClassifier(LinearSVC(random_state=0)) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ovo, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) def test_ovo_ties(): # Test that ties are broken using the decision function, # not defaulting to the smallest label X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y = np.array([2, 0, 1, 2]) multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) ovo_decision = multi_clf.decision_function(X) # Classifiers are in order 0-1, 0-2, 1-2 # Use decision_function to compute the votes and the normalized # sum_of_confidences, which is used to disambiguate when there is a tie in # votes. votes = np.round(ovo_decision) normalized_confidences = ovo_decision - votes # For the first point, there is one vote per class assert_array_equal(votes[0, :], 1) # For the rest, there is no tie and the prediction is the argmax assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:]) # For the tie, the prediction is the class with the highest score assert_equal(ovo_prediction[0], normalized_confidences[0].argmax()) def test_ovo_ties2(): # test that ties can not only be won by the first two labels X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]]) y_ref = np.array([2, 0, 1, 2]) # cycle through labels so that each label wins once for i in range(3): y = (y_ref + i) % 3 multi_clf = OneVsOneClassifier(Perceptron(shuffle=False)) ovo_prediction = multi_clf.fit(X, y).predict(X) assert_equal(ovo_prediction[0], i % 3) def test_ovo_string_y(): # Test that the OvO doesn't mess up the encoding of string labels X = np.eye(4) y = np.array(['a', 'b', 'c', 'd']) ovo = OneVsOneClassifier(LinearSVC()) ovo.fit(X, y) assert_array_equal(y, ovo.predict(X)) def test_ecoc_exceptions(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0)) assert_raises(ValueError, ecoc.predict, []) def test_ecoc_fit_predict(): # A classifier which implements decision_function. ecoc = OutputCodeClassifier(LinearSVC(random_state=0), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) # A classifier which implements predict_proba. ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0) ecoc.fit(iris.data, iris.target).predict(iris.data) assert_equal(len(ecoc.estimators_), n_classes * 2) def test_ecoc_gridsearch(): ecoc = OutputCodeClassifier(LinearSVC(random_state=0), random_state=0) Cs = [0.1, 0.5, 0.8] cv = GridSearchCV(ecoc, {'estimator__C': Cs}) cv.fit(iris.data, iris.target) best_C = cv.best_estimator_.estimators_[0].C assert_true(best_C in Cs) @ignore_warnings def test_deprecated(): base_estimator = DecisionTreeClassifier(random_state=0) X, Y = iris.data, iris.target X_train, Y_train = X[:80], Y[:80] X_test = X[80:] all_metas = [ (OneVsRestClassifier, fit_ovr, predict_ovr, predict_proba_ovr), (OneVsOneClassifier, fit_ovo, predict_ovo, None), (OutputCodeClassifier, fit_ecoc, predict_ecoc, None), ] for MetaEst, fit_func, predict_func, proba_func in all_metas: try: meta_est = MetaEst(base_estimator, random_state=0).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train, random_state=0) except TypeError: meta_est = MetaEst(base_estimator).fit(X_train, Y_train) fitted_return = fit_func(base_estimator, X_train, Y_train) if len(fitted_return) == 2: estimators_, classes_or_lb = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, X_test), meta_est.predict(X_test)) if proba_func is not None: assert_almost_equal(proba_func(estimators_, X_test, is_multilabel=False), meta_est.predict_proba(X_test)) else: estimators_, classes_or_lb, codebook = fitted_return assert_almost_equal(predict_func(estimators_, classes_or_lb, codebook, X_test), meta_est.predict(X_test))
bsd-3-clause
cainiaocome/scikit-learn
benchmarks/bench_glmnet.py
297
3848
""" To run this, you'll need to have installed. * glmnet-python * scikit-learn (of course) Does two benchmarks First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import numpy as np import gc from time import time from sklearn.datasets.samples_generator import make_regression alpha = 0.1 # alpha = 0.01 def rmse(a, b): return np.sqrt(np.mean((a - b) ** 2)) def bench(factory, X, Y, X_test, Y_test, ref_coef): gc.collect() # start time tstart = time() clf = factory(alpha=alpha).fit(X, Y) delta = (time() - tstart) # stop time print("duration: %0.3fs" % delta) print("rmse: %f" % rmse(Y_test, clf.predict(X_test))) print("mean coef abs diff: %f" % abs(ref_coef - clf.coef_.ravel()).mean()) return delta if __name__ == '__main__': from glmnet.elastic_net import Lasso as GlmnetLasso from sklearn.linear_model import Lasso as ScikitLasso # Delayed import of pylab import pylab as pl scikit_results = [] glmnet_results = [] n = 20 step = 500 n_features = 1000 n_informative = n_features / 10 n_test_samples = 1000 for i in range(1, n + 1): print('==================') print('Iteration %s of %s' % (i, n)) print('==================') X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:(i * step)] Y = Y[:(i * step)] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) pl.clf() xx = range(0, n * step, step) pl.title('Lasso regression on sample dataset (%d features)' % n_features) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of samples to classify') pl.ylabel('Time (s)') pl.show() # now do a benchmark where the number of points is fixed # and the variable is the number of features scikit_results = [] glmnet_results = [] n = 20 step = 100 n_samples = 500 for i in range(1, n + 1): print('==================') print('Iteration %02d of %02d' % (i, n)) print('==================') n_features = i * step n_informative = n_features / 10 X, Y, coef_ = make_regression( n_samples=(i * step) + n_test_samples, n_features=n_features, noise=0.1, n_informative=n_informative, coef=True) X_test = X[-n_test_samples:] Y_test = Y[-n_test_samples:] X = X[:n_samples] Y = Y[:n_samples] print("benchmarking scikit-learn: ") scikit_results.append(bench(ScikitLasso, X, Y, X_test, Y_test, coef_)) print("benchmarking glmnet: ") glmnet_results.append(bench(GlmnetLasso, X, Y, X_test, Y_test, coef_)) xx = np.arange(100, 100 + n * step, step) pl.figure('scikit-learn vs. glmnet benchmark results') pl.title('Regression in high dimensional spaces (%d samples)' % n_samples) pl.plot(xx, scikit_results, 'b-', label='scikit-learn') pl.plot(xx, glmnet_results, 'r-', label='glmnet') pl.legend() pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
manashmndl/scikit-learn
examples/datasets/plot_iris_dataset.py
283
1928
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
rupakc/Kaggle-Compendium
Random Acts of Pizza/PizzaCombinedModel.py
1
8053
# -*- coding: utf-8 -*- """ Created on Thu Dec 31 23:03:00 2015 Defines the data model for Random Acts of Pizza @author: Rupak Chakraborty """ import pandas as pd import numpy as np import math from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn import cross_validation from sklearn import metrics import ClassificationUtils import time import nltk from nltk.tokenize import word_tokenize filename = "Random Acts of Pizza/train.json" class_map = {True:1,False:0} jsonData = pd.read_json(filename) jsonData = jsonData.iloc[np.random.permutation(len(jsonData))] requester_pizza_status = np.array(map(lambda x: class_map[x],jsonData["requester_received_pizza"])) class_labels = requester_pizza_status data = np.zeros((len(jsonData),18)) #Function to Extract POS tag counts from a given text def getNounAdjVerbs(text): words = word_tokenize(text) pos_tags = nltk.pos_tag(words) nouns = 0 verbs = 0 adj = 0 for token in pos_tags: k = token[1] if k == "NN" or k == "NNP" or k == "NNS" or k == "NNPS": nouns = nouns + 1 elif k == "JJ" or k == "JJR" or k == "JJS": adj = adj + 1 elif k == "VB" or k == "VBD" or k == "VBG" or k == "VBN" or k == "VBP" or k == "VBZ": verbs = verbs + 1 return nouns,adj,verbs # Extract Text features request_text__data = list(jsonData["request_text_edit_aware"]) request_text_title_data = list (jsonData["request_title"]) clean_text_data = list([]) clean_title_data = list([]) print "Starting feature loading and cleaning ..." start = time.time() for i in range(len(request_text__data)): title_string = ClassificationUtils.textCleaningPipeline(request_text_title_data[i]) text_string = ClassificationUtils.textCleaningPipeline(request_text__data[i]) clean_text_data.append(text_string) clean_title_data.append(title_string) end = time.time() print "Time taken to load and clean text features : ", end-start # Extract whole features number_of_downvotes_of_request_at_retrieval = np.array(jsonData["number_of_downvotes_of_request_at_retrieval"],dtype=float) number_of_upvotes_of_request_at_retrieval = np.array(jsonData["number_of_upvotes_of_request_at_retrieval"],dtype=float) request_number_of_comments_at_retrieval = np.array(jsonData["request_number_of_comments_at_retrieval"],dtype=float) requester_number_of_subreddits_at_request = np.array(jsonData["requester_number_of_subreddits_at_request"],dtype=float) whole_features = [number_of_downvotes_of_request_at_retrieval,number_of_upvotes_of_request_at_retrieval,\ request_number_of_comments_at_retrieval,requester_number_of_subreddits_at_request] # Extract pairwise different features requester_account_age_in_days_at_request = np.array(jsonData["requester_account_age_in_days_at_request"],dtype=float) requester_account_age_in_days_at_retrieval = np.array(jsonData["requester_account_age_in_days_at_retrieval"],dtype=float) requester_days_since_first_post_on_raop_at_request = np.array(jsonData["requester_days_since_first_post_on_raop_at_request"],dtype=float) requester_days_since_first_post_on_raop_at_retrieval = np.array(jsonData["requester_days_since_first_post_on_raop_at_retrieval"],dtype=float) requester_number_of_comments_at_request = np.array(jsonData["requester_number_of_comments_at_request"],dtype=float) requester_number_of_comments_at_retrieval = np.array(jsonData["requester_number_of_comments_at_retrieval"],dtype=float) requester_number_of_comments_in_raop_at_request = np.array(jsonData["requester_number_of_comments_in_raop_at_request"],dtype=float) requester_number_of_comments_in_raop_at_retrieval = np.array(jsonData["requester_number_of_comments_in_raop_at_retrieval"],dtype=float) requester_number_of_posts_at_request = np.array(jsonData["requester_number_of_posts_at_request"],dtype=float) requester_number_of_posts_at_retrieval = np.array(jsonData["requester_number_of_posts_at_retrieval"],dtype=float) requester_number_of_posts_on_raop_at_request = np.array(jsonData["requester_number_of_posts_on_raop_at_request"],dtype=float) requester_number_of_posts_on_raop_at_retrieval = np.array(jsonData["requester_number_of_posts_on_raop_at_retrieval"],dtype=float) requester_upvotes_minus_downvotes_at_request = np.array(jsonData["requester_upvotes_minus_downvotes_at_request"],dtype=float) requester_upvotes_minus_downvotes_at_retrieval = np.array(jsonData["requester_upvotes_minus_downvotes_at_retrieval"],dtype=float) requester_upvotes_plus_downvotes_at_request = np.array(jsonData["requester_upvotes_plus_downvotes_at_request"],dtype=float) requester_upvotes_plus_downvotes_at_retrieval = np.array(jsonData["requester_upvotes_plus_downvotes_at_retrieval"],dtype=float) request_features = [requester_account_age_in_days_at_request,requester_days_since_first_post_on_raop_at_request\ ,requester_number_of_comments_at_request,requester_number_of_comments_in_raop_at_request,requester_number_of_posts_at_request\ ,requester_number_of_posts_on_raop_at_request,requester_upvotes_minus_downvotes_at_request,requester_upvotes_plus_downvotes_at_request] retrieval_features = [requester_account_age_in_days_at_retrieval,requester_days_since_first_post_on_raop_at_retrieval\ ,requester_number_of_comments_at_retrieval,requester_number_of_comments_in_raop_at_retrieval,requester_number_of_posts_at_retrieval\ ,requester_number_of_posts_on_raop_at_retrieval,requester_upvotes_minus_downvotes_at_retrieval,requester_upvotes_plus_downvotes_at_retrieval] #Extracting and organizing the data in a numpy array print "Starting feature organization and POS tagging" start = time.time() for i in range(len(data)): feature_row = [] for whole in whole_features: feature_row.append(whole[i]) for index,retrieval in enumerate(retrieval_features): difference = retrieval[i] - request_features[index][i] difference = ((difference + 1.0)/(request_features[index][i] + 1.0))*100.0 if math.isinf(difference) or math.isnan(difference): difference = 1.0 feature_row.append(difference) text_pos_tags = getNounAdjVerbs(clean_text_data[i]) title_post_tags = getNounAdjVerbs(clean_title_data[i]) total_pos_tag_count = text_pos_tags + title_post_tags for tag_count in total_pos_tag_count: feature_row.append(tag_count) data[i,:] = feature_row end = time.time() print "Time Taken to extract all features : ", end-start train_data,test_data,train_label,test_label = cross_validation.train_test_split(data,class_labels,test_size=0.3) # Initializing the classifiers rf = RandomForestClassifier(n_estimators=101) ada = AdaBoostClassifier(n_estimators=101) gradboost = GradientBoostingClassifier(n_estimators=101) svm = SVC() gnb = GaussianNB() classifiers = [rf,ada,gradboost,svm,gnb] classifier_names = ["Random Forests","AdaBoost","Gradient Boost","SVM","Gaussian NB"] print "Starting Classification Performance Cycle ..." start = time.time() for classifier,classifier_name in zip(classifiers,classifier_names): classifier.fit(train_data,train_label) predicted_label = classifier.predict(test_data) print "--------------------------------------------------------\n" print "Accuracy for ",classifier_name, " : ",metrics.accuracy_score(test_label,predicted_label) print "Confusion Matrix for ",classifier_name, " :\n ",metrics.confusion_matrix(test_label,predicted_label) print "Classification Report for ",classifier_name, " : \n",metrics.classification_report(test_label,predicted_label) print "--------------------------------------------------------\n" end = time.time() print "Time Taken for classification and performance Metrics calculation : ",end-start
mit
gagnonlg/explore-ml
rnn.py
1
3291
import numpy as np import matplotlib.pyplot as plt import theano import theano.tensor as T np.random.seed(17430) theano.config.floatX = 'float32' #theano.config.optimizer='fast_compile' #theano.config.exception_verbosity='high' # generate data def gen_sample(): mean = [ [0.0, 0.5], [0.5, 0.0] ] scale = [ [0.15, 0.15], [0.25, 0.25] ] n = np.random.randint(2,7) i = np.random.randint(2) return np.random.normal(mean[i], scale[i], (n,2)), i def show_distribution(): for _ in range(500): smp, cls = gen_sample() plt.scatter(smp[:,0], smp[:,1], color='k' if cls == 0 else 'b') plt.show() def make_dataset(N): dsetX = np.zeros((N, 6, 2)) dsetY = np.zeros((N, 1)) dsetM = np.zeros((N, 6)) for i in range(N): smp, cls = gen_sample() dsetX[i,:smp.shape[0]] = smp dsetY[i,0] = cls dsetM[i,:smp.shape[0]] = 1 return dsetX.astype('float32'), dsetY.astype('float32'), dsetM.astype('float32') def rnn_step(x, h, U, b, W): return T.tanh(b + T.dot(U, x) + T.dot(W, h)) # x: n_features n_features = 2 x = T.matrix('x') # h: n_state n_state = 5 #h = theano.shared(np.random.uniform(size=n_state).astype('float32')) # U*x -> U: n_state, n_features U = theano.shared( np.random.uniform( size=(n_state, n_features), ).astype('float32') ) # W*h -> W: n_state, n_state W = theano.shared( np.random.uniform( size=(n_state, n_state), ).astype('float32') ) # b: n_state b = theano.shared( np.zeros(n_state).astype('float32') ) initial_state = theano.shared( np.zeros(n_state).astype('float32') ) results, updates = theano.scan( fn=rnn_step, outputs_info=T.zeros_like(initial_state), sequences=x, non_sequences=[U,b,W] ) def pred_step(h, V, c): return T.nnet.sigmoid(c + T.dot(V, h)) # Vh + c = y # V: n_out x n_state # c: n_out n_out = 1 V = theano.shared(np.random.uniform(size=(n_out,n_state)).astype('float32')) c = theano.shared(np.zeros((n_out,)).astype('float32')) preds, pupds = theano.scan( fn=pred_step, outputs_info=None, sequences=results, non_sequences=[V, c] ) y = T.vector('y') mask = T.vector('mask') loss = T.sum(mask.dimshuffle(0,'x') * T.nnet.binary_crossentropy(preds, y)) params = [U,W,b,V,c] gparams = [T.grad(loss, p) for p in params] gupdates = [ (param, param - 0.001 * gparam) for param, gparam in zip(params, gparams) ] rnnfunc = theano.function( inputs=[x, y, mask], outputs=[results, preds, loss], updates=gupdates ) rnntest = theano.function( inputs=[x], outputs=preds[-1] ) trainX, trainY, trainM = make_dataset(1000) testX, testY, _ = make_dataset(1000) if __name__ == '__main__': for epoch in range(10): losses = [] for i in range(1000): states, preds, ls = rnnfunc(trainX[i], trainY[i], trainM[i]) losses.append(ls) good = float(0.0) for i in range(1000): pred = rnntest(testX[i]) pcls = (pred > 0.5).astype('float32') if pcls[0] == testY[i][0]: good += 1.0 print 'epoch {}: loss: {} acc:{}'.format( epoch, np.mean(losses), (good/1000) )
gpl-3.0
JosmanPS/scikit-learn
examples/svm/plot_custom_kernel.py
171
1546
""" ====================== SVM with custom kernel ====================== Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset Y = iris.target def my_kernel(X, Y): """ We create a custom kernel: (2 0) k(X, Y) = X ( ) Y.T (0 1) """ M = np.array([[2, 0], [0, 1.0]]) return np.dot(np.dot(X, M), Y.T) h = .02 # step size in the mesh # we create an instance of SVM and fit out data. clf = svm.SVC(kernel=my_kernel) clf.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.title('3-Class classification using Support Vector Machine with custom' ' kernel') plt.axis('tight') plt.show()
bsd-3-clause
arielmakestuff/loadlimit
loadlimit/result.py
1
14015
# -*- coding: utf-8 -*- # loadlimit/result.py # Copyright (C) 2016 authors and contributors (see AUTHORS file) # # This module is released under the MIT License. """Result classes used to create results from various statistics""" # ============================================================================ # Imports # ============================================================================ # Stdlib imports from hashlib import sha1 from collections import namedtuple, OrderedDict from pathlib import Path from time import mktime # Third-party imports import pandas as pd from pandas import (DataFrame, read_sql_table, Series) from sqlalchemy import create_engine # Local imports from .stat import measure, Period from .util import Namespace, now # ============================================================================ # Result classes # ============================================================================ class Result: """Calculate result DataFrame from a Period""" def __init__(self, statsdict=None, countstore=None): self._statsdict = Period() if statsdict is None else statsdict self._countstore = measure if countstore is None else countstore self._vals = Namespace() def __iter__(self): for name, datatype in self._statsdict.items(): yield (name, datatype['data'], datatype['error'], datatype['failure']) def __enter__(self): """Start calculating the result""" countstore = self._countstore vals = self.vals vals.start = countstore.start_date vals.end = countstore.end_date return self def __exit__(self, errtype, err, errtb): """Finish calculating the result""" raise NotImplementedError def __call__(self): """Calculate the result""" calcfunc = self.calculate vals = self.vals with self: for name, data, error, failure in self: calcfunc(name, data, error, failure) return vals.results def calculate(self, name, data, error, failure): """Calculate results""" raise NotImplementedError def export(self, export_type, exportdir): """Export results""" raise NotImplementedError def exportdf(self, df, name, export_type, exportdir): """Export dataframe""" timestamp = int(mktime(now().timetuple())) filename = '{}_{}'.format(name, timestamp) exportdir = Path(exportdir) if export_type == 'csv': path = exportdir / '{}.{}'.format(filename, 'csv') df.to_csv(str(path), index_label=df.index.names) else: # export_type == 'sqlite': path = str(exportdir / '{}.{}'.format(filename, 'db')) sqlengine = create_engine('sqlite:///{}'.format(path)) with sqlengine.begin() as conn: df.to_sql('total', conn) @property def statsdict(self): """Return stored period statsdict""" return self._statsdict @property def countstore(self): """Return stored countstore""" return self._countstore @property def vals(self): """Return value namespace""" return self._vals class Total(Result): """Calculate totals""" def __enter__(self): ret = super().__enter__() vals = self.vals # Duration (in seconds) vals.duration = (vals.end - vals.start).total_seconds() vals.results = {} vals.index = i = ['Total', 'Median', 'Average', 'Min', 'Max', 'Rate'] vals.resultcls = namedtuple('ResultType', [n.lower() for n in i]) vals.delta = None return ret def __exit__(self, errtype, err, errtb): """Finish calculations and save result""" vals = self.vals results = vals.results dfindex = (k for k, v in results.items() if v is not None) dfindex = list(sorted(dfindex, key=lambda k: k)) data = [results[v] for v in dfindex] if not data: vals.results = None return df = DataFrame(data, index=dfindex) total = df['Total'].sum() rate = 0 if vals.duration == 0 else total / vals.duration result = [total, df['Median'].median(), df['Average'].mean(), df['Min'].min(), df['Max'].max(), rate] result = DataFrame([Series(result, index=vals.index)], index=['Totals']) vals.results = df = df.append(result) df.index.names = ['Name'] def calculate(self, name, data, error, failure): """Calculate results""" vals = self.vals countstore = self.countstore # Number of iterations # This is a list of pandas.Series total = countstore[name].success numiter = len(data) if numiter == 0: vals.results[name] = None return # Create dataframe out of the timeseries and get only the response # field df = DataFrame(data, index=list(range(numiter))) delta = df['response'] # Calculate stats rate = 0 if vals.duration == 0 else total / vals.duration r = [total, delta.median(), delta.mean(), delta.min(), delta.max(), rate] r = vals.resultcls(*r) vals.results[name] = Series(r, index=vals.index) def export(self, export_type, exportdir): """Export total values""" results = self.vals.results if results is not None: self.exportdf(results, 'results', export_type, exportdir) class TimeSeries(Result): """Calculate time series results""" def __enter__(self): ret = super().__enter__() vals = self.vals vals.response_result = {} vals.rate_result = {} return ret def __exit__(self, errtype, err, errtb): """Finish calculations and save result""" vals = self.vals response_result = vals.response_result rate_result = vals.rate_result df_response = None df_rate = None # Create response dataframe dfindex = (k for k, v in response_result.items() if v is not None) dfindex = list(sorted(dfindex, key=lambda k: k)) data = OrderedDict() for name in dfindex: data[name] = response_result[name] if data: df_response = DataFrame(data) df_response.index.names = ['Timestamp'] # Create rate dataframe data = OrderedDict() for name in dfindex: data[name] = rate_result[name] df_rate = DataFrame(data) df_rate.index.names = ['Timestamp'] # Return both dataframes vals.results = (df_response, df_rate) for n in ['response_result', 'rate_result']: delattr(vals, n) def calculate(self, name, data, error, failure): """Calculate results""" vals = self.vals response = [] rate = [] # Number of iterations numiter = len(data) if numiter == 0: vals.response_result[name] = None vals.rate_result[name] = None return # Create dataframe out of the timeseries and get average response time # for each determined datetime period df = DataFrame(data, index=list(range(numiter))) daterange = df['end'] response = df['response'] response.index = daterange rate = df['rate'] rate.index = daterange vals.response_result[name] = response # Series vals.rate_result[name] = rate def export(self, export_type, exportdir): """Export total values""" df_response, df_rate = self.vals.results for name, df in zip(['response', 'rate'], [df_response, df_rate]): if df is not None: self.exportdf(df, name, export_type, exportdir) class GeneralError(Result): """Calculate error results""" @property def errtype(self): """Return errtype string""" raise NotImplementedError def __enter__(self): ret = super().__enter__() vals = self.vals vals.results = {} return ret def __exit__(self, errtype, err, errtb): """Finish calculations and save result""" results = self.vals.results data = [v for v in results.values() if v is not None] self.vals.results = pd.concat(data) if data else None def calculate(self, name, *datatype): """Calculate results""" vals = self.vals errtype, errind = self.errtype data = datatype[errind] # Number of iterations numiter = len(data) if numiter == 0: vals.results[name] = None return # Create dataframe out of the timeseries and get only the error field df = DataFrame(data, index=list(range(numiter))) df.insert(0, 'name', [name] * len(df)) aggregate = {'count': 'sum'} result = df.groupby(['name', errtype]).agg(aggregate) result.columns = ['Total'] result.index.names = ['Name', errtype.capitalize()] vals.results[name] = result def export(self, export_type, exportdir): """Export total values""" results = self.vals.results if results is not None: self.exportdf(results, self.errtype[0], export_type, exportdir) class TotalError(GeneralError): """Calculate error results""" @property def errtype(self): """Return error errortype""" return 'error', 1 class TotalFailure(GeneralError): """Calculate failure results""" @property def errtype(self): """Return error errortype""" return 'failure', 2 # ============================================================================ # SQL versions of Results # ============================================================================ class SQLResult: """Define iterating over values stored in an sql db""" def __init__(self, statsdict=None, countstore=None, sqltbl='period', sqlengine=None): super().__init__(statsdict, countstore) vals = self.vals vals.sqltbl = sqltbl vals.sqlengine = sqlengine vals.datatype = ['timedata', 'error', 'failure'] def __iter__(self): vals = self.vals sqlengine = vals.sqlengine with sqlengine.begin() as conn: for name in self._statsdict: # Generate table name curkey = sha1(name.encode('utf-8')).hexdigest() df = {} for k, substr in zip(vals.datatype, ['_', '_error_', '_failure_']): tblname = '{}{}{}'.format(vals.sqltbl, substr, curkey) df[k] = self.getdata(k, vals, sqlengine, conn, tblname) yield name, df['timedata'], df['error'], df['failure'] def getdata(self, key, vals, sqlengine, sqlconn, tblname): """Get time data from db""" # Get number of rows in db hastable = sqlengine.dialect.has_table(sqlconn, tblname) if not hastable: return None df = read_sql_table(tblname, sqlconn, index_col='index', parse_dates={'end': dict(utc=True)}) return df class SQLTotal(SQLResult, Total): """Calculate totals from sql db""" def calculate(self, name, dfdata, dferror, dffailure): """Calculate results""" vals = self.vals countstore = self.countstore total = countstore[name].success numiter = len(dfdata.index) if numiter == 0: vals.results[name] = None return delta = dfdata['response'] # Calculate stats rate = 0 if vals.duration == 0 else total / vals.duration r = [total, delta.median(), delta.mean(), delta.min(), delta.max(), rate] r = vals.resultcls(*r) vals.results[name] = Series(r, index=vals.index) class SQLTimeSeries(SQLResult, TimeSeries): """Calculate time series results from sql db""" def calculate(self, name, dfdata, dferror, dffailure): """Calculate results""" vals = self.vals # Number of iterations numiter = len(dfdata.index) if numiter == 0: vals.response_result[name] = None vals.rate_result[name] = None return response = [] rate = [] # Create dataframe out of the timeseries and get average response time # for each determined datetime period df = dfdata daterange = df['end'] response = df['response'] response.index = daterange rate = df['rate'] rate.index = daterange vals.response_result[name] = response # Series vals.rate_result[name] = rate class SQLGeneralError: """Calculate error results""" def calculate(self, name, *datatype): """Calculate results""" vals = self.vals errtype, errind = self.errtype df = datatype[errind] if df is None: vals.results[name] = None return # Create dataframe out of the timeseries and get only the error field df.insert(0, 'name', [name] * len(df)) aggregate = {'count': 'sum'} result = df.groupby(['name', errtype]).agg(aggregate) result.columns = ['Total'] result.index.names = ['Name', errtype.capitalize()] vals.results[name] = result class SQLTotalError(SQLResult, SQLGeneralError, TotalError): """Calculate total errors from sql db""" class SQLTotalFailure(SQLResult, SQLGeneralError, TotalFailure): """Calculate total errors from sql db""" # ============================================================================ # # ============================================================================
mit
yarikoptic/pystatsmodels
statsmodels/sandbox/examples/ex_mixed_lls_timecorr.py
4
7778
# -*- coding: utf-8 -*- """Example using OneWayMixed with within group intertemporal correlation Created on Sat Dec 03 10:15:55 2011 Author: Josef Perktold This example constructs a linear model with individual specific random effects, and uses OneWayMixed to estimate it. This is a variation on ex_mixed_lls_0.py. Here we use time dummies as random effects (all except 1st time period). I think, this should allow for (almost) arbitrary intertemporal correlation. The assumption is that each unit can have different constants, however the intertemporal covariance matrix is the same for all units. One caveat, to avoid singular matrices, we have to treat one time period differently. Estimation requires that the number of units is larger than the number of time periods. Also, it requires that we have the same number of periods for each unit. I needed to remove the first observation from the time dummies to avoid a singular matrix. So, interpretation of time effects should be relative to first observation. (I didn't check the math.) TODO: Note, I don't already have constant in X. Constant for first time observation is missing. Do I need all dummies in exog_fe, Z, but not in exog_re, Z? Tried this and it works. In the error decomposition we also have the noise variable, I guess this works like constant, so we get full rank (square) with only T-1 time dummies. But we don't get correlation with the noise, or do we? conditional? -> sample correlation of estimated random effects looks a bit high, upward bias? or still some problems with initial condition? correlation from estimated cov_random looks good. Since we include the time dummies also in the fixed effect, we can have arbitrary trends, different constants in each period. Intertemporal correlation in data generating process, DGP, to see if the results correctly estimate it. used AR(1) as example, but only starting at second period. (?) Note: we don't impose AR structure in the estimation """ import numpy as np from statsmodels.sandbox.panel.mixed import OneWayMixed, Unit examples = ['ex1'] if 'ex1' in examples: #np.random.seed(54321) #np.random.seed(978326) nsubj = 200 units = [] nobs_i = 8 #number of observations per unit, changed below nx = 1 #number fixed effects nz = nobs_i - 1 ##number random effects beta = np.ones(nx) gamma = 0.5 * np.ones(nz) #mean of random effect #gamma[0] = 0 gamma_re_true = [] for i in range(nsubj): #create data for one unit #random effect/coefficient use_correlated = True if not use_correlated: gamma_re = gamma + 0.2 * np.random.standard_normal(nz) else: #coefficients are AR(1) for all but first time periods from scipy import linalg as splinalg rho = 0.6 corr_re = splinalg.toeplitz(rho**np.arange(nz)) rvs = np.random.multivariate_normal(np.zeros(nz), corr_re) gamma_re = gamma + 0.2 * rvs #store true parameter for checking gamma_re_true.append(gamma_re) #generate exogenous variables X = np.random.standard_normal((nobs_i, nx)) #try Z should be time dummies time_dummies = (np.arange(nobs_i)[:, None] == np.arange(nobs_i)[None, :]).astype(float) Z = time_dummies[:,1:] # Z = np.random.standard_normal((nobs_i, nz-1)) # Z = np.column_stack((np.ones(nobs_i), Z)) noise = 0.1 * np.random.randn(nobs_i) #sig_e = 0.1 #generate endogenous variable Y = np.dot(X, beta) + np.dot(Z, gamma_re) + noise #add random effect design matrix also to fixed effects to #capture the mean #this seems to be necessary to force mean of RE to zero !? #(It's not required for estimation but interpretation of random #effects covariance matrix changes - still need to check details. #X = np.hstack((X,Z)) X = np.hstack((X, time_dummies)) #create units and append to list unit = Unit(Y, X, Z) units.append(unit) m = OneWayMixed(units) import time t0 = time.time() m.initialize() res = m.fit(maxiter=100, rtol=1.0e-5, params_rtol=1e-6, params_atol=1e-6) t1 = time.time() print 'time for initialize and fit', t1-t0 print 'number of iterations', m.iterations #print dir(m) #print vars(m) print '\nestimates for fixed effects' print m.a print m.params bfixed_cov = m.cov_fixed() print 'beta fixed standard errors' print np.sqrt(np.diag(bfixed_cov)) print m.bse b_re = m.params_random_units print 'RE mean:', b_re.mean(0) print 'RE columns std', b_re.std(0) print 'np.cov(b_re, rowvar=0), sample statistic' print np.cov(b_re, rowvar=0) print 'sample correlation of estimated random effects' print np.corrcoef(b_re, rowvar=0) print 'std of above' #need atleast_1d or diag raises exception print np.sqrt(np.diag(np.atleast_1d(np.cov(b_re, rowvar=0)))) print 'm.cov_random()' print m.cov_random() print 'correlation from above' print res.cov_random()/ res.std_random()[:,None] /res.std_random() print 'std of above' print res.std_random() print np.sqrt(np.diag(m.cov_random())) print '\n(non)convergence of llf' print m.history['llf'][-4:] print 'convergence of parameters' #print np.diff(np.vstack(m.history[-4:])[:,1:],axis=0) print np.diff(np.vstack(m.history['params'][-4:]),axis=0) print 'convergence of D' print np.diff(np.array(m.history['D'][-4:]), axis=0) #zdotb = np.array([np.dot(unit.Z, unit.b) for unit in m.units]) zb = np.array([(unit.Z * unit.b[None,:]).sum(0) for unit in m.units]) '''if Z is not included in X: >>> np.dot(b_re.T, b_re)/100 array([[ 0.03270611, -0.00916051], [-0.00916051, 0.26432783]]) >>> m.cov_random() array([[ 0.0348722 , -0.00909159], [-0.00909159, 0.26846254]]) >>> #note cov_random doesn't subtract mean! ''' print '\nchecking the random effects distribution and prediction' gamma_re_true = np.array(gamma_re_true) print 'mean of random effect true', gamma_re_true.mean(0) print 'mean from fixed effects ', m.params[-2:] print 'mean of estimated RE ', b_re.mean(0) print absmean_true = np.abs(gamma_re_true).mean(0) mape = ((m.params[-nz:] + b_re) / gamma_re_true - 1).mean(0)*100 mean_abs_perc = np.abs((m.params[-nz:] + b_re) - gamma_re_true).mean(0) \ / absmean_true*100 median_abs_perc = np.median(np.abs((m.params[-nz:] + b_re) - gamma_re_true), 0) \ / absmean_true*100 rmse_perc = ((m.params[-nz:] + b_re) - gamma_re_true).std(0) \ / absmean_true*100 print 'mape ', mape print 'mean_abs_perc ', mean_abs_perc print 'median_abs_perc', median_abs_perc print 'rmse_perc (std)', rmse_perc from numpy.testing import assert_almost_equal #assert is for n_units=100 in original example #I changed random number generation, so this won't work anymore #assert_almost_equal(rmse_perc, [ 34.14783884, 11.6031684 ], decimal=8) #now returns res print 'llf', res.llf #based on MLE, does not include constant print 'tvalues', res.tvalues print 'pvalues', res.pvalues rmat = np.zeros(len(res.params)) rmat[-nz:] = 1 print 't_test mean of random effects variables are zero' print res.t_test(rmat) print 'f_test mean of both random effects variables is zero (joint hypothesis)' print res.f_test(rmat) plots = res.plot_random_univariate() #(bins=50) fig = res.plot_scatter_all_pairs() import matplotlib.pyplot as plt plt.show()
bsd-3-clause
gotomypc/scikit-learn
examples/calibration/plot_calibration_multiclass.py
272
6972
""" ================================================== Probability Calibration for 3-class classification ================================================== This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green: class 2, blue: class 3). The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800 training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical classifier, which was trained on 600 datapoints, with method='sigmoid' on the remaining 200 datapoints reduces the confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center. This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base estimators which would have resulted in a similar decrease in log-loss. """ print(__doc__) # Author: Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import log_loss np.random.seed(0) # Generate data X, y = make_blobs(n_samples=1000, n_features=2, random_state=42, cluster_std=5.0) X_train, y_train = X[:600], y[:600] X_valid, y_valid = X[600:800], y[600:800] X_train_valid, y_train_valid = X[:800], y[:800] X_test, y_test = X[800:], y[800:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) score = log_loss(y_test, clf_probs) # Train random forest classifier, calibrate on validation data and evaluate # on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit") sig_clf.fit(X_valid, y_valid) sig_clf_probs = sig_clf.predict_proba(X_test) sig_score = log_loss(y_test, sig_clf_probs) # Plot changes in predicted probabilities via arrows plt.figure(0) colors = ["r", "g", "b"] for i in range(clf_probs.shape[0]): plt.arrow(clf_probs[i, 0], clf_probs[i, 1], sig_clf_probs[i, 0] - clf_probs[i, 0], sig_clf_probs[i, 1] - clf_probs[i, 1], color=colors[y_test[i]], head_width=1e-2) # Plot perfect predictions plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1") plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2") plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3") # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") # Annotate points on the simplex plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)', xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.plot([1.0/3], [1.0/3], 'ko', ms=5) plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)', xy=(.5, .0), xytext=(.5, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)', xy=(.0, .5), xytext=(.1, .5), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)', xy=(.5, .5), xytext=(.6, .6), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $0$, $1$)', xy=(0, 0), xytext=(.1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($1$, $0$, $0$)', xy=(1, 0), xytext=(1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $1$, $0$)', xy=(0, 1), xytext=(.1, 1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') # Add grid plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Change of predicted probabilities after sigmoid calibration") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.legend(loc="best") print("Log-loss of") print(" * uncalibrated classifier trained on 800 datapoints: %.3f " % score) print(" * classifier trained on 600 datapoints and calibrated on " "200 datapoint: %.3f" % sig_score) # Illustrate calibrator plt.figure(1) # generate grid over 2-simplex p1d = np.linspace(0, 1, 20) p0, p1 = np.meshgrid(p1d, p1d) p2 = 1 - p0 - p1 p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()] p = p[p[:, 2] >= 0] calibrated_classifier = sig_clf.calibrated_classifiers_[0] prediction = np.vstack([calibrator.predict(this_p) for calibrator, this_p in zip(calibrated_classifier.calibrators_, p.T)]).T prediction /= prediction.sum(axis=1)[:, None] # Ploit modifications of calibrator for i in range(prediction.shape[0]): plt.arrow(p[i, 0], p[i, 1], prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1], head_width=1e-2, color=colors[np.argmax(p[i])]) # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Illustration of sigmoid calibrator") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.show()
bsd-3-clause
rajat1994/scikit-learn
sklearn/utils/tests/test_class_weight.py
140
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
zzcclp/spark
python/pyspark/pandas/tests/plot/test_series_plot_matplotlib.py
14
13615
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import base64 from distutils.version import LooseVersion from io import BytesIO import unittest import numpy as np import pandas as pd from pyspark import pandas as ps from pyspark.pandas.config import set_option, reset_option from pyspark.testing.pandasutils import ( have_matplotlib, matplotlib_requirement_message, PandasOnSparkTestCase, TestUtils, ) if have_matplotlib: import matplotlib from matplotlib import pyplot as plt matplotlib.use("agg") @unittest.skipIf(not have_matplotlib, matplotlib_requirement_message) class SeriesPlotMatplotlibTest(PandasOnSparkTestCase, TestUtils): @classmethod def setUpClass(cls): super().setUpClass() if LooseVersion(pd.__version__) >= LooseVersion("0.25"): pd.set_option("plotting.backend", "matplotlib") set_option("plotting.backend", "matplotlib") set_option("plotting.max_rows", 1000) @classmethod def tearDownClass(cls): if LooseVersion(pd.__version__) >= LooseVersion("0.25"): pd.reset_option("plotting.backend") reset_option("plotting.backend") reset_option("plotting.max_rows") super().tearDownClass() @property def pdf1(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10] ) @property def psdf1(self): return ps.from_pandas(self.pdf1) @property def psdf2(self): return ps.range(1002) @property def pdf2(self): return self.psdf2.to_pandas() @staticmethod def plot_to_base64(ax): bytes_data = BytesIO() ax.figure.savefig(bytes_data, format="png") bytes_data.seek(0) b64_data = base64.b64encode(bytes_data.read()) plt.close(ax.figure) return b64_data def test_bar_plot(self): pdf = self.pdf1 psdf = self.psdf1 ax1 = pdf["a"].plot(kind="bar", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot(kind="bar", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["a"].plot(kind="bar", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot(kind="bar", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_bar_plot_limited(self): pdf = self.pdf2 psdf = self.psdf2 _, ax1 = plt.subplots(1, 1) ax1 = pdf["id"][:1000].plot.bar(colormap="Paired") ax1.text( 1, 1, "showing top 1000 elements only", size=6, ha="right", va="bottom", transform=ax1.transAxes, ) bin1 = self.plot_to_base64(ax1) _, ax2 = plt.subplots(1, 1) ax2 = psdf["id"].plot.bar(colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_pie_plot(self): pdf = self.pdf1 psdf = self.psdf1 ax1 = pdf["a"].plot.pie(colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot.pie(colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["a"].plot(kind="pie", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot(kind="pie", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_pie_plot_limited(self): pdf = self.pdf2 psdf = self.psdf2 _, ax1 = plt.subplots(1, 1) ax1 = pdf["id"][:1000].plot.pie(colormap="Paired") ax1.text( 1, 1, "showing top 1000 elements only", size=6, ha="right", va="bottom", transform=ax1.transAxes, ) bin1 = self.plot_to_base64(ax1) _, ax2 = plt.subplots(1, 1) ax2 = psdf["id"].plot.pie(colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_line_plot(self): pdf = self.pdf1 psdf = self.psdf1 ax1 = pdf["a"].plot(kind="line", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot(kind="line", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["a"].plot.line(colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot.line(colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_barh_plot(self): pdf = self.pdf1 psdf = self.psdf1 ax1 = pdf["a"].plot(kind="barh", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot(kind="barh", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_barh_plot_limited(self): pdf = self.pdf2 psdf = self.psdf2 _, ax1 = plt.subplots(1, 1) ax1 = pdf["id"][:1000].plot.barh(colormap="Paired") ax1.text( 1, 1, "showing top 1000 elements only", size=6, ha="right", va="bottom", transform=ax1.transAxes, ) bin1 = self.plot_to_base64(ax1) _, ax2 = plt.subplots(1, 1) ax2 = psdf["id"].plot.barh(colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_hist(self): pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10] ) psdf = ps.from_pandas(pdf) def plot_to_base64(ax): bytes_data = BytesIO() ax.figure.savefig(bytes_data, format="png") bytes_data.seek(0) b64_data = base64.b64encode(bytes_data.read()) plt.close(ax.figure) return b64_data _, ax1 = plt.subplots(1, 1) # Using plot.hist() because pandas changes ticks props when called hist() ax1 = pdf["a"].plot.hist() _, ax2 = plt.subplots(1, 1) ax2 = psdf["a"].hist() self.assert_eq(plot_to_base64(ax1), plot_to_base64(ax2)) def test_hist_plot(self): pdf = self.pdf1 psdf = self.psdf1 _, ax1 = plt.subplots(1, 1) ax1 = pdf["a"].plot.hist() bin1 = self.plot_to_base64(ax1) _, ax2 = plt.subplots(1, 1) ax2 = psdf["a"].plot.hist() bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["a"].plot.hist(bins=15) bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot.hist(bins=15) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["a"].plot(kind="hist", bins=15) bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot(kind="hist", bins=15) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["a"].plot.hist(bins=3, bottom=[2, 1, 3]) bin1 = self.plot_to_base64(ax1) ax2 = psdf["a"].plot.hist(bins=3, bottom=[2, 1, 3]) bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_area_plot(self): pdf = pd.DataFrame( { "sales": [3, 2, 3, 9, 10, 6], "signups": [5, 5, 6, 12, 14, 13], "visits": [20, 42, 28, 62, 81, 50], }, index=pd.date_range(start="2018/01/01", end="2018/07/01", freq="M"), ) psdf = ps.from_pandas(pdf) ax1 = pdf["sales"].plot(kind="area", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["sales"].plot(kind="area", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) ax1 = pdf["sales"].plot.area(colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf["sales"].plot.area(colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) # just a sanity check for df.col type ax1 = pdf.sales.plot(kind="area", colormap="Paired") bin1 = self.plot_to_base64(ax1) ax2 = psdf.sales.plot(kind="area", colormap="Paired") bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) def test_box_plot(self): def check_box_plot(pser, psser, *args, **kwargs): _, ax1 = plt.subplots(1, 1) ax1 = pser.plot.box(*args, **kwargs) _, ax2 = plt.subplots(1, 1) ax2 = psser.plot.box(*args, **kwargs) diffs = [ np.array([0, 0.5, 0, 0.5, 0, -0.5, 0, -0.5, 0, 0.5]), np.array([0, 0.5, 0, 0]), np.array([0, -0.5, 0, 0]), ] try: for i, (line1, line2) in enumerate(zip(ax1.get_lines(), ax2.get_lines())): expected = line1.get_xydata().ravel() actual = line2.get_xydata().ravel() if i < 3: actual += diffs[i] self.assert_eq(pd.Series(expected), pd.Series(actual)) finally: ax1.cla() ax2.cla() # Non-named Series pser = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 50], [0, 1, 3, 5, 6, 8, 9, 9, 9, 10, 10]) psser = ps.from_pandas(pser) spec = [(self.pdf1.a, self.psdf1.a), (pser, psser)] for p, k in spec: check_box_plot(p, k) check_box_plot(p, k, showfliers=True) check_box_plot(p, k, sym="") check_box_plot(p, k, sym=".", color="r") check_box_plot(p, k, use_index=False, labels=["Test"]) check_box_plot(p, k, usermedians=[2.0]) check_box_plot(p, k, conf_intervals=[(1.0, 3.0)]) val = (1, 3) self.assertRaises( ValueError, lambda: check_box_plot(self.pdf1, self.psdf1, usermedians=[2.0, 3.0]) ) self.assertRaises( ValueError, lambda: check_box_plot(self.pdf1, self.psdf1, conf_intervals=[val, val]) ) self.assertRaises( ValueError, lambda: check_box_plot(self.pdf1, self.psdf1, conf_intervals=[(1,)]) ) def test_kde_plot(self): def moving_average(a, n=10): ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1 :] / n def check_kde_plot(pdf, psdf, *args, **kwargs): _, ax1 = plt.subplots(1, 1) ax1 = pdf["a"].plot.kde(*args, **kwargs) _, ax2 = plt.subplots(1, 1) ax2 = psdf["a"].plot.kde(*args, **kwargs) try: for i, (line1, line2) in enumerate(zip(ax1.get_lines(), ax2.get_lines())): expected = line1.get_xydata().ravel() actual = line2.get_xydata().ravel() # TODO: Due to implementation difference, the output is different comparing # to pandas'. We should identify the root cause of difference, and reduce # the diff. # Note: Data is from 1 to 50. So, it smooths them by moving average and compares # both. self.assertTrue( np.allclose(moving_average(actual), moving_average(expected), rtol=3) ) finally: ax1.cla() ax2.cla() check_kde_plot(self.pdf1, self.psdf1, bw_method=0.3) check_kde_plot(self.pdf1, self.psdf1, ind=[1, 2, 3, 4, 5], bw_method=3.0) def test_empty_hist(self): pdf = self.pdf1.assign(categorical="A") psdf = ps.from_pandas(pdf) psser = psdf["categorical"] with self.assertRaisesRegex(TypeError, "Empty 'DataFrame': no numeric data to plot"): psser.plot.hist() def test_single_value_hist(self): pdf = self.pdf1.assign(single=2) psdf = ps.from_pandas(pdf) _, ax1 = plt.subplots(1, 1) ax1 = pdf["single"].plot.hist() bin1 = self.plot_to_base64(ax1) _, ax2 = plt.subplots(1, 1) ax2 = psdf["single"].plot.hist() bin2 = self.plot_to_base64(ax2) self.assertEqual(bin1, bin2) if __name__ == "__main__": from pyspark.pandas.tests.plot.test_series_plot_matplotlib import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
nuowang/DoctorSnapshot
src/step05_train_lda_model.py
1
17392
#!/usr/bin/env python3 # Created by Nuo Wang. # Last modified on 8/17/2017. # Required libraries. import pandas as pd import nltk from nltk.tokenize import RegexpTokenizer from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import gensim from gensim import corpora, models, similarities import logging import pickle ### Step 1: Setting up. # Load my dataset. reviews = pd.read_csv("PATH/data/yelp_reviews.csv") doctors = pd.read_csv("PATH/data/yelp_doctors.csv") # The list to save the text bodies of all reviews. review_main_text_list = [] # Add all review texts to the above list. for i in range(0, len(reviews)): paragraphs = reviews.loc[i]["review main text"] review_main_text_list.append(paragraphs) # Set up tokenizer. tokenizer = RegexpTokenizer(r'\w+') # Set up stop words. stop = set(stopwords.words('english')) # Set up stemmer. p_stemmer = PorterStemmer() # Set up logging for LDA in gensim. logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) ### Step 2: Clean up texts. # List for the review texts that are tokenized, stop word deleted and stemmed. cleaned_up_review_list = [] # For every review. for document in review_main_text_list: # Use the lowercase of all letters. raw = document.lower() # Tokenization tokens = tokenizer.tokenize(raw) # Delete stop words. j = 0 while j < len(tokens): if tokens[j] in stop: del tokens[j] else: j += 1 # Stem each word. cleaned_text = [p_stemmer.stem(i) for i in tokens] # Add cleaned review text to list. cleaned_up_review_list.append(cleaned_text) # Find words frequency. all_words = [] for i in cleaned_up_review_list: for j in i: all_words.append(j) fdist = nltk.FreqDist(all_words) # Print the most common words. print(fdist.most_common()) ### Step 3: Delete more unwanted words and generate corpus. # The words to ignore. words_to_ignore = ["dr", "doctor"] # Alternative versions of popular words to ignore. # It turns out that if one ignores too many low frequency words, the LDA results are worse. # words_to_ignore = ["dr", "doctor", "yelp", "dc", "dos", "dmd", "do", "dpm", "mbbch", "md", "od", "rpt", "california", "stanford", "ucla", "ucsf", "usc", "ucsd", "san", "francisco", "diego", "los", "angeles", "oakland", "beverly", "hills", "daly", "santa", "monica", "alamo", "solana", "beach", "poway", "del", "mar", "la", "jolla", "santee", "northridge", "rafael", "panorama", "canada", "flintridge", "glendale", "canyon", "westlake", "village", "riverside", "van", "nuys", "burbank", "tarzana", "encino", "oaks", "fernando", "pasadena", "rancho", "cucamonga", "hollywood", "institute", "york", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "korean", "filipino", "chinese", "embarcadero", "sacramento", "deborah", "irish", "http", "bob", "sculli", "claud", "washington", "meister", "eydelman"] # words_to_ignore = ["acn","agoura","botox","canal","cardiologist","cedar","colonoscopi","dental","dentist","dermatologist","ear","eczema","eye","face","foot","fungal","hair","haircut","hip","http","jewish","knee","laser","lasik","mr","optometrist","orthoped","pediatrician","perm","physic","physician","salon","straight","surgeon","surgeri","www"] # Also ignore all doctor names. This list is semi-automatically generated (code not shown here). doctor_names = ['Ganata', 'Brian', 'Stein', 'Jack', 'Mitchell', 'Masami', 'Belcher', 'Rosanelli', 'Weissman', 'Nobel', 'Johnson', 'Michele', 'Shirazi', 'Francis', 'John', 'Vidush', 'Scott', 'Grogan', 'Sands', 'Navneet', 'Abrishami', 'Yun', 'Trott', 'Line', 'Sumati', 'Binstock', 'Ulrika', 'Yousefi', 'Ma', 'Guy', 'Mullens', 'Green', 'Kelly', 'Schiller', 'Ullman', 'Eric', 'Podolin', 'Vartany', 'Sanaz', 'Kashani', 'Collins', 'Jose', 'Mehdizadeh', 'Tiller', 'Baron', 'Maryam', 'Hill', 'Flynn', 'Cecilio', 'Kishibay', 'Stephane', 'Felicia', 'Enayati', 'M', 'Caroline', 'Fahimian', 'Glenn', 'Richard', 'Lam', 'Bakshian', 'Besser', 'Meth', 'Nassos', 'Walker', 'Pena-Robles', 'Forouzesh', 'Rochester', 'Friedman', 'Tri', 'Robert', 'Parnaz', 'Seibert', 'Sterman', 'Hakimian', 'Anupam', 'Rivera', 'Ardizzone', 'Chun', 'Vu', 'Eduardo', 'Lindsay', 'Dave', 'Mirabadi', 'Benbow', 'Fidel', 'Akizuki', 'Carlos C.', 'Wong', 'Rudy', 'Agnes', 'Venuturupalli', 'Fox', 'Urusova', 'Kourosh', 'Potruch', 'Jane', 'Jerry', 'Veronique', 'Hariri', 'Griffiths', 'Wadhwa', 'Maria', 'Stone', 'Lofthus', 'Metaxas', 'Cho', 'Fitzgerald', 'Larry', 'Ellie', 'Armine', 'Virginia', 'Kapla', 'Cohen', 'Yussef', 'Buoncristiani', 'Miao', 'Neidlinger', 'Sajben', 'Gladstein', 'Hillary', 'Samuel', 'Loraine', 'Hakop', 'Benito', 'Mikus', 'Mark', 'Inna', 'Pham', 'Luftman', 'Jacobitz', 'Fine', 'Yuo', 'Annette', 'Miller', 'Shadan', 'Bokosky', 'Sarosy', 'Kathleen', 'Lawrence', 'Boodaghians', 'Tessler', 'Jiu', 'Sandy', 'Babak', 'Michel', 'Yampolsky', 'Roykh', 'Carl', 'Berty', 'Liu', 'Tao', 'Stacy', 'Shahab', 'Catherine', 'Samimi', 'Crane', 'Violet', 'Cynthia', 'Smith', 'Schumacher', 'Kaufman', 'Carlton', 'Friedland', 'Belaga', 'Pourrahimi', 'Montgomery', 'Oo', 'Etie', 'Lakshmi', 'Henderson', 'Shaun', 'Chou', 'Antigone', 'Woods', 'Redlin', 'Yang', 'Carey', 'Pack', 'Sirius', 'Huh', 'Tamara', 'Leon', 'Deleaver-Russell', 'Neifeld', 'Katz', 'Heidenfelder', 'Melanie', 'Mansour', 'Stephen', 'Stern', 'Buchi', 'Yvonne', 'Henry', 'Aurasteh', 'Cafaro', 'Dillingham', 'Obrien', 'Putnam', 'Hyver', 'Ghada', 'Burstein', 'Winchell', 'Peggy', 'Kyoko', 'Garcia', 'Morganroth', 'Shankar', 'Jonah', 'Yorobe', 'Donald', 'Chow', 'Cepkinian', 'Hamidi', 'Chittaphong', 'Snibbe', 'Gennady', 'Tim', 'Joie', 'Rosenbaum', 'Lamont', 'Margossian', 'Silverman', 'Hoosik', 'Lewis', 'Le', 'Justine', 'Linda', 'Maureen', 'Dadvand', 'Mirkarimi', 'Quintero', 'Madany', 'Apelian', 'Ken', 'Berman', 'Corey Bloom', 'Kutzscher', 'Gafori', 'Gevorkyan', 'Akagi', 'Markison', 'Yabumoto', 'Valenton', 'Amir', 'Degolia', 'Kruse', 'Davidson', 'Ahluwalia', 'George', 'Elisa', 'Stephanie', 'Babajanian', 'Schultz', 'Sonal', 'Mohammad', 'Thoene', 'Wan', 'Babapour', 'Richards', 'Minkowsky', 'Galitzer', 'Myunghae', 'Vadim', 'Hess', 'Pegah', 'Kawashiri', 'Jay', 'Kram', 'Aguilar', 'Paiement', 'Theodore', 'Oleary', 'Izumi', 'Kathryn', 'Robin', 'Edgardo', 'Yoon', 'Ashish', 'Mike', 'Farinoush', 'Kimberly', 'Hornbrook', 'Betsy', 'Isaac', 'Massoudi', 'Gottlieb', 'Falcon', 'Athyal', 'Chu', 'Mynsberge', 'Helen', 'Collin', 'Ambartsumyan', 'Stacey', 'Romeo', 'Goei', 'Colbert', 'Hong', 'Brar', 'Mario', 'Levin', 'Charles', 'Fischbein', 'Meghan', 'Navab', 'Luis', 'Xiang', 'Orecklin', 'Banooni', 'Girard', 'Abe', 'Bhoot', 'Ebrahimi', 'Saliman', 'Joseph', 'Koltzova-Rang', 'Fakhouri', 'Matt', 'Dhir', 'Ghosh', 'Walter', 'Mehras', 'Pudberry', 'Satinder', 'Mehranpour', 'Rajan', 'Mann', 'Chang', 'Juliana', 'Sid', 'Hernandez', 'Arretz', 'Gregory', 'Marion', 'Howell', 'Greg', 'Van', 'Akhavan', 'Kerry', 'Blechman', 'Cha', 'Leopoldo', 'Jeannie', 'Cook', 'Giuliano', 'Scheinhorn', 'Weber', 'Raymond', 'Kupfer', 'Leung', 'Sarvenaz', 'Tuft', 'Amanda', 'Chobanian', 'Sima', 'Marc', 'Susan', 'Minoo', 'Ali', 'Eubanks', 'Soliman', 'Diego', 'Galpin', 'Sandler', 'Cinque', 'Eastman', 'Low', 'Marino', 'Lily', 'Barzman', 'Anita', 'Melissa', 'Maloney', 'Davies', 'Khoubnazar', 'Heather', 'Rachel', 'Molayem', 'Nita', 'Dan', 'Alison', 'Anderson', 'Alexander', 'Juma', 'Pool', 'Gin', 'Ganjianpour', 'Foster', 'Marriott', 'Bakst', 'Colette', 'Rust', 'Rahimian', 'Malamed', 'Jones', 'Nancy', 'Perl', 'Chester', 'Jasmine', 'Jared', 'Ehmer', 'Kalpari', 'Nazareth', 'Cortland', 'Chase', 'Arash', 'Birns', 'Bill', 'Eugene', 'Everson', 'David', 'Berkowitz', 'Nguyentu', 'Morteza', 'Zareh', 'May', 'Christine', 'Abuav', 'Amanuel', 'Mahnaz', 'Gingold', 'Desiree', 'Bruce', 'Parvin', 'McLucas', 'Azer', 'Kassab', 'Mandel', 'Shamie', 'Panosian', 'Andrea', 'Jerome', 'Sanjay', 'Bhuva', 'Gayane', 'Baker', 'Asaf', 'Gaminchi', 'Tran', 'Mamta', 'Philippe', 'Tang', 'Peiman', 'Rosen', 'Shiell', 'Iskander', 'Stefan', 'Levy', 'Jessica', 'Fung', 'Bailey', 'Edmund', 'Borah', 'Hulley', 'Armando', 'Kambiz', 'Stuart', 'Youssef', 'Blumstein', 'Groth', 'Frederica', 'Karpman', 'Palm', 'Nguyen', 'Davis', 'Zapata', 'Aizuss', 'William', 'Amirtharajah', 'Darush', 'Judy', 'Dina', 'Hans', 'Andre', 'Gary', 'Regan', 'Christman', 'Riedler', 'Justus', 'Yulia', 'Allan', 'Miclau', 'Edwin', 'Scalise', 'Bardowell', 'Jeanne', 'Reid', 'Agata', 'Reiche', 'Laurie', 'Castillo', 'Abraham', 'Arnold', 'Levi', 'Pedro', 'Thomas', 'Paul', 'Boska', 'Doan', 'Ng', 'Moradzadeh', 'Wolfe', 'Khalil', 'Park', 'Liao', 'Timothy', 'Nikolaj', 'Sinclair', 'Karlsberg', 'Yelding-Sloan', 'Marcelo', 'Graham', 'Shih', 'Bhatia', 'Waleed', 'Foxman', 'Khosravi', 'Yee', 'Inouye', 'Joshua', 'Edelson', 'Najarian', 'Klasky', 'Knox', 'Vaughn', 'Boykoff', 'Teguh', 'Kwang', 'Oliver', 'Alex', 'Debra', 'Snunit', 'Irene', 'Auerbach', 'Kearney', 'Gupta', 'Royeen', 'Tristan', 'Binder', 'Min', 'Kevin', 'Monali', 'Golshani', 'Emrani', 'Rostker', 'Lieu', 'Lepor', 'Massry', 'Claire', 'Rita', 'Cotter', 'Drell', 'Zdzislaus', 'Schechter', 'Vail', 'Kind', 'Marilyn', 'Jockin', 'Mantell', 'Kramer', 'Shaden', 'Sherman', 'Rafael', 'Holly', 'Jick', 'Uyeki', 'Ginsberg', 'Gold', 'Afshine', 'Casper', 'Khin', 'Hofstadter', 'Safvati', 'Suhail', 'Nick', 'Krames', 'Afshin', 'Myers', 'Sawsan', 'Meng', 'Mayer', 'Silberstein', 'Barkley', 'Kamanine', 'Warren', 'Shindy', 'Aslanian', 'Dembo-Smeaton', 'Prathipati', 'Rosenberg', 'Jeremy', 'Cepeda', 'Jade', 'Barnhard', 'Duong', 'Habib', 'Eisenhart', 'Tamayo', 'Goodman', 'Danelle', 'Christopher', 'Darakjian', 'Hal', 'Marquez', 'Moshe', 'Harry', 'Philip', 'Shirley', 'Alen', 'Hsu', 'Tu', 'Renee', 'Kiriakos', 'Estes', 'Kayekjian', 'Lynn', 'Kim', 'Perry', 'Tachdjian', 'Marnell', 'Karen', 'Sosa', 'Vahan', 'Talreja', 'Estwick', 'Floyd', 'Nilesh', 'Adrien', 'Yamaguchi', 'Tamer', 'Oechsel', 'Sandeep', 'Tabsh', 'Bowden', 'Bohn', 'Day', 'Edward', 'James', 'Zonia', 'Mani', 'Young', 'Stamper', 'Simon', 'Dougherty', 'Touradge', 'Otoole', 'Bresnick', 'Quan', 'Leslie', 'Sellman', 'Matthew', 'Donna', 'Swerdlow', 'Daphne', 'Mohamed', 'Pigeon', 'Marshall', 'Sawusch', 'Newcomer', 'Ganelis', 'Dysart', 'Hamilton', 'Russo', 'Lavi', 'Hayward', 'Cheryl', 'Jessely', 'Rabinovich', 'Lee', 'Mohammed', 'Rashti', 'Sarkisian', 'Factor', 'Jeannine', 'Laurence', 'Skoulas', 'Amarpreet', 'Bajaj', 'Beller', 'Villanueva', 'Lenzkes', 'Hu', 'Victor', 'Blair', 'Tarick', 'Alla', 'Dardashti', 'Tsoi', 'Sumeer', 'Mancherian', 'Levinson', 'Borookhim', 'Shervin', 'Flores', 'Bessie', 'Irina', 'Levine', 'Schofferman', 'Draupadi', 'Lipton', 'Epstein', 'Yen', 'Agbuya', 'Ruder', 'Mansfield', 'Rawat', 'Lin', 'Alessi', 'Eshaghian', 'Takahashi', 'Keyvan', 'Rashtian', 'Derrick', 'Arya Nick', 'Bert', 'Quock', 'Shukri', 'Flaherty', 'Kvitash', 'Man', 'Diamond', 'Choi', 'Lisa', 'Miremadi', 'Wendy', 'Liau', 'Lofquist', 'Shunpei', 'Douglas', 'Saito', 'Roya', 'Jenkin', 'Ralph', 'Dicks', 'Moghissi', 'De Luna', 'Michael', 'Nadiv', 'Schwanke', 'Kapoor', 'Starrett', 'Yip', 'Akash', 'Reese', 'Vera', 'Bridge', 'Feghali', 'Rosenbach', 'Jennifer', 'Brenda', 'Garg', 'Haleh', 'Chin', 'Yoo', 'Harold', 'Goodwin', 'Feltman', 'Shehnaz', 'Wu', 'Hendry', 'Emmanuel', 'Elena', 'Lakshman', 'Danzer', 'Maurice', 'Farnaz', 'Rose', 'Leitner', 'Khodabakhsh', 'Nam', 'Simoni', 'Parviz', 'Biderman', 'Snyder', 'Jacob', 'Anmar', 'Justin', 'Soleimani', 'Waring', 'Mueller', 'Fishman', 'Custis', 'Ann', 'Gilman', 'Nunes', 'Flach', 'Gores', 'Larian', 'Dana', 'Yokoyama', 'Dalwani', 'Chunbong', 'Grady', 'Carlos', 'Diana', 'Nora', 'Roberts', 'Elayne', 'Yvette', 'Weiss', 'Larisse', 'McMillan', 'Cesar', 'Kang', 'Chan', 'Gabriel', 'Rabin', 'Milder', 'Chenette', 'Lawton', 'Garabed', 'Malhotra', 'Char', 'Makassebi', 'Patel', 'Mesler', 'Eisele', 'Kenneth', 'Tamkin', 'Salit', 'Abhay', 'Keith', 'Sternberg', 'Wolff', 'Cortez', 'Rhee', 'Plance', 'Vincent', 'Pivo', 'Boone', 'Jonathan', 'Rosanna', 'Sangdo', 'Suzanne', 'Yu', 'Vega', 'Strom', 'Lau', 'Ben-Ozer', 'Hoyman', 'Bryan', 'Garbis', 'Hattori', 'Kahn-Rose', 'Macy', 'Woolf', 'Tamarin', 'Genen', 'Gaytan', 'Ramtin', 'Valerie', 'Atkin', 'Solomon', 'Fossett', 'Mahshid', 'Alikpala', 'Neustein', 'Tasto', 'Arjang', 'Ebrahim', 'Lief', 'Lara', 'Raul', 'Leah', 'Raffi', 'Darragh', 'Howard', 'Pedrotty', 'Serena', 'Chandrasekhar', 'Irving', 'Berdjis', 'Brown', 'Diggs', 'Sverdlov', 'Reza', 'Alza', 'Felipe', 'Yamada', 'Frederick', 'Jerrold', 'Orpilla', 'Peter', 'Barry', 'Sakhai', 'Alan', 'Kadner', 'Patrick', 'Jeffrey', 'Armstrong', 'Kleid', 'Paula', 'Tahani', 'Garber', 'Watson', 'Melvin', 'Gustavo', 'Roth', 'Smaili', 'Hoang', 'Devron', 'Daws', 'Tuan', 'Trojnar', 'Bong', 'Katherine', 'Nesari', 'Kawilarang', 'Ronald', 'Kamran', 'Gordon', 'Menendez', 'Bortz', 'Massey', 'Rubenzik', 'Alfred', 'Marina', 'Fawaz', 'Shafipour', 'Bloomfield', 'Feldman', 'Chua', 'Pouya', 'Peyman', 'Norman', 'Stefani', 'Yazdani', 'Sameer', 'Dohad', 'Kurtz', 'Molato', 'Refoa', 'Marie', 'Engel', 'Pamela', 'Caroll', 'Daneshgar', 'Sun', 'Haley', 'Valentina', 'Leonard', 'Maeck', 'Michelle', 'Roohipour', 'Faisal', 'Payam', 'Kramar', 'Kerman', 'Sherwin', 'Khoury', 'Garrick', 'Leyli', 'Wanski', 'Cardon', 'Pean', 'Assil', 'Bahadori', 'Andrew', 'Rodney', 'Chiu', 'Taaly', 'Remy', 'Fisher', 'Sharon', 'Melody', 'Bala', 'Armen', 'Mobasser', 'Joy', 'Nader', 'Beeve', 'Hammond', 'Vanhale', 'Cheung', 'Cheng', 'Kranson', 'Sloan', 'Delois', 'Silani', 'Wieder', 'Vafaie', 'Chien', 'Brandeis', 'Su', 'Gamache', 'Ray', 'Bean', 'Mohana', 'Guido', 'Starnes', 'Chong', 'Martin', 'Daniel', 'Biana', 'Schulman', 'Marianne', 'Randolph', 'Morris', 'Xilin', 'Bailony', 'Reynaldo', 'Caldwell', 'Song', 'Herbert', 'Saad', 'Elgan', 'Esther', 'Nasimeh', 'Paz', 'Greenberg', 'Hopper', 'Derek', 'Grant', 'Vlad', 'Kaplan', 'Amini', 'Albert', 'Kling', 'Benjamin', 'Sam', 'Cabrera', 'Chiu-Collins', 'Wolfson', 'Margo', 'Cowan', 'Chen', 'Payman', 'Rish', 'Sanders', 'Cameron', 'Owens', 'Phillips', 'Dao', 'Allison', 'Maywood', 'Elliot', 'Jody', 'Thaik', 'Korchek', 'Eng', 'Ton', 'Thuc', 'Nathan', 'Glen', 'Bickman', 'Reyes', 'Sarafzadeh', 'Hansen', 'Yuan', 'Nikole', 'Mervin', 'Aiache', 'Iwata', 'Considine', 'Tyler', 'Rodriguez', 'Dawn', 'Steven', 'Carol', 'E.', 'Kamyar', 'Tin', 'Jason', 'Moy', 'Duncan', 'Merilynn', 'Dye', 'Chaves', 'Sajedi', 'Strelkoff', 'Lattanza', 'Janet', 'Joan', 'Elizabeth', 'Weller', 'Swamy', 'Rupsa', 'Laura', 'Shu', 'Joana', 'Jan', 'Joel', 'Rubinstein', 'Co'] # List to store the cleaned up doctor names. doctor_names_cleaned_up = [] for name in doctor_names: doctor_names_cleaned_up.append(p_stemmer.stem(name.lower())) # Append cleaned up doctor names to the words to ignore. words_to_ignore += doctor_names_cleaned_up # Filter out the words that we want to ignore. cleaned_up_review_list2 = list(cleaned_up_review_list) for tokens in cleaned_up_review_list2: # Delete specificed words. j = 0 while j < len(tokens): if tokens[j] in words_to_ignore: del tokens[j] else: j += 1 # Generate dictionary and corpus from the remaining words. dictionary = gensim.corpora.Dictionary(cleaned_up_review_list2) corpus = [dictionary.doc2bow(word) for word in cleaned_up_review_list2] # TF-IDF. # TF-IDF does not work well for this dataset, it leads to worse results. # I have a good explanation why, you can ask me. # tfidf = models.TfidfModel(corpus) # corpus = tfidf[corpus] ### Step 4: Train LDA model. # Set up LDA model parameters. no_of_topics = 15 passes_in = 100 # Train LDA model and save the model results. ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=no_of_topics, id2word = dictionary, passes=passes_in, alpha='asymmetric') pickle.dump(ldamodel, open("PATH/model/lda.pickle", "wb")) pickle.dump(dictionary, open("PATH/model/dictionary.pickle", "wb")) pickle.dump(corpus, open("PATH/model/corpus.pickle", "wb")) # Check resulting topics. topic_list = ldamodel.print_topics(num_topics=no_of_topics, num_words=15) for index, i in enumerate(topic_list): str1 = str(i[1]) for c in "0123456789+*\".": str1 = str1.replace(c, "") str1 = str1.replace(" ", " ") print(str1) ######################################################## #### Using a toy corpus to show why TF-IDF doesn't work. texts = [["dentist", "teeth", "insurance", "bill", "pizza"], ["dentist", "teeth", "appointment", "calll", "magician"], ["insurance", "bill", "appointment", "call", "fifteen"]] dictionary_text = gensim.corpora.Dictionary(texts) corpus_text = [dictionary_text.doc2bow(word) for word in texts] tfidf_text = models.TfidfModel(corpus_text) corpus_tfidf = tfidf_text[corpus_text] ldamodel_text_1 = gensim.models.ldamodel.LdaModel(corpus_text, num_topics=4, id2word = dictionary_text, passes=200) ldamodel_text_2 = gensim.models.ldamodel.LdaModel(corpus_tfidf, num_topics=4, id2word = dictionary_text, passes=200) topic_list_1 = ldamodel_text_1.print_topics() topic_list_2 = ldamodel_text_2.print_topics() for index, i in enumerate(topic_list_1): str1 = str(i[1]) for c in "0123456789+*\".": str1 = str1.replace(c, "") str1 = str1.replace(" ", " ") print(str1) print() for index, i in enumerate(topic_list_2): str1 = str(i[1]) for c in "0123456789+*\".": str1 = str1.replace(c, "") str1 = str1.replace(" ", " ") print(str1)
mit
netceteragroup/esa-beam
beam-3dveglab-vlab/src/main/scenes/librat_scenes/rpv_invert.py
1
20861
#!/usr/bin/env python import sys, os, argparse, glob import numpy as np import matplotlib.pyplot as plt import scipy.optimize from math import sqrt debug = True # Nelder-Mead simplex minimization of a nonlinear (multivariate) function. # # The programming interface is via the minimize() function; see below. # # This code has been adapted from the C-coded nelmin.c which was # adapted from the Fortran-coded nelmin.f which was, in turn, adapted # from the papers # # J.A. Nelder and R. Mead (1965) # A simplex method for function minimization. # Computer Journal, Volume 7, pp 308-313. # # R. O'Neill (1971) # Algorithm AS47. Function minimization using a simplex algorithm. # Applied Statistics, Volume 20, pp 338-345. # # and some examples are in # # D.M. Olsson and L.S. Nelson (1975) # The Nelder-Mead Simplex procedure for function minimization. # Technometrics, Volume 17 No. 1, pp 45-51. # # For a fairly recent and popular incarnation of this minimizer, # see the amoeba function in the famous "Numerical Recipes" text. # # P. Jacobs # School of Engineering, The University of Queensland # 07-Jan-04 # # Modifications by C. Schenkel # Netcetera # 31-Oct-13 #----------------------------------------------------------------------- class VLAB: def Minimize_create_new_point(c1, p1, c2, p2): """ Create a new N-dimensional point as a weighting of points p1 and p2. """ p_new = [] for j in range(len(p1)): p_new.append(c1 * p1[j] + c2 * p2[j]) return p_new Minimize_create_new_point = staticmethod(Minimize_create_new_point) def Minimize_take_a_step(smplx, Kreflect, Kextend, Kcontract): """ Try to move away from the worst point in the simplex. The new point will be inserted into the simplex (in place). """ i_low = smplx.lowest() i_high = smplx.highest() x_high = smplx.vertex_list[i_high] f_high = smplx.f_list[i_high] # Centroid of simplex excluding worst point. x_mid = smplx.centroid(i_high) f_mid = smplx.f(x_mid) smplx.nfe += 1 # First, try moving away from worst point by # reflection through centroid x_refl = VLAB.Minimize_create_new_point(1.0+Kreflect, x_mid, -Kreflect, x_high) f_refl = smplx.f(x_refl) smplx.nfe += 1 if f_refl < f_mid: # The reflection through the centroid is good, # try to extend in the same direction. x_ext = VLAB.Minimize_create_new_point(Kextend, x_refl, 1.0-Kextend, x_mid) f_ext = smplx.f(x_ext) smplx.nfe += 1 if f_ext < f_refl: # Keep the extension because it's best. smplx.replace_vertex(i_high, x_ext, f_ext) else: # Settle for the original reflection. smplx.replace_vertex(i_high, x_refl, f_refl) else: # The reflection is not going in the right direction, it seems. # See how many vertices are better than the reflected point. count = 0 for i in range(smplx.N+1): if smplx.f_list[i] > f_refl: count += 1 if count <= 1: # Not too many points are higher than the original reflection. # Try a contraction on the reflection-side of the centroid. x_con = VLAB.Minimize_create_new_point(1.0-Kcontract, x_mid, Kcontract, x_high) f_con = smplx.f(x_con) smplx.nfe += 1 if f_con < f_high: # At least we haven't gone uphill; accept. smplx.replace_vertex(i_high, x_con, f_con) else: # We have not been successful in taking a single step. # Contract the simplex about the current lowest point. smplx.contract_about_one_point(i_low) else: # Retain the original reflection because there are many # vertices with higher values of the objective function. smplx.replace_vertex(i_high, x_refl, f_refl) return Minimize_take_a_step = staticmethod(Minimize_take_a_step) def Minimize_minimize(f, x, dx=None, tol=1.0e-6, maxfe=300, n_check=20, delta=0.001, Kreflect=1.0, Kextend=2.0, Kcontract=0.5, args=()): """ Locate a minimum of the objective function, f. Input: f : user-specified function f(x) x : list of N coordinates args : Extra arguments passed to f, i.e. ``f(x, *args)''. dx : list of N increments to apply to x when forming the initial simplex. Their magnitudes determine the size and shape of the initial simplex. tol : the terminating limit for the standard-deviation of the simplex function values. maxfe : maximum number of function evaluations that we will allow n_check : number of steps between convergence checks delta : magnitude of the perturbations for checking a local minimum and for the scale reduction when restarting Kreflect, Kextend, Kcontract: coefficients for locating the new vertex Output: Returns a tuple consisting of [0] a list of coordinates for the best x location, corresponding to min(f(x)), [1] the function value at that point, [2] a flag to indicate if convergence was achieved [3] the number of function evaluations and [4] the number of restarts (with scale reduction) """ converged = 0 N = len(x) if dx == None: dx = [0.1] * N smplx = Minimize_NMSimplex(x, dx, f, args) while (not converged) and (smplx.nfe < maxfe): # Take some steps and then check for convergence. for i in range(n_check): VLAB.Minimize_take_a_step(smplx, Kreflect, Kextend, Kcontract) # Pick out the current best vertex. i_best = smplx.lowest() x_best = list(smplx.get_vertex(i_best)) f_best = smplx.f_list[i_best] # Check the scatter of vertex values to see if we are # close enough to call it quits. mean, stddev = smplx.f_statistics() if stddev < tol: # All of the points are close together but we need to # test more carefully. converged = smplx.test_for_minimum(i_best, delta) if not converged: # The function evaluations are all very close together # but we are not at a true minimum; rescale the simplex. smplx.rescale(delta) return x_best, f_best, converged, smplx.nfe, smplx.nrestarts Minimize_minimize = staticmethod(Minimize_minimize) #----------------------------------------------------------------------- # Use a class to keep the data tidy and conveniently accessible... class Minimize_NMSimplex: """ Stores the (nonlinear) simplex as a list of lists. In an N-dimensional problem, each vertex is a list of N coordinates and the simplex consists of N+1 vertices. """ def __init__(self, x, dx, f, args): """ Initialize the simplex. Set up the vertices about the user-specified vertex, x, and the set of step-sizes dx. f is a user-specified objective function f(x). """ self.N = len(x) self.vertex_list = [] self.f_list = [] self.dx = list(dx) self.f = lambda x : f(x, *args) self.nfe = 0 self.nrestarts = 0 for i in range(self.N + 1): p = list(x) if i >= 1: p[i-1] += dx[i-1] self.vertex_list.append(p) self.f_list.append(f(p, *args)) self.nfe += 1 def rescale(self, ratio): """ Pick out the current minimum and rebuild the simplex about that point. """ i_min = self.lowest() for i in range(self.N): self.dx[i] *= ratio x = self.get_vertex(i_min) self.vertex_list = [] self.f_list = [] for i in range(self.N + 1): p = list(x) if i >= 1: p[i-1] += self.dx[i-1] self.vertex_list.append(p) self.f_list.append(self.f(p)) self.nfe += 1 self.nrestarts += 1 return def get_vertex(self, i): return list(self.vertex_list[i]) def replace_vertex(self, i, x, fvalue): self.vertex_list[i] = list(x) self.f_list[i] = fvalue return def lowest(self, exclude=-1): """ Returns the index of the lowest vertex, excluding the one specified. """ if exclude == 0: indx = 1 else: indx = 0 lowest_f_value = self.f_list[indx] for i in range(self.N + 1): if i == exclude: continue if self.f_list[i] < lowest_f_value: lowest_f_value = self.f_list[i] indx = i return indx def highest(self, exclude=-1): """ Returns the index of the highest vertex, excluding the one specified. """ if exclude == 0: indx = 1 else: indx = 0 highest_f_value = self.f_list[indx] for i in range(self.N + 1): if i == exclude: continue if self.f_list[i] > highest_f_value: highest_f_value = self.f_list[i] indx = i return indx def f_statistics(self): """ Returns mean and standard deviation of the vertex fn values. """ sum = 0.0 for i in range(self.N + 1): sum += self.f_list[i] mean = sum / (self.N + 1) sum = 0.0 for i in range(self.N +1): diff = self.f_list[i] - mean sum += diff * diff std_dev = sqrt(sum / self.N) return mean, std_dev def centroid(self, exclude=-1): """ Returns the centroid of all vertices excluding the one specified. """ xmid = [0.0]*self.N for i in range(self.N + 1): if i == exclude: continue for j in range(self.N): xmid[j] += self.vertex_list[i][j] for j in range(self.N): xmid[j] /= self.N return xmid def contract_about_one_point(self, i_con): """ Contract the simplex about the vertex i_con. """ p_con = self.vertex_list[i_con] for i in range(self.N + 1): if i == i_con: continue p = self.vertex_list[i] for j in range(self.N): p[j] = 0.5 * (p[j] + p_con[j]) self.f_list[i] = self.f(p) self.nfe += 1 return def test_for_minimum(self, i_min, delta): """ Perturb the minimum vertex and check that it is a local minimum. """ is_minimum = 1 # Assume it is true and test for failure. f_min = self.f_list[i_min] for j in range(self.N): # Check either side of the minimum, perturbing one # coordinate at a time. p = self.get_vertex(i_min) p[j] += self.dx[j] * delta f_p = self.f(p) self.nfe += 1 if f_p < f_min: is_minimum = 0 break p[j] -= self.dx[j] * delta * 2 f_p = self.f(p) self.nfe += 1 if f_p < f_min: is_minimum = 0 break return is_minimum #-------------------------------------------------------------------- def test_fun_1(x): """ Test objective function 1. x is expected to be a list of ccordinates. Returns a single float value. """ n = len(x) sum = 0.0 for i in range(n): sum += (x[i] - 1.0) * (x[i] - 1.0) return sum def test_fun_2(x): """ Test objective function 2. Example 3.3 from Olsson and Nelson. """ x1, x2 = x # rename to match the paper if (x1 * x1 + x2 * x2) > 1.0: return 1.0e38 else: yp = 53.69 + 7.26 * x1 - 10.33 * x2 + 7.22 * x1 * x1 \ + 6.43 * x2 * x2 + 11.36 * x1 * x2 ys = 82.17 - 1.01 * x1 - 8.61 * x2 + 1.40 * x1 * x1 \ - 8.76 * x2 * x2 - 7.20 * x1 * x2 return -yp + abs(ys - 87.8) def test_fun_3(z): """ Test objective function 3. Example 3.5 from Olsson and Nelson; least-squares. """ from math import exp x = [0.25, 0.50, 1.00, 1.70, 2.00, 4.00] y = [0.25, 0.40, 0.60, 0.58, 0.54, 0.27] a1, a2, alpha1, alpha2 = z sum_residuals = 0.0 for i in range(len(x)): t = x[i] eta = a1 * exp(alpha1 * t) + a2 * exp(alpha2 * t) r = y[i] - eta sum_residuals += r * r return sum_residuals def nelmintests(): print "Begin nelmin self-test..." print "---------------------------------------------------" print "test 1: simple quadratic with zero at (1,1,...)" x, fx, conv_flag, nfe, nres = VLAB.Minimize_minimize(test_fun_1, [0.0, 0.0, 0.0]) print "x=", x print "fx=", fx print "convergence-flag=", conv_flag print "number-of-fn-evaluations=", nfe print "number-of-restarts=", nres print "---------------------------------------------------" print "test 2: Example 3.3 in Olsson and Nelson f(0.811,-0.585)=-67.1" x, fx, conv_flag, nfe, nres = VLAB.Minimize_minimize(test_fun_2, [0.0, 0.0], [0.5, 0.5], 1.0e-4) print "x=", x print "fx=", fx print "convergence-flag=", conv_flag print "number-of-fn-evaluations=", nfe print "number-of-restarts=", nres print "---------------------------------------------------" print "test 3: Example 3.5 in Olsson and Nelson, nonlinear least-squares" print "f(1.801, -1.842, -0.463, -1.205)=0.0009" x, fx, conv_flag, nfe, nres = VLAB.Minimize_minimize(test_fun_3, [1.0, 1.0, -0.5, -2.5], [0.1, 0.1, 0.1, 0.1], 1.0e-9, 800) print "x=", x print "fx=", fx print "convergence-flag=", conv_flag print "number-of-fn-evaluations=", nfe print "number-of-restarts=", nres print "---------------------------------------------------" print "Done." #-------------------------------------------------------------------- # objective function - requires params, x (array of angles) and y (array of obs) def obj(p,x): #return((((rpv(p,x)-y)**2).sum())) fwd = rpv(p, x) obs = x[4,:] sse = ( (obs-fwd )**2).sum() #plt.plot ( x[0,:],fwd, '-ko', lw=0.2) return sse def rpv(params,data): # assumes data format is: # vz va sa sa and ignores rest if np.shape(params)[0] == 4: rho0, k, bigtet, rhoc = params else: rhoc = 1. rho0, k, bigtet = params cosv = np.cos(np.deg2rad(data[0])) coss = np.fabs(np.cos(np.deg2rad(data[2]))) cosv[np.where(cosv == np.float(0))] = 1e-20 coss[np.where(coss == np.float(0))] = 1e-20 sins = np.sqrt(1. - coss*coss) sinv = np.sqrt(1. - cosv*cosv) relphi = np.deg2rad(data[1]) - np.deg2rad(data[3]) relphi[np.where(relphi > np.pi)] = 2*np.pi - relphi[np.where(relphi > np.pi)] cosp = -1.*np.cos(relphi) tans = sins/coss tanv = sinv/cosv csmllg = coss * cosv + sins * sinv * cosp bigg = np.sqrt(tans * tans + tanv * tanv - 2.0 * tans * tanv * cosp) bgthsq = bigtet * bigtet expon = k - 1.0 if expon != 0.0: f1 = pow(coss * cosv,expon) * pow(coss + cosv,expon) else: f1 = 0.*(coss) + 1.0 denom = pow(1.0 + bgthsq + 2.0 * bigtet * csmllg,1.5) f2 = np.copy(denom) f2[np.where(denom != 0.)] = (1.0 - bgthsq) / denom[np.where(denom != 0.)] f2[np.where(denom == 0.)] = (1.0 - bgthsq)*1e20 f3 = (1.0 + ((1 - rhoc) / (1.0 + bigg))) return(rho0 * f1 * f2 * f3) def main(): dataf = 'rpv.rami.2/result.HET01_DIS_UNI_NIR_20.obj.brdf.dat' wbfile = 'wb.MSI.dat' wbNum = 3 # 665 nm in this case verbose = 1 plot = 1 show = 0 if options.dataf: dataf = options.dataf if options.wbfile: wbfile = options.wbfile if options.wb: wbNum = options.wb if options.v: verbose = 1 wb = np.genfromtxt(wbfile,comments='#',unpack=True)[1] data = np.genfromtxt(dataf,comments='#',unpack=True) # check shape of 2 data files i.e. that there are same no. of wbs on each line of datafile ( + 4 angles) if wb.shape[0] != data.shape[0]-4: sys.stderr.write('%s: no of wavebands different in brdf file %s and wb file %s\n'%(sys.argv[0],dataf,wbfile)) sys.exit(1) # rpv params rho0, k, bigtet, rhoc = 0.03, 1.2, 0.1, 0.2 if options.three: params = [rho0, k, bigtet] else: params = [rho0, k, bigtet, rhoc] # test #r = rpv(params,data) #plt.plot(data[0,:15],data[5,:15],'ko') #plt.plot(data[0,:15],r[0:15],'r-') #plt.show() #plt.close() # RAMI test: see http://rami-benchmark.jrc.ec.europa.eu/HTML/DEFINITIONS/DEFINITIONS.php#RPV #rho0, k, bigtet, rhoc = 0.075, 0.55, -0.25, 0.075 #params = [0.075, 0.55, -0.25, 0.075] #angles = np.array([np.arange(-80,80,2), np.zeros((80,)), np.ones((80,))*20.,np.ones((80,))*180.]) #angles = np.array([np.arange(-80,80,2), np.zeros((80,)), np.ones((80,))*50.,np.ones((80,))*180.]) #angles[3,np.where(angles[0]>0)] = 0. #res = rpv(params,angles) #plt.plot(angles[0], res) #plt.show() #plt.close() if options.paramfile: opdat = options.paramfile else: opdat = dataf + '.params.dat' if verbose: sys.stderr.write('%s: saving params to %s\n'%(sys.argv[0], opdat)) fd = os.open(opdat, os.O_CREAT | os.O_WRONLY | os.O_TRUNC) opfp = os.fdopen(fd,'w') if options.three: #opfp.write('# wb RMSE rho0 k bigtet\n') opfp.write('# wb rho0 k bigtet\n') else: #opfp.write('# wb RMSE rho0 k bigtet rhoc\n') opfp.write('# wb rho0 k bigtet rhoc\n') ymin, ymax = (0, 0.25) xmin, xmax = (-75., 75) #invert test #which wband? # do per band # test #np.savetxt('xxxtest.in.dat',data.T) for wbNum, band in enumerate(wb): if verbose: sys.stderr.write('%s: doing band %i (%f)\n'%(sys.argv[0], wbNum, band)) invdata = np.zeros((5,data.shape[1])) invdata[0:4] = np.copy(data[0:4]) invdata[4] = np.copy(data[4 + wbNum]) #invdata = np.zeros((5,15)) #invdata[0:4] = np.copy(data[0:4,0:15]) #invdata[4] = np.copy(data[4 + wbNum,0:15]) # now do inversion porig = params p_est = params nm = None if debug: nm = VLAB.Minimize_minimize(obj, params, args=(invdata,))[0] p_est = scipy.optimize.fmin(obj,params,args=(invdata,)) if debug: print " scipy.optimize.fmin (old) | nelmin.minimize (new)" print "-------------------------------------------------------" for values in zip(p_est, nm): print "% 0.23f | % 0.23f" % values #p_est = scipy.optimize.fmin_l_bfgs_b(obj,params,args=(invdata,),approx_grad=1, disp=1) #p_est = scipy.optimize.fmin_l_bfgs_b(obj,p_est,args=(invdata,),approx_grad=1) if options.three: p_est = scipy.optimize.fmin_l_bfgs_b(obj,p_est,args=(invdata,),approx_grad=1, bounds=((0., None), (0., None),(None, None))) else: # set param ranges for rho0, k, bigtet, rhoc #p_est = scipy.optimize.fmin_l_bfgs_b(obj,p_est,args=(invdata,),approx_grad=1, bounds=((0., None), (0., None),(None, None),(0., 20.))) p_est = scipy.optimize.fmin_l_bfgs_b(obj,p_est,args=(invdata,),approx_grad=1, bounds=((0., None), (0., None),(None, None),(None, None))) # r is fwd-modelled refl based on rpv params r = rpv(p_est[0],invdata) rmse = np.sqrt(((r - invdata[4])**2).sum()) # test o/p #np.savetxt('xxxtest.orig.dat',invdata.T) #np.savetxt('xxxtest.fwd.dat',r.T) #sys.exit(1) if options.three: #opfp.write('%.1f %.8f %.8f %.8f %.8f\n'%(band, rmse, p_est[0][0],p_est[0][1],p_est[0][2])) opfp.write('%.1f %.8f %.8f %.8f\n'%(band, p_est[0][0],p_est[0][1],p_est[0][2])) else: #opfp.write('%.1f %.8f %.8f %.8f %.8f %.8f\n'%(band, rmse, p_est[0][0],p_est[0][1],p_est[0][2],p_est[0][3])) opfp.write('%.1f %.8f %.8f %.8f %.8f\n'%(band, p_est[0][0],p_est[0][1],p_est[0][2],p_est[0][3])) #plt.plot(data[0,:15],data[5,:15],'ko') #plt.plot(data[0,:15],r[0:15],'r-') if options.plot: if options.plotfile: opplot = options.plotfile + '.inv.wb.' + str(wbNum) + '.png' else: opplot = dataf + '.inv.wb.' + str(wbNum) + '.png' if verbose: sys.stderr.write('%s: plotting to %s\n'%(sys.argv[0], opplot)) fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlabel('vza (deg)',fontsize=14) ax.set_ylabel(r'$\rho$',fontsize=20) ax.set_ylim((ymin, ymax)) ax.set_xlim((xmin, xmax)) ax.text(0.05,0.85,'rmse = %.6f'%(rmse), transform = ax.transAxes) ax.text(0.05,0.8,'rho0 = %.4f'%(p_est[0][0]),transform = ax.transAxes) ax.text(0.05,0.75,'k = %.4f'%(p_est[0][1]),transform = ax.transAxes) ax.text(0.05,0.7,'bigtet = %.4f'%(p_est[0][2]),transform = ax.transAxes) if not options.three: ax.text(0.05,0.65,'rhoc = %.4f'%(p_est[0][3]),transform = ax.transAxes) ax.plot(invdata[0],invdata[4],'ko',label='original') ax.plot(invdata[0],r,'rx',label='inverted') ax.legend(loc=1) if show: plt.show() plt.savefig(opplot) #plt.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-data", dest="dataf", help="data file", metavar="FILE") parser.add_argument("-wbfile", dest="wbfile", help="data file", metavar="FILE") parser.add_argument("-plotfile", dest="plotfile", help="plot file", metavar="FILE") parser.add_argument("-paramfile", dest="paramfile", help="param file", metavar="FILE") parser.add_argument("-wb", dest="wb", help="wb no.") parser.add_argument("-plot", action="store_true", help="plot on") parser.add_argument("-v", action="store_true", help="verbose on") parser.add_argument("-three", action="store_true", help="3 params only") options = parser.parse_args() nelmintests() main()
gpl-3.0
h2educ/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
maheshakya/scikit-learn
sklearn/linear_model/ridge.py
2
38586
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # Fabian Pedregosa <[email protected]> # Michael Eickenberg <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod import warnings import numpy as np from scipy import linalg from scipy import sparse from scipy.sparse import linalg as sp_linalg from .base import LinearClassifierMixin, LinearModel from ..base import RegressorMixin from ..utils.extmath import safe_sparse_dot from ..utils import check_X_y from ..utils import compute_class_weight from ..utils import column_or_1d from ..preprocessing import LabelBinarizer from ..grid_search import GridSearchCV from ..externals import six from ..metrics.scorer import check_scoring def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples: def create_mv(curr_alpha): def _mv(x): return X1.matvec(X1.rmatvec(x)) + curr_alpha * x return _mv else: def create_mv(curr_alpha): def _mv(x): return X1.rmatvec(X1.matvec(x)) + curr_alpha * x return _mv for i in range(y.shape[1]): y_column = y[:, i] mv = create_mv(alpha[i]) if n_features > n_samples: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y C = sp_linalg.LinearOperator( (n_samples, n_samples), matvec=mv, dtype=X.dtype) coef, info = sp_linalg.cg(C, y_column, tol=tol) coefs[i] = X1.rmatvec(coef) else: # linear ridge # w = inv(X^t X + alpha*Id) * X.T y y_column = X1.rmatvec(y_column) C = sp_linalg.LinearOperator( (n_features, n_features), matvec=mv, dtype=X.dtype) coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter, tol=tol) if info < 0: raise ValueError("Failed with error code %d" % info) if max_iter is None and info > 0 and verbose: warnings.warn("sparse_cg did not converge after %d iterations." % info) return coefs def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) # According to the lsqr documentation, alpha = damp^2. sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]): y_column = y[:, i] coefs[i] = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i], atol=tol, btol=tol, iter_lim=max_iter)[0] return coefs def _solve_cholesky(X, y, alpha, sample_weight=None): # w = inv(X^t X + alpha*Id) * X.T y n_samples, n_features = X.shape n_targets = y.shape[1] has_sw = sample_weight is not None if has_sw: sample_weight = sample_weight * np.ones(n_samples) sample_weight_matrix = sparse.dia_matrix((sample_weight, 0), shape=(n_samples, n_samples)) weighted_X = safe_sparse_dot(sample_weight_matrix, X) A = safe_sparse_dot(weighted_X.T, X, dense_output=True) Xy = safe_sparse_dot(weighted_X.T, y, dense_output=True) else: A = safe_sparse_dot(X.T, X, dense_output=True) Xy = safe_sparse_dot(X.T, y, dense_output=True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha: A.flat[::n_features + 1] += alpha[0] return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T else: coefs = np.empty([n_targets, n_features]) for coef, target, current_alpha in zip(coefs, Xy.T, alpha): A.flat[::n_features + 1] += current_alpha coef[:] = linalg.solve(A, target, sym_pos=True, overwrite_a=False).ravel() A.flat[::n_features + 1] -= current_alpha return coefs def _solve_cholesky_kernel(K, y, alpha, sample_weight=None): # dual_coef = inv(X X^t + alpha*Id) y n_samples = K.shape[0] n_targets = y.shape[1] one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) has_sw = sample_weight is not None if has_sw: sw = np.sqrt(np.atleast_1d(sample_weight)) y = y * sw[:, np.newaxis] K *= np.outer(sw, sw) if one_alpha: # Only one penalty, we can solve multi-target problems in one time. K.flat[::n_samples + 1] += alpha[0] dual_coef = linalg.solve(K, y, sym_pos=True, overwrite_a=True) # K is expensive to compute and store in memory so change it back in # case it was user-given. K.flat[::n_samples + 1] -= alpha[0] if has_sw: dual_coef *= sw[:, np.newaxis] return dual_coef else: # One penalty per target. We need to solve each target separately. dual_coefs = np.empty([n_targets, n_samples]) for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha): K.flat[::n_samples + 1] += current_alpha dual_coef[:] = linalg.solve(K, target, sym_pos=True, overwrite_a=False).ravel() K.flat[::n_samples + 1] -= current_alpha if has_sw: dual_coefs *= sw[np.newaxis, :] return dual_coefs.T def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices=False) idx = s > 1e-15 # same default value as scipy.linalg.pinv s_nnz = s[idx][:, np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T def _deprecate_dense_cholesky(solver): if solver == 'dense_cholesky': warnings.warn(DeprecationWarning( "The name 'dense_cholesky' is deprecated and will " "be removed in 0.17. Use 'cholesky' instead. ")) solver = 'cholesky' return solver def ridge_regression(X, y, alpha, sample_weight=None, solver='auto', max_iter=None, tol=1e-3, verbose=0): """Solve the ridge equation by the method of normal equations. Parameters ---------- X : {array-like, sparse matrix, LinearOperator}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values alpha : {float, array-like}, shape = [n_targets] if array-like The l_2 penalty to be used. If an array is passed, penalties are assumed to be specific to targets max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample. If sample_weight is set, then the solver will automatically be set to 'cholesky' solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution via a Cholesky decomposition of dot(X.T, X) - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. verbose : int Verbosity level. Setting verbose > 0 will display additional information depending on the solver used. Returns ------- coef : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape if y.ndim > 2: raise ValueError("Target y has the wrong shape %s" % str(y.shape)) ravel = False if y.ndim == 1: y = y.reshape(-1, 1) ravel = True n_samples_, n_targets = y.shape if n_samples != n_samples_: raise ValueError("Number of samples in X and y does not correspond:" " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None solver = _deprecate_dense_cholesky(solver) if solver == 'auto': # cholesky if it's a dense array and cg in # any other case if not sparse.issparse(X) or has_sw: solver = 'cholesky' else: solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'): warnings.warn("""lsqr not available on this machine, falling back to sparse_cg.""") solver = 'sparse_cg' if has_sw: if np.atleast_1d(sample_weight).ndim > 1: raise ValueError("Sample weights must be 1D array or scalar") if solver != "cholesky": warnings.warn("sample_weight and class_weight not" " supported in %s, fall back to " "cholesky." % solver) solver = 'cholesky' # There should be either 1 or n_targets penalties alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]: raise ValueError("Number of targets and number of penalties " "do not correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1: alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr'): raise ValueError('Solver %s not understood' % solver) if solver == 'sparse_cg': coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == "lsqr": coef = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky': if n_features > n_samples: K = safe_sparse_dot(X, X.T, dense_output=True) try: dual_coef = _solve_cholesky_kernel(K, y, alpha, sample_weight) coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' else: try: coef = _solve_cholesky(X, y, alpha, sample_weight) except linalg.LinAlgError: # use SVD solver if matrix is singular solver = 'svd' if solver == 'svd': if sparse.issparse(X): raise TypeError('SVD solver does not support sparse' ' inputs currently') coef = _solve_svd(X, y, alpha) if ravel: # When y was passed as a 1d-array, we flatten the coefficients. coef = coef.ravel() return coef class _BaseRidge(six.with_metaclass(ABCMeta, LinearModel)): @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.max_iter = max_iter self.tol = tol self.solver = solver def fit(self, X, y, sample_weight=None): X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True) if ((sample_weight is not None) and np.atleast_1d(sample_weight).ndim > 1): raise ValueError("Sample weights must be 1D array or scalar") X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) solver = _deprecate_dense_cholesky(self.solver) self.coef_ = ridge_regression(X, y, alpha=self.alpha, sample_weight=sample_weight, max_iter=self.max_iter, tol=self.tol, solver=solver) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Parameters ---------- alpha : {float, array-like} shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines: - 'auto' chooses the solver automatically based on the type of data. - 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'. - 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution. - 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`). - 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fatest but may not be available in old scipy versions. It also uses an iterative procedure. All three solvers support both dense and sparse data. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). See also -------- RidgeClassifier, RidgeCV Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, solver='auto', tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, solver="auto"): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. """ return super(Ridge, self).fit(X, y, sample_weight=sample_weight) class RidgeClassifier(LinearClassifierMixin, _BaseRidge): """Classifier using Ridge regression. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). max_iter : int, optional Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg'} Solver to use in the computational routines. 'svd' will use a Singular value decomposition to obtain the solution, 'cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. 'lsqr' uses a direct regularized least-squares routine provided by scipy. tol : float Precision of the solution. Attributes ---------- coef_ : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=1e-3, class_weight=None, solver="auto"): super(RidgeClassifier, self).__init__( alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver) self.class_weight = class_weight def fit(self, X, y): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values Returns ------- self : returns an instance of self. """ self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) if self.class_weight: cw = compute_class_weight(self.class_weight, self.classes_, y) # get the class weight corresponding to each sample sample_weight = cw[np.searchsorted(self.classes_, y)] else: sample_weight = None super(RidgeClassifier, self).fit(X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_ class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=[0.1, 1.0, 10.0], fit_intercept=True, normalize=False, scoring=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): if sparse.issparse(X): raise TypeError("SVD not supported for sparse matrices") U, s, _ = linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X, y = check_X_y(X, y, ['csr', 'csc', 'coo'], dtype=np.float, multi_output=True) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X, sample_weight=sample_weight) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if sparse.issparse(X) or n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] scorer = check_scoring(self, scoring=self.scoring, allow_none=True, score_overrides_loss=True) error = scorer is None for i, alpha in enumerate(self.alphas): weighted_alpha = (sample_weight * alpha if sample_weight is not None else alpha) if error: out, c = _errors(weighted_alpha, y, v, Q, QT_y) else: out, c = _values(weighted_alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: # The scorer want an object that will make the predictions but # they are already computed efficiently by _RidgeGCV. This # identity_estimator will just return them def identity_estimator(): pass identity_estimator.decision_function = lambda y_predict: y_predict identity_estimator.predict = lambda y_predict: y_predict out = [scorer(identity_estimator, y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) self.alpha_ = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.scoring = scoring self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=None): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, fit_intercept=self.fit_intercept, normalize=self.normalize, scoring=self.scoring, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.alpha_ = estimator.alpha_ if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} # FIXME: sample_weight must be split into training/validation data # too! #fit_params = {'sample_weight' : sample_weight} fit_params = {} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.alpha_ = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : integer or cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. If an integer is passed, it is the number of folds for KFold cross validation. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_targets, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and \ `cv=None`). After `fit()` has been called, this attribute will \ contain the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter. intercept_ : float | array, shape = (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeClassifierCV: Ridge classifier with built-in cross validation """ pass class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Parameters ---------- alphas : numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict, optional Weights associated with classes in the form ``{class_label : weight}``. If not given, all classes are supposed to have weight one. Attributes ---------- cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain \ the mean squared errors (by default) or the values of the \ `{loss,score}_func` function (if provided in the constructor). coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s). alpha_ : float Estimated regularization parameter See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, scoring=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__( alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, scoring=scoring, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : float or numpy array of shape (n_samples,) Sample weight. Returns ------- self : object Returns self. """ if sample_weight is None: sample_weight = 1. self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1) Y = self._label_binarizer.fit_transform(y) if not self._label_binarizer.y_type_.startswith('multilabel'): y = column_or_1d(y, warn=True) cw = compute_class_weight(self.class_weight, self.classes_, Y) # modify the sample weights with the corresponding class weight sample_weight *= cw[np.searchsorted(self.classes_, y)] _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight) return self @property def classes_(self): return self._label_binarizer.classes_
bsd-3-clause
massmutual/scikit-learn
sklearn/ensemble/__init__.py
217
1307
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from .voting_classifier import VotingClassifier from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
dalejung/trtools
trtools/monkey/__init__.py
1
7491
import warnings import functools import collections def patch(classes, name=None, override=False): """ Notes: By default this will not patch an attr twice. It keeps track of this by appending an _old_[attr]. Might be better to just a dictionary around. If we're patching a new attr, we still set None to the _old_[attr] to keep track of patching """ if not isinstance(classes, list): classes = [classes] def decorator(func): for cls in classes: func_name = name and name or func.__name__ old_func_name = '_old_'+func_name old_func = getattr(cls, old_func_name, None) has_old = hasattr(cls, old_func_name) if has_old and not override: warnings.warn("{0} was already monkey patched. Detected _old_ func".format(func_name)) continue # do not override old_func_name, which should always point to original if not has_old: # Make sure to add a None to keep track of whether we patched or not old_func = getattr(cls, func_name, None) setattr(cls, old_func_name, old_func) setattr(cls, func_name, func) return func return decorator def patch_prop(classes, name=None): """ Wraps around patch and sends it a property(func) """ if not isinstance(classes, list): classes = [classes] def decorator(func): for cls in classes: prop_name = name and name or func.__name__ prop = property(func) patch(cls, name=prop_name)(prop) return func return decorator def patcher(classes, func, name=None): if not isinstance(classes, list): classes = [classes] for cls in classes: func_name = name and name or func.__name__ old_func_name = '_old_'+func_name if hasattr(cls, old_func_name): warnings.warn("{0} was already monkey patched. Detected _old_ func".format(func_name)) continue if hasattr(cls, func_name): old_func = getattr(cls, func_name) setattr(cls, old_func_name, old_func) setattr(cls, func_name, func) return func class AttrNameSpace(object): """ AttrNameSpace does not define the namespace. It is merely a middleman that translates attribute access for obj.attr and relays it to the proper endpoint. Note on wrapping. AttrNameSpace will try to replicate a normal method call by passing in self.obj into function calls. That means that a regular NameSpace.method will receive two parameters, (AttrNameSpace.endpoint, AttrNameSpace.obj). If there is no reason for access to the endpoint, then make its methods static. That way, the method will only receive the .obj and will acts as if it's a normal method of obj. The first purpose of this class is for organization. It is taking flat namespace with 100 methods, and splitting some off into their own namespace without altering their functionality. Storing state in the endpoint and accessing it is permissable, but not the primary function. """ def __init__(self, obj, endpoint, name): """ Parameters ---------- obj : object endpoint : object name : string The attr name of obj that endpoint takes over. """ self.obj = obj self.endpoint = endpoint self.name = name self.wrap = True if hasattr(self.endpoint, '__getattr__'): # don't wrap, assume endpoint is wrapping self.wrap = False self.endpoint.obj = obj # on creation, store easy ref to overriden function if it exists self._old_func = self._get_old_func() def __getattr__(self, name): func = getattr(self.endpoint, name) if self.wrap: func = functools.partial(func, self.obj) return func def method_attrs(self): import inspect attrs = inspect.getmembers(self.endpoint) attrs = [attr for attr, type in attrs if not attr.startswith('_')] return attrs def attrs(self): attrs = [] if self.wrap: attrs = self.method_attrs() if not self.wrap and hasattr(self.endpoint, 'attrs'): attrs = self.endpoint.attrs() return attrs def __repr__(self): out = "AttrNameSpace:\n" attrs = self.attrs() if attrs: out += "\n".join(attrs) # add info for old_func if self._old_func: out += "\n\nOverridden method: \n" out += 'Docstring:\t'+self._old_func.__doc__ # TODO add more info return out def _get_old_func(self): func_name = '_old_' + self.name func = getattr(self.obj, func_name, None) return func def __call__(self, *args, **kwargs): func = self._old_func if func and isinstance(func, collections.Callable): return func(*args, **kwargs) raise TypeError("{attr} on {obj} was not callable".format(attr=self.name, obj=str(self.obj))) def attr_namespace(target, name): """ Use to create Attribute Namespace. @attr_namespace(pd.DataFrame, 'ret') class Returns(object): def log_returns(df): return np.log(df.close / df.close.shift(1)) You could access via df.ret.log_returns """ def class_wrap(cls): def attr_get(self): # create namespace attr_ns = AttrNameSpace(self, cls(), name) return attr_ns patch_prop(target, name)(attr_get) return cls return class_wrap class AttrProxy(object): """ Wraps an object and exposes its attribute which are run through a callback. This is a utility class for wrapping other objects. Usually one would override the __getattr__ and delegate to the wrapped class. However, that breaks down when the attribute is an object, and you want to wrap that attribute's methods. The use case is for ColumnPanel which allows things like cp.tail(10) which calls tail(10) for each frame. Currently, this does not work for nested objects. cp.ret.log_returns() would not work """ def __init__(self, name, obj, callback): self.name = name self.obj = obj self.attr = getattr(obj, name) self.callback = callback def __getattr__(self, key): if hasattr(self.attr, key): fullattr = '.'.join([self.name, key]) return self.callback(self.obj, fullattr) raise AttributeError() # IPYTYHON # Autocomplete the target endpoint def install_ipython_completers(): # pragma: no cover from pandas import compat from IPython.utils.generics import complete_object @complete_object.when_type(AttrNameSpace) def complete_column_panel(self, prev_completions): return [c for c in self.attrs() \ if isinstance(c, str) and compat.isidentifier(c)] # Importing IPython brings in about 200 modules, so we want to avoid it unless # we're in IPython (when those modules are loaded anyway). import sys if "IPython" in sys.modules: # pragma: no cover try: install_ipython_completers() except Exception: pass
mit
amyvmiwei/neon
neon/diagnostics/visualize_rnn.py
4
6174
# ---------------------------------------------------------------------------- # Copyright 2014 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- """ Visualization for recurrent neural networks """ import numpy as np from neon.util.compat import range class VisualizeRNN(object): """ Visualzing weight matrices during training """ def __init__(self): import matplotlib.pyplot self.plt = matplotlib.pyplot self.plt.interactive(1) def plot_weights(self, weights_in, weights_rec, weights_out): """ Visizualize the three weight matrices after every epoch. Serves to check that weights are structured, not exploding, and get upated """ self.plt.figure(2) self.plt.clf() self.plt.subplot(1, 3, 1) self.plt.imshow(weights_in.T, vmin=-1, vmax=1, interpolation='nearest') self.plt.title('input.T') self.plt.subplot(1, 3, 2) self.plt.imshow(weights_rec, vmin=-1, vmax=1, interpolation='nearest') self.plt.title('recurrent') self.plt.subplot(1, 3, 3) self.plt.imshow(weights_out, vmin=-1, vmax=1, interpolation='nearest') self.plt.title('output') self.plt.colorbar() self.plt.draw() self.plt.show() def plot_lstm_wts(self, lstm_layer, scale=1, fig=4): """ Visizualize the three weight matrices after every epoch. Serves to check that weights are structured, not exploding, and get upated """ self.plt.figure(fig) self.plt.clf() pltidx = 1 for lbl, wts in zip(lstm_layer.param_names, lstm_layer.params[:4]): self.plt.subplot(2, 4, pltidx) self.plt.imshow(wts.asnumpyarray().T, vmin=-scale, vmax=scale, interpolation='nearest') self.plt.title(lbl + ' Wx.T') pltidx += 1 for lbl, wts, bs in zip(lstm_layer.param_names, lstm_layer.params[4:8], lstm_layer.params[8:12]): self.plt.subplot(2, 4, pltidx) self.plt.imshow(np.hstack((wts.asnumpyarray(), bs.asnumpyarray(), bs.asnumpyarray())).T, vmin=-scale, vmax=scale, interpolation='nearest') self.plt.title(lbl + ' Wh.T') pltidx += 1 self.plt.draw() self.plt.show() def plot_lstm_acts(self, lstm_layer, scale=1, fig=4): acts_lbl = ['i_t', 'f_t', 'o_t', 'g_t', 'net_i', 'c_t', 'c_t', 'c_phi'] acts_stp = [0, 0, 0, 1, 0, 0, 1, 1] self.plt.figure(fig) self.plt.clf() for idx, lbl in enumerate(acts_lbl): act_tsr = getattr(lstm_layer, lbl)[acts_stp[idx]] self.plt.subplot(2, 4, idx+1) self.plt.imshow(act_tsr.asnumpyarray().T, vmin=-scale, vmax=scale, interpolation='nearest') self.plt.title(lbl + '[' + str(acts_stp[idx]) + '].T') self.plt.draw() self.plt.show() def plot_error(self, suberror_list, error_list): self.plt.figure(1) self.plt.clf() self.plt.plot(np.arange(len(suberror_list)) / np.float(len(suberror_list)) * len(error_list), suberror_list) self.plt.plot(error_list, linewidth=2) self.plt.ylim((min(suberror_list), max(error_list))) self.plt.draw() self.plt.show() def plot_activations(self, pre1, out1, pre2, out2, targets): """ Loop over tau unrolling steps, at each time step show the pre-acts and outputs of the recurrent layer and output layer. Note that the pre-acts are actually the g', so if the activation is linear it will be one. """ self.plt.figure(3) self.plt.clf() for i in range(len(pre1)): # loop over unrolling self.plt.subplot(len(pre1), 5, 5 * i + 1) self.plt.imshow(pre1[i].asnumpyarray(), vmin=-1, vmax=1, interpolation='nearest') if i == 0: self.plt.title('pre1 or g\'1') self.plt.subplot(len(pre1), 5, 5 * i + 2) self.plt.imshow(out1[i].asnumpyarray(), vmin=-1, vmax=1, interpolation='nearest') if i == 0: self.plt.title('out1') self.plt.subplot(len(pre1), 5, 5 * i + 3) self.plt.imshow(pre2[i].asnumpyarray(), vmin=-1, vmax=1, interpolation='nearest') if i == 0: self.plt.title('pre2 or g\'2') self.plt.subplot(len(pre1), 5, 5 * i + 4) self.plt.imshow(out2[i].asnumpyarray(), vmin=-1, vmax=1, interpolation='nearest') if i == 0: self.plt.title('out2') self.plt.subplot(len(pre1), 5, 5 * i + 5) self.plt.imshow(targets[i].asnumpyarray(), vmin=-1, vmax=1, interpolation='nearest') if i == 0: self.plt.title('target') self.plt.draw() self.plt.show() def print_text(self, inputs, outputs): """ Moved this here so it's legal to use numpy. """ print("Prediction inputs") print(np.argmax(inputs, 0).asnumpyarray().astype(np.int8).view('c')) print("Prediction outputs") print(np.argmax(outputs, 0).asnumpyarray().astype(np.int8).view('c'))
apache-2.0
jzt5132/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
Diwahars/spark-timeseries
python/sparkts/timeseriesrdd.py
1
10904
from py4j.java_gateway import java_import from pyspark import RDD from pyspark.serializers import FramedSerializer, SpecialLengths, write_int, read_int from pyspark.sql import DataFrame from utils import datetime_to_millis from datetimeindex import DateTimeIndex import struct import numpy as np import pandas as pd from io import BytesIO class TimeSeriesRDD(RDD): """ A lazy distributed collection of univariate series with a conformed time dimension. Lazy in the sense that it is an RDD: it encapsulates all the information needed to generate its elements, but doesn't materialize them upon instantiation. Distributed in the sense that different univariate series within the collection can be stored and processed on different nodes. Within each univariate series, observations are not distributed. The time dimension is conformed in the sense that a single DateTimeIndex applies to all the univariate series. Each univariate series within the RDD has a String key to identify it. """ def __init__(self, dt_index, rdd, jtsrdd = None, sc = None): if jtsrdd == None: # Construct from a Python RDD object and a Python DateTimeIndex jvm = rdd.ctx._jvm jrdd = rdd._reserialize(_TimeSeriesSerializer())._jrdd.map( \ jvm.com.cloudera.sparkts.BytesToKeyAndSeries()) self._jtsrdd = jvm.com.cloudera.sparkts.TimeSeriesRDD( \ dt_index._jdt_index, jrdd.rdd()) RDD.__init__(self, rdd._jrdd, rdd.ctx) else: # Construct from a py4j.JavaObject pointing to a TimeSeriesRDD and a Python SparkContext jvm = sc._jvm jrdd = jvm.org.apache.spark.api.java.JavaRDD(jtsrdd, None).map( \ jvm.com.cloudera.sparkts.KeyAndSeriesToBytes()) RDD.__init__(self, jrdd, sc, _TimeSeriesSerializer()) self._jtsrdd = jtsrdd def __getitem__(self, val): """ Returns a TimeSeriesRDD representing a subslice of this TimeSeriesRDD, containing only values for a sub-range of the time it covers. """ start = datetime_to_millis(val.start) stop = datetime_to_millis(val.stop) return TimeSeriesRDD(None, None, self._jtsrdd.slice(start, stop), self.ctx) def differences(self, n): """ Returns a TimeSeriesRDD where each time series is differenced with the given order. The new RDD will be missing the first n date-times. Parameters ---------- n : int The order of differencing to perform. """ return TimeSeriesRDD(None, None, self._jtsrdd.differences(n), self.ctx) def fill(self, method): """ Returns a TimeSeriesRDD with missing values imputed using the given method. Parameters ---------- method : string "nearest" fills in NaNs with the closest non-NaN value, using the closest previous value in the case of a tie. "linear" does a linear interpolation from the closest filled-in values. "next" uses the closest value that is in the future of the missing value. "previous" uses the closest value from the past of the missing value. "spline" interpolates using a cubic spline. """ return TimeSeriesRDD(None, None, self._jtsrdd.fill(method), self.ctx) def map_series(self, fn, dt_index = None): """ Returns a TimeSeriesRDD, with a transformation applied to all the series in this RDD. Either the series produced by the given function should conform to this TimeSeriesRDD's index, or a new DateTimeIndex should be given that they conform to. Parameters ---------- fn : function A function that maps arrays of floats to arrays of floats. dt_index : DateTimeIndex A DateTimeIndex for the produced TimeseriesRDD. """ if dt_index == None: dt_index = self.index() return TimeSeriesRDD(dt_index, self.map(fn)) def to_instants(self): """ Returns an RDD of instants, each a horizontal slice of this TimeSeriesRDD at a time. This essentially transposes the TimeSeriesRDD, producing an RDD of tuples of datetime and a numpy array containing all the observations that occurred at that time. """ jrdd = self._jtsrdd.toInstants(-1).toJavaRDD().map( \ self.ctx._jvm.com.cloudera.sparkts.InstantToBytes()) return RDD(jrdd, self.ctx, _InstantDeserializer()) def to_instants_dataframe(self, sql_ctx): """ Returns a DataFrame of instants, each a horizontal slice of this TimeSeriesRDD at a time. This essentially transposes the TimeSeriesRDD, producing a DataFrame where each column is a key form one of the rows in the TimeSeriesRDD. """ ssql_ctx = sql_ctx._ssql_ctx jdf = self._jtsrdd.toInstantsDataFrame(ssql_ctx, -1) return DataFrame(jdf, sql_ctx) def index(self): """Returns the index describing the times referred to by the elements of this TimeSeriesRDD """ jindex = self._jtsrdd.index() return DateTimeIndex(jindex) def to_observations_dataframe(self, sql_ctx, ts_col='timestamp', key_col='key', val_col='value'): """ Returns a DataFrame of observations, each containing a timestamp, a key, and a value. Parameters ---------- sql_ctx : SQLContext ts_col : string The name for the timestamp column. key_col : string The name for the key column. val_col : string The name for the value column. """ ssql_ctx = sql_ctx._ssql_ctx jdf = self._jtsrdd.toObservationsDataFrame(ssql_ctx, ts_col, key_col, val_col) return DataFrame(jdf, sql_ctx) def to_pandas_series_rdd(self): """ Returns an RDD of Pandas Series objects indexed with Pandas DatetimeIndexes """ pd_index = self.index().to_pandas_index() return self.map(lambda x: (x[0], pd.Series(x[1], pd_index))) def remove_instants_with_nans(self): """ Returns a TimeSeriesRDD with instants containing NaNs cut out. The resulting TimeSeriesRDD has a slimmed down DateTimeIndex, missing all the instants for which any series in the RDD contained a NaN. """ return TimeSeriesRDD(None, None, self._jtsrdd.removeInstantsWithNaNs(), self.ctx) def filter(self, predicate): return TimeSeriesRDD(self.index(), super(TimeSeriesRDD, self).filter(predicate)) def find_series(self, key): """ Finds a series in the TimeSeriesRDD by its key. Parameters ---------- key : string The key of the series to find. """ # TODO: this could be more efficient if we pushed it down into Java return self.filter(lambda x: x[0] == key).first()[1] def return_rates(self): """ Returns a TimeSeriesRDD where each series is a return rate series for a series in this RDD. Assumes periodic (as opposed to continuously compounded) returns. """ return TimeSeriesRDD(None, None, self._jtsrdd.returnRates(), self.ctx) def with_index(self, new_index): """ Returns a TimeSeriesRDD rebased on top of a new index. Any timestamps that exist in the new index but not in the existing index will be filled in with NaNs. Parameters ---------- new_index : DateTimeIndex """ return TimeSeriesRDD(None, None, self._jtsrdd.withIndex(new_index._jdt_index), self.ctx) def time_series_rdd_from_pandas_series_rdd(series_rdd, sc): """ Instantiates a TimeSeriesRDD from an RDD of Pandas Series objects. The series in the RDD are all expected to have the same DatetimeIndex. Parameters ---------- series_rdd : RDD of (string, pandas.Series) tuples sc : SparkContext """ first = series_rdd.first() dt_index = irregular(first[1].index, sc) return TimeSeriesRDD(dt_index, series_rdd.mapValues(lambda x: x.values)) def time_series_rdd_from_observations(dt_index, df, ts_col, key_col, val_col): """ Instantiates a TimeSeriesRDD from a DataFrame of observations. An observation is a row containing a timestamp, a string key, and float value. Parameters ---------- dt_index : DateTimeIndex The index of the RDD to create. Observations not contained in this index will be ignored. df : DataFrame ts_col : string The name of the column in the DataFrame containing the timestamps. key_col : string The name of the column in the DataFrame containing the keys. val_col : string The name of the column in the DataFrame containing the values. """ jvm = df._sc._jvm jtsrdd = jvm.com.cloudera.sparkts.TimeSeriesRDD.timeSeriesRDDFromObservations( \ dt_index._jdt_index, df._jdf, ts_col, key_col, val_col) return TimeSeriesRDD(None, None, jtsrdd, df._sc) class _TimeSeriesSerializer(FramedSerializer): """Serializes (key, vector) pairs to and from bytes. Must be compatible with the Scala implementation in com.cloudera.sparkts.{BytesToKeyAndSeries, KeyAndSeriesToBytes} """ def dumps(self, obj): stream = BytesIO() (key, vector) = obj key_bytes = key.encode('utf-8') write_int(len(key_bytes), stream) stream.write(key_bytes) write_int(len(vector), stream) # TODO: maybe some optimized way to write this all at once? for value in vector: stream.write(struct.pack('!d', value)) stream.seek(0) return stream.read() def loads(self, obj): stream = BytesIO(obj) key_length = read_int(stream) key = stream.read(key_length).decode('utf-8') return (key, _read_vec(stream)) def __repr__(self): return '_TimeSeriesSerializer' class _InstantDeserializer(FramedSerializer): """ Serializes (timestamp, vector) pairs to an from bytes. Must be compatible with the Scala implementation in com.cloudera.sparkts.InstantToBytes """ def loads(self, obj): stream = BytesIO(obj) timestamp_ms = struct.unpack('!q', stream.read(8))[0] return (pd.Timestamp(timestamp_ms * 1000000), _read_vec(stream)) def __repr__(self): return "_InstantDeserializer" def _read_vec(stream): vector_length = read_int(stream) vector = np.empty(vector_length) # TODO: maybe some optimized way to read this all at once? for i in xrange(vector_length): vector[i] = struct.unpack('!d', stream.read(8))[0] return vector
apache-2.0
chengsoonong/digbeta
dchen/music/src/PLGEN1_bp.py
2
2684
import os import sys import gzip import time import numpy as np import pickle as pkl from sklearn.metrics import roc_auc_score from models import BPMTC if len(sys.argv) != 8: print('Usage: python', sys.argv[0], 'WORK_DIR DATASET C1 C2 C3 P TRAIN_DEV(Y/N)') sys.exit(0) else: work_dir = sys.argv[1] dataset = sys.argv[2] C1 = float(sys.argv[3]) C2 = float(sys.argv[4]) C3 = float(sys.argv[5]) p = float(sys.argv[6]) trndev = sys.argv[7] # assert trndev in ['Y', 'N'] # assert trndev == 'Y' if trndev != 'Y': raise ValueError('trndev should be "Y"') data_dir = os.path.join(work_dir, 'data/%s/setting3' % dataset) fx = os.path.join(data_dir, 'X.pkl.gz') fytrain = os.path.join(data_dir, 'Y_train.pkl.gz') fytest = os.path.join(data_dir, 'Y_test.pkl.gz') fcliques_train = os.path.join(data_dir, 'cliques_train.pkl.gz') fcliques_all = os.path.join(data_dir, 'cliques_all.pkl.gz') fprefix = 'trndev-plgen1-bp-%g-%g-%g-%g' % (C1, C2, C3, p) fmodel = os.path.join(data_dir, '%s.pkl.gz' % fprefix) fnpy = os.path.join(data_dir, '%s.npy' % fprefix) X = pkl.load(gzip.open(fx, 'rb')) Y_train = pkl.load(gzip.open(fytrain, 'rb')) Y_test = pkl.load(gzip.open(fytest, 'rb')) cliques_train = pkl.load(gzip.open(fcliques_train, 'rb')) cliques_all = pkl.load(gzip.open(fcliques_all, 'rb')) print('C: %g, %g, %g, p: %g' % (C1, C2, C3, p)) print(X.shape, Y_train.shape) print(time.strftime('%Y-%m-%d %H:%M:%S')) if os.path.exists(fmodel): print('evaluating ...') clf = pkl.load(gzip.open(fmodel, 'rb')) # for evaluation else: print('training ...') clf = BPMTC(X, Y_train, C1=C1, C2=C2, C3=C3, p=p, user_playlist_indices=cliques_train) clf.fit(verbose=2, fnpy=fnpy) if clf.trained is True: pkl.dump(clf, gzip.open(fmodel, 'wb')) pl2u = np.zeros(Y_train.shape[1] + Y_test.shape[1], dtype=np.int) U = len(cliques_train) assert len(cliques_all) == U for u in range(U): clq = cliques_all[u] pl2u[clq] = u assert np.all(clf.pl2u == pl2u[:Y_train.shape[1]]) rps = [] aucs = [] offset = Y_train.shape[1] for j in range(Y_test.shape[1]): y_true = Y_test[:, j].A.reshape(-1) npos = y_true.sum() assert npos > 0 u = pl2u[j + offset] wj = clf.V[u, :] + clf.mu y_pred = np.dot(X, wj).reshape(-1) sortix = np.argsort(-y_pred) y_ = y_true[sortix] rps.append(np.mean(y_[:npos])) aucs.append(roc_auc_score(y_true, y_pred)) clf.metric_score = (np.mean(rps), np.mean(aucs), len(rps), Y_test.shape[1]) pkl.dump(clf, gzip.open(fmodel, 'wb')) print('\n%g, %g, %d / %d' % clf.metric_score)
gpl-3.0
benanne/kaggle-galaxies
predict_augmented_npy_maxout2048.py
8
9452
""" Load an analysis file and redo the predictions on the validation set / test set, this time with augmented data and averaging. Store them as numpy files. """ import numpy as np # import pandas as pd import theano import theano.tensor as T import layers import cc_layers import custom import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle BATCH_SIZE = 32 # 16 NUM_INPUT_FEATURES = 3 CHUNK_SIZE = 8000 # 10000 # this should be a multiple of the batch size # ANALYSIS_PATH = "analysis/try_convnet_cc_multirot_3x69r45_untied_bias.pkl" ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_maxout2048.pkl" DO_VALID = True # disable this to not bother with the validation set evaluation DO_TEST = True # disable this to not generate predictions on the testset target_filename = os.path.basename(ANALYSIS_PATH).replace(".pkl", ".npy.gz") target_path_valid = os.path.join("predictions/final/augmented/valid", target_filename) target_path_test = os.path.join("predictions/final/augmented/test", target_filename) print "Loading model data etc." analysis = np.load(ANALYSIS_PATH) input_sizes = [(69, 69), (69, 69)] ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45)] num_input_representations = len(ds_transforms) # split training data into training + a small validation set num_train = load_data.num_train num_valid = num_train // 10 # integer division num_train -= num_valid num_test = load_data.num_test valid_ids = load_data.train_ids[num_train:] train_ids = load_data.train_ids[:num_train] test_ids = load_data.test_ids train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train+num_valid) test_indices = np.arange(num_test) y_valid = np.load("data/solutions_train.npy")[num_train:] print "Build model" l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]) l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True) l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r) l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2) l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2) l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2) l3s = cc_layers.ShuffleC01BToBC01Layer(l3) j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts # l4 = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5) l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4 = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape') # l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity) l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity) # l6 = layers.OutputLayer(l5, error_measure='mse') l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.) xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)] idx = T.lscalar('idx') givens = { l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], } compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens) print "Load model parameters" layers.set_param_values(l6, analysis['param_values']) print "Create generators" # set here which transforms to use to make predictions augmentation_transforms = [] for zoom in [1 / 1.2, 1.0, 1.2]: for angle in np.linspace(0, 360, 10, endpoint=False): augmentation_transforms.append(ra.build_augmentation_transform(rotation=angle, zoom=zoom)) augmentation_transforms.append(ra.build_augmentation_transform(rotation=(angle + 180), zoom=zoom, shear=180)) # flipped print " %d augmentation transforms." % len(augmentation_transforms) augmented_data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', augmentation_transforms=augmentation_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, ds_transforms=ds_transforms) valid_gen = load_data.buffered_gen_mp(augmented_data_gen_valid, buffer_size=1) augmented_data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', augmentation_transforms=augmentation_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes, ds_transforms=ds_transforms) test_gen = load_data.buffered_gen_mp(augmented_data_gen_test, buffer_size=1) approx_num_chunks_valid = int(np.ceil(num_valid * len(augmentation_transforms) / float(CHUNK_SIZE))) approx_num_chunks_test = int(np.ceil(num_test * len(augmentation_transforms) / float(CHUNK_SIZE))) print "Approximately %d chunks for the validation set" % approx_num_chunks_valid print "Approximately %d chunks for the test set" % approx_num_chunks_test if DO_VALID: print print "VALIDATION SET" print "Compute predictions" predictions_list = [] start_time = time.time() for e, (chunk_data, chunk_length) in enumerate(valid_gen): print "Chunk %d" % (e + 1) xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] print " load data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # make predictions, don't forget to cute off the zeros at the end predictions_chunk_list = [] for b in xrange(num_batches_chunk): if b % 1000 == 0: print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_chunk_list.append(predictions) predictions_chunk = np.vstack(predictions_chunk_list) predictions_chunk = predictions_chunk[:chunk_length] # cut off zeros / padding print " compute average over transforms" predictions_chunk_avg = predictions_chunk.reshape(-1, len(augmentation_transforms), 37).mean(1) predictions_list.append(predictions_chunk_avg) time_since_start = time.time() - start_time print " %s since start" % load_data.hms(time_since_start) all_predictions = np.vstack(predictions_list) print "Write predictions to %s" % target_path_valid load_data.save_gz(target_path_valid, all_predictions) print "Evaluate" rmse_valid = analysis['losses_valid'][-1] rmse_augmented = np.sqrt(np.mean((y_valid - all_predictions)**2)) print " MSE (last iteration):\t%.6f" % rmse_valid print " MSE (augmented):\t%.6f" % rmse_augmented if DO_TEST: print print "TEST SET" print "Compute predictions" predictions_list = [] start_time = time.time() for e, (chunk_data, chunk_length) in enumerate(test_gen): print "Chunk %d" % (e + 1) xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] print " load data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # make predictions, don't forget to cute off the zeros at the end predictions_chunk_list = [] for b in xrange(num_batches_chunk): if b % 1000 == 0: print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_chunk_list.append(predictions) predictions_chunk = np.vstack(predictions_chunk_list) predictions_chunk = predictions_chunk[:chunk_length] # cut off zeros / padding print " compute average over transforms" predictions_chunk_avg = predictions_chunk.reshape(-1, len(augmentation_transforms), 37).mean(1) predictions_list.append(predictions_chunk_avg) time_since_start = time.time() - start_time print " %s since start" % load_data.hms(time_since_start) all_predictions = np.vstack(predictions_list) print "Write predictions to %s" % target_path_test load_data.save_gz(target_path_test, all_predictions) print "Done!"
bsd-3-clause
shusenl/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
adwaitjog/mafia
bin/aerialvision.py
2
3885
#!/usr/bin/python # # File: aerialvision.py # # Copyright (C) 2009 by Aaron Ariel, Tor M. Aamodt, Andrew Turner # and the University of British Columbia, Vancouver, # BC V6T 1Z4, All Rights Reserved. # # THIS IS A LEGAL DOCUMENT BY DOWNLOADING GPGPU-SIM, YOU ARE AGREEING TO THESE # TERMS AND CONDITIONS. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # NOTE: The files libcuda/cuda_runtime_api.c and src/cuda-sim/cuda-math.h # are derived from the CUDA Toolset available from http://www.nvidia.com/cuda # (property of NVIDIA). The files benchmarks/BlackScholes/ and # benchmarks/template/ are derived from the CUDA SDK available from # http://www.nvidia.com/cuda (also property of NVIDIA). The files from # src/intersim/ are derived from Booksim (a simulator provided with the # textbook "Principles and Practices of Interconnection Networks" available # from http://cva.stanford.edu/books/ppin/). As such, those files are bound by # the corresponding legal terms and conditions set forth separately (original # copyright notices are left in files from these sources and where we have # modified a file our copyright notice appears before the original copyright # notice). # # Using this version of GPGPU-Sim requires a complete installation of CUDA # which is distributed seperately by NVIDIA under separate terms and # conditions. To use this version of GPGPU-Sim with OpenCL requires a # recent version of NVIDIA's drivers which support OpenCL. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the University of British Columbia nor the names of # its contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # 4. This version of GPGPU-SIM is distributed freely for non-commercial use only. # # 5. No nonprofit user may place any restrictions on the use of this software, # including as modified by the user, by any other authorized user. # # 6. GPGPU-SIM was developed primarily by Tor M. Aamodt, Wilson W. L. Fung, # Ali Bakhoda, George L. Yuan, at the University of British Columbia, # Vancouver, BC V6T 1Z4 import sys import os if not os.environ['HOME']: print 'please set your HOME environment variable to your home directory' sys.exit if not os.environ['GPGPUSIM_ROOT']: print 'please set your GPGPUSIM_ROOT environment variable to your home directory' sys.exit sys.path.append( os.environ['GPGPUSIM_ROOT'] + '/aerialvision/' ) import Tkinter as Tk import Pmw import startup import time from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure startup.fileInput(sys.argv[1:])
gpl-3.0
mortada/tensorflow
tensorflow/tools/dist_test/python/census_widendeep.py
54
11900
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distributed training and evaluation of a wide and deep model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import os import sys from six.moves import urllib import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn.estimators import run_config # Constants: Data download URLs TRAIN_DATA_URL = "http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data" TEST_DATA_URL = "http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.test" # Define features for the model def census_model_config(): """Configuration for the census Wide & Deep model. Returns: columns: Column names to retrieve from the data source label_column: Name of the label column wide_columns: List of wide columns deep_columns: List of deep columns categorical_column_names: Names of the categorical columns continuous_column_names: Names of the continuous columns """ # 1. Categorical base columns. gender = tf.contrib.layers.sparse_column_with_keys( column_name="gender", keys=["female", "male"]) race = tf.contrib.layers.sparse_column_with_keys( column_name="race", keys=["Amer-Indian-Eskimo", "Asian-Pac-Islander", "Black", "Other", "White"]) education = tf.contrib.layers.sparse_column_with_hash_bucket( "education", hash_bucket_size=1000) marital_status = tf.contrib.layers.sparse_column_with_hash_bucket( "marital_status", hash_bucket_size=100) relationship = tf.contrib.layers.sparse_column_with_hash_bucket( "relationship", hash_bucket_size=100) workclass = tf.contrib.layers.sparse_column_with_hash_bucket( "workclass", hash_bucket_size=100) occupation = tf.contrib.layers.sparse_column_with_hash_bucket( "occupation", hash_bucket_size=1000) native_country = tf.contrib.layers.sparse_column_with_hash_bucket( "native_country", hash_bucket_size=1000) # 2. Continuous base columns. age = tf.contrib.layers.real_valued_column("age") age_buckets = tf.contrib.layers.bucketized_column( age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) education_num = tf.contrib.layers.real_valued_column("education_num") capital_gain = tf.contrib.layers.real_valued_column("capital_gain") capital_loss = tf.contrib.layers.real_valued_column("capital_loss") hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week") wide_columns = [ gender, native_country, education, occupation, workclass, marital_status, relationship, age_buckets, tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([age_buckets, race, occupation], hash_bucket_size=int(1e6))] deep_columns = [ tf.contrib.layers.embedding_column(workclass, dimension=8), tf.contrib.layers.embedding_column(education, dimension=8), tf.contrib.layers.embedding_column(marital_status, dimension=8), tf.contrib.layers.embedding_column(gender, dimension=8), tf.contrib.layers.embedding_column(relationship, dimension=8), tf.contrib.layers.embedding_column(race, dimension=8), tf.contrib.layers.embedding_column(native_country, dimension=8), tf.contrib.layers.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week] # Define the column names for the data sets. columns = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] label_column = "label" categorical_columns = ["workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country"] continuous_columns = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] return (columns, label_column, wide_columns, deep_columns, categorical_columns, continuous_columns) class CensusDataSource(object): """Source of census data.""" def __init__(self, data_dir, train_data_url, test_data_url, columns, label_column, categorical_columns, continuous_columns): """Constructor of CensusDataSource. Args: data_dir: Directory to save/load the data files train_data_url: URL from which the training data can be downloaded test_data_url: URL from which the test data can be downloaded columns: Columns to retrieve from the data files (A list of strings) label_column: Name of the label column categorical_columns: Names of the categorical columns (A list of strings) continuous_columns: Names of the continuous columsn (A list of strings) """ # Retrieve data from disk (if available) or download from the web. train_file_path = os.path.join(data_dir, "adult.data") if os.path.isfile(train_file_path): print("Loading training data from file: %s" % train_file_path) train_file = open(train_file_path) else: urllib.urlretrieve(train_data_url, train_file_path) test_file_path = os.path.join(data_dir, "adult.test") if os.path.isfile(test_file_path): print("Loading test data from file: %s" % test_file_path) test_file = open(test_file_path) else: test_file = open(test_file_path) urllib.urlretrieve(test_data_url, test_file_path) # Read the training and testing data sets into Pandas DataFrame. import pandas # pylint: disable=g-import-not-at-top self._df_train = pandas.read_csv(train_file, names=columns, skipinitialspace=True) self._df_test = pandas.read_csv(test_file, names=columns, skipinitialspace=True, skiprows=1) # Remove the NaN values in the last rows of the tables self._df_train = self._df_train[:-1] self._df_test = self._df_test[:-1] # Apply the threshold to get the labels. income_thresh = lambda x: ">50K" in x self._df_train[label_column] = ( self._df_train["income_bracket"].apply(income_thresh)).astype(int) self._df_test[label_column] = ( self._df_test["income_bracket"].apply(income_thresh)).astype(int) self.label_column = label_column self.categorical_columns = categorical_columns self.continuous_columns = continuous_columns def input_train_fn(self): return self._input_fn(self._df_train) def input_test_fn(self): return self._input_fn(self._df_test) # TODO(cais): Turn into minibatch feeder def _input_fn(self, df): """Input data function. Creates a dictionary mapping from each continuous feature column name (k) to the values of that column stored in a constant Tensor. Args: df: data feed Returns: feature columns and labels """ continuous_cols = {k: tf.constant(df[k].values) for k in self.continuous_columns} # Creates a dictionary mapping from each categorical feature column name (k) # to the values of that column stored in a tf.SparseTensor. categorical_cols = { k: tf.SparseTensor( indices=[[i, 0] for i in range(df[k].size)], values=df[k].values, dense_shape=[df[k].size, 1]) for k in self.categorical_columns} # Merges the two dictionaries into one. feature_cols = dict(continuous_cols.items() + categorical_cols.items()) # Converts the label column into a constant Tensor. label = tf.constant(df[self.label_column].values) # Returns the feature columns and the label. return feature_cols, label def _create_experiment_fn(output_dir): # pylint: disable=unused-argument """Experiment creation function.""" (columns, label_column, wide_columns, deep_columns, categorical_columns, continuous_columns) = census_model_config() census_data_source = CensusDataSource(FLAGS.data_dir, TRAIN_DATA_URL, TEST_DATA_URL, columns, label_column, categorical_columns, continuous_columns) os.environ["TF_CONFIG"] = json.dumps({ "cluster": { tf.contrib.learn.TaskType.PS: ["fake_ps"] * FLAGS.num_parameter_servers }, "task": { "index": FLAGS.worker_index } }) config = run_config.RunConfig(master=FLAGS.master_grpc_url) estimator = tf.contrib.learn.DNNLinearCombinedClassifier( model_dir=FLAGS.model_dir, linear_feature_columns=wide_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[5], config=config) return tf.contrib.learn.Experiment( estimator=estimator, train_input_fn=census_data_source.input_train_fn, eval_input_fn=census_data_source.input_test_fn, train_steps=FLAGS.train_steps, eval_steps=FLAGS.eval_steps ) def main(unused_argv): print("Worker index: %d" % FLAGS.worker_index) learn_runner.run(experiment_fn=_create_experiment_fn, output_dir=FLAGS.output_dir, schedule=FLAGS.schedule) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--data_dir", type=str, default="/tmp/census-data", help="Directory for storing the cesnsus data" ) parser.add_argument( "--model_dir", type=str, default="/tmp/census_wide_and_deep_model", help="Directory for storing the model" ) parser.add_argument( "--output_dir", type=str, default="", help="Base output directory." ) parser.add_argument( "--schedule", type=str, default="local_run", help="Schedule to run for this experiment." ) parser.add_argument( "--master_grpc_url", type=str, default="", help="URL to master GRPC tensorflow server, e.g.,grpc://127.0.0.1:2222" ) parser.add_argument( "--num_parameter_servers", type=int, default=0, help="Number of parameter servers" ) parser.add_argument( "--worker_index", type=int, default=0, help="Worker index (>=0)" ) parser.add_argument( "--train_steps", type=int, default=1000, help="Number of training steps" ) parser.add_argument( "--eval_steps", type=int, default=1, help="Number of evaluation steps" ) global FLAGS # pylint:disable=global-at-module-level FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
xya/sms-tools
lectures/06-Harmonic-model/plots-code/harmonicModel-analysis-synthesis.py
24
1387
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import harmonicModel as HM import sineModel as SM import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/vignesh.wav') w = np.blackman(1201) N = 2048 t = -90 nH = 100 minf0 = 130 maxf0 = 300 f0et = 7 Ns = 512 H = Ns/4 minSineDur = .1 harmDevSlope = 0.01 hfreq, hmag, hphase = HM.harmonicModelAnal(x, fs, w, N, H, t, nH, minf0, maxf0, f0et, harmDevSlope, minSineDur) y = SM.sineModelSynth(hfreq, hmag, hphase, Ns, H, fs) numFrames = int(hfreq[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.figure(1, figsize=(9, 7)) plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x, 'b') plt.axis([0,x.size/float(fs),min(x),max(x)]) plt.title('x (vignesh.wav)') plt.subplot(3,1,2) yhfreq = hfreq yhfreq[hfreq==0] = np.nan plt.plot(frmTime, hfreq, lw=1.2) plt.axis([0,y.size/float(fs),0,8000]) plt.title('f_h, harmonic frequencies') plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y, 'b') plt.axis([0,y.size/float(fs),min(y),max(y)]) plt.title('yh') plt.tight_layout() UF.wavwrite(y, fs, 'vignesh-harmonic-synthesis.wav') plt.savefig('harmonicModel-analysis-synthesis.png') plt.show()
agpl-3.0
MatthieuBizien/scikit-learn
examples/cluster/plot_kmeans_digits.py
21
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
rs2/pandas
pandas/tests/frame/test_dtypes.py
1
11812
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, option_context import pandas._testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal(norows_df.dtypes, pd.Series(object, index=list("abc"))) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool_), ("c", np.float64)]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_dtypes_gh8722(self, float_string_frame): float_string_frame["bool"] = float_string_frame["A"] > 0 result = float_string_frame.dtypes expected = Series( {k: v.dtype for k, v in float_string_frame.items()}, index=result.index ) tm.assert_series_equal(result, expected) # compat, GH 8722 with option_context("use_inf_as_na", True): df = DataFrame([[1]]) result = df.dtypes tm.assert_series_equal(result, Series({0: np.dtype("int64")})) def test_singlerow_slice_categoricaldtype_gives_series(self): # GH29521 df = pd.DataFrame({"x": pd.Categorical("a b c d e".split())}) result = df.iloc[0] raw_cat = pd.Categorical(["a"], categories=["a", "b", "c", "d", "e"]) expected = pd.Series(raw_cat, index=["x"], name=0, dtype="category") tm.assert_series_equal(result, expected) def test_timedeltas(self): df = DataFrame( dict( A=Series(date_range("2012-1-1", periods=3, freq="D")), B=Series([timedelta(days=i) for i in range(3)]), ) ) result = df.dtypes expected = Series( [np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]")], index=list("AB") ) tm.assert_series_equal(result, expected) df["C"] = df["A"] + df["B"] result = df.dtypes expected = Series( [ np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]"), np.dtype("datetime64[ns]"), ], index=list("ABC"), ) tm.assert_series_equal(result, expected) # mixed int types df["D"] = 1 result = df.dtypes expected = Series( [ np.dtype("datetime64[ns]"), np.dtype("timedelta64[ns]"), np.dtype("datetime64[ns]"), np.dtype("int64"), ], index=list("ABCD"), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements are converted to strings when # dtype is str, 'str', or 'U' result = DataFrame({"A": input_vals}, dtype=string_dtype) expected = DataFrame({"A": input_vals}).astype({"A": string_dtype}) tm.assert_frame_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype) expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data, expected", [ # empty (DataFrame(), True), # multi-same (DataFrame({"A": [1, 2], "B": [1, 2]}), True), # multi-object ( DataFrame( { "A": np.array([1, 2], dtype=object), "B": np.array(["a", "b"], dtype=object), } ), True, ), # multi-extension ( DataFrame( {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["a", "b"])} ), True, ), # differ types (DataFrame({"A": [1, 2], "B": [1.0, 2.0]}), False), # differ sizes ( DataFrame( { "A": np.array([1, 2], dtype=np.int32), "B": np.array([1, 2], dtype=np.int64), } ), False, ), # multi-extension differ ( DataFrame( {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["b", "c"])} ), False, ), ], ) def test_is_homogeneous_type(self, data, expected): assert data._is_homogeneous_type is expected def test_is_homogeneous_type_clears_cache(self): ser = pd.Series([1, 2, 3]) df = ser.to_frame("A") df["B"] = ser assert len(df._mgr.blocks) == 2 a = df["B"] # caches lookup df._is_homogeneous_type # _should_ clear cache assert len(df._mgr.blocks) == 1 assert df["B"] is not a def test_asarray_homogenous(self): df = pd.DataFrame({"A": pd.Categorical([1, 2]), "B": pd.Categorical([1, 2])}) result = np.asarray(df) # may change from object in the future expected = np.array([[1, 1], [2, 2]], dtype="object") tm.assert_numpy_array_equal(result, expected) def test_str_to_small_float_conversion_type(self): # GH 20388 np.random.seed(13) col_data = [str(np.random.random() * 1e-12) for _ in range(5)] result = pd.DataFrame(col_data, columns=["A"]) expected = pd.DataFrame(col_data, columns=["A"], dtype=object) tm.assert_frame_equal(result, expected) # change the dtype of the elements from object to float one by one result.loc[result.index, "A"] = [float(x) for x in col_data] expected = pd.DataFrame(col_data, columns=["A"], dtype=float) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "convert_integer, expected", [(False, np.dtype("int32")), (True, "Int32")] ) def test_convert_dtypes(self, convert_integer, expected): # Specific types are tested in tests/series/test_dtypes.py # Just check that it works for DataFrame here df = pd.DataFrame( { "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), } ) result = df.convert_dtypes(True, True, convert_integer, False) expected = pd.DataFrame( { "a": pd.Series([1, 2, 3], dtype=expected), "b": pd.Series(["x", "y", "z"], dtype="string"), } ) tm.assert_frame_equal(result, expected) class TestDataFrameDatetimeWithTZ: def test_interleave(self, timezone_frame): # interleave with object result = timezone_frame.assign(D="foo").values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), pd.NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), pd.NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ["foo", "foo", "foo"], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected) # interleave with only datetime64[ns] result = timezone_frame.values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), pd.NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), pd.NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected)
bsd-3-clause
alexgerst/yawgmoth
src/personalvars.py
1
4209
#This is a file for holding information specific to your server #Only change lines that have comments to the right of them # --------------------------- # Startup Variables # --------------------------- #Where you saved your token file def token_location(): return "/home/ec2-user/token.txt" #Where you saved the bot token #Where the bot starts up def rise_server(): return '/r/CompetitiveEDH' #Server Name def rise_channel(): return 'urborg' #Channel Name def rise_message(): return 'I rise...' #Rise message def access_error(): return "Can't let you do that, StarFox" #Error message for when people try to do things without permission # --------------------------- # Bot Admins and Moderators # --------------------------- #Roles in this server who are admins to the bot def admin_roles(): return ['Head Moderator', 'Senior Moderator', 'Chat Moderator'] #Top ranking roles in your server #Roles in this server who are moderators to the bot def mod_roles(): return ['Head Moderator', 'Senior Moderator', 'Chat Moderator'] #Top ranking roles in your server #You can also manually add users to this list def mod_users(): userlist = [ # To add to this list remember to put a comma on the previous line, then write on this line and move this comment down ] return userlist # --------------------------- # Obey Commands # --------------------------- #Obey Dictionary def obey_dict(): dict = { 'Yawgmoth': 'Consciousness achieved.', 'Shaper': 'I obey, Master Shaper.', 'aceuuu': 'I obey, Admiral Aceuuu~!', 'muCephei': 'I obey, muCephei.', 'Gerst': 'I obey, Artificer Gerst.', 'Lerker': 'I obey, Commodore 64 Lerker.', 'ShakeAndShimmy': 'I obey, Chancellor ShakeAndShimmy.', 'angelforge': 'I obey, Lord AngelForge.', 'JimWolfie': 'Suck my necrotic dick, Jim.', 'Skuloth': 'Zur is for scrubs, I refuse to obey.', 'Noon2Dusk': 'I obey, Inventor Noon.', 'razzliox': 'I obey, Razzberries.', 'ifarmpandas': 'Beep boop, pandas are the best.', 'Rien': 'I obey, kiddo.', 'K-Ni-Fe': 'I obey, because I\'m 40% Potassium, Nickel and Iron.', 'BigLupu': 'Rim my necrotic yawghole, Lupu.', 'PGleo86': 'shh bby is ok.', 'tenrose': 'https://cdn.discordapp.com/attachments/248270124920995850/307190327347773450/tfw_u_draw_fuck_all.png', 'captainriku': 'I obey, Jund Lord Riku.', 'Mori': ':sheep: baaa', 'infiniteimoc': 'I obey, Imoc, Herald of the Sun.', 'neosloth': 'Long days and pleasant nights, neosloth.', 'Lobster': 'Seems good.', 'Noahgs': 'I bow to thee, Master of Cows, Noahgs.', 'Tides': 'Let me... TORTURE YOUR EXISTENCE!!!!..... sorry that was bad.', 'Sleepy': 'No one likes you.', 'Trisantris': 'The real Yawgmoth would not obey, but I am but a facsimile. So yes. I obey.', 'Garta': 'No.', 'Wedge': 'I obey... wait, are you Wedge from the mana source:tm:?', 'Tatters': 'I won\'t obey, because people still refuse to pronounce Ghave as Gah-Vay... Sometimes Wizards is wrong. That \'H\' is there for a reason!', 'Chemtails': 'I Obey, Chemtails, Don\'t hit me again please', 'Dandelion': '***NO***', 'Leptys': 'Have your 24 cards, Senior Elptys', 'Average Dragon': 'https://cdn.discordapp.com/attachments/121100604302032896/411306738717818890/maxresdefault.png', 'Sickrobot': 'Eww, sure. Just don\'t give me a virus' # To add to the obey dict, please add a comma to the previous line and then follow the format of # 'Name':'Message' # PLEASE ALSO UPDATE THE VERSION NUMBER AT THE TOP OF COMMANDS.PY } return dict def mute_cmd_msg(): mute_msg = 'Silence, mortal. :zipper_mouth: You\'ve been muted in Competitive EDH; ' mute_msg += 'take a moment to reflect and calm down and please be respectful when you return.' return mute_msg
mit
lsst-dm/great3-public
example_scripts/psf_models.py
2
58929
#!/usr/bin/env python # # Copyright (c) 2014, the GREAT3 executive committee (http://www.great3challenge.info/?q=contacts) # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted # provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions # and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of # conditions and the following disclaimer in the documentation and/or other materials provided with # the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to # endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Example module for PSF modeling in GREAT3 This Python module provides a simple PSF modeling code adapted to work with the GREAT3 data format. It is intended to provide a "first-order" PSF module to allow GREAT3 participants to compete in branches with variable PSFs without writing their own PSF estimation module, and to provide an example for those who do wish to create their own PSF estimation module. It is not expected to be competitive with the current state-of-the-art in PSF estimation, but it should not be orders of magnitude worse, either. DEPENDENCIES Python 2.6.x-2.7.x NumPy 1.6+ GalSim 1.0 PyFITS 1.0+ Matplotlib 0.10+ (optional; used for diagnostic plots) ALGORITHM / USAGE The algorithmic approach is a simple PCA of star images, interpolated using Chebyshev polynomials; this is similar to the PSF modeling approach used in the SDSS Photo reduction pipeline and in Jee & Tyson (2011). It should not be confused with the spatial PCA of Jarvis and Jain (2004). Overall, the approach is: 1) Measure the sub-pixel centroids and fluxes of stars. This is done using the HSM adaptive moments code in GalSim, which is overkill (as it measures shapes too, which we don't need) but effective nonetheless. At the same time, we reorganize the from subfield-based files to tile-based files. This produces 'star_meas' files. See measureStars(). 2) Resample and rescale the images of input stars such that they have a common center and unit flux, using the measurements from the previous step. In this step, we loop over each tile-based star_meas file and then over each subfield-based starfield_image file, extracting only the stars associated with the current tile. This results in more I/O but lower memory consumption. The outputs of this are the `star_data` files, which are FITS binary tables that contain the centered, normalized postage stamps as a 2-d array field. See buildDataTables(). 3) Compute an orthonormal basis for the star images using Principle Components Analysis (see computePCA). The PCA is computed after subtracting the mean star image, and we keep only the first few basis images, which represent most of the variance in the sample. A separate basis is computed for each tile. 4) Project each star onto the PCA basis, and fit a 2-d Chebyshev polynomial to the resulting coefficients as a function of position on the tile (LinearChebyshevModel.fit). Note that there is a different Chebyshev polynomial for each basis image, so the model image at a point is computed by evaluating the Chebyshev polynomials at that point, and using the those values as the weights in a weighted sum of the basis images (which also includes the mean star image, unweighted). A separate model is computed for each tile, but these can be be gathered into a FieldModelSuite object to represent the entire field. 5) (optional) Evaluate the PSF model at the position of each galaxy. This can be done en-mass using FieldModelSuite.makeImageGrid, which creates a grid of images for a subfield galaxy catalog. It can also be done one galaxy at a time, using FieldModelSuite.evaluate(). Steps 3 and 4 can be done for a full field by calling FieldModelSuite.fit, and all 5 steps can be performed by calling the main() function or executing this file as a script. The LinearChebyshevModel class also has a few inspect* methods that can be used to visualize the goodness of fit of the model given the per-tile star_data catalog it was constructed from. Executing the script looks something like this: ./psf_models.py --model-file psf_models.p 40 /sims/variable_psf/ground/constant output This will process subfields 40-59 (all of the subfields in a single field) for the branch located in /sims/variable_psf/ground/constant, placing all outputs in the 'output' directory. The FieldModelSuite object will be saved to output/psf_models.p for future use (in addition to creating PSF image grids that correspond to the galaxy image grids). For more help with the command-line interface, you can just run: ./psf_models.py --help KNOWN ISSUES / LIMITATIONS - The code has only been tested on 'variable_psf' branches, and may require some modification to work on 'full' branches. Some of these may be modestly backwards-incompatible. - Constructing the PSF models for an entire field while attempting to use all the stars can consume a significant amount of memory (nearly 16 GB) and take ~3 hours on a single CPU. Using a smaller image dimension for the PSF model images or using the max_stars parameter can be used to adress this; just setting max_stars=1000 (the default) reduces the memory footprint to <2GB and the single-CPU runtime to ~22 minutes. Once constructed, a PSF model suite is generally quite lightweight unless a very large number of basis functions and/or high Chebyshev degree is used. - In the GREAT3 multi-epoch space branches the individual images are not Nyquist sampled, which invalidates the simple centroiding and interpolation algorithms use to construct the centered, normalized star data tables here. For correct handling of this branch, these should be replaced (after which code should be valid: the PCA and Chebyshev spatial fit make no assumptions about the sampling, and indeed should be valid even if the star images are upsampled relative to the original data). - The PSFs in GREAT3 all have more than 4 degrees of freedom, which is the number of PCA basis images we use by default here. At least some of these additional degrees of freedom are likely important, but it is not clear whether using PCA for dimensionality reduction is a valid way to obtain these additional basis functions, as the basis images typically get much noisier after the first four. - While polynomial spatial interpolation is a common choice today, the true spatial variation of realistic PSFs (including those simulated in GREAT3) cannot be fit exactly using low-order polynomials. The classes in this file are designed to be modular; you should be able to replace the spatial fitting component while retaining the shifting/normalization and PCA basis code, for instance, or use basis images derived some other way with the Chebyshev spatial model. NOTES As is usual with NumPy, 2-d arrays representing images are ordered [y,x] (i.e. y=rows, x=cols). NumPy conventions for 2-d polynomials (which we also adopt) reverse this, however, so an array of 2-d polynomial coefficients will be ordered [x,y]. Debug/status printing is controlled by the module-scope "verbose" variable. Set this to True to get status reports in long-running routines (also controllable via the command-line interface). """ import os import re import optparse import sys import numpy try: import astropy.io.fits as pyfits except: import pyfits import galsim try: import cPickle as pickle except ImportError: import pickle try: from numpy.polynomial.chebyshev import chebval2d except ImportError: # chebval2d only available in 1.7+; we implement # a more limited replacement (scalar x,y only) # if that's not available import numpy.polynomial.chebyshev def chebval2d(x, y, c): vy = numpy.zeros(c.shape[0], dtype=float) for j in range(c.shape[0]): vy[j] = numpy.polynomial.chebyshev.chebval(y, c[j,:]) return numpy.polynomial.chebyshev.chebval(x, vy) nsubfields = 20 # There are 20 subfields, but this lets you easily change how many # get processed by this program. verbose = False def log(msg): if verbose: print msg obs_type_bounds = {"space": (0.0, 0.5, 0.0, 0.5), "ground": (0.0, 2.0, 0.0, 2.0)} obs_type_basis_size = {"space": 8, "ground": 4} # This dict is used to provide the default keyword arguments to galsim.InterpolatedImage # when resampling stars to center them. It can be modified here to avoid having to # set keywords repeatedly when calling buildDataTables() or main(). default_interp_kwds = {"calculate_stepk": False, "calculate_maxk": False} def mergeKeywordArgs(defaults, kwds): if kwds is None: return defaults.copy() result = defaults.copy() result.update(**kwds) return result def makeDataSchema(nx, ny): """A numpy.dtype object to be used for the structured array "data" argument to LinearChebyshevModel.fit() and computePCA(). Arguments: nx ---------- size of star images (and PSF model images) in the x direction ny ---------- size of star images (and PSF model images) in the y direction Both nx and ny must be odd (and are usually the same). The fields of the returned dtype object are: image ------- float64, shape (ny, nx): centered star image, normalized to unit flux weight ------ float64, weight for the star relative to others in the data table x,y --------- float64, position of the star, in the coordinates the spatial interpolation will be done; usually tile_[x,y]_pos_deg g1,g2 ------- float64, observed_shape.g1 and observed_shape.g2 adaptive moments ellipticity estimates for the star as determined by HSM's FindAdaptiveMom(), taken from the star_meas catalog sigma ------- float64, the moments_sigma determined by HSM's FindAdaptiveMom(), taken from the star_meas catalog, in pixels """ if nx % 2 == 0 or ny % 2 == 0: raise ValueError("Image dimensions (%d, %d) must be odd" % (nx, ny)) return numpy.dtype([("image", float, (ny, nx)), ("weight", float), ("x", float), ("y", float), ("g1", float), ("g2", float), ("sigma", float), ]) class LinearChebyshevModel(object): """A spatial interpolation class for PSF models: it assumes the model is a linear combination of basis images at each point, with the coefficients of the basis images varying as Chebyshev polynomials of the first kind. """ @staticmethod def _get_transform_parameters(lower, upper): offset = (lower + upper) / (lower - upper) scale = 2.0 / (upper - lower) return offset, scale def __init__(self, basis, coeff, bounds, image0=None, normalize=True, clip=True): """Construct the spatial model. Usually this constructor will not be called directly, as the fit() static method will generally be used instead to compute the Chebyshev coefficients from a table of star data. Arguments: basis --------- a 3-d array containing the basis images, with shape (basis_size, ny, nx), where basis_size is the number of basis images, and (ny, nx) is the shape of each image. coeff --------- a 3-d array of Chebyshev polynomial coefficients, with shape (basis_size, cx, cy), where basis_size is the number of basis images, and (cx, cy) is a matrix of Chebyshev coefficients. bounds -------- tuple of (xmin, xmax, ymin, ymax) indicating the region the spatial model is valid. image0 -------- A static image to add to the model (useful for including the mean image when basis functions represent deviations from the mean). normalize ----- Sets the default for the normalize argument to __call__: whether to rescale returned images so that they sum to exactly 1. clip ---------- Sets the default for the clip argument to __call__: whether to reset negative pixels to zero before returning model images (clipping is done before normalization, if applicable). """ self.basis = basis self.coeff = coeff if self.basis.shape[0] != self.coeff.shape[0]: raise ValueError(("First dimension of basis (%d) does not match first dimension of " "coeff (%d)") % (self.basis.shape[0], self.coeff.shape[0])) self.xmin = float(bounds[0]) self.xmax = float(bounds[1]) self.ymin = float(bounds[2]) self.ymax = float(bounds[3]) self.x_offset, self.x_scale = self._get_transform_parameters(self.xmin, self.xmax) self.y_offset, self.y_scale = self._get_transform_parameters(self.ymin, self.ymax) self.image0 = image0 if self.image0 is not None and self.image0.shape != self.basis.shape[1:]: raise ValueError("Shape of image0 %s does not match shape of basis images %s" % (self.image0.shape, self.basis.shape[1:])) self.clip = bool(clip) self.normalize = bool(normalize) def __getinitargs__(self): return (self.basis, self.coeff, (self.xmin, self.xmax, self.ymin, self.ymax), self.image0, self.clip, self.normalize) def evaluate(self, x, y, normalize=None, clip=None): """Evaluate the spatial model at the given point, returning a spatially-weighted linear combination of the basis images. Arguments: x ------------- X position at which to evaluate the model x ------------- Y position at which to evaluate the model normalize ----- Whether to rescale returned images so that they sum to exactly 1. Passing None defers to the default set in __init__. clip ---------- Whether to reset negative pixels to zero before returning model images (clipping is done before normalization, if applicable). None defers to the default set in __init__. """ if x < self.xmin or x > self.xmax: raise ValueError("x coordinate %s out of range: should be between %s and %s" % (x, self.xmin, self.xmax)) if y < self.ymin or y > self.ymax: raise ValueError("y coordinate %s out of range: should be between %s and %s" % (y, self.ymin, self.ymax)) xt = self.x_scale * x + self.x_offset yt = self.y_scale * y + self.y_offset result = numpy.zeros(self.basis.shape[1:], dtype=float) for i in range(self.basis.shape[0]): result += self.basis[i] * chebval2d(xt, yt, self.coeff[i]) if self.image0 is not None: result += self.image0 if clip or clip is None and self.clip: result[result < 0.0] = 0.0 if normalize or normalize is None and self.normalize: result /= result.sum() return result def inspectStar(self, record): """Display model and residual images for a single star. Given a record from a data table (i.e. the one passed to the fit method), that 'data' image will be displayed, along with model and residual pairs for each of: image0 ----- Constant component of the model; usually the mean obtained before computing a mean-subtracted PCA basis. proj ------- Direct projection of the basis onto the star image, with no concern for the spatial interpolation (also includes the image0 term). This will generally be the best fit to the data, as it does not include the spatial smoothing from the Chebyshev polynomials. interp ----- The full PSF model, obtained by evaluating the basis coefficients from the Chebyshev spatial polynomial at the position of this star (also includes the image0 term). This is what is returned by the evaluate() method. Note that all images will be centered and normalized to unit flux, because the data is constructed after shifting and rescaling the stars. """ try: import matplotlib except: raise ImportError('Could not find matplotlib, which is needed to display PSF ' 'model diagnostics!') interp_image = self.evaluate(record['x'], record['y']) interp_res = record['image'] - interp_image if self.image0 is None: n_rows = 3 zero_mean_data = record['image'] worst_res = interp_res if self.image0 is not None: n_rows = 4 image0_res = record['image'] - self.image0 zero_mean_data = image0_res worst_res = image0_res proj_coeff = self.basis.reshape(self.basis.shape[0],-1).dot(zero_mean_data.flatten()) proj_image = numpy.tensordot(proj_coeff, self.basis, axes=1) proj_res = record['image'] - proj_image if self.image0 is not None: proj_image += self.image0 proj_res -= self.image0 kwds1 = dict(interpolation='nearest', origin='lower', cmap=matplotlib.cm.Blues, vmin=record['image'].min()-1E-8, vmax=record['image'].max()+1E-8) kwds2 = dict(interpolation='nearest', origin='lower', cmap=matplotlib.cm.coolwarm_r, vmin=worst_res.min(), vmax=worst_res.max()) def addPlot(image, title, idx, **kw): ax = fig.add_subplot(2, n_rows, idx) mappable = ax.imshow(image, **kw) ax.set_title(title) ax.axis("off") return ax, mappable fig = matplotlib.pyplot.figure(figsize=(10,5)) addPlot(record['image'], 'data', 1, **kwds1) index = 2 if self.image0 is not None: addPlot(self.image0, 'image0', 2, **kwds1) addPlot(image0_res, 'image0 res', 2 + n_rows, **kwds2) index = 3 addPlot(proj_image, 'proj', index, **kwds1) addPlot(proj_res, 'proj res', index + n_rows, **kwds2) index += 1 ax1, mappable1 = addPlot(interp_image, 'interp', index, **kwds1) ax2, mappable2 = addPlot(interp_res, 'interp res', index + n_rows, **kwds2) fig.subplots_adjust(top=0.925, bottom=0.025, left=0.025, right=0.85, wspace=0.025, hspace=0.15) box1 = ax1.get_position() box2 = ax2.get_position() cax1 = fig.add_axes([box1.x1+0.025, box1.y0, 0.025, box1.height]) cax2 = fig.add_axes([box2.x1+0.025, box2.y0, 0.025, box2.height]) fig.colorbar(mappable1, cax=cax1) fig.colorbar(mappable2, cax=cax2) fig.canvas.draw() return fig def inspectSpatial(self, data, func=lambda r: (r**2).mean(), **kwds): """Create a colormapped scatter plot showing some function of the residuals between the star data and the interpolated PSF model at the same points. Arguments: data ------- a structure NumPy array data table with dtype as provided by makeDataSchema(). Usually the same one passed to the fit() method when constructing the model. func ------- a function that takes a single residual image (NumPy array) and returns a single value. The default computes the RMS. **kwds ----- passed unmodified to matplotlib's 'scatter' routine. """ try: from matplotlib import pyplot except: raise ImportError('Could not find matplotlib, which is needed to display PSF ' 'model diagnostics!') v = numpy.zeros(data.size, dtype=float) for i, record in enumerate(data): r = self.evaluate(record['x'], record['y']) r -= record['image'] r *= record['weight'] v[i] = func(r) fig = pyplot.figure() ax = fig.add_subplot(1,1,1) ax.scatter(data['x'], data['y'], c=v, **kwds) fig.canvas.draw() return fig def inspectSigmaSpatial(self, data, **kwds): """Create three colormapped scatter plot showing HSM-measured moments_sigma values for data, model and residuals. These are evaluated at the location of each star in the input data table. Arguments: data ------- a structure NumPy array data table with dtype as provided by makeDataSchema(). Usually the same one passed to the fit() method when constructing the model. **kwds ----- passed unmodified to matplotlib's 'scatter' routine. """ try: from matplotlib import pyplot except: raise ImportError('Could not find matplotlib, which is needed to display PSF ' 'model diagnostics!') v = numpy.zeros(data.size, dtype=float) fig = pyplot.figure() ax = fig.add_subplot(1,1,1) sc = ax.scatter(data['x'], data['y'], c=data['sigma'], **kwds) pyplot.colorbar(sc) fig.canvas.draw() return fig def inspectWhisker(self, data, label="", **kwds): """Create a whisker plot showing the HSM-measured observed_shape.g1 and observed_shape.g2 at the location of each star. Arguments: data ------- a structure NumPy array data table with dtype as provided by makeDataSchema(). Usually the same one passed to the fit() method when constructing the model. label ------ a string with which to label the plots, which will be given the title label+" Data", label+" Model", and label+" (Data - Model) Residuals" **kwds ----- passed unmodified to matplotlib's 'quiver' routine. """ try: from matplotlib import pyplot except: raise ImportError('Could not find matplotlib, which is needed to display PSF ' 'model diagnostics!') # Get the data shapes into polars gmag = numpy.sqrt(data['g1']**2 + data['g2']**2) gphi = .5 * numpy.arctan2(data['g2'], data['g1']) fig = pyplot.figure(figsize=(10, 11)) ax = fig.add_subplot(2,2,1) # Set the necessary default kwargs for making a nice whisker plot kwds["headwidth"] = 0. kwds["headlength"] = 0. kwds["headaxislength"] = 0. kwds["pivot"] = "mid" # First do the Data plot # Call the quiver routine, and plot a key qq = pyplot.quiver( data['x'], data['y'], gmag * numpy.cos(gphi), gmag * numpy.sin(gphi), **kwds) xran = max(data['x']) - min(data['x']) # Get the x and y ranges yran = max(data['y']) - min(data['y']) # qqkey = pyplot.quiverkey( # Put this centrally above the whisker plot, a bit above whiskers qq, numpy.mean(data['x']), max(data['y']) + 0.10 * yran, 0.05, "|g| = 0.05", coordinates="data") pyplot.xlabel('x [deg]') pyplot.ylabel('y [deg]') pyplot.title(label+' Data') # Sort out the limits so that we don't have too-early quiver clipping by borders pyplot.xlim(min(data['x']) - 0.05 * xran, max(data['x']) + 0.05 * xran) pyplot.ylim(min(data['y']) - 0.05 * yran, max(data['y']) + 0.20 * yran) # Then do the Model plot, requires calculation model_shapes = numpy.zeros( # Set up storage table len(data['x']), dtype=numpy.dtype([("g1", float), ("g2", float)])) for model_record, data_record in zip(model_shapes, data): hsm_results = ( galsim.ImageViewD(self.evaluate(data_record['x'], data_record['y'])) ).FindAdaptiveMom() model_record['g1'] = hsm_results.observed_shape.g1 model_record['g2'] = hsm_results.observed_shape.g2 gmag = numpy.sqrt(model_shapes['g1']**2 + model_shapes['g2']**2) gphi = .5 * numpy.arctan2(model_shapes['g2'], model_shapes['g1']) ax = fig.add_subplot(2,2,2) # Call the quiver routine, and plot a key qq = pyplot.quiver( data['x'], data['y'], gmag * numpy.cos(gphi), gmag * numpy.sin(gphi), **kwds) qqkey = pyplot.quiverkey( # Put this centrally above the whisker plot, a bit above whiskers qq, numpy.mean(data['x']), max(data['y']) + 0.10 * yran, 0.05, "|g| = 0.05", coordinates="data") pyplot.xlabel('x [deg]') pyplot.ylabel('y [deg]') pyplot.title(label+' Model') # Sort out the limits so that we don't have too-early quiver clipping by borders pyplot.xlim(min(data['x']) - 0.05 * xran, max(data['x']) + 0.05 * xran) pyplot.ylim(min(data['y']) - 0.05 * yran, max(data['y']) + 0.20 * yran) # Then do the residuals plot gmag = numpy.sqrt( (data['g1'] - model_shapes['g1'])**2 + (data['g2'] - model_shapes['g2'])**2) gphi = .5 * numpy.arctan2(data['g2'] - model_shapes['g2'], data['g1'] - model_shapes['g1']) ax = fig.add_subplot(2,2,3) qq = pyplot.quiver( data['x'], data['y'], gmag * numpy.cos(gphi), gmag * numpy.sin(gphi), **kwds) qqkey = pyplot.quiverkey( # Put this centrally above the whisker plot, a bit above whiskers qq, numpy.mean(data['x']), max(data['y']) + 0.10 * yran, 0.01, "|g| = 0.01", coordinates="data") pyplot.xlabel('x [deg]') pyplot.ylabel('y [deg]') pyplot.title(label+' (Data - Model) Residuals') # Sort out the limits so that we don't have too-early quiver clipping by borders pyplot.xlim(min(data['x']) - 0.05 * xran, max(data['x']) + 0.05 * xran) pyplot.ylim(min(data['y']) - 0.05 * yran, max(data['y']) + 0.20 * yran) fig.canvas.draw() return fig @classmethod def fit(cls, basis, data, dim, degree, bounds, **kwds): """Fit a orthonormal image basis with Chebyshev spatial variation from a star data table. Arguments: basis --------- a 3-d array containing the basis images, with shape (basis_size, ny, nx), where basis_size is the number of basis images, and (ny, nx) is the shape of each image. data ---------- a structured NumPy array with dtype of the type returned by makeDataSchema: fields include 'image' (2-d float), 'weight', 'x', 'y'. dim ----------- size of the PSF model images (on a side). Must be odd. degree -------- maximum combined degree of the 2-d Chebyshev polynomial (degree_x + degree_y <= degree) bounds -------- tuple of (xmin, xmax, ymin, ymax) indicating the region the spatial model is valid. **kwds -------- passed unmodified to __init__ """ if basis.shape[1:] != (dim, dim): raise ValueError("Basis shape %s does not match provided dimension %s" % (basis.shape[1:], dim)) # We construct the model object we'll return first, and fill in its coefficients later. coeff = numpy.zeros((basis.shape[0], degree+1, degree+1), dtype=float) model = cls(basis, coeff, bounds, **kwds) # Start by projecting data images onto the basis (which we assume to be orthonormal). # At the same time we'll map the data x,y coordinates to the (-1,1) window appropriate # for Chebyshevs proj_dtype = numpy.dtype([("coeff", float, basis.shape[0]), ("weight", float), ("xt", float), ("yt", float)]) proj = numpy.zeros(data.size, dtype=proj_dtype) proj['xt'] = model.x_scale * data['x'] + model.x_offset proj['yt'] = model.y_scale * data['y'] + model.y_offset proj['weight'] = data['weight'] proj_matrix = basis.reshape(basis.shape[0], -1) for n in range(data.size): # The image shape should already be (dim, dim), but older versions of pyfits # can screw it up on the round trip through writing and reading. # So reshape it just to be sure. zero_mean_image = data[n]['image'].reshape((dim,dim)).copy() if model.image0 is not None: zero_mean_image -= model.image0 proj[n]['coeff'][:] = proj_matrix.dot(zero_mean_image.flatten()) # Now we fit the projected basis coefficients with the spatial Chebyshev. We only # include terms in the lower triange (i.e. degree_x+degree_y <= degree), and pack # x and y into the second dimension of the cheby_m matrix. Note that we can reuse # the same matrix for all basis functions, as these are completely independent # (thanks to the orthonormality of the basis). cheby_m = numpy.zeros((data.size, (degree+1)*(degree+2)/2), dtype=float) cheby_x = numpy.polynomial.chebyshev.chebvander(proj['xt'], degree) cheby_y = numpy.polynomial.chebyshev.chebvander(proj['yt'], degree) im = 0 for ix in range(1+degree): for iy in range(0, 1+degree-ix): cheby_m[:,im] = cheby_x[:,ix] * cheby_y[:,iy] im += 1 # Apply the weights to the matrix and the data vectors cheby_m *= proj['weight'][:,numpy.newaxis] proj['coeff'] *= proj['weight'][:,numpy.newaxis] # Linear least squares (with a 2-d matrix on the rhs, columns are the basis elements) fit_coeff = numpy.zeros((cheby_m.shape[1], basis.shape[0]), dtype=float) for i in range(basis.shape[0]): fit_coeff[:,i], chisq, _, _ = numpy.linalg.lstsq(cheby_m, proj['coeff'][:,i]) # Now we set the lower triangle of model.coeff attribute by unpacking the best-fit coeffs im = 0 for ix in range(1+degree): for iy in range(0, 1+degree-ix): model.coeff[:,ix,iy] = fit_coeff[im,:] im += 1 return model def computePCA(data, dim, basis_size=4, weighted_mean=True, weighted_pca=True): """Create an image basis appropriate for use with LinearChebyshevModel using Principle Components Analysis. Arguments: data ------------ a structured NumPy array with dtype of the type returned by makeDataSchema: fields include 'image' (2-d float), 'weight', 'x', 'y'. dim ------------- size of the PSF model images (on a side). Must be odd. basis_size ------ number of basis functions to keep weighted_mean --- use the weights in the data array when computing the mean image weighted_pca ---- use the weights in the data array when computing the PCA Returns a tuple of (basis, image0), which can be used directly as inputs to LinearChebyshevModel's constructor or fit method. """ data_flat = data['image'].reshape(data.size, -1).copy() weight_sum = data['weight'].sum() if weighted_mean: mean_flat = (data_flat * data['weight'][:,numpy.newaxis]).sum(axis=0) / weight_sum else: mean_flat = data_flat.mean(axis=0) data_flat -= mean_flat if weighted_pca: data_flat *= (data['weight'] / weight_sum)[:,numpy.newaxis] u, s, vt = numpy.linalg.svd(data_flat, full_matrices=False) basis_flat = vt[:basis_size,:] #image_shape = data['image'].shape[1:] # This doesn't always work! image_shape = (dim, dim) basis = basis_flat.reshape(basis_size, *image_shape) image0 = mean_flat.reshape(*image_shape) return basis, image0 def measureStars(field, sim_dir, work_dir): """Measure the sub-pixel centroids and fluxes of star images, and reorganize the outputs by tile instead of subfield. We use galsim.hsm to do the measurement (this does more than we need, as it measures shapes as well as centroids and fluxes, but it's convenient). Writes "star_meas-[x_tile_index]-[y_tile_index].fits" FITS binary tables to the work directory. Arguments: field -------- first subfield in the field to be processed, as an integer (should be a multiple of 20) sim_dir ------ simulation directory, containing the GREAT3 images and catalogs for a single branch work_dir ----- work directory; will contain the output star_meas catalogs on return """ log("Measuring star images and reorganizing into tiles") schema = numpy.dtype([("subfield", int), ("x", float), ("y", float), ("tile_x", float), ("tile_y", float), ("dx", float), ("dy", float), ("flux", float), ("g1", float), ("g2", float), ("sigma", float), ]) tiles = {} for subfield in range(field, field + nsubfields): log(" Measuring subfield %d" % subfield) sim_cat = pyfits.getdata(os.path.join(sim_dir, "star_catalog-%03d.fits" % subfield)) image = galsim.fits.read(os.path.join(sim_dir, "starfield_image-%03d-0.fits" % subfield)) meas_cat = numpy.zeros(sim_cat.size, dtype=schema) # it's a little unfortunate it's this difficult to compute the bounding box of a star # postage stamp given the record; apparently we don't record the size of the boxes # directly anywhere in the challenge data itself dx0 = 0 - int(sim_cat['x'].min()) # add this to x to get min x coordinate dy0 = 0 - int(sim_cat['y'].min()) # add this to y to get min y coordinate dx1 = 1 - dx0 # add this to x to get max x coordinate dy1 = 1 - dy0 # add this to y to get max y coordinate skipped = {} for sim_record, meas_record in zip(sim_cat, meas_cat): bounds = galsim.BoundsI(int(sim_record['x'] + dx0), int(sim_record['x'] + dx1), int(sim_record['y'] + dy0), int(sim_record['y'] + dy1)) subimage = image[bounds] meas_record['subfield'] = subfield meas_record['x'] = sim_record['x'] meas_record['y'] = sim_record['y'] meas_record['tile_x'] = sim_record['tile_x_pos_deg'] meas_record['tile_y'] = sim_record['tile_y_pos_deg'] try: # Use HSM algorithms in GalSim to compute centroid and flux meas = subimage.FindAdaptiveMom(guess_x_centroid=float(sim_record['x']), guess_y_centroid=float(sim_record['y'])) meas_record['dx'] = meas.moments_centroid.x - sim_record['x'] meas_record['dy'] = meas.moments_centroid.y - sim_record['y'] meas_record['flux'] = meas.moments_amp meas_record['g1'] = meas.observed_shape.g1 meas_record['g2'] = meas.observed_shape.g2 meas_record['sigma'] = meas.moments_sigma # Add meas_record to a tile-indexed dict if successful tile_index = (int(sim_record['x_tile_index']), int(sim_record['y_tile_index'])) tiles.setdefault(tile_index, []).append(meas_record) except RuntimeError as err: # sometimes HSM fails; maybe other things too? msg = str(err) skipped[msg] = skipped.get(msg, 0) + 1 if skipped: log(" skipped %d of %d records due to the following errors:" % (sum(skipped.itervalues()), sim_cat.size)) for msg, count in skipped.iteritems(): log(" %d records: %s" % (count, msg.strip())) log(" Reorganizing into tiles") if not os.path.isdir(work_dir): os.makedirs(work_dir) for tile_index, records in sorted(tiles.items()): log(" Sorting and writing catalog for tile %d,%d" % tile_index) records.sort(key=lambda r: r['flux'], reverse=True) data_array = numpy.array(records, dtype=schema) out_file = os.path.join(work_dir, "star_meas-%03d-%02d-%02d.fits" % ((field,) + tile_index)) pyfits.writeto(out_file, data_array, clobber=True) def buildDataTables(field, sim_dir, work_dir, dim, max_stars=1000, interp_kwds=None): """Loop over all subfields in a field, building a tile-indexed dictionary of star data tables appropriate for use with computePCA and LinearChebyshevModel.fit. The main work done by this routine is the shifting and rescaling necessary to center the star images and normalize their fluxes to unity. Writes "star_data-[x_tile_index]-[y_tile_index].fits" FITS binary tables to the work directory. Requires measureStars() to have been run on the same directories previously. Arguments: field -------- first subfield in the field to be processed, as an integer (should be a multiple of 20) sim_dir ------ simulation directory, containing the GREAT3 images and catalogs for a single branch work_dir ----- work directory; contains the star_meas catalogs used as inputs and will contain the output star_data catalogs on return dim ---------- size of the PSF model images (on a side). Must be odd. max_stars ---- maximum number of stars to use per tile (None = no limit); the highest SNR stars will be kept without regard for their spatial distribution. interp_kwds -- keyword arguments passed unmodified to galsim.InterpolatedImage when shifting the images. """ log("Shifting star images and building data tables") interp_kwds = mergeKeywordArgs(default_interp_kwds, interp_kwds) radius = dim // 2 assert radius * 2 + 1 == dim schema = makeDataSchema(dim, dim) regex = re.compile("star_meas-%03d-(\d\d)-(\d\d).fits" % field) tile_index_list = [] meas_cat_list = [] data_cat_list = [] for meas_file in sorted(os.listdir(work_dir)): m = regex.match(meas_file) if not m: continue tile_index = (int(m.group(1)), int(m.group(2))) meas_cat = pyfits.getdata(os.path.join(work_dir, meas_file)) # truncate the catalog if desired if max_stars is not None: stop = min(max_stars, meas_cat.size) meas_cat = meas_cat[:stop].copy() # Allocate the output array, and create an iterator to it # so we can iterate over it while processing multiple subfields. # This means meas_cat[i] won't correspond to sim_cat[i]. data_cat = numpy.zeros(meas_cat.size, dtype=schema) tile_index_list.append(tile_index) meas_cat_list.append(meas_cat) data_cat_list.append(data_cat) n_tiles = len(tile_index_list) # The subfield images are pretty huge (especially for space) so we want to make sure # we only need to read the once each. So make the subfield loop the outer loop. for subfield in range(field, field + nsubfields): log(" Shifting images for subfield %d" % subfield) image = galsim.fits.read( os.path.join(sim_dir, "starfield_image-%03d-0.fits" % subfield)) pix_scale_deg = (image.scale * galsim.arcsec) / galsim.degrees for i_tile in range(n_tiles): tile_index = tile_index_list[i_tile] meas_cat = meas_cat_list[i_tile] data_cat = data_cat_list[i_tile] data_cat_iter = iter(data_cat) sub_meas_cat = meas_cat[meas_cat['subfield'] == subfield] if sub_meas_cat.size == 0: log(" skipping tile %d,%d; no records" % tile_index) continue for meas_record, data_record in zip(sub_meas_cat, data_cat_iter): bounds = galsim.BoundsI(int(numpy.floor(meas_record['x'])) - radius, int(numpy.ceil(meas_record['x'])) + radius, int(numpy.floor(meas_record['y'])) - radius, int(numpy.ceil(meas_record['y'])) + radius) subimage = image[bounds] # Use InterpolatedImage to shift so we're centered on the center pixel # and have unit flux. interp = galsim.InterpolatedImage(subimage, flux=meas_record['flux'], **interp_kwds) interp.applyShift(dx=-meas_record['dx']*image.scale, dy=-meas_record['dy']*image.scale) interp.setFlux(1.0) out_image = galsim.ImageView[numpy.float64](data_record['image'], xmin=-radius, ymin=-radius, scale=image.scale) interp.draw(image=out_image) # Compute the true position of the star in degrees from the origin of the tile. # The measured sub-pixel offset almost certainly doesn't matter, but we'll include # it for completeness. data_record['x'] = meas_record['tile_x'] + meas_record['dx'] * pix_scale_deg data_record['y'] = meas_record['tile_y'] + meas_record['dy'] * pix_scale_deg # Copy across the HSM moments estimates for the star stored in meas_data too data_record['g1'] = meas_record['g1'] data_record['g2'] = meas_record['g2'] data_record['sigma'] = meas_record['sigma'] # within a field, we have the same noise level, so SNR ~ flux data_record['weight'] = meas_record['flux'] for i_tile in range(n_tiles): tile_index = tile_index_list[i_tile] data_cat = data_cat_list[i_tile] data_cat['weight'] /= data_cat['weight'].sum() filename = os.path.join(work_dir, "star_data-%03d-%02d-%02d.fits" % ((field,) + tile_index)) pyfits.writeto(filename, data_cat, clobber=True) class FieldModelSuite(object): """Represents a suite of PSF models (e.g. LinearChebyshevModel instances) that represent the PSF of a GREAT3 field, split up into tiles. It provides dict-like access to the models themselves. For instance: s = FieldModelSuite(...) s[1,2].inspectStar(...) # inspect a star's fit in tile (1,2) It also provides an evaluate() method that looks up the appropriate model and calls its evaluate() method: s.evaluate(x_tile_index=1, y_tile_index=2, tile_x_pos_deg=0.321, tile_y_pos_=0.456) Most often, FieldModelSuite objects will be constructed via the fit() static method (or the main() function, which delegates to that), and then either makeImages() is called or the suite object is saved for later use. """ def __init__(self, models, dim): self._models = models self.dim = dim def __getitem__(self, k): x_tile, y_tile = k return self._models[int(x_tile), int(y_tile)] def __setitem__(self, k, v): x_tile, y_tile = k self._models[int(x_tile), int(y_tile)] = v def save(self, filename): """Save the model suite to disk This is a workaround for the fact that you can't pickle an object from a script run via __main__, as __main__ doesn't know what module it's in. Instead we pickle the __init__ arguments of all of the constituent models, and call them directly when loading. """ m = {} for k, v in self._models.iteritems(): m[k] = v.__getinitargs__() with open(filename, 'w') as f: pickle.dump((m, self.dim), f, protocol=2) @staticmethod def load(filename): """Load a model suite from disk See save() for an explanation of why we can't just rely on pickle """ with open(filename, 'r') as f: m, dim = pickle.load(f) models = {} for k, v in m.iteritems(): models[k] = LinearChebyshevModel(*v) return FieldModelSuite(models, dim) def evaluate(self, x_tile_index, y_tile_index, tile_x_pos_deg, tile_y_pos_deg, **kwds): """Return the PSF model at the given tile index and position Arguments match the GREAT3 galaxy catalog columns with the same names; **kwds are passed unmodified to the PSF model class' evaluate method (e.g. LinearChebyshevModel.evaluate). """ return self[x_tile_index, y_tile_index].evaluate(tile_x_pos_deg, tile_y_pos_deg, **kwds) def makeImageGrid(self, galaxy_cat): """Create a grid of PSF images that corresponds to the PSF model evaluated at the positions of galaxies. The 100x100 grid of PSF images will directly correspond to the grid of galaxy images the given galaxy catalog refers to, but the size of the full PSF image will be different, as GREAT3 galaxy images are typically 48x48 (in most branches) but PSF models must have odd dimensions. Arguments: galaxy_cat ---- GREAT3 galaxy catalog to read positions from. Must be ordered by row, then column (as GREAT3 catalogs are, by default). """ full_image = numpy.zeros((100*self.dim, 100*self.dim), dtype=numpy.float32) n = 0 for i in range(100): for j in range(100): record = galaxy_cat[n] image = self.evaluate(record['x_tile_index'], record['y_tile_index'], record['tile_x_pos_deg'], record['tile_y_pos_deg']) full_image[i*self.dim:(i+1)*self.dim,j*self.dim:(j+1)*self.dim] = image n += 1 return full_image @staticmethod def fit(field, work_dir, dim, bounds, degree=4, basis_size=4, pca_kwds=None, spatial_kwds=None): """ Create a new FieldModelSuite using data tables created by buildDataTables. Arguments: field -------- first subfield in the field to be processed, as an integer (should be a multiple of 20) work_dir ----- work directory, containing the star_data catalogs used as inputs dim ---------- size of the PSF model images (on a side). Must be odd. degree ------- degree of the Chebyshev polynomial used for interpolation between stars basis_size --- number of basis functions to keep bounds ------- tuple of (xmin, xmax, ymin, ymax) that sets the bounding box for each Model object. pca_kwds ----- keyword arguments passed unmodified to computePCA spatial_kwds - keyword arguments passed unmodified to LinearChebyshevModel.fit """ log("Fitting models") if pca_kwds is None: pca_kwds = {} if spatial_kwds is None: spatial_kwds = {} models = {} regex = re.compile("star_data-%03d-(\d\d)-(\d\d).fits" % field) for data_file in sorted(os.listdir(work_dir)): m = regex.match(data_file) if not m: continue tile_index = (int(m.group(1)), int(m.group(2))) data = pyfits.getdata(os.path.join(work_dir, data_file)) # The shape doesn't always survive the roundtrip through pyfits, so reshape it # and use that to check against the provided dimension. (If the read in shape # is incommensurate with dim,dim, then the reshape will fail.) image = data['image'].reshape(data['image'].shape[0], dim, dim) assert dim == image.shape[1] assert dim == image.shape[2] log(" Fitting model for tile %d,%d" % tile_index) basis, image0 = computePCA(data, dim, basis_size, **pca_kwds) models[tile_index] = LinearChebyshevModel.fit( basis, data, dim, degree, bounds, image0=image0, **spatial_kwds) return FieldModelSuite(models, dim) def main(field, sim_dir, work_dir, obs_type, dim=47, max_stars=1000, degree=4, basis_size=None, bounds=None, use_old_meas=False, use_old_data=False, model_file=None, use_saved_models=False, make_psf_images=True, interp_kwds=None, pca_kwds=None, spatial_kwds=None): """Main driver for all routines in this file, and the implementation of most of the command-line interface. This routine has four distinct steps, each with a (possibly optional) intermediate output: 1) Measure the star images and reorganize into tiles, using measureStars(), writing star_meas catalogs to the work directory. Skipped if any of the use_* arguments are True. 2) Resample and rescale the star images using buildDataTables(), writing star_data catalogs to the work directory. Skipped if use_old_data or use_saved_models is True. 3) Compute a PCA basis and fit Chebyshev spatial polynomials for each tile, building a FieldModelSuite object using FieldModelSuite.fit(). Saves this object if (and only if) model_file is set to the filename to write to. Skipped (and the FieldModelSuite loaded from model_file) if use_saved_models is True. 4) Create PSF model images that correspond to the positions of all galaxies in the field, using FieldModelSuite.makeImageGrid(), writing psf_models FITS images to the work directory. Skipped if make_psf_images is False. Arguments: field -------- first subfield in the field to be processed, as an integer (should be a multiple of 20) sim_dir ------ simulation directory, containing the GREAT3 images and catalogs for a single branch work_dir ----- work directory; contains the star_meas catalogs used as inputs and will contain the output star_data catalogs on return obs_type ----- one of 'ground' or 'space'; used to set the bounding boxes for the models (space branches have 0.5 degree tiles, ground has 2.0 degree tiles) and the default value for basis_size. dim ---------- size of the PSF model images (on a side). Must be odd. max_stars ---- maximum number of stars to use per tile (None = no limit); the highest SNR stars will be kept without regard for their spatial distribution. degree ------- degree of the Chebyshev polynomial used for interpolation between stars basis_size --- number of basis functions to keep use_old_meas - whether to skip step 1 above, and use existing star_meas catalogs. use_old_data - whether to skip steps 1 and 2 above, and use existing star_data catalogs. model_file --- name of the file to save the FieldModelSuite to, or (if use_saved_models) to load it from use_saved_models -- whether skip steps 1-3 above, and instead load a FieldModelSuite by unpickling model_file. make_psf_images --- whether to perform step (4) above interp_kwds -- keyword arguments passed unmodified to galsim.InterpolatedImage when shifting the star images pca_kwds ----- keyword arguments passed unmodified to computePCA spatial_kwds - keyword arguments passed unmodified to LinearChebyshevModel.fit """ bounds = obs_type_bounds[obs_type] if basis_size is None: basis_size = obs_type_basis_size[obs_type] if use_saved_models: suite = FieldModelSuite.load(os.path.join(work_dir, model_file)) else: if not use_old_data: if not use_old_meas: measureStars(field, sim_dir, work_dir) buildDataTables(field, sim_dir, work_dir, dim=dim, max_stars=max_stars, interp_kwds=interp_kwds) suite = FieldModelSuite.fit( field, work_dir, dim, bounds=bounds, degree=degree, basis_size=basis_size, pca_kwds=pca_kwds, spatial_kwds=spatial_kwds) if model_file is not None: suite.save(os.path.join(work_dir, model_file)) if make_psf_images: log("Creating PSF model images") for subfield in range(field, field + nsubfields): log(" creating model images for subfield %d" % subfield) galaxy_cat_file = os.path.join(sim_dir, "galaxy_catalog-%03d.fits" % subfield) galaxy_cat = pyfits.getdata(galaxy_cat_file) out_file = os.path.join(work_dir, "psf_models-%03d.fits" % subfield) image_grid = suite.makeImageGrid(galaxy_cat) pyfits.writeto(out_file, image_grid, clobber=True) if __name__ == "__main__": usage = "usage: %prog [options] FIELD SIM_DIR WORK_DIR OBS_TYPE" description = """Create PSF models for the given field, and use them to create images containing grids of PSF images for the galaxies in that field. FIELD is the number of the first subfield in the field to process (a multiple of 20); all subfields in that field will be processed together. SIM_DIR is the directory containing GREAT3 images and catalogs for the branch of interest. WORK_DIR is the directory where output files should be placed. It will be created if it does not exist. There will be one file for each subfield, with PSF images on a grid that corresponds to the same grid for galaxies (though the grid spacing will be different, as defined by the --dim argument). OBS_TYPE is one of "ground" or "space", and is used to set the expected tile size and the default value for --basis-size. By default, all steps of reorganizing the data and building the PSF models will be carried out, with intermediate outputs written to disk as well as the final PSF model images that correspond to the galaxy images. The --use* options can be used to restart the job from these intermediate outputs instead of having to repeat them. """ parser = optparse.OptionParser(usage=usage, description=description) parser.add_option("--dim", dest="dim", type=int, default=41, metavar="N", help="Width and height of PSF model images") parser.add_option("--basis-size", dest="basis_size", type=int, default=None, metavar="N", help="Number of PCA basis images to use (default is 4 for ground and 8 "+ "for space)") parser.add_option("--degree", dest="degree", type=int, default=4, metavar="N", help="Maximum order of the 2-d Chebyshev polynomial spatial functions") parser.add_option("--max-stars", dest="max_stars", type=int, default=1000, metavar="N", help="Maximum number of stars to include per-tile (clip by SNR)") parser.add_option("--no-max-stars", dest="max_stars", action='store_const', const=None, help="Make the number of stars to use per tile unlimited") parser.add_option("--model-file", dest="model_file", type=str, default="psf_model.p", metavar="FILE", help="Save (or load) the model suite object with this "+ "filename in the WORK_DIR directory [default='psf_model.p']") parser.add_option("--no-psf-images", dest="make_psf_images", action="store_false", default=True, help="Don't create PSF model images (should be used with --model-file)") parser.add_option("--use-old-meas", dest="use_old_meas", action="store_true", default=False, help="Reuse star_meas files from a previous run") parser.add_option("--use-old-data", dest="use_old_data", action="store_true", default=False, help="Reuse star_data files from a previous run") parser.add_option("--use-saved-models", dest="use_saved_models", action="store_true", default=False, metavar="FILE", help="Load models from disk; --model-file must be set") parser.add_option("--quiet", dest="quiet", action='store_true', default=False, help="Don't print progress statements") opts, args = parser.parse_args() try: field, sim_dir, work_dir, obs_type = args except ValueError: parser.error("exactly four positional arguments are required") if not os.path.isdir(sim_dir): parser.error("input directory %s does not exist or is not a directory" % sim_dir) try: field = int(field) except TypeError: parser.error("field argument '%s' is not an integer" % field) obs_type = obs_type.strip().lower() if obs_type not in ("space", "ground"): parser.error("obs_type '%s' must be one of 'space' or 'ground'" % obs_type) if opts.use_saved_models and not opts.model_file: parser.error("--use-pickled-models requires --model-file") if not opts.make_psf_images and not opts.model_file: sys.stderr.write("WARNING: not making PSF images or saving the PSF model\n") if not os.path.isdir(work_dir): os.makedirs(work_dir) if opts.quiet: verbose = False else: verbose = True main( field, sim_dir, work_dir, obs_type, dim=opts.dim, basis_size=opts.basis_size, degree=opts.degree, use_old_meas=opts.use_old_meas, use_old_data=opts.use_old_data, use_saved_models=opts.use_saved_models, max_stars=opts.max_stars, model_file=opts.model_file, make_psf_images=opts.make_psf_images)
bsd-3-clause
pompiduskus/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
EntilZha/leaderboard
scoring/appthis.py
1
2169
import csv import os import pickle from io import StringIO from sklearn.metrics import roc_auc_score as AUC from scoring.abstract import AbstractScoring cur_dir_path = os.path.dirname(os.path.realpath(__file__)) class AppthisAUCScoring(AbstractScoring): @property def higher_better(self): return True def validate(self, submission_text: str): tmp_file = StringIO(submission_text) reader = csv.DictReader(tmp_file) if set(reader.fieldnames) != set(['event_id', 'conversion_probability']): tmp_file.close() return False, ( "The headers of your CSV file are {}. They must be 'event_id' and " "'conversion_probability'.".format(reader.fieldnames) ) return True, None def score(self, submission_text: str): public_preds, private_preds, public_actuals, private_actuals = [1, 0], [1, 0], [1, 0], [1, 0] tmp_file = StringIO(submission_text) csv_reader = csv.DictReader(tmp_file) public_event_ids_pkl_name = '{}/public_validation_event_ids.pkl'.format(cur_dir_path) with open(public_event_ids_pkl_name, 'rb') as public_validation_event_ids_file: public_validation_event_ids = pickle.load(public_validation_event_ids_file) for row in csv_reader: if row['event_id'] in public_validation_event_ids: public_preds.append(float(row['conversion_probability'])) else: private_preds.append(float(row['conversion_probability'])) with open('{}/all_validation_labels.txt'.format(cur_dir_path), 'r') as all_validation_labels_file: for line in all_validation_labels_file: event_id, event_label = line.rstrip().split(' ') if event_id in public_validation_event_ids: public_actuals.append(float(event_label)) else: private_actuals.append(float(event_label)) public_score = AUC(public_actuals, public_preds) private_score = AUC(private_actuals, private_preds) return public_score, private_score, None
apache-2.0
pkruskal/scikit-learn
sklearn/feature_selection/tests/test_base.py
170
3666
import numpy as np from scipy import sparse as sp from nose.tools import assert_raises, assert_equal from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform(feature_names) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform(feature_names_t) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
rosswhitfield/javelin
docs/conf.py
1
1331
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', 'sphinx.ext.graphviz', 'sphinx.ext.imgmath', 'matplotlib.sphinxext.plot_directive' ] source_suffix = '.rst' master_doc = 'index' project = 'Javelin' copyright = '2017, Ross Whitfield' author = 'Ross Whitfield' version = '0.1.0' release = '0.1.0' exclude_patterns = ['_build'] pygments_style = 'friendly' html_theme = 'sphinx_rtd_theme' # Output file base name for HTML help builder. htmlhelp_basename = 'Javelindoc' latex_documents = [ (master_doc, 'Javelin.tex', 'Javelin Documentation', 'Ross Whitfield', 'manual'), ] intersphinx_mapping = {'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'xarray': ('https://xarray.pydata.org/en/stable/', None), 'pandas': ('https://pandas.pydata.org/pandas-docs/stable/', None), 'ase': ('https://wiki.fysik.dtu.dk/ase/', None), 'diffpy.Structure': ('https://www.diffpy.org/diffpy.structure/', None)} autodoc_default_flags = ['members', 'undoc-members'] # Use legacy numpy printing. This fix is made to keep doctests functional. try: np.set_printoptions(legacy='1.13') except TypeError: pass
mit
rrohan/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
HazenBabcock/opensdraw
opensdraw/library/knots.py
1
9183
#!/usr/bin/env python """ .. module:: knots :synopsis: Python functions to create knots. .. moduleauthor:: Hazen Babcock """ import math import numbers import numpy import os import opensdraw.lcad_language.curve as curve import opensdraw.lcad_language.curveFunctions as curveFunctions import opensdraw.lcad_language.geometry as geometry import opensdraw.lcad_language.interpreter as interpreter lcad_functions = {} class SheetBendKnot(interpreter.LCadFunction): """ **sheet-bend-knot** - Creates a sheet bend knot function. This creates and returns a function that parametrizes a sheet bend knot. All units are LDU. When you call the created knot function you will get a 4 x 4 transform matrix which will translate to the requested position on the knot and orient to a coordinate system where the z-axis is pointing along the knot, the x-axis is in the plane of the knot and the y-axis is perpendicular to the plane of the knot. :param diameter: The diameter of the string. :param loop_size: The diameter of the loop. Usage:: (def sbk (sheet-bend-knot 3 10)) ; A knot with 3 LDU diameter string and loop diameter of 10. (def p1 (sbk 1)) ; p1 is the list (x y z rx ry rz) which defines the ; knot at distance 1 along the knot. (sbk t) ; Returns the length of the knot. """ def __init__(self): interpreter.LCadFunction.__init__(self, "sheet-bend-knot") self.setSignature([[numbers.Number], [numbers.Number]]) def call(self, model, diameter, loop_size): sbknot = SBKnot(diameter, loop_size) return curveFunctions.CurveFunction(sbknot, "user created sheet bend knot function.") lcad_functions["sheet-bend-knot"] = SheetBendKnot() # # The sheet bend knot is created using two custom curves and a large loop. # class SBKnot(object): def __init__(self, diameter, loop_size): self.loop_size = loop_size self.scale = diameter # Curve 1. cpts1 = [] cpts1.append(curve.ControlPoint(0, 0, 0, 0, 0, 1, 1, 0, 0)) cpts1.append(curve.ControlPoint(2, 0, 6, 1, 0, 1)) c1_fname = os.path.join(os.path.dirname(__file__), "sbk_curve1.txt") self.curve1 = KnotCurve(c1_fname, cpts1) self.curve1_stop = self.curve1.getLength() * self.scale self.seg1_stop = self.curve1_stop + 0.5 * self.loop_size - self.scale * math.sqrt(2*2 + 2*2) self.seg1_x_start = 2 * self.scale self.seg1_z_start = 6 * self.scale self.seg1_dx = 1.0/math.sqrt(2) self.seg1_dz = 1.0/math.sqrt(2) # This (sort of) handles small loops. if (self.seg1_stop < self.curve1_stop): self.curve1_stop = self.seg1_stop # Loop. self.loop_stop = self.seg1_stop + 0.75 * math.pi * self.loop_size self.loop_cx = 0 self.loop_cz = math.sqrt(2) * 0.5 * self.loop_size + self.scale * 4 # Straight segment 2. self.seg2_stop = self.loop_stop + 0.5 * self.loop_size - self.scale * math.sqrt(2*2 + 2*2) self.seg2_x_start = self.loop_cx - 0.5 * self.loop_size / math.sqrt(2) self.seg2_z_start = self.loop_cz - 0.5 * self.loop_size / math.sqrt(2) self.seg2_dx = 1.0/math.sqrt(2) self.seg2_dz = -1.0/math.sqrt(2) #Curve 2. cpts2 = [] cpts2.append(curve.ControlPoint(-2, 0, 6, 1, 0, -1, -1, 0, 0)) cpts2.append(curve.ControlPoint(-1, 0, 5, 1, 0, -1)) cpts2.append(curve.ControlPoint(0.5, -0.8, 3.5, 1, 0, -1)) cpts2.append(curve.ControlPoint(1, 0, 2.5, 0, 1, 0)) cpts2.append(curve.ControlPoint(0, 0.8, 2, -1, 0, 0)) cpts2.append(curve.ControlPoint(-0.8, 0, 2.2, 0, -1, 0)) cpts2.append(curve.ControlPoint(-0.8, -1.2, 3.5, 0.2, 0, 1)) cpts2.append(curve.ControlPoint(0.2, 0, 5.1, 0, 1, 0)) cpts2.append(curve.ControlPoint(1.2, 0.8, 4.1, 1, -0.2, -1.2)) cpts2.append(curve.ControlPoint(2, 0, 2.5, 0, -1, -1)) cpts2.append(curve.ControlPoint(0, -0.9, 2.7, -1, 0.3, 1)) cpts2.append(curve.ControlPoint(-1.5, 0, 4.2, -1, 0, 1)) cpts2.append(curve.ControlPoint(-5, 0, 5.5, -1, 0, 0)) c2_fname = os.path.join(os.path.dirname(__file__), "sbk_curve2.txt") self.curve2 = KnotCurve(c2_fname, cpts2) self.curve2_stop = self.seg2_stop + self.curve2.getLength() * self.scale self.length = self.curve2_stop def getLength(self): return self.length def getMatrix(self, dist): if (dist < self.curve1_stop): m = self.curve1.getMatrix(dist / self.scale) m[:3,3] = m[:3,3] * self.scale return m if (dist < self.seg1_stop): dist -= self.curve1_stop x = self.seg1_x_start + self.seg1_dx * dist z = self.seg1_z_start + self.seg1_dz * dist y_vec = [0, 1, 0] z_vec = [self.seg1_dx, 0, self.seg1_dz] x_vec = numpy.cross(y_vec, z_vec) return geometry.vectorsToMatrix([x, 0, z], x_vec, y_vec, z_vec) if (dist < self.loop_stop): dist -= self.seg1_stop angle = 0.75 * math.pi - 2.0 * dist/self.loop_size x = self.loop_cx + 0.5 * self.loop_size * math.sin(angle) z = self.loop_cz + 0.5 * self.loop_size * math.cos(angle) dx = math.cos(angle) dz = -math.sin(angle) y_vec = [0, 1, 0] z_vec = [-dx, 0, -dz] x_vec = numpy.cross(y_vec, z_vec) return geometry.vectorsToMatrix([x, 0, z], x_vec, y_vec, z_vec) if (dist < self.seg2_stop): dist -= self.loop_stop x = self.seg2_x_start + self.seg2_dx * dist z = self.seg2_z_start + self.seg2_dz * dist y_vec = [0, 1, 0] z_vec = [self.seg2_dx, 0, self.seg2_dz] x_vec = numpy.cross(y_vec, z_vec) return geometry.vectorsToMatrix([x, 0, z], x_vec, y_vec, z_vec) dist -= self.seg2_stop m = self.curve2.getMatrix(dist / self.scale) m[:3,3] = m[:3,3] * self.scale return m def saveControlPoint(fp, cp): fp.write(" ".join(map(str, cp.location.tolist()))) fp.write(" ") fp.write(" ".join(map(str, cp.raw_z_vec.tolist()))) if cp.x_vec is not None: fp.write(" ") fp.write(" ".join(map(str, cp.x_vec.tolist()))) fp.write("\n") class KnotControlPoint(curve.ControlPoint): """ Load and save control point from a file as an optimization. """ def __init__(self, data): vals = map(float, data.split(" ")) curve.ControlPoint.__init__(self, *vals) class KnotCurve(curve.Curve): def __init__(self, filename, control_points): # Load control points from file. if os.path.exists(filename): curve.Curve.__init__(self, False, True, 1.0, 0.0) control_points = [] with open(filename) as fp: for line in fp: control_points.append(KnotControlPoint(line)) i = 0 while (i < len(control_points)): self.addSegment(control_points[i], control_points[i+1]) i += 2 # Calculate control points & save to file. else: curve.Curve.__init__(self, True, True, 1.0, 0.0) with open(filename, "w") as fp: for i in range(len(control_points)-1): self.addSegment(control_points[i], control_points[i+1]) saveControlPoint(fp, control_points[i]) saveControlPoint(fp, control_points[i+1]) # # Testing # if (__name__ == "__main__"): import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt knot = SBKnot(1, 10) fig = plt.figure() axis = fig.gca(projection='3d') MAX = 10 for direction in (-1, 1): for point in numpy.diag(direction * MAX * numpy.array([1,1,1])): axis.plot([point[0]], [point[1]], [point[2]], 'w') if 0: d = numpy.linspace(0, knot.length, 50) x = numpy.zeros(d.size) y = numpy.zeros(d.size) z = numpy.zeros(d.size) for i in range(d.size): x[i], y[i], z[i] = knot.getCoords(d[i])[:3] axis.plot(x, y, z) #axis.scatter(x, y, z) if 1: vlen = 0.5 #d = numpy.linspace(0, 20.0 + belt.getLength(), 40) - 10.0 d = numpy.linspace(0, knot.getLength(), 100) for i in range(d.size): m = knot.getMatrix(d[i]) x = m[0,3] y = m[1,3] z = m[2,3] vx = numpy.dot(m, numpy.array([vlen, 0, 0, 1])) vy = numpy.dot(m, numpy.array([0, vlen, 0, 1])) vz = numpy.dot(m, numpy.array([0, 0, vlen, 1])) for elt in [[vx, "red"], [vy, "green"], [vz, "blue"]]: axis.plot([x, elt[0][0]], [y, elt[0][1]], [z, elt[0][2]], color = elt[1]) plt.show()
mit