repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
vladimiroff/humble-media
humblemedia/causes/tests.py
1
2783
import os from django.conf import settings from django.contrib.auth.models import User from django.test import TestCase, client from .models import Cause class CauseTest(TestCase): def setUp(self): self.client = client.Client() self.user = User.objects.create_user('panda', '[email protected]', 'lovebamboo') self.bad_user = User.objects.create_user('redpanda', '[email protected]', 'redhearts') self.valid_record = { 'title': 'Save the pandas', 'description': 'I want to save them all', 'creator': self.user, 'target': 50, 'is_published': True, 'tags': ['big', 'white', 'black', 'fluffy'] } def test_logged_user_add_cause(self): self.client.login(username='panda', password='lovebamboo') before_add = Cause.objects.count() response = self.client.post('/causes/add/', self.valid_record) after_add = Cause.objects.count() self.assertEqual(before_add + 1, after_add) def test_not_logged_user_add_cause(self): before_add = Cause.objects.count() response = self.client.post('/causes/add/', self.valid_record) after_add = Cause.objects.count() self.assertEqual(before_add, after_add) def test_admin_edit_cause(self): self.client.login(username='panda', password='lovebamboo') self.client.post('/causes/add/', self.valid_record) cause = Cause.objects.filter(title='Save the pandas')[0] self.valid_record['description'] += " now" response = self.client.post( '/causes/{}/edit/'.format(cause.pk), self.valid_record, follow=True) edit_project = Cause.objects.filter(title='Save the pandas')[0] self.assertEqual(edit_project.description, 'I want to save them all now') def test_not_admin_edit_cause(self): self.client.login(username='redpanda', password='redhearts') self.client.post('/causes/add/', self.valid_record) cause = Cause.objects.filter(title='Save the pandas')[0] response = self.client.post('/causes/{}/edit/'.format(cause.pk), self.valid_record) edit_project = Cause.objects.filter(title='Save the pandas')[0] self.assertEqual(edit_project.description, 'I want to save them all') def test_admin_delete_cause(self): self.client.login(username='panda', password='lovebamboo') self.client.post('/causes/add/', self.valid_record) cause = Cause.objects.filter(title='Save the pandas')[0] before_delete = Cause.objects.count() response = self.client.post('/causes/{}/delete/'.format(cause.pk)) after_delete = Cause.objects.count() self.assertEqual(before_delete - 1, after_delete)
mit
trichter/sito
bin/codacorr.py
1
5149
#!/usr/bin/env python # by TR #from glob import glob #from miic.core.stretch_mod import stretch_mat_creation, velocity_change_estimete, time_windows_creation #from sito import util #from sito.stream import Stream, read #from sito.trace import Trace #from sito.util.imaging import getDataWindow #from sito.util.main import daygen, streamyeargen2, streamdaygen, timegen, streamtimegen, \ # yeargen #from sito.xcorr import xcorrf, timeNorm #import logging #import matplotlib.pyplot as plt #import numpy as np #import os.path #import warnings #from obspy.core.util.decorator import deprecated #import itertools import logging from sito import Stream, read from obspy.core.event import readEvents from sito.data import IPOC from obspy.core.util.attribdict import AttribDict import numpy as np import os.path import glob from progressbar import ProgressBar log = logging.getLogger(__name__) data = IPOC() def get_event_id(expr): if '/' in expr: expr = expr.split('/', 1)[1] expr = expr.replace('NLL.', '').replace('Origin#', '') return expr def cut_events(in_, out): print 'read events...' catalog = readEvents(in_, 'QUAKEML') print 'cut events...' for event in ProgressBar()(catalog): oid = get_event_id(event.origins[0].resource_id.getQuakeMLURI()) ori = event.origins[0] etime = ori.time #print 'Select', event st = Stream() for arrival in ori.arrivals: arrival.pick_id.convertIDToQuakeMLURI() pick = arrival.pick_id.getReferredObject() if not pick: print 'FAIL to get pick from arrival' continue ptime = pick.time seed_id = pick.waveform_id.getSEEDString() try: st1 = Stream(data.client.getWaveform(*(seed_id.split('.') + [ptime - 50, ptime + 250]))) except Exception as ex: print '%s for %s' % (ex, seed_id) continue st1.merge() #print 'load %s %s %.1f' % (seed_id, pick.phase_hint, ptime - etime) st1[0].stats['event'] = AttribDict( id=event.resource_id.resource_id, origin_id=oid, etime=etime, ptime=ptime, lat=ori.latitude, lon=ori.longitude, depth=ori.depth, rms=ori.quality.standard_error, mag=event.magnitudes[0].mag) st += st1 st.write(out % oid, 'Q') def acorr(in_, out, tw, filter_): print 'acorr events' for fname in ProgressBar()(glob.glob(in_)): st1 = read(fname) st1.setHI('filter', '') st1.filter2(*filter_) for tr in st1: etime = tr.stats.event.etime ptime = tr.stats.event.ptime stime = tr.stats.starttime start_corr = etime + 2.2 * (ptime - etime) end_corr = start_corr + tw data_before = tr.slice(stime + 10, ptime - 10).data rms_before = np.sqrt(np.sum(data_before ** 2) / len(data_before)) data_after = tr.slice(start_corr, end_corr).data rms_after = np.sqrt(np.sum(data_after ** 2) / len(data_after)) #if rms_after < rms_before * 1.5: # continue tr.stats.event.rms_ratio = rms_after / rms_before tr.trim(start_corr, end_corr) tr.timeNorm('runningmean', 20) tr.taper(p=5. / (end_corr - start_corr)) tr.addZeros(tw) tr.acorr(shift=tw) ofname = os.path.splitext(os.path.basename(fname))[0] st1.write(out % ofname, 'Q') def stack(in_, out): print 'loading files for stacking...' st_sum = Stream() st1 = read(in_) print 'stack traces...' for station in ProgressBar()('PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 PB15 HMBCX MNMCX PATCX PSGCX'.split()): #st2 = st1.select(station=station, expr='st.event.rms_ratio > 1.5 and st.sampling_rate>40 and -25<st.event.lat<-18 and -67.8<st.event.lon<-66.0') st2 = st1.select(station=station, expr='st.event.rms_ratio > 1.5 and st.sampling_rate>40') if len(st2) == 0: print 'No traces for station %s' % station continue tr = st2.simpleStack() tr.stats.label = station st_sum += tr st_sum.write(out, 'Q') if __name__ == '__main__': EVENTS = '/home/richter/Data/picks/seiscomp_quakeml/filter/R?_mag>3.xml' OUT = '/home/richter/Data/IPOC/local_events/2011_mag>3/%s' #cut_events(EVENTS, OUT) IN = '/home/richter/Data/IPOC/local_events/2011_mag>3/*.QHD' OUT = '/home/richter/Data/IPOC/local_events/acorr/2011_mag>3_2Hz/%s' #acorr(IN, OUT, 50, (2, None)) IN = '/home/richter/Data/IPOC/local_events/acorr/2011_mag>3_2Hz/*.QHD' OUT = '/home/richter/Data/IPOC/local_events/acorr/2011_mag>3_2Hz_stacked' stack(IN, OUT) #plotting: #ms_s.plot_(annotate=True, start=45, figtitle='loacal coda acorr >2Hz', plotinfo=['count'])
mit
wei-Z/Python-Machine-Learning
self_practice/Chapter 5 Principal Component Analysis.py
1
6721
# Chapter 5 Compressing Data via Dimensionality Reduction # Principal Components Analysis # Total and explained variance ''' First, we will start by loading the Wine dataset that we have been working with in Chapter 4''' import pandas as pd df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None) ''' Next, we will process the Wine data into separate training and test sets using 70 percent and 30 percent of the data, respectively - and standardize it to unit variance''' from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) ''' We will use the linalg.eig function from Numpy to obtain the eigenpairs of the Wine covariance matrix''' import numpy as np cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print '\nEigenvalues \n%s' % eigen_vals ''' Using the numpy.cov function, we computed the covariance matrix of the standardized training dataset. Using the linalg.eig function, we performed the eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues and the corresponding eigenvectors stored as columns in a 13x13 -dimensional matrix (eigen_vecs). ''' ''' Since we want to reduce the dimensionality of our dataset by compressing it onto a new feature subspace, we only select the subset of the eigenvectors(principle components) that contains most of the information (variance). Since the eigenvalues define the magitude of the eigenvectors, we have to sort the eigenvalues by decreasing magnitude; we are interested in the top k eigenvectors based on the values of their corresponding eigenvalues. But before we collect those k most informative eigenvectors, let's plot the variance explained ratios of the eigenvalues ''' ''' Using the NumPy cumsum function, we can then calculate the cumulative sum of explained variances, which we will plot via matplotlib's step function: ''' tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1,14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') plt.show() ''' The resulting plot indicates that the first principal component alone accounts for 40 percent of the variance. Also, we can see that the first two principal components combined explain almost 60 percent of the variance in the data: ''' # Feature transformation # We start by sorting the eigenpairs by decreasing order of the eigenvalues: eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], # eigen_pairs[0][1].shape =(13,) eigen_pairs[1][1][:, np.newaxis])) # eigen_pairs[0][1][:, np.newaxis].shape= (13, 1) print 'Matrix W: \n', w ''' By executing the preceding code, we have created a 13x2-dimensional projection matrix w from the top two eigenvectors. Using the projection matrix, we can now transform a sample x (represented as 1x13-dimensional row vector) onto the PCA subspace obraining x', a now two-dimensional sample vector consisting of two new features: x' = xW ''' X_train_std[0].dot(w) # 1x13 13x2 = 1x2 # similarly, we can transform the entire 124 x 13-dimensional training dataset onto the two principal components # by calculating the matrix dot product: X_train_pca = X_train_std.dot(w) # 124x13 13x2 = 124x2 ''' Lastly, let's visualize the transformed Wine training set, now stored as an 124 x 2-dimensional matrix, in a two-dimensional scatterplot: ''' colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train==l, 0], X_train_pca[y_train==l, 1],c=c, label=1, marker = m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.show() # Principal component analysis in scikit-learn from Plot_Decision_Regions import plot_decision_regions from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) # Number of components to keep. if n_components is not set all components are kept lr = LogisticRegression() X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend(loc='lower left') plt.show() ''' Let's plot the decision regions of the logistic regression on the transformed test dataset to see if it can separate the classes well. ''' plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend(loc='lower left') plt.show() ''' If we are interested in the explained variance ratios of the different principal components, we can simply intialize the PCA class with the n_components parameter set to None, so all principal components are kept and the explained variance ratio can then be accessed via the explained _variance_ratio_ attribute ''' pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) pca.explained_variance_ratio_ ''' From Wikipedia: The eigendecomposition of a symmetric positive semidefinite (PSD) matrix yields an orthogonal basis of eigenvectors, each of which has a nonnegative eigenvalue. The orthogonal decomposition of a PSD matrix is used in multivariate analysis, where the sample covariance matrices are PSD. This orthogonal decomposition is called principal components analysis (PCA) in statistics. PCA studies linear relations among variables. PCA is performed on the covariance matrix or the correlation matrix (in which each variable is scaled to have its sample variance equal to one). For the covariance or correlation matrix, the eigenvectors correspond to principal components and the eigenvalues to the variance explained by the principal components. Principal component analysis of the correlation matrix provides an orthonormal eigen-basis for the space of the observed data: In this basis, the largest eigenvalues correspond to the principal components that are associated with most of the covariability among a number of observed data. '''
mit
soulmachine/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
15
2130
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 4)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i+1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree %d" % degrees[i]) plt.show()
bsd-3-clause
russel1237/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
RachitKansal/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
spillai/procgraph
src/procgraph_mpl/plot_generic.py
1
2727
import warnings from numpy.ma.testutils import assert_equal __all__ = ['PlotGeneric'] class PlotGeneric(object): ''' Produces images using matplotlib. Good for custom animation. ''' def __init__(self, width, height, transparent, tight, keep=False): self.width = width self.height = height self.transparent = transparent self.tight = tight self.keep = keep self.figure = None self.warned = False def init_figure(self): # TODO: remove from here from . import pylab, pylab2rgb pylab.rc('xtick', labelsize=8) pylab.rc('ytick', labelsize=8) ''' Creates figure object and axes ''' self.figure = pylab.figure(frameon=False, figsize=(self.width / 100.0, self.height / 100.0)) self.axes = pylab.axes() self.figure.add_axes(self.axes) pylab.draw_if_interactive = lambda: None pylab.figure(self.figure.number) def get_rgb(self, function): """ function(pylab) """ if self.figure is None: self.init_figure() from . import pylab, pylab2rgb pylab.figure(self.figure.number) function(pylab) # http://matplotlib.sourceforge.net/users/tight_layout_guide.html try: pylab.tight_layout() except Exception as e: msg = ('Could not call tight_layout(); available only on ' 'Matplotlib >=1.1 (%s)' % e) if not self.warned: warnings.warn(msg) self.warned = True # There is a bug that makes the image smaller than desired # if tight is True pixel_data = pylab2rgb(transparent=self.transparent, tight=self.tight) from procgraph_images import image_pad # need here otherwise circular # So we check and compensate shape = pixel_data.shape[0:2] shape_expected = (self.height, self.width) if shape != shape_expected: msg = ('pylab2rgb() returned size %s instead of %s.' % (shape, shape_expected)) msg += ' I will pad the image with white.' warnings.warn(msg) pixel_data = image_pad(pixel_data, shape_expected, bgcolor=[1, 1, 1]) assert_equal(pixel_data.shape[0:2], shape_expected) if not self.keep: pylab.close(self.figure.number) self.figure = None else: pass # pylab.cla() # pylab.clf() return pixel_data
lgpl-3.0
jungla/ICOM-fluidity-toolbox
Detectors/offline_advection/plot_Richardson_2D_const_both_fast.py
1
9057
#!~/python import matplotlib as mpl mpl.use('ps') import matplotlib.pyplot as plt import myfun import numpy as np import lagrangian_stats import csv import advect_functions # read offline print 'reading particles' exp = 'm_25_1b' label = 'm_25_1b' filename2D_BW = 'RD_2D_m_25_2b_particles_big.csv' filename2D_B = 'RD_2D_m_25_1b_particles_big.csv' tt_BW = 500 # IC + 24-48 included tt_B = 500 # IC + 24-48 included dl = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1] Zlist = 1.*np.cumsum(dl) depths = [5, 10, 15] depthid = [1, 2, 3] nl = len(depths) RD_2D_BW = [] #np.zeros((tt_BW,nl)) time2D_BW = [] RD_2D_B = [] #np.zeros((tt_B,nl)) time2D_B = [] with open(filename2D_B, 'r') as csvfile: spamreader = csv.reader(csvfile) spamreader.next() for row in spamreader: time2D_B.append(row[0]) RD_2D_B.append(row[1:]) with open(filename2D_BW, 'r') as csvfile: spamreader = csv.reader(csvfile) spamreader.next() for row in spamreader: time2D_BW.append(row[0]) RD_2D_BW.append(row[1:]) time2D_B = np.asarray(time2D_B).astype(float) RD_2D_B = np.asarray(RD_2D_B).astype(float) time2D_BW = np.asarray(time2D_BW).astype(float) RD_2D_BW = np.asarray(RD_2D_BW).astype(float) time = time2D_BW[:-1] # cut particles to time of interest timeD = np.asarray(range(0,3*86400,1440)) vtime = time - time[0] # read 3D eps and get eps at particle's location drateD_BW = np.zeros((len(timeD),len(Zlist))) drateD_B = np.zeros((len(timeD),len(Zlist))) for t in range(len(timeD)): # print 'read drate', t with open('../../2D/U/drate_3day/z/drate_m_25_2b_particles_'+str(t)+'_z.csv', 'rb') as csvfile: spamreader = csv.reader(csvfile) for row in spamreader: drateD_BW[t,:] = row[:] for t in range(len(timeD)): # print 'read drate', t with open('../../2D/U/drate_3day/z/drate_m_25_1b_particles_'+str(t)+'_z.csv', 'rb') as csvfile: spamreader = csv.reader(csvfile) for row in spamreader: drateD_B[t,:] = row[:] # test drate #plt.contourf(timeD/86400.,Zlist,np.log10(np.rot90(drateD_B)),30) #plt.colorbar() #plt.savefig('./plot/'+label+'/drate_B_'+label+'.eps') #plt.close() # #plt.contourf((timeD)/3600.+48,Zlist,np.log10(np.rot90(drateD_BW)),30) #plt.colorbar() #plt.savefig('./plot/'+label+'/drate_BW_'+label+'.eps') #print './plot/'+label+'/drate_BW_'+label+'.eps' #plt.close() # normalized RD fig = plt.figure(figsize=(8, 5)) R2D5_B, = plt.plot(np.log10(time2D_B[:]/3600.),np.log10(RD_2D_B[:,0]/time2D_B[:]**3),'b',linewidth=1) R2D10_B, = plt.plot(np.log10(time2D_B[:]/3600.),np.log10(RD_2D_B[:,1]/time2D_B[:]**3),'b--',linewidth=1) R2D15_B, = plt.plot(np.log10(time2D_B[:]/3600.),np.log10(RD_2D_B[:,2]/time2D_B[:]**3),'b-.',linewidth=1) R2D5_BW, = plt.plot(np.log10(time2D_BW[:]/3600.),np.log10(RD_2D_BW[:,0]/time2D_BW[:]**3),'k',linewidth=1) R2D10_BW, = plt.plot(np.log10(time2D_BW[:]/3600.),np.log10(RD_2D_BW[:,1]/time2D_BW[:]**3),'k--',linewidth=1) R2D15_BW, = plt.plot(np.log10(time2D_BW[:]/3600.),np.log10(RD_2D_BW[:,2]/time2D_BW[:]**3),'k-.',linewidth=1) #B #intm = 0.3*86400; intM = 1.5*86400; interval = (vtime > intm) * (vtime < intM) #R2D5_B, = plt.plot(time2D_B[interval],RD_2D_B[interval,0]/time2D_B[interval]**3,'b',linewidth=3.5) # #intm = 0.4*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) #R2D10_B, = plt.plot(time2D_B[interval],RD_2D_B[interval,1]/time2D_B[interval]**3,'b--',linewidth=3.5) # #intm = 0.5*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) #R2D15_B, = plt.plot(time2D_B[interval],RD_2D_B[interval,2]/time2D_B[interval]**3,'b-.',linewidth=3.5) intm = 0.3*86400; intM = 2.5*86400; interval = (vtime > intm) * (vtime < intM) R2D5_BW, = plt.plot(np.log10(time2D_BW[interval]/3600.),np.log10(RD_2D_BW[interval,0]/time2D_BW[interval]**3),'k',linewidth=3.5) intm = 0.4*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) R2D10_BW, = plt.plot(np.log10(time2D_BW[interval]/3600.),np.log10(RD_2D_BW[interval,1]/time2D_BW[interval]**3),'k--',linewidth=3.5) intm = 0.45*86400; intM = 4*86400; interval = (vtime > intm) * (vtime < intM) R2D15_BW, = plt.plot(np.log10(time2D_BW[interval]/3600.),np.log10(RD_2D_BW[interval,2]/time2D_BW[interval]**3),'k-.',linewidth=3.5) #plt.legend((R2D5_BW,R2D10_BW,R2D15_BW,R2D5_B,R2D10_B,R2D15_B),('$BW25_m$ 5m','$BW25_m$ 10m','$BW25_m$ 15m','$B25_m$ 5m','$B25_m$ 10m','$B25_m$ 15m'), loc=1,fontsize=16,ncol=2) plt.legend((R2D5_BW,R2D10_BW,R2D15_BW),('5m','10m','15m'), loc=1,fontsize=16,ncol=3) plt.xlabel('Time $[hr]$',fontsize=20) plt.ylabel('$log(\sigma^2_D t^{-3})$ ',fontsize=20) plt.yticks(fontsize=16) plt.ylim() #ind = [0.,12.,24.,36.,48.,60.,72.,84.,96.,108.,120.,132.,144.,156.,168.,180.,192.] ind = np.asarray([0.,12.,24.,48.,96.,192.]) #ind = np.linspace(0,24*8,7) ind[0] = 1440/3600. vind = np.log10(ind);# vind[0]=np.log10(1440/3600.) plt.xticks(vind,['48.4','60','72','96','144','240'],fontsize=16) plt.tight_layout() plt.savefig('./plot/'+label+'/RDt3_2_BW_'+label+'.eps') print './plot/'+label+'/RDt3_2_BW_'+label+'.eps' plt.close() # Rich 2D-3D #fig = plt.figure(figsize=(8, 5)) fig, ax1 = plt.subplots(figsize=(8, 5)) #intm = 0.3*86400; intM = 1.5*86400; interval = (vtime > intm) * (vtime < intM) #Rich = RD_2D_B[interval,0]/time2D_B[interval]**3/(drateD_B[interval,depths[0]]) #print '2D 5m: mean', np.mean(Rich), 'std', np.std(Rich) #R2D5_B, = plt.plot(time2D_B[interval]/3600+48.,Rich,'b.',linewidth=2) # #intm = 0.4*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) #Rich = RD_2D_B[interval,1]/time2D_B[interval]**3/(drateD_B[interval,depths[1]]) #print '2D 10m: mean', np.mean(Rich), 'std', np.std(Rich) #R2D10_B, = plt.plot(time2D_B[interval]/3600+48.,Rich,'b--',linewidth=2) # #intm = 0.5*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) #Rich = RD_2D_B[interval,2]/time2D_B[interval]**3/(drateD_B[interval,depths[2]]) #print '2D 15m: mean', np.mean(Rich), 'std', np.std(Rich) #R2D15_B, = plt.plot(time2D_B[interval]/3600+48.,Rich,'b',linewidth=2) # # BW intm = 0.3*86400; intM = 2.5*86400; interval = (vtime > intm) * (vtime < intM) Rich = RD_2D_BW[interval,0]/time2D_BW[interval]**3/(drateD_BW[interval,depths[0]]) print 'Rich 2D 5m: mean', np.mean(Rich), 'std', np.std(Rich) print 'Drate 2D 5m: mean', np.mean(drateD_BW[interval,depths[0]]), 'std', np.std(drateD_BW[interval,depths[0]]) R2D5_BW, = ax1.plot(time2D_BW[interval]/3600+48.,Rich,'r',linewidth=2) intm = 0.4*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) Rich = RD_2D_BW[interval,1]/time2D_BW[interval]**3/(drateD_BW[interval,depths[1]]) print 'Rich 2D 10m: mean', np.mean(Rich), 'std', np.std(Rich) print 'Drate 2D 10m: mean', np.mean(drateD_BW[interval,depths[1]]), 'std', np.std(drateD_BW[interval,depths[1]]) R2D10_BW, = ax1.plot(time2D_BW[interval]/3600.+48,Rich,'r--',linewidth=2) intm = 0.45*86400; intM = 3*86400; interval = (vtime > intm) * (vtime < intM) Rich = RD_2D_BW[interval,2]/time2D_BW[interval]**3/(drateD_BW[interval,depths[2]]) print 'Rich 2D 15m: mean', np.mean(Rich), 'std', np.std(Rich) print 'Drate 2D 15m: mean', np.mean(drateD_BW[interval,depths[2]]), 'std', np.std(drateD_BW[interval,depths[2]]) R2D15_BW, = ax1.plot(time2D_BW[interval]/3600.+48,Rich,'r-.',linewidth=2) #for tic in plt.xaxis.get_minor_ticks(): # tic.tick1On = tic.tick2On = False #plt.legend((R2D1,R3D1,R2D5,R3D5,R2D17,R3D17),('2D 5m','3D 5m','2D 10m','3D 10m','2D 15m','3D 15m'),loc=3,fontsize=16,ncol=3) #plt.legend((R2D5_BW,R2D10_BW,R2D15_BW,R2D5_B,R2D10_B,R2D15_B),('$BW25_m$ 5m','$BW25_m$ 10m','$BW25_m$ 15m','$B25_m$ 5m','$B25_m$ 10m','$B25_m$ 15m'),loc=2,fontsize=16,ncol=2) dummy5, = ax1.plot([],[],'k',linewidth=2) dummy10, = ax1.plot([],[],'k--',linewidth=2) dummy15, = ax1.plot([],[],'k-.',linewidth=2) ax1.legend((dummy5,dummy10,dummy15),('5m','10m','15m'),loc=1,fontsize=14,ncol=3) #import matplotlib.lines as mlines #l5 = mlines.Line2D([], [],'-',color='black', label='5m') #l10 = mlines.Line2D([], [],'--',color='black', label='10m') #l15 = mlines.Line2D([], [],'-.',color='black', label='15m') #ax1.legend(handles=[l5,l10,l15],loc=1,fontsize=16,ncol=3) ax1.set_xlabel('Time $[hr]$',fontsize=20) ax1.set_ylabel('$\sigma^2_D t^{-3} \epsilon^{-1}$ ',fontsize=20,color='r') for tl in ax1.get_yticklabels(): tl.set_color('r') #plt.ylim(0.02,0.18) #plt.yticks(fontsize=16) ind = np.linspace(48,24*3+48,13) ind[0] = 52 ax2 = ax1.twinx() DR5, = ax2.plot(drateD_BW[:,depths[0]],'b',linewidth=2) DR10, = ax2.plot(drateD_BW[:,depths[1]],'b--',linewidth=2) DR15, = ax2.plot(drateD_BW[:,depths[2]],'b-.',linewidth=2) #ax2.legend((DR5,DR10,DR15),('5m','10m','15m'),loc=1,fontsize=14,ncol=3) ax2.set_ylabel('$\epsilon$ ',fontsize=20,color='b') for tl in ax2.get_yticklabels(): tl.set_color('b') plt.xlim(ind[0],ind[-1]) plt.xticks(ind,['','54','60','66','72','78','84','90','96','102','108','114','120'],fontsize=16) plt.tight_layout() plt.savefig('./plot/'+label+'/Rich_2_BW_'+label+'.eps') print './plot/'+label+'/Rich_2_BW_'+label+'.eps' plt.close()
gpl-2.0
combust-ml/mleap
python/tests/pyspark/feature/math_unary_test.py
2
4359
import math import os import shutil import tempfile import unittest import mleap.pyspark # noqa from mleap.pyspark.spark_support import SimpleSparkSerializer # noqa import pandas as pd from pandas.testing import assert_frame_equal from pyspark.ml import Pipeline from pyspark.sql.types import FloatType from pyspark.sql.types import StructType from pyspark.sql.types import StructField from mleap.pyspark.feature.math_unary import MathUnary from mleap.pyspark.feature.math_unary import UnaryOperation from tests.pyspark.lib.spark_session import spark_session INPUT_SCHEMA = StructType([ StructField('f1', FloatType()), ]) class MathUnaryTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.spark = spark_session() @classmethod def tearDownClass(cls): cls.spark.stop() def setUp(self): self.input = self.spark.createDataFrame([ ( float(i), ) for i in range(1, 10) ], INPUT_SCHEMA) self.expected_sin = pd.DataFrame( [( math.sin(i), ) for i in range(1, 10)], columns=['sin(f1)'], ) self.tmp_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmp_dir) def test_sin_math_unary(self): sin_transformer = MathUnary( operation=UnaryOperation.Sin, inputCol="f1", outputCol="sin(f1)", ) result = sin_transformer.transform(self.input).toPandas()[['sin(f1)']] assert_frame_equal(self.expected_sin, result) def test_math_unary_pipeline(self): sin_transformer = MathUnary( operation=UnaryOperation.Sin, inputCol="f1", outputCol="sin(f1)", ) exp_transformer = MathUnary( operation=UnaryOperation.Exp, inputCol="sin(f1)", outputCol="exp(sin(f1))", ) expected = pd.DataFrame( [( math.exp(math.sin(i)), ) for i in range(1, 10)], columns=['exp(sin(f1))'], ) pipeline = Pipeline( stages=[sin_transformer, exp_transformer] ) pipeline_model = pipeline.fit(self.input) result = pipeline_model.transform(self.input).toPandas()[['exp(sin(f1))']] assert_frame_equal(expected, result) def test_can_instantiate_all_math_unary(self): for unary_operation in UnaryOperation: transformer = MathUnary( operation=unary_operation, inputCol="f1", outputCol="operation", ) def test_serialize_deserialize_math_unary(self): sin_transformer = MathUnary( operation=UnaryOperation.Sin, inputCol="f1", outputCol="sin(f1)", ) file_path = '{}{}'.format('jar:file:', os.path.join(self.tmp_dir, 'math_unary.zip')) sin_transformer.serializeToBundle(file_path, self.input) deserialized_math_unary = SimpleSparkSerializer().deserializeFromBundle(file_path) result = deserialized_math_unary.transform(self.input).toPandas()[['sin(f1)']] assert_frame_equal(self.expected_sin, result) def test_serialize_deserialize_pipeline(self): sin_transformer = MathUnary( operation=UnaryOperation.Sin, inputCol="f1", outputCol="sin(f1)", ) exp_transformer = MathUnary( operation=UnaryOperation.Exp, inputCol="sin(f1)", outputCol="exp(sin(f1))", ) expected = pd.DataFrame( [( math.exp(math.sin(i)), ) for i in range(1, 10)], columns=['exp(sin(f1))'], ) pipeline = Pipeline( stages=[sin_transformer, exp_transformer] ) pipeline_model = pipeline.fit(self.input) file_path = '{}{}'.format('jar:file:', os.path.join(self.tmp_dir, 'math_unary_pipeline.zip')) pipeline_model.serializeToBundle(file_path, self.input) deserialized_pipeline = SimpleSparkSerializer().deserializeFromBundle(file_path) result = pipeline_model.transform(self.input).toPandas()[['exp(sin(f1))']] assert_frame_equal(expected, result)
apache-2.0
jls713/jfactors
flattened/process_data.py
1
2570
## Produce Table 5 of SEG (2016) ## ============================================================================ import numpy as np import pandas as pd import sys import os.path sys.path.append('/home/jls/work/data/jfactors/spherical/') from J_D_table import posh_latex_names ## ============================================================================ def load_files(name): ''' Load in three sample files for dwarf <name> ''' name='triaxial_results/'+name if os.path.isfile(name+'_nop') and os.path.isfile(name+'_ma') and os.path.isfile(name+'_sj'): return np.genfromtxt(name+'_nop'),np.genfromtxt(name+'_ma'),np.genfromtxt(name+'_sj') else: return None,None,None def write(l): ''' Output median and \pm 1\sigma errors for correction factors in ascii form ''' l = l.T[4] return r'$%0.2f^{+%0.2f}_{-%0.2f}$'%(np.median(l),np.percentile(l,84.1)-np.median(l),np.median(l)-np.percentile(l,15.9)) def write_ascii(l): ''' Output median and \pm 1\sigma errors for correction factors in latex form ''' l = l.T[4] return '%0.2f %0.2f %0.2f '%(np.median(l),np.percentile(l,84.1)-np.median(l),np.median(l)-np.percentile(l,15.9)) ## ============================================================================ ## 1. Read in data file and write headers to tables data = pd.read_csv('../data/data.dat',sep=' ') ff = open('corr_triax_table.dat','w') ffa = open('corr_triax_table_ascii.dat','w') ff.write('\\begin{tabular}{lcccc}\n') ff.write('\\hline\n\\hline\n') ff.write('Name & Ellipticity & $\mathcal{F}_{\mathrm{J},U}$& $\mathcal{F}_{\mathrm{J},R}$& $\mathcal{F}_{\mathrm{J},T}$\\\\ \n') ff.write('\\hline\n') ## 2. Loop over dwarfs and compute median and \pm 1 \sigma for correction factors for i in data.ellip.argsort(): d,e,f=load_files(data.Name[i]) ellip_string='&$%0.2f^{+%0.2f}_{-%0.2f}$&'%(data.ellip[i],data.ellip_e1[i],data.ellip_e2[i]) if(data.ellip_e1[i]!=data.ellip_e1[i]): ellip_string='&$<%0.2f$&'%(data.ellip[i]) if(d==None): ff.write(posh_latex_names[data['Name'][i]]+ellip_string+'NaN&NaN&NaN\\\\\n') ffa.write(data['Name'][i]+' %0.2f %0.2f %0.2f '%(data.ellip[i],data.ellip_e1[i],data.ellip_e2[i])+'NaN '*9+'\n') else: ff.write(posh_latex_names[data['Name'][i]]+ellip_string +write(d)+'&'+write(e)+'&'+write(f)+'\\\\\n') ffa.write(data['Name'][i]+' %0.2f %0.2f %0.2f '%(data.ellip[i],data.ellip_e1[i],data.ellip_e2[i])+write_ascii(d)+write_ascii(e)+write_ascii(f)+'\n') ff.write('\\hline\n\\end{tabular}\n') ff.close() ffa.close() ## ============================================================================
mit
vshtanko/scikit-learn
sklearn/preprocessing/tests/test_data.py
113
38432
import warnings import numpy as np import numpy.linalg as la from scipy import sparse from distutils.version import LooseVersion from sklearn.utils.testing import assert_almost_equal, clean_warning_registry from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_no_warnings from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing.data import _transform_selected from sklearn.preprocessing.data import Binarizer from sklearn.preprocessing.data import KernelCenterer from sklearn.preprocessing.data import Normalizer from sklearn.preprocessing.data import normalize from sklearn.preprocessing.data import OneHotEncoder from sklearn.preprocessing.data import StandardScaler from sklearn.preprocessing.data import scale from sklearn.preprocessing.data import MinMaxScaler from sklearn.preprocessing.data import minmax_scale from sklearn.preprocessing.data import MaxAbsScaler from sklearn.preprocessing.data import maxabs_scale from sklearn.preprocessing.data import RobustScaler from sklearn.preprocessing.data import robust_scale from sklearn.preprocessing.data import add_dummy_feature from sklearn.preprocessing.data import PolynomialFeatures from sklearn.utils.validation import DataConversionWarning from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_polynomial_features(): # Test Polynomial Features X1 = np.arange(6)[:, np.newaxis] P1 = np.hstack([np.ones_like(X1), X1, X1 ** 2, X1 ** 3]) deg1 = 3 X2 = np.arange(6).reshape((3, 2)) x1 = X2[:, :1] x2 = X2[:, 1:] P2 = np.hstack([x1 ** 0 * x2 ** 0, x1 ** 1 * x2 ** 0, x1 ** 0 * x2 ** 1, x1 ** 2 * x2 ** 0, x1 ** 1 * x2 ** 1, x1 ** 0 * x2 ** 2]) deg2 = 2 for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]: P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X) assert_array_almost_equal(P_test, P) P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X) assert_array_almost_equal(P_test, P[:, 1:]) interact = PolynomialFeatures(2, interaction_only=True, include_bias=True) X_poly = interact.fit_transform(X) assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]]) def test_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=False) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(axis=0), 0.0) assert_array_almost_equal(X_scaled.std(axis=0), 1.0) X = np.ones(5) assert_array_equal(scale(X, with_mean=False), X) def test_standard_scaler_numerical_stability(): """Test numerical stability of scaling""" # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.zeros(8, dtype=np.float64) + np.log(1e-5, dtype=np.float64) if LooseVersion(np.__version__) >= LooseVersion('1.9'): # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy x_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(scale(x), np.zeros(8)) else: w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.zeros(10, dtype=np.float64) + np.log(1e-5, dtype=np.float64) w = "standard deviation of the data is probably very close to 0" x_scaled = assert_warns_message(UserWarning, w, scale, x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.ones(10, dtype=np.float64) * 1e-100 x_small_scaled = assert_no_warnings(scale, x) assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.ones(10, dtype=np.float64) * 1e100 w = "Dataset may contain too large values" x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) x_big_centered = assert_warns_message(UserWarning, w, scale, x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert_true(X_scaled is not X) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=1), 4 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), 4 * [1.0]) # Check that the data hasn't been modified assert_true(X_scaled is not X) X_scaled = scaler.fit(X).transform(X, copy=False) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is X) X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) assert_array_almost_equal(X_scaled.mean(axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) assert_raises(ValueError, scaler.fit, X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis rng = np.random.RandomState(0) X = rng.randn(5) X_orig_copy = X.copy() scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X_orig_copy) # Test with 1D list X = [0., 1., 2, 0.4, 1.] scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(X_scaled.min(axis=0), 0.0) assert_array_almost_equal(X_scaled.max(axis=0), 1.0) # Constant feature. X = np.zeros(5) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert_greater_equal(X_scaled.min(), 0.) assert_less_equal(X_scaled.max(), 1.) def test_scaler_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) assert_raises(ValueError, StandardScaler().fit, X_csr) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) clean_warning_registry() with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) clean_warning_registry() with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert_false(np.any(np.isnan(X_scaled))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert_false(np.any(np.isnan(X_csr_scaled.data))) clean_warning_registry() with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csr.transform(X_csc, copy=True) assert_false(np.any(np.isnan(X_csc_scaled.data))) assert_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.std_, scaler_csr.std_) assert_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.std_, scaler_csc.std_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(np.float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert_true(X_scaled is not X) assert_true(X_csr_scaled is not X_csr) X_scaled_back = scaler.inverse_transform(X_scaled) assert_true(X_scaled_back is not X) assert_true(X_scaled_back is not X_scaled) assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert_true(X_csr_scaled_back is not X_csr) assert_true(X_csr_scaled_back is not X_csr_scaled) assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert_true(X_csc_scaled_back is not X_csc) assert_true(X_csc_scaled_back is not X_csc_scaled) assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) # check scaling and fit with direct calls on sparse data assert_raises(ValueError, scale, X_csr, with_mean=True) assert_raises(ValueError, StandardScaler(with_mean=True).fit, X_csr) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) assert_raises(ValueError, scaler.transform, X_csr) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) assert_raises(ValueError, scaler.inverse_transform, X_transformed_csr) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [np.nan, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) X = [np.inf, 5, 6, 7, 8] assert_raises_regex(ValueError, "Input contains NaN, infinity or a value too large", scale, X) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert_false(np.any(np.isnan(X_scaled))) X_csr_scaled = scale(X_csr, with_mean=False) assert_false(np.any(np.isnan(X_csr_scaled.data))) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert_true(X_scaled is not X) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) def test_robust_scaler_2d_arrays(): """Test robust scaling of 2d array along first axis""" rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): """Check RobustScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_maxabs_scaler_zero_variance_features(): """Check MaxAbsScaler on toy data with zero variance features""" X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # sparse data X_csr = sparse.csr_matrix(X) X_trans = scaler.fit_transform(X_csr) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans.A, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv.A) def test_maxabs_scaler_large_negative_value(): """Check MaxAbsScaler on toy data with a large negative value""" X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_warning_scaling_integers(): # Check warning when scaling integer data X = np.array([[1, 2, 0], [0, 0, 0]], dtype=np.uint8) w = "Data with input dtype uint8 was converted to float64" clean_warning_registry() assert_warns_message(DataConversionWarning, w, scale, X) assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X) assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert_true(X_norm is not X) X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert_true(X_norm is X) X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert_true(X_norm1 is not X) X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert_true(X_norm2 is X) X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = X_norm.max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert_true(X_norm is not X) assert_true(isinstance(X_norm, sparse.csr_matrix)) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) assert_raises(ValueError, normalize, [[0]], axis=2) assert_raises(ValueError, normalize, [[0]], norm='l3') def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 4) assert_equal(np.sum(X_bin == 1), 2) X_bin = binarizer.transform(X) assert_equal(sparse.issparse(X), sparse.issparse(X_bin)) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert_true(X_bin is not X) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert_true(X_bin is not X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert_true(X_bin is X) X_bin = toarray(X_bin) assert_equal(np.sum(X_bin == 0), 2) assert_equal(np.sum(X_bin == 1), 4) binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert_equal(np.sum(X_bin == 0), 1) assert_equal(np.sum(X_bin == 1), 5) X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse assert_raises(ValueError, binarizer.transform, sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T) K_fit_centered2 = centerer.fit_transform(K_fit) assert_array_almost_equal(K_fit_centered, K_fit_centered2) # center predict time matrix X_pred = rng.random_sample((2, 4)) K_pred = np.dot(X_pred, X_fit.T) X_pred_centered = scaler.transform(X_pred) K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T) K_pred_centered2 = centerer.transform(K_pred) assert_array_almost_equal(K_pred_centered, K_pred_centered2) def test_fit_transform(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for obj in ((StandardScaler(), Normalizer(), Binarizer())): X_transformed = obj.fit(X).transform(X) X_transformed2 = obj.fit_transform(X) assert_array_equal(X_transformed, X_transformed2) def test_add_dummy_feature(): X = [[1, 0], [0, 1], [0, 1]] X = add_dummy_feature(X) assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_coo(): X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_coo(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csc(): X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csc(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_add_dummy_feature_csr(): X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]]) X = add_dummy_feature(X) assert_true(sparse.isspmatrix_csr(X), X) assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]]) def test_one_hot_encoder_sparse(): # Test OneHotEncoder's fit and transform. X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder() # discover max values automatically X_trans = enc.fit_transform(X).toarray() assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, [[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]]) # max value given as 3 enc = OneHotEncoder(n_values=4) X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 4 * 3)) assert_array_equal(enc.feature_indices_, [0, 4, 8, 12]) # max value given per feature enc = OneHotEncoder(n_values=[3, 2, 2]) X = [[1, 0, 1], [0, 1, 1]] X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 3 + 2 + 2)) assert_array_equal(enc.n_values_, [3, 2, 2]) # check that testing with larger feature works: X = np.array([[2, 0, 1], [0, 1, 1]]) enc.transform(X) # test that an error is raised when out of bounds: X_too_large = [[0, 2, 1], [0, 1, 1]] assert_raises(ValueError, enc.transform, X_too_large) assert_raises(ValueError, OneHotEncoder(n_values=2).fit_transform, X) # test that error is raised when wrong number of features assert_raises(ValueError, enc.transform, X[:, :-1]) # test that error is raised when wrong number of features in fit # with prespecified n_values assert_raises(ValueError, enc.fit, X[:, :-1]) # test exception on wrong init param assert_raises(TypeError, OneHotEncoder(n_values=np.int).fit, X) enc = OneHotEncoder() # test negative input to fit assert_raises(ValueError, enc.fit, [[0], [-1]]) # test negative input to transform enc.fit([[0], [1]]) assert_raises(ValueError, enc.transform, [[0], [-1]]) def test_one_hot_encoder_dense(): # check for sparse=False X = [[3, 2, 1], [0, 1, 1]] enc = OneHotEncoder(sparse=False) # discover max values automatically X_trans = enc.fit_transform(X) assert_equal(X_trans.shape, (2, 5)) assert_array_equal(enc.active_features_, np.where([1, 0, 0, 1, 0, 1, 1, 0, 1])[0]) assert_array_equal(enc.feature_indices_, [0, 4, 7, 9]) # check outcome assert_array_equal(X_trans, np.array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]])) def _check_transform_selected(X, X_expected, sel): for M in (X, sparse.csr_matrix(X)): Xtr = _transform_selected(M, Binarizer().transform, sel) assert_array_equal(toarray(Xtr), X_expected) def test_transform_selected(): X = [[3, 2, 1], [0, 1, 1]] X_expected = [[1, 2, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0]) _check_transform_selected(X, X_expected, [True, False, False]) X_expected = [[1, 1, 1], [0, 1, 1]] _check_transform_selected(X, X_expected, [0, 1, 2]) _check_transform_selected(X, X_expected, [True, True, True]) _check_transform_selected(X, X_expected, "all") _check_transform_selected(X, X, []) _check_transform_selected(X, X, [False, False, False]) def _run_one_hot(X, X2, cat): enc = OneHotEncoder(categorical_features=cat) Xtr = enc.fit_transform(X) X2tr = enc.transform(X2) return Xtr, X2tr def _check_one_hot(X, X2, cat, n_features): ind = np.where(cat)[0] # With mask A, B = _run_one_hot(X, X2, cat) # With indices C, D = _run_one_hot(X, X2, ind) # Check shape assert_equal(A.shape, (2, n_features)) assert_equal(B.shape, (1, n_features)) assert_equal(C.shape, (2, n_features)) assert_equal(D.shape, (1, n_features)) # Check that mask and indices give the same results assert_array_equal(toarray(A), toarray(C)) assert_array_equal(toarray(B), toarray(D)) def test_one_hot_encoder_categorical_features(): X = np.array([[3, 2, 1], [0, 1, 1]]) X2 = np.array([[1, 1, 1]]) cat = [True, False, False] _check_one_hot(X, X2, cat, 4) # Edge case: all non-categorical cat = [False, False, False] _check_one_hot(X, X2, cat, 3) # Edge case: all categorical cat = [True, True, True] _check_one_hot(X, X2, cat, 5) def test_one_hot_encoder_unknown_transform(): X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]]) y = np.array([[4, 1, 1]]) # Test that one hot encoder raises error for unknown features # present during transform. oh = OneHotEncoder(handle_unknown='error') oh.fit(X) assert_raises(ValueError, oh.transform, y) # Test the ignore option, ignores unknown features. oh = OneHotEncoder(handle_unknown='ignore') oh.fit(X) assert_array_equal( oh.transform(y).toarray(), np.array([[0., 0., 0., 0., 1., 0., 0.]]) ) # Raise error if handle_unknown is neither ignore or error. oh = OneHotEncoder(handle_unknown='42') oh.fit(X) assert_raises(ValueError, oh.transform, y)
bsd-3-clause
makelove/OpenCV-Python-Tutorial
ch37-特征匹配/37.5-FLANN匹配器.py
1
1640
# -*- coding: utf-8 -*- # @Time : 2017/7/13 下午4:22 # @Author : play4fun # @File : 37.5-FLANN匹配器.py # @Software: PyCharm """ 37.5-FLANN匹配器.py: FLANN 是快速最近邻搜索包 Fast_Library_for_Approximate_Nearest_Neighbors 的简称。 它是一个对大数据集和高维特征进行最近邻搜索的算法的集合 而且这些算法 已经被优化 了。 在面对大数据集时它的效果 好于 BFMatcher """ import numpy as np import cv2 from matplotlib import pyplot as plt img1 = cv2.imread('../data/box.png', 0) # queryImage img2 = cv2.imread('../data/box_in_scene.png', 0) # trainImage # Initiate SIFT detector # sift = cv2.SIFT() sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # FLANN parameters FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) # or pass empty dictionary flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) # Need to draw only good matches, so create a mask matchesMask = [[0, 0] for i in range(len(matches))] # ratio test as per Lowe's paper for i, (m, n) in enumerate(matches): if m.distance < 0.7 * n.distance: matchesMask[i] = [1, 0] draw_params = dict(matchColor=(0, 255, 0), singlePointColor=(255, 0, 0), matchesMask=matchesMask, flags=0) img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **draw_params) plt.imshow(img3, ), plt.show()
mit
ak681443/mana-deep
evaluation/allmods/new_train/FindBestMatch1.py
1
5115
# coding: utf-8 # In[1]: import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, UpSampling2D from keras.models import Model from keras.callbacks import TensorBoard from keras.models import model_from_json from keras.models import load_model from keras import regularizers from os import listdir from os.path import isfile, join import numpy as np from matplotlib import pyplot as plt import cv2 import scipy.misc from scipy import spatial from PIL import Image import heapq import sys # In[2]: th = int(sys.argv[1]) v = int(sys.argv[2]) mypath1 = '/home/arvind/MyStuff/Desktop/Manatee_dataset/cleaned_data/train/' files1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))] X_test = [] masks = np.zeros((224,224)) #for filen1 in files1: # img1 = cv2.imread(mypath1+filen1) # img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) # img1[img1<th] = v # img1[img1>=th] = 0 # masks = masks + img1 #masks = masks / v for filen1 in files1: img = cv2.imread(mypath1+filen1) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = np.invert(img) img = img/np.float32(np.max(img)) img[img>0.50] = v img[img!=v] = 0 img = cv2.resize(img, (224,224)) masks = masks + img masks = masks / v #masks = np.zeros(masks.shape) #img1[masks>20] = 0 #print np.average(masks) #plt.imshow(img1) # In[3]: input_img = Input(shape=(224, 224,1)) x = Convolution2D(16, 3, 3, activation='relu', border_mode='same', input_shape=(224,224,1))(input_img) x = MaxPooling2D((2, 2), border_mode='same')(x) x = Convolution2D(8, 3, 3, activation='relu', border_mode='same')(x) x = MaxPooling2D((2, 2), border_mode='same')(x) x = Convolution2D(8, 3, 3, activation='relu', border_mode='same', activity_regularizer=regularizers.activity_l1(10e-5))(x) encoded = MaxPooling2D((2, 2), border_mode='same')(x) model = Model(input_img, encoded) model.compile(loss='binary_crossentropy', optimizer='adagrad', verbose=0) # In[4]: model.load_weights(sys.argv[3], by_name=True) # In[5]: def push_pqueue(queue, priority, value): if len(queue)>20: heapq.heappushpop(queue, (priority, value)) else: heapq.heappush(queue, (priority, value)) mypath1 = '/home/arvind/MyStuff/Desktop/Manatee_dataset/cleaned_data/test_new/' files1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))] X_test = [] for filen1 in files1: img1 = cv2.imread(mypath1+filen1) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) img1 = np.invert(img1) img1 = img1 / np.float32(np.max(img1)) #img1[img1<th] = v img1[img1>0.50] = v img1[img1!=v] = 0 img1[masks>60] = 0 #img1[img1>=th] = 0 X_test.append(np.array([img1])) X_test = np.array(X_test).astype('float32')#/ float(np.max(X)) X_test = np.reshape(X_test, (len(X_test), 224, 224, 1)) X_test_pred = model.predict(X_test, verbose=0) # In[8]: mypath1 = '/home/arvind/MyStuff/Desktop/Manatee_dataset/cleaned_data/train_new/' files1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))] X_train = [] for filen1 in files1: img1 = cv2.imread(mypath1+filen1) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) img1 = np.invert(img1) img1 = img1/np.float32(np.max(img1)) img1[img1>0.50] = v img1[img!=v] = 0 img1[masks>60] = 0 X_train.append(np.array([img1])) X_train = np.array(X_train).astype('float32')#/ float(np.max(X)) X_train = np.reshape(X_train, (len(X_train), 224, 224, 1)) X_train_pred = model.predict(X_train, verbose=0) # In[9]: mypath1 = '/home/arvind/MyStuff/Desktop/Manatee_dataset/cleaned_data/test_new/' files1 = [f for f in listdir(mypath1) if isfile(join(mypath1, f))] top10_correct = 0 top20_correct = 0 top5_correct = 0 top1_correct = 0 for i in np.arange(0, len(files1)): filen1 = files1[i] pred = X_test_pred[i] mypath = '/home/arvind/MyStuff/Desktop/Manatee_dataset/cleaned_data/train_new/' files = [f for f in listdir(mypath) if isfile(join(mypath, f))] masks = np.zeros((224,224)) max_confidence = 0.0 max_file = None pqueue = [] for j in np.arange(0, len(files)): filen = files[j] tpred = X_train_pred[j] score = 1 - spatial.distance.cosine(tpred.sum(axis=2).flatten(), pred.sum(axis=2).flatten()) push_pqueue(pqueue, score, filen) if max_confidence < score: max_confidence = score max_file = filen i = 0 for top20 in heapq.nlargest(len(pqueue), pqueue): i += 1 if top20[1].split('_')[1].split('.')[0] == filen1.split('_')[1].split('.')[0]: if i==1: top20_correct+=1 top10_correct+=1 top5_correct+=1 top1_correct+=1 elif i>10: top20_correct+=1 elif i>5: top10_correct+=1 top20_correct+=1 elif i>=1: top10_correct+=1 top20_correct+=1 top5_correct+=1 break print "\n!@#$", top20_correct/float(len(files1)) , top10_correct/float(len(files1)), top5_correct/float(len(files1)), top1_correct,"\n"
apache-2.0
qifeigit/scikit-learn
examples/covariance/plot_mahalanobis_distances.py
348
6232
r""" ================================================================ Robust covariance estimation and Mahalanobis distances relevance ================================================================ An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data. For Gaussian distributed data, the distance of an observation :math:`x_i` to the mode of the distribution can be computed using its Mahalanobis distance: :math:`d_{(\mu,\Sigma)}(x_i)^2 = (x_i - \mu)'\Sigma^{-1}(x_i - \mu)` where :math:`\mu` and :math:`\Sigma` are the location and the covariance of the underlying Gaussian distribution. In practice, :math:`\mu` and :math:`\Sigma` are replaced by some estimates. The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of the observations. The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples}-n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples}+n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]. This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a contaminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguishable. Associated applications are outliers detection, observations ranking, clustering, ... For visualization purpose, the cubic root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2] [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. [2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National Academy of Sciences of the United States of America, 17, 684-688. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.covariance import EmpiricalCovariance, MinCovDet n_samples = 125 n_outliers = 25 n_features = 2 # generate data gen_cov = np.eye(n_features) gen_cov[0, 0] = 2. X = np.dot(np.random.randn(n_samples, n_features), gen_cov) # add some outliers outliers_cov = np.eye(n_features) outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7. X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov) # fit a Minimum Covariance Determinant (MCD) robust estimator to data robust_cov = MinCovDet().fit(X) # compare estimators learnt from the full data set with true parameters emp_cov = EmpiricalCovariance().fit(X) ############################################################################### # Display results fig = plt.figure() plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05) # Show data set subfig1 = plt.subplot(3, 1, 1) inlier_plot = subfig1.scatter(X[:, 0], X[:, 1], color='black', label='inliers') outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:], color='red', label='outliers') subfig1.set_xlim(subfig1.get_xlim()[0], 11.) subfig1.set_title("Mahalanobis distances of a contaminated data set:") # Show contours of the distance functions xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100), np.linspace(plt.ylim()[0], plt.ylim()[1], 100)) zz = np.c_[xx.ravel(), yy.ravel()] mahal_emp_cov = emp_cov.mahalanobis(zz) mahal_emp_cov = mahal_emp_cov.reshape(xx.shape) emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov), cmap=plt.cm.PuBu_r, linestyles='dashed') mahal_robust_cov = robust_cov.mahalanobis(zz) mahal_robust_cov = mahal_robust_cov.reshape(xx.shape) robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov), cmap=plt.cm.YlOrBr_r, linestyles='dotted') subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1], inlier_plot, outlier_plot], ['MLE dist', 'robust dist', 'inliers', 'outliers'], loc="upper right", borderaxespad=0) plt.xticks(()) plt.yticks(()) # Plot the scores for each point emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33) subfig2 = plt.subplot(2, 2, 3) subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25) subfig2.plot(1.26 * np.ones(n_samples - n_outliers), emp_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig2.plot(2.26 * np.ones(n_outliers), emp_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)") plt.yticks(()) robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33) subfig3 = plt.subplot(2, 2, 4) subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]], widths=.25) subfig3.plot(1.26 * np.ones(n_samples - n_outliers), robust_mahal[:-n_outliers], '+k', markeredgewidth=1) subfig3.plot(2.26 * np.ones(n_outliers), robust_mahal[-n_outliers:], '+k', markeredgewidth=1) subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15) subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16) subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)") plt.yticks(()) plt.show()
bsd-3-clause
tarballs-are-good/sympy
sympy/physics/quantum/tensorproduct.py
6
10647
"""Abstract tensor product.""" from sympy import Expr, Add, Mul, Matrix, Pow from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError, split_commutative_parts from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, matrix_tensor_product ) __all__ = [ 'TensorProduct', 'tensor_product_simp' ] #----------------------------------------------------------------------------- # Tensor product #----------------------------------------------------------------------------- class TensorProduct(Expr): """The tensor product of two or more arguments. For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker or tensor product matrix. For other objects a symbolic ``TensorProduct`` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics. Currently, the tensor product distinguishes between commutative and non- commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the ``TensorProduct``. Non-commutative arguments remain in the resulting ``TensorProduct``. Parameters ========== args : tuple A sequence of the objects to take the tensor product of. Examples ======== Start with a simple tensor product of sympy matrices:: >>> from sympy import I, Matrix, symbols >>> from sympy.physics.quantum import TensorProduct >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> TensorProduct(m1, m2) [1, 0, 2, 0] [0, 1, 0, 2] [3, 0, 4, 0] [0, 3, 0, 4] >>> TensorProduct(m2, m1) [1, 2, 0, 0] [3, 4, 0, 0] [0, 0, 1, 2] [0, 0, 3, 4] We can also construct tensor products of non-commutative symbols:: >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> tp = TensorProduct(A, B) >>> tp AxB We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product):: >>> from sympy.physics.quantum import Dagger >>> Dagger(tp) Dagger(A)xDagger(B) Expand can be used to distribute a tensor product across addition:: >>> C = Symbol('C',commutative=False) >>> tp = TensorProduct(A+B,C) >>> tp (A + B)xC >>> tp.expand(tensorproduct=True) AxC + BxC """ def __new__(cls, *args, **assumptions): if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)): return matrix_tensor_product(*args) c_part, new_args = cls.flatten(args) c_part = Mul(*c_part) if len(new_args) == 0: return c_part elif len(new_args) == 1: return c_part*new_args[0] else: tp = Expr.__new__(cls, *new_args, **{'commutative': False}) return c_part*tp @classmethod def flatten(cls, args): # TODO: disallow nested TensorProducts. c_part = [] nc_parts = [] for arg in args: if isinstance(arg, Mul): cp, ncp = split_commutative_parts(arg) ncp = Mul(*ncp) else: if arg.is_commutative: cp = [arg]; ncp = 1 else: cp = []; ncp = arg c_part.extend(cp) nc_parts.append(ncp) return c_part, nc_parts def _eval_dagger(self): return TensorProduct(*[Dagger(i) for i in self.args]) def _sympystr(self, printer, *args): from sympy.printing.str import sstr length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Pow, Mul)): s = s + '(' s = s + sstr(self.args[i]) if isinstance(self.args[i], (Add, Pow, Mul)): s = s + ')' if i != length-1: s = s + 'x' return s def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (Add, Mul)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length-1: pform = prettyForm(*pform.right(u'\u2a02' + u' ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Mul)): s = s + '\\left(' # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. s = s + '{' + printer._print(self.args[i], *args) + '}' if isinstance(self.args[i], (Add, Mul)): s = s + '\\right)' if i != length-1: s = s + '\\otimes ' return s def doit(self, **hints): return TensorProduct(*[item.doit(**hints) for item in self.args]) def _eval_expand_tensorproduct(self, **hints): """Distribute TensorProducts across addition.""" args = self.args add_args = [] stop = False for i in range(len(args)): if isinstance(args[i], Add): for aa in args[i].args: add_args.append( TensorProduct( *args[:i]+(aa,)+args[i+1:] ).expand(**hints) ) stop = True if stop: break if add_args: return Add(*add_args).expand(**hints) else: return self def expand(self, **hints): tp = TensorProduct(*[item.expand(**hints) for item in self.args]) return Expr.expand(tp, **hints) def tensor_product_simp_Mul(e): """Simplify a Mul with TensorProducts. Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s to a ``TensorProduct`` of ``Muls``. It currently only works for relatively simple cases where the initial ``Mul`` only has scalars and raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. Parameters ========== e : Expr A ``Mul`` of ``TensorProduct``s to be simplified. Returns ======= e : Expr A ``TensorProduct`` of ``Mul``s. Examples ======== This is an example of the type of simplification that this function performs:: >>> from sympy.physics.quantum.tensorproduct import tensor_product_simp_Mul, TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp_Mul(e) (A*C)x(B*D) """ # TODO: This won't work with Muls that have other composites of # TensorProducts, like an Add, Pow, Commutator, etc. # TODO: This only works for the equivalent of single Qbit gates. if not isinstance(e, Mul): return e c_part, nc_part = split_commutative_parts(e) n_nc = len(nc_part) if n_nc == 0 or n_nc == 1: return e elif e.has(TensorProduct): current = nc_part[0] if not isinstance(current, TensorProduct): raise TypeError('TensorProduct expected, got: %r' % current) n_terms = len(current.args) new_args = list(current.args) for next in nc_part[1:]: # TODO: check the hilbert spaces of next and current here. if isinstance(next, TensorProduct): if n_terms != len(next.args): raise QuantumError( 'TensorProducts of different lengths: %r and %r' % \ (current, next) ) for i in range(len(new_args)): new_args[i] = new_args[i]*next.args[i] else: # this won't quite work as we don't want next in the TensorProduct for i in range(len(new_args)): new_args[i] = new_args[i]*next current = next return Mul(*c_part)*TensorProduct(*new_args) else: return e def tensor_product_simp(e, **hints): """Try to simplify and combine TensorProducts. In general this will try to pull expressions inside of ``TensorProducts``. It currently only works for relatively simple cases where the products have only scalars, raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. It is best to see what it does by showing examples. Examples ======== >>> from sympy.physics.quantum import tensor_product_simp >>> from sympy.physics.quantum import TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) First see what happens to products of tensor products:: >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp(e) (A*C)x(B*D) This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well:: >>> tensor_product_simp(e**2) (A*C)x(B*D)**2 """ if isinstance(e, Add): return Add(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, Pow): return tensor_product_simp(e.base)**e.exp elif isinstance(e, Mul): return tensor_product_simp_Mul(e) elif isinstance(e, Commutator): return Commutator(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, AntiCommutator): return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args]) else: return e
bsd-3-clause
harisbal/pandas
pandas/core/arrays/interval.py
3
38927
import textwrap import numpy as np from operator import le, lt from pandas._libs.interval import (Interval, IntervalMixin, intervals_to_interval_bounds) from pandas.compat import add_metaclass from pandas.compat.numpy import function as nv import pandas.core.common as com from pandas.core.config import get_option from pandas.core.dtypes.cast import maybe_convert_platform from pandas.core.dtypes.common import (is_categorical_dtype, is_float_dtype, is_integer_dtype, is_interval_dtype, is_scalar, is_string_dtype, is_datetime64_any_dtype, is_timedelta64_dtype, is_interval, pandas_dtype) from pandas.core.dtypes.dtypes import IntervalDtype from pandas.core.dtypes.generic import (ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCIntervalIndex, ABCInterval) from pandas.core.dtypes.missing import isna, notna from pandas.core.indexes.base import Index, ensure_index from pandas.util._decorators import Appender from pandas.util._doctools import _WritableDoc from . import ExtensionArray, Categorical _VALID_CLOSED = {'left', 'right', 'both', 'neither'} _interval_shared_docs = {} # TODO(jschendel) remove constructor key when IntervalArray is public (GH22860) _shared_docs_kwargs = dict( klass='IntervalArray', constructor='pd.core.arrays.IntervalArray', name='' ) _interval_shared_docs['class'] = """ %(summary)s .. versionadded:: %(versionadded)s .. warning:: The indexing behaviors are provisional and may change in a future version of pandas. Parameters ---------- data : array-like (1-dimensional) Array-like containing Interval objects from which to build the %(klass)s. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. dtype : dtype or None, default None If None, dtype will be inferred. .. versionadded:: 0.23.0 copy : bool, default False Copy the input data. %(name)s\ verify_integrity : bool, default True Verify that the %(klass)s is valid. Attributes ---------- left right closed mid length values is_non_overlapping_monotonic Methods ------- from_arrays from_tuples from_breaks set_closed %(extra_methods)s\ %(examples)s\ Notes ------ See the `user guide <http://pandas.pydata.org/pandas-docs/stable/advanced.html#intervalindex>`_ for more. See Also -------- Index : The base pandas Index type Interval : A bounded slice-like interval; the elements of an %(klass)s interval_range : Function to create a fixed frequency IntervalIndex cut : Bin values into discrete Intervals qcut : Bin values into equal-sized Intervals based on rank or sample quantiles """ # TODO(jschendel) use a more direct call in Examples when made public (GH22860) @Appender(_interval_shared_docs['class'] % dict( klass="IntervalArray", summary="Pandas array for interval data that are closed on the same side.", versionadded="0.24.0", name='', extra_methods='', examples=textwrap.dedent("""\ Examples -------- A new ``IntervalArray`` can be constructed directly from an array-like of ``Interval`` objects: >>> pd.core.arrays.IntervalArray([pd.Interval(0, 1), pd.Interval(1, 5)]) IntervalArray([(0, 1], (1, 5]], closed='right', dtype='interval[int64]') It may also be constructed using one of the constructor methods: :meth:`IntervalArray.from_arrays`, :meth:`IntervalArray.from_breaks`, and :meth:`IntervalArray.from_tuples`. """), )) @add_metaclass(_WritableDoc) class IntervalArray(IntervalMixin, ExtensionArray): dtype = IntervalDtype() ndim = 1 can_hold_na = True _na_value = _fill_value = np.nan def __new__(cls, data, closed=None, dtype=None, copy=False, verify_integrity=True): if isinstance(data, ABCSeries) and is_interval_dtype(data): data = data.values if isinstance(data, (cls, ABCIntervalIndex)): left = data.left right = data.right closed = closed or data.closed else: # don't allow scalars if is_scalar(data): msg = ("{}(...) must be called with a collection of some kind," " {} was passed") raise TypeError(msg.format(cls.__name__, data)) # might need to convert empty or purely na data data = maybe_convert_platform_interval(data) left, right, infer_closed = intervals_to_interval_bounds( data, validate_closed=closed is None) closed = closed or infer_closed return cls._simple_new(left, right, closed, copy=copy, dtype=dtype, verify_integrity=verify_integrity) @classmethod def _simple_new(cls, left, right, closed=None, copy=False, dtype=None, verify_integrity=True): result = IntervalMixin.__new__(cls) closed = closed or 'right' left = ensure_index(left, copy=copy) right = ensure_index(right, copy=copy) if dtype is not None: # GH 19262: dtype must be an IntervalDtype to override inferred dtype = pandas_dtype(dtype) if not is_interval_dtype(dtype): msg = 'dtype must be an IntervalDtype, got {dtype}' raise TypeError(msg.format(dtype=dtype)) elif dtype.subtype is not None: left = left.astype(dtype.subtype) right = right.astype(dtype.subtype) # coerce dtypes to match if needed if is_float_dtype(left) and is_integer_dtype(right): right = right.astype(left.dtype) elif is_float_dtype(right) and is_integer_dtype(left): left = left.astype(right.dtype) if type(left) != type(right): msg = ('must not have differing left [{ltype}] and right ' '[{rtype}] types') raise ValueError(msg.format(ltype=type(left).__name__, rtype=type(right).__name__)) elif is_categorical_dtype(left.dtype) or is_string_dtype(left.dtype): # GH 19016 msg = ('category, object, and string subtypes are not supported ' 'for IntervalArray') raise TypeError(msg) elif isinstance(left, ABCPeriodIndex): msg = 'Period dtypes are not supported, use a PeriodIndex instead' raise ValueError(msg) elif (isinstance(left, ABCDatetimeIndex) and str(left.tz) != str(right.tz)): msg = ("left and right must have the same time zone, got " "'{left_tz}' and '{right_tz}'") raise ValueError(msg.format(left_tz=left.tz, right_tz=right.tz)) result._left = left result._right = right result._closed = closed if verify_integrity: result._validate() return result @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return cls(scalars, dtype=dtype, copy=copy) @classmethod def _from_factorized(cls, values, original): return cls(values, closed=original.closed) _interval_shared_docs['from_breaks'] = """ Construct an %(klass)s from an array of splits. Parameters ---------- breaks : array-like (1-dimensional) Left and right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. copy : boolean, default False copy the data dtype : dtype or None, default None If None, dtype will be inferred .. versionadded:: 0.23.0 Examples -------- >>> pd.%(klass)s.from_breaks([0, 1, 2, 3]) %(klass)s([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex %(klass)s.from_arrays : Construct from a left and right array %(klass)s.from_tuples : Construct from a sequence of tuples """ @classmethod @Appender(_interval_shared_docs['from_breaks'] % _shared_docs_kwargs) def from_breaks(cls, breaks, closed='right', copy=False, dtype=None): breaks = maybe_convert_platform_interval(breaks) return cls.from_arrays(breaks[:-1], breaks[1:], closed, copy=copy, dtype=dtype) _interval_shared_docs['from_arrays'] = """ Construct from two arrays defining the left and right bounds. Parameters ---------- left : array-like (1-dimensional) Left bounds for each interval. right : array-like (1-dimensional) Right bounds for each interval. closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. copy : boolean, default False Copy the data. dtype : dtype, optional If None, dtype will be inferred. .. versionadded:: 0.23.0 Returns ------- %(klass)s Notes ----- Each element of `left` must be less than or equal to the `right` element at the same position. If an element is missing, it must be missing in both `left` and `right`. A TypeError is raised when using an unsupported type for `left` or `right`. At the moment, 'category', 'object', and 'string' subtypes are not supported. Raises ------ ValueError When a value is missing in only one of `left` or `right`. When a value in `left` is greater than the corresponding value in `right`. See Also -------- interval_range : Function to create a fixed frequency IntervalIndex. %(klass)s.from_breaks : Construct an %(klass)s from an array of splits. %(klass)s.from_tuples : Construct an %(klass)s from an array-like of tuples. Examples -------- >>> %(klass)s.from_arrays([0, 1, 2], [1, 2, 3]) %(klass)s([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]') """ @classmethod @Appender(_interval_shared_docs['from_arrays'] % _shared_docs_kwargs) def from_arrays(cls, left, right, closed='right', copy=False, dtype=None): left = maybe_convert_platform_interval(left) right = maybe_convert_platform_interval(right) return cls._simple_new(left, right, closed, copy=copy, dtype=dtype, verify_integrity=True) _interval_shared_docs['from_intervals'] = """ Construct an %(klass)s from a 1d array of Interval objects .. deprecated:: 0.23.0 Parameters ---------- data : array-like (1-dimensional) Array of Interval objects. All intervals must be closed on the same sides. copy : boolean, default False by-default copy the data, this is compat only and ignored dtype : dtype or None, default None If None, dtype will be inferred ..versionadded:: 0.23.0 Examples -------- >>> pd.%(klass)s.from_intervals([pd.Interval(0, 1), ... pd.Interval(1, 2)]) %(klass)s([(0, 1], (1, 2]] closed='right', dtype='interval[int64]') The generic Index constructor work identically when it infers an array of all intervals: >>> pd.Index([pd.Interval(0, 1), pd.Interval(1, 2)]) %(klass)s([(0, 1], (1, 2]] closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex %(klass)s.from_arrays : Construct an %(klass)s from a left and right array %(klass)s.from_breaks : Construct an %(klass)s from an array of splits %(klass)s.from_tuples : Construct an %(klass)s from an array-like of tuples """ _interval_shared_docs['from_tuples'] = """ Construct an %(klass)s from an array-like of tuples Parameters ---------- data : array-like (1-dimensional) Array of tuples closed : {'left', 'right', 'both', 'neither'}, default 'right' Whether the intervals are closed on the left-side, right-side, both or neither. copy : boolean, default False by-default copy the data, this is compat only and ignored dtype : dtype or None, default None If None, dtype will be inferred ..versionadded:: 0.23.0 Examples -------- >>> pd.%(klass)s.from_tuples([(0, 1), (1, 2)]) %(klass)s([(0, 1], (1, 2]], closed='right', dtype='interval[int64]') See Also -------- interval_range : Function to create a fixed frequency IntervalIndex %(klass)s.from_arrays : Construct an %(klass)s from a left and right array %(klass)s.from_breaks : Construct an %(klass)s from an array of splits """ @classmethod @Appender(_interval_shared_docs['from_tuples'] % _shared_docs_kwargs) def from_tuples(cls, data, closed='right', copy=False, dtype=None): if len(data): left, right = [], [] else: # ensure that empty data keeps input dtype left = right = data for d in data: if isna(d): lhs = rhs = np.nan else: name = cls.__name__ try: # need list of length 2 tuples, e.g. [(0, 1), (1, 2), ...] lhs, rhs = d except ValueError: msg = ('{name}.from_tuples requires tuples of ' 'length 2, got {tpl}').format(name=name, tpl=d) raise ValueError(msg) except TypeError: msg = ('{name}.from_tuples received an invalid ' 'item, {tpl}').format(name=name, tpl=d) raise TypeError(msg) left.append(lhs) right.append(rhs) return cls.from_arrays(left, right, closed, copy=False, dtype=dtype) def _validate(self): """Verify that the IntervalArray is valid. Checks that * closed is valid * left and right match lengths * left and right have the same missing values * left is always below right """ if self.closed not in _VALID_CLOSED: raise ValueError("invalid option for 'closed': {closed}" .format(closed=self.closed)) if len(self.left) != len(self.right): raise ValueError('left and right must have the same length') left_mask = notna(self.left) right_mask = notna(self.right) if not (left_mask == right_mask).all(): raise ValueError('missing values must be missing in the same ' 'location both left and right sides') if not (self.left[left_mask] <= self.right[left_mask]).all(): raise ValueError('left side of interval must be <= right side') # --------- # Interface # --------- def __iter__(self): return iter(np.asarray(self)) def __len__(self): return len(self.left) def __getitem__(self, value): left = self.left[value] right = self.right[value] # scalar if not isinstance(left, Index): if isna(left): return self._fill_value return Interval(left, right, self.closed) return self._shallow_copy(left, right) def __setitem__(self, key, value): # na value: need special casing to set directly on numpy arrays needs_float_conversion = False if is_scalar(value) and isna(value): if is_integer_dtype(self.dtype.subtype): # can't set NaN on a numpy integer array needs_float_conversion = True elif is_datetime64_any_dtype(self.dtype.subtype): # need proper NaT to set directly on the numpy array value = np.datetime64('NaT') elif is_timedelta64_dtype(self.dtype.subtype): # need proper NaT to set directly on the numpy array value = np.timedelta64('NaT') value_left, value_right = value, value # scalar interval elif is_interval_dtype(value) or isinstance(value, ABCInterval): self._check_closed_matches(value, name="value") value_left, value_right = value.left, value.right else: # list-like of intervals try: array = IntervalArray(value) value_left, value_right = array.left, array.right except TypeError: # wrong type: not interval or NA msg = "'value' should be an interval type, got {} instead." raise TypeError(msg.format(type(value))) # Need to ensure that left and right are updated atomically, so we're # forced to copy, update the copy, and swap in the new values. left = self.left.copy(deep=True) if needs_float_conversion: left = left.astype('float') left.values[key] = value_left self._left = left right = self.right.copy(deep=True) if needs_float_conversion: right = right.astype('float') right.values[key] = value_right self._right = right def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should be either Interval objects or NA/NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None (Not implemented yet for IntervalArray) Method to use for filling holes in reindexed Series limit : int, default None (Not implemented yet for IntervalArray) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : IntervalArray with NA/NaN filled """ if method is not None: raise TypeError('Filling by method is not supported for ' 'IntervalArray.') if limit is not None: raise TypeError('limit is not supported for IntervalArray.') if not isinstance(value, ABCInterval): msg = ("'IntervalArray.fillna' only supports filling with a " "scalar 'pandas.Interval'. Got a '{}' instead." .format(type(value).__name__)) raise TypeError(msg) value = getattr(value, '_values', value) self._check_closed_matches(value, name="value") left = self.left.fillna(value=value.left) right = self.right.fillna(value=value.right) return self._shallow_copy(left, right) @property def dtype(self): return IntervalDtype(self.left.dtype) def astype(self, dtype, copy=True): """ Cast to an ExtensionArray or NumPy array with dtype 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- array : ExtensionArray or ndarray ExtensionArray or NumPy ndarray with 'dtype' for its dtype. """ dtype = pandas_dtype(dtype) if is_interval_dtype(dtype): if dtype == self.dtype: return self.copy() if copy else self # need to cast to different subtype try: new_left = self.left.astype(dtype.subtype) new_right = self.right.astype(dtype.subtype) except TypeError: msg = ('Cannot convert {dtype} to {new_dtype}; subtypes are ' 'incompatible') raise TypeError(msg.format(dtype=self.dtype, new_dtype=dtype)) return self._shallow_copy(new_left, new_right) elif is_categorical_dtype(dtype): return Categorical(np.asarray(self)) # TODO: This try/except will be repeated. try: return np.asarray(self).astype(dtype, copy=copy) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) @classmethod def _concat_same_type(cls, to_concat): """ Concatenate multiple IntervalArray Parameters ---------- to_concat : sequence of IntervalArray Returns ------- IntervalArray """ closed = {interval.closed for interval in to_concat} if len(closed) != 1: raise ValueError("Intervals must all be closed on the same side.") closed = closed.pop() left = np.concatenate([interval.left for interval in to_concat]) right = np.concatenate([interval.right for interval in to_concat]) return cls._simple_new(left, right, closed=closed, copy=False) def _shallow_copy(self, left=None, right=None, closed=None): """ Return a new IntervalArray with the replacement attributes Parameters ---------- left : array-like Values to be used for the left-side of the the intervals. If None, the existing left and right values will be used. right : array-like Values to be used for the right-side of the the intervals. If None and left is IntervalArray-like, the left and right of the IntervalArray-like will be used. closed : {'left', 'right', 'both', 'neither'}, optional Whether the intervals are closed on the left-side, right-side, both or neither. If None, the existing closed will be used. """ if left is None: # no values passed left, right = self.left, self.right elif right is None: # only single value passed, could be an IntervalArray # or array of Intervals if not isinstance(left, (type(self), ABCIntervalIndex)): left = type(self)(left) left, right = left.left, left.right else: # both left and right are values pass closed = closed or self.closed return self._simple_new( left, right, closed=closed, verify_integrity=False) def copy(self, deep=False): """ Return a copy of the array. Parameters ---------- deep : bool, default False Also copy the underlying data backing this array. Returns ------- IntervalArray """ left = self.left.copy(deep=True) if deep else self.left right = self.right.copy(deep=True) if deep else self.right closed = self.closed # TODO: Could skip verify_integrity here. return type(self).from_arrays(left, right, closed=closed) def _formatting_values(self): return np.asarray(self) def isna(self): return isna(self.left) @property def nbytes(self): return self.left.nbytes + self.right.nbytes @property def size(self): # Avoid materializing self.values return self.left.size @property def shape(self): return self.left.shape def take(self, indices, allow_fill=False, fill_value=None, axis=None, **kwargs): """ Take elements from the IntervalArray. Parameters ---------- indices : sequence of integers Indices to be taken. allow_fill : bool, default False How to handle negative values in `indices`. * False: negative values in `indices` indicate positional indices from the right (the default). This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values. These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. fill_value : Interval or NA, optional Fill value to use for NA-indices when `allow_fill` is True. This may be ``None``, in which case the default NA value for the type, ``self.dtype.na_value``, is used. For many ExtensionArrays, there will be two representations of `fill_value`: a user-facing "boxed" scalar, and a low-level physical NA value. `fill_value` should be the user-facing version, and the implementation should handle translating that to the physical version for processing the take if necessary. axis : any, default None Present for compat with IntervalIndex; does nothing. Returns ------- IntervalArray Raises ------ IndexError When the indices are out of bounds for the array. ValueError When `indices` contains negative values other than ``-1`` and `allow_fill` is True. """ from pandas.core.algorithms import take nv.validate_take(tuple(), kwargs) fill_left = fill_right = fill_value if allow_fill: if fill_value is None: fill_left = fill_right = self.left._na_value elif is_interval(fill_value): self._check_closed_matches(fill_value, name='fill_value') fill_left, fill_right = fill_value.left, fill_value.right elif not is_scalar(fill_value) and notna(fill_value): msg = ("'IntervalArray.fillna' only supports filling with a " "'scalar pandas.Interval or NA'. Got a '{}' instead." .format(type(fill_value).__name__)) raise ValueError(msg) left_take = take(self.left, indices, allow_fill=allow_fill, fill_value=fill_left) right_take = take(self.right, indices, allow_fill=allow_fill, fill_value=fill_right) return self._shallow_copy(left_take, right_take) def value_counts(self, dropna=True): """ Returns a Series containing counts of each interval. Parameters ---------- dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ # TODO: implement this is a non-naive way! from pandas.core.algorithms import value_counts return value_counts(np.asarray(self), dropna=dropna) # Formatting def _format_data(self): # TODO: integrate with categorical and make generic # name argument is unused here; just for compat with base / categorical n = len(self) max_seq_items = min((get_option( 'display.max_seq_items') or n) // 10, 10) formatter = str if n == 0: summary = '[]' elif n == 1: first = formatter(self[0]) summary = '[{first}]'.format(first=first) elif n == 2: first = formatter(self[0]) last = formatter(self[-1]) summary = '[{first}, {last}]'.format(first=first, last=last) else: if n > max_seq_items: n = min(max_seq_items // 2, 10) head = [formatter(x) for x in self[:n]] tail = [formatter(x) for x in self[-n:]] summary = '[{head} ... {tail}]'.format( head=', '.join(head), tail=', '.join(tail)) else: tail = [formatter(x) for x in self] summary = '[{tail}]'.format(tail=', '.join(tail)) return summary def __repr__(self): tpl = textwrap.dedent("""\ {cls}({data}, {lead}closed='{closed}', {lead}dtype='{dtype}')""") return tpl.format(cls=self.__class__.__name__, data=self._format_data(), lead=' ' * len(self.__class__.__name__) + ' ', closed=self.closed, dtype=self.dtype) def _format_space(self): space = ' ' * (len(self.__class__.__name__) + 1) return "\n{space}".format(space=space) @property def left(self): """ Return the left endpoints of each Interval in the IntervalArray as an Index """ return self._left @property def right(self): """ Return the right endpoints of each Interval in the IntervalArray as an Index """ return self._right @property def closed(self): """ Whether the intervals are closed on the left-side, right-side, both or neither """ return self._closed _interval_shared_docs['set_closed'] = """ Return an %(klass)s identical to the current one, but closed on the specified side .. versionadded:: 0.24.0 Parameters ---------- closed : {'left', 'right', 'both', 'neither'} Whether the intervals are closed on the left-side, right-side, both or neither. Returns ------- new_index : %(klass)s Examples -------- >>> index = pd.interval_range(0, 3) >>> index %(klass)s([(0, 1], (1, 2], (2, 3]] closed='right', dtype='interval[int64]') >>> index.set_closed('both') %(klass)s([[0, 1], [1, 2], [2, 3]] closed='both', dtype='interval[int64]') """ @Appender(_interval_shared_docs['set_closed'] % _shared_docs_kwargs) def set_closed(self, closed): if closed not in _VALID_CLOSED: msg = "invalid option for 'closed': {closed}" raise ValueError(msg.format(closed=closed)) return self._shallow_copy(closed=closed) @property def length(self): """ Return an Index with entries denoting the length of each Interval in the IntervalArray """ try: return self.right - self.left except TypeError: # length not defined for some types, e.g. string msg = ('IntervalArray contains Intervals without defined length, ' 'e.g. Intervals with string endpoints') raise TypeError(msg) @property def mid(self): """ Return the midpoint of each Interval in the IntervalArray as an Index """ try: return 0.5 * (self.left + self.right) except TypeError: # datetime safe version return self.left + 0.5 * self.length @property def is_non_overlapping_monotonic(self): """ Return True if the IntervalArray is non-overlapping (no Intervals share points) and is either monotonic increasing or monotonic decreasing, else False """ # must be increasing (e.g., [0, 1), [1, 2), [2, 3), ... ) # or decreasing (e.g., [-1, 0), [-2, -1), [-3, -2), ...) # we already require left <= right # strict inequality for closed == 'both'; equality implies overlapping # at a point when both sides of intervals are included if self.closed == 'both': return bool((self.right[:-1] < self.left[1:]).all() or (self.left[:-1] > self.right[1:]).all()) # non-strict inequality when closed != 'both'; at least one side is # not included in the intervals, so equality does not imply overlapping return bool((self.right[:-1] <= self.left[1:]).all() or (self.left[:-1] >= self.right[1:]).all()) # Conversion def __array__(self, dtype=None): """ Return the IntervalArray's data as a numpy array of Interval objects (with dtype='object') """ left = self.left right = self.right mask = self.isna() closed = self._closed result = np.empty(len(left), dtype=object) for i in range(len(left)): if mask[i]: result[i] = np.nan else: result[i] = Interval(left[i], right[i], closed) return result _interval_shared_docs['to_tuples'] = """\ Return an %(return_type)s of tuples of the form (left, right) Parameters ---------- na_tuple : boolean, default True Returns NA as a tuple if True, ``(nan, nan)``, or just as the NA value itself if False, ``nan``. ..versionadded:: 0.23.0 Returns ------- tuples: %(return_type)s %(examples)s\ """ @Appender(_interval_shared_docs['to_tuples'] % dict( return_type='ndarray', examples='', )) def to_tuples(self, na_tuple=True): tuples = com.asarray_tuplesafe(zip(self.left, self.right)) if not na_tuple: # GH 18756 tuples = np.where(~self.isna(), tuples, np.nan) return tuples def repeat(self, repeats, **kwargs): """ Repeat elements of an IntervalArray. Returns a new IntervalArray where each element of the current IntervalArray is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- IntervalArray Newly created IntervalArray with repeated elements. See Also -------- Index.repeat : Equivalent function for Index Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation """ left_repeat = self.left.repeat(repeats, **kwargs) right_repeat = self.right.repeat(repeats, **kwargs) return self._shallow_copy(left=left_repeat, right=right_repeat) _interval_shared_docs['overlaps'] = """ Check elementwise if an Interval overlaps the values in the %(klass)s. Two intervals overlap if they share a common point, including closed endpoints. Intervals that only have an open endpoint in common do not overlap. .. versionadded:: 0.24.0 Parameters ---------- other : Interval Interval to check against for an overlap. Returns ------- ndarray Boolean array positionally indicating where an overlap occurs. Examples -------- >>> intervals = %(constructor)s.from_tuples([(0, 1), (1, 3), (2, 4)]) >>> intervals %(klass)s([(0, 1], (1, 3], (2, 4]], closed='right', dtype='interval[int64]') >>> intervals.overlaps(pd.Interval(0.5, 1.5)) array([ True, True, False]) Intervals that share closed endpoints overlap: >>> intervals.overlaps(pd.Interval(1, 3, closed='left')) array([ True, True, True]) Intervals that only have an open endpoint in common do not overlap: >>> intervals.overlaps(pd.Interval(1, 2, closed='right')) array([False, True, False]) See Also -------- Interval.overlaps : Check whether two Interval objects overlap. """ @Appender(_interval_shared_docs['overlaps'] % _shared_docs_kwargs) def overlaps(self, other): if isinstance(other, (IntervalArray, ABCIntervalIndex)): raise NotImplementedError elif not isinstance(other, Interval): msg = '`other` must be Interval-like, got {other}' raise TypeError(msg.format(other=type(other).__name__)) # equality is okay if both endpoints are closed (overlap at a point) op1 = le if (self.closed_left and other.closed_right) else lt op2 = le if (other.closed_left and self.closed_right) else lt # overlaps is equivalent negation of two interval being disjoint: # disjoint = (A.left > B.right) or (B.left > A.right) # (simplifying the negation allows this to be done in less operations) return op1(self.left, other.right) & op2(other.left, self.right) def maybe_convert_platform_interval(values): """ Try to do platform conversion, with special casing for IntervalArray. Wrapper around maybe_convert_platform that alters the default return dtype in certain cases to be compatible with IntervalArray. For example, empty lists return with integer dtype instead of object dtype, which is prohibited for IntervalArray. Parameters ---------- values : array-like Returns ------- array """ if isinstance(values, (list, tuple)) and len(values) == 0: # GH 19016 # empty lists/tuples get object dtype by default, but this is not # prohibited for IntervalArray, so coerce to integer instead return np.array([], dtype=np.int64) elif is_categorical_dtype(values): values = np.asarray(values) return maybe_convert_platform(values)
bsd-3-clause
Vvucinic/Wander
venv_2_7/lib/python2.7/site-packages/pandas/tseries/period.py
9
37251
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta import numpy as np import pandas.tseries.frequencies as frequencies from pandas.tseries.frequencies import get_freq_code as _gfc from pandas.tseries.index import DatetimeIndex, Int64Index, Index from pandas.tseries.base import DatelikeOps, DatetimeIndexOpsMixin from pandas.tseries.tools import parse_time_string import pandas.tseries.offsets as offsets from pandas._period import Period import pandas._period as period from pandas._period import ( get_period_field_arr, _validate_end_alias, _quarter_to_myear, ) import pandas.core.common as com from pandas.core.common import (isnull, _INT64_DTYPE, _maybe_box, _values_from_object, ABCSeries, is_integer, is_float, is_object_dtype, is_float_dtype) from pandas import compat from pandas.util.decorators import cache_readonly from pandas.lib import Timestamp, Timedelta import pandas.lib as lib import pandas.tslib as tslib import pandas.algos as _algos from pandas.compat import zip, u def _field_accessor(name, alias, docstring=None): def f(self): base, mult = _gfc(self.freq) return get_period_field_arr(alias, self.values, base) f.__name__ = name f.__doc__ = docstring return property(f) def _get_ordinals(data, freq): f = lambda x: Period(x, freq=freq).ordinal if isinstance(data[0], Period): return period.extract_ordinals(data, freq) else: return lib.map_infer(data, f) def dt64arr_to_periodarr(data, freq, tz): if data.dtype != np.dtype('M8[ns]'): raise ValueError('Wrong dtype: %s' % data.dtype) base, mult = _gfc(freq) return period.dt64arr_to_periodarr(data.view('i8'), base, tz) # --- Period index sketch _DIFFERENT_FREQ_INDEX = period._DIFFERENT_FREQ_INDEX def _period_index_cmp(opname, nat_result=False): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if isinstance(other, Period): func = getattr(self.values, opname) other_base, _ = _gfc(other.freq) if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise ValueError(msg) result = func(other.ordinal) elif isinstance(other, PeriodIndex): if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise ValueError(msg) result = getattr(self.values, opname)(other.values) mask = (com.mask_missing(self.values, tslib.iNaT) | com.mask_missing(other.values, tslib.iNaT)) if mask.any(): result[mask] = nat_result return result else: other = Period(other, freq=self.freq) func = getattr(self.values, opname) result = func(other.ordinal) if other.ordinal == tslib.iNaT: result.fill(nat_result) mask = self.values == tslib.iNaT if mask.any(): result[mask] = nat_result return result return wrapper class PeriodIndex(DatelikeOps, DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc. A value of 1 is the period containing the Gregorian proleptic datetime Jan 1, 0001 00:00:00. This ordinal representation is from the scikits.timeseries project. For instance, # construct period for day 1/1/1 and get the first second i = Period(year=1,month=1,day=1,freq='D').asfreq('S', 'S') i.ordinal ===> 1 Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1-dimensional), optional Optional period-like data to construct index with dtype : NumPy dtype (default: i8) copy : bool Make a copy of input ndarray freq : string or period object, optional One of pandas period strings or corresponding objects start : starting value, period-like, optional If data is None, used as the start point in generating regular period data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end value, period-like, optional If periods is none, generated index will extend to first conforming period on or just past end argument year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods Examples -------- >>> idx = PeriodIndex(year=year_arr, quarter=q_arr) >>> idx2 = PeriodIndex(start='2000', end='2010', freq='A') """ _box_scalars = True _typ = 'periodindex' _attributes = ['name','freq'] _datetimelike_ops = ['year','month','day','hour','minute','second', 'weekofyear','week','dayofweek','weekday','dayofyear','quarter', 'qyear', 'freq', 'days_in_month', 'daysinmonth'] _is_numeric_dtype = False freq = None __eq__ = _period_index_cmp('__eq__') __ne__ = _period_index_cmp('__ne__', nat_result=True) __lt__ = _period_index_cmp('__lt__') __gt__ = _period_index_cmp('__gt__') __le__ = _period_index_cmp('__le__') __ge__ = _period_index_cmp('__ge__') def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, **kwargs): if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): raise ValueError('Periods must be a number, got %s' % str(periods)) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, kwargs) else: ordinal, freq = cls._from_arraylike(data, freq, tz) data = np.array(ordinal, dtype=np.int64, copy=False) return cls._simple_new(data, name=name, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): field_count = len(fields) if com._count_not_none(start, end) > 0: if field_count > 0: raise ValueError('Can either instantiate from fields ' 'or endpoints, but not both') subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError('Not enough parameters to construct ' 'Period range') return subarr, freq @classmethod def _from_arraylike(cls, data, freq, tz): if not isinstance(data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if np.isscalar(data) or isinstance(data, Period): raise ValueError('PeriodIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) try: data = com._ensure_int64(data) if freq is None: raise ValueError('freq not specified') data = np.array([Period(x, freq=freq).ordinal for x in data], dtype=np.int64) except (TypeError, ValueError): data = com._ensure_object(data) if freq is None and len(data) > 0: freq = getattr(data[0], 'freq', None) if freq is None: raise ValueError('freq not specified and cannot be ' 'inferred from first element') data = _get_ordinals(data, freq) else: if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: freq = data.freq data = data.values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data.values, base1, base2, 1) else: if freq is None and len(data) > 0: freq = getattr(data[0], 'freq', None) if freq is None: raise ValueError('freq not specified and cannot be ' 'inferred from first element') if data.dtype != np.int64: if np.issubdtype(data.dtype, np.datetime64): data = dt64arr_to_periodarr(data, freq, tz) else: try: data = com._ensure_int64(data) except (TypeError, ValueError): data = com._ensure_object(data) data = _get_ordinals(data, freq) return data, freq @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): if not getattr(values,'dtype',None): values = np.array(values,copy=False) if is_object_dtype(values): return PeriodIndex(values, name=name, freq=freq, **kwargs) result = object.__new__(cls) result._data = values result.name = name if freq is None: raise ValueError('freq is not specified') result.freq = Period._maybe_convert_freq(freq) result._reset_identity() return result def _shallow_copy(self, values=None, infer=False, **kwargs): """ we always want to return a PeriodIndex """ return super(PeriodIndex, self)._shallow_copy(values=values, infer=False, **kwargs) def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ return PeriodIndex([item], **self._get_attributes_dict()) @property def _na_value(self): return self._box_func(tslib.iNaT) def __contains__(self, key): if not isinstance(key, Period) or key.freq != self.freq: if isinstance(key, compat.string_types): try: self.get_loc(key) return True except Exception: return False return False return key.ordinal in self._engine def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if (func is np.add): return self._add_delta(context[1][1]) elif (func is np.subtract): return self._add_delta(-context[1][1]) elif isinstance(func, np.ufunc): if 'M->M' not in func.types: msg = "ufunc '{0}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg.format(func.__name__)) if com.is_bool_dtype(result): return result return PeriodIndex(result, freq=self.freq, name=self.name) @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def _convert_for_op(self): """ Convert value to be insertable to ndarray """ return self._box_func(value) def _to_embed(self, keep_tz=False): """ return an array repr of this object, potentially casting to object """ return self.asobject.values @property def _formatter_func(self): return lambda x: "'%s'" % x def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) locs = self.values[mask].searchsorted(where_idx.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where_idx.values < self.values[first])] = -1 return result def _array_values(self): return self.asobject def astype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return Index(np.array(list(self), dtype), dtype) elif dtype == _INT64_DTYPE: return Index(self.values, dtype) raise ValueError('Cannot cast PeriodIndex to dtype %s' % dtype) def searchsorted(self, key, side='left'): if isinstance(key, Period): if key.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, key.freqstr) raise ValueError(msg) key = key.ordinal elif isinstance(key, compat.string_types): key = Period(key, freq=self.freq).ordinal return self.values.searchsorted(key, side=side) @property def is_all_dates(self): return True @property def is_full(self): """ Returns True if there are any missing periods from start to end """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError('Index is not monotonic') values = self.values return ((values[1:] - values[:-1]) < 2).all() def asfreq(self, freq=None, how='E'): """ Convert the PeriodIndex to the specified frequency `freq`. Parameters ---------- freq : str a frequency how : str {'E', 'S'} 'E', 'END', or 'FINISH' for end, 'S', 'START', or 'BEGIN' for start. Whether the elements should be aligned to the end or start within pa period. January 31st ('END') vs. Janury 1st ('START') for example. Returns ------- new : PeriodIndex with the new frequency Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx <class 'pandas.tseries.period.PeriodIndex'> [2010, ..., 2015] Length: 6, Freq: A-DEC >>> pidx.asfreq('M') <class 'pandas.tseries.period.PeriodIndex'> [2010-12, ..., 2015-12] Length: 6, Freq: M >>> pidx.asfreq('M', how='S') <class 'pandas.tseries.period.PeriodIndex'> [2010-01, ..., 2015-01] Length: 6, Freq: M """ how = _validate_end_alias(how) freq = frequencies.get_standard_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == 'E' if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period.period_asfreq_arr(ordinal, base1, base2, end) if self.hasnans: mask = asi8 == tslib.iNaT new_data[mask] = tslib.iNaT return self._simple_new(new_data, self.name, freq=freq) def to_datetime(self, dayfirst=False): return self.to_timestamp() year = _field_accessor('year', 0, "The year of the period") month = _field_accessor('month', 3, "The month as January=1, December=12") day = _field_accessor('day', 4, "The days of the period") hour = _field_accessor('hour', 5, "The hour of the period") minute = _field_accessor('minute', 6, "The minute of the period") second = _field_accessor('second', 7, "The second of the period") weekofyear = _field_accessor('week', 8, "The week ordinal of the year") week = weekofyear dayofweek = _field_accessor('dayofweek', 10, "The day of the week with Monday=0, Sunday=6") weekday = dayofweek dayofyear = day_of_year = _field_accessor('dayofyear', 9, "The ordinal day of the year") quarter = _field_accessor('quarter', 2, "The quarter of the date") qyear = _field_accessor('qyear', 1) days_in_month = _field_accessor('days_in_month', 11, "The number of days in the month") daysinmonth = days_in_month def _get_object_array(self): freq = self.freq return np.array([ Period._from_ordinal(ordinal=x, freq=freq) for x in self.values], copy=False) def _mpl_repr(self): # how to represent ourselves to matplotlib return self._get_object_array() def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if (not hasattr(other, 'inferred_type') or other.inferred_type != 'int64'): try: other = PeriodIndex(other) except: return False return np.array_equal(self.asi8, other.asi8) def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeIndex Parameters ---------- freq : string or DateOffset, default 'D' for week or longer, 'S' otherwise Target frequency how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeIndex """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = frequencies.get_to_timestamp_base(base) base, mult = _gfc(freq) new_data = self.asfreq(freq, how) new_data = period.periodarr_to_dt64arr(new_data.values, base) return DatetimeIndex(new_data, freq='infer', name=self.name) def _maybe_convert_timedelta(self, other): if isinstance(other, (timedelta, np.timedelta64, offsets.Tick, Timedelta)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, offsets.Tick): nanos = tslib._delta_to_nanoseconds(other) offset_nanos = tslib._delta_to_nanoseconds(offset) if nanos % offset_nanos == 0: return nanos // offset_nanos elif isinstance(other, offsets.DateOffset): freqstr = frequencies.get_standard_freq(other) base = frequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n elif isinstance(other, np.ndarray): if com.is_integer_dtype(other): return other elif com.is_timedelta64_dtype(other): offset = frequencies.to_offset(self.freq) if isinstance(offset, offsets.Tick): nanos = tslib._delta_to_nanoseconds(other) offset_nanos = tslib._delta_to_nanoseconds(offset) if (nanos % offset_nanos).all() == 0: return nanos // offset_nanos msg = "Input has different freq from PeriodIndex(freq={0})" raise ValueError(msg.format(self.freqstr)) def _add_delta(self, other): ordinal_delta = self._maybe_convert_timedelta(other) return self.shift(ordinal_delta) def shift(self, n): """ Specialized shift which produces an PeriodIndex Parameters ---------- n : int Periods to shift by Returns ------- shifted : PeriodIndex """ mask = self.values == tslib.iNaT values = self.values + n * self.freq.n values[mask] = tslib.iNaT return PeriodIndex(data=values, name=self.name, freq=self.freq) @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return self.inferred_type @property def inferred_type(self): # b/c data is represented as ints make sure we can't have ambiguous # indexing return 'period' def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ s = _values_from_object(series) try: return _maybe_box(self, super(PeriodIndex, self).get_value(s, key), series, key) except (KeyError, IndexError): try: asdt, parsed, reso = parse_time_string(key, self.freq) grp = frequencies.Resolution.get_freq_group(reso) freqn = frequencies.get_freq_group(self.freq) vals = self.values # if our data is higher resolution than requested key, slice if grp < freqn: iv = Period(asdt, freq=(grp, 1)) ord1 = iv.asfreq(self.freq, how='S').ordinal ord2 = iv.asfreq(self.freq, how='E').ordinal if ord2 < vals[0] or ord1 > vals[-1]: raise KeyError(key) pos = np.searchsorted(self.values, [ord1, ord2]) key = slice(pos[0], pos[1] + 1) return series[key] elif grp == freqn: key = Period(asdt, freq=self.freq).ordinal return _maybe_box(self, self._engine.get_value(s, key), series, key) else: raise KeyError(key) except TypeError: pass key = Period(key, self.freq).ordinal return _maybe_box(self, self._engine.get_value(s, key), series, key) def get_indexer(self, target, method=None, limit=None, tolerance=None): if hasattr(target, 'freq') and target.freq != self.freq: raise ValueError('target and index have different freq: ' '(%s, %s)' % (target.freq, self.freq)) return Index.get_indexer(self, target, method, limit, tolerance) def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int """ try: return self._engine.get_loc(key) except KeyError: if is_integer(key): raise try: asdt, parsed, reso = parse_time_string(key, self.freq) key = asdt except TypeError: pass key = Period(key, freq=self.freq) try: return Index.get_loc(self, key.ordinal, method, tolerance) except KeyError: raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : string / None Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, compat.string_types): try: _, parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == 'left' else 1] except Exception: raise KeyError(label) elif is_integer(label) or is_float(label): self._invalid_indexer('slice',label) return label def _parsed_string_to_bounds(self, reso, parsed): if reso == 'year': t1 = Period(year=parsed.year, freq='A') elif reso == 'month': t1 = Period(year=parsed.year, month=parsed.month, freq='M') elif reso == 'quarter': q = (parsed.month - 1) // 3 + 1 t1 = Period(year=parsed.year, quarter=q, freq='Q-DEC') elif reso == 'day': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, freq='D') elif reso == 'hour': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, freq='H') elif reso == 'minute': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, freq='T') elif reso == 'second': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, second=parsed.second, freq='S') else: raise KeyError(key) return (t1.asfreq(self.freq, how='start'), t1.asfreq(self.freq, how='end')) def _get_string_slice(self, key): if not self.is_monotonic: raise ValueError('Partial indexing only valid for ' 'ordered time series') key, parsed, reso = parse_time_string(key, self.freq) grp = frequencies.Resolution.get_freq_group(reso) freqn = frequencies.get_freq_group(self.freq) if reso in ['day', 'hour', 'minute', 'second'] and not grp < freqn: raise KeyError(key) t1, t2 = self._parsed_string_to_bounds(reso, parsed) return slice(self.searchsorted(t1.ordinal, side='left'), self.searchsorted(t2.ordinal, side='right')) def _convert_tolerance(self, tolerance): tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance) return self._maybe_convert_timedelta(tolerance) def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ self._assert_can_do_setop(other) result = Int64Index.join(self, other, how=how, level=level, return_indexers=return_indexers) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) def _assert_can_do_setop(self, other): super(PeriodIndex, self)._assert_can_do_setop(other) if not isinstance(other, PeriodIndex): raise ValueError('can only call with other PeriodIndex-ed objects') if self.freq != other.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise ValueError(msg) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None result = self._apply_meta(result) result.name = name return result def _apply_meta(self, rawarr): if not isinstance(rawarr, PeriodIndex): rawarr = PeriodIndex(rawarr, freq=self.freq) return rawarr def __getitem__(self, key): getitem = self._data.__getitem__ if np.isscalar(key): val = getitem(key) return Period(ordinal=val, freq=self.freq) else: if com.is_bool_indexer(key): key = np.asarray(key) result = getitem(key) if result.ndim > 1: # MPL kludge # values = np.asarray(list(values), dtype=object) # return values.reshape(result.shape) return PeriodIndex(result, name=self.name, freq=self.freq) return PeriodIndex(result, name=self.name, freq=self.freq) def _format_native_types(self, na_rep=u('NaT'), date_format=None, **kwargs): values = np.array(list(self), dtype=object) mask = isnull(self.values) values[mask] = na_rep imask = ~mask if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: u('%s') % dt values[imask] = np.array([formatter(dt) for dt in values[imask]]) return values def take(self, indices, axis=0): """ Analogous to ndarray.take """ indices = com._ensure_platform_int(indices) taken = self.asi8.take(indices, axis=axis) return self._simple_new(taken, self.name, freq=self.freq) def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ name = self.name to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if isinstance(obj, Index) and obj.name != name: name = None break to_concat = self._ensure_compat_concat(to_concat) if isinstance(to_concat[0], PeriodIndex): if len(set([x.freq for x in to_concat])) > 1: # box to_concat = [x.asobject.values for x in to_concat] else: cat_values = np.concatenate([x.values for x in to_concat]) return PeriodIndex(cat_values, freq=self.freq, name=name) to_concat = [x.values if isinstance(x, Index) else x for x in to_concat] return Index(com._concat_compat(to_concat), name=name) def repeat(self, n): """ Return a new Index of the values repeated n times. See also -------- numpy.ndarray.repeat """ # overwrites method from DatetimeIndexOpsMixin return self._shallow_copy(self.values.repeat(n)) def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super(PeriodIndex, self).__setstate__(state) elif isinstance(state, tuple): # < 0.15 compat if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backcompat self.freq = Period._maybe_convert_freq(own_state[1]) else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(self, state) self._data = data else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def tz_convert(self, tz): """ Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns ------- normalized : DatetimeIndex Note ---- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") def tz_localize(self, tz, infer_dst=False): """ Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. infer_dst : boolean, default False Attempt to infer fall dst-transition hours based on order Returns ------- localized : DatetimeIndex Note ---- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") PeriodIndex._add_numeric_methods_disabled() PeriodIndex._add_logical_methods_disabled() PeriodIndex._add_datetimelike_methods() def _get_ordinal_range(start, end, periods, freq, mult=1): if com._count_not_none(start, end, periods) < 2: raise ValueError('Must specify 2 of start, end, periods') if freq is not None: _, mult = _gfc(freq) if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError('Start and end must have same freq') if ((is_start_per and start.ordinal == tslib.iNaT) or (is_end_per and end.ordinal == tslib.iNaT)): raise ValueError('Start and end must not be NaT') if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError('Could not infer freq from start/end') if periods is not None: periods = periods * mult if start is None: data = np.arange(end.ordinal - periods + mult, end.ordinal + 1, mult, dtype=np.int64) else: data = np.arange(start.ordinal, start.ordinal + periods, mult, dtype=np.int64) else: data = np.arange(start.ordinal, end.ordinal + 1, mult, dtype=np.int64) return data, freq def _range_from_fields(year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None): if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = 'Q' base = frequencies.FreqGroup.FR_QTR else: base, mult = _gfc(freq) if base != frequencies.FreqGroup.FR_QTR: raise AssertionError("base must equal FR_QTR") year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = _quarter_to_myear(y, q, freq) val = period.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: base, mult = _gfc(freq) arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(period.period_ordinal(y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields): length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError('Mismatched Period array lengths') elif length is None: length = len(x) arrays = [np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) for x in fields] return arrays def pnow(freq=None): return Period(datetime.now(), freq=freq) def period_range(start=None, end=None, periods=None, freq='D', name=None): """ Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters ---------- start : starting value, period-like, optional end : ending value, period-like, optional periods : int, default None Number of periods in the index freq : str/DateOffset, default 'D' Frequency alias name : str, default None Name for the resulting PeriodIndex Returns ------- prng : PeriodIndex """ return PeriodIndex(start=start, end=end, periods=periods, freq=freq, name=name)
artistic-2.0
lmcinnes/umap
umap/tests/test_umap_nn.py
1
5288
import numpy as np import pytest from numpy.testing import assert_array_almost_equal from sklearn.neighbors import KDTree from sklearn.preprocessing import normalize from umap import distances as dist from umap.umap_ import ( nearest_neighbors, smooth_knn_dist, ) # =================================================== # Nearest Neighbour Test cases # =================================================== # nearest_neighbours metric parameter validation # ----------------------------------------------- def test_nn_bad_metric(nn_data): with pytest.raises(ValueError): nearest_neighbors(nn_data, 10, 42, {}, False, np.random) def test_nn_bad_metric_sparse_data(sparse_nn_data): with pytest.raises(ValueError): nearest_neighbors( sparse_nn_data, 10, "seuclidean", {}, False, np.random, ) # ------------------------------------------------- # Utility functions for Nearest Neighbour # ------------------------------------------------- def knn(indices, nn_data): # pragma: no cover tree = KDTree(nn_data) true_indices = tree.query(nn_data, 10, return_distance=False) num_correct = 0.0 for i in range(nn_data.shape[0]): num_correct += np.sum(np.in1d(true_indices[i], indices[i])) return num_correct / (nn_data.shape[0] * 10) def smooth_knn(nn_data, local_connectivity=1.0): knn_indices, knn_dists, _ = nearest_neighbors( nn_data, 10, "euclidean", {}, False, np.random ) sigmas, rhos = smooth_knn_dist( knn_dists, 10.0, local_connectivity=local_connectivity ) shifted_dists = knn_dists - rhos[:, np.newaxis] shifted_dists[shifted_dists < 0.0] = 0.0 vals = np.exp(-(shifted_dists / sigmas[:, np.newaxis])) norms = np.sum(vals, axis=1) return norms @pytest.mark.skip() def test_nn_descent_neighbor_accuracy(nn_data): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( nn_data, 10, "euclidean", {}, False, np.random ) percent_correct = knn(knn_indices, nn_data) assert ( percent_correct >= 0.85 ), "NN-descent did not get 89% accuracy on nearest neighbors" @pytest.mark.skip() def test_nn_descent_neighbor_accuracy_low_memory(nn_data): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( nn_data, 10, "euclidean", {}, False, np.random, low_memory=True ) percent_correct = knn(knn_indices, nn_data) assert ( percent_correct >= 0.89 ), "NN-descent did not get 89% accuracy on nearest neighbors" @pytest.mark.skip() def test_angular_nn_descent_neighbor_accuracy(nn_data): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( nn_data, 10, "cosine", {}, True, np.random ) angular_data = normalize(nn_data, norm="l2") percent_correct = knn(knn_indices, angular_data) assert ( percent_correct >= 0.85 ), "NN-descent did not get 89% accuracy on nearest neighbors" @pytest.mark.skip() def test_sparse_nn_descent_neighbor_accuracy(sparse_nn_data): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( sparse_nn_data, 20, "euclidean", {}, False, np.random ) percent_correct = knn(knn_indices, sparse_nn_data.todense()) assert ( percent_correct >= 0.75 ), "Sparse NN-descent did not get 90% accuracy on nearest neighbors" @pytest.mark.skip() def test_sparse_nn_descent_neighbor_accuracy_low_memory( sparse_nn_data, ): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( sparse_nn_data, 20, "euclidean", {}, False, np.random, low_memory=True ) percent_correct = knn(knn_indices, sparse_nn_data.todense()) assert ( percent_correct >= 0.85 ), "Sparse NN-descent did not get 90% accuracy on nearest neighbors" @pytest.mark.skip() def test_nn_descent_neighbor_accuracy_callable_metric(nn_data): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( nn_data, 10, dist.euclidean, {}, False, np.random ) percent_correct = knn(knn_indices, nn_data) assert ( percent_correct >= 0.95 ), "NN-descent did not get 95% accuracy on nearest neighbors with callable metric" @pytest.mark.skip() def test_sparse_angular_nn_descent_neighbor_accuracy( sparse_nn_data, ): # pragma: no cover knn_indices, knn_dists, _ = nearest_neighbors( sparse_nn_data, 20, "cosine", {}, True, np.random ) angular_data = normalize(sparse_nn_data, norm="l2").toarray() percent_correct = knn(knn_indices, angular_data) assert ( percent_correct >= 0.90 ), "Sparse NN-descent did not get 90% accuracy on nearest neighbors" def test_smooth_knn_dist_l1norms(nn_data): norms = smooth_knn(nn_data) assert_array_almost_equal( norms, 1.0 + np.log2(10) * np.ones(norms.shape[0]), decimal=3, err_msg="Smooth knn-dists does not give expected" "norms", ) def test_smooth_knn_dist_l1norms_w_connectivity(nn_data): norms = smooth_knn(nn_data, local_connectivity=1.75) assert_array_almost_equal( norms, 1.0 + np.log2(10) * np.ones(norms.shape[0]), decimal=3, err_msg="Smooth knn-dists does not give expected" "norms for local_connectivity=1.75", )
bsd-3-clause
lukeiwanski/tensorflow-opencl
tensorflow/examples/learn/iris_custom_model.py
50
2613
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for Iris plant dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import tensorflow as tf layers = tf.contrib.layers learn = tf.contrib.learn def my_model(features, target): """DNN with three hidden layers, and dropout of 0.1 probability.""" # Convert the target to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. target = tf.one_hot(target, 3, 1, 0) # Create three fully connected layers respectively of size 10, 20, and 10 with # each layer having a dropout probability of 0.1. normalizer_fn = layers.dropout normalizer_params = {'keep_prob': 0.9} features = layers.stack( features, layers.fully_connected, [10, 20, 10], normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(features, 3, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) # Create a tensor for training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = learn.Estimator(model_fn=my_model) classifier.fit(x_train, y_train, steps=1000) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
xinghalo/DMInAction
src/tensorflow/LN.py
1
1926
import matplotlib.pyplot as plt import numpy from src import tensorflow as tf rng = numpy.random # Parameters learning_rate = 0.01 training_epochs = 2000 display_step = 50 # Training Data train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Create Model # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model activation = tf.add(tf.multiply(X, W), b) # Minimize the squared errors cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent # Initializing the variables init = tf.initialize_all_variables() # Launch the graph with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) #Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", \ "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \ "W=", sess.run(W), "b=", sess.run(b)) print("Optimization Finished!") print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \ "W=", sess.run(W), "b=", sess.run(b)) #Graphic display plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show() writer = tf.summary.FileWriter("/log",tf.get_default_graph()) writer.close()
apache-2.0
spallavolu/scikit-learn
sklearn/covariance/tests/test_graph_lasso.py
272
5245
""" Test the graph_lasso module. """ import sys import numpy as np from scipy import linalg from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_less from sklearn.covariance import (graph_lasso, GraphLasso, GraphLassoCV, empirical_covariance) from sklearn.datasets.samples_generator import make_sparse_spd_matrix from sklearn.externals.six.moves import StringIO from sklearn.utils import check_random_state from sklearn import datasets def test_graph_lasso(random_state=0): # Sample data from a sparse multivariate normal dim = 20 n_samples = 100 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.95, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) emp_cov = empirical_covariance(X) for alpha in (0., .1, .25): covs = dict() icovs = dict() for method in ('cd', 'lars'): cov_, icov_, costs = graph_lasso(emp_cov, alpha=alpha, mode=method, return_costs=True) covs[method] = cov_ icovs[method] = icov_ costs, dual_gap = np.array(costs).T # Check that the costs always decrease (doesn't hold if alpha == 0) if not alpha == 0: assert_array_less(np.diff(costs), 0) # Check that the 2 approaches give similar results assert_array_almost_equal(covs['cd'], covs['lars'], decimal=4) assert_array_almost_equal(icovs['cd'], icovs['lars'], decimal=4) # Smoke test the estimator model = GraphLasso(alpha=.25).fit(X) model.score(X) assert_array_almost_equal(model.covariance_, covs['cd'], decimal=4) assert_array_almost_equal(model.covariance_, covs['lars'], decimal=4) # For a centered matrix, assume_centered could be chosen True or False # Check that this returns indeed the same result for centered data Z = X - X.mean(0) precs = list() for assume_centered in (False, True): prec_ = GraphLasso(assume_centered=assume_centered).fit(Z).precision_ precs.append(prec_) assert_array_almost_equal(precs[0], precs[1]) def test_graph_lasso_iris(): # Hard-coded solution from R glasso package for alpha=1.0 # The iris datasets in R and sklearn do not match in a few places, these # values are for the sklearn version cov_R = np.array([ [0.68112222, 0.0, 0.2651911, 0.02467558], [0.00, 0.1867507, 0.0, 0.00], [0.26519111, 0.0, 3.0924249, 0.28774489], [0.02467558, 0.0, 0.2877449, 0.57853156] ]) icov_R = np.array([ [1.5188780, 0.0, -0.1302515, 0.0], [0.0, 5.354733, 0.0, 0.0], [-0.1302515, 0.0, 0.3502322, -0.1686399], [0.0, 0.0, -0.1686399, 1.8123908] ]) X = datasets.load_iris().data emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R) assert_array_almost_equal(icov, icov_R) def test_graph_lasso_iris_singular(): # Small subset of rows to test the rank-deficient case # Need to choose samples such that none of the variances are zero indices = np.arange(10, 13) # Hard-coded solution from R glasso package for alpha=0.01 cov_R = np.array([ [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149], [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222], [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009], [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222] ]) icov_R = np.array([ [24.42244057, -16.831679593, 0.0, 0.0], [-16.83168201, 24.351841681, -6.206896552, -12.5], [0.0, -6.206896171, 153.103448276, 0.0], [0.0, -12.499999143, 0.0, 462.5] ]) X = datasets.load_iris().data[indices, :] emp_cov = empirical_covariance(X) for method in ('cd', 'lars'): cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False, mode=method) assert_array_almost_equal(cov, cov_R, decimal=5) assert_array_almost_equal(icov, icov_R, decimal=5) def test_graph_lasso_cv(random_state=1): # Sample data from a sparse multivariate normal dim = 5 n_samples = 6 random_state = check_random_state(random_state) prec = make_sparse_spd_matrix(dim, alpha=.96, random_state=random_state) cov = linalg.inv(prec) X = random_state.multivariate_normal(np.zeros(dim), cov, size=n_samples) # Capture stdout, to smoke test the verbose mode orig_stdout = sys.stdout try: sys.stdout = StringIO() # We need verbose very high so that Parallel prints on stdout GraphLassoCV(verbose=100, alphas=5, tol=1e-1).fit(X) finally: sys.stdout = orig_stdout # Smoke test with specified alphas GraphLassoCV(alphas=[0.8, 0.5], tol=1e-1, n_jobs=1).fit(X)
bsd-3-clause
has2k1/plotnine
plotnine/animation.py
1
6744
from copy import copy import pandas as pd import matplotlib.pyplot as plt from matplotlib.animation import ArtistAnimation from .exceptions import PlotnineError class PlotnineAnimation(ArtistAnimation): """ Animation using ggplot objects Parameters ---------- plots : iterable ggplot objects that make up the the frames of the animation interval : number, optional Delay between frames in milliseconds. Defaults to 200. repeat_delay : number, optional If the animation in repeated, adds a delay in milliseconds before repeating the animation. Defaults to `None`. repeat : bool, optional Controls whether the animation should repeat when the sequence of frames is completed. Defaults to `True`. blit : bool, optional Controls whether blitting is used to optimize drawing. Defaults to `False`. Notes ----- 1. The plots should have the same `facet` and the facet should not have fixed x and y scales. 2. The scales of all the plots should have the same limits. It is a good idea to create a scale (with limits) for each aesthetic and add them to all the plots. 3. For plots with legends or any other features that are cutoff, use the :class:`~plotnine.themes.themeable.subplots_adjust` themeable to create space for it. """ def __init__(self, plots, interval=200, repeat_delay=None, repeat=True, blit=False): figure, artists = self._draw_plots(plots) ArtistAnimation.__init__( self, figure, artists, interval=interval, repeat_delay=repeat_delay, repeat=repeat, blit=blit ) def _draw_plots(self, plots): with pd.option_context('mode.chained_assignment', None): return self.__draw_plots(plots) def __draw_plots(self, plots): """ Plot and return the figure and artists Parameters ---------- plots : iterable ggplot objects that make up the the frames of the animation Returns ------- figure : matplotlib.figure.Figure Matplotlib figure artists : list List of :class:`Matplotlib.artist.artist` """ # For keeping track of artists for each frame artist_offsets = { 'collections': [], 'patches': [], 'lines': [], 'texts': [], 'artists': [] } scale_limits = dict() def initialise_artist_offsets(n): """ Initilise artists_offsets arrays to zero Parameters ---------- n : int Number of axes to initialise artists for. The artists for each axes are tracked separately. """ for artist_type in artist_offsets: artist_offsets[artist_type] = [0] * n def get_frame_artists(plot): """ Parameters ---------- plot : ggplot Drawn ggplot object from which to extract artists. """ # The axes accumulate artists for all frames # For each frame we pickup the newly added artists # We use offsets to mark the end of the previous frame # e.g ax.collections[start:] frame_artists = [] for i, ax in enumerate(plot.axs): for name in artist_offsets: start = artist_offsets[name][i] new_artists = getattr(ax, name)[start:] frame_artists.extend(new_artists) artist_offsets[name][i] += len(new_artists) return frame_artists def set_scale_limits(plot): """ Set limits of all the scales in the animation Should be called before :func:`check_scale_limits`. Parameters ---------- plot : ggplot First ggplot object that has been drawn """ for sc in plot.scales: ae = sc.aesthetics[0] scale_limits[ae] = sc.limits def check_scale_limits(plot, frame_no): """ Check limits of the scales of a plot in the animation Raises a PlotnineError if any of the scales has limits that do not match those of the first plot/frame. Should be called after :func:`set_scale_limits`. Parameters ---------- plot : ggplot ggplot object that has been drawn frame_no : int Frame number """ if len(scale_limits) != len(plot.scales): raise PlotnineError( "All plots must have the same number of scales " "as the first plot of the animation." ) for sc in plot.scales: ae = sc.aesthetics[0] if ae not in scale_limits: raise PlotnineError( "The plot for frame {} does not have a scale " "for the {} aesthetic.".format(frame_no, ae) ) if sc.limits != scale_limits[ae]: raise PlotnineError( "The {} scale of plot for frame {} has different " "limits from those of the first frame." "".format(ae, frame_no) ) figure = None axs = None artists = [] # The first ggplot creates the figure, axes and the initial # frame of the animation. The rest of the ggplots draw # onto the figure and axes created by the first ggplot and # they create the subsequent frames. for frame_no, p in enumerate(plots): if figure is None: figure, plot = p.draw(return_ggplot=True) axs = plot.axs initialise_artist_offsets(len(axs)) set_scale_limits(plot) else: p = copy(p) plot = p._draw_using_figure(figure, axs) try: check_scale_limits(plot, frame_no) except PlotnineError as err: plt.close(figure) raise err artists.append(get_frame_artists(plot)) if figure is None: figure = plt.figure() # Prevent Jupyter from plotting any static figure plt.close(figure) return figure, artists
gpl-2.0
jjs0sbw/CSPLN
apps/scaffolding/mac/web2py/web2py.app/Contents/Resources/lib/python2.7/matplotlib/finance.py
3
23033
""" A collection of modules for collecting, analyzing and plotting financial data. User contributions welcome! """ #from __future__ import division import os, warnings from urllib2 import urlopen try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 import datetime import numpy as np from matplotlib import verbose, get_configdir from matplotlib.dates import date2num from matplotlib.cbook import iterable from matplotlib.collections import LineCollection, PolyCollection from matplotlib.colors import colorConverter from matplotlib.lines import Line2D, TICKLEFT, TICKRIGHT from matplotlib.patches import Rectangle from matplotlib.transforms import Affine2D configdir = get_configdir() cachedir = os.path.join(configdir, 'finance.cache') stock_dt = np.dtype([('date', object), ('year', np.int16), ('month', np.int8), ('day', np.int8), ('d', np.float), # mpl datenum ('open', np.float), ('close', np.float), ('high', np.float), ('low', np.float), ('volume', np.float), ('aclose', np.float)]) def parse_yahoo_historical(fh, adjusted=True, asobject=False): """ Parse the historical data in file handle fh from yahoo finance. *adjusted* If True (default) replace open, close, high, and low prices with their adjusted values. The adjustment is by a scale factor, S = adjusted_close/close. Adjusted prices are actual prices multiplied by S. Volume is not adjusted as it is already backward split adjusted by Yahoo. If you want to compute dollars traded, multiply volume by the adjusted close, regardless of whether you choose adjusted = True|False. *asobject* If False (default for compatibility with earlier versions) return a list of tuples containing d, open, close, high, low, volume If None (preferred alternative to False), return a 2-D ndarray corresponding to the list of tuples. Otherwise return a numpy recarray with date, year, month, day, d, open, close, high, low, volume, adjusted_close where d is a floating poing representation of date, as returned by date2num, and date is a python standard library datetime.date instance. The name of this kwarg is a historical artifact. Formerly, True returned a cbook Bunch holding 1-D ndarrays. The behavior of a numpy recarray is very similar to the Bunch. """ lines = fh.readlines() results = [] datefmt = '%Y-%m-%d' for line in lines[1:]: vals = line.split(',') if len(vals)!=7: continue # add warning? datestr = vals[0] #dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) # Using strptime doubles the runtime. With the present # format, we don't need it. dt = datetime.date(*[int(val) for val in datestr.split('-')]) dnum = date2num(dt) open, high, low, close = [float(val) for val in vals[1:5]] volume = float(vals[5]) aclose = float(vals[6]) results.append((dt, dt.year, dt.month, dt.day, dnum, open, close, high, low, volume, aclose)) results.reverse() d = np.array(results, dtype=stock_dt) if adjusted: scale = d['aclose'] / d['close'] scale[np.isinf(scale)] = np.nan d['open'] *= scale d['close'] *= scale d['high'] *= scale d['low'] *= scale if not asobject: # 2-D sequence; formerly list of tuples, now ndarray ret = np.zeros((len(d), 6), dtype=np.float) ret[:,0] = d['d'] ret[:,1] = d['open'] ret[:,2] = d['close'] ret[:,3] = d['high'] ret[:,4] = d['low'] ret[:,5] = d['volume'] if asobject is None: return ret return [tuple(row) for row in ret] return d.view(np.recarray) # Close enough to former Bunch return def fetch_historical_yahoo(ticker, date1, date2, cachename=None,dividends=False): """ Fetch historical data for ticker between date1 and date2. date1 and date2 are date or datetime instances, or (year, month, day) sequences. Ex: fh = fetch_historical_yahoo('^GSPC', (2000, 1, 1), (2001, 12, 31)) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) set dividends=True to return dividends instead of price data. With this option set, parse functions will not work a file handle is returned """ ticker = ticker.upper() if iterable(date1): d1 = (date1[1]-1, date1[2], date1[0]) else: d1 = (date1.month-1, date1.day, date1.year) if iterable(date2): d2 = (date2[1]-1, date2[2], date2[0]) else: d2 = (date2.month-1, date2.day, date2.year) if dividends: g='v' verbose.report('Retrieving dividends instead of prices') else: g='d' urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=%s&ignore=.csv' url = urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker, g) if cachename is None: cachename = os.path.join(cachedir, md5(url).hexdigest()) if os.path.exists(cachename): fh = file(cachename) verbose.report('Using cachefile %s for %s'%(cachename, ticker)) else: if not os.path.isdir(cachedir): os.mkdir(cachedir) urlfh = urlopen(url) fh = file(cachename, 'w') fh.write(urlfh.read()) fh.close() verbose.report('Saved %s data to cache file %s'%(ticker, cachename)) fh = file(cachename, 'r') return fh def quotes_historical_yahoo(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. date1 and date2 are datetime instances or (year, month, day) sequences. See :func:`parse_yahoo_historical` for explanation of output formats and the *asobject* and *adjusted* kwargs. Ex: sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True, adjusted=True) returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] [n,bins,patches] = hist(returns, 100) mu = mean(returns) sigma = std(returns) x = normpdf(bins, mu, sigma) plot(bins, x, color='red', lw=2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) """ # Maybe enable a warning later as part of a slow transition # to using None instead of False. #if asobject is False: # warnings.warn("Recommend changing to asobject=None") fh = fetch_historical_yahoo(ticker, date1, date2, cachename) try: ret = parse_yahoo_historical(fh, asobject=asobject, adjusted=adjusted) if len(ret) == 0: return None except IOError, exc: warnings.warn('fh failure\n%s'%(exc.strerror[1])) return None return ret def plot_day_summary(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """ quotes is a sequence of (time, open, close, high, low, ...) sequences Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. time must be in float date format - see date2num ax : an Axes instance to plot to ticksize : open/close tick marker in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ lines = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup else : color = colordown vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, antialiased=False, # no need to antialias vert lines ) oline = Line2D( xdata=(t, t), ydata=(open, open), color=color, antialiased=False, marker=TICKLEFT, markersize=ticksize, ) cline = Line2D( xdata=(t, t), ydata=(close, close), color=color, antialiased=False, markersize=ticksize, marker=TICKRIGHT) lines.extend((vline, oline, cline)) ax.add_line(vline) ax.add_line(oline) ax.add_line(cline) ax.autoscale_view() return lines def candlestick(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ quotes is a sequence of (time, open, close, high, low, ...) sequences. As long as the first 5 elements are these values, the record can be as long as you want (eg it may store volume). time must be in float days format - see date2num Plot the time, open, close, high, low as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown ax : an Axes instance to plot to width : fraction of a day for the rectangle width colorup : the color of the rectangle where close >= open colordown : the color of the rectangle where close < open alpha : the rectangle alpha level return value is lines, patches where lines is a list of lines added and patches is a list of the rectangle patches added """ OFFSET = width/2.0 lines = [] patches = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup lower = open height = close-open else : color = colordown lower = close height = open-close vline = Line2D( xdata=(t, t), ydata=(low, high), color='k', linewidth=0.5, antialiased=True, ) rect = Rectangle( xy = (t-OFFSET, lower), width = width, height = height, facecolor = color, edgecolor = color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax.add_line(vline) ax.add_patch(rect) ax.autoscale_view() return lines, patches def plot_day_summary2(ax, opens, closes, highs, lows, ticksize=4, colorup='k', colordown='r', ): """ Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. ax : an Axes instance to plot to ticksize : size of open and close ticks in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ # note this code assumes if any value open, close, low, high is # missing they all are missing rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] # the ticks will be from ticksize to 0 in points at the origin and # we'll translate these to the i, close location openSegments = [ ((-ticksize, 0), (0, 0)) ] # the ticks will be from 0 to ticksize in points at the origin and # we'll translate these to the i, close location closeSegments = [ ((0, 0), (ticksize, 0)) ] offsetsOpen = [ (i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1 ] offsetsClose = [ (i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1 ] scale = ax.figure.dpi * (1.0/72.0) tickTransform = Affine2D().scale(scale, 0.0) r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,1 r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,1 colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(rangeSegments)==len(offsetsOpen)) assert(len(offsetsOpen)==len(offsetsClose)) assert(len(offsetsClose)==len(colors)) useAA = 0, # use tuple here lw = 1, # and here rangeCollection = LineCollection(rangeSegments, colors = colors, linewidths = lw, antialiaseds = useAA, ) openCollection = LineCollection(openSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsOpen, transOffset = ax.transData, ) openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsClose, transOffset = ax.transData, ) closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments)) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(openCollection) ax.add_collection(closeCollection) return rangeCollection, openCollection, closeCollection def candlestick2(ax, opens, closes, highs, lows, width=4, colorup='k', colordown='r', alpha=0.75, ): """ Represent the open, close as a bar line and high low range as a vertical line. ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency return value is lineCollection, barCollection """ # note this code assumes if any value open, close, low, high is # missing they all are missing delta = width/2. barVerts = [ ( (i-delta, open), (i-delta, close), (i+delta, close), (i+delta, open) ) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close!=-1 ] rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(barVerts)==len(rangeSegments)) useAA = 0, # use tuple here lw = 0.5, # and here rangeCollection = LineCollection(rangeSegments, colors = ( (0,0,0,1), ), linewidths = lw, antialiaseds = useAA, ) barCollection = PolyCollection(barVerts, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, ) minx, maxx = 0, len(rangeSegments) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) ax.add_collection(rangeCollection) return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The opens and closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] delta = width/2. bars = [ ( (i-delta, 0), (i-delta, v), (i+delta, v), (i+delta, 0)) for i, v in enumerate(volumes) if v != -1 ] barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = (0,), linewidths = (0.5,), ) corners = (0, 0), (len(bars), max(volumes)) ax.update_datalim(corners) ax.autoscale_view() # add these last return barCollection def volume_overlay2(ax, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency nb: first point is not displayed - it is used only for choosing the right color """ return volume_overlay(ax,closes[:-1],closes[1:],volumes[1:],colorup,colordown,width,alpha) def volume_overlay3(ax, quotes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. quotes is a list of (d, open, close, high, low, volume) and close-open is used to determine the color of the bar kwarg width : the bar width in points colorup : the color of the lines where close1 >= close0 colordown : the color of the lines where close1 < close0 alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } dates, opens, closes, highs, lows, volumes = zip(*quotes) colors = [colord[close1>=close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0!=-1 and close1 !=-1] colors.insert(0,colord[closes[0]>=opens[0]]) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, volume), (right, volume), (right, 0)) for d, open, close, high, low, volume in quotes] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) dates = [d for d, open, close, high, low, volume in quotes] offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here lw = 0.5, # and here barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates)) miny = 0 maxy = max([volume for d, open, close, high, low, volume in quotes]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) #print 'datalim', ax.dataLim.bounds #print 'viewlim', ax.viewLim.bounds ax.add_collection(barCollection) ax.autoscale_view() return barCollection def index_bar(ax, vals, facecolor='b', edgecolor='l', width=4, alpha=1.0, ): """ Add a bar collection graph with height vals (-1 is missing). ax : an Axes instance to plot to width : the bar width in points alpha : bar transparency """ facecolors = (colorConverter.to_rgba(facecolor, alpha),) edgecolors = (colorConverter.to_rgba(edgecolor, alpha),) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ] barCollection = PolyCollection(bars, facecolors = facecolors, edgecolors = edgecolors, antialiaseds = (0,), linewidths = (0.5,), offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars)) miny = 0 maxy = max([v for v in vals if v!=-1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) return barCollection
gpl-3.0
rajat1994/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
arokem/MRS-old
MRS/tests/test_analysis.py
1
3134
import os import tempfile import numpy as np import numpy.testing as npt import matplotlib matplotlib.use('agg') import nitime as nt import nibabel as nib import MRS import MRS.utils as ut import MRS.analysis as ana test_path = os.path.join(MRS.__path__[0], 'tests') file_name = os.path.join(test_path, 'pure_gaba_P64024.nii.gz') def test_separate_signals(): """ Test separation of signals for water-suppressed and other signals """ data = np.transpose(nib.load(file_name).get_data(), [1,2,3,4,5,0]).squeeze() w_data, w_supp_data = ana.separate_signals(data) # Very simple sanity checks npt.assert_equal(w_data.shape[-1], data.shape[-1]) npt.assert_equal(w_supp_data.shape[-1], data.shape[-1]) npt.assert_array_equal(data[1], w_data[0]) def test_coil_combine(): """ Test combining of information from different coils """ data = np.transpose(nib.load(file_name).get_data(), [1,2,3,4,5,0]).squeeze() w_data, w_supp_data = ana.coil_combine(data) # Make sure that the time-dimension is still correct: npt.assert_equal(w_data.shape[-1], data.shape[-1]) npt.assert_equal(w_supp_data.shape[-1], data.shape[-1]) # Check that the phase for the first data point is approximately the # same and approximately 0 for all the water-channels: npt.assert_array_almost_equal(np.angle(w_data)[:,:,0], np.zeros_like(w_data[:,:,0]), decimal=1) # We're not being awfully strict # about it. def test_get_spectra(): """ Test the function that does the spectral analysis """ data = np.transpose(nib.load(file_name).get_data(), [1,2,3,4,5,0]).squeeze() w_data, w_supp_data = ana.coil_combine(data) # XXX Just basic smoke-testing for now: f_nonw, nonw_sig1 = ana.get_spectra(nt.TimeSeries(w_supp_data, sampling_rate=5000)) f_nonw, nonw_sig2 = ana.get_spectra(nt.TimeSeries(w_supp_data, sampling_rate=5000), line_broadening=5) f_nonw, nonw_sig3 = ana.get_spectra(nt.TimeSeries(w_supp_data, sampling_rate=5000), line_broadening=5, zerofill=1000) def test_mrs_analyze(): """ Test the command line utility """ mrs_path = MRS.__path__[0] out_name = tempfile.NamedTemporaryFile().name # Check that it runs through: cmd = '%s/../bin/mrs-analyze.py %s '%(mrs_path, file_name) npt.assert_equal(os.system(cmd),0) # XXX We might want to analyze the output file here... def test_bootstrap_stat(): """ Test simple bootstrapping statistics """ rand_array = np.random.randn(100, 1000) arr_mean, mean_ci = ana.bootstrap_stat(rand_array) npt.assert_array_equal(np.mean(rand_array, 0), arr_mean) arr_var, var_ci = ana.bootstrap_stat(rand_array, stat=np.var) npt.assert_array_equal(np.var(rand_array, 0), arr_var)
mit
Sperlea/cittex
main.py
1
18931
# 11.04.16 # This is a tool for literature - or rather citation organization. It is based on the widely used bibtex format, which # makes it easy to use it with applications such as Latex. Quotes are in the center of this program. The user can append # quotes to every publication and these quotes are indexed by keywords, contain a short summary and # the text of the quote, all as provided by the user. import Publication import requests import textwrap import unicodedata import arxiv2bibtex from collections import Counter import isbnlib from isbnlib.registry import bibformatters from textblob import TextBlob as tb from tqdm import tqdm import math import inspect class Library(object): def __init__(self, papers, keywords, loc): self.textblobcorpus = [] self.publications = papers self.keywords = keywords self.location = loc self.typedict = {subclass.type_of_publication: subclass for subclass in Publication.Publication.__subclasses__()} if papers: self.latest_paper = self.publications[len(self.publications) - 1] self.brainmodules = [] def __add__(self, other): newpubs = list(set(self.publications + other.publications)) newkeywords = self.keywords + other.keywords newlib = Library(newpubs, newkeywords, self.location) for bm in self.brainmodules: newlib.add_brainmodule(bm) return newlib def add_brainmodule(self, brainmodule): self.brainmodules.append(brainmodule) def append_publication(self, publication): self.publications.append(publication) self.latest_paper = publication def list_years(self): yearlist = [] for paper in self.publications: yearlist.append(paper.year) return yearlist def get_oldest_publication(self): min_year = 3000 oldest_paper = None for paper in self.publications: if int(paper.year) < min_year: min_year = int(paper.year) oldest_paper = paper print(oldest_paper) def add_publication_with_doi(self, doi): bibtex = self._get_bibtex_from_internet(doi) self.add_publication_from_bibtex(bibtex) def add_publication_from_arxiv(self, arxivid): bibtex = arxiv2bibtex.arxiv2bib([arxivid])[0] bibtex = bibtex.bibtex().replace(bibtex.id+",", bibtex.authors[0].split(" ")[-1] + "_" + bibtex.year + ",") self.add_publication_from_bibtex([b for b in bibtex.split(",\n")]) def add_publication_from_bibtex(self, bibtex): try: if "@techreport{" in bibtex[0]: bibtex = self._turn_techreport_to_type(bibtex, Publication.Article) new_paper = self.typedict[bibtex[0].split("{")[0][1:]](bibtex, "READ_BIBTEX", self) if not self._already_contains_publication(new_paper): oldshorties = [b.short_identifier for b in self.publications if new_paper.short_identifier in b.short_identifier] if oldshorties: try: oldletter = new_paper.short_identifier.split("_")[1][4] newshort_identifier = new_paper.short_identifier[:-1] + chr(ord(oldletter)+1) except IndexError: newshort_identifier = new_paper.short_identifier +"a" new_paper.bibtex = new_paper.bibtex.replace(new_paper.short_identifier, newshort_identifier) self.add_publication_from_bibtex(new_paper.bibtex.split(",\n")) else: self.append_publication(new_paper) else: print("This paper is already in the Library.") self.latest_paper = new_paper except TypeError: print("ERROR: This doi couldn't be resolved. Skipping...") def add_publication_from_isbn(self, isbn): isbnlib.config.add_apikey("isbndb", "2TCD2CVI") bibtex = bibformatters['bibtex'] data = isbnlib.meta(isbn, "isbndb") for part in data: if not data[part]: data[part] = input("Missing Value! Please input value for the field " + part + ". ") data["ISBN-13"] = data["Authors"][0].split(", ")[0] + "_" + str(data["Year"]) new_bibtex = bibtex(data).replace(" ", "").replace("\n ", "\n").split("\n") self.add_publication_from_bibtex(new_bibtex) def save(self): self.export_as_bibtex(self.location) for bm in self.brainmodules: bm.save() def _already_contains_publication(self, new_paper): found = False for piece in self.publications: if piece.short_identifier == new_paper.short_identifier: if piece.title.upper().replace(".", "") == new_paper.title.upper().replace(".", ""): found = True break return found def export_as_bibtex(self, location, verbose = True): handle = open(location, "w") #TODO: Use tqdm instead of all print statements for paper in tqdm(self.publications, desc = "Saving as BIBTEX... ", unit = " paper", disable = not verbose, bar_format = "{l_bar}{bar}| {n_fmt}/{total_fmt} paper\n"): handle.write(paper.as_bibtex_with_quotes()) print() def search_in_quotes(self, query): counter = 0 for paper in self.publications: for cit in paper.quotes: if query in cit.text: print("Query: " + query + " - hit " + str(counter)) print(cit) print() counter += 1 def _get_bibtex_from_internet(self, doi): bibtex_text = self._doi2bibtex(doi) if "title = {" in bibtex_text: output = [] for line in bibtex_text.split(",\n"): output.append(line) return output def _doi2bibtex(self, doi): # Gets the information about a given publication from the internet in bibtex format # adapted from http://www.michelepasin.org/blog/2014/12/03/dereference-a-doi-using-python/ self.headers = {'accept': 'application/x-bibtex'} if doi.startswith("http://"): url = doi else: url = "http://dx.doi.org/" + doi r = requests.get(url, headers=self.headers) return r.text def list_publications(self): 'Lists the publications that are saved in the bibliography.' for counter, paper in enumerate(self.publications): print(counter + 1, ".", paper.authors, paper.year, "--", paper.title) def list_keywords(self): 'Lists the keywords that are attached to quotes from the publications in the bibliography.' output = [] for keyword in self.keywords.words: output.append(keyword + "\t -- Number: " + str(len(self.keywords.words[keyword]))) output = sorted(output, key=lambda v: v.upper()) for counter, line in enumerate(output): print(counter, line) def list_authors(self): 'Lists all the authors whose work is present in the bibliography.' def is_this_author_new(this_author_list, this_author): output = True for aut in this_author_list: if aut[0] == this_author: output = False break return output def add_paper_to_author(this_author_list, this_author, this_paper): for counter, __ in enumerate(this_author_list): if this_author_list[counter][0] in this_author: tmp = this_author_list[counter][1] + ", " + this_paper.short_identifier this_author_list[counter] = (this_author_list[counter][0], tmp) return this_author_list author_list = [] for paper in self.publications: for author in paper.authors.split(" and "): author = author.split(" ")[len(author.split(" "))-1] if is_this_author_new(author_list, author): author_list.append((author, paper.short_identifier)) else: author_list = add_paper_to_author(author_list, author, paper) print("Found " + str(len(author_list)) + " authors in " + str(len(self.publications)) + " publications.") for line in sorted(author_list): print(line[0] + "\t- " + line[1]) def quotes_with_keyword(self, chosen_keyword): 'Lists all quotes that have the chosen keyword attached to them.' print("Chosen keyword: " + chosen_keyword) for counter, cit in enumerate(self.keywords.words[chosen_keyword]): print(counter, cit.summary, "\t||\t" + cit.publication.short_identifier + "\t||\t" + cit.publication.title) def read_full_quote(self, chosen_keyword, index): 'Shows the full quote specified by the chosen keyword and the index. Chosen keyword and index must be separated by " ".' print("Chosen keyword: " + chosen_keyword) print("Summary: " + self.keywords.words[chosen_keyword][index].summary) print("Keywords: " + self.keywords.words[chosen_keyword][index].keywords) print("Paper: " + str(self.keywords.words[chosen_keyword][index].publication)) print("Short: " + self.keywords.words[chosen_keyword][index].publication.short_identifier) print(textwrap.fill(self.keywords.words[chosen_keyword][index].text, 100)) def show_publications_with_keyword(self, chosen_keyword): print("Chosen keyword: " + chosen_keyword) relevant_papers = [] for cit in self.keywords.words[chosen_keyword]: relevant_papers.append(cit.paper) output = list(set(relevant_papers)) for counter in range(0, len(output)): print(counter, output[counter]) def add_a_publication(self): 'Is used to add a paper to the bibliography via doi or manually' doi = input("Please input doi. If no doi is available, leave empty. ") if doi: print(doi) self.add_publication_with_doi(doi) for bm in self.brainmodules: bm.add_paper(self.latest_paper) else: arxivid = input("Please input arxiv ID. If no doi is available, leave empty. ") if arxivid: self.add_publication_from_arxiv(arxivid) for bm in self.brainmodules: bm.add_paper(self.latest_paper) else: isbn = input("Please input ISBN-13. If no doi is available, leave empty. ") if isbn: self.add_publication_from_isbn(isbn) for bm in self.brainmodules: bm.add_paper(self.latest_paper) else: type_short = input("Type of publication. 'a' for article, 'b' for book, 'i' for inbook: ") if type_short is 'a': new_publication = Publication.Article(None, "READ_BIBTEX_INPUT", self) elif type_short is 'b': new_publication = Publication.Book(None, "READ_BIBTEX_INPUT", self) elif type_short is "i": new_publication = Publication.InBook(None, "READ_BIBTEX_INPUT", self) else: new_publication = Publication.Publication(None, "READ_BIBTEX_INPUT", self) if not self._already_contains_publication(new_publication): self.append_publication(new_publication) for bm in self.brainmodules: bm.add_paper(new_publication) else: print("This paper is already in the Library.") self.latest_paper = new_publication #TODO: Write a function that plots the authors as network. But also count the number of non-connected networks. def _turn_techreport_to_type(self, bibtex, new_type): bibtex.insert(1, "\tjournal = {bioRxiv}") fields = [line.strip().split(" = ")[0] for line in bibtex] if len([part for part in new_type.required_fields if part in fields]) == 4: bibtex[0] = bibtex[0].replace("techreport", new_type.type_of_publication) return bibtex def find_double_keywords(self): for i, paper in enumerate(self.publications): print(i, paper) for j, quote in enumerate(paper.quotes): doubles = [kword for kword in Counter(quote.keywords.split(", ")) if Counter(quote.keywords.split(", "))[kword] > 1] if doubles: print(doubles) def update_brain_modules(self, paper): for bm in self.brainmodules: bm.add_information_on_paper(paper) def plot_years(self): import matplotlib.pyplot as plt import seaborn as sns years = [int(pub.year) for pub in self.publications] plt.hist(years, bins=(max(years) - min(years)) + 1) plt.show() def loop_through_fulltext_quotes(self, chosen_keyword): print("Chosen keyword: " + chosen_keyword) for counter, cit in enumerate(self.keywords.words[chosen_keyword]): print(str(counter) + " of " + str(len(self.keywords.words[chosen_keyword]))) print("Summary: " + self.keywords.words[chosen_keyword][counter].summary) print("Keywords: " + self.keywords.words[chosen_keyword][counter].keywords) print("Paper: " + str(self.keywords.words[chosen_keyword][counter].publication)) print("Short: " + self.keywords.words[chosen_keyword][counter].publication.short_identifier) print(textwrap.fill(self.keywords.words[chosen_keyword][counter].text, 100)) input("(enter)") print("") def get_quoteless_papers(self): return [paper for paper in self.publications if len(paper.quotes) == 0] def remove_paper(self, paper): papernumber = [i for i, pap in enumerate(self.publications) if pap == paper][0] del self.publications[papernumber] def move_quoteless_papers_to_bookshelf_of_shame(self): bos = [brain for brain in self.brainmodules if getattr(brain, "add_without_mother", None)][0] for i, pub in enumerate(self.get_quoteless_papers()[::-1]): answer = input("Do you want to keep '" + pub.title + "'? (y/n) ") if answer == "y": bos.add_without_mother(pub) else: None self.remove_paper(pub) self.save() class Citation(object): def __init__(self, block_of_text, publication, key): if publication.is_booklike: self.publication = publication self.summary = block_of_text[0] self.keywords = block_of_text[1] self.logic = block_of_text[2] self.pages = block_of_text[3] self.text = block_of_text[4] publication.Biblio.textblobcorpus.append(tb(self.text)) for word in self.keywords.split(", "): key.add_word(word, self) else: self.publication = publication self.summary = block_of_text[0] self.keywords = block_of_text[1] self.logic = block_of_text[2] self.text = block_of_text[3] publication.Biblio.textblobcorpus.append(tb(self.text)) for word in self.keywords.split(", "): key.add_word(word, self) def __repr__(self): output = "Summary: " + self.summary + "\nKeywords: " + self.keywords try: output += "\nPages: " + self.pages + "\nPaper: " + str(self.publication) + "\n" + self.text except: output += "\nPaper: " + str(self.publication) + "\n" + self.text return output def __eq__(self, other): return self.text is other.text def __hash__(self): return hash(str(self.text)) def _to_bibtex_string(self): line = "\tquote = {" + self.summary + "__" + self.keywords + "__" + self.logic + "__" try: line += self.pages + "__" + self.text.replace("\n", "") + "}," except: line += self.text.replace("\n", "") + "}," return line def _in_list(self): return "\t" + self.__repr__().replace("\n", "\n\t") def _add_logic(self, line): self.logic = line class Keywords(object): def __init__(self, words = {}): self.words = words def __add__(self, other): return Keywords({**self.words, **other.words}) def add_word(self, word, quote): if word in self.words: self.words[word].append(quote) else: self.words[word] = [quote] def overwrite(self, words): self.words = words def replace_keyword(self, old_kw, new_kw): for citation in self.words[old_kw]: citation.keywords = citation.keywords.replace(old_kw, new_kw) citation.keywords = ", ".join(list(set(citation.keywords.split(", ")))) self.words[new_kw].extend(self.words.pop(old_kw)) self.words[new_kw] = list(set(self.words[new_kw])) class BrainModule(): ## A sort of API for brain modules, which will be able to be added to a literature organizer and standard functions # will automatically call functions that are implemented in the modules def save(self): raise NotImplementedError def add_information_on_paper(self, paper): raise NotImplementedError def add_paper(self, paper): raise NotImplementedError def read_bibtex(location): file = open(location, "r") record = [] bib = open_empty_library(location, key=Keywords()) for i, line in enumerate(file): if "quote = {" in line: record.append(line.replace(",\n", "").replace("\n", "")) else: record.append(line.replace(",\n", "").replace("\n", "").replace(", ", "")) if line == "}\n" or line == "}": publication = bib.typedict[record[0].split("{")[0][1:]](record, "READ_BIBTEX", bib) bib.append_publication(publication) record = [] return bib def open_empty_library(location = None, key = Keywords()): return Library([], key, location) def caseless_equal(left, right): return unicodedata.normalize("NFKD", left.casefold()) == unicodedata.normalize("NFKD", right.casefold()) # store builtin print old_print = print def new_print(*args, **kwargs): # if tqdm.tqdm.write raises error, use builtin print try: tqdm.write(*args, **kwargs) except: old_print(*args, ** kwargs) # globaly replace print with new_print inspect.builtins.print = new_print
gpl-3.0
jpzk/evopy
evopy/examples/experiments/constraints_dsessvc/simulate.py
1
2681
''' This file is part of evopy. Copyright 2012 - 2013, Jendrik Poloczek evopy is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. evopy is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with evopy. If not, see <http://www.gnu.org/licenses/>. ''' from sys import path path.append("../../../..") from pickle import dump from copy import deepcopy from numpy import matrix, log10 from evopy.strategies.ori_dses_svc_repair import ORIDSESSVCR from evopy.strategies.ori_dses_svc import ORIDSESSVC from evopy.strategies.ori_dses import ORIDSES from evopy.simulators.simulator import Simulator from evopy.external.playdoh import map as pmap from evopy.problems.sphere_problem_origin_r1 import SphereProblemOriginR1 from evopy.problems.sphere_problem_origin_r2 import SphereProblemOriginR2 from evopy.problems.schwefels_problem_26 import SchwefelsProblem26 from evopy.problems.tr_problem import TRProblem from evopy.metamodel.dses_svc_linear_meta_model import DSESSVCLinearMetaModel from sklearn.cross_validation import KFold from evopy.operators.scaling.scaling_standardscore import ScalingStandardscore from evopy.operators.scaling.scaling_dummy import ScalingDummy from evopy.metamodel.cv.svc_cv_sklearn_grid_linear import SVCCVSkGridLinear from evopy.operators.termination.or_combinator import ORCombinator from evopy.operators.termination.accuracy import Accuracy from evopy.operators.termination.generations import Generations from evopy.operators.termination.convergence import Convergence from os.path import exists from os import mkdir from setup import * # create simulators for problem in problems: optimizer = optimizers[problem] simulators_op = [] for i in range(0, samples): simulator = Simulator(optimizer(), problem(), termination) simulators_op.append(simulator) simulators[problem] = simulators_op simulate = lambda simulator : simulator.simulate() # run simulators for problem in problems: resulting_simulators = pmap(simulate, simulators[problem]) for simulator in resulting_simulators: cfcs[problem].append(simulator.logger.all()['count_cfc']) if not exists("output/"): mkdir("output/") cfcs_file = open("output/cfcs_file.save", "w") dump(cfcs, cfcs_file) cfcs_file.close()
gpl-3.0
nvoron23/scikit-learn
sklearn/tests/test_discriminant_analysis.py
35
11709
try: # Python 2 compat reload except NameError: # Regular Python 3+ import from importlib import reload import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) clf.fit(X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1 n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_deprecated_lda_qda_deprecation(): def import_lda_module(): import sklearn.lda # ensure that we trigger DeprecationWarning even if the sklearn.lda # was loaded previously by another test. reload(sklearn.lda) return sklearn.lda lda = assert_warns(DeprecationWarning, import_lda_module) assert lda.LDA is LinearDiscriminantAnalysis def import_qda_module(): import sklearn.qda # ensure that we trigger DeprecationWarning even if the sklearn.qda # was loaded previously by another test. reload(sklearn.qda) return sklearn.qda qda = assert_warns(DeprecationWarning, import_qda_module) assert qda.QDA is QuadraticDiscriminantAnalysis
bsd-3-clause
lucidfrontier45/PyVB
pyvb/old_ver/vbgmm1d2.py
1
8212
#!/usr/bin/python import numpy as np from numpy.random import randn,dirichlet from scipy.linalg import det, inv from scipy.cluster import vq from scipy.special import psi,gammaln from core import * try: from _vbgmm1d import _evaluateHiddenState_C, _lnPD_C ext_imported = True except: ext_imported = False #print "warning, Cython extension module was not found" #print "computation can be slower" def testData1(n=100): X = np.r_[randn(n*2)] return X def testData2(n=100): X = np.r_[randn(n*2) / 0.3 , randn(n) + 10.0, randn(n*3) / 0.5 - 10.0, randn(3*n) / 0.1] return X def GaussianPDF(x,mu,s): return np.exp(-((x - mu)**2)*s*0.5)*np.sqrt(s/(2.0*np.pi)) def lnZ_Wishart(nu,V): # log normalization constant of 1D Wishart lnZ = 0.5 * nu * np.log(2.0*V) + gammaln(nu * 0.5) return lnZ class VBGMM1D: def __init__(self,nmix=10,u=0.5,m=0.0,beta=1,nu=1,s=0.01): self._nstates = nmix self._u0 = u # Jeffrey prior if u0 = 0.5 self._m0 = m self._beta0 = beta self._nu0 = nu self._s0 = s def _init_params(self,obs,adjust_prior=True,scale=0.1,use_emgmm=False): if adjust_prior: self._adjust_prior(obs,scale) self._set_posterior(obs,use_emgmm) def _adjust_prior(self,obs,scale=0.1): self._m0 = np.mean(obs) self._s0 = 1.0 / (np.std(obs) * self._nu0) * scale def _set_posterior(self,obs,use_emgmm=False): nobs = len(obs) nmix = self._nstates # hidden states self.z = dirichlet(np.tile(1.0/nmix,nmix),nobs) # mixing coefficients self.u = np.tile(self._u0,nmix) # posterior mean vector self.m, temp = vq.kmeans2(obs,nmix) self.beta = np.tile(self._beta0,nmix) # posterior degree of freedom self.nu = np.tile(float(nobs)/nmix,nmix) # posterior precision self.s = np.tile(self._s0,nmix) def _VBE(self,obs,use_ext=True): self._epi = self.u / self.u.sum() # <pi_k> self._elnpi = psi(self.u) - psi(self.u.sum()) # <ln(pi_k)> self._et = self.s * self.nu # <tau_k> self._elnt = psi(self.nu*0.5) + np.log(2.0*self.s) # <ln(t_k)> self.z = self._evaluateHiddenState(obs,use_ext) def _evaluateHiddenState(self,obs,use_ext=True): nobs = len(obs) nmix = self._nstates ln2pi = np.log(2.0 * np.pi) z = np.tile(self._elnpi + 0.5 * self._elnt - 0.5 * ln2pi ,(nobs,1)) if use_ext and ext_imported : pass else : for k in xrange(nmix): # very slow! need Fortran or C codes dobs = obs - self.m[k] z[:,k] -= 0.5 * (1.0/self.beta[k] + self.nu[k]*self.s[k]*(dobs**2)) z = np.exp(z - z.max(1)[np.newaxis].T) z = normalize(z,1) return z def _VBM(self,obs): self._calcSufficientStatistic(obs) self._updatePosteriorParameters(obs) def _calcSufficientStatistic(self,obs): self.N = self.z.sum(0) self.xbar = np.dot(obs,self.z) / self.N self.C = np.diag(np.dot(((obs - self.xbar[np.newaxis].T)**2),self.z)) def _updatePosteriorParameters(self,obs): self.u = self._u0 + self.N self.beta = self.N + self._beta0 self.m = (self._beta0 * self._m0 + self.N * self.xbar) / self.beta self.nu = self._nu0 + self.N self.s = 1.0 / (1.0/self._s0 + self.C + (self._beta0 *self.N / self.beta) \ * (self.xbar - self._m0)**2) def _VBLowerBound1(self,obs,use_ext=True): # variational lower bound nmix = self._nstates self.N = self.z.sum(0) # need to be updated !! # <lnp(X|Z,theta)> # very slow! neew Fortran or C codes lnpX = np.dot(self.N,(self._elnpi + 0.5 * self._elnt)) for k in xrange(nmix): dobs = obs - self.m[k] lnpX -= self.N[k] * 1.0 / self.beta[k] + self.s[k] * self.nu[k] * \ (dobs**2).sum() # H[q(z)] = -<lnq(z)> Hz = 0.0 for k in xrange(nmix): Hz -= np.dot(self.z[:,k],np.log(self.z[:,k])) # KL[q(pi)||p(pi)] KLpi = ( - gammaln(self.u) + self.N * psi(self.u)).sum() # KL[q(mu,tau)||p(mu,tau)] #KLmt = ((self.N * self._elnt + self.nu * (self.s / self._s0 - 1.0 - \ # np.log(2.0 * self.s)) + np.log(self.beta) + self._beta0 / self.beta + \ # self.nu * self.s * self._beta0 * (self.m - self._m0)**2) * 0.5 - \ # gammaln(self.nu * 0.5)).sum() # Wishart part KLmt = (self.N * self._elnt + self.nu * (self.s / self._s0 - 1.0)).sum() \ * 0.5 + nmix * lnZ_Wishart(self._nu0,self._s0) for k in xrange(nmix): KLmt -= lnZ_Wishart(self.nu[k],self.s[k]) # Conditional Gaussian part KLmt += 0.5 * (np.log(self.beta/self._beta0) + self._beta0/self.beta - 1 \ + self._beta0 * self.nu * self.s * (self.m-self._m0)**2).sum() return lnpX + Hz - KLpi - KLmt def _VBLowerBound2(self,obs,use_ext=True): # variational lower bound nobs = len(obs) nmix = self._nstates self.N = self.z.sum(0) # need to be updated !! # H[q(z)] = -<lnq(z)> Hz = 0.0 for k in xrange(nmix): Hz -= np.dot(self.z[:,k],np.log(self.z[:,k])) # KL[q(pi)||p(pi)] KLpi = (gammaln(nmix * self._u0 + nobs) - gammaln(nmix * self._u0)) \ - gammaln(self.u).sum() + nmix * gammaln(self._u0) # KL[q(mu,tau)||p(mu,tau)] KLmt = (np.log(self.beta).sum() - nmix * self._beta0) * 0.5 KLmt += lnZ_Wishart(self._nu0,self._s0) * nmix for k in xrange(nmix): KLmt -= lnZ_Wishart(self.nu[k],self.s[k]) #print "%12.5e %12.5e %12.5e"%(Hz,-KLpi,-KLmt) return Hz - KLpi - KLmt def _VBFreeEnergy(self,obs,use_ext=True): return - self._VBLowerBound2(obs,use_ext) def fit(self,obs,niter=200,eps=1e-4,ifreq=50,init=True,plot=False,\ use_ext=False): if init : self._init_params(obs) F_old = 1.0e50 for i in range(niter): old_u = np.copy(self.u) old_m = np.copy(self.m) old_s = np.copy(self.s) self._VBE(obs,use_ext) self._VBM(obs) F_new = self._VBFreeEnergy(obs,use_ext) dF = F_new - F_old if abs(dF) < eps : print "%8dth iter, Free Energy = %12.6e, dF = %12.6e" %(i,F_new,dF) print "%12.6e < %12.6e Converged" %(dF, eps) break if i % ifreq == 0: if dF < 0.0: print "%8dth iter, Free Energy = %12.6e, dF = %12.6e" %(i,F_new,dF) else : print "%8dth iter, Free Energy = %12.6e, dF = %12.6e warning" \ %(i,F_new,dF) #conv_u = np.allclose(self.u,old_u) #conv_m = np.allclose(self.m,old_m) #conv_s = np.allclose(self.s,old_s) #if conv_u and conv_m and conv_s: # break F_old = F_new if plot: self.plotPDF(obs) return self def showModel(self,min_pi=0.01): nmix = self._nstates params = sorted(zip(self._epi,self.m,self._et),reverse=True) relavent_clusters = [] for k in xrange(nmix): if params[k][0] < min_pi: break relavent_clusters.append(params[k]) print "%dth component, pi = %8.3g, mu = %8.3g, tau = %8.3g" \ % (k+1,params[k][0],params[k][1],params[k][2]) return relavent_clusters def pdf(self,x,min_pi=0.01): params = self.showModel(min_pi) pi = -np.sort(-self._epi)[:len(params)] pi = pi / pi.sum() y = np.array([GaussianPDF(x,p[1],p[2]) * pi[k] \ for k,p in enumerate(params)]) return y def plotPDF(self,obs,bins=100,min_pi=0.01): try : import matplotlib.pyplot as plt except ImportError : print "cannot import pyplot" return x = np.linspace(min(obs),max(obs),bins) y = self.pdf(x,min_pi) plt.hist(obs,bins,label="observed",normed=True) plt.plot(x,y.sum(0),label="sum",linewidth=8) for k,yy in enumerate(y) : plt.plot(x,yy,label="%dth cluster"%(k+1),linewidth=3) plt.legend(loc=0) plt.show() def decode(self,obs): z = self._evaluateHiddenState(readObs(obs)) codes = z.argmax(1) clust = [[] for i in range(z.shape[1])] for (o,c) in (obs,codes): clust[c].append(obs) for cl in clust: cl = np.array(cl) return codes,clust def test1(nmix,niter=10000): Y = testData2(2000) Y = cnormalize(Y) model = VBGMM1D(nmix) model.fit(Y,niter) model.showModel() #model.plotPDF(Y,bins=200) if __name__ == "__main__": from sys import argv nmix = int(argv[1]) test1(nmix)
bsd-3-clause
pranjalv123/hgt-nn
simhgt.py
1
6116
import dendropy import subprocess import numpy from ASTRID import ASTRID #you need ASTRID, which can be installed with # pip install astrid-phylo #and fasttree, which can be gotten from apt-get or at #http://meta.microbesonline.org/fasttree/ def get_desc_edges(t, n): desc = set() nodes = [n] while nodes: n = nodes.pop() desc.add(n.edge) for n2 in n.child_nodes(): nodes.append(n2) return list(desc) class Simhgt(object): def __init__(self, stree): self.stree = stree self.stree.suppress_unifurcations() def dohgt(self, ltree, e1, e2): #prune length = e1.length h = e1.head_node ltree.prune_subtree(h, suppress_unifurcations=False) h.edge_length=length #regraft tn = e2.tail_node hn = e2.head_node new = tn.new_child() new.edge.length = e2.length - length tn.remove_child(hn) new.add_child(hn) hn.edge.length = length new.add_child(h) ltree.update_splits(suppress_unifurcations=True) return ltree def dorandomhgt(self): ltree = self.stree.clone() top = numpy.random.choice(ltree.internal_nodes(), 1)[0] ltree.update_bipartitions() e1 = numpy.random.choice(get_desc_edges(ltree, top.child_nodes()[0]), 1)[0] e2 = numpy.random.choice(get_desc_edges(ltree, top.child_nodes()[1]), 1)[0] c1 = e1.split_bitmask c2 = e2.split_bitmask ltree = self.dohgt(ltree, e1, e2) for edge in ltree.postorder_edge_iter(): edge.pop_size = 100000 return ltree, c1, c2 def simgtrees(self, seqlen=100, nhgt=10, nils=10): gtrees = dendropy.TreeList() hgtevents = [] for i in range(nhgt): ltree, c1, c2 = self.dorandomhgt() gtrees.append(ltree) hgtevents.append((c1, c2)) for i in range(nils): gene_to_species_map = dendropy.TaxonNamespaceMapping.create_contained_taxon_mapping(containing_taxon_namespace=ltree.taxon_namespace, num_contained=1, contained_taxon_label_fn = lambda a,b:a) gtree = dendropy.simulate.treesim.contained_coalescent_tree(ltree, gene_to_containing_taxon_map=gene_to_species_map) gtrees.append(gtree) hgtevents.append((c1, c2)) seqs = [] for tree in gtrees: seqs.append(dendropy.simulate.charsim.hky85_chars(seqlen, tree)) self.truetrees = gtrees self.seqs = seqs self.hgtevents = hgtevents return gtrees, seqs, hgtevents def estgtrees(self): self.esttrees = dendropy.TreeList() for mat in self.seqs: tree, _ = subprocess.Popen(["fasttree", "-nt", "-gtr"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate(mat.as_string(schema='phylip')) self.esttrees.append(dendropy.Tree.get_from_string(tree, 'newick')) def gen_test_data(file=None, seed=None, nreps=50, ntaxa=15, ngenes=1000, seqlen=100): if seed: numpy.random.seed(seed) dendropy.utility.GLOBAL_RNG.seed(seed) if file: sh = Simhgt(dendropy.Tree.get_from_file(file, 'newick')) else: stree = dendropy.simulate.treesim.birth_death_tree(birth_rate=1.0, death_rate=0.5, ntax=ntaxa) sh = Simhgt(stree) egts = [] tgts = [] seqs = [] hgts = [] for i in range(nreps): sh.simgtrees(nhgt=ngenes, nils=1, seqlen=seqlen) sh.estgtrees() egts.append(sh.esttrees) tgts.append(sh.truetrees) seqs.append(sh.seqs) hgts.append(sh.hgtevents) return tgts, egts, seqs, hgts, sh.stree from sklearn import svm, ensemble from tree2vec import tree2vec import scipy def pipeline(truetrees, esttrees, seqs, hgtevents, stree, learner=None): ast = ASTRID(esttrees) ast.run('auto') estspeciestree = ast.tree print str(stree) estspeciestree.migrate_taxon_namespace(stree.taxon_namespace) print str(estspeciestree) print "RF distance", (dendropy.treecalc.treecompare.false_positives_and_negatives(estspeciestree, stree)), len(stree.internal_edges()) sim = Simhgt(estspeciestree) sim.simgtrees(seqlen=20, nhgt=100, nils=10) sim.estgtrees() traintrees = sim.truetrees + sim.esttrees trainhgts = sim.hgtevents + sim.hgtevents tn = traintrees[0].taxon_namespace traintrees = [tree2vec(i) for i in traintrees] esttrees = [tree2vec(i) for i in esttrees] trainmat = scipy.sparse.csr_matrix((2**len(tn), len(traintrees))) estmat = scipy.sparse.csr_matrix((2**len(tn), len(esttrees))) trainhgtmat = scipy.sparse.csr_matrix((2**len(tn) * 2, len(traintrees))) trainhgtlist1 = numpy.array([i[0] for i in trainhgts]) trainhgtlist2 = numpy.array([i[1] for i in trainhgts]) for i, hgt in enumerate(trainhgts): trainhgtmat[hgt[0], i] = 1 trainhgtmat[hgt[1] + len(tn), i] = 1 for i, j in enumerate(traintrees): trainmat[j, i] = 1 for i, j in enumerate(esttrees): estmat[j, i] = 1 trainmat = trainmat.T estmat = estmat.T trainhgtmat = trainhgtmat.T print trainmat.shape print trainhgtmat.shape print estmat.shape learner.fit(trainmat, trainhgtlist1) estimated_hgts = learner.predict(estmat) print estimated_hgts print learner return estimated_hgts def run(ngenes=50, ntaxa=5): testdata = gen_test_data(ntaxa=ntaxa, ngenes=ngenes, nreps=1) # learner = ensemble.RandomForestClassifier(n_estimators=100) learner = svm.SVC() ehgt = pipeline(testdata[0][0], testdata[1][0], testdata[2][0], testdata[3][0], testdata[4], learner = learner) print ehgt print testdata[3] sources = [i[0] for i in testdata[3][0]] print sources for i in zip(ehgt, sources): print i return zip(ehgt, sources) if __name__ == "__main__": run()
gpl-3.0
GEMScienceTools/gmpe-smtk
smtk/trellis/trellis_plots.py
1
66310
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2014-2017 GEM Foundation and G. Weatherill # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. ''' Sets up a simple rupture-site configuration to allow for physical comparison of GMPEs ''' import os import sys import re import json import numpy as np from collections import OrderedDict try: # https://stackoverflow.com/q/53978542 from collections.abc import Iterable # noqa except ImportError: from collections import Iterable # noqa from cycler import cycler from math import floor, ceil import matplotlib from copy import deepcopy import matplotlib.pyplot as plt from openquake.hazardlib import gsim, imt from openquake.hazardlib.gsim.base import RuptureContext from openquake.hazardlib.gsim.gmpe_table import GMPETable from openquake.hazardlib.gsim.base import GMPE from openquake.hazardlib.scalerel.wc1994 import WC1994 from smtk.sm_utils import _save_image_tight import smtk.trellis.trellis_utils as utils from smtk.trellis.configure import GSIMRupture, DEFAULT_POINT # Default - defines a 21 color and line-type cycle matplotlib.rcParams["axes.prop_cycle"] = \ cycler(u'color', ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'b', 'g', 'r', 'c', 'm', 'y', 'k', 'b', 'g', 'r', 'c', 'm', 'y', 'k', 'b', 'g', 'r', 'c', 'm', 'y', 'k']) +\ cycler(u'linestyle', ["-", "-", "-", "-", "-", "-", "-", "--", "--", "--", "--", "--", "--", "--", "-.", "-.", "-.", "-.", "-.", "-.", "-.", ":", ":", ":", ":", ":", ":", ":"]) # Get a list of the available GSIMs AVAILABLE_GSIMS = gsim.get_available_gsims() # Generic dictionary of parameters needed for a trellis calculation PARAM_DICT = {'magnitudes': [], 'distances': [], 'distance_type': 'rjb', 'vs30': [], 'strike': None, 'dip': None, 'rake': None, 'ztor': None, 'hypocentre_location': (0.5, 0.5), 'hypo_loc': (0.5, 0.5), 'msr': WC1994()} # Defines the plotting units for given intensitiy measure type PLOT_UNITS = {'PGA': 'g', 'PGV': 'cm/s', 'SA': 'g', 'SD': 'cm', 'IA': 'm/s', 'CSV': 'g-sec', 'RSD': 's', 'MMI': ''} # Verbose label for each given distance type DISTANCE_LABEL_MAP = {'repi': 'Epicentral Dist.', 'rhypo': 'Hypocentral Dist.', 'rjb': 'Joyner-Boore Dist.', 'rrup': 'Rupture Dist.', 'rx': 'Rx Dist.'} # Default figure size FIG_SIZE = (7, 5) # RESET Axes tick labels matplotlib.rc("xtick", labelsize=12) matplotlib.rc("ytick", labelsize=12) def simplify_contexts(rupture): """ Reduce a rupture to a set of basic openquake context objects :returns: openquake.hazardlib.gsim.base.SitesContext openquake.hazardlib.gsim.base.DistancesContexts openquake.hazardlib.gsim.base.RuptureContext """ sctx, rctx, dctx = rupture.get_gsim_contexts() sctx.__dict__.update(rctx.__dict__) for val in dctx.__dict__: if getattr(dctx, val) is not None: setattr(dctx, val, getattr(dctx, val)[0]) return sctx.__dict__, rctx.__dict__, dctx.__dict__ def _get_gmpe_name(gsim): """ Returns the name of the GMPE given an instance of the class """ if gsim.__class__.__name__.startswith("GMPETable"): match = re.match(r'^GMPETable\(([^)]+?)\)$', str(gsim)) filepath = match.group(1).split("=")[1][1:-1] # return a consistent name (see _check_gsim_list): return 'GMPETable(gmpe_table=%s)' % filepath else: gsim_name = gsim.__class__.__name__ additional_args = [] for key in gsim.__dict__: if key.startswith("kwargs"): continue additional_args.append("{:s}={:s}".format(key, str(gsim.__dict__[key]))) if len(additional_args): gsim_name_str = "({:s})".format(", ".join(additional_args)) gsim_name_str = gsim_name_str.replace("_", " ") return gsim_name + gsim_name_str else: return gsim_name def _check_gsim_list(gsim_list): """ Checks the list of GSIM models and returns a dict where each gsim in `gsim_list` is mapped to its openquake.hazardlib.gsim class. Raises error if GSIM is not supported in OpenQuake :param gsim_list: list of GSIM names (str) or OpenQuake Gsims :return: a dict of GSIM names (str) mapped to the associated GSIM """ output_gsims = {} for gs in gsim_list: if isinstance(gs, GMPE): # retrieve the name of an instantated GMPE via `_get_gmpe_name`: output_gsims[_get_gmpe_name(gs)] = gs elif gs.startswith("GMPETable"): # Get filename match = re.match(r'^GMPETable\(([^)]+?)\)$', gs) filepath = match.group(1).split("=")[1] output_gsims[gs] = GMPETable(gmpe_table=filepath) elif gs not in AVAILABLE_GSIMS: raise ValueError('%s Not supported by OpenQuake' % gs) else: output_gsims[gs] = AVAILABLE_GSIMS[gs]() return output_gsims def _get_imts(imts): """ Reads a list of IMT strings and returns the corresponding openquake.hazardlib.imt class :param list imts: List of IMTs(str) """ out_imts = [] for imtl in imts: out_imts.append(imt.from_string(imtl)) return out_imts class BaseTrellis(object): """ Base class for holding functions related to the trellis plotting :param list or np.ndarray magnitudes: List of rupture magnitudes :param dict distances: Dictionary of distance measures as a set of np.ndarrays - {'repi', np.ndarray, 'rjb': np.ndarray, 'rrup': np.ndarray, 'rhypo': np.ndarray} The number of elements in all arrays must be equal :param list gsims: List of instance of the openquake.hazardlib.gsim classes to represent GMPEs :param list imts: List of intensity measures :param dctx: Distance context as instance of :class: openquake.hazardlib.gsim.base.DistancesContext :param rctx: Rupture context as instance of :class: openquake.hazardlib.gsim.base.RuptureContext :param sctx: Rupture context as instance of :class: openquake.hazardlib.gsim.base.SitesContext :param int nsites: Number of sites :param str stddevs: Standard deviation types :param str filename: Name of output file for exporting the figure :param str filetype: String to indicate file type for exporting the figure :param int dpi: Dots per inch for export figure :param str plot_type: Type of plot (only used in distance Trellis) :param str distance_type: Type of source-site distance to be used in distances trellis :param tuple figure_size: Size of figure (passed to Matplotlib pyplot.figure() function) :param tuple xlim: Limits on the x-axis (will apply to all subplot axes) :param tuple ylim: Limits on the y-axis (will apply to all subplot axes) :param float legend_fontsize: Controls the fontsize of the legend (default 14) :param int ncol: Number of columns for the legend (default 1) """ def __init__(self, magnitudes, distances, gsims, imts, params, stddevs="Total", rupture=None, **kwargs): """ """ # Set default keyword arguments kwargs.setdefault('filename', None) kwargs.setdefault('filetype', "png") kwargs.setdefault('dpi', 300) kwargs.setdefault('plot_type', "loglog") kwargs.setdefault('distance_type', "rjb") kwargs.setdefault('figure_size', FIG_SIZE) kwargs.setdefault('xlim', None) kwargs.setdefault('ylim', None) kwargs.setdefault("legend_fontsize", 14) kwargs.setdefault("ncol", 1) self.rupture = rupture self.magnitudes = magnitudes self.distances = distances self.gsims = _check_gsim_list(gsims) self.params = params self.imts = imts self.dctx = None self.rctx = None self.sctx = None self.nsites = 0 self._preprocess_distances() self._preprocess_ruptures() self._preprocess_sites() self.stddevs = stddevs self.filename = kwargs['filename'] self.filetype = kwargs['filetype'] self.dpi = kwargs['dpi'] self.plot_type = kwargs['plot_type'] self.distance_type = kwargs['distance_type'] self.figure_size = kwargs["figure_size"] self.xlim = kwargs["xlim"] self.ylim = kwargs["ylim"] self.legend_fontsize = kwargs["legend_fontsize"] self.ncol = kwargs["ncol"] def _preprocess_distances(self): """ Preprocesses the input distances to check that all the necessary distance types required by the GSIMS are found in the DistancesContext() """ self.dctx = gsim.base.DistancesContext() required_dists = [] for gmpe_name, gmpe in self.gsims.items(): gsim_distances = [dist for dist in gmpe.REQUIRES_DISTANCES] for dist in gsim_distances: if dist not in self.distances: raise ValueError('GMPE %s requires distance type %s' % (gmpe_name, dist)) if dist not in required_dists: required_dists.append(dist) dist_check = False for dist in required_dists: if dist_check and not (len(self.distances[dist]) == self.nsites): raise ValueError("Distances arrays not equal length!") else: self.nsites = len(self.distances[dist]) dist_check = True setattr(self.dctx, dist, self.distances[dist]) def _preprocess_ruptures(self): """ Preprocesses rupture parameters to ensure all the necessary rupture information for the GSIMS is found in the input parameters """ self.rctx = [] if (not isinstance(self.magnitudes, list) and not isinstance(self.magnitudes, np.ndarray)): self.magnitudes = np.array(self.magnitudes) # Get all required rupture attributes required_attributes = [] for gmpe_name, gmpe in self.gsims.items(): rup_params = [param for param in gmpe.REQUIRES_RUPTURE_PARAMETERS] for param in rup_params: if param == 'mag': continue elif param not in self.params: raise ValueError("GMPE %s requires rupture parameter %s" % (gmpe_name, param)) elif param not in required_attributes: required_attributes.append(param) else: pass for mag in self.magnitudes: rup = gsim.base.RuptureContext() setattr(rup, 'mag', mag) for attr in required_attributes: setattr(rup, attr, self.params[attr]) self.rctx.append(rup) def _preprocess_sites(self): """ Preprocesses site parameters to ensure all the necessary rupture information for the GSIMS is found in the input parameters """ slots = set() for gmpe in self.gsims.values(): slots.update(gmpe.REQUIRES_SITES_PARAMETERS) self.sctx = gsim.base.SitesContext(slots=slots) required_attributes = [] for gmpe_name, gmpe in self.gsims.items(): site_params = [param for param in gmpe.REQUIRES_SITES_PARAMETERS] for param in site_params: if param not in self.params: raise ValueError("GMPE %s requires site parameter %s" % (gmpe_name, param)) elif param not in required_attributes: required_attributes.append(param) else: pass for param in required_attributes: if isinstance(self.params[param], float): setattr(self.sctx, param, self.params[param] * np.ones(self.nsites, dtype=float)) if isinstance(self.params[param], bool): if self.params[param]: setattr(self.sctx, param, self.params[param] * np.ones(self.nsites, dtype=bool)) else: setattr(self.sctx, param, self.params[param] * np.zeros(self.nsites, dtype=bool)) elif isinstance(self.params[param], Iterable): if not len(self.params[param]) == self.nsites: raise ValueError("Length of sites value %s not equal to" " number of sites %" % (param, self.nsites)) setattr(self.sctx, param, self.params[param]) else: pass @classmethod def from_rupture_model(cls, rupture, gsims, imts, stddevs='Total', **kwargs): """ Constructs the Base Trellis Class from a rupture model :param rupture: Rupture as instance of the :class: smtk.trellis.configure.GSIMRupture """ kwargs.setdefault('filename', None) kwargs.setdefault('filetype', "png") kwargs.setdefault('dpi', 300) kwargs.setdefault('plot_type', "loglog") kwargs.setdefault('distance_type', "rjb") kwargs.setdefault('xlim', None) kwargs.setdefault('ylim', None) assert isinstance(rupture, GSIMRupture) magnitudes = [rupture.magnitude] sctx, rctx, dctx = rupture.get_gsim_contexts() # Create distances dictionary distances = {} for key in dctx._slots_: distances[key] = getattr(dctx, key) # Add all other parameters to the dictionary params = {} for key in rctx._slots_: params[key] = getattr(rctx, key) for key in sctx._slots_: params[key] = getattr(sctx, key) return cls(magnitudes, distances, gsims, imts, params, stddevs, rupture=rupture, **kwargs) def plot(self): """ Creates the plot! """ raise NotImplementedError("Cannot create plot of base class!") def _get_ylabel(self, imt): """ Returns the label for plotting on a y axis """ raise NotImplementedError class MagnitudeIMTTrellis(BaseTrellis): """ Class to generate plots showing the scaling of a set of IMTs with magnitude """ def __init__(self, magnitudes, distances, gsims, imts, params, stddevs="Total", **kwargs): """ Instantiate with list of magnitude and the corresponding distances given in a dictionary """ for key in distances: if isinstance(distances[key], float): distances[key] = np.array([distances[key]]) super(MagnitudeIMTTrellis, self).__init__( magnitudes, distances, gsims, imts, params, stddevs, **kwargs) @classmethod def from_rupture_properties(cls, properties, magnitudes, distance, gsims, imts, stddevs='Total', **kwargs): '''Constructs the Base Trellis Class from a dictionary of properties. In this class, this method is simply an alias of `from_rupture_model` ''' return cls.from_rupture_model(properties, magnitudes, distance, gsims, imts, stddevs=stddevs, **kwargs) @classmethod def from_rupture_model(cls, properties, magnitudes, distance, gsims, imts, stddevs='Total', **kwargs): """ Implements the magnitude trellis from a dictionary of properties, magnitudes and distance """ kwargs.setdefault('filename', None) kwargs.setdefault('filetype', "png") kwargs.setdefault('dpi', 300) kwargs.setdefault('plot_type', "loglog") kwargs.setdefault('distance_type', "rjb") kwargs.setdefault('xlim', None) kwargs.setdefault('ylim', None) # Properties properties.setdefault("tectonic_region", "Active Shallow Crust") properties.setdefault("rake", 0.) properties.setdefault("ztor", 0.) properties.setdefault("strike", 0.) properties.setdefault("msr", WC1994()) properties.setdefault("initial_point", DEFAULT_POINT) properties.setdefault("hypocentre_location", None) properties.setdefault("line_azimuth", 90.) properties.setdefault("origin_point", (0.5, 0.5)) properties.setdefault("vs30measured", True) properties.setdefault("z1pt0", None) properties.setdefault("z2pt5", None) properties.setdefault("backarc", False) properties.setdefault("distance_type", "rrup") # Define a basic rupture configuration rup = GSIMRupture(magnitudes[0], properties["dip"], properties["aspect"], properties["tectonic_region"], properties["rake"], properties["ztor"], properties["strike"], properties["msr"], properties["initial_point"], properties["hypocentre_location"]) # Add the target sites _ = rup.get_target_sites_point(distance, properties['distance_type'], properties["vs30"], properties["line_azimuth"], properties["origin_point"], properties["vs30measured"], properties["z1pt0"], properties["z2pt5"], properties["backarc"]) # Get the contexts sctx, rctx, dctx = rup.get_gsim_contexts() # Create an equivalent 'params' dictionary by merging the site and # rupture properties sctx.__dict__.update(rctx.__dict__) for val in dctx.__dict__: if getattr(dctx, val) is not None: setattr(dctx, val, getattr(dctx, val)[0]) return cls(magnitudes, dctx.__dict__, gsims, imts, sctx.__dict__, **kwargs) def plot(self): fig = self.get_fig() fig.show() def get_fig(self): """ Creates the trellis plot! """ # Determine the optimum number of rows and columns nrow, ncol = utils.best_subplot_dimensions(len(self.imts)) # Get means and standard deviations gmvs = self.get_ground_motion_values() fig = plt.figure(figsize=self.figure_size) fig.set_tight_layout(True) row_loc = 0 col_loc = 0 for i_m in self.imts: if col_loc == ncol: row_loc += 1 col_loc = 0 # Construct the plot self._build_plot( plt.subplot2grid((nrow, ncol), (row_loc, col_loc)), i_m, gmvs) col_loc += 1 # Add legend lgd = plt.legend(self.lines, self.labels, loc=3, bbox_to_anchor=(1.1, 0.), fontsize=self.legend_fontsize, ncol=self.ncol) _save_image_tight(fig, lgd, self.filename, self.filetype, self.dpi) return fig def _build_plot(self, ax, i_m, gmvs): """ Plots the lines for a given axis :param ax: Axes object :param str i_m: Intensity Measure :param dict gmvs: Ground Motion Values Dictionary """ self.labels = [] self.lines = [] for gmpe_name in self.gsims: self.labels.append(gmpe_name) line, = ax.semilogy(self.magnitudes, gmvs[gmpe_name][i_m][:, 0], linewidth=2.0, label=gmpe_name) self.lines.append(line) ax.grid(True) if isinstance(self.xlim, tuple): ax.set_xlim(self.xlim[0], self.xlim[1]) else: ax.set_xlim(floor(self.magnitudes[0]), ceil(self.magnitudes[-1])) if isinstance(self.ylim, tuple): ax.set_ylim(self.ylim[0], self.ylim[1]) self._set_labels(i_m, ax) def _set_labels(self, i_m, ax): """ Sets the labels on the specified axes """ ax.set_xlabel("Magnitude", fontsize=16) ax.set_ylabel(self._get_ylabel(i_m), fontsize=16) def _get_ylabel(self, i_m): """ Return the y-label for the magnitude IMT trellis """ if 'SA(' in i_m: units = PLOT_UNITS['SA'] else: units = PLOT_UNITS[i_m] return "Median {:s} ({:s})".format(i_m, units) def to_dict(self): """ Parse the ground motion values to a dictionary """ gmvs = self.get_ground_motion_values() nrow, ncol = utils.best_subplot_dimensions(len(self.imts)) gmv_dict = OrderedDict([ ("xvalues", self.magnitudes.tolist()), ("xlabel", "Magnitude")]) nvals = len(self.magnitudes) gmv_dict["figures"] = [] row_loc = 0 col_loc = 0 for imt in self.imts: if col_loc == ncol: row_loc += 1 col_loc = 0 # Set the dictionary of y-values ydict = {"ylabel": self._get_ylabel(imt), "imt": imt, "row": row_loc, "column": col_loc, "yvalues": OrderedDict([])} for gsim in gmvs: if not len(gmvs[gsim][imt]): # GSIM missing, set None ydict["yvalues"][gsim] = [None] * nvals continue iml_to_list = [] for val in gmvs[gsim][imt].flatten().tolist(): if np.isnan(val) or (val < 0.0): iml_to_list.append(None) else: iml_to_list.append(val) ydict["yvalues"][gsim] = iml_to_list gmv_dict["figures"].append(ydict) col_loc += 1 return gmv_dict def to_json(self): """ Serializes the ground motion values to json """ return json.dumps(self.to_dict()) def get_ground_motion_values(self): """ Runs the GMPE calculations to retreive ground motion values :returns: Nested dictionary of values {'GMPE1': {'IM1': , 'IM2': }, 'GMPE2': {'IM1': , 'IM2': }} """ gmvs = OrderedDict() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros( [len(self.rctx), self.nsites], dtype=float) for iloc, rct in enumerate(self.rctx): try: means, _ = gmpe.get_mean_and_stddevs( self.sctx, rct, self.dctx, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = \ np.exp(means) except (KeyError, ValueError): gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def pretty_print(self, filename=None, sep=","): """ Format the ground motion for printing to file or to screen :param str filename: Path to file :param str sep: Separator character """ if filename: fid = open(filename, "w") else: fid = sys.stdout # Print Meta information self._write_pprint_header_line(fid, sep) # Print Distances distance_str = sep.join(["{:s}{:s}{:s}".format(key, sep, str(val[0])) for (key, val) in self.dctx.items()]) fid.write("Distances%s%s\n" % (sep, distance_str)) # Loop over IMTs gmvs = self.get_ground_motion_values() for imt in self.imts: fid.write("%s\n" % imt) header_str = "Magnitude" + sep + sep.join(self.gsims) fid.write("%s\n" % header_str) for i, mag in enumerate(self.magnitudes): data_string = sep.join(["{:.8f}".format( gmvs[gmpe_name][imt][i, 0]) for gmpe_name in self.gsims]) fid.write("{:s}{:s}{:s}\n".format(str(mag), sep, data_string)) fid.write("====================================================\n") if filename: fid.close() def _write_pprint_header_line(self, fid, sep=","): """ Write the header lines of the pretty print function """ fid.write("Magnitude IMT Trellis\n") fid.write("%s\n" % sep.join([ "{:s}{:s}{:s}".format(key, sep, str(val)) for (key, val) in self.params.items()])) class MagnitudeSigmaIMTTrellis(MagnitudeIMTTrellis): """ Creates the Trellis plot for the standard deviations """ def _build_plot(self, ax, i_m, gmvs): """ Plots the lines for a given axis :param ax: Axes object :param str i_m: Intensity Measure :param dict gmvs: Ground Motion Values Dictionary """ self.labels = [] self.lines = [] for gmpe_name in self.gsims: self.labels.append(gmpe_name) line, = ax.plot(self.magnitudes, gmvs[gmpe_name][i_m][:, 0], linewidth=2.0, label=gmpe_name) self.lines.append(line) ax.grid(True) if isinstance(self.xlim, tuple): ax.set_xlim(self.xlim[0], self.xlim[1]) else: ax.set_xlim(floor(self.magnitudes[0]), ceil(self.magnitudes[-1])) if isinstance(self.ylim, tuple): ax.set_ylim(self.ylim[0], self.ylim[1]) self._set_labels(i_m, ax) def get_ground_motion_values(self): """ Runs the GMPE calculations to retreive ground motion values :returns: Nested dictionary of values {'GMPE1': {'IM1': , 'IM2': }, 'GMPE2': {'IM1': , 'IM2': }} """ gmvs = OrderedDict() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros([len(self.rctx), self.nsites], dtype=float) for iloc, rct in enumerate(self.rctx): try: _, sigmas = gmpe.get_mean_and_stddevs( self.sctx, rct, self.dctx, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = sigmas[0] except KeyError: gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def get_ground_motion_values_from_rupture(self): """ """ gmvs = OrderedDict() rctx, dctx, sctx = self._get_context_sets() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros( [len(self.rctx), self.nsites], dtype=float) for iloc, (rct, dct, sct) in enumerate(zip(rctx, dctx, sctx)): try: _, sigmas = gmpe.get_mean_and_stddevs( sct, rct, dct, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = sigmas[0] except (KeyError, ValueError): gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def _get_ylabel(self, i_m): """ """ return self.stddevs + " Std. Dev. ({:s})".format(str(i_m)) def _set_labels(self, i_m, ax): """ Sets the axes labels """ ax.set_xlabel("Magnitude", fontsize=16) ax.set_ylabel(self._get_ylabel(i_m), fontsize=16) def _write_pprint_header_line(self, fid, sep=","): """ Write the header lines of the pretty print function """ fid.write("Magnitude IMT %s Standard Deviations Trellis\n" % self.stddevs) fid.write("%s\n" % sep.join([ "{:s}{:s}{:s}".format(key, sep, str(val)) for (key, val) in self.params.items()])) class DistanceIMTTrellis(MagnitudeIMTTrellis): """ Trellis class to generate a plot of the GMPE attenuation with distance """ XLABEL = "%s (km)" YLABEL = "Median %s (%s)" def __init__(self, magnitudes, distances, gsims, imts, params, stddevs="Total", **kwargs): """ Instantiation """ if isinstance(magnitudes, float): magnitudes = [magnitudes] super(DistanceIMTTrellis, self).__init__(magnitudes, distances, gsims, imts, params, stddevs, **kwargs) @classmethod def from_rupture_properties(cls, properties, magnitude, distances, gsims, imts, stddevs='Total', **kwargs): '''Constructs the Base Trellis Class from a rupture properties. It internally creates a Rupture object and calls `from_rupture_model`. When not listed, arguments take the same values as `from_rupture_model` :param distances: a numeric array of chosen distances ''' params = {k: properties[k] for k in ['rake', 'initial_point', 'ztor', 'hypocentre_location', 'strike', 'msr', 'tectonic_region'] if k in properties} rupture = GSIMRupture(magnitude, properties['dip'], properties['aspect'], **params) params = {k: properties[k] for k in ['line_azimuth', 'as_log', 'vs30measured', 'z1pt0', 'z2pt5', 'origin_point', 'backarc'] if k in properties} rupture.get_target_sites_line_from_given_distances(distances, properties['vs30'], **params) return cls.from_rupture_model(rupture, gsims, imts, stddevs=stddevs, **kwargs) @classmethod def from_rupture_model(cls, rupture, gsims, imts, stddevs='Total', **kwargs): """ Constructs the Base Trellis Class from a rupture model :param rupture: Rupture as instance of the :class: smtk.trellis.configure.GSIMRupture """ kwargs.setdefault('filename', None) kwargs.setdefault('filetype', "png") kwargs.setdefault('dpi', 300) kwargs.setdefault('plot_type', "loglog") kwargs.setdefault('distance_type', "rjb") kwargs.setdefault('xlim', None) kwargs.setdefault('ylim', None) assert isinstance(rupture, GSIMRupture) magnitudes = [rupture.magnitude] sctx, rctx, dctx = rupture.get_gsim_contexts() # Create distances dictionary distances = {} for key in dctx._slots_: distances[key] = getattr(dctx, key) # Add all other parameters to the dictionary params = {} for key in rctx._slots_: params[key] = getattr(rctx, key) for key in sctx._slots_: params[key] = getattr(sctx, key) return cls(magnitudes, distances, gsims, imts, params, stddevs, **kwargs) def _build_plot(self, ax, i_m, gmvs): """ Plots the lines for a given axis :param ax: Axes object :param str i_m: Intensity Measure :param dict gmvs: Ground Motion Values Dictionary """ self.labels = [] self.lines = [] distance_vals = getattr(self.dctx, self.distance_type) assert (self.plot_type == "loglog") or (self.plot_type == "semilogy") for gmpe_name in self.gsims: self.labels.append(gmpe_name) if self.plot_type == "semilogy": line, = ax.semilogy(distance_vals, gmvs[gmpe_name][i_m][0, :], linewidth=2.0, label=gmpe_name) min_x = distance_vals[0] max_x = distance_vals[-1] else: line, = ax.loglog(distance_vals, gmvs[gmpe_name][i_m][0, :], linewidth=2.0, label=gmpe_name) min_x = 0.5 max_x = distance_vals[-1] self.lines.append(line) ax.grid(True) if isinstance(self.xlim, tuple): ax.set_xlim(self.xlim[0], self.xlim[1]) else: ax.set_xlim(min_x, max_x) if isinstance(self.ylim, tuple): ax.set_ylim(self.ylim[0], self.ylim[1]) self._set_labels(i_m, ax) def _set_labels(self, i_m, ax): """ Sets the labels on the specified axes """ ax.set_xlabel("%s (km)" % DISTANCE_LABEL_MAP[self.distance_type], fontsize=16) ax.set_ylabel(self._get_ylabel(i_m), fontsize=16) def _get_ylabel(self, i_m): """ Returns the y-label for the given IMT """ if 'SA(' in i_m: units = PLOT_UNITS['SA'] else: units = PLOT_UNITS[i_m] return "Median {:s} ({:s})".format(i_m, units) def to_dict(self): """ Parses the ground motion values to a dictionary """ gmvs = self.get_ground_motion_values() nrow, ncol = utils.best_subplot_dimensions(len(self.imts)) dist_label = "{:s} (km)".format(DISTANCE_LABEL_MAP[self.distance_type]) gmv_dict = OrderedDict([ ("xvalues", self.distances[self.distance_type].tolist()), ("xlabel", dist_label)]) gmv_dict["figures"] = [] row_loc = 0 col_loc = 0 for imt in self.imts: if col_loc == ncol: row_loc += 1 col_loc = 0 # Set the dictionary of y-values ydict = {"ylabel": self._get_ylabel(imt), "imt": imt, "row": row_loc, "column": col_loc, "yvalues": OrderedDict([])} for gsim in gmvs: data = [None if np.isnan(val) else val for val in gmvs[gsim][imt].flatten()] ydict["yvalues"][gsim] = data gmv_dict["figures"].append(ydict) col_loc += 1 return gmv_dict def to_json(self): """ Exports ground motion values to json """ return json.dumps(self.to_dict()) def pretty_print(self, filename=None, sep=","): """ Format the ground motion for printing to file or to screen :param str filename: Path to file :param str sep: Separator character """ if filename: fid = open(filename, "w") else: fid = sys.stdout # Print Meta information self._write_pprint_header_line(fid, sep) fid.write("Magnitude%s%.2f\n" % (sep, self.magnitudes[0])) # Loop over IMTs gmvs = self.get_ground_motion_values() for imt in self.imts: fid.write("%s\n" % imt) header_str = sep.join([key for key in self.distances]) header_str = "{:s}{:s}{:s}".format( header_str, sep, sep.join(self.gsims)) fid.write("%s\n" % header_str) for i in range(self.nsites): dist_string = sep.join(["{:.4f}".format(self.distances[key][i]) for key in self.distances]) data_string = sep.join(["{:.8f}".format( gmvs[gmpe_name][imt][0, i]) for gmpe_name in self.gsims]) fid.write("{:s}{:s}{:s}\n".format(dist_string, sep, data_string)) fid.write("====================================================\n") if filename: fid.close() def _write_pprint_header_line(self, fid, sep=","): """ Write the header lines of the pretty print function """ fid.write("Distance (km) IMT Trellis\n") fid.write("%s\n" % sep.join(["{:s}{:s}{:s}".format(key, sep, str(val)) for (key, val) in self.params.items()])) class DistanceSigmaIMTTrellis(DistanceIMTTrellis): """ """ def get_ground_motion_values(self): """ Runs the GMPE calculations to retreive ground motion values :returns: Nested dictionary of values {'GMPE1': {'IM1': , 'IM2': }, 'GMPE2': {'IM1': , 'IM2': }} """ gmvs = OrderedDict() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros([len(self.rctx), self.nsites], dtype=float) for iloc, rct in enumerate(self.rctx): try: _, sigmas = gmpe.get_mean_and_stddevs( self.sctx, rct, self.dctx, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = sigmas[0] except (KeyError, ValueError): gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def get_ground_motion_values_from_rupture(self): """ """ gmvs = OrderedDict() rctx, dctx, sctx = self._get_context_sets() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros( [len(self.rctx), self.nsites], dtype=float) for iloc, (rct, dct, sct) in enumerate(zip(rctx, dctx, sctx)): try: _, sigmas = gmpe.get_mean_and_stddevs( sct, rct, dct, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = sigmas[0] except KeyError: gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def _build_plot(self, ax, i_m, gmvs): """ Plots the lines for a given axis :param ax: Axes object :param str i_m: Intensity Measure :param dict gmvs: Ground Motion Values Dictionary """ self.labels = [] self.lines = [] distance_vals = getattr(self.dctx, self.distance_type) assert (self.plot_type == "loglog") or (self.plot_type == "semilogy") for gmpe_name in self.gsims: self.labels.append(gmpe_name) if self.plot_type == "loglog": line, = ax.semilogx(distance_vals, gmvs[gmpe_name][i_m][0, :], linewidth=2.0, label=gmpe_name) min_x = 0.5 max_x = distance_vals[-1] else: line, = ax.plot(distance_vals, gmvs[gmpe_name][i_m][0, :], linewidth=2.0, label=gmpe_name) min_x = distance_vals[0] max_x = distance_vals[-1] self.lines.append(line) ax.grid(True) if isinstance(self.xlim, tuple): ax.set_xlim(self.xlim[0], self.xlim[1]) else: ax.set_xlim(min_x, max_x) if isinstance(self.ylim, tuple): ax.set_ylim(self.ylim[0], self.ylim[1]) self._set_labels(i_m, ax) def _get_ylabel(self, i_m): """ """ return self.stddevs + " Std. Dev. ({:s})".format(str(i_m)) def _set_labels(self, i_m, ax): """ Sets the labels on the specified axes """ ax.set_xlabel("%s (km)" % DISTANCE_LABEL_MAP[self.distance_type], fontsize=16) ax.set_ylabel(self._get_ylabel(i_m), fontsize=16) def _write_pprint_header_line(self, fid, sep=","): """ Write the header lines of the pretty print function """ fid.write("Distance (km) %s Standard Deviations Trellis\n" % self.stddevs) fid.write("%s\n" % sep.join(["{:s}{:s}{:s}".format(key, sep, str(val)) for (key, val) in self.params.items()])) class MagnitudeDistanceSpectraTrellis(BaseTrellis): # In this case the preprocessor needs to be removed def __init__(self, magnitudes, distances, gsims, imts, params, stddevs="Total", **kwargs): """ Builds the trellis plots for variation in response spectra with magnitude and distance. In this case the class is instantiated with a set of magnitudes and a dictionary indicating the different distance types. :param imts: (numeric list or numpy array) the Spectral Acceleration's natural period(s) to be used """ imts = ["SA(%s)" % i_m for i_m in imts] super(MagnitudeDistanceSpectraTrellis, self).__init__(magnitudes, distances, gsims, imts, params, stddevs, **kwargs) def _preprocess_ruptures(self): """ In this case properties such as the rupture depth and width may change with the magnitude. Where this behaviour is desired the use feeds the function with a list of RuptureContext instances, in which each rupture context contains the information specific to that magnitude. If this behaviour is not desired then the pre-processing of the rupture information proceeds as in the conventional case within the base class """ # If magnitudes was provided with a list of RuptureContexts if all([isinstance(mag, RuptureContext) for mag in self.magnitudes]): # Get all required rupture attributes self.rctx = [mag for mag in self.magnitudes] for gmpe_name, gmpe in self.gsims.items(): rup_params = [param for param in gmpe.REQUIRES_RUPTURE_PARAMETERS] for rctx in self.rctx: for param in rup_params: if param not in rctx.__dict__: raise ValueError( "GMPE %s requires rupture parameter %s" % (gmpe_name, param)) return # Otherwise instantiate in the conventional way super(MagnitudeDistanceSpectraTrellis, self)._preprocess_ruptures() def _preprocess_distances(self): """ In the case of distances one can pass either a dictionary containing the distances, or a list of dictionaries each calibrated to a specific magnitude (the list must be the same length as the number of magnitudes) """ if isinstance(self.distances, dict): # Copy the same distances across self.distances = [deepcopy(self.distances) for mag in self.magnitudes] assert (len(self.distances) == len(self.magnitudes)) # Distances should be a list of dictionaries self.dctx = [] required_distances = [] for gmpe_name, gmpe in self.gsims.items(): gsim_distances = [dist for dist in gmpe.REQUIRES_DISTANCES] for mag_distances in self.distances: for dist in gsim_distances: if dist not in mag_distances: raise ValueError('GMPE %s requires distance type %s' % (gmpe_name, dist)) if dist not in required_distances: required_distances.append(dist) for distance in self.distances: dctx = gsim.base.DistancesContext() dist_check = False for dist in required_distances: if dist_check and not (len(distance[dist]) == self.nsites): raise ValueError("Distances arrays not equal length!") else: self.nsites = len(distance[dist]) dist_check = True setattr(dctx, dist, distance[dist]) self.dctx.append(dctx) @classmethod def from_rupture_properties(cls, properties, magnitudes, distance, gsims, periods, stddevs='Total', **kwargs): '''Constructs the Base Trellis Class from a dictionary of properties. In this class, this method is simply an alias of `from_rupture_model` :param periods: (numeric list or numpy array) the Spectral Acceleration's natural period(s) to be used. Note that this parameter is called `imt` in `from_rupture_model` where the name `imt` has been kept for legacy code compatibility ''' return cls.from_rupture_model(properties, magnitudes, distance, gsims, periods, stddevs=stddevs, **kwargs) @classmethod def from_rupture_model(cls, properties, magnitudes, distances, gsims, imts, stddevs='Total', **kwargs): """ Constructs the Base Trellis Class from a rupture model :param dict properties: Properties of the rupture and sites, including (* indicates required): *dip, *aspect, tectonic_region, rake, ztor, strike, msr, initial_point, hypocentre_location, distance_type, vs30, line_azimuth, origin_point, vs30measured, z1pt0, z2pt5, backarc :param list magnitudes: List of magnitudes :param list distances: List of distances (the distance type should be specified in the properties dict - rrup, by default) """ kwargs.setdefault('filename', None) kwargs.setdefault('filetype', "png") kwargs.setdefault('dpi', 300) kwargs.setdefault('plot_type', "loglog") kwargs.setdefault('distance_type', "rjb") kwargs.setdefault('xlim', None) kwargs.setdefault('ylim', None) # Defaults for the properties of the rupture and site configuration properties.setdefault("tectonic_region", "Active Shallow Crust") properties.setdefault("rake", 0.) properties.setdefault("ztor", 0.) properties.setdefault("strike", 0.) properties.setdefault("msr", WC1994()) properties.setdefault("initial_point", DEFAULT_POINT) properties.setdefault("hypocentre_location", None) properties.setdefault("line_azimuth", 90.) properties.setdefault("origin_point", (0.5, 0.5)) properties.setdefault("vs30measured", True) properties.setdefault("z1pt0", None) properties.setdefault("z2pt5", None) properties.setdefault("backarc", False) properties.setdefault("distance_type", "rrup") distance_dicts = [] rupture_dicts = [] for magnitude in magnitudes: # Generate the rupture for the specific magnitude rup = GSIMRupture(magnitude, properties["dip"], properties["aspect"], properties["tectonic_region"], properties["rake"], properties["ztor"], properties["strike"], properties["msr"], properties["initial_point"], properties["hypocentre_location"]) distance_dict = None for distance in distances: # Define the target sites with respect to the rupture _ = rup.get_target_sites_point(distance, properties["distance_type"], properties["vs30"], properties["line_azimuth"], properties["origin_point"], properties["vs30measured"], properties["z1pt0"], properties["z2pt5"], properties["backarc"]) sctx, rctx, dctx = rup.get_gsim_contexts() if not distance_dict: distance_dict = [] for (key, val) in dctx.__dict__.items(): distance_dict.append((key, val)) distance_dict = dict(distance_dict) else: for (key, val) in dctx.__dict__.items(): distance_dict[key] = np.hstack([ distance_dict[key], val]) distance_dicts.append(distance_dict) rupture_dicts.append(rctx) return cls(rupture_dicts, distance_dicts, gsims, imts, properties, stddevs, **kwargs) def plot(self): """ Create plot! """ nrow = len(self.magnitudes) # Get means and standard deviations gmvs = self.get_ground_motion_values() fig = plt.figure(figsize=self.figure_size) fig.set_tight_layout({"pad": 0.5}) for rowloc in range(nrow): for colloc in range(self.nsites): self._build_plot( plt.subplot2grid((nrow, self.nsites), (rowloc, colloc)), gmvs, rowloc, colloc) # Add legend lgd = plt.legend(self.lines, self.labels, loc=3., bbox_to_anchor=(1.1, 0.0), fontsize=self.legend_fontsize) _save_image_tight(fig, lgd, self.filename, self.filetype, self.dpi) plt.show() def get_ground_motion_values(self): """ Runs the GMPE calculations to retreive ground motion values :returns: Nested dictionary of values {'GMPE1': {'IM1': , 'IM2': }, 'GMPE2': {'IM1': , 'IM2': }} """ gmvs = OrderedDict() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros( [len(self.rctx), self.nsites], dtype=float) for iloc, (rct, dct) in enumerate(zip(self.rctx, self.dctx)): try: means, _ = gmpe.get_mean_and_stddevs( self.sctx, rct, dct, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = \ np.exp(means) except (KeyError, ValueError): gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def _build_plot(self, ax, gmvs, rloc, cloc): """ Plots the lines for a given axis :param ax: Axes object :param str i_m: Intensity Measure :param dict gmvs: Ground Motion Values Dictionary """ self.labels = [] self.lines = [] max_period = 0.0 min_period = np.inf for gmpe_name in self.gsims: periods = [] spec = [] for i_m in self.imts: if len(gmvs[gmpe_name][i_m]): periods.append(imt.from_string(i_m).period) spec.append(gmvs[gmpe_name][i_m][rloc, cloc]) periods = np.array(periods) spec = np.array(spec) max_period = np.max(periods) if np.max(periods) > max_period else \ max_period min_period = np.min(periods) if np.min(periods) < min_period else \ min_period self.labels.append(gmpe_name) # Get spectrum from gmvs if self.plot_type == "loglog": line, = ax.loglog(periods, spec, linewidth=2.0, label=gmpe_name) else: line, = ax.semilogy(periods, spec, linewidth=2.0, label=gmpe_name) # On the top row, add the distance as a title if rloc == 0: ax.set_title("%s = %9.1f (km)" % (self.distance_type, self.distances[rloc][self.distance_type][cloc]), fontsize=14) # On the last column add a vertical label with magnitude if cloc == (self.nsites - 1): ax.annotate("M = %s" % self.rctx[rloc].mag, (1.05, 0.5), xycoords="axes fraction", fontsize=14, rotation="vertical") self.lines.append(line) ax.set_xlim(min_period, max_period) if isinstance(self.ylim, tuple): ax.set_ylim(self.ylim[0], self.ylim[1]) ax.grid(True) self._set_labels(i_m, ax) def _set_labels(self, i_m, ax): """ Sets the labels on the specified axes """ ax.set_xlabel("Period (s)", fontsize=14) ax.set_ylabel(self._get_ylabel(None), fontsize=14) def to_dict(self): """ Export ground motion values to a dictionary """ gmvs = self.get_ground_motion_values() periods = [float(val.split("SA(")[1].rstrip(")")) for val in self.imts] gmv_dict = OrderedDict([ ("xlabel", "Period (s)"), ("xvalues", periods), ("figures", []) ]) mags = [rup.mag for rup in self.magnitudes] dists = self.distances[0][self.distance_type] for i, mag in enumerate(mags): for j, dist in enumerate(dists): ydict = OrderedDict([ ("ylabel", self._get_ylabel(None)), # arg 'None' not used ("magnitude", mag), ("distance", np.around(dist, 3)), ("imt", 'SA'), ("row", i), ("column", j), ("yvalues", OrderedDict([(gsim, []) for gsim in gmvs])) ]) for gsim in gmvs: for imt in self.imts: if len(gmvs[gsim][imt]): value = gmvs[gsim][imt][i, j] if np.isnan(value): value = None ydict["yvalues"][gsim].append(value) else: ydict["yvalues"][gsim].append(None) gmv_dict["figures"].append(ydict) return gmv_dict def to_json(self): """ Exports the ground motion values to json """ return json.dumps(self.to_dict()) def _get_ylabel(self, i_m): """ In this case only the spectra are being shown, so return only the Sa (g) label """ return "Sa (g)" def pretty_print(self, filename=None, sep=","): """ Format the ground motion for printing to file or to screen :param str filename: Path to file :param str sep: Separator character """ if filename: fid = open(filename, "w") else: fid = sys.stdout # Print Meta information self._write_pprint_header_line(fid, sep) # Loop over IMTs gmvs = self.get_ground_motion_values() # Get the GMPE list header string gsim_str = "IMT{:s}{:s}".format( sep, sep.join(self.gsims)) for i, mag in enumerate(self.magnitudes): for j in range(self.nsites): dist_string = sep.join([ "{:s}{:s}{:s}".format(dist_type, sep, str(val[j])) for (dist_type, val) in self.distances.items()]) # Get M-R header string mr_header = "Magnitude{:s}{:s}{:s}{:s}".format(sep, str(mag), sep, dist_string) fid.write("%s\n" % mr_header) fid.write("%s\n" % gsim_str) for imt in self.imts: iml_str = [] for gmpe_name in self.gsims: # Need to deal with case that GSIMs don't define # values for the period if len(gmvs[gmpe_name][imt]): iml_str.append("{:.8f}".format( gmvs[gmpe_name][imt][i, j])) else: iml_str.append("-999.000") # Retreived IMT string imt_str = imt.split("(")[1].rstrip(")") iml_str = sep.join(iml_str) fid.write("{:s}{:s}{:s}\n".format(imt_str, sep, iml_str)) fid.write("================================================\n") if filename: fid.close() def _write_pprint_header_line(self, fid, sep=","): """ Write the header lines of the pretty print function """ fid.write("Magnitude - Distance Spectra (km) IMT Trellis\n") fid.write("%s\n" % sep.join(["{:s}{:s}{:s}".format(key, sep, str(val)) for (key, val) in self.params.items()])) class MagnitudeDistanceSpectraSigmaTrellis(MagnitudeDistanceSpectraTrellis): """ """ def _build_plot(self, ax, gmvs, rloc, cloc): """ Plots the lines for a given axis :param ax: Axes object :param str i_m: Intensity Measure :param dict gmvs: Ground Motion Values Dictionary """ self.labels = [] self.lines = [] max_period = 0.0 min_period = np.inf for gmpe_name in self.gsims: periods = [] spec = [] # Get spectrum from gmvs for i_m in self.imts: if len(gmvs[gmpe_name][i_m]): periods.append(imt.from_string(i_m).period) spec.append(gmvs[gmpe_name][i_m][rloc, cloc]) periods = np.array(periods) spec = np.array(spec) self.labels.append(gmpe_name) max_period = np.max(periods) if np.max(periods) > max_period else \ max_period min_period = np.min(periods) if np.min(periods) < min_period else \ min_period if self.plot_type == "loglog": line, = ax.semilogx(periods, spec, linewidth=2.0, label=gmpe_name) else: line, = ax.plot(periods, spec, linewidth=2.0, label=gmpe_name) # On the top row, add the distance as a title if rloc == 0: ax.set_title("%s = %9.3f (km)" % (self.distance_type, self.distances[0][self.distance_type][cloc]), fontsize=14) # On the last column add a vertical label with magnitude if cloc == (self.nsites - 1): ax.annotate("M = %s" % self.rctx[rloc].mag, (1.05, 0.5), xycoords="axes fraction", fontsize=14, rotation="vertical") self.lines.append(line) ax.set_xlim(min_period, max_period) if isinstance(self.ylim, tuple): ax.set_ylim(self.ylim[0], self.ylim[1]) ax.grid(True) self._set_labels(i_m, ax) def get_ground_motion_values(self): """ Runs the GMPE calculations to retreive ground motion values :returns: Nested dictionary of values {'GMPE1': {'IM1': , 'IM2': }, 'GMPE2': {'IM1': , 'IM2': }} """ gmvs = OrderedDict() for gmpe_name, gmpe in self.gsims.items(): gmvs.update([(gmpe_name, {})]) for i_m in self.imts: gmvs[gmpe_name][i_m] = np.zeros([len(self.rctx), self.nsites], dtype=float) for iloc, (rct, dct) in enumerate(zip(self.rctx, self.dctx)): try: _, sigmas = gmpe.get_mean_and_stddevs( self.sctx, rct, dct, imt.from_string(i_m), [self.stddevs]) gmvs[gmpe_name][i_m][iloc, :] = sigmas[0] except (KeyError, ValueError): gmvs[gmpe_name][i_m] = np.array([], dtype=float) break return gmvs def _get_ylabel(self, i_m): """ Returns the standard deviation term (specific to the standard deviation type specified for the class) """ return "{:s} Std. Dev.".format(self.stddevs) def _write_pprint_header_line(self, fid, sep=","): """ Write the header lines of the pretty print function """ fid.write("Magnitude - Distance (km) Spectra %s Standard Deviations Trellis\n" % self.stddevs) fid.write("%s\n" % sep.join(["{:s}{:s}{:s}".format(key, sep, str(val)) for (key, val) in self.params.items()]))
agpl-3.0
lewisc/spark-tk
regression-tests/sparktkregtests/testcases/scoretests/naive_bayes_test.py
10
2147
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Tests Naive Bayes Model against known values. """ import unittest import os from sparktkregtests.lib import sparktk_test from sparktkregtests.lib import scoring_utils class NaiveBayes(sparktk_test.SparkTKTestCase): def setUp(self): """Build the frames needed for the tests.""" super(NaiveBayes, self).setUp() dataset = self.get_file("naive_bayes.csv") schema = [("label", int), ("f1", int), ("f2", int), ("f3", int)] self.frame = self.context.frame.import_csv(dataset, schema=schema) def test_model_scoring(self): """Test training intializes theta, pi and labels""" model = self.context.models.classification.naive_bayes.train(self.frame, ['f1', 'f2', 'f3'], "label") res = model.predict(self.frame, ['f1', 'f2', 'f3']) analysis = res.to_pandas() file_name = self.get_name("naive_bayes") model_path = model.export_to_mar(self.get_export_file(file_name)) with scoring_utils.scorer( model_path, self.id()) as scorer: for _, i in analysis.iterrows(): r = scorer.score( [dict(zip(['f1', 'f2', 'f3'], map(lambda x: int(x), (i[1:4]))))]) self.assertEqual( r.json()["data"][0]['Score'], i['predicted_class']) if __name__ == '__main__': unittest.main()
apache-2.0
empirical-org/WikipediaSentences
notebooks/BERT-4 Experiments Multilabel.py
1
19268
#!/usr/bin/env python # coding: utf-8 # # Multilabel BERT Experiments # # In this notebook we do some first experiments with BERT: we finetune a BERT model+classifier on each of our datasets separately and compute the accuracy of the resulting classifier on the test data. # For these experiments we use the `pytorch_transformers` package. It contains a variety of neural network architectures for transfer learning and pretrained models, including BERT and XLNET. # # Two different BERT models are relevant for our experiments: # # - BERT-base-uncased: a relatively small BERT model that should already give reasonable results, # - BERT-large-uncased: a larger model for real state-of-the-art results. # In[1]: from multilabel import EATINGMEAT_BECAUSE_MAP, EATINGMEAT_BUT_MAP, JUNKFOOD_BECAUSE_MAP, JUNKFOOD_BUT_MAP label_map = EATINGMEAT_BECAUSE_MAP # In[2]: import torch from pytorch_transformers.tokenization_bert import BertTokenizer from pytorch_transformers.modeling_bert import BertForSequenceClassification BERT_MODEL = 'bert-large-uncased' BATCH_SIZE = 16 if "base" in BERT_MODEL else 2 GRADIENT_ACCUMULATION_STEPS = 1 if "base" in BERT_MODEL else 8 tokenizer = BertTokenizer.from_pretrained(BERT_MODEL) # ## Data # # We use the same data as for all our previous experiments. Here we load the training, development and test data for a particular prompt. # In[3]: import ndjson import glob from collections import Counter prefix = "eatingmeat_because_xl" train_file = f"../data/interim/{prefix}_train_withprompt.ndjson" synth_files = glob.glob(f"../data/interim/{prefix}_train_withprompt_*.ndjson") dev_file = f"../data/interim/{prefix}_dev_withprompt.ndjson" test_file = f"../data/interim/{prefix}_test_withprompt.ndjson" with open(train_file) as i: train_data = ndjson.load(i) synth_data = [] for f in synth_files: if "allsynth" in f: continue with open(f) as i: synth_data += ndjson.load(i) with open(dev_file) as i: dev_data = ndjson.load(i) with open(test_file) as i: test_data = ndjson.load(i) labels = Counter([item["label"] for item in train_data]) print(labels) # Next, we build the label vocabulary, which maps every label in the training data to an index. # In[4]: label2idx = {} idx2label = {} target_names = [] for item in label_map: for label in label_map[item]: if label not in target_names: idx = len(target_names) target_names.append(label) label2idx[label] = idx idx2label[idx] = label print(label2idx) print(idx2label) # In[5]: def map_to_multilabel(items): return [{"text": item["text"], "label": label_map[item["label"]]} for item in items] train_data = map_to_multilabel(train_data) dev_data = map_to_multilabel(dev_data) test_data = map_to_multilabel(test_data) # In[6]: import random def sample(train_data, synth_data, label2idx, number): """Sample a fixed number of items from every label from the training data and test data. """ new_train_data = [] for label in label2idx: data_for_label = [i for i in train_data if i["label"] == label] # If there is more training data than the required number, # take a random sample of n examples from the training data. if len(data_for_label) >= number: random.shuffle(data_for_label) new_train_data += data_for_label[:number] # If there is less training data than the required number, # combine training data with synthetic data. elif len(data_for_label) < number: # Automatically add all training data new_train_data += data_for_label # Compute the required number of additional data rest = number-len(data_for_label) # Collect the synthetic data for the label synth_data_for_label = [i for i in synth_data if i["label"] == label] # If there is more synthetic data than required, # take a random sample from the synthetic data. if len(synth_data_for_label) > rest: random.shuffle(synth_data_for_label) new_train_data += synth_data_for_label[:rest] # If there is less synthetic data than required, # sample with replacement from this data until we have # the required number. else: new_train_data += random.choices(synth_data_for_label, k=rest) return new_train_data def random_sample(train_data, train_size): random.shuffle(train_data) train_data = train_data[:TRAIN_SIZE] #train_data = sample(train_data, synth_data, label2idx, 200) print("Train data size:", len(train_data)) # ## Model # # We load the pretrained model and put it on a GPU if one is available. We also put the model in "training" mode, so that we can correctly update its internal parameters on the basis of our data sets. # In[7]: from torch import nn from pytorch_transformers.modeling_bert import BertPreTrainedModel, BertModel class BertForMultiLabelSequenceClassification(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ def __init__(self, config): super(BertForMultiLabelSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.apply(self.init_weights) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None): outputs = self.bert(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, head_mask=head_mask) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = nn.BCEWithLogitsLoss() loss = loss_fct(logits, labels) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) # In[8]: model = BertForMultiLabelSequenceClassification.from_pretrained(BERT_MODEL, num_labels=len(label2idx)) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.train() # ## Preprocessing # # We preprocess the data by turning every example to an `InputFeatures` item. This item has all the attributes we need for finetuning BERT: # # - input ids: the ids of the tokens in the text # - input mask: tells BERT what part of the input it should not look at (such as padding tokens) # - segment ids: tells BERT what segment every token belongs to. BERT can take two different segments as input # - label id: the id of this item's label # In[ ]: import logging import numpy as np logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) MAX_SEQ_LENGTH=100 class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_ids): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_ids = label_ids def convert_examples_to_features(examples, label2idx, max_seq_length, tokenizer, verbose=0): """Loads a data file into a list of `InputBatch`s.""" features = [] for (ex_index, ex) in enumerate(examples): # TODO: should deal better with sentences > max tok length input_ids = tokenizer.encode("[CLS] " + ex["text"] + " [SEP]") segment_ids = [0] * len(input_ids) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_ids = np.zeros(len(label2idx)) for label in ex["label"]: label_ids[label2idx[label]] = 1 if verbose and ex_index == 0: logger.info("*** Example ***") logger.info("text: %s" % ex["text"]) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("label:" + str(ex["label"]) + " id: " + str(label_ids)) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids)) return features train_features = convert_examples_to_features(train_data, label2idx, MAX_SEQ_LENGTH, tokenizer, verbose=0) dev_features = convert_examples_to_features(dev_data, label2idx, MAX_SEQ_LENGTH, tokenizer) test_features = convert_examples_to_features(test_data, label2idx, MAX_SEQ_LENGTH, tokenizer, verbose=1) # Next, we initialize data loaders for each of our data sets. These data loaders present the data for training (for example, by grouping them into batches). # In[ ]: import torch from torch.utils.data import TensorDataset, DataLoader, RandomSampler def get_data_loader(features, max_seq_length, batch_size, shuffle=True): all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.float) data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) dataloader = DataLoader(data, shuffle=shuffle, batch_size=batch_size) return dataloader train_dataloader = get_data_loader(train_features, MAX_SEQ_LENGTH, BATCH_SIZE) dev_dataloader = get_data_loader(dev_features, MAX_SEQ_LENGTH, BATCH_SIZE) test_dataloader = get_data_loader(test_features, MAX_SEQ_LENGTH, BATCH_SIZE, shuffle=False) # ## Evaluation # # Our evaluation method takes a pretrained model and a dataloader. It has the model predict the labels for the items in the data loader, and returns the loss, the correct labels, and the predicted labels. # In[ ]: from torch.nn import Sigmoid def evaluate(model, dataloader, verbose=False): eval_loss = 0 nb_eval_steps = 0 predicted_labels, correct_labels = [], [] for step, batch in enumerate(tqdm(dataloader, desc="Evaluation iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch with torch.no_grad(): tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids) sig = Sigmoid() outputs = sig(logits).to('cpu').numpy() label_ids = label_ids.to('cpu').numpy() predicted_labels += list(outputs >= 0.5) correct_labels += list(label_ids) eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps correct_labels = np.array(correct_labels) predicted_labels = np.array(predicted_labels) return eval_loss, correct_labels, predicted_labels # ## Training # # Let's prepare the training. We set the training parameters and choose an optimizer and learning rate scheduler. # In[ ]: from pytorch_transformers.optimization import AdamW, WarmupLinearSchedule NUM_TRAIN_EPOCHS = 20 LEARNING_RATE = 1e-5 WARMUP_PROPORTION = 0.1 def warmup_linear(x, warmup=0.002): if x < warmup: return x/warmup return 1.0 - x num_train_steps = int(len(train_data) / BATCH_SIZE / GRADIENT_ACCUMULATION_STEPS * NUM_TRAIN_EPOCHS) param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=LEARNING_RATE, correct_bias=False) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=100, t_total=num_train_steps) # Now we do the actual training. In each epoch, we present the model with all training data and compute the loss on the training set and the development set. We save the model whenever the development loss improves. We end training when we haven't seen an improvement of the development loss for a specific number of epochs (the patience). # # Optionally, we use gradient accumulation to accumulate the gradient for several training steps. This is useful when we want to use a larger batch size than our current GPU allows us to do. # In[ ]: import os from tqdm import trange from tqdm import tqdm from sklearn.metrics import classification_report, precision_recall_fscore_support OUTPUT_DIR = "/tmp/" MODEL_FILE_NAME = "pytorch_model.bin" PATIENCE = 5 global_step = 0 model.train() loss_history = [] best_epoch = 0 for epoch in trange(int(NUM_TRAIN_EPOCHS), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Training iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, label_ids = batch outputs = model(input_ids, segment_ids, input_mask, label_ids) loss = outputs[0] if GRADIENT_ACCUMULATION_STEPS > 1: loss = loss / GRADIENT_ACCUMULATION_STEPS loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % GRADIENT_ACCUMULATION_STEPS == 0: lr_this_step = LEARNING_RATE * warmup_linear(global_step/num_train_steps, WARMUP_PROPORTION) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 dev_loss, _, _ = evaluate(model, dev_dataloader) print("Loss history:", loss_history) print("Dev loss:", dev_loss) if len(loss_history) == 0 or dev_loss < min(loss_history): model_to_save = model.module if hasattr(model, 'module') else model output_model_file = os.path.join(OUTPUT_DIR, MODEL_FILE_NAME) torch.save(model_to_save.state_dict(), output_model_file) best_epoch = epoch if epoch-best_epoch >= PATIENCE: print("No improvement on development set. Finish training.") break loss_history.append(dev_loss) # ## Results # # We load the pretrained model, set it to evaluation mode and compute its performance on the training, development and test set. We print out an evaluation report for the test set. # # Note that different runs will give slightly different results. # In[ ]: from tqdm import tqdm_notebook as tqdm output_model_file = "/tmp/pytorch_model.bin" print("Loading model from", output_model_file) device="cpu" model_state_dict = torch.load(output_model_file, map_location=lambda storage, loc: storage) model = BertForMultiLabelSequenceClassification.from_pretrained(BERT_MODEL, state_dict=model_state_dict, num_labels=len(label2idx)) model.to(device) model.eval() _, test_correct, test_predicted = evaluate(model, test_dataloader, verbose=True) # In[ ]: all_correct = 0 fp, fn, tp, tn = 0, 0, 0, 0 for c, p in zip(test_correct, test_predicted): if sum(c == p) == len(c): all_correct +=1 for ci, pi in zip(c, p): if pi == 1 and ci == 1: tp += 1 same = 1 elif pi == 1 and ci == 0: fp += 1 elif pi == 0 and ci == 1: fn += 1 else: tn += 1 same =1 precision = tp/(tp+fp) recall = tp/(tp+fn) print("P:", precision) print("R:", recall) print("A:", all_correct/len(test_correct)) # In[ ]: for item, predicted, correct in zip(test_data, test_predicted, test_correct): correct_labels = [idx2label[i] for i, l in enumerate(correct) if l == 1] predicted_labels = [idx2label[i] for i, l in enumerate(predicted) if l == 1] print("{}#{}#{}".format(item["text"], ";".join(correct_labels), ";".join(predicted_labels))) # In[ ]:
agpl-3.0
pliz/gunfolds
scripts/stackedbars_many.py
1
4935
import pandas as pd import pylab as pl import seaborn as sb from matplotlib import pyplot as plt import matplotlib as mpl import seaborn as sns import numpy as np SBDIR = '~/soft/src/dev/tools/stackedBarGraph/' GFDIR = '/na/home/splis/soft/src/dev/craft/gunfolds/tools/' import sys, os sys.path.append(os.path.expanduser(SBDIR)) sys.path.append(os.path.expanduser(GFDIR)) import zickle as zkl from stackedBarGraph import StackedBarGrapher SBG = StackedBarGrapher() def gettimes(d): t = [x['ms'] for x in d] time = map(lambda x: x/1000./60., t) return time l = [(0.15, 'leibnitz_nodes_15_density_0.1_newp_.zkl'), (0.20, 'leibnitz_nodes_20_density_0.1_newp_.zkl'), (0.25, 'leibnitz_nodes_25_density_0.1_newp_.zkl'), (0.30, 'leibnitz_nodes_30_density_0.1_newp_.zkl'), (0.35, 'leibnitz_nodes_35_density_0.1_newp_.zkl')] fig = pl.figure(figsize=[10,3]) #Read in data & create total column d = zkl.load("hooke_nodes_6_g32g1_.zkl")#hooke_nodes_35_newp_.zkl") densities = [.15, .20 ,.25, .30, .35] d = {} for fname in l: d[fname[0]] = zkl.load(fname[1]) def get_counts(d): eqc = [len(x['eq']) for x in d] keys = np.sort(np.unique(eqc)) c = {} for k in keys: c[k] = len(np.where(eqc == k)[0]) return c # unique size usz = set() dc = {} for u in densities: dc[u] = get_counts(d[u]) for v in dc[u]: usz.add(v) for u in densities: for c in usz: if not c in dc[u]: dc[u][c] = 0 A = [] for u in densities: A.append([dc[u][x] for x in np.sort(dc[u].keys())]) #print A #A = np.array(A) pp = mpl.colors.LinearSegmentedColormap.from_list("t",sns.color_palette("Paired",len(usz))) #pp = mpl.colors.LinearSegmentedColormap.from_list("t",sns.dark_palette("#5178C7",len(usz))) #pp = mpl.colors.LinearSegmentedColormap.from_list("t",sns.blend_palette(["mediumseagreen", "ghostwhite", "#4168B7"],len(usz))) scalarMap = mpl.cm.ScalarMappable(norm = lambda x: x/np.double(len(usz)), cmap=pp) d_widths = [.5]*len(densities) d_labels = map(lambda x: str(int(x*100))+"%",densities) #u = np.sort(list(usz)) d_colors = [scalarMap.to_rgba(i) for i in range(len(A[0]))] #d_colors = ['#2166ac', '#fee090', '#fdbb84', '#fc8d59', '#e34a33', '#b30000', '#777777','#2166ac', '#fee090', '#fdbb84', '#fc8d59', '#e34a33', '#b30000', '#777777','#2166ac', '#fee090'] #ax = fig.add_subplot(211) ax = plt.subplot2grid((3,1), (0, 0), rowspan=2) SBG.stackedBarPlot(ax, A, d_colors, xLabels=d_labels, yTicks=3, widths=d_widths, gap = 0.005, scale=False ) for i in range(len(A)): Ai = [x for x in A[i] if x>0] y = [x/2.0 for x in Ai] for j in range(len(Ai)): if j>0: yy = y[j]+np.sum(Ai[0:j]) else: yy = y[j] pl.text(0.5*i-0.02,yy-1.2,str(Ai[j]),fontsize=12,zorder=10) # #Set general plot properties # sns.set_style("white") # sns.set_context({"figure.figsize": (24, 10)}) # for i in np.sort(list(usz))[::-1]: # y = [100-dc[u][i] for u in np.sort(dc.keys())] # bottom_plot=sns.barplot(x=np.asarray(densities)*100, y=y) # # color=scalarMap.to_rgba(i)) # #y = (sbd[i+1]-sbd[i])/2.+sbd[i]scala # #for j in range(len(sbd.Density)): # # pl.text(j-0.1,y[j],'1',fontsize=16,zorder=i) # #Optional code - Make plot look nicer sns.despine(left=True) # #Set fonts to consistent 16pt size ax.set(xticklabels="") for item in ([ax.xaxis.label, ax.yaxis.label] + #ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(12) alltimes_new = [] for fname in l: dp = zkl.load(fname[1]) alltimes_new.append(gettimes(dp)) shift = 0.15 wds = 0.3 fliersz = 2 lwd = 1 ax = plt.subplot2grid((3,1), (2, 0)) g = sb.boxplot(alltimes_new,names=map(lambda x: str(int(x*100))+"", densities), widths=wds, color="Reds",fliersize=fliersz, linewidth=lwd, **{'positions':np.arange(len(densities))+shift, 'label':'MSL'}) # plt.plot(np.arange(len(densities))-shift, # map(np.median,alltimes_old), 'ro-', lw=0.5, mec='k') # plt.plot(np.arange(len(densities))+shift, # map(np.median,alltimes_new), 'bo-', lw=0.5, mec='k') g.figure.get_axes()[1].set_yscale('log') plt.xlabel('number of nodes in a graph') plt.ylabel('computation time\n(minutes)') #plt.title('100 6 node graphs per density\n$G_2 \\rightarrow G_1$', # multialignment='center') #plt.subplots_adjust(right=0.99, left=0.2) plt.legend(loc=0) for item in ([ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(12) pl.subplots_adjust(bottom=0.1,hspace=0.01,top=0.98) # plt.show() pl.show()
gpl-3.0
onlynight/wechat-dump
plot-num-msg-by-time.py
1
1464
#!/usr/bin/env python2 # -*- coding: UTF-8 -*- # File: plot_num_msg_by_time.py # Date: Wed Mar 25 17:44:39 2015 +0800 # Author: Yuxin Wu <[email protected]> from wechat.parser import WeChatDBParser from wechat.utils import ensure_unicode from datetime import timedelta, datetime import numpy as np import matplotlib.pyplot as plt import sys, os if len(sys.argv) != 3: sys.exit("Usage: {0} <path to decrypted_database.db> <name>".format(sys.argv[0])) db_file = sys.argv[1] name = ensure_unicode(sys.argv[2]) every_k_days = 2 parser = WeChatDBParser(db_file) msgs = parser.msgs_by_talker[name] times = [x.createTime for x in msgs] start_time = times[0] diffs = [(x - start_time).days for x in times] max_day = diffs[-1] width = 20 numbers = range((max_day / width + 1) * width + 1)[::width] labels = [(start_time + timedelta(x)).strftime("%m/%d") for x in numbers] plt.xticks(numbers, labels) plt.xlabel("Date") plt.ylabel("Number of msgs in k days") plt.hist(diffs, bins=max_day / every_k_days) plt.show() # statistics by hour # I'm in a different time zone in this period: #TZ_DELTA = {(datetime(2014, 7, 13), datetime(2014, 10, 1)): -15} #def real_hour(x): #for k, v in TZ_DELTA.iteritems(): #if x > k[0] and x < k[1]: #print x #return (x.hour + v + 24) % 24 #return x.hour #hours = [real_hour(x) for x in times] #plt.ylabel("Number of msgs") #plt.xlabel("Hour in a day") #plt.hist(hours, bins=24) #plt.show()
gpl-3.0
bavardage/statsmodels
statsmodels/tsa/filters/hp_filter.py
3
2954
from __future__ import absolute_import from scipy import sparse from scipy.sparse import dia_matrix, eye as speye from scipy.sparse.linalg import spsolve import numpy as np from .utils import _maybe_get_pandas_wrapper def hpfilter(X, lamb=1600): """ Hodrick-Prescott filter Parameters ---------- X : array-like The 1d ndarray timeseries to filter of length (nobs,) or (nobs,1) lamb : float The Hodrick-Prescott smoothing parameter. A value of 1600 is suggested for quarterly data. Ravn and Uhlig suggest using a value of 6.25 (1600/4**4) for annual data and 129600 (1600*3**4) for monthly data. Returns ------- cycle : array The estimated cycle in the data given lamb. trend : array The estimated trend in the data given lamb. Examples --------- >>> import statsmodels.api as sm >>> dta = sm.datasets.macrodata.load() >>> X = dta.data['realgdp'] >>> cycle, trend = sm.tsa.filters.hpfilter(X,1600) Notes ----- The HP filter removes a smooth trend, `T`, from the data `X`. by solving min sum((X[t] - T[t])**2 + lamb*((T[t+1] - T[t]) - (T[t] - T[t-1]))**2) T t Here we implemented the HP filter as a ridge-regression rule using scipy.sparse. In this sense, the solution can be written as T = inv(I - lamb*K'K)X where I is a nobs x nobs identity matrix, and K is a (nobs-2) x nobs matrix such that K[i,j] = 1 if i == j or i == j + 2 K[i,j] = -2 if i == j + 1 K[i,j] = 0 otherwise References ---------- Hodrick, R.J, and E. C. Prescott. 1980. "Postwar U.S. Business Cycles: An Empricial Investigation." `Carnegie Mellon University discussion paper no. 451`. Ravn, M.O and H. Uhlig. 2002. "Notes On Adjusted the Hodrick-Prescott Filter for the Frequency of Observations." `The Review of Economics and Statistics`, 84(2), 371-80. """ _pandas_wrapper = _maybe_get_pandas_wrapper(X) X = np.asarray(X, float) if X.ndim > 1: X = X.squeeze() nobs = len(X) I = speye(nobs,nobs) offsets = np.array([0,1,2]) data = np.repeat([[1.],[-2.],[1.]], nobs, axis=1) K = dia_matrix((data, offsets), shape=(nobs-2,nobs)) import scipy if (X.dtype != np.dtype('<f8') and int(scipy.__version__[:3].split('.')[1]) < 11): #scipy umfpack bug on Big Endian machines, will be fixed in 0.11 use_umfpack = False else: use_umfpack = True if scipy.__version__[:3] == '0.7': #doesn't have use_umfpack option #will be broken on big-endian machines with scipy 0.7 and umfpack trend = spsolve(I+lamb*K.T.dot(K), X) else: trend = spsolve(I+lamb*K.T.dot(K), X, use_umfpack=use_umfpack) cycle = X-trend if _pandas_wrapper is not None: return _pandas_wrapper(cycle), _pandas_wrapper(trend) return cycle, trend
bsd-3-clause
virneo/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_wxagg.py
70
9051
from __future__ import division """ backend_wxagg.py A wxPython backend for Agg. This uses the GUI widgets written by Jeremy O'Donoghue ([email protected]) and the Agg backend by John Hunter ([email protected]) Copyright (C) 2003-5 Jeremy O'Donoghue, John Hunter, Illinois Institute of Technology License: This work is licensed under the matplotlib license( PSF compatible). A copy should be included with this source code. """ import wx import matplotlib from matplotlib.figure import Figure from backend_agg import FigureCanvasAgg import backend_wx from backend_wx import FigureManager, FigureManagerWx, FigureCanvasWx, \ FigureFrameWx, DEBUG_MSG, NavigationToolbar2Wx, error_msg_wx, \ draw_if_interactive, show, Toolbar, backend_version class FigureFrameWxAgg(FigureFrameWx): def get_canvas(self, fig): return FigureCanvasWxAgg(self, -1, fig) def _get_toolbar(self, statbar): if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbarWx(self.canvas, True) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2WxAgg(self.canvas) toolbar.set_status_bar(statbar) else: toolbar = None return toolbar class FigureCanvasWxAgg(FigureCanvasAgg, FigureCanvasWx): """ The FigureCanvas contains the figure and does event handling. In the wxPython backend, it is derived from wxPanel, and (usually) lives inside a frame instantiated by a FigureManagerWx. The parent window probably implements a wxSizer to control the displayed control size - but we give a hint as to our preferred minimum size. """ def draw(self, drawDC=None): """ Render the figure using agg. """ DEBUG_MSG("draw()", 1, self) FigureCanvasAgg.draw(self) self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None) self._isDrawn = True self.gui_repaint(drawDC=drawDC) def blit(self, bbox=None): """ Transfer the region of the agg buffer defined by bbox to the display. If bbox is None, the entire buffer is transferred. """ if bbox is None: self.bitmap = _convert_agg_to_wx_bitmap(self.get_renderer(), None) self.gui_repaint() return l, b, w, h = bbox.bounds r = l + w t = b + h x = int(l) y = int(self.bitmap.GetHeight() - t) srcBmp = _convert_agg_to_wx_bitmap(self.get_renderer(), None) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destDC = wx.MemoryDC() destDC.SelectObject(self.bitmap) destDC.BeginDrawing() destDC.Blit(x, y, int(w), int(h), srcDC, x, y) destDC.EndDrawing() destDC.SelectObject(wx.NullBitmap) srcDC.SelectObject(wx.NullBitmap) self.gui_repaint() filetypes = FigureCanvasAgg.filetypes def print_figure(self, filename, *args, **kwargs): # Use pure Agg renderer to draw FigureCanvasAgg.print_figure(self, filename, *args, **kwargs) # Restore the current view; this is needed because the # artist contains methods rely on particular attributes # of the rendered figure for determining things like # bounding boxes. if self._isDrawn: self.draw() class NavigationToolbar2WxAgg(NavigationToolbar2Wx): def get_canvas(self, frame, fig): return FigureCanvasWxAgg(frame, -1, fig) def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # in order to expose the Figure constructor to the pylab # interface we need to create the figure here DEBUG_MSG("new_figure_manager()", 3, None) backend_wx._create_wx_app() FigureClass = kwargs.pop('FigureClass', Figure) fig = FigureClass(*args, **kwargs) frame = FigureFrameWxAgg(num, fig) figmgr = frame.get_figure_manager() if matplotlib.is_interactive(): figmgr.frame.Show() return figmgr # # agg/wxPython image conversion functions (wxPython <= 2.6) # def _py_convert_agg_to_wx_image(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Image. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ image = wx.EmptyImage(int(agg.width), int(agg.height)) image.SetData(agg.tostring_rgb()) if bbox is None: # agg => rgb -> image return image else: # agg => rgb -> image => bitmap => clipped bitmap => image return wx.ImageFromBitmap(_clipped_image_as_bitmap(image, bbox)) def _py_convert_agg_to_wx_bitmap(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Bitmap. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgb -> image => bitmap return wx.BitmapFromImage(_py_convert_agg_to_wx_image(agg, None)) else: # agg => rgb -> image => bitmap => clipped bitmap return _clipped_image_as_bitmap( _py_convert_agg_to_wx_image(agg, None), bbox) def _clipped_image_as_bitmap(image, bbox): """ Convert the region of a wx.Image bounded by bbox to a wx.Bitmap. """ l, b, width, height = bbox.get_bounds() r = l + width t = b + height srcBmp = wx.BitmapFromImage(image) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destBmp = wx.EmptyBitmap(int(width), int(height)) destDC = wx.MemoryDC() destDC.SelectObject(destBmp) destDC.BeginDrawing() x = int(l) y = int(image.GetHeight() - t) destDC.Blit(0, 0, int(width), int(height), srcDC, x, y) destDC.EndDrawing() srcDC.SelectObject(wx.NullBitmap) destDC.SelectObject(wx.NullBitmap) return destBmp # # agg/wxPython image conversion functions (wxPython >= 2.8) # def _py_WX28_convert_agg_to_wx_image(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Image. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgb -> image image = wx.EmptyImage(int(agg.width), int(agg.height)) image.SetData(agg.tostring_rgb()) return image else: # agg => rgba buffer -> bitmap => clipped bitmap => image return wx.ImageFromBitmap(_WX28_clipped_agg_as_bitmap(agg, bbox)) def _py_WX28_convert_agg_to_wx_bitmap(agg, bbox): """ Convert the region of the agg buffer bounded by bbox to a wx.Bitmap. If bbox is None, the entire buffer is converted. Note: agg must be a backend_agg.RendererAgg instance. """ if bbox is None: # agg => rgba buffer -> bitmap return wx.BitmapFromBufferRGBA(int(agg.width), int(agg.height), agg.buffer_rgba(0, 0)) else: # agg => rgba buffer -> bitmap => clipped bitmap return _WX28_clipped_agg_as_bitmap(agg, bbox) def _WX28_clipped_agg_as_bitmap(agg, bbox): """ Convert the region of a the agg buffer bounded by bbox to a wx.Bitmap. Note: agg must be a backend_agg.RendererAgg instance. """ l, b, width, height = bbox.get_bounds() r = l + width t = b + height srcBmp = wx.BitmapFromBufferRGBA(int(agg.width), int(agg.height), agg.buffer_rgba(0, 0)) srcDC = wx.MemoryDC() srcDC.SelectObject(srcBmp) destBmp = wx.EmptyBitmap(int(width), int(height)) destDC = wx.MemoryDC() destDC.SelectObject(destBmp) destDC.BeginDrawing() x = int(l) y = int(int(agg.height) - t) destDC.Blit(0, 0, int(width), int(height), srcDC, x, y) destDC.EndDrawing() srcDC.SelectObject(wx.NullBitmap) destDC.SelectObject(wx.NullBitmap) return destBmp def _use_accelerator(state): """ Enable or disable the WXAgg accelerator, if it is present and is also compatible with whatever version of wxPython is in use. """ global _convert_agg_to_wx_image global _convert_agg_to_wx_bitmap if getattr(wx, '__version__', '0.0')[0:3] < '2.8': # wxPython < 2.8, so use the C++ accelerator or the Python routines if state and _wxagg is not None: _convert_agg_to_wx_image = _wxagg.convert_agg_to_wx_image _convert_agg_to_wx_bitmap = _wxagg.convert_agg_to_wx_bitmap else: _convert_agg_to_wx_image = _py_convert_agg_to_wx_image _convert_agg_to_wx_bitmap = _py_convert_agg_to_wx_bitmap else: # wxPython >= 2.8, so use the accelerated Python routines _convert_agg_to_wx_image = _py_WX28_convert_agg_to_wx_image _convert_agg_to_wx_bitmap = _py_WX28_convert_agg_to_wx_bitmap # try to load the WXAgg accelerator try: import _wxagg except ImportError: _wxagg = None # if it's present, use it _use_accelerator(True)
agpl-3.0
kc-lab/dms2dfe
dms2dfe/ana4_plotter.py
2
1598
#!usr/bin/python # Copyright 2016, Rohan Dandage <[email protected],[email protected]> # This program is distributed under General Public License v. 3. import sys from os import makedirs,stat from os.path import splitext, join, exists, isdir,basename,abspath,dirname import pandas as pd from dms2dfe.lib.io_strs import get_logger logging=get_logger() from dms2dfe import configure from dms2dfe.lib.io_plot_files import plot_coverage,plot_mutmap,plot_submap,plot_multisca,plot_pdb,plot_violin,plot_pies def main(prj_dh): """ **--step 5**. Generates vizualizations. #. Scatter grid plots raw counts in replicates, if present. #. Mutation matrix. of frequencies of mutants (log scaled). #. Scatter plots of raw counts among selected and unselected samples #. Mutation matrix. of Fitness values. #. DFE plot. ie. Distribution of Fitness values for samples. #. Projections on PDB. Average of fitness values per residue are projected onto PDB file. :param prj_dh: path to project directory. """ logging.info("start") if not exists(prj_dh) : logging.error("Could not find '%s'" % prj_dh) sys.exit() configure.main(prj_dh) from dms2dfe.tmp import info for type_form in ['aas','cds']: plots_dh='%s/plots/%s' % (prj_dh,type_form) if not exists(plots_dh): makedirs(plots_dh) plot_coverage(info) plot_mutmap(info) plot_submap(info) plot_multisca(info) plot_pdb(info) plot_violin(info) # plot_pies(info) if __name__ == '__main__': main(sys.argv[1])
gpl-3.0
MrJarv1s/FEMur
FEMur/solver2D.py
1
7980
from FEMur import * import sys import sympy as sy import numpy as np import scipy as sc import matplotlib.pyplot as plt import matplotlib.tri as tri import scipy.interpolate from math import ceil class Solver(object): ''' 2-dimensional solver top class. Provides common initialization to all child solver classes. ''' def __init__(self, meshfile, analysis_type): self.meshfile = meshfile self.analysis_type = analysis_type self.get_mesh() self.D = None self.gbl_stiff = None self.gbl_load = None self.gbl_omega = None self.dirichlet_applied = False def weakform(self): ''' Prints weak form used by the solver to approximate the results. ''' def get_mesh(self): ''' Call Mesh class to create the mesh. ''' try: a = self.meshfile except AttributeError: print('A mesh file has not been provided.') sys.exit(1) self.mesh = Mesh2D(self.meshfile, self.analysis_type) self.mesh.mesh() def solve(self): ''' Solves the equation system. Solves for O in: [K]{O}={F} where K is the global stiffness matrix (or conductivitity) O is the displacement (or temperature) F is the applied load (or [...]) ''' if self.gbl_stiff is None or self.gbl_load is None: self.assemble_stiff_load() if self.dirichlet_applied is False: self.update_stiff_load_dirichlet() print('\n# SOLVING FOR OMEGA #\n') print(self.gbl_stiff) print(self.gbl_load) new_stiff = sy.matrix2numpy(self.gbl_stiff, dtype=float) new_load = sy.matrix2numpy(self.gbl_load, dtype=float) new_omega = np.linalg.solve(new_stiff, new_load) self.gbl_omega = new_omega print(self.gbl_omega) def plot_results(self): if self.gbl_omega is None: # Check if the system has been solved self.solve() x = np.zeros(self.mesh.num_nodes) y = np.zeros(self.mesh.num_nodes) z = self.gbl_omega.T for i in self.mesh.nodes.keys(): x[i] = self.mesh.nodes[i].x y[i] = self.mesh.nodes[i].y xi, yi = np.linspace(x.min(), x.max(), 100), np.linspace(y.min(), y.max(), 100) xi, yi = np.meshgrid(xi, yi) trias = np.zeros((self.mesh.num_elem, 3)) for i in self.mesh.elements.keys(): if self.mesh.elements[i].num_nodes < 6: pass else: for j in range(3): trias[i, j] = self.mesh.elements[i].nodes[j].index rbf = sc.interpolate.Rbf(x, y, z, function='linear') zi = rbf(xi, yi) plt.imshow(zi, vmin=z.min(), vmax=z.max(), origin='lower', extent=[x.min(), x.max(), y.min(), y.max()], cmap=plt.get_cmap('plasma')) plt.scatter(x, y, c=z, cmap=plt.get_cmap('plasma')) plt.colorbar() plt.triplot(x, y, trias, 'o-', ms=3, lw=1.0, color='black') plt.show() class SteadyHeatSolver(Solver): ''' 2-dimensional steady state heat transfer solver. ''' def __init__(self, meshfile): Solver.__init__(self, meshfile, "SSHeat") def assemble_stiff_load(self): ''' Assemble the Global Stiffness Matrix and Global Load Vector based on elements. Only affects nodes pertaining to shell elements. It will overwrite nodes that were defined under the first assembler. ''' try: a = self.mesh.elements[0].nodes[0].x except AttributeError: self.get_mesh() self.gbl_stiff = sy.zeros(self.mesh.num_nodes) self.gbl_load = sy.zeros(self.mesh.num_nodes, 1) print('\n# STARTING ASSEMBLY #\n') if self.mesh.calculated is None: self.mesh.solve_elements() for i in self.mesh.elements.keys(): key = int(i) # To do: Create a method to provide all elements with the # surrounding conditions. self.mesh.elements[i].D = self.D self.mesh.elements[i].h = self.h self.mesh.elements[i].e = self.e self.mesh.elements[i].t_ext = self.t_ext is_point = isinstance(self.mesh.elements[i], Point1) # Is it a Point1 if not is_point: print(f"Calculating Element({key})'s Stiffness Matrix") # self.elements[i].solve_heat_stiff() print(f"Calculating Element({key})'s Load Vector") self.mesh.elements[i].get_C() # self.elements[i].solve_heat_load() print(f"Applying Element({key})'s Stiffness Matrix and Load Vector" f"to the global Stiffness Matrix and Global Load Vector") nodes_indexes = [] for j in self.mesh.elements[i].nodes.keys(): # Create a list with all the element nodes indexes nodes_indexes.append(self.mesh.elements[i].nodes[j].index) for j in range(self.mesh.elements[i].num_nodes): # Assemble Stiffness matrix for k in range(self.mesh.elements[i].num_nodes): self.gbl_stiff[nodes_indexes[j], nodes_indexes[k]] += ( self.mesh.elements[i].K_e[j, k] ) # Assemble Load vector self.gbl_load[nodes_indexes[j]] += ( self.mesh.elements[i].F_e[j] ) return None def set_environment(self, t_ext, h, e, dirichlet, dirichlet_nodes, k_x, k_y=None, k_xy=None): ''' Provide the environment variable to the mesh 'T_ext' the temperature of the surounding air. 'h' the convection factors. 'e' the thickness of the shell. [D] with its diffusion factors (K) will be as follows: [D] = [k_x k_xy] [k_xy k_y] ''' print('Applying Environment') self.t_ext = t_ext self.h = h self.e = e self.dirichlet = dirichlet self.dirichlet_nodes = dirichlet_nodes # table with nodes affected. if k_y is None: k_y = k_x if k_xy is None: k_xy = 0 self.D = sy.Matrix([[k_x, k_xy], [k_xy, k_y]]) print('Environment Applied') def update_stiff_load_dirichlet(self): ''' Impose the 'impose' value on all nodes corresponding to value of x or y provided. This will clear the row and column associated with all nodes, effectively cancelling all neighboring nodes from having an impact on the dirichlet nodes. ''' if self.gbl_stiff is None or self.gbl_load is None: self.assemble_stiff_load() new_gbl_stiff = self.gbl_stiff new_gbl_load = self.gbl_load print('\n# IMPOSING DIRICHLET #\n') for i in self.dirichlet_nodes: print(f"Imposing Dirichlet on Node({i}).") new_gbl_load -= (new_gbl_stiff[:, self.mesh.nodes[i].index] * self.dirichlet) for j in range(self.mesh.num_nodes): new_gbl_stiff[self.mesh.nodes[i].index, j] = 0 new_gbl_stiff[j, self.mesh.nodes[i].index] = 0 new_gbl_stiff[self.mesh.nodes[i].index, self.mesh.nodes[i].index] = 1 new_gbl_load[self.mesh.nodes[i].index] = self.dirichlet self.gbl_stiff = new_gbl_stiff self.gbl_load = new_gbl_load self.dirichlet_applied = True return None class SteadyStructureSolver(Solver): ''' 2-dimensional steady state structure solver. ''' def __init__(self, meshfile): Solver.__init__(self, meshfile, "SSMech")
mit
apdavison/sumatra
test/system/test_ircr.py
2
6563
""" A run through of basic Sumatra functionality. As our example code, we will use a Python program for analyzing scanning electron microscope (SEM) images of glass samples. This example was taken from an online SciPy tutorial at http://scipy-lectures.github.com/intro/summary-exercises/image-processing.html Usage: nosetests -v test_ircr.py or: python test_ircr.py """ from __future__ import print_function from __future__ import unicode_literals from builtins import input # Requirements: numpy, scipy, matplotlib, mercurial, sarge import os from datetime import datetime import utils from utils import (setup, teardown, run_test, build_command, assert_file_exists, assert_in_output, assert_config, assert_label_equal, assert_records, assert_return_code, edit_parameters, expected_short_list, substitute_labels) from functools import partial import re repository = "https://bitbucket.org/apdavison/ircr2013" #repository = "/Volumes/USERS/andrew/dev/ircr2013" # during development #repository = "/Users/andrew/dev/ircr2013" def modify_script(filename): def wrapped(): with open(os.path.join(utils.working_dir, filename), 'r') as fp: script = fp.readlines() with open(os.path.join(utils.working_dir, filename), 'w') as fp: for line in script: if "print(mean_bubble_size, median_bubble_size)" in line: fp.write('print("Mean:", mean_bubble_size)\n') fp.write('print("Median:", median_bubble_size)\n') else: fp.write(line) return wrapped test_steps = [ ("Get the example code", "hg clone %s ." % repository, assert_in_output, "updating to branch default"), ("Run the computation without Sumatra", "python glass_sem_analysis.py default_parameters MV_HFV_012.jpg", assert_in_output, re.compile(r"2416\.863[0-9]* 60\.0"), assert_file_exists, os.path.join("Data", datetime.now().strftime("%Y%m%d")), # Data subdirectory contains another subdirectory labelled with today's date) ), # assert(subdirectory contains three image files). ("Set up a Sumatra project", "smt init -d Data -i . ProjectGlass", assert_in_output, "Sumatra project successfully set up"), ("Run the ``glass_sem_analysis.py`` script with Sumatra", "smt run -e python -m glass_sem_analysis.py -r 'initial run' default_parameters MV_HFV_012.jpg", assert_in_output, (re.compile(r"2416\.863[0-9]* 60\.0"), "histogram.png")), ("Comment on the outcome", "smt comment 'works fine'"), ("Set defaults", "smt configure -e python -m glass_sem_analysis.py"), ("Look at the current configuration of the project", "smt info", assert_config, {"project_name": "ProjectGlass", "executable": "Python", "main": "glass_sem_analysis.py", "code_change": "error"}), edit_parameters("default_parameters", "no_filter", "filter_size", 1), ("Run with changed parameters and user-defined label", "smt run -l example_label -r 'No filtering' no_filter MV_HFV_012.jpg", # TODO: assert(results have changed) assert_in_output, "phases.png", assert_label_equal, "example_label"), ("Change parameters from the command line", "smt run -r 'Trying a different colourmap' default_parameters MV_HFV_012.jpg phases_colourmap=hot"), # assert(results have changed) ("Add another comment", "smt comment 'The default colourmap is nicer'"), #TODO add a comment to an older record (e.g. this colourmap is nicer than 'hot')") ("Add tags on the command line", build_command("smt tag mytag {0} {1}", "labels")), modify_script("glass_sem_analysis.py"), ("Run the modified code", "smt run -r 'Added labels to output' default_parameters MV_HFV_012.jpg", assert_return_code, 1, assert_in_output, "Code has changed, please commit your changes"), ("Commit changes...", "hg commit -m 'Added labels to output' -u testuser"), ("...then run again", "smt run -r 'Added labels to output' default_parameters MV_HFV_012.jpg"), # assert(output has changed as expected) #TODO: make another change to the Python script ("Change configuration to store diff", "smt configure --on-changed=store-diff"), ("Run with store diff", "smt run -r 'made a change' default_parameters MV_HFV_012.jpg"), # assert(code runs, stores diff) ("Review previous computations - get a list of labels", "smt list", assert_in_output, expected_short_list), ("Review previous computations in detail", "smt list -l", assert_records, substitute_labels([ {'label': 0, 'executable_name': 'Python', 'outcome': 'works fine', 'reason': 'initial run', 'version': '6038f9c500d1', 'vcs': 'Mercurial', 'script_arguments': '<parameters> MV_HFV_012.jpg', 'main_file': 'glass_sem_analysis.py'}, # TODO: add checking of parameters {'label': 1, 'outcome': '', 'reason': 'No filtering'}, {'label': 2, 'outcome': 'The default colourmap is nicer', 'reason': 'Trying a different colourmap'}, {'label': 3, 'outcome': '', 'reason': 'Added labels to output'}, {'label': 4, 'outcome': '', 'reason': 'made a change'}, # TODO: add checking of diff ])), ("Filter the output of ``smt list`` based on tag", "smt list mytag", #assert(list is correct) ), ("Export Sumatra records as JSON.", "smt export", assert_file_exists, ".smt/records_export.json"), ] def test_all(): """Test generator for Nose.""" for step in test_steps: if callable(step): step() else: test = partial(*tuple([run_test] + list(step[1:]))) test.description = step[0] yield test # Still to test: # #.. LaTeX example #.. note that not only Python is supported - separate test #.. play with labels? uuid, etc. #.. move recordstore #.. migrate datastore #.. repeats #.. moving forwards and backwards in history #.. upgrades (needs Docker) if __name__ == '__main__': # Run the tests without using Nose. setup() for step in test_steps: if callable(step): step() else: print(step[0]) # description run_test(*step[1:]) response = input("Do you want to delete the temporary directory (default: yes)? ") if response not in ["n", "N", "no", "No"]: teardown() else: print("Temporary directory %s not removed" % utils.temporary_dir)
bsd-2-clause
puruckertom/ubertool
ubertool/therps/tests/test_therps_unittest.py
1
63527
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import pandas.util.testing as pdt import sys from tabulate import tabulate import unittest #find parent directory and import model # parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parentddir) from ..therps_exe import Therps print("Python version: " + sys.version) print("Numpy version: " + np.__version__) class Testtherps(unittest.TestCase): """ Unit tests for T-Rex model. """ print("THerps unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for therps unit tests. :return: """ pass test = {} # setup the test as needed # e.g. pandas to open therps qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for therps unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_therps_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty therps object therps_empty = Therps(df_empty, df_empty) return therps_empty def test_convert_app_intervals(self): """ unit test for function convert_app_intervals the method converts number of applications and application interval into application rates and day of year number this is so that the same concentration timeseries method from trex_functions can be reused here :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result_day_out = pd.Series([], dtype="object") result_app_rates = pd.Series([], dtype="object") expected_result_day_out = pd.Series([[1,8,15], [1], [1,22,43,64], [1,8,15]], dtype = 'object') expected_result_app_rates = pd.Series([[1.2,1.2,1.2], [2.3], [2.5,2.5,2.5,2.5], [5.1,5.1,5.1]], dtype = 'object') try: therps_empty.num_apps = [3,1,4,3] therps_empty.app_interval = [7,1,21,7] therps_empty.application_rate = [1.2, 2.3, 2.5,5.1] result_day_out, result_app_rates = therps_empty.convert_app_intervals() #using pdt.assert_series_equal assertion instead of npt.assert_allclose #because npt.assert_allclose does not handle uneven object/series lists #Note that pdt.assert_series_equal requires object/series to be exactly equal #this is ok in this instance because we are not "calculating" real numbers #but rather simply distributing them from an input value into a new object/series pdt.assert_series_equal(result_app_rates,expected_result_app_rates) pdt.assert_series_equal(result_day_out,expected_result_day_out) finally: tab1 = [result_app_rates, expected_result_app_rates] tab2 = [result_day_out, expected_result_day_out] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab1, headers='keys', tablefmt='rst')) print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_conc_initial(self): """ unittest for function conc_initial: conc_0 = (app_rate * self.frac_act_ing * food_multiplier) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([1.734, 9.828, 0.702], dtype = 'float') try: # specify an app_rates Series (that is a series of lists, each list representing # a set of application rates for 'a' model simulation) therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.food_multiplier_init_sg = 15. therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') for i in range(len(therps_empty.frac_act_ing)): result[i] = therps_empty.conc_initial(i, therps_empty.app_rates[i][0], therps_empty.food_multiplier_init_sg) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ unittest for function conc_timestep: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([9.726549e-4, 0.08705506, 9.8471475], dtype = 'float') try: therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') conc_0 = pd.Series([0.001, 0.1, 10.0]) for i in range(len(conc_0)): result[i] = therps_empty.conc_timestep(i, conc_0[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_percent_to_frac(self): """ unittest for function percent_to_frac: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([.04556, .1034, .9389], dtype = 'float') try: therps_empty.percent_incorp = pd.Series([4.556, 10.34, 93.89], dtype='float') result = therps_empty.percent_to_frac(therps_empty.percent_incorp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird(self): """ unittest for function at_bird1; alternative approach using more vectorization: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([48.97314, 136.99477, 95.16341], dtype = 'float') try: therps_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') therps_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') therps_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test result = therps_empty.at_bird(therps_empty.aw_herp_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_mamm(self): """ unittest for function fi_mamm: food_intake = (0.621 * (aw_mamm ** 0.564)) / (1 - mf_w_mamm) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([3.178078, 23.06301, 53.15002], dtype = 'float') try: therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') therps_empty.bw_frog_prey_mamm = pd.Series([15., 35., 45.], dtype='float') result = therps_empty.fi_mamm(therps_empty.bw_frog_prey_mamm, therps_empty.mf_w_mamm_2) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_fi_herp(self): """ unittest for function fi_herp: Food intake for herps. """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.02932976, 0.3854015, 1.054537], dtype = 'float') try: therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') therps_empty.bw_frog_prey_herp = pd.Series([2.5, 10., 15.], dtype='float') result = therps_empty.fi_herp(therps_empty.bw_frog_prey_herp, therps_empty.mf_w_mamm_2) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_diet_timeseriesA(self): """ combined unit test for methods eec_diet_timeseries; * this test calls eec_diet_timeseries, which in turn calls conc_initial and conc_timestep * this unittest executes the timeseries method for three sets of inputs (i.e., model simulations) * each timeseries is the target of an assertion test * the complete timeseries is not compared between actual and expected results * rather selected values from each series are extracted and placed into a list for comparison * the values extracted include the first and last entry in the timeseries (first and last day of simulated year) * additional values are extracted on each day of the year for which there is a pesticide application * the code here is not elegant (each simulation timeseries is checked within it own code segment; as opposed to * getting the indexing squared away so that a single piece of code would loop through all simulations * (perhaps at a later time this can be revisited and made more elegant) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() conc_timeseries = pd.Series([], dtype = 'object') result1 = pd.Series([], dtype = 'float') result2 = pd.Series([], dtype = 'float') result3 = pd.Series([], dtype = 'float') expected_results1 = [0.0, 1.734, 6.791566e-5] expected_results2 = [9.828, 145.341, 80.93925, 20.6686758, 1.120451e-18] expected_results3 = [0.0, 0.702, 0.5656463, 0.087722] num_app_days = pd.Series([], dtype='int') try: #define needed inputs for method therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.food_multiplier_init_sg = 15. therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #specifying 3 different application scenarios (i.e., model simulations) of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') #therps_empty.num_apps = [0] * len(therps_empty.app_rates) #set length of num_apps list (no longer needed) for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'series of app-rates and app_days do not match' #run method and get timeseries (all simulations will be executed here) conc_timeseries = therps_empty.eec_diet_timeseries(therps_empty.food_multiplier_init_sg) #let's extract from each timeseries values on the first day, each day of an application, and the last day #these will be placed into the 'result#' and used for the allclose assertion #need to execute this extraction for each simulation timeseries because 'allclose' will not handle uneven series lists #first simulation result num_values_to_check = len(therps_empty.app_rates[0]) + 2 #number of applications plus first and last timeseries elements if (therps_empty.day_out[0][0] == 1): #if first app day is first day of year num_values_to_check = num_values_to_check - 1 result1 = [0.] * num_values_to_check result1[0] = float(conc_timeseries[0][0]) #first day of timeseries result1[-1] = float(conc_timeseries[0][370]) #last day of timeseries num_values_to_check = len(therps_empty.app_rates[0]) if ((num_values_to_check) >= 1): result_index = 1 for i in range(0 ,num_values_to_check): if(therps_empty.day_out[0][i] != 1): series_index = therps_empty.day_out[0][i] - 1 result1[result_index] = float(conc_timeseries[0][series_index]) result_index = result_index + 1 npt.assert_allclose(result1,expected_results1,rtol=1e-4, atol=0, err_msg='', verbose=True) #second simulation result num_values_to_check = len(therps_empty.app_rates[1]) + 2 if (therps_empty.day_out[1][0] == 1): #if first app day is first day of year num_values_to_check = num_values_to_check - 1 result2 = [0.] * num_values_to_check result2[0] = float(conc_timeseries[1][0]) #first day of timeseries result2[-1] = float(conc_timeseries[1][370]) #last day of timeseries num_values_to_check = len(therps_empty.app_rates[1]) if ((num_values_to_check) >= 1): result_index = 1 for i in range(0 ,num_values_to_check): if(therps_empty.day_out[1][i] != 1): series_index = therps_empty.day_out[1][i] - 1 result2[result_index] = float(conc_timeseries[1][series_index]) result_index = result_index + 1 npt.assert_allclose(result2,expected_results2,rtol=1e-4, atol=0, err_msg='', verbose=True) #3rd simulation result num_values_to_check = len(therps_empty.app_rates[2]) + 2 if (therps_empty.day_out[2][0] == 1): #if first app day is first day of year num_values_to_check = num_values_to_check - 1 result3 = [0.] * num_values_to_check result3[0] = float(conc_timeseries[2][0]) #first day of timeseries result3[-1] = float(conc_timeseries[2][370]) #last day of timeseries num_values_to_check = len(therps_empty.app_rates[2]) if ((num_values_to_check) >= 1): result_index = 1 for i in range(0 ,num_values_to_check): if(therps_empty.day_out[2][i] != 1): series_index = therps_empty.day_out[2][i] - 1 result3[result_index] = float(conc_timeseries[2][series_index]) result_index = result_index + 1 npt.assert_allclose(result3,expected_results3,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab1 = [result1, expected_results1] tab2 = [result2, expected_results2] tab3 = [result3, expected_results3] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab1, headers='keys', tablefmt='rst')) print(tabulate(tab2, headers='keys', tablefmt='rst')) print(tabulate(tab3, headers='keys', tablefmt='rst')) return def test_eec_diet_timeseries(self): """ combined unit test for methods eec_diet_timeseries; * this test calls eec_diet_timeseries, which in turn calls conc_initial and conc_timestep * this unittest executes the timeseries method for three sets of inputs (i.e., model simulations) * each timeseries (i.e., simulation result) is the target of an assertion test * the complete timeseries is not compared between actual and expected results * rather selected values from each series are extracted and placed into a list for comparison * the values extracted include the first and last entry in the timeseries (first and last day of simulated year) * additional values are extracted on each day of the year for which there is a pesticide application """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() conc_timeseries = pd.Series([], dtype = 'object') result = pd.Series([], dtype = 'object') expected_results = pd.Series([[0.0, 1.734, 6.791566e-5], [9.828, 145.341, 80.93925, 20.6686758, 1.120451e-18], [0.0, 0.702, 0.5656463, 0.087722]], dtype = 'object') num_app_days = pd.Series([], dtype='int') try: #define needed inputs for method therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.food_multiplier_init_sg = 15. therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #specifying 3 different application scenarios (i.e., model simulations) of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') #therps_empty.num_apps = [0] * len(therps_empty.app_rates) #set length of num_apps list (no longer needed) for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'series of app-rates and app_days do not match' #run method and get timeseries (all simulations will be executed here) conc_timeseries = therps_empty.eec_diet_timeseries(therps_empty.food_multiplier_init_sg) #let's extract from each timeseries values on the first day, each day of an application, and the last day #these will be placed into 'result' and used for the allclose assertion #loop through simulation results extracting values of interest per timeseries for isim in range(len(therps_empty.app_rates)): num_values_to_check = len(therps_empty.app_rates[isim]) + 2 #number of applications plus first and last timeseries elements if (therps_empty.day_out[isim][0] == 1): #if first app day is first day of year num_values_to_check = num_values_to_check - 1 result[isim] = [0.] * num_values_to_check #initialize result list for this simulation result[isim][0] = float(conc_timeseries[isim][0]) #first day of timeseries result[isim][-1] = float(conc_timeseries[isim][370]) #last day of timeseries num_values_to_check = len(therps_empty.app_rates[isim]) #just the application days for this loop if ((num_values_to_check) >= 1): result_index = 1 for i in range(0 ,num_values_to_check): if(therps_empty.day_out[isim][i] != 1): #application day of 1 has been processed above series_index = therps_empty.day_out[isim][i] - 1 result[isim][result_index] = float(conc_timeseries[isim][series_index]) result_index = result_index + 1 npt.assert_allclose(result[isim][:],expected_results[isim][:],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: print("\n") print(inspect.currentframe().f_code.co_name) for isim in range(len(therps_empty.app_rates)): tab1 = [result[isim], expected_results[isim]] print(tabulate(tab1, headers='keys', tablefmt='rst')) return def test_eec_diet_max(self): """ unit test for method eec_diet_max; internal calls to 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' * this test calls eec_diet_max, which in turn calls eec_diet_timeseries (which produces concentration timeseries), which in turn calls conc_initial and conc_timestep * eec_diet_max processes the timeseries and extracts the maximum values * the assertion check is that the maximum values from each timeseries is correctly identified """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([1.734, 145.3409, 0.702], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.food_multiplier_init_sg = 15. therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') #therps_empty.num_apps = [0] * len(therps_empty.app_rates) #set length of num_apps list (no longer needed) for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'series of app-rates and app_days do not match' result = therps_empty.eec_diet_max(therps_empty.food_multiplier_init_sg) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_dose_mamm(self): """ unit test for function eec_dose_mamm; internal calls to 'eec_diet_mamm' --> 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' --> fi_mamm unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'eec_dose_mamm' are correctly implemented * methods called inside of 'eec_dose_mamm' are not retested/recalculated * for methods inside of 'eec_dose_mamm' the same values were used here that were used in the unit tests for that method * thus, only the correct passing of variables/values is verified (calculations having been verified in previous unittests) * only calculations done for this test are for those unique to this method """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([3.673858, 83.80002, 0.1492452], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.food_multiplier_init_sg = 15. therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') #therps_empty.aw_mamm_sm = pd.Series([15., 20., 30.], dtype='float') therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test therps_empty.bw_frog_prey_mamm = pd.Series([15., 35., 45.], dtype='float') therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.eec_dose_mamm(therps_empty.food_multiplier_init_sg, therps_empty.aw_herp_sm, therps_empty.bw_frog_prey_mamm, therps_empty.mf_w_mamm_2) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_arq_dose_mamm(self): """ unit test for function arq_dose_mamm; internal calls to 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'arq_dose_mamm' are correctly implemented * methods called inside of 'arq_dose_mamm' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.07501781, 0.6117023, 0.0015683], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') therps_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') therps_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') therps_empty.food_multiplier_init_sg = 15. therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test therps_empty.bw_frog_prey_mamm = pd.Series([15., 35., 45.], dtype='float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.arq_dose_mamm(therps_empty.food_multiplier_init_sg, therps_empty.aw_herp_sm, therps_empty.bw_frog_prey_mamm, therps_empty.mf_w_mamm_2) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_arq_diet_mamm(self): """ unit test for function arq_diet_mamm; internal calls to 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'arq_diet_mamm' are correctly implemented * methods called inside of 'arq_diet_mamm' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.00293908, 0.03830858, 0.00165828], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.food_multiplier_init_sg = 15. therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.lc50_bird = pd.Series([125., 2500., 500.], dtype = 'float') therps_empty.bw_frog_prey_mamm = pd.Series([15., 35., 45.], dtype='float') therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.arq_diet_mamm(therps_empty.food_multiplier_init_sg, therps_empty.bw_frog_prey_mamm, therps_empty.mf_w_mamm_2) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_crq_diet_mamm(self): """ unit test for function crq_diet_mamm; internal calls to 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'crq_diet_mamm' are correctly implemented * methods called inside of 'crq_diet_mamm' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.01469543, 0.9577145, 0.01507527], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.food_multiplier_init_sg = 15. therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.noaec_bird = pd.Series([25., 100., 55.], dtype = 'float') therps_empty.bw_frog_prey_mamm = pd.Series([15., 35., 45.], dtype='float') therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.crq_diet_mamm(therps_empty.food_multiplier_init_sg, therps_empty.bw_frog_prey_mamm, therps_empty.mf_w_mamm_2 ) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_crq_diet_tp(self): """ unit test for function crq_diet_tp; amphibian chronic dietary-based risk quotients for tp internal calls to : 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'crq_diet_tp' are correctly implemented * methods called inside of 'crq_diet_tp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([8.1372e-4, 0.05601463, 8.973091e-4], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.food_multiplier_init_blp = 15. therps_empty.bw_frog_prey_herp = pd.Series([2.5, 10., 15.], dtype='float') therps_empty.noaec_bird = pd.Series([25., 100., 55.], dtype = 'float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.crq_diet_tp(therps_empty.food_multiplier_init_blp, therps_empty.bw_frog_prey_herp, therps_empty.awc_herp_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_crq_diet_herp(self): """ amphibian chronic dietary-based risk quotients unit test for function crq_diet_herp; amphibian acute dietary-based risk quotients for tp internal calls to : 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'crq_diet_herp' are correctly implemented * methods called inside of 'crq_diet_herp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.06936, 1.4534, 0.01276364], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.food_multiplier_init_blp = 15. therps_empty.noaec_bird = pd.Series([25., 100., 55.], dtype = 'float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.crq_diet_herp(therps_empty.food_multiplier_init_blp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_arq_diet_tp(self): """ unit test for function arq_diet_tp; amphibian acute dietary-based risk quotients for tp internal calls to : 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included 'fi_herp' unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'arq_diet_tp' are correctly implemented * methods called inside of 'arq_diet_tp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([1.62745e-4, 0.002240583, 9.870466e-5], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.lc50_bird = pd.Series([125., 2500., 500.], dtype = 'float') therps_empty.food_multiplier_init_blp = 15. therps_empty.bw_frog_prey_herp = pd.Series([2.5, 10., 15.], dtype='float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.arq_diet_tp(therps_empty.food_multiplier_init_blp, therps_empty.bw_frog_prey_herp, therps_empty.awc_herp_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_arq_diet_herp(self): """ unit test for function arq_diet_herp; amphibian acute dietary-based risk quotients internal calls to : 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'arq_diet_herp' are correctly implemented * methods called inside of 'arq_diet_herp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.013872, 0.0581364, 0.001404], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.food_multiplier_mean_fp = 15. therps_empty.lc50_bird = pd.Series([125., 2500., 500.], dtype = 'float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.arq_diet_herp(therps_empty.food_multiplier_mean_fp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_arq_dose_tp(self): """ unit test for function arq_dose_tp; amphibian acute dose-based risk quotients for tp internal calls to : 'eec_dose_herp' --> 'fi_herp' --> ; 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included 'at_bird' unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'arq_dose_tp' are correctly implemented * methods called inside of 'arq_dose_tp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([1.641716e-5, 0.001533847, 1.92511e-5], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') therps_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') therps_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') therps_empty.food_multiplier_init_blp = 15. therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test therps_empty.bw_frog_prey_herp = pd.Series([2.5, 10., 15.], dtype='float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content therps_empty.awc_herp_md = pd.Series([70., 85., 90.], dtype = 'float') therps_empty.awc_herp_md = therps_empty.percent_to_frac(therps_empty.awc_herp_md) #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.arq_dose_tp(therps_empty.food_multiplier_init_blp, therps_empty.aw_herp_sm, therps_empty.bw_frog_prey_herp, therps_empty.awc_herp_sm, therps_empty.awc_herp_md) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_arq_dose_herp(self): """ unit test for function arq_dose_herp; amphibian acute dose-based risk quotients internal calls to : 'eec_dose_herp' --> 'fi_herp' --> ; 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included 'at_bird' unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'arq_dose_herp' are correctly implemented * methods called inside of 'arq_dose_herp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([4.664597e-4, 0.02984901, 2.738237e-4], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') therps_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') therps_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test therps_empty.food_multiplier_mean_blp = 15. therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.arq_dose_herp(therps_empty.aw_herp_sm, therps_empty.awc_herp_sm, therps_empty.food_multiplier_mean_blp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_dose_tp(self): """ unit test for function eec_dose_tp; amphibian Dose based eecs for terrestrial internal calls to : "fi_herp"; 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'eec_dose_tp' are correctly implemented * methods called inside of 'eec_dose_tp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([8.040096e-4, 0.2101289, 0.001831959], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.food_multiplier_mean_blp = 15. therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test therps_empty.bw_frog_prey_herp = pd.Series([2.5, 10., 15.], dtype='float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content therps_empty.awc_herp_md = pd.Series([70., 85., 90.], dtype = 'float') therps_empty.awc_herp_md = therps_empty.percent_to_frac(therps_empty.awc_herp_md) #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.eec_dose_tp(therps_empty.food_multiplier_mean_blp, therps_empty.aw_herp_sm, therps_empty.bw_frog_prey_herp, therps_empty.awc_herp_sm, therps_empty.awc_herp_md) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_dose_herp(self): """ unit test for function eec_dose_herp; amphibian Dose based eecs internal calls to : "fi_herp"; 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'ceec_dose_herp' are correctly implemented * methods called inside of 'eec_dose_herp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.02284427, 4.089158, 0.02605842], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.aw_herp_sm = pd.Series([1.5, 40., 250.], dtype = 'float') # use values for small, medium, large in this test therps_empty.food_multiplier_init_blp = 15. therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.eec_dose_herp(therps_empty.aw_herp_sm, therps_empty.awc_herp_sm, therps_empty.food_multiplier_init_blp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_diet_tp(self): """ unit test for function eec_diet_tp; Dietary terrestrial phase based eecs internal calls to : "fi_herp"; 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'eec_diet_tp' are correctly implemented * methods called inside of 'eec_diet_tp' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.02034312, 5.601457, 0.04935233], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.food_multiplier_mean_sg = 15. therps_empty.bw_frog_prey_herp = pd.Series([2.5, 10., 15.], dtype='float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') therps_empty.awc_herp_sm = pd.Series([10., 80., 90.], dtype = 'float') # initialize as percent to match model input therps_empty.awc_herp_sm = therps_empty.percent_to_frac(therps_empty.awc_herp_sm) # convert to mass fraction water content #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.eec_diet_tp(therps_empty.food_multiplier_mean_sg, therps_empty.bw_frog_prey_herp, therps_empty.awc_herp_sm) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_eec_diet_mamm(self): """ unit test for function eec_diet_mamm; Dietary_mammal based eecs internal calls to : "fi_mamm"; 'eec_diet_max' --> 'eec_diet_timeseries' --> 'conc_initial' and 'conc_timestep' are included unit tests of this routine include the following approach: * this test verifies that the logic & calculations performed within the 'eec_diet_mamm' are correctly implemented * methods called inside of 'eec_diet_mamm' are not retested/recalculated * only the correct passing of variables/values is verified (calculations having been verified in previous unittests) :return: """ # create empty pandas dataframes to create empty object for this unittest therps_empty = self.create_therps_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([0.3673858, 95.771454, 0.829140], dtype = 'float') num_app_days = pd.Series([], dtype='int') try: therps_empty.food_multiplier_mean_sg = 15. therps_empty.bw_frog_prey_mamm = pd.Series([15., 35., 45.], dtype='float') therps_empty.mf_w_mamm_2 = pd.Series([0.1, 0.8, 0.9], dtype='float') therps_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype = 'float') therps_empty.foliar_diss_hlife = pd.Series([25., 5., 45.], dtype = 'float') #specifying 3 different application scenarios of 1, 4, and 2 applications therps_empty.app_rates = pd.Series([[0.34], [0.78, 11.34, 3.54, 1.54], [2.34, 1.384]], dtype='object') therps_empty.day_out = pd.Series([[5], [1, 11, 21, 51], [150, 250]], dtype='object') for i in range(len(therps_empty.app_rates)): therps_empty.num_apps[i] = len(therps_empty.app_rates[i]) num_app_days[i] = len(therps_empty.day_out[i]) assert (therps_empty.num_apps[i] == num_app_days[i]), 'list of app-rates and app_days do not match' result = therps_empty.eec_diet_mamm(therps_empty.food_multiplier_mean_sg, therps_empty.bw_frog_prey_mamm, therps_empty.mf_w_mamm_2) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return # unittest will # 1) call the setup method, # 2) then call every method starting with "test", # 3) then the teardown method if __name__ == '__main__': unittest.main() #pass
unlicense
TinyOS-Camp/DDEA-DEV
Archive/[14_09_12] DDEA_example_code/radar_example.py
10
1434
import numpy as np import matplotlib.pyplot as plt import pprint import mytool as mt import radar_chart # Load from binaries avgsensor_names = mt.loadObjectBinary("tmp/avgsensor_names.bin") Conditions_dict = mt.loadObjectBinary("tmp/Conditions_dict.bin") Events_dict = mt.loadObjectBinary("tmp/Events_dict.bin") wf_tuple_t = mt.loadObjectBinary("tmp/wf_tuple_t.bin") wf_tuple_d = mt.loadObjectBinary("tmp/wf_tuple_d.bin") wf_tuple_h = mt.loadObjectBinary("tmp/wf_tuple_h.bin") wf_tuple_e = mt.loadObjectBinary("tmp/wf_tuple_e.bin") wf_tuple_c = mt.loadObjectBinary("tmp/wf_tuple_c.bin") sensor_no = len(avgsensor_names) # convert 'inf' to 1 sen_t = [1 if val == float("inf") else val for val in wf_tuple_t[3]] sen_d = [1 if val == float("inf") else val for val in wf_tuple_d[3]] sen_h = [1 if val == float("inf") else val for val in wf_tuple_h[3]] sen_e = [1 if val == float("inf") else val for val in wf_tuple_e[3]] sen_c = [1 if val == float("inf") else val for val in wf_tuple_c[3]] SEN = [[sen_t[i], sen_d[i], sen_h[i], sen_e[i], sen_c[i]] for i in range(sensor_no)] TOTAL_SEN = np.array([sum(SEN[i]) for i in range(sensor_no)]) idx = np.argsort(TOTAL_SEN)[-6:] # Best 6 sensors spoke_labels = ["Temperature", "Dew Point", "Humidity", "Events", "Conditions"] data = [SEN[i] for i in idx] sensor_labels = [avgsensor_names[i] for i in idx] radar_chart.plot(data, spoke_labels, sensor_labels, saveto="radar.png") # plt.show()
gpl-2.0
theoryno3/scikit-learn
sklearn/linear_model/tests/test_omp.py
272
7752
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
cloudera/ibis
ibis/backends/clickhouse/client.py
1
12169
import re from collections import OrderedDict import numpy as np import pandas as pd from clickhouse_driver.client import Client as _DriverClient from pkg_resources import parse_version import ibis.common.exceptions as com import ibis.expr.datatypes as dt import ibis.expr.operations as ops import ibis.expr.schema as sch import ibis.expr.types as ir from ibis.backends.base_sqlalchemy.compiler import DDL from ibis.client import Database, DatabaseEntity, Query, SQLClient from ibis.config import options from ibis.util import log from .compiler import ClickhouseDialect, build_ast fully_qualified_re = re.compile(r"(.*)\.(?:`(.*)`|(.*))") base_typename_re = re.compile(r"(\w+)") _clickhouse_dtypes = { 'Null': dt.Null, 'Nothing': dt.Null, 'UInt8': dt.UInt8, 'UInt16': dt.UInt16, 'UInt32': dt.UInt32, 'UInt64': dt.UInt64, 'Int8': dt.Int8, 'Int16': dt.Int16, 'Int32': dt.Int32, 'Int64': dt.Int64, 'Float32': dt.Float32, 'Float64': dt.Float64, 'String': dt.String, 'FixedString': dt.String, 'Date': dt.Date, 'DateTime': dt.Timestamp, } _ibis_dtypes = {v: k for k, v in _clickhouse_dtypes.items()} _ibis_dtypes[dt.String] = 'String' class ClickhouseDataType: __slots__ = 'typename', 'nullable' def __init__(self, typename, nullable=False): m = base_typename_re.match(typename) base_typename = m.groups()[0] if base_typename not in _clickhouse_dtypes: raise com.UnsupportedBackendType(typename) self.typename = base_typename self.nullable = nullable def __str__(self): if self.nullable: return 'Nullable({})'.format(self.typename) else: return self.typename def __repr__(self): return '<Clickhouse {}>'.format(str(self)) @classmethod def parse(cls, spec): # TODO(kszucs): spare parsing, depends on clickhouse-driver#22 if spec.startswith('Nullable'): return cls(spec[9:-1], nullable=True) else: return cls(spec) def to_ibis(self): return _clickhouse_dtypes[self.typename](nullable=self.nullable) @classmethod def from_ibis(cls, dtype, nullable=None): typename = _ibis_dtypes[type(dtype)] if nullable is None: nullable = dtype.nullable return cls(typename, nullable=nullable) @dt.dtype.register(ClickhouseDataType) def clickhouse_to_ibis_dtype(clickhouse_dtype): return clickhouse_dtype.to_ibis() class ClickhouseDatabase(Database): pass class ClickhouseQuery(Query): def _external_tables(self): tables = [] for name, df in self.extra_options.get('external_tables', {}).items(): if not isinstance(df, pd.DataFrame): raise TypeError( 'External table is not an instance of pandas ' 'dataframe' ) schema = sch.infer(df) chtypes = map(ClickhouseDataType.from_ibis, schema.types) structure = list(zip(schema.names, map(str, chtypes))) tables.append( { 'name': name, 'data': df.to_dict('records'), 'structure': structure, } ) return tables def execute(self): cursor = self.client._execute( self.compiled_sql, external_tables=self._external_tables() ) result = self._fetch(cursor) return self._wrap_result(result) def _fetch(self, cursor): data, colnames, _ = cursor if not len(data): # handle empty resultset return pd.DataFrame([], columns=colnames) df = pd.DataFrame.from_dict(OrderedDict(zip(colnames, data))) return self.schema().apply_to(df) class ClickhouseTable(ir.TableExpr, DatabaseEntity): """References a physical table in Clickhouse""" @property def _qualified_name(self): return self.op().args[0] @property def _unqualified_name(self): return self._match_name()[1] @property def _client(self): return self.op().args[2] def _match_name(self): m = fully_qualified_re.match(self._qualified_name) if not m: raise com.IbisError( 'Cannot determine database name from {0}'.format( self._qualified_name ) ) db, quoted, unquoted = m.groups() return db, quoted or unquoted @property def _database(self): return self._match_name()[0] def invalidate_metadata(self): self._client.invalidate_metadata(self._qualified_name) def metadata(self): """ Return parsed results of DESCRIBE FORMATTED statement Returns ------- meta : TableMetadata """ return self._client.describe_formatted(self._qualified_name) describe_formatted = metadata @property def name(self): return self.op().name def _execute(self, stmt): return self._client._execute(stmt) def insert(self, obj, **kwargs): from .identifiers import quote_identifier schema = self.schema() assert isinstance(obj, pd.DataFrame) assert set(schema.names) >= set(obj.columns) columns = ', '.join(map(quote_identifier, obj.columns)) query = 'INSERT INTO {table} ({columns}) VALUES'.format( table=self._qualified_name, columns=columns ) # convert data columns with datetime64 pandas dtype to native date # because clickhouse-driver 0.0.10 does arithmetic operations on it obj = obj.copy() for col in obj.select_dtypes(include=[np.datetime64]): if isinstance(schema[col], dt.Date): obj[col] = obj[col].dt.date data = obj.to_dict('records') return self._client.con.execute(query, data, **kwargs) class ClickhouseDatabaseTable(ops.DatabaseTable): pass class ClickhouseClient(SQLClient): """An Ibis client interface that uses Clickhouse""" database_class = ClickhouseDatabase query_class = ClickhouseQuery dialect = ClickhouseDialect table_class = ClickhouseDatabaseTable table_expr_class = ClickhouseTable def __init__(self, *args, **kwargs): self.con = _DriverClient(*args, **kwargs) def _build_ast(self, expr, context): return build_ast(expr, context) @property def current_database(self): # might be better to use driver.Connection instead of Client return self.con.connection.database def log(self, msg): log(msg) def close(self): """Close Clickhouse connection and drop any temporary objects""" self.con.disconnect() def _execute(self, query, external_tables=(), results=True): if isinstance(query, DDL): query = query.compile() self.log(query) response = self.con.execute( query, columnar=True, with_column_types=True, external_tables=external_tables, ) if not results: return response data, columns = response colnames, typenames = zip(*columns) coltypes = list(map(ClickhouseDataType.parse, typenames)) return data, colnames, coltypes def _fully_qualified_name(self, name, database): if bool(fully_qualified_re.search(name)): return name database = database or self.current_database return '{0}.`{1}`'.format(database, name) def list_tables(self, like=None, database=None): """ List tables in the current (or indicated) database. Like the SHOW TABLES command in the clickhouse-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' database : string, default None If not passed, uses the current/default database Returns ------- tables : list of strings """ statement = 'SHOW TABLES' if database: statement += " FROM `{0}`".format(database) if like: m = fully_qualified_re.match(like) if m: database, quoted, unquoted = m.groups() like = quoted or unquoted return self.list_tables(like=like, database=database) statement += " LIKE '{0}'".format(like) data, _, _ = self.raw_sql(statement, results=True) return data[0] def set_database(self, name): """ Set the default database scope for client """ self.con.database = name def exists_database(self, name): """ Checks if a given database exists Parameters ---------- name : string Database name Returns ------- if_exists : boolean """ return len(self.list_databases(like=name)) > 0 def list_databases(self, like=None): """ List databases in the Clickhouse cluster. Like the SHOW DATABASES command in the clickhouse-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' Returns ------- databases : list of strings """ statement = 'SELECT name FROM system.databases' if like: statement += " WHERE name LIKE '{0}'".format(like) data, _, _ = self.raw_sql(statement, results=True) return data[0] def get_schema(self, table_name, database=None): """ Return a Schema object for the indicated table and database Parameters ---------- table_name : string May be fully qualified database : string, default None Returns ------- schema : ibis Schema """ qualified_name = self._fully_qualified_name(table_name, database) query = 'DESC {0}'.format(qualified_name) data, _, _ = self.raw_sql(query, results=True) colnames, coltypes = data[:2] coltypes = list(map(ClickhouseDataType.parse, coltypes)) return sch.schema(colnames, coltypes) @property def client_options(self): return self.con.options def set_options(self, options): self.con.set_options(options) def reset_options(self): # Must nuke all cursors raise NotImplementedError def exists_table(self, name, database=None): """ Determine if the indicated table or view exists Parameters ---------- name : string database : string, default None Returns ------- if_exists : boolean """ return len(self.list_tables(like=name, database=database)) > 0 def _ensure_temp_db_exists(self): name = (options.clickhouse.temp_db,) if not self.exists_database(name): self.create_database(name, force=True) def _get_table_schema(self, tname): return self.get_schema(tname) def _get_schema_using_query(self, query): _, colnames, coltypes = self._execute(query) return sch.schema(colnames, coltypes) def _exec_statement(self, stmt, adapter=None): query = ClickhouseQuery(self, stmt) result = query.execute() if adapter is not None: result = adapter(result) return result def _table_command(self, cmd, name, database=None): qualified_name = self._fully_qualified_name(name, database) return '{0} {1}'.format(cmd, qualified_name) @property def version(self): self.con.connection.force_connect() try: server = self.con.connection.server_info vstring = '{}.{}.{}'.format( server.version_major, server.version_minor, server.revision ) except Exception: self.con.connection.disconnect() raise else: return parse_version(vstring)
apache-2.0
IndraVikas/scikit-learn
sklearn/metrics/metrics.py
233
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
bsd-3-clause
pkainz/pylearn2
pylearn2/packaged_dependencies/theano_linear/unshared_conv/test_localdot.py
44
5013
from __future__ import print_function import nose import unittest import numpy as np from theano.compat.six.moves import xrange import theano from .localdot import LocalDot from ..test_matrixmul import SymbolicSelfTestMixin class TestLocalDot32x32(unittest.TestCase, SymbolicSelfTestMixin): channels = 3 bsize = 10 # batch size imshp = (32, 32) ksize = 5 nkern_per_group = 16 subsample_stride = 1 ngroups = 1 def rand(self, shp): return np.random.rand(*shp).astype('float32') def setUp(self): np.random.seed(234) assert self.imshp[0] == self.imshp[1] fModulesR = (self.imshp[0] - self.ksize + 1) // self.subsample_stride #fModulesR += 1 # XXX GpuImgActs crashes w/o this?? fModulesC = fModulesR self.fshape = (fModulesR, fModulesC, self.channels // self.ngroups, self.ksize, self.ksize, self.ngroups, self.nkern_per_group) self.ishape = (self.ngroups, self.channels // self.ngroups, self.imshp[0], self.imshp[1], self.bsize) self.hshape = (self.ngroups, self.nkern_per_group, fModulesR, fModulesC, self.bsize) filters = theano.shared(self.rand(self.fshape)) self.A = LocalDot(filters, self.imshp[0], self.imshp[1], subsample=(self.subsample_stride, self.subsample_stride)) self.xlval = self.rand((self.hshape[-1],) + self.hshape[:-1]) self.xrval = self.rand(self.ishape) self.xl = theano.shared(self.xlval) self.xr = theano.shared(self.xrval) # N.B. the tests themselves come from SymbolicSelfTestMixin class TestLocalDotLargeGray(TestLocalDot32x32): channels = 1 bsize = 128 imshp = (256, 256) ksize = 9 nkern_per_group = 16 subsample_stride = 2 ngroups = 1 n_patches = 3000 def rand(self, shp): return np.random.rand(*shp).astype('float32') # not really a test, but important code to support # Currently exposes error, by e.g.: # CUDA_LAUNCH_BLOCKING=1 # THEANO_FLAGS=device=gpu,mode=DEBUG_MODE # nosetests -sd test_localdot.py:TestLocalDotLargeGray.run_autoencoder def run_autoencoder( self, n_train_iter=10000, # -- make this small to be a good unit test rf_shape=(9, 9), n_filters=1024, dtype='float32', module_stride=2, lr=0.01, show_filters=True, ): if show_filters: # import here to fail right away import matplotlib.pyplot as plt try: import skdata.vanhateren.dataset except ImportError: raise nose.SkipTest() # 1. Get a set of image patches from the van Hateren data set print('Loading van Hateren images') n_images = 50 vh = skdata.vanhateren.dataset.Calibrated(n_images) patches = vh.raw_patches((self.n_patches,) + self.imshp, items=vh.meta[:n_images], rng=np.random.RandomState(123), ) patches = patches.astype('float32') patches /= patches.reshape(self.n_patches, self.imshp[0] * self.imshp[1])\ .max(axis=1)[:, None, None] # TODO: better local contrast normalization if 0 and show_filters: plt.subplot(2, 2, 1); plt.imshow(patches[0], cmap='gray') plt.subplot(2, 2, 2); plt.imshow(patches[1], cmap='gray') plt.subplot(2, 2, 3); plt.imshow(patches[2], cmap='gray') plt.subplot(2, 2, 4); plt.imshow(patches[3], cmap='gray') plt.show() # -- Convert patches to localdot format: # groups x colors x rows x cols x images patches5 = patches[:, :, :, None, None].transpose(3, 4, 1, 2, 0) print('Patches shape', patches.shape, self.n_patches, patches5.shape) # 2. Set up an autoencoder print('Setting up autoencoder') hid = theano.tensor.tanh(self.A.rmul(self.xl)) out = self.A.rmul_T(hid) cost = ((out - self.xl) ** 2).sum() params = self.A.params() gparams = theano.tensor.grad(cost, params) train_updates = [(p, p - lr / self.bsize * gp) for (p, gp) in zip(params, gparams)] if 1: train_fn = theano.function([], [cost], updates=train_updates) else: train_fn = theano.function([], [], updates=train_updates) theano.printing.debugprint(train_fn) # 3. Train it params[0].set_value(0.001 * params[0].get_value()) for ii in xrange(0, self.n_patches, self.bsize): self.xl.set_value(patches5[:, :, :, :, ii:ii + self.bsize], borrow=True) cost_ii, = train_fn() print('Cost', ii, cost_ii) if 0 and show_filters: self.A.imshow_gray() plt.show() assert cost_ii < 0 # TODO: determine a threshold for detecting regression bugs
bsd-3-clause
fabianp/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
jrkerns/pylinac
docs/source/conf.py
1
9756
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # pylinac documentation build configuration file, created by # sphinx-quickstart on Thu Sep 10 11:56:25 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../..')) # sys.path.append(os.path.abspath('sphinxext')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon', 'matplotlib.sphinxext.plot_directive', ] # put mock objects here autodoc_mock_imports = ['_tkinter', 'tkinter'] autoclass_content = 'both' autodoc_default_flags = ['show-inheritance', 'members' ] # See: http://sphinx-doc.org/latest/ext/autodoc.html#confval-autodoc_default_flags autodoc_member_order = 'bysource' napoleon_include_special_with_doc = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'pylinac' copyright = '2021' author = 'James Kerns' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '3.0' # The full version, including alpha/beta/rc tags. release = '3.0.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pylinacdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pylinac.tex', 'pylinac Documentation', 'James', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pylinac', 'pylinac Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pylinac', 'pylinac Documentation', author, 'pylinac', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False plot_include_source = True
mit
zorojean/scikit-learn
benchmarks/bench_lasso.py
297
3305
""" Benchmarks of Lasso vs LassoLars First, we fix a training set and increase the number of samples. Then we plot the computation time as function of the number of samples. In the second benchmark, we increase the number of dimensions of the training set. Then we plot the computation time as function of the number of dimensions. In both cases, only 10% of the features are informative. """ import gc from time import time import numpy as np from sklearn.datasets.samples_generator import make_regression def compute_bench(alpha, n_samples, n_features, precompute): lasso_results = [] lars_lasso_results = [] it = 0 for ns in n_samples: for nf in n_features: it += 1 print('==================') print('Iteration %s of %s' % (it, max(len(n_samples), len(n_features)))) print('==================') n_informative = nf // 10 X, Y, coef_ = make_regression(n_samples=ns, n_features=nf, n_informative=n_informative, noise=0.1, coef=True) X /= np.sqrt(np.sum(X ** 2, axis=0)) # Normalize data gc.collect() print("- benchmarking Lasso") clf = Lasso(alpha=alpha, fit_intercept=False, precompute=precompute) tstart = time() clf.fit(X, Y) lasso_results.append(time() - tstart) gc.collect() print("- benchmarking LassoLars") clf = LassoLars(alpha=alpha, fit_intercept=False, normalize=False, precompute=precompute) tstart = time() clf.fit(X, Y) lars_lasso_results.append(time() - tstart) return lasso_results, lars_lasso_results if __name__ == '__main__': from sklearn.linear_model import Lasso, LassoLars import pylab as pl alpha = 0.01 # regularization parameter n_features = 10 list_n_samples = np.linspace(100, 1000000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, list_n_samples, [n_features], precompute=True) pl.figure('scikit-learn LASSO benchmark results') pl.subplot(211) pl.plot(list_n_samples, lasso_results, 'b-', label='Lasso') pl.plot(list_n_samples, lars_lasso_results, 'r-', label='LassoLars') pl.title('precomputed Gram matrix, %d features, alpha=%s' % (n_features, alpha)) pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') pl.axis('tight') n_samples = 2000 list_n_features = np.linspace(500, 3000, 5).astype(np.int) lasso_results, lars_lasso_results = compute_bench(alpha, [n_samples], list_n_features, precompute=False) pl.subplot(212) pl.plot(list_n_features, lasso_results, 'b-', label='Lasso') pl.plot(list_n_features, lars_lasso_results, 'r-', label='LassoLars') pl.title('%d samples, alpha=%s' % (n_samples, alpha)) pl.legend(loc='upper left') pl.xlabel('number of features') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
MTgeophysics/mtpy
tests/imaging/test_plotPhaseTensorMaps.py
1
8357
import glob import inspect import os.path import unittest import pytest from mtpy.imaging.penetration import load_edi_files from mtpy.imaging.phase_tensor_maps import PlotPhaseTensorMaps from tests.imaging import ImageTestCase, ImageCompare # configure matplotlib for testing def _expected_compare_fail(): pytest.xfail( "expected the image to be different on different platform, please check the image manually.") test_params = [ ("data/edifiles", 1, {"fig_size": (7, 8), "savefig_kwargs": {'dpi': 100}, "on_compare_fail": _expected_compare_fail}), ("../MT_Datasets/3D_MT_data_edited_fromDuanJM", 10, {"fig_size": (7, 8), "savefig_kwargs": {'dpi': 100}}), ("../MT_Datasets/GA_UA_edited_10s-10000s", 0.025, {"fig_size": (8, 5), "savefig_kwargs": {'dpi': 150}}), ("../MT_Datasets/GA_UA_edited_10s-10000s", 0.01, {"fig_size": (8, 7), "savefig_kwargs": {'dpi': 100}}), ("../MT_Datasets/GA_UA_edited_10s-10000s", 0.0625, {"fig_size": (8, 5), "savefig_kwargs": {'dpi': 150}}), ("../MT_Datasets/GA_UA_edited_10s-10000s", 0.0005, {"fig_size": (8, 5), "savefig_kwargs": {'dpi': 150}}), ("data/edifiles2", 1, {"fig_size": (7, 8), "savefig_kwargs": {'dpi': 100}, "on_compare_fail": _expected_compare_fail}) ] class TestPlotPhaseTensorMaps(ImageTestCase): @classmethod def setUpClass(cls): super(TestPlotPhaseTensorMaps, cls).setUpClass() # 1) Define plots params # parameters describing ellipses, differ for different map scales: deg, m, km # Try different size to find a suitable value for your case. as a # guidance: 1 degree=100KM cls.ellipse_dict = { 'size': 0.2, 'colorby': 'phimin', 'range': ( 0, 90, 1), 'cmap': 'mt_bl2gr2rd'} # adjust to suitable size: parameters describing the induction vector arrows cls.arrow_dict = {'size': 0.5, 'lw': 0.2, 'head_width': 0.04, 'head_length': 0.04, 'threshold': 0.8, 'direction': 0} # parameters describing the arrow legend (not necessarily used) # self.arrow_legend_dict = {'position': 'upper right', # 'fontpad': 0.0025, # 'xborderpad': 0.07, # 'yborderpad': 0.015} @unittest.skipUnless(os.path.isdir("data/edifiles2"), "data file not found") # @unittest.expectedFailure @pytest.mark.skip(reason="no way of currently testing this") def test_edifiles2_input(self): """ testing to use Z and tipper objects as input this fails because the constructor of PlotPhaseTensorMaps only initialize the Mplot object properly when reading from files :return: """ edi_path = test_params[4] freq = 1 mt_objs = load_edi_files(edi_path) z_objs = [mt.Z for mt in mt_objs] tipper = [mt.Tipper for mt in mt_objs] save_figure_path = os.path.join(self._temp_dir, "%s.png" % inspect.currentframe().f_code.co_name) save_param_path = os.path.join(self._temp_dir, "params_%s" % inspect.currentframe().f_code.co_name) pt_obj = PlotPhaseTensorMaps(z_object_list=z_objs, tipper_object_list=tipper, plot_freq=freq, ftol=0.10, # freq tolerance,which will decide how many data points included mapscale='deg', # deg or m, or km xpad=0.4, # plot margin; change according to lat-lon in edifiles ypad=0.4, # ~ 2* ellipse size # ellipse_dict=self.ellipse_dict, # not implemented ellipse_size=.2, ellipse_colorby= 'phimin', ellipse_range=(0, 90, 1), ellipse_cmap= 'mt_bl2gr2rd', plot_tipper='yr', # arrow_dict=self.arrow_dict, # not implemented arrow_size=0.5, arrow_lw=0.2, arrow_head_width=0.04, arrow_head_length=0.04, arrow_direction=0, arrow_threshold=0.8, # arrow_legend_dict=arrow_legend_dict, # fig_spython examples/plot_phase_tensor_map.py data/edifiles/ 10 /e/MTPY2_Outputs/ptmap3deg.pngize=(6, 5), # fig_dpi=300, the default is OK. Higher dpi # may distort figure save_fn=save_figure_path, fig_size=(8, 6), fig_dpi=100) path2figure = pt_obj.plot() pt_obj.save_figure(save_figure_path) assert (os.path.isfile(save_figure_path)) pt_obj.export_params_to_file(save_path=save_param_path) assert (os.path.isdir(save_param_path)) def _test_gen(edi_path, freq): def default(self): save_figure_path = os.path.join(self._temp_dir, "%s.png" % default.__name__) save_param_path = os.path.join(self._temp_dir, "params_%s" % default.__name__) edi_file_list = glob.glob(os.path.join(edi_path, "*.edi")) pt_obj = PlotPhaseTensorMaps(fn_list=edi_file_list, plot_freq=freq, ftol=0.10, # freq tolerance,which will decide how many data points included mapscale='deg', # deg or m, or km xpad=0.4, # plot margin; change according to lat-lon in edifiles ypad=0.4, # ~ 2* ellipse size # ellipse_dict=self.ellipse_dict, # Not implemented ellipse_size=.2, ellipse_colorby= 'phimin', ellipse_range=(0, 90, 1), ellipse_cmap= 'mt_bl2gr2rd', plot_tipper='yr', #arrow_dict=self.arrow_dict, # Not implemented arrow_size=0.5, arrow_lw=0.2, arrow_head_width=0.04, arrow_head_length=0.04, arrow_direction=0, arrow_threshold=0.8, # arrow_legend_dict=arrow_legend_dict, # fig_spython examples/plot_phase_tensor_map.py data/edifiles/ 10 /e/MTPY2_Outputs/ptmap3deg.pngize=(6, 5), # fig_dpi=300, the default is OK. Higher dpi # may distort figure save_fn=save_figure_path) # 3) do the plot and save figure - if the param save_path provided path2figure = pt_obj.plot(show=True) pt_obj.save_figure(save_figure_path, close_plot='n') assert (os.path.isfile(save_figure_path)) pt_obj.export_params_to_file(save_path=save_param_path) assert (os.path.isdir(save_param_path)) return default, # generate tests for edi_path, freq, img_kwargs in test_params: if os.path.isdir(edi_path): test_name = os.path.basename(edi_path) for _test_func in _test_gen(edi_path, freq): plot_name = _test_func.__name__ _test_func.__name__ = "test_{test_name}_{freq}_{plot_name}".format( test_name=test_name, freq=str(freq).replace('.', '_'), plot_name=plot_name) setattr( TestPlotPhaseTensorMaps, _test_func.__name__, ImageCompare(**img_kwargs).__call__(_test_func))
gpl-3.0
jdavidrcamacho/Tests_GP
05 - Performance tests/tests_comparison_1spot.py
1
4751
# -*- coding: utf-8 -*- import Gedi as gedi import numpy as np; #np.random.seed(13042017) import matplotlib.pylab as pl; pl.close("all") import astropy.table as Table ### NUMBER OF SPOTS = 1 ### #import sys #f=open("Tests_gradient_optimization.txt","w") #sys.stdout = f ##### Spots data preparation ################################################## print print "****************************************************" print "Preparing data" print "****************************************************" print spots_data= [] #to contain all data in the end #data from .rdb file rdb_data= Table.Table.read('soap_s1.rdb',format='ascii') spot= rdb_data['RV_tot'][1:101] spot= np.array(spot) spot= spot.astype('Float64') spotfinal= np.concatenate((spot,spot,spot,spot),axis=0) #to organize the data into a measurement per day spots_info= [] for i in np.arange(0,399,4): spots_info.append(spotfinal[i]*1000) yerr= np.array(0.5*np.random.randn(len(spots_info))) y= np.array(spots_info+yerr) time= np.array(range(1,101)) pl.figure('data') pl.plot(time,y,'*') pl.close('data') print "Done." ##### Optimization ############################################################ print print "****************************************************" print "Running optimization algorithms" print "****************************************************" print kernel1= gedi.kernel.ExpSineSquared(8.0, 1.0, 25.0)+ \ gedi.kernel.WhiteNoise(1.0) kernel2= gedi.kernel.QuasiPeriodic(8.0, 1.0, 1.0, 25.0)+ \ gedi.kernel.WhiteNoise(1.0) kernel3= gedi.kernel.ExpSquared(8.0,1.0)+ \ gedi.kernel.WhiteNoise(1.0) likelihood1=gedi.kernel_likelihood.likelihood(kernel1,time,y,yerr) likelihood2=gedi.kernel_likelihood.likelihood(kernel2,time,y,yerr) likelihood3=gedi.kernel_likelihood.likelihood(kernel3,time,y,yerr) print "Initial kernel # log-likelihood" print kernel1, '#', likelihood1 print kernel2, '#', likelihood2 print kernel3, '#', likelihood3 print optimization1=gedi.kernel_optimization.committed_optimization(kernel1, \ time,y,yerr) #optimization1=gedi.kernel_optimization.single_optimization(kernel1, \ # time,y,yerr,method="altsda") optimization2=gedi.kernel_optimization.committed_optimization(kernel2, \ time,y,yerr) #optimization2=gedi.kernel_optimization.single_optimization(kernel2, \ # time,y,yerr,method="altsda") optimization3=gedi.kernel_optimization.committed_optimization(kernel3, \ time,y,yerr) i#optimization=gedi.kernel_optimization.single_optimization(kernel3, \ # time,y,yerr,method="altsda") print "Final kernel # log-likelihood" print optimization1[1], '#', optimization1[0] print optimization2[1], '#', optimization2[0] print optimization3[1], '#', optimization3[0] print print "Done." ##### Final Graphics ######################################################### print print "****************************************************" print "Preparing graphics" print "****************************************************" print xcalc=np.linspace(0,101,500) [mu1,std1]=gedi.kernel_likelihood.compute_kernel(optimization1[1], \ time,xcalc,y,yerr) [mu2,std2]=gedi.kernel_likelihood.compute_kernel(optimization2[1], \ time,xcalc,y,yerr) [mu3,std3]=gedi.kernel_likelihood.compute_kernel(optimization3[1], \ time,xcalc,y,yerr) pl.figure('fit1') #Graphics pl.fill_between(xcalc, mu1+std1, mu1-std1, color="k", alpha=0.1) pl.plot(xcalc, mu1+std1, color="k", alpha=1, lw=0.25) pl.plot(xcalc, mu1-std1, color="k", alpha=1, lw=0.25) pl.plot(xcalc, mu1, color="k", alpha=1, lw=0.5) pl.errorbar(time, y, yerr=yerr, fmt=".k", capsize=0) pl.xlabel("$time (days)$") pl.ylabel("$RV (m/s)$") pl.xlim((0,101)) pl.savefig("fit_1spot_ess.png") pl.close('fit1') pl.figure('fit2') #Graphics pl.fill_between(xcalc, mu2+std2, mu2-std2, color="k", alpha=0.1) pl.plot(xcalc, mu2+std2, color="k", alpha=1, lw=0.25) pl.plot(xcalc, mu2-std2, color="k", alpha=1, lw=0.25) pl.plot(xcalc, mu2, color="k", alpha=1, lw=0.5) pl.errorbar(time, y, yerr=yerr, fmt=".k", capsize=0) pl.xlabel("$time (days)$") pl.ylabel("$RV (m/s)$") pl.xlim((0,101)) pl.savefig("fit_1spot_qp.png") pl.close('fit2') pl.figure('fit3') #Graphics pl.fill_between(xcalc, mu3+std3, mu3-std3, color="k", alpha=0.1) pl.plot(xcalc, mu3+std3, color="k", alpha=1, lw=0.25) pl.plot(xcalc, mu3-std3, color="k", alpha=1, lw=0.25) pl.plot(xcalc, mu3, color="k", alpha=1, lw=0.5) pl.errorbar(time, y, yerr=yerr, fmt=".k", capsize=0) pl.xlabel("$time (days)$") pl.ylabel("$RV (m/s)$") pl.xlim((0,101)) pl.savefig("fit_1spot_es.png") pl.close('fit3') print "Done."
mit
cjubb39/SNSS
algo_src/serialize.py
1
4398
import operator import sys from random import sample import networkx as nx import numpy as np from sklearn import svm, cross_validation, grid_search, metrics from math import ceil import scipy from collections import defaultdict import pickle def hits(G,max_iter=100,tol=1.0e-6): M=nx.adjacency_matrix(G,nodelist=G.nodes()) (n,m)=M.shape # should be square A=M.T*M # authority matrix x=scipy.ones((n,1))/n # initial guess # power iteration on authority matrix i=0 while True: xlast=x x=A*x x=x/x.sum() # check convergence, l1 norm err=scipy.absolute(x-xlast).sum() if err < tol: break if i>max_iter: raise NetworkXError(\ "HITS: power iteration failed to converge in %d iterations."%(i+1)) i+=1 a=np.asarray(x).flatten() h=np.asarray(M*a).flatten() hubs=dict(zip(G.nodes(),h/h.sum())) authorities=dict(zip(G.nodes(),a/a.sum())) return hubs,authorities def calc_ratio(G, node): in_count = 0.0 out_count = 0.0 for u,v,d in G.in_edges_iter(node, data=True): in_count += d['weight'] for u,v,d in G.out_edges_iter(node, data=True): out_count += d['weight'] return in_count / out_count if out_count != 0.0 else 0.0 def normalize_feature(feature_dict): mean = np.mean(feature_dict.values()) std_dev = np.std(feature_dict.values()) return {k: (v - mean) / std_dev for k, v in feature_dict.iteritems()} if __name__ == "__main__": known_input = sys.argv[1] goal_input = sys.argv[2] kernel = sys.argv[3] params_in_name = sys.argv[4] random_input_data_name = sys.argv[5] output_data_name = sys.argv[6] best_params = pickle.load(open(params_in_name, 'r')) retweet_graph = nx.DiGraph() nx.read_weighted_edgelist('data/higgs-retweet_network.edgelist', create_using=retweet_graph) reply_graph = nx.DiGraph() nx.read_weighted_edgelist('data/higgs-reply_network.edgelist', create_using=reply_graph) mention_graph = nx.DiGraph() nx.read_weighted_edgelist('data/higgs-mention_network.edgelist', create_using=mention_graph) graphs = [retweet_graph, reply_graph, mention_graph] # load random N training_set = [] with open(random_input_data_name, 'r') as f: for line in f: training_set.append(line.split()) # calculate h/a for each graph features = [] for g in graphs: hubs, authorities = hits(g) hubs = defaultdict(lambda: 0.0, hubs) authorities = defaultdict(lambda: 0.0, authorities) # features.append(hubs) features.append(authorities) # normalize feature data features = [normalize_feature(x) for x in features] # get set of unique nodes in all graphs training_nodes = set(map(lambda x: x[0], training_set)) # sample "guess" nodes from social data all_nodes = set(retweet_graph.nodes()) | set(reply_graph.nodes()) | set(mention_graph.nodes()) testing_nodes = all_nodes - training_nodes # convert features to dictionary features = {node:map(lambda f: f[node] if node in f else 0.0, features) for node in all_nodes} # populate training training_X = np.empty([len(training_nodes), len(features.values()[0])]) training_Y = np.empty(len(training_nodes)) empty_features = [0.0] * len(features.values()[0]) for index, n_v_tuple in enumerate(training_set): node = n_v_tuple[0] value = n_v_tuple[1] training_X[index] = features[node] if node in features else empty_features training_Y[index] = value # populate testing X = np.zeros([len(testing_nodes), len(features.values()[0])]) ordered_test_nodes = [None] * len(testing_nodes) for index, node in enumerate(testing_nodes): X[index] = features[node] ordered_test_nodes[index] = node clf = svm.SVR(**(best_params[kernel])) clf.fit(training_X, training_Y) predictions = clf.predict(X) # sort by predicted edges score with open(output_data_name, 'w+') as f: count = 0 for i,p in sorted(enumerate(predictions), key=operator.itemgetter(1), reverse=True): if count >= int(goal_input): break f.write(str(ordered_test_nodes[i])) f.write(' ') f.write(str(p)) f.write("\n") count += 1
gpl-3.0
PYPIT/COS_REDUX
cosredux/science.py
1
7185
""" Utility routines """ from __future__ import (print_function, absolute_import, division, unicode_literals) import numpy as np import os import pdb from matplotlib import pyplot as plt from astropy.table import Table from xastropy.xutils import xdebug as xdb def set_extraction_region(obj_tr, segm, coadd_corrtag_woPHA_file, apert=25., offs1=0., offs2=0., check=False): """ Defines extraction region Parameters ---------- obj_tr : float, int object trace segm : str segment apert : float, int, optional coadd_corrtag_woPHA_file : str For wavelength info offs1 : float, int, optional offs2 : float, int, optional left and right offsets from the aperture could be used for FUVB check : bool, optional show extraction region #ywidth : float, optional Returns ------- ex_region : dict """ # Load data = Table.read(coadd_corrtag_woPHA_file) wave = data['WAVELENGTH'].data # Set if segm == 'FUVA': x1=1200. x2=max(wave) elif segm == 'FUVB': x1=900. x2=max(wave) ex_region = {} ex_region['extraction'] = [x1, x2, obj_tr - apert+offs1, obj_tr + apert+offs2] # Write and Return #outfile = coadd_corrtag_woPHA_file.replace('.fits', '_exregion.json') if check: yfull = data['YFULL'] plt.scatter(wave,yfull,s=1) # Region x1,x2,y1,y2 = ex_region['extraction'] plt.plot([x1,x2,x2,x1,x1],[y1,y1,y2,y2,y1],'b',linewidth=3.3) # Axes plt.xlim(x1-10,x2+10) if segm == 'FUVB': plt.xlim(50.,x2+10) plt.ylim(min(yfull[wave > x1]),max(yfull[wave > x1])) plt.show() # Return return ex_region def coadd_exposures(x1d_files, segm, outfile, bin=None): """ Coadd exposures (step 9 of the procedure) Parameters ---------- x1d_files : list of str segm : str outfile : str file with coadded exposures bin : 2, 3, None bin the output spectrum Returns ------- """ from scipy.interpolate import interp1d if segm == 'FUVA': spec_row = 0 subseg = 'a' elif segm == 'FUVB': spec_row = 1 subseg = 'b' # Load xtbls = [] dark_files = [] for x1d_file in x1d_files: dark_files.append(x1d_file.replace('_x1d.fits','_{:s}_bkgd.fits'.format(subseg))) if not os.path.isfile(dark_files[-1]): print("No background file named {:s}".format(dark_files[-1])) raise IOError("Make it with dark_to_exposures()") # xtbl = Table.read(x1d_file) xtbls.append(xtbl[spec_row:spec_row+1]) # Grab one wavelength array wave = xtbls[0]['WAVELENGTH'][0,:].data # Sum exposure time total_time = np.zeros_like(wave) for xtbl in xtbls: total_time += xtbl['DQ_WGT'][0,:]*xtbl['EXPTIME'] # Find DQmin for all exposures -- Why are we doing this step?? dqmin = np.ones_like(wave).astype(int) * 99999 for xtbl in xtbls: # Reset DQ dq = xtbl['DQ'][0,:].data reset_1024 = dq == 1024 dq[reset_1024] = 2 dqmin = np.minimum(dq, dqmin) # Find DQ_WGT max for all exposures DQWmax = np.zeros_like(wave) for xtbl in xtbls: # Reset DQ dqw = xtbl['DQ_WGT'][0,:].data DQWmax = np.maximum(dqw, DQWmax) # #################### # CALIBRATION wave_calib, calib = [], [] for xtbl in xtbls: gddq = (xtbl['DQ'] == 0) & (xtbl['FLUX'] > 0) # Append wave_calib.append(xtbl['WAVELENGTH'][gddq].data.flatten()) calib.append( (xtbl['NET'][gddq] / xtbl['FLUX'][gddq]).data) # arrays wave_calib = np.concatenate(wave_calib) calib = np.concatenate(calib) # sort srt = np.argsort(wave_calib) wave_calib = wave_calib[srt] calib = calib[srt] # Cut down gdwv = wave_calib < 2100. # Spline sens_func = interp1d(wave_calib[gdwv], calib[gdwv], bounds_error=False, fill_value=0.) # cubic behaves badly # Total counts in science and background total_counts = np.zeros_like(wave) total_dark = np.zeros_like(wave) for ss, xtbl in enumerate(xtbls): # Science dqw = xtbl['DQ_WGT'][0,:].data total_counts += dqw * xtbl['GCOUNTS'][0,:] # Dark bkgd = Table.read(dark_files[ss]) total_dark += dqw * bkgd['DARK'].data # Bin if bin is not None: # Check if bin not in [2,3]: raise IOError("Only ready for binning by 2 or 3 channels") # Ugly for loop nchannel = len(total_counts) new_tot_counts, new_tot_dark, new_tot_time, new_wave, new_dqmin, new_DQW = [], [], [], [], [], [] for kk in np.arange(0, nchannel, bin): # Simple stuff sums new_tot_counts.append(np.sum(total_counts[kk:kk+bin])) new_tot_dark.append(np.sum(total_dark[kk:kk+bin])) new_tot_time.append(np.sum(total_time[kk:kk+bin])) new_dqmin.append(np.min(dqmin[kk:kk+bin])) new_DQW.append(np.max(DQWmax[kk:kk+bin])) # Wavelength new_wave.append(np.mean(wave[kk:kk+bin])) # Turn into arrays new_tot_counts = np.array(new_tot_counts) new_tot_dark = np.array(new_tot_dark) new_tot_time = np.array(new_tot_time) new_wave = np.array(new_wave) else: new_tot_counts, new_tot_dark, new_tot_time, new_wave = total_counts, total_dark, total_time, wave new_dqmin, new_DQW = dqmin, DQWmax # Flux array flux = np.zeros_like(new_tot_time) calib = sens_func(new_wave) gd_time_sens = (new_tot_time > 0.) & (calib > 0.) flux[np.where(gd_time_sens)[0]] = (new_tot_counts[gd_time_sens]-new_tot_dark[gd_time_sens]) / (calib[gd_time_sens] * new_tot_time[gd_time_sens]) # Simple error estimate error = np.zeros_like(new_tot_time) gd_error = (new_tot_time > 0.) & (calib > 0.) & (new_tot_counts > 0) error[np.where(gd_error)[0]] = np.sqrt(new_tot_counts[gd_error]) / (calib[gd_error] * new_tot_time[gd_error]) # Final spectral information coadd = Table() coadd['wave'] = new_wave coadd['flux'] = flux coadd['error'] = error coadd['counts'] = new_tot_counts coadd['bgkd'] = new_tot_dark coadd['eff_time'] = new_tot_time coadd['calib'] = calib coadd['DQ_MIN'] = new_dqmin coadd['DQW_max'] = new_DQW # Write coadd.write(outfile, overwrite=True) print("Wrote {:s}".format(outfile)) def combinespectfiles(spfile_a, spfile_b, file_ab): """ Coadd two spectra, and write output in a file Parameters ---------- spfile_a : str spfile_b : str .fits files with spectra file_ab : str output .fits file with combined spectra Returns ------- """ from linetools.spectra import io as tio from linetools.spectra import utils as spltu file_a = tio.readspec(spfile_a) file_b = tio.readspec(spfile_b) spliced_sp=spltu.splice_two(file_b, file_a, chk_units=False) spliced_sp.write(file_ab) #print("Wrote {:s}".format(file_ab))
bsd-2-clause
silky/sms-tools
software/models_interface/sprModel_function.py
2
3433
# function to call the main analysis/synthesis functions in software/models/sprModel.py import numpy as np import matplotlib.pyplot as plt import os, sys from scipy.signal import get_window sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) import utilFunctions as UF import sprModel as SPR import stft as STFT def main(inputFile='../../sounds/bendir.wav', window='hamming', M=2001, N=2048, t=-80, minSineDur=0.02, maxnSines=150, freqDevOffset=10, freqDevSlope=0.001): """ inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size N: fft size (power of two, bigger or equal than M) t: magnitude threshold of spectral peaks minSineDur: minimum duration of sinusoidal tracks maxnSines: maximum number of parallel sinusoids freqDevOffset: frequency deviation allowed in the sinusoids from frame to frame at frequency 0 freqDevSlope: slope of the frequency deviation, higher frequencies have bigger deviation """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # read input sound (fs, x) = UF.wavread(inputFile) # compute analysis window w = get_window(window, M) # perform sinusoidal plus residual analysis tfreq, tmag, tphase, xr = SPR.sprModelAnal(x, fs, w, N, H, t, minSineDur, maxnSines, freqDevOffset, freqDevSlope) # compute spectrogram of residual mXr, pXr = STFT.stftAnal(xr, fs, w, N, H) # sum sinusoids and residual y, ys = SPR.sprModelSynth(tfreq, tmag, tphase, xr, Ns, H, fs) # output sound file (monophonic with sampling rate of 44100) outputFileSines = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_sprModel_sines.wav' outputFileResidual = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_sprModel_residual.wav' outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_sprModel.wav' # write sounds files for sinusoidal, residual, and the sum UF.wavwrite(ys, fs, outputFileSines) UF.wavwrite(xr, fs, outputFileResidual) UF.wavwrite(y, fs, outputFile) # create figure to show plots plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 5000.0 # plot the input sound plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') # plot the magnitude spectrogram of residual plt.subplot(3,1,2) maxplotbin = int(N*maxplotfreq/fs) numFrames = int(mXr[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = np.arange(maxplotbin+1)*float(fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mXr[:,:maxplotbin+1])) plt.autoscale(tight=True) # plot the sinusoidal frequencies on top of the residual spectrogram if (tfreq.shape[1] > 0): tracks = tfreq*np.less(tfreq, maxplotfreq) tracks[tracks<=0] = np.nan plt.plot(frmTime, tracks, color='k') plt.title('sinusoidal tracks + residual spectrogram') plt.autoscale(tight=True) # plot the output sound plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show(block=False) if __name__ == "__main__": main()
agpl-3.0
trankmichael/scikit-learn
examples/model_selection/plot_learning_curve.py
250
4171
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.learning_curve import learning_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and traning learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = cross_validation.ShuffleSplit(digits.data.shape[0], n_iter=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
massmutual/scikit-learn
examples/linear_model/plot_sparse_recovery.py
243
7461
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print(__doc__) # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD 3 clause import warnings import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn.linear_model import (RandomizedLasso, lasso_stability_path, LassoLarsCV) from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh from sklearn.utils import ConvergenceWarning def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot(np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant))) return np.max(np.abs(projector).sum(axis=1)) for conditioning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditioned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditioning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) plt.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = plt.ylim() plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') plt.ylabel('Stability score: proportion of times selected') plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) plt.axis('tight') plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: # Stop the user warnings outputs- they are not necessary for the example # as it is specifically set up to be challenging. with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) plt.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) plt.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") plt.xlabel("Features") plt.ylabel("Score") # Plot only the 100 first coefficients plt.xlim(0, 100) plt.legend(loc='best') plt.title('Feature selection scores - Mutual incoherence: %.1f' % mi) plt.show()
bsd-3-clause
skavulya/spark-tk
regression-tests/sparktkregtests/testcases/dicom/dicom_filter_test.py
13
10428
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """tests dicom.filter functionality""" import unittest from sparktkregtests.lib import sparktk_test import os import dicom import numpy import random from lxml import etree import datetime class DicomFilterTest(sparktk_test.SparkTKTestCase): def setUp(self): """import dicom data for testing""" super(DicomFilterTest, self).setUp() self.dataset = self.get_file("dicom_uncompressed") self.dicom = self.context.dicom.import_dcm(self.dataset) self.xml_directory = "../../../datasets/dicom/dicom_uncompressed/xml/" self.image_directory = "../../../datasets/dicom/dicom_uncompressed/imagedata/" self.query = ".//DicomAttribute[@keyword='KEYWORD']/Value/text()" self.count = self.dicom.metadata.count() def test_filter_one_key(self): """test filter with basic filter function""" # extract a key-value pair from the first row metadata for our use first_row = self.dicom.metadata.to_pandas()["metadata"][0] xml = etree.fromstring(first_row.encode("ascii", "ignore")) patient_id = xml.xpath(self.query.replace("KEYWORD", "PatientID"))[0] # ask dicom to filter using our key-value filter function self.dicom.filter(self._filter_key_values({ "PatientID" : patient_id })) # we generate our own result to compare to dicom's expected_result = self._filter({ "PatientID" : patient_id }) # ensure results match self._compare_dicom_with_expected_result(expected_result) def test_filter_multi_key(self): """test filter with basic filter function mult keyval pairs""" # first we extract key-value pairs from the first row's metadata # for our own use to generate a key-val dictionary first_row = self.dicom.metadata.to_pandas()["metadata"][0] xml = etree.fromstring(first_row.encode("ascii", "ignore")) patient_id = xml.xpath(self.query.replace("KEYWORD", "PatientID"))[0] sopi_id = xml.xpath(self.query.replace("KEYWORD", "SOPInstanceUID"))[0] key_val = { "PatientID" : patient_id, "SOPInstanceUID" : sopi_id } # we use our filter function and ask dicom to filter self.dicom.filter(self._filter_key_values(key_val)) # here we generate our own result expected_result = self._filter(key_val) # compare expected result to what dicom gave us self._compare_dicom_with_expected_result(expected_result) def test_filter_zero_matching_records(self): """test filter with filter function returns none""" # we give dicom a filter function which filters by # key-value and give it a key-value pair which will # return 0 records pandas = self.dicom.metadata.to_pandas() self.dicom.filter(self._filter_key_values({ "PatientID" : -6 })) self.assertEqual(0, self.dicom.metadata.count()) def test_filter_nothing(self): """test filter with filter function filters nothing""" # this filter function will return all records self.dicom.filter(self._filter_nothing()) self.assertEqual(self.dicom.metadata.count(), self.count) def test_filter_everything(self): """test filter function filter everything""" # filter_everything filter out all of the records self.dicom.filter(self._filter_everything()) self.assertEqual(0, self.dicom.metadata.count()) def test_filter_timestamp_range(self): """test filter with timestamp range function""" # we will test filter with a function which takes a begin and end # date and returns all records with a study date between them # we will set begin date to 15 years ago and end date to 5 years ago begin_date = datetime.datetime.now() - datetime.timedelta(days=15*365) end_date = datetime.datetime.now() - datetime.timedelta(days=5*365) # here we will generate our own result by filtering for records # which meet our criteria expected_result = [] pandas = self.dicom.metadata.to_pandas() # iterate through the rows and append all records with # a study date between our begin and end date for index, row in pandas.iterrows(): ascii_row = row["metadata"].encode("ascii", "ignore") xml_root = etree.fromstring(ascii_row) study_date = xml_root.xpath(self.query.replace("KEYWORD", "StudyDate"))[0] datetime_study_date = datetime.datetime.strptime(study_date, "%Y%m%d") if datetime_study_date > begin_date and datetime_study_date < end_date: expected_result.append(ascii_row) # now we ask dicom to use our filter function below to return # all records with a StudyDate within our specified range self.dicom.filter(self._filter_timestamp_range(begin_date, end_date)) # ensure that expected result matches actual self._compare_dicom_with_expected_result(expected_result) def test_return_type_str(self): """test filter with function that returns strings""" self.dicom.filter(self._filter_return_string()) self.assertEqual(3, self.dicom.metadata.count()) def test_return_type_int(self): """test filter wtih function that returns ints""" self.dicom.filter(self._filter_return_int()) self.assertEqual(3, self.dicom.metadata.count()) def test_filter_has_bugs(self): """test filter with a broken filter function""" with self.assertRaisesRegexp(Exception, "this filter is broken!"): self.dicom.filter(self._filter_has_bugs()) self.dicom.metadata.count() def test_filter_invalid_param(self): """test filter with an invalid param type""" # should fail because filter takes a function not a keyvalue pair with self.assertRaisesRegexp(Exception, "'dict' object is not callable"): self.dicom.filter({ "PatientID" : "bla" }) self.dicom.metadata.count() def test_filter_invalid_function(self): """test filter with function which takes more than one param""" with self.assertRaisesRegexp(Exception, "takes exactly 2 arguments"): self.dicom.filter(self._filter_invalid()) self.dicom.metadata.count() def _filter_key_values(self, key_val): """filter by key-value""" def _filter_key_value(row): metadata = row["metadata"].encode("ascii", "ignore") xml_root = etree.fromstring(metadata) for key in key_val: xml_element_value = xml_root.xpath(".//DicomAttribute[@keyword='" + key + "']/Value/text()")[0] if xml_element_value != key_val[key]: return False else: return True return _filter_key_value def _filter_nothing(self): """returns all records""" def _filter_nothing(row): return True return _filter_nothing def _filter_everything(self): """returns no records""" def _filter_everything(row): return False return _filter_everything def _filter_timestamp_range(self, begin_date, end_date): """return records within studydate date range""" def _filter_timestamp_range(row): metadata = row["metadata"].encode("ascii", "ignore") xml_root = etree.fromstring(metadata) timestamp = xml_root.xpath(".//DicomAttribute[@keyword='StudyDate']/Value/text()")[0] timestamp = datetime.datetime.strptime(timestamp, "%Y%m%d") if begin_date < timestamp and timestamp < end_date: return True else: return False return _filter_timestamp_range def _filter_return_string(self): """filter function which returns str""" def _filter_return_string(row): return "True" return _filter_return_string def _filter_return_int(self): """filter function returns int""" def _filter_return_int(row): return -1 return _filter_return_int def _filter_has_bugs(self): """broken filter function""" def _filter_has_bugs(row): raise Exception("this filter is broken!") return _filter_has_bugs def _filter_invalid(self): """filter function takes 2 params""" # filter is invalid because it takes # 2 parameters def _filter_invalid(index, row): return True return _filter_invalid def _filter(self, keywords): """filter records by key value pair""" # here we are generating the expected result matching_records = [] pandas_metadata = self.dicom.metadata.to_pandas()["metadata"] for row in pandas_metadata: ascii_xml = row.encode("ascii", "ignore") xml = etree.fromstring(row.encode("ascii", "ignore")) for keyword in keywords: this_row_keyword_value = xml.xpath(self.query.replace("KEYWORD", keyword)) if this_row_keyword_value == keyword: matching_records.append(ascii_xml) return matching_records def _compare_dicom_with_expected_result(self, expected_result): """compare expected result with actual result""" pandas_result = self.dicom.metadata.to_pandas()["metadata"] for expected, actual in zip(expected_result, pandas_result): actual_ascii = actual.encode("ascii", "ignore") self.assertEqual(actual_ascii, expected) if __name__ == "__main__": unittest.main()
apache-2.0
mjgrav2001/scikit-learn
sklearn/utils/extmath.py
142
21102
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function out: array-like, shape: (M, N), optional: Preallocated output array. Returns ------- out: array, shape (M, N) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = check_array(X, dtype=np.float) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count): """Calculate an average mean update and a Youngs and Cramer variance update. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update old_mean : array-like, shape: (n_features,) old_variance : array-like, shape: (n_features,) old_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 """ new_sum = X.sum(axis=0) new_variance = X.var(axis=0) * X.shape[0] old_sum = old_mean * old_sample_count n_samples = X.shape[0] updated_sample_count = old_sample_count + n_samples partial_variance = old_sample_count / (n_samples * updated_sample_count) * ( n_samples / old_sample_count * old_sum - new_sum) ** 2 unnormalized_variance = old_variance * old_sample_count + new_variance + \ partial_variance return ((old_sum + new_sum) / updated_sample_count, unnormalized_variance / updated_sample_count, updated_sample_count) def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
rlowrance/re-avm
predict.py
1
5949
'''predict using many fitted models on the real estate data INVOCATION python fit.py DATA MODEL TRANSACTIONMONTH NEIGHBORHOOD where SAMPLES in {train, all} specifies which data in Working/samples2 to use MODEL in {en, gb, rf} specified which model to use TRANSACTIONMONTH like YYYYMM specfies the last month of training data NEIGHBORHOOD in {all, city_name} specifies whether to train a model on all cities or just the specified city which will fit all observations in the MONTH for all fitted models of kind MODEL INPUTS WORKING/samples2/train.csv or WORKING/samples2/all.csv WORKING/fit/DATA-MODEL-{TRANSACTIONMONTH - 1}-NEIGHBHOOD/*.pickle the fitted models OUTPUTS WORKING/predict[-item]/SAMPLES-MODEL-TRANSACTIONMONTH-NEIGHBORHOOD/predictions.pickle a dict ''' from __future__ import division import argparse import collections import cPickle as pickle import datetime import itertools import numpy as np import os import pandas as pd import pdb from pprint import pprint import random import sklearn import sys import time import arg_type import AVM from Bunch import Bunch from columns_contain import columns_contain import dirutility from Features import Features import HPs import layout_transactions from Logger import Logger from Month import Month from Path import Path from Report import Report from SampleSelector import SampleSelector from valavmtypes import ResultKeyEn, ResultKeyGbr, ResultKeyRfr, ResultValue from Timer import Timer # from TimeSeriesCV import TimeSeriesCV cc = columns_contain def make_control(argv): 'return a Bunch' print argv parser = argparse.ArgumentParser() parser.add_argument('invocation') parser.add_argument('samples', choices=['all', 'train']) parser.add_argument('model', choices=['en', 'gb', 'rf']) parser.add_argument('transaction_month') parser.add_argument('neighborhood') parser.add_argument('--test', action='store_true') parser.add_argument('--trace', action='store_true') arg = parser.parse_args(argv) arg.me = arg.invocation.split('.')[0] if arg.trace: pdb.set_trace() # convert arg.neighborhood into arg.all and arg.city arg.city = ( None if arg.neighborhood == 'all' else arg.neighborhood.replace('_', ' ') ) random_seed = 123 random.seed(random_seed) prior_month = Month(arg.transaction_month).decrement().as_str() in_dir = '%s-%s-%s-%s' % (arg.samples, arg.model, prior_month, arg.neighborhood) out_dir = '%s-%s-%s-%s' % (arg.samples, arg.model, arg.transaction_month, arg.neighborhood) dir_working = Path().dir_working() output_dir = ( os.path.join(dir_working, arg.me + '-test', out_dir, '') if arg.test else os.path.join(dir_working, arg.me, out_dir, '') ) dirutility.assure_exists(output_dir) return Bunch( arg=arg, path_in_fitted=os.path.join(dir_working, 'fit', in_dir, ''), path_in_samples=os.path.join(dir_working, 'samples2', arg.samples + '.csv'), path_out_file=os.path.join(output_dir, 'predictions.pickle'), path_out_log=os.path.join(output_dir, '0log.txt'), random_seed=random_seed, timer=Timer(), ) def do_work(control): 'write predictions to output csv file' samples = pd.read_csv( control.path_in_samples, nrows=10 if control.arg.test else None, usecols=None, # TODO: change to columns we actually use low_memory=False, ) apns = samples[layout_transactions.apn] sale_dates = samples[layout_transactions.sale_date] print 'read %d rows of samples from file %s' % (len(samples), control.path_in_samples) # iterate over the fitted models hps_predictions = {} for root, dirnames, filenames in os.walk(control.path_in_fitted): assert len(dirnames) == 0, dirnames print root, len(filenames) for filename in filenames: suffix_we_process = '.pickle' if not filename.endswith(suffix_we_process): print 'skipping file without a fitted model: %s' % filename continue hps_string = filename[:-len(suffix_we_process)] hps = HPs.from_str(hps_string) path_to_file = os.path.join(root, filename) with open(path_to_file, 'r') as f: ok, fitted_model = pickle.load(f) if ok: print 'predicting samples using fitted model %s' % filename X, y = Features().extract_and_transform(samples, hps['units_X'], hps['units_y']) predictions = fitted_model.predict(X) assert len(predictions) == len(samples) assert hps_string not in hps_predictions hps_predictions[hps_string] = predictions else: print 'not not predict samples using fitted model %s; reason: %s' % ( filename, fitted_model, # an error message ) # have all the predictions for all filenames (= a set of hyperparameters) print 'walked all %d files' % len(filenames) out = { 'apns': apns, 'sale_dates': sale_dates, 'hps_predictions': hps_predictions, } with open(control.path_out_file, 'w') as f: pickle.dump(out, f) print 'wr0te results to %s' % control.path_out_file return def main(argv): control = make_control(argv) sys.stdout = Logger(control.path_out_log) # now print statements also write to the log file print control lap = control.timer.lap do_work(control) lap('work completed') if control.arg.test: print 'DISCARD OUTPUT: test' print control print 'done' return if __name__ == '__main__': if False: # avoid pyflakes warnings pdb.set_trace() pprint() pd.DataFrame() np.array() main(sys.argv)
bsd-3-clause
bjlittle/iris
docs/gallery_code/oceanography/plot_orca_projection.py
4
1647
""" Tri-Polar Grid Projected Plotting ================================= This example demonstrates cell plots of data on the semi-structured ORCA2 model grid. First, the data is projected into the PlateCarree coordinate reference system. Second four pcolormesh plots are created from this projected dataset, using different projections for the output image. """ import cartopy.crs as ccrs import matplotlib.pyplot as plt import iris import iris.analysis.cartography import iris.plot as iplt import iris.quickplot as qplt def main(): # Load data filepath = iris.sample_data_path("orca2_votemper.nc") cube = iris.load_cube(filepath) # Choose plot projections projections = {} projections["Mollweide"] = ccrs.Mollweide() projections["PlateCarree"] = ccrs.PlateCarree() projections["NorthPolarStereo"] = ccrs.NorthPolarStereo() projections["Orthographic"] = ccrs.Orthographic( central_longitude=-90, central_latitude=45 ) pcarree = projections["PlateCarree"] # Transform cube to target projection new_cube, extent = iris.analysis.cartography.project( cube, pcarree, nx=400, ny=200 ) # Plot data in each projection for name in sorted(projections): fig = plt.figure() fig.suptitle("ORCA2 Data Projected to {}".format(name)) # Set up axes and title ax = plt.subplot(projection=projections[name]) # Set limits ax.set_global() # plot with Iris quickplot pcolormesh qplt.pcolormesh(new_cube) # Draw coastlines ax.coastlines() iplt.show() if __name__ == "__main__": main()
lgpl-3.0
gxxjjj/QuantEcon.py
examples/3dvec.py
7
1491
""" QE by Tom Sargent and John Stachurski. Illustrates the span of two vectors in R^3. """ import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import interp2d fig = plt.figure() ax = fig.gca(projection='3d') x_min, x_max = -5, 5 y_min, y_max = -5, 5 alpha, beta = 0.2, 0.1 ax.set_xlim((x_min, x_max)) ax.set_ylim((x_min, x_max)) ax.set_zlim((x_min, x_max)) # Axes ax.set_xticks((0,)) ax.set_yticks((0,)) ax.set_zticks((0,)) gs = 3 z = np.linspace(x_min, x_max, gs) x = np.zeros(gs) y = np.zeros(gs) ax.plot(x, y, z, 'k-', lw=2, alpha=0.5) ax.plot(z, x, y, 'k-', lw=2, alpha=0.5) ax.plot(y, z, x, 'k-', lw=2, alpha=0.5) # Fixed linear function, to generate a plane def f(x, y): return alpha * x + beta * y # Vector locations, by coordinate x_coords = np.array((3, 3)) y_coords = np.array((4, -4)) z = f(x_coords, y_coords) for i in (0, 1): ax.text(x_coords[i], y_coords[i], z[i], r'$a_{}$'.format(i+1), fontsize=14) # Lines to vectors for i in (0, 1): x = (0, x_coords[i]) y = (0, y_coords[i]) z = (0, f(x_coords[i], y_coords[i])) ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.6) # Draw the plane grid_size = 20 xr2 = np.linspace(x_min, x_max, grid_size) yr2 = np.linspace(y_min, y_max, grid_size) x2, y2 = np.meshgrid(xr2, yr2) z2 = f(x2, y2) ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=True, alpha=0.2) plt.show()
bsd-3-clause
DistrictDataLabs/yellowbrick
yellowbrick/text/base.py
1
4140
# yellowbrick.text.base # Base classes for text feature visualizers and feature selection tools. # # Author: Rebecca Bilbro # Created: Sat Jan 21 09:37:01 2017 -0500 # # Copyright (C) 2017 The scikit-yb developers # For license information, see LICENSE.txt # # ID: base.py [75d9b20] [email protected] $ """ Base classes for text feature visualizers and text feature selection tools. """ ########################################################################## ## Imports ########################################################################## from yellowbrick.base import Visualizer from sklearn.base import TransformerMixin ########################################################################## ## Text Visualizers ########################################################################## class TextVisualizer(Visualizer, TransformerMixin): """ Base class for text feature visualization to investigate documents individually or as a full corpus. TextVisualizers are used after a text corpus has been transformed in some way (e.g. normalized through stemming or lemmatization, via stopwords removal, or through vectorization). Thus a TextVisualizer is itself a transformer and can be used in a Scikit-Learn Pipeline to perform automatic visual analysis during build. Accepts as input a DataFrame or Numpy array. """ def __init__(self, ax=None, fig=None, **kwargs): """ These parameters can be influenced later on in the visualization process, but can and should be set as early as possible. Parameters ---------- ax : axes the axis to plot the figure on fig : matplotlib Figure, default: None The figure to plot the Visualizer on. If None is passed in the current plot will be used (or generated if required). kwargs : dict Pass generic arguments to the drawing method """ super(TextVisualizer, self).__init__(ax=ax, fig=fig, **kwargs) def fit(self, X, y=None, **fit_params): """ This method performs preliminary computations in order to set up the figure, compute statistics, or perform other analyses. It can also call drawing methods in order to set up various non-instance-related figure elements. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values fit_params: dict keyword arguments for parameter fitting. Returns ------- self : instance Returns the instance of the transformer/visualizer """ return self def transform(self, X): """ Primarily a pass-through to ensure that the text visualizer will work in a pipeline setting. This method can also call drawing methods in order to ensure that the visualization is constructed. Returns ------- X : numpy array This method must return a numpy array with the same shape as X. """ return X def fit_transform_show(self, X, y=None, **kwargs): """ Fit to data, transform it, then visualize it. Fits the text visualizer to X and y with optional parameters by passing in all of kwargs, then calls show with the same kwargs. This method must return the result of the transform method. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values kwargs : dict Pass generic arguments to the show method Returns ------- X : numpy array This method must return a numpy array with the same shape as X. """ Xp = self.fit(X, y, **kwargs).transform(X) self.show(**kwargs) return Xp
apache-2.0
rohanp/scikit-learn
sklearn/model_selection/tests/test_search.py
20
30855
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneLabelOut from sklearn.model_selection import LeavePLabelOut from sklearn.model_selection import LabelKFold from sklearn.model_selection import LabelShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler # TODO Import from sklearn.exceptions once merged. from sklearn.base import ChangedBehaviorWarning from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_labels(): # Check if ValueError (when labels is None) propagates to GridSearchCV # And also check if labels is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) labels = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} label_cvs = [LeaveOneLabelOut(), LeavePLabelOut(2), LabelKFold(), LabelShuffleSplit()] for cv in label_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The labels parameter should not be None", gs.fit, X, y) gs.fit(X, y, labels) non_label_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_label_cvs: print(cv) gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv.split(X, y): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
igabr/Metis_Projects_Chicago_2017
03-Project-McNulty/show_cnf_matrix.py
1
3303
#With great thanks to https://notmatthancock.github.io/2015/10/28/confusion-matrix.html def show_confusion_matrix(C,class_labels=['PAID','CHARGED OFF']): """ C: ndarray, shape (2,2) as given by scikit-learn confusion_matrix function class_labels: list of strings, default simply labels 0 and 1. Draws confusion matrix with associated metrics. """ import matplotlib.pyplot as plt import numpy as np assert C.shape == (2,2), "Confusion matrix should be from binary classification only." # true negative, false positive, etc... tn = C[0,0]; fp = C[0,1]; fn = C[1,0]; tp = C[1,1]; NP = fn+tp # Num positive examples NN = tn+fp # Num negative examples N = NP+NN fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111) ax.imshow(C, interpolation='nearest', cmap=plt.cm.gray) # Draw the grid boxes ax.set_xlim(-0.5,2.5) ax.set_ylim(2.5,-0.5) ax.plot([-0.5,2.5],[0.5,0.5], '-k', lw=2) ax.plot([-0.5,2.5],[1.5,1.5], '-k', lw=2) ax.plot([0.5,0.5],[-0.5,2.5], '-k', lw=2) ax.plot([1.5,1.5],[-0.5,2.5], '-k', lw=2) # Set xlabels ax.set_xlabel('Predicted Label', fontsize=16) ax.set_xticks([0,1,2]) ax.set_xticklabels(class_labels + ['']) ax.xaxis.set_label_position('top') ax.xaxis.tick_top() # These coordinate might require some tinkering. Ditto for y, below. ax.xaxis.set_label_coords(0.34,1.06) # Set ylabels ax.set_ylabel('True Label', fontsize=16, rotation=90) ax.set_yticklabels(class_labels + [''],rotation=90) ax.set_yticks([0,1,2]) ax.yaxis.set_label_coords(-0.09,0.65) # Fill in initial metrics: tp, tn, etc... ax.text(0,0, 'True Neg: %d\n(Num Neg: %d)'%(tn,NN), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(0,1, 'False Neg: %d'%fn, va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(1,0, 'False Pos: %d'%fp, va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(1,1, 'True Pos: %d\n(Num Pos: %d)'%(tp,NP), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) # Fill in secondary metrics: accuracy, true pos rate, etc... ax.text(2,0, 'False Pos Rate: %.2f'%(fp / (fp+tn+0.)), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(2,1, 'True Pos Rate: %.2f'%(tp / (tp+fn+0.)), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(2,2, 'Accuracy: %.2f'%((tp+tn+0.)/N), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(0,2, 'Neg Pre Val: %.2f'%(1-fn/(fn+tn+0.)), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) ax.text(1,2, 'Pos Pred Val: %.2f'%(tp/(tp+fp+0.)), va='center', ha='center', bbox=dict(fc='w',boxstyle='round,pad=1')) plt.tight_layout() plt.show()
mit
MRN-Code/pl2mind
tools/simtb_viewer.py
1
3491
""" Module to view models trained with simTB data. """ from math import ceil import logging import matplotlib matplotlib.use("Agg") from matplotlib import cm from matplotlib.patches import FancyBboxPatch from matplotlib import pyplot as plt from matplotlib import rc import numpy as np logger = logging.getLogger("pl2mind") def make_spatial_map_image(spatial_map, out_file): fig = plt.figure(figsize=(5, 5)) assert spatial_map.shape[2] == 1 spatial_map = spatial_map.reshape(*spatial_map.shape[:2]) imax = np.max(np.absolute(spatial_map)) plt.axis("off") imshow_args = {'vmax': imax, 'vmin': -imax} plt.imshow(spatial_map, **imshow_args) if out_file is not None: logger.info("Saving montage to %s" % out_file) plt.savefig(out_file, bbox_inches="tight") plt.close() else: plt.draw() def montage(weights, fig=None, out_file=None, feature_dict=None, target_stat=None, target_value=None): features = weights.shape[0] iscale = 1 y = 8 x = int(ceil(1.0 * features / y)) font = {'size':8} rc('font',**font) if fig is None: fig = plt.figure(figsize=[iscale * y, iscale * x]) plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.99, wspace=0.1, hspace=0) for f in xrange(features): logger.debug("Saving simtb montage %d" % f) feat = weights[f] assert feat.shape[2] == 1, feat.shape feat = feat.reshape(feat.shape[0],feat.shape[1]) feat = feat / feat.std() imax = np.max(np.absolute(feat)); imin = -imax imshow_args = {'vmax': imax, 'vmin': imin} ax = fig.add_subplot(x, y, f + 1) plt.axis("off") ax.imshow(feat, cmap=cm.RdBu_r, **imshow_args) plt.text(0.05, 0.8, str(f), transform=ax.transAxes, horizontalalignment='center', color="white") pos = [(0.05, 0.05), (0.4, 0.05), (0.8, 0.05)] colors = ["purple", "yellow", "green"] if (feature_dict is not None and feature_dict.get(f, None) is not None): d = feature_dict[f] for i, key in enumerate([k for k in d if k != "real_id"]): plt.text(pos[i][0], pos[i][1], "%s=%.2f" % (key, d[key]) ,transform=ax.transAxes, horizontalalignment="left", color=colors[i]) if key == target_stat: assert target_value is not None if d[key] >= target_value: p_fancy = FancyBboxPatch((0.1, 0.1), 2.5 - .1, 1 - .1, boxstyle="round,pad=0.1", ec=(1., 0.5, 1.), fc="none") ax.add_patch(p_fancy) elif d[key] <= -target_value: p_fancy = FancyBboxPatch((0.1, 0.1), iscale * 2.5 - .1, iscale - .1, boxstyle="round,pad=0.1", ec=(0., 0.5, 0.), fc="none") ax.add_patch(p_fancy) logger.info("Finished processing simtb montage") if out_file is not None: logger.info("Saving montage to %s" % out_file) plt.savefig(out_file) else: plt.draw()
gpl-2.0
carlsonp/kaggle-TrulyNative
processURLS.py
1
3720
from __future__ import print_function import re, os, sys, multiprocessing, zipfile, Queue from bs4 import BeautifulSoup import pandas as pd import numpy as np from urlparse import urlparse from py2neo import authenticate, Graph, Node, Relationship #https://pypi.python.org/pypi/etaprogress/ from etaprogress.progress import ProgressBar #337304 total HTML files, some are actually NOT in either the training or testing set #process_zips = ["./data/0.zip", "./data/1.zip", "./data/2.zip", "./data/3.zip", "./data/4.zip"] process_zips = ["./data/0.zip"] def parseFile(contents, filename, sponsored): nodes = [sponsored, filename] #use lxml parser for faster speed cleaned = BeautifulSoup(contents, "lxml") for anchor in cleaned.findAll('a', href=True): if anchor['href'].startswith("http"): try: parsedurl = urlparse(anchor['href']) parsedurl = parsedurl.netloc.replace("www.", "", 1) parsedurl = re.sub('[^0-9a-zA-Z\.]+', '', parsedurl) #remove non-alphanumeric and non-period literals nodes.append(parsedurl) except ValueError: print("IPv6 URL?") return nodes def addNodes(nodes): q.put("CREATE(f:files {filename: '"+nodes[1]+"'})") if nodes[0] == 1: q.put("MATCH (n:roots {type:'Sponsored'}) MATCH (f:files {filename:'"+nodes[1]+"'}) MERGE(n)-[:has]->(f)") elif nodes[0] == 0: q.put("MATCH (n:roots {type:'NotSponsored'}) MATCH (f:files {filename:'"+nodes[1]+"'}) MERGE(n)-[:has]->(f)") else: q.put("MATCH (n:roots {type:'Testing'}) MATCH (f:files {filename:'"+nodes[1]+"'}) MERGE(n)-[:has]->(f)") for n in nodes[2:]: q.put("MERGE (w:website {website:'"+n+"'})") #create website node if it doesn't already exist q.put("MATCH (f:files {filename:'"+nodes[1]+"'}) MATCH (w:website {website:'"+n+"'}) MERGE(f)-[:links]->(w)") train = pd.read_csv("./data/train.csv", header=0, delimiter=",", quoting=3) sample = pd.read_csv("./data/sampleSubmission.csv", header=0, delimiter=",", quoting=3) print("Starting processing...") authenticate("localhost:7474", "neo4j", "neo4j") #username and password graph = Graph() #by default, py2neo opens localhost graph.delete_all() #deletes all nodes and edges (clears old data) tx = graph.cypher.begin() tx.append("CREATE(n:roots {type: 'Sponsored'})") tx.append("CREATE(n:roots {type: 'NotSponsored'})") tx.append("CREATE(n:roots {type: 'Testing'})") tx.commit() q = Queue.Queue() for i, zipFile in enumerate(process_zips): archive = zipfile.ZipFile(zipFile, 'r') file_paths = zipfile.ZipFile.namelist(archive) bar = ProgressBar(len(file_paths), max_width=40) pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()-1 or 1) for k, file_path in enumerate(file_paths): data = archive.read(file_path) openfile = file_path[2:] #filename sponsored = train.loc[train['file'] == openfile] if not sponsored.empty: pool.apply_async(parseFile, args = (data, openfile, int(sponsored['sponsored']), ), callback = addNodes) testing = sample.loc[sample['file'] == openfile] if not testing.empty: pool.apply_async(parseFile, args = (data, openfile, 2, ), callback = addNodes) if k > 10: tx = graph.cypher.begin() while not q.empty(): tx.append(q.get()) tx.commit() bar.numerator = k print("Folder:", i, bar, end='\r') sys.stdout.flush() pool.close() pool.join() tx = graph.cypher.begin() while not q.empty(): tx.append(q.get()) tx.commit() print() #print("Sponsored pages: ", G.out_degree("SPONSORED")) #print("Normal pages: ", G.out_degree("NOTSPONSORED")) #if G.out_degree("TESTING") != 235917: #print("Error, invalid number of testing nodes.") #if G.out_degree("SPONSORED") + G.out_degree("NOTSPONSORED") != 101107: #print("Error, invalid number of training nodes.")
gpl-3.0
cython-testbed/pandas
pandas/tests/test_algos.py
1
66798
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations import struct from pandas import (Series, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import pandas as pd from pandas import compat from pandas._libs import (groupby as libgroupby, algos as libalgos, hashtable as ht) from pandas._libs.hashtable import unique_label_indices from pandas.compat import lrange, range import pandas.core.algorithms as algos import pandas.core.common as com import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import CategoricalDtype as CDT from pandas.compat.numpy import np_array_datetime64_compat from pandas.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_series_equal(result, expected) s = Series(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(s, [2, 4], np.nan)) expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_series_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Series(algos.match(to_match, values, np.nan)) expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_series_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Series([v1, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(uniques, exp) # period v1 = pd.Period('201302', freq='M') v2 = pd.Period('201303', freq='M') x = Series([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, uniques = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2])) # GH 5986 v1 = pd.to_timedelta('1 day 1 min') v2 = pd.to_timedelta('1 day') x = Series([v1, v2, v1, v1, v2, v2, v1]) labels, uniques = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2])) labels, uniques = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = pd.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com.asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self, writable): data = np.array([2**63, 1, 2**63], dtype=np.uint64) data.setflags(write=writable) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_uniques = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).astype('O') result = algos.unique(arr) assert isinstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): len(algos.unique(lst)) def test_on_index_object(self): mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = mindex.values expected.sort() mindex = mindex.repeat(2) result = pd.unique(mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000', '2015-01-01T00:00:00.000000000', '2015-01-01T00:00:00.000000000']) result = algos.unique(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(dt_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.unique(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Series(td_index) result = algos.unique(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.unique(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.unique(s), exp) def test_nan_in_object_array(self): duplicated_items = ['a', np.nan, 'c', 'c'] result = pd.unique(duplicated_items) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.unique() tm.assert_categorical_equal(result, expected) result = algos.unique(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.unique() tm.assert_categorical_equal(result, expected_o) result = algos.unique(c) tm.assert_categorical_equal(result, expected_o) # Series of categorical dtype s = Series(Categorical(list('baabc')), name='foo') result = s.unique() tm.assert_categorical_equal(result, expected) result = pd.unique(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.unique() tm.assert_index_equal(result, expected) result = pd.unique(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Series( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).unique() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).unique() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique( Series(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = pd.unique(Series([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = pd.unique(Series([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = pd.unique(Series([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = pd.unique(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = pd.unique(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = pd.unique(Series(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = pd.unique(arg) tm.assert_numpy_array_equal(result, expected) def test_obj_none_preservation(self): # GH 20866 arr = np.array(['foo', None], dtype=object) result = pd.unique(arr) expected = np.array(['foo', None], dtype=object) tm.assert_numpy_array_equal(result, expected, strict_nan=True) def test_signed_zero(self): # GH 21866 a = np.array([-0.0, 0.0]) result = pd.unique(a) expected = np.array([-0.0]) # 0.0 and -0.0 are equivalent tm.assert_numpy_array_equal(result, expected) def test_different_nans(self): # GH 21866 # create different nans from bit-patterns: NAN1 = struct.unpack("d", struct.pack("=Q", 0x7ff8000000000000))[0] NAN2 = struct.unpack("d", struct.pack("=Q", 0x7ff8000000000001))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 a = np.array([NAN1, NAN2]) # NAN1 and NAN2 are equivalent result = pd.unique(a) expected = np.array([np.nan]) tm.assert_numpy_array_equal(result, expected) def test_first_nan_kept(self): # GH 22295 # create different nans from bit-patterns: bits_for_nan1 = 0xfff8000000000001 bits_for_nan2 = 0x7ff8000000000001 NAN1 = struct.unpack("d", struct.pack("=Q", bits_for_nan1))[0] NAN2 = struct.unpack("d", struct.pack("=Q", bits_for_nan2))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 for el_type in [np.float64, np.object]: a = np.array([NAN1, NAN2], dtype=el_type) result = pd.unique(a) assert result.size == 1 # use bit patterns to identify which nan was kept: result_nan_bits = struct.unpack("=Q", struct.pack("d", result[0]))[0] assert result_nan_bits == bits_for_nan1 def test_do_not_mangle_na_values(self, unique_nulls_fixture, unique_nulls_fixture2): # GH 22295 if unique_nulls_fixture is unique_nulls_fixture2: return # skip it, values not unique a = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=np.object) result = pd.unique(a) assert result.size == 2 assert a[0] is unique_nulls_fixture assert a[1] is unique_nulls_fixture2 class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.isin(1, 1)) pytest.raises(TypeError, lambda: algos.isin(1, [1])) pytest.raises(TypeError, lambda: algos.isin([1], 1)) def test_basic(self): result = algos.isin([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), Series([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series([1, 2]), {1}) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), Series(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(Series(['a', 'b']), {'a'}) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = pd.date_range('20130101', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = pd.timedelta_range('1 day', periods=3).values result = algos.isin(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.isin(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = pd.date_range('20000101', periods=2000000, freq='s').values result = algos.isin(s, s[0:2]) expected = np.zeros(len(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Series(Categorical(1).from_codes(vals, cats)) St = Series(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.isin(Sd, St) tm.assert_numpy_array_equal(expected, result) def test_same_nan_is_in(self): # GH 22160 # nan is special, because from " a is b" doesn't follow "a == b" # at least, isin() should follow python's "np.nan in [nan] == True" # casting to -> np.float64 -> another float-object somewher on # the way could lead jepardize this behavior comps = [np.nan] # could be casted to float64 values = [np.nan] expected = np.array([True]) result = algos.isin(comps, values) tm.assert_numpy_array_equal(expected, result) def test_same_object_is_in(self): # GH 22160 # there could be special treatment for nans # the user however could define a custom class # with similar behavior, then we at least should # fall back to usual python's behavior: "a in [a] == True" class LikeNan(object): def __eq__(self): return False def __hash__(self): return 0 a, b = LikeNan(), LikeNan() # same object -> True tm.assert_numpy_array_equal(algos.isin([a], [a]), np.array([True])) # different objects -> False tm.assert_numpy_array_equal(algos.isin([a], [b]), np.array([False])) def test_different_nans(self): # GH 22160 # all nans are handled as equivalent comps = [float('nan')] values = [float('nan')] assert comps[0] is not values[0] # different nan-objects # as list of python-objects: result = algos.isin(comps, values) tm.assert_numpy_array_equal(np.array([True]), result) # as object-array: result = algos.isin(np.asarray(comps, dtype=np.object), np.asarray(values, dtype=np.object)) tm.assert_numpy_array_equal(np.array([True]), result) # as float64-array: result = algos.isin(np.asarray(comps, dtype=np.float64), np.asarray(values, dtype=np.float64)) tm.assert_numpy_array_equal(np.array([True]), result) def test_no_cast(self): # GH 22160 # ensure 42 is not casted to a string comps = ['ss', 42] values = ['42'] expected = np.array([False, False]) result = algos.isin(comps, values) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Series(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.isin(vals, empty) tm.assert_numpy_array_equal(expected, result) def test_different_nan_objects(self): # GH 22119 comps = np.array(['nan', np.nan * 1j, float('nan')], dtype=np.object) vals = np.array([float('nan')], dtype=np.object) expected = np.array([False, False, True]) result = algos.isin(comps, vals) tm.assert_numpy_array_equal(expected, result) def test_different_nans_as_float64(self): # GH 21866 # create different nans from bit-patterns, # these nans will land in different buckets in the hash-table # if no special care is taken NAN1 = struct.unpack("d", struct.pack("=Q", 0x7ff8000000000000))[0] NAN2 = struct.unpack("d", struct.pack("=Q", 0x7ff8000000000001))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 # check that NAN1 and NAN2 are equivalent: arr = np.array([NAN1, NAN2], dtype=np.float64) lookup1 = np.array([NAN1], dtype=np.float64) result = algos.isin(arr, lookup1) expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) lookup2 = np.array([NAN2], dtype=np.float64) result = algos.isin(arr, lookup2) expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) class TestValueCounts(object): def test_value_counts(self): np.random.seed(1234) from pandas.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert isinstance(factor, n) result = algos.value_counts(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True)) expected = Series([1, 1, 1, 1], index=index) tm.assert_series_equal(result.sort_index(), expected.sort_index()) def test_value_counts_bins(self): s = [1, 2, 3, 4] result = algos.value_counts(s, bins=1) expected = Series([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_series_equal(result, expected) result = algos.value_counts(s, bins=2, sort=False) expected = Series([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_series_equal(result, expected) def test_value_counts_dtypes(self): result = algos.value_counts([1, 1.]) assert len(result) == 1 result = algos.value_counts([1, 1.], bins=1) assert len(result) == 1 result = algos.value_counts(Series([1, 1., '1'])) # object assert len(result) == 2 pytest.raises(TypeError, lambda s: algos.value_counts(s, bins=1), ['1', 1]) def test_value_counts_nat(self): td = Series([np.timedelta64(10000), pd.NaT], dtype='timedelta64[ns]') dt = pd.to_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.value_counts(s) vc_with_na = algos.value_counts(s, dropna=False) assert len(vc) == 1 assert len(vc_with_na) == 2 exp_dt = Series({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_series_equal(algos.value_counts(dt), exp_dt) # TODO same for (timedelta) def test_value_counts_datetime_outofbounds(self): # GH 13663 s = Series([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.value_counts() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Series([3, 2, 1], index=exp_index) tm.assert_series_equal(res, exp) # GH 12424 res = pd.to_datetime(Series(['2362-01-01', np.nan]), errors='ignore') exp = Series(['2362-01-01', np.nan], dtype=object) tm.assert_series_equal(res, exp) def test_categorical(self): s = Series(Categorical(list('aaabbc'))) result = s.value_counts() expected = Series([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.value_counts() expected.index = expected.index.as_ordered() tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Series(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_series_equal(result, expected, check_index_type=True) # out of order s = Series(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.value_counts() expected = Series([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) result = s.value_counts(dropna=False) expected = Series([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Series(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.value_counts() expected = Series([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_series_equal(result, expected, check_index_type=True) def test_dropna(self): # https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328 tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False]).value_counts(dropna=False), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=True), Series([2, 1], index=[True, False])) tm.assert_series_equal( Series([True, True, False, None]).value_counts(dropna=False), Series([2, 1, 1], index=[True, False, np.nan])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5.]).value_counts(dropna=False), Series([2, 1], index=[5., 10.3])) tm.assert_series_equal( Series([10.3, 5., 5., None]).value_counts(dropna=True), Series([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Series([10.3, 5., 5., None]).value_counts(dropna=False) expected = Series([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_series_equal(result, expected) def test_value_counts_normalized(self): # GH12558 s = Series([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.astype(t) result = s_typed.value_counts(normalize=True, dropna=False) expected = Series([0.6, 0.2, 0.2], index=Series([np.nan, 2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) result = s_typed.value_counts(normalize=True, dropna=True) expected = Series([0.5, 0.5], index=Series([2.0, 1.0], dtype=t)) tm.assert_series_equal(result, expected) def test_value_counts_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Series([1], index=[2**63]) result = algos.value_counts(arr) tm.assert_series_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Series([1, 1], index=[-1, 2**63]) result = algos.value_counts(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_series_equal(result, expected) class TestDuplicated(object): def test_duplicated_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='last') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep=False) expected = np.array([True, False, True, True, False, True]) tm.assert_numpy_array_equal(result, expected) keys = np.empty(8, dtype=object) for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2, [0, np.nan, 0, np.nan] * 2)): keys[i] = t result = algos.duplicated(keys) falses = [False] * 4 trues = [True] * 4 expected = np.array(falses + trues) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep='last') expected = np.array(trues + falses) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated(keys, keep=False) expected = np.array(trues + trues) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize('case', [ np.array([1, 2, 1, 5, 3, 2, 4, 1, 5, 6]), np.array([1.1, 2.2, 1.1, np.nan, 3.3, 2.2, 4.4, 1.1, np.nan, 6.6]), np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j, 2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]), np.array(['a', 'b', 'a', 'e', 'c', 'b', 'd', 'a', 'e', 'f'], dtype=object), np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7], dtype=np.uint64), ]) def test_numeric_object_likes(self, case): exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_last = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_last res_first = algos.duplicated(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = algos.duplicated(case, keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = algos.duplicated(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [Index(case), Index(case, dtype='category')]: res_first = idx.duplicated(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = idx.duplicated(keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = idx.duplicated(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # series for s in [Series(case), Series(case, dtype='category')]: res_first = s.duplicated(keep='first') tm.assert_series_equal(res_first, Series(exp_first)) res_last = s.duplicated(keep='last') tm.assert_series_equal(res_last, Series(exp_last)) res_false = s.duplicated(keep=False) tm.assert_series_equal(res_false, Series(exp_false)) def test_datetime_likes(self): dt = ['2011-01-01', '2011-01-02', '2011-01-01', 'NaT', '2011-01-03', '2011-01-02', '2011-01-04', '2011-01-01', 'NaT', '2011-01-06'] td = ['1 days', '2 days', '1 days', 'NaT', '3 days', '2 days', '4 days', '1 days', 'NaT', '6 days'] cases = [np.array([Timestamp(d) for d in dt]), np.array([Timestamp(d, tz='US/Eastern') for d in dt]), np.array([pd.Period(d, freq='D') for d in dt]), np.array([np.datetime64(d) for d in dt]), np.array([pd.Timedelta(d) for d in td])] exp_first = np.array([False, False, True, False, False, True, False, True, True, False]) exp_last = np.array([True, True, True, True, False, False, False, False, False, False]) exp_false = exp_first | exp_last for case in cases: res_first = algos.duplicated(case, keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = algos.duplicated(case, keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = algos.duplicated(case, keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # index for idx in [Index(case), Index(case, dtype='category'), Index(case, dtype=object)]: res_first = idx.duplicated(keep='first') tm.assert_numpy_array_equal(res_first, exp_first) res_last = idx.duplicated(keep='last') tm.assert_numpy_array_equal(res_last, exp_last) res_false = idx.duplicated(keep=False) tm.assert_numpy_array_equal(res_false, exp_false) # series for s in [Series(case), Series(case, dtype='category'), Series(case, dtype=object)]: res_first = s.duplicated(keep='first') tm.assert_series_equal(res_first, Series(exp_first)) res_last = s.duplicated(keep='last') tm.assert_series_equal(res_last, Series(exp_last)) res_false = s.duplicated(keep=False) tm.assert_series_equal(res_false, Series(exp_false)) def test_unique_index(self): cases = [Index([1, 2, 3]), pd.RangeIndex(0, 3)] for case in cases: assert case.is_unique tm.assert_numpy_array_equal(case.duplicated(), np.array([False, False, False])) @pytest.mark.parametrize('arr, unique', [ ([(0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (1, 0), (1, 1)], [(0, 0), (0, 1), (1, 0), (1, 1)]), ([('b', 'c'), ('a', 'b'), ('a', 'b'), ('b', 'c')], [('b', 'c'), ('a', 'b')]), ([('a', 1), ('b', 2), ('a', 3), ('a', 1)], [('a', 1), ('b', 2), ('a', 3)]), ]) def test_unique_tuples(self, arr, unique): # https://github.com/pandas-dev/pandas/issues/16519 expected = np.empty(len(unique), dtype=object) expected[:] = unique result = pd.unique(arr) tm.assert_numpy_array_equal(result, expected) class GroupVarTestMixin(object): def test_group_var_generic_1d(self): prng = RandomState(1234) out = (np.nan * np.ones((5, 1))).astype(self.dtype) counts = np.zeros(5, dtype='int64') values = 10 * prng.rand(15, 1).astype(self.dtype) labels = np.tile(np.arange(5), (3, )).astype('int64') expected_out = (np.squeeze(values) .reshape((5, 3), order='F') .std(axis=1, ddof=1) ** 2)[:, np.newaxis] expected_counts = counts + 3 self.algo(out, counts, values, labels) assert np.allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_1d_flat_labels(self): prng = RandomState(1234) out = (np.nan * np.ones((1, 1))).astype(self.dtype) counts = np.zeros(1, dtype='int64') values = 10 * prng.rand(5, 1).astype(self.dtype) labels = np.zeros(5, dtype='int64') expected_out = np.array([[values.std(ddof=1) ** 2]]) expected_counts = counts + 5 self.algo(out, counts, values, labels) assert np.allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_all_finite(self): prng = RandomState(1234) out = (np.nan * np.ones((5, 2))).astype(self.dtype) counts = np.zeros(5, dtype='int64') values = 10 * prng.rand(10, 2).astype(self.dtype) labels = np.tile(np.arange(5), (2, )).astype('int64') expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2 expected_counts = counts + 2 self.algo(out, counts, values, labels) assert np.allclose(out, expected_out, self.rtol) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_generic_2d_some_nan(self): prng = RandomState(1234) out = (np.nan * np.ones((5, 2))).astype(self.dtype) counts = np.zeros(5, dtype='int64') values = 10 * prng.rand(10, 2).astype(self.dtype) values[:, 1] = np.nan labels = np.tile(np.arange(5), (2, )).astype('int64') expected_out = np.vstack([values[:, 0] .reshape(5, 2, order='F') .std(ddof=1, axis=1) ** 2, np.nan * np.ones(5)]).T.astype(self.dtype) expected_counts = counts + 2 self.algo(out, counts, values, labels) tm.assert_almost_equal(out, expected_out, check_less_precise=6) tm.assert_numpy_array_equal(counts, expected_counts) def test_group_var_constant(self): # Regression test from GH 10448. out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype='int64') values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype) labels = np.zeros(3, dtype='int64') self.algo(out, counts, values, labels) assert counts[0] == 3 assert out[0, 0] >= 0 tm.assert_almost_equal(out[0, 0], 0.0) class TestGroupVarFloat64(GroupVarTestMixin): __test__ = True algo = libgroupby.group_var_float64 dtype = np.float64 rtol = 1e-5 def test_group_var_large_inputs(self): prng = RandomState(1234) out = np.array([[np.nan]], dtype=self.dtype) counts = np.array([0], dtype='int64') values = (prng.rand(10 ** 6) + 10 ** 12).astype(self.dtype) values.shape = (10 ** 6, 1) labels = np.zeros(10 ** 6, dtype='int64') self.algo(out, counts, values, labels) assert counts[0] == 10 ** 6 tm.assert_almost_equal(out[0, 0], 1.0 / 12, check_less_precise=True) class TestGroupVarFloat32(GroupVarTestMixin): __test__ = True algo = libgroupby.group_var_float32 dtype = np.float32 rtol = 1e-2 class TestHashTable(object): def test_lookup_nan(self, writable): xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3]) # GH 21688 ensure we can deal with readonly memory views xs.setflags(write=writable) m = ht.Float64HashTable() m.map_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64)) def test_add_signed_zeros(self): # GH 21866 inconsistent hash-function for float64 # default hash-function would lead to different hash-buckets # for 0.0 and -0.0 if there are more than 2^30 hash-buckets # but this would mean 16GB N = 4 # 12 * 10**8 would trigger the error, if you have enough memory m = ht.Float64HashTable(N) m.set_item(0.0, 0) m.set_item(-0.0, 0) assert len(m) == 1 # 0.0 and -0.0 are equivalent def test_add_different_nans(self): # GH 21866 inconsistent hash-function for float64 # create different nans from bit-patterns: NAN1 = struct.unpack("d", struct.pack("=Q", 0x7ff8000000000000))[0] NAN2 = struct.unpack("d", struct.pack("=Q", 0x7ff8000000000001))[0] assert NAN1 != NAN1 assert NAN2 != NAN2 # default hash function would lead to different hash-buckets # for NAN1 and NAN2 even if there are only 4 buckets: m = ht.Float64HashTable() m.set_item(NAN1, 0) m.set_item(NAN2, 0) assert len(m) == 1 # NAN1 and NAN2 are equivalent def test_lookup_overflow(self, writable): xs = np.array([1, 2, 2**63], dtype=np.uint64) # GH 21688 ensure we can deal with readonly memory views xs.setflags(write=writable) m = ht.UInt64HashTable() m.map_locations(xs) tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.int64)) def test_get_unique(self): s = Series([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(s.unique(), exp) def test_vector_resize(self, writable): # Test for memory errors after internal vector # reallocations (pull request #7157) def _test_vector_resize(htable, uniques, dtype, nvals, safely_resizes): vals = np.array(np.random.randn(1000), dtype=dtype) # GH 21688 ensure we can deal with readonly memory views vals.setflags(write=writable) # get_labels may append to uniques htable.get_labels(vals[:nvals], uniques, 0, -1) # to_array() set an external_view_exists flag on uniques. tmp = uniques.to_array() oldshape = tmp.shape # subsequent get_labels() calls can no longer append to it # (for all but StringHashTables + ObjectVector) if safely_resizes: htable.get_labels(vals, uniques, 0, -1) else: with pytest.raises(ValueError) as excinfo: htable.get_labels(vals, uniques, 0, -1) assert str(excinfo.value).startswith('external reference') uniques.to_array() # should not raise here assert tmp.shape == oldshape test_cases = [ (ht.PyObjectHashTable, ht.ObjectVector, 'object', False), (ht.StringHashTable, ht.ObjectVector, 'object', True), (ht.Float64HashTable, ht.Float64Vector, 'float64', False), (ht.Int64HashTable, ht.Int64Vector, 'int64', False), (ht.UInt64HashTable, ht.UInt64Vector, 'uint64', False)] for (tbl, vect, dtype, safely_resizes) in test_cases: # resizing to empty is a special case _test_vector_resize(tbl(), vect(), dtype, 0, safely_resizes) _test_vector_resize(tbl(), vect(), dtype, 10, safely_resizes) def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected) def test_unique_label_indices(): a = np.random.randint(1, 1 << 10, 1 << 15).astype('i8') left = unique_label_indices(a) right = np.unique(a, return_index=True)[1] tm.assert_numpy_array_equal(left, right, check_dtype=False) a[np.random.choice(len(a), 10)] = -1 left = unique_label_indices(a) right = np.unique(a, return_index=True)[1][1:] tm.assert_numpy_array_equal(left, right, check_dtype=False) class TestRank(object): @td.skip_if_no_scipy def test_scipy_compat(self): from scipy.stats import rankdata def _check(arr): mask = ~np.isfinite(arr) arr = arr.copy() result = libalgos.rank_1d_float64(arr) arr[mask] = np.inf exp = rankdata(arr) exp[mask] = nan assert_almost_equal(result, exp) _check(np.array([nan, nan, 5., 5., 5., nan, 1, 2, 3, nan])) _check(np.array([4., nan, 5., 5., 5., nan, 1, 2, 4., nan])) def test_basic(self): exp = np.array([1, 2], dtype=np.float64) for dtype in np.typecodes['AllInteger']: s = Series([1, 100], dtype=dtype) tm.assert_numpy_array_equal(algos.rank(s), exp) def test_uint64_overflow(self): exp = np.array([1, 2], dtype=np.float64) for dtype in [np.float64, np.uint64]: s = Series([1, 2**63], dtype=dtype) tm.assert_numpy_array_equal(algos.rank(s), exp) def test_too_many_ndims(self): arr = np.array([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]]) msg = "Array with ndim > 2 are not supported" with tm.assert_raises_regex(TypeError, msg): algos.rank(arr) def test_pad_backfill_object_segfault(): old = np.array([], dtype='O') new = np.array([datetime(2010, 12, 31)], dtype='O') result = libalgos.pad_object(old, new) expected = np.array([-1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = libalgos.pad_object(new, old) expected = np.array([], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = libalgos.backfill_object(old, new) expected = np.array([-1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = libalgos.backfill_object(new, old) expected = np.array([], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_arrmap(): values = np.array(['foo', 'foo', 'bar', 'bar', 'baz', 'qux'], dtype='O') result = libalgos.arrmap_object(values, lambda x: x in ['foo', 'bar']) assert (result.dtype == np.bool_) class TestTseriesUtil(object): def test_combineFunc(self): pass def test_reindex(self): pass def test_isna(self): pass def test_groupby(self): pass def test_groupby_withnull(self): pass def test_backfill(self): old = Index([1, 5, 10]) new = Index(lrange(12)) filler = libalgos.backfill_int64(old.values, new.values) expect_filler = np.array([0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) # corner case old = Index([1, 4]) new = Index(lrange(5, 10)) filler = libalgos.backfill_int64(old.values, new.values) expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) def test_pad(self): old = Index([1, 5, 10]) new = Index(lrange(12)) filler = libalgos.pad_int64(old.values, new.values) expect_filler = np.array([-1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) # corner case old = Index([5, 10]) new = Index(lrange(5)) filler = libalgos.pad_int64(old.values, new.values) expect_filler = np.array([-1, -1, -1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(filler, expect_filler) def test_is_lexsorted(): failure = [ np.array([3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype='int64'), np.array([30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0], dtype='int64')] assert (not libalgos.is_lexsorted(failure)) def test_groupsort_indexer(): a = np.random.randint(0, 1000, 100).astype(np.int64) b = np.random.randint(0, 1000, 100).astype(np.int64) result = libalgos.groupsort_indexer(a, 1000)[0] # need to use a stable sort # np.argsort returns int, groupsort_indexer # always returns int64 expected = np.argsort(a, kind='mergesort') expected = expected.astype(np.int64) tm.assert_numpy_array_equal(result, expected) # compare with lexsort # np.lexsort returns int, groupsort_indexer # always returns int64 key = a * 1000 + b result = libalgos.groupsort_indexer(key, 1000000)[0] expected = np.lexsort((b, a)) expected = expected.astype(np.int64) tm.assert_numpy_array_equal(result, expected) def test_infinity_sort(): # GH 13445 # numpy's argsort can be unhappy if something is less than # itself. Instead, let's give our infinities a self-consistent # ordering, but outside the float extended real line. Inf = libalgos.Infinity() NegInf = libalgos.NegInfinity() ref_nums = [NegInf, float("-inf"), -1e100, 0, 1e100, float("inf"), Inf] assert all(Inf >= x for x in ref_nums) assert all(Inf > x or x is Inf for x in ref_nums) assert Inf >= Inf and Inf == Inf assert not Inf < Inf and not Inf > Inf assert libalgos.Infinity() == libalgos.Infinity() assert not libalgos.Infinity() != libalgos.Infinity() assert all(NegInf <= x for x in ref_nums) assert all(NegInf < x or x is NegInf for x in ref_nums) assert NegInf <= NegInf and NegInf == NegInf assert not NegInf < NegInf and not NegInf > NegInf assert libalgos.NegInfinity() == libalgos.NegInfinity() assert not libalgos.NegInfinity() != libalgos.NegInfinity() for perm in permutations(ref_nums): assert sorted(perm) == ref_nums # smoke tests np.array([libalgos.Infinity()] * 32).argsort() np.array([libalgos.NegInfinity()] * 32).argsort() def test_infinity_against_nan(): Inf = libalgos.Infinity() NegInf = libalgos.NegInfinity() assert not Inf > np.nan assert not Inf >= np.nan assert not Inf < np.nan assert not Inf <= np.nan assert not Inf == np.nan assert Inf != np.nan assert not NegInf > np.nan assert not NegInf >= np.nan assert not NegInf < np.nan assert not NegInf <= np.nan assert not NegInf == np.nan assert NegInf != np.nan def test_ensure_platform_int(): arr = np.arange(100, dtype=np.intp) result = libalgos.ensure_platform_int(arr) assert (result is arr) def test_int64_add_overflow(): # see gh-14068 msg = "Overflow in int64 addition" m = np.iinfo(np.int64).max n = np.iinfo(np.int64).min with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), m) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([n, n]), n) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([n, n]), np.array([n, n])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, n]), np.array([n, n])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([False, True])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), b_mask=np.array([False, True])) with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([False, True]), b_mask=np.array([False, True])) with tm.assert_raises_regex(OverflowError, msg): with tm.assert_produces_warning(RuntimeWarning): algos.checked_add_with_arr(np.array([m, m]), np.array([np.nan, m])) # Check that the nan boolean arrays override whether or not # the addition overflows. We don't check the result but just # the fact that an OverflowError is not raised. with pytest.raises(AssertionError): with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([True, True])) with pytest.raises(AssertionError): with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), b_mask=np.array([True, True])) with pytest.raises(AssertionError): with tm.assert_raises_regex(OverflowError, msg): algos.checked_add_with_arr(np.array([m, m]), np.array([m, m]), arr_mask=np.array([True, False]), b_mask=np.array([False, True])) class TestMode(object): def test_no_mode(self): exp = Series([], dtype=np.float64) tm.assert_series_equal(algos.mode([]), exp) def test_mode_single(self): # GH 15714 exp_single = [1] data_single = [1] exp_multi = [1] data_multi = [1, 1] for dt in np.typecodes['AllInteger'] + np.typecodes['Float']: s = Series(data_single, dtype=dt) exp = Series(exp_single, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) s = Series(data_multi, dtype=dt) exp = Series(exp_multi, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) exp = Series([1], dtype=np.int) tm.assert_series_equal(algos.mode([1]), exp) exp = Series(['a', 'b', 'c'], dtype=np.object) tm.assert_series_equal(algos.mode(['a', 'b', 'c']), exp) def test_number_mode(self): exp_single = [1] data_single = [1] * 5 + [2] * 3 exp_multi = [1, 3] data_multi = [1] * 5 + [2] * 3 + [3] * 5 for dt in np.typecodes['AllInteger'] + np.typecodes['Float']: s = Series(data_single, dtype=dt) exp = Series(exp_single, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) s = Series(data_multi, dtype=dt) exp = Series(exp_multi, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) def test_strobj_mode(self): exp = ['b'] data = ['a'] * 2 + ['b'] * 3 s = Series(data, dtype='c') exp = Series(exp, dtype='c') tm.assert_series_equal(algos.mode(s), exp) exp = ['bar'] data = ['foo'] * 2 + ['bar'] * 3 for dt in [str, object]: s = Series(data, dtype=dt) exp = Series(exp, dtype=dt) tm.assert_series_equal(algos.mode(s), exp) def test_datelike_mode(self): exp = Series(['1900-05-03', '2011-01-03', '2013-01-02'], dtype="M8[ns]") s = Series(['2011-01-03', '2013-01-02', '1900-05-03'], dtype='M8[ns]') tm.assert_series_equal(algos.mode(s), exp) exp = Series(['2011-01-03', '2013-01-02'], dtype='M8[ns]') s = Series(['2011-01-03', '2013-01-02', '1900-05-03', '2011-01-03', '2013-01-02'], dtype='M8[ns]') tm.assert_series_equal(algos.mode(s), exp) def test_timedelta_mode(self): exp = Series(['-1 days', '0 days', '1 days'], dtype='timedelta64[ns]') s = Series(['1 days', '-1 days', '0 days'], dtype='timedelta64[ns]') tm.assert_series_equal(algos.mode(s), exp) exp = Series(['2 min', '1 day'], dtype='timedelta64[ns]') s = Series(['1 day', '1 day', '-1 day', '-1 day 2 min', '2 min', '2 min'], dtype='timedelta64[ns]') tm.assert_series_equal(algos.mode(s), exp) def test_mixed_dtype(self): exp = Series(['foo']) s = Series([1, 'foo', 'foo']) tm.assert_series_equal(algos.mode(s), exp) def test_uint64_overflow(self): exp = Series([2**63], dtype=np.uint64) s = Series([1, 2**63, 2**63], dtype=np.uint64) tm.assert_series_equal(algos.mode(s), exp) exp = Series([1, 2**63], dtype=np.uint64) s = Series([1, 2**63], dtype=np.uint64) tm.assert_series_equal(algos.mode(s), exp) def test_categorical(self): c = Categorical([1, 2]) exp = c tm.assert_categorical_equal(algos.mode(c), exp) tm.assert_categorical_equal(c.mode(), exp) c = Categorical([1, 'a', 'a']) exp = Categorical(['a'], categories=[1, 'a']) tm.assert_categorical_equal(algos.mode(c), exp) tm.assert_categorical_equal(c.mode(), exp) c = Categorical([1, 1, 2, 3, 3]) exp = Categorical([1, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(algos.mode(c), exp) tm.assert_categorical_equal(c.mode(), exp) def test_index(self): idx = Index([1, 2, 3]) exp = Series([1, 2, 3], dtype=np.int64) tm.assert_series_equal(algos.mode(idx), exp) idx = Index([1, 'a', 'a']) exp = Series(['a'], dtype=object) tm.assert_series_equal(algos.mode(idx), exp) idx = Index([1, 1, 2, 3, 3]) exp = Series([1, 3], dtype=np.int64) tm.assert_series_equal(algos.mode(idx), exp) exp = Series(['2 min', '1 day'], dtype='timedelta64[ns]') idx = Index(['1 day', '1 day', '-1 day', '-1 day 2 min', '2 min', '2 min'], dtype='timedelta64[ns]') tm.assert_series_equal(algos.mode(idx), exp)
bsd-3-clause
Lawrence-Liu/scikit-learn
sklearn/linear_model/ransac.py
191
14261
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Read more in the :ref:`User Guide <RansacRegression>`. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] http://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state def fit(self, X, y): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is None: residual_metric = lambda dy: np.sum(np.abs(dy), axis=1) else: residual_metric = self.residual_metric random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set base_estimator.fit(X_subset, y_subset) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) diff = y_pred - y if diff.ndim == 1: diff = diff.reshape(-1, 1) residuals_subset = residual_metric(diff) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue if n_inliers_subset == 0: raise ValueError("No inliers found, possible cause is " "setting residual_threshold ({0}) too low.".format( self.residual_threshold)) # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
costypetrisor/scikit-learn
sklearn/datasets/__init__.py
74
3616
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
luoshao23/ML_algorithm
Naive_Bayes/naive_bayes.py
1
5550
from abc import abstractclassmethod from collections import defaultdict import warnings import numpy as np from scipy.special import logsumexp from sklearn.utils import check_X_y from sklearn.preprocessing import LabelBinarizer class Naive_Bayes(object): """Naive Bayes classifier The input and the target is no need to binarized. """ def __init__(self, alpha=0): self._unique_labels = None self._alpha = alpha def fit(self, X, y): X, y = check_X_y(X, y) self._n_feature = X.shape[1] self._unique_labels, self._class_counts = np.unique( y, return_counts=True) self._class_prior = (self._class_counts + self._alpha) / (self._class_counts.sum() + len(self._unique_labels)) self._count(X, y) def _count(self, X, y): self._matrix = [defaultdict(int) for _ in range(self._n_feature)] for j in range(self._n_feature): labels, counts = np.unique( np.c_[X[:, j], y], return_counts=True, axis=0) s = len(set(X[:, j])) for l, c in zip(labels, counts): self._matrix[j][tuple(l)] = (c + self._alpha) / (self._class_counts[self._unique_labels == l[1]][0] + s) def predict(self, X, y=None): n_samples, n_features = X.shape assert n_features == self._n_feature res = np.empty(n_samples) for i in range(n_samples): proba = self._class_prior for j in range(n_features): for c in range(len(self._unique_labels)): proba[c] *= self._matrix[j][(X[i, j], self._unique_labels[c])] res[i] = self._unique_labels[np.argmax(proba)] return res class BaseNB(object): @abstractclassmethod def _joint_log_likelihood(self, X): """log P(c) + log P(X|c) """ def predict(self, X): jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): jll = self._joint_log_likelihood(X) return jll - logsumexp(jll, axis=1, keepdims=True) def predict_proba(self, X): return np.exp(self.predict_log_proba(X)) _ALPHA_MIN = 1e-10 class BaseDiscreteNB(BaseNB): def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError('Number dismatch.') self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: log_class_count = np.log(self.class_count_) self.class_log_prior_ = log_class_count - np.log(self.class_count_.sum()) else: self.class_log_prior_ = np.full(n_classes, -np.log(n_classes)) def _check_alpha(self): if np.min(self.alpha) < 0: raise ValueError('Alpha should be > 0.') if isinstance(self.alpha, np.ndarray): if not self.alpha.shape[0] == self.feature_count_.shape[1]: raise ValueError("alpha should be a scalar or an array with shape [n_features]") if np.min(self.alpha) < _ALPHA_MIN: warnings.warn("alpha too samll, setting alpha = %.1e" % _ALPHA_MIN) return np.maximum(self.alpha, _ALPHA_MIN) return self.alpha def fit(self, X, y): X, y = check_X_y(X, y, 'csr') _, n_features = X.shape labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ # in case of binary label, turn it into shape [n_sample, 2] if Y.shape[1] == 1: Y = np.concatenate([1 - Y, Y], axis=1) class_prior = self.class_prior n_effective_classes = Y.shape[1] self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros( (n_effective_classes, n_features), dtype=np.float64) self._count(X, Y) alpha = self._check_alpha() self._update_feature_log_prob(alpha) self._update_class_log_prior(class_prior=class_prior) class MultinomialNB(BaseDiscreteNB): def __init__(self, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): # self.feature_count with shape [n_classes, n_features] # self.class_count_ with shape [n_classes] if np.any(X < 0): raise ValueError("Input X must be non-negative") self.feature_count_ += np.dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self, alpha): smoothed_fc = self.feature_count_ + alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): return np.dot(X, self.feature_log_prob.T) + self.class_log_prior_ if __name__ == "__main__": # x1 = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3] # x2 = [3, 5, 5, 3, 3, 3, 5, 5, 7, 7, 7, 5, 5, 7, 7] # y = [-1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1] x1 = [3, 2, 5] x2 = [4, 1, 8] y = [-1, 1, -1] X = np.vstack([x1, x2]).T # print(X) nb = Naive_Bayes(1) nb.fit(X, y) print(nb.predict(np.array([[2, 3], [3, 5]]))) mnb = MultinomialNB() mnb.fit(X, y) print(mnb.predict(np.array([[8, 3], [3, 5]])))
mit
awanke/bokeh
bokeh/crossfilter/models.py
40
30635
from __future__ import absolute_import import logging import six import pandas as pd import numpy as np from ..plotting import curdoc from ..models import ColumnDataSource, GridPlot, Panel, Tabs, Range from ..models.widgets import Select, MultiSelect, InputWidget # crossfilter plotting utilities from .plotting import make_histogram_source, make_histogram, cross, hide_axes from .plugins import CrossScatterPlugin, CrossBarPlugin, CrossLinePlugin # bokeh plotting functions from ..plot_object import PlotObject from ..properties import Dict, Enum, Instance, List, String, Any, Int logger = logging.getLogger(__name__) class DiscreteFacet(object): """Pairing of a field and a unique value, representing a subset of the total data.""" def __init__(self, field, value, label=None): """Sets object properties and creates label if not provided. Args: field (str): name of the column value: unique value defined for the column label (str, optional): string representation of the value """ if label is None: label = str(value) self.field = field self.label = label self._value = value def __repr__(self): return "%s:%s"%(self.field, self.label) def filter(self, df): """Filters the provided DataFrame to the subset corresponding to value. Args: df (DataFrame): contains a column of ``field`` Returns: DataFrame: filtered to rows, where column ``field`` has values equal to ``_value``. """ return df[df[self.field] == self._value] class ContinuousFacet(DiscreteFacet): """Represents a range of values for a field in a DataFrame.""" def __init__(self, field, value, bins, label=None): """Calls parent ``DiscreteFacet`` and stores bins for later filtering. Args: field (str): name of the column value (str): center of range of values in the column bins (list[float]): start and inclusive stop value for the bin label (str, optional): string representation """ super(ContinuousFacet, self).__init__(field, value, label=label) self.bins = bins def filter(self, df): """Filters the provided DataFrame to the subset corresponding to bins. Args: df (DataFrame): contains a column of ``field`` Returns: DataFrame: filtered to rows, where column ``field`` has values within the bounds of ``bins``. """ if self.bins[0] is not None: df = df[df[self.field] > self.bins[0]] if self.bins[1] is not None: df = df[df[self.field] <= self.bins[1]] return df class CrossFilter(PlotObject): """Interactive filtering and faceting application with multiple plot types""" # identify properties for the data columns = List(Dict(String, Any)) data = Instance(ColumnDataSource) filtered_data = Instance(ColumnDataSource) # list of datasources to use for filtering widgets filter_sources = Dict(String, Instance(ColumnDataSource)) # list of columns we are filtering filtering_columns = List(String) # dict of column name to filtering widgets filter_widgets = Dict(String, Instance(PlotObject)) # dict which aggregates all the selections from the different filtering # widgets filtered_selections = Dict(String, Dict(String, Any)) # list of facet vars facet_x = List(String, default=[]) facet_y = List(String, default=[]) facet_tab = List(String, default=[]) # the displayed plot object plot = Instance(PlotObject) x_range = Instance(Range) y_range = Instance(Range) # configuration properties for the plot plot_type = Enum("line", "scatter", "bar") plot_map = {'line': CrossLinePlugin, 'scatter': CrossScatterPlugin, 'bar': CrossBarPlugin} x = String y = String agg = String color = String title = String height = Int() width = Int() # identify the selector/drop-down properties plot_selector = Instance(Select) x_selector = Instance(Select) y_selector = Instance(Select) agg_selector = Instance(Select) def __init__(self, *args, **kwargs): """Creates original and filtered ColumnDataSource and handles defaults. The df and starting configuration are only provided the first time init is called, within the create method. Kwargs: df (DataFrame): the data to use in the crossfilter app plot_type (str, optional): starting plot type agg (str, optional): starting aggregation type """ if 'df' in kwargs: self._df = kwargs.pop('df') # initialize a "pure" and filtered data source based on df kwargs['data'] = ColumnDataSource(data=self.df) kwargs['filtered_data'] = ColumnDataSource(data=self.df) # default plot type if 'plot_type' not in kwargs: kwargs['plot_type'] = "scatter" # default aggregation type if 'agg' not in kwargs: kwargs['agg'] = 'sum' if 'plot_map' in kwargs: self.plot_map = kwargs.pop('plot_map') super(CrossFilter, self).__init__(**kwargs) @classmethod def create(cls, **kwargs): """Performs all one-time construction of bokeh objects. This classmethod is required due to the way that bokeh handles the python and javascript components. The initialize method will be called each additional time the app is updated (including once in the create method), but the PlotObject infrastructure will find that the object already exists in any future calls, and will not create a new object. Kwargs: df (DataFrame): the data to use in the crossfilter app plot_type (str, optional): starting plot type agg (str, optional): starting aggregation type """ obj = cls(**kwargs) obj.set_metadata() choices = obj.make_plot_choices() obj.update_plot_choices(choices) obj.set_plot() obj.set_input_selector() return obj def set_input_selector(self): """Creates and configures each selector (drop-down menu).""" col_names = [x['name'] for x in self.columns] col_names.append('None') self.plot_selector = Select.create( title="PlotType", name="plot_type", value=self.plot_type, options=["line", "scatter", "bar"], ) self.x_selector = Select.create( name="x", value=self.x, options=col_names, ) self.y_selector = Select.create( name="y", value=self.y, options=col_names, ) self.agg_selector = Select.create( name='agg', value=self.agg, options=['sum', 'mean', 'last', 'count', 'percent'], ) def update_plot_choices(self, input_dict): """Sets object attributes corresponding to input_dict's values. Args: input_dict (dict): dict with x, y, and plot_type keys """ for k, v in input_dict.items(): if getattr(self, k) is None: setattr(self, k, v) def get_plot_class(self): """Return the class for the current plot selection.""" return self.plot_map[self.plot_type] def column_descriptor_dict(self): """Creates column stats dict with keys of column names. Returns: dict: dict with key per column in data, where values are column stats """ column_descriptors = {} for x in self.columns: column_descriptors[x['name']] = x return column_descriptors @property def continuous_columns(self): """Returns list of column descriptors for the non-Discrete columns. Returns: list(dict): list of dicts, containing metadata about columns """ return [x for x in self.columns if x['type'] != 'DiscreteColumn'] @property def discrete_columns(self): """Returns list of column descriptors for the Discrete columns. Returns: list(dict): list of dicts, containing metadata about columns """ return [x for x in self.columns if x['type'] == 'DiscreteColumn'] def make_plot_choices(self): """Selects first two continuous columns for x,y during initial setup Returns: dict: x, y, and plot_type keys and values for initial setup """ # prefer continuous columns to initialize with, otherwise use what we have if len(self.continuous_columns) > 1: x, y = [x['name'] for x in self.continuous_columns[:2]] else: x, y = [x['name'] for x in self.columns[:2]] return {'x': x, 'y': y, 'plot_type': 'scatter'} def set_plot(self): """Makes and sets the plot based on the current configuration of app.""" self.update_xy_ranges(source=self.df) plot = self.make_plot() self.plot = plot curdoc()._add_all() def make_plot(self): """Makes the correct plot layout type, based on app's current config. Returns: PlotObject: one plot, grid of plots, or tabs of plots/grids of plots """ if self.facet_tab: facets = self.make_facets(dimension='tab') # generate a list of panels, containing plot/plots for each facet tabs = [self.make_tab(content=self.create_plot_page( tab_facet=facet), tab_label=self.facet_title(facet)) for facet in facets] return Tabs(tabs=tabs) else: return self.create_plot_page() def create_plot_page(self, tab_facet=None): """Generates a single visible page of a plot or plots. Args: tab_facet (DiscreteFacet or ContinuousFacet): a facet to filter on Returns: PlotObject: a single or grid of plots """ # no faceting if all([len(self.facet_x) == 0, len(self.facet_y) == 0]): plot_page = self.make_single_plot(facet=tab_facet) # x xor y faceting if all([(len(self.facet_x) != 0) ^ (len(self.facet_y) != 0)]): plot_page = self.make_1d_facet_plot(facet=tab_facet) # x and y faceting if all([len(self.facet_x) != 0, len(self.facet_y) != 0]): plot_page = self.make_2d_facet_plot(facet=tab_facet) if isinstance(plot_page, GridPlot): self.apply_grid_style(plot_page) return plot_page @staticmethod def make_tab(content, tab_label): """Creates a container for the contents of a tab. Args: content (PlotObject): the primary content of the tab tab_label (str): the text to place in the tab Returns: Panel: represents a single tab in a group of tabs """ return Panel(child=content, title=tab_label) def make_facets(self, dimension): """Creates combination of all facets for the provided dimension Args: dimension (str): name of the dimension to create facets for Returns: list(list(DiscreteFacet or ContinuousFacet)): list of list of unique facet combinations """ if dimension == 'x': facets = self.facet_x elif dimension == 'y': facets = self.facet_y else: facets = self.facet_tab # create facets for each column column_descriptor_dict = self.column_descriptor_dict() all_facets = [[]] for field in facets: # create facets from discrete columns if column_descriptor_dict[field]['type'] == 'DiscreteColumn': field_facets = [DiscreteFacet(field, val) for val in np.unique(self.df[field].values)] # combine any facets as required all_facets = cross(all_facets, field_facets) else: # create quantile based discrete data and pairs of bins categorical, bins = pd.qcut(self.df[field], 4, retbins=True) cats = categorical.cat.categories bins = [[bins[idx], bins[idx + 1]] for idx in range(len(bins) - 1)] bins[0][0] = None # create list of facets field_facets = [ContinuousFacet(field, value, bin) for bin, value in zip(bins, cats)] # combine any facets as required all_facets = cross(all_facets, field_facets) return all_facets @staticmethod def facet_title(facets): """Joins list of facets by commas. Args: facets (list(DiscreteFacet or ContinuousFacet)): list of facets, which are a combination of column and unique value within it Returns: str: string representation of the combination of facets """ title = ",".join([str(x) for x in facets]) return title def facet_data(self, facets, df=None): """Filters data to the rows associated with the given facet. Args: facets (list(DiscreteFacet or ContinuousFacet)): list of facets, which are a combination of column and unique value within it df (DataFrame, optional): data to be filtered on Returns: DataFrame: filtered DataFrame based on provided facets """ if df is None: df = self.filtered_df for f in facets: df = f.filter(df) return df def make_1d_facet_plot(self, facet=None): """Creates the faceted plots when a facet is added to the x axis. Returns: GridPlot: a grid of plots, where each plot has subset of data """ if self.facet_x: all_facets = self.make_facets('x') else: all_facets = self.make_facets('y') plots = [] # loop over facets and create single plots for data subset for facets in all_facets: title = self.facet_title(facets) if facet: facets += facet df = self.facet_data(facets, self.filtered_df) plot = self.make_single_plot( df=df, title=title, plot_height=200, plot_width=200, tools="pan,wheel_zoom,reset", facet=facets ) # append single plot to list of plots plots.append(plot) # create squarish grid based on number of plots chunk_size = int(np.ceil(np.sqrt(len(plots)))) # create list of lists of plots, where each list of plots is a row grid_plots = [] for i in range(0, len(plots), chunk_size): chunk = plots[i:i + chunk_size] grid_plots.append(chunk) self.hide_internal_axes(grid_plots) # return the grid as the plot return GridPlot(children=grid_plots, plot_width=200*chunk_size) def make_2d_facet_plot(self, facet=None): """Creates the grid of plots when there are both x and y facets. Returns: GridPlot: grid of x and y facet combinations """ # ToDo: gracefully handle large combinations of facets all_facets_x = self.make_facets('x') all_facets_y = self.make_facets('y') grid_plots = [] # y faceting down column for facets_y in all_facets_y: # x faceting across row row = [] for facets_x in all_facets_x: # build the facets and title facets = facets_x + facets_y title = self.facet_title(facets) # must filter by any extra facets provided for facet tab if facet: filter_facets = facets + facet else: filter_facets = facets df = self.facet_data(filter_facets, self.filtered_df) plot = self.make_single_plot( df=df, title=title, plot_height=200, plot_width=200, tools="pan,wheel_zoom,reset", facet=facets ) row.append(plot) # append the row to the list of rows grid_plots.append(row) self.hide_internal_axes(grid_plots) # return the grid of plots as the plot return GridPlot(children=grid_plots, plot_width=200*len(all_facets_x)) @staticmethod def apply_facet_style(plot): """Applies facet-specific style for a given plot. Override this method to modify the look of a customized CrossFilter for all plugins. Or, apply custom styles in the plugin, since the plugin will be told if it is currently being faceted. """ plot.title_text_font_size = "9pt" plot.min_border = 0 def apply_single_plot_style(self, plot): """Applies styles when we have only one plot. Override this method to modify the look of a customized CrossFilter for all plugins. """ plot.min_border_left = 60 def apply_grid_style(self, grid_plot): """Applies facet-specific style for the grid of faceted plots. Override this method to modify the look of a customized CrossFilter for all plugins. Or, apply custom styles in the plugin, since the plugin will be told if it is currently being faceted. """ grid_plot.title_text_font_size = "12pt" grid_plot.title_text_font_style = "bold" grid_plot.title = self.title @staticmethod def hide_internal_axes(grid_plots): """Hides the internal axes for a grid of plots. Args: grid_plots (list(list(Figure))): list of rows (list), containing plots """ for i, row in enumerate(grid_plots): is_bottom = i + 1 == len(grid_plots) for j, plot in enumerate(row): if j != 0: if is_bottom: hide_axes(plot, axes='y') else: hide_axes(plot) elif j == 0 and not is_bottom: hide_axes(plot, axes='x') def make_single_plot(self, df=None, title=None, plot_width=700, plot_height=680, tools="pan,wheel_zoom,box_zoom,save,resize," "box_select,reset", facet=None): """Creates a plot based on the current app configuration. Args: df (DataFrame, optional): data to use for the plot title (str, optional): plot title plot_width (float, optional): width of plot in pixels plot_height (float, optional): height of plot in pixels tools (str, optional): comma separated string of tool names Returns: PlotObject: the generated plot """ faceting = False # df is not provided when we are not faceting if df is None: source = self.filtered_data else: df = self.facet_data(facets=facet, df=df) # create column data source with filtered df source = ColumnDataSource(data=df) faceting = True # check for tab faceting and filter if provided if facet: df = self.facet_data(facets=facet, df=df) source = ColumnDataSource(data=df) # get the helper class for the plot type selected plot_class = self.get_plot_class() # initialize the plugin class plugin = plot_class(source=source, title_text_font_size="12pt", title_text_font_style = "bold", plot_height=plot_height, plot_width=plot_width, tools=tools, title=title, x_range=self.x_range, y_range=self.y_range, facet=faceting, crossfilter=self) # generate plot plot = plugin.get_plot() # apply faceting-specific styling if required if facet: self.apply_facet_style(plot) self.title = plugin.title else: self.apply_single_plot_style(plot) self.title = plot.title return plot def update_xy_ranges(self, source): """Updates common x_range, y_range to use for creating figures. Args: source (ColumnDataSource): the source to return correct range for """ plt_cls = self.get_plot_class() x_range, y_range = plt_cls.make_xy_ranges(cf=self) # store x and y range from the plot class self.x_range = x_range self.y_range = y_range def plot_attribute_change(self, obj, attrname, old, new): """Updates app's attribute and plot when view configuration changes. Args: obj (Widget): the object that has an attribute change attrname (str): name of the attribute old (type): the previous value of unknown type new (type): the new value of unknown type """ setattr(self, obj.name, new) self.set_plot() def facet_change(self, obj, attrname, old, new): """Updates plot when any facet configuration changes. Args: obj (Widget): the object that has an attribute change attrname (str): name of the attribute old (type): the previous value of unknown type new (type): the new value of unknown type """ self.set_plot() @property def df(self): """The core data that is used by the app for plotting. Returns: DataFrame: the original data structure """ if hasattr(self, '_df'): return self._df else: if self.data: return self.data.to_df() @property def filtered_df(self): """The subset of the data to use for plotting. Returns: DataFrame: the original data structure """ if hasattr(self, '_df'): return self._df else: if self.filtered_data: return self.filtered_data.to_df() def update(self, **kwargs): """Updates CrossFilter attributes each time the model changes. The events are setup each time so that we can add event handlers to the selection/filtering widgets as they are added. """ super(CrossFilter, self).update(**kwargs) self.setup_events() def setup_events(self): """Registers events each time the app changes state.""" # watch the app's filtering_columns attribute to setup filters self.on_change('filtering_columns', self, 'setup_filter_widgets') # register any available filter widget for obj in self.filter_widgets.values(): if isinstance(obj, InputWidget): obj.on_change('value', self, 'handle_filter_selection') # watch app column data source attribute for changes for obj in self.filter_sources.values(): obj.on_change('selected', self, 'handle_filter_selection') # selector event registration if self.plot_selector: self.plot_selector.on_change('value', self, 'plot_attribute_change') if self.x_selector: self.x_selector.on_change('value', self, 'plot_attribute_change') if self.y_selector: self.y_selector.on_change('value', self, 'plot_attribute_change') if self.agg_selector: self.agg_selector.on_change('value', self, 'plot_attribute_change') # register to watch the app's facet attributes self.on_change('facet_x', self, 'facet_change') self.on_change('facet_y', self, 'facet_change') self.on_change('facet_tab', self, 'facet_change') def handle_filter_selection(self, obj, attrname, old, new): """Filters the data source whenever a filter widget changes. Args: obj (Widget): the object that has an attribute change attrname (str): name of the attribute old (type): the previous value of unknown type new (type): the new value of unknown type """ df = self.df # loop over the column metadata for descriptor in self.columns: colname = descriptor['name'] # handle discrete selections if descriptor['type'] == 'DiscreteColumn' and \ colname in self.filter_widgets: selected = self.filter_widgets[colname].value if not selected: continue if isinstance(selected, six.string_types): df = df[colname == selected] else: df = df[np.in1d(df[colname], selected)] # handle time or continuous selections elif descriptor['type'] in ('TimeColumn', 'ContinuousColumn') and \ colname in self.filter_widgets: obj = self.filter_sources[colname] # hack because we don't have true range selection if not obj.selected: continue # TODO: (bev) This works until CF selections are not made on # [multi]lines and [multi]patches min_idx = np.min(obj.selected['1d']['indices']) max_idx = np.max(obj.selected['1d']['indices']) min_val = obj.data['centers'][min_idx] max_val = obj.data['centers'][max_idx] df = df[(df[colname] >= min_val) & (df[colname] <= max_val)] # update filtered data and force plot update for colname in self.data.column_names: self.filtered_data.data[colname] = df[colname] self.filtered_data._dirty = True self.set_plot() def clear_selections(self, obj, attrname, old, new): """Updates filter widgets and sources as they are removed. Args: obj (Widget): the object that has an attribute change attrname (str): name of the attribute old (type): the previous value of unknown type new (type): the new value of unknown type """ diff = set(old) - set(new) column_descriptor_dict = self.column_descriptor_dict() # delete any removed filter widgets if len(diff) > 0: for col in diff: metadata = column_descriptor_dict[col] if metadata['type'] != 'DiscreteColumn': del self.filter_sources[col] del self.filter_widgets[col] # update the data based on latest changes if diff: self.handle_filter_selection(obj, attrname, old, new) def setup_filter_widgets(self, obj, attrname, old, new): """Creates new filter widget each time a new column is added to filters. Args: obj (Widget): the object that has an attribute change attrname (str): name of the attribute old (type): the previous value of unknown type new (type): the new value of unknown type """ self.clear_selections(obj, attrname, old, new) # add new widget as required for each column set to filter on column_descriptor_dict = self.column_descriptor_dict() for col in self.filtering_columns: metadata = column_descriptor_dict[col] if not col in self.filter_widgets: # discrete if metadata['type'] == 'DiscreteColumn': select = MultiSelect.create( name=col, options=self.df[col].unique().tolist()) self.filter_widgets[col] = select # continuous else: source = make_histogram_source(self.df[col]) self.filter_sources[col] = source hist_plot = make_histogram(self.filter_sources[col], plot_width=200, plot_height=100, title_text_font_size='8pt', tools='box_select' ) hist_plot.title = col self.filter_widgets[col] = hist_plot curdoc()._add_all() def set_metadata(self): """Creates a list of dicts, containing summary info for each column. The descriptions are stored in the ``columns`` property. """ descriptors = [] columns = self.df.columns for c in columns: # get description for column from pandas DataFrame desc = self.df[c].describe() # DiscreteColumn if self.df[c].dtype == object: descriptors.append({ 'type': "DiscreteColumn", 'name': c, 'count': desc['count'], 'unique': desc['unique'], 'top': desc['top'], 'freq': desc['freq'], }) # TimeColumn elif self.df[c].dtype == np.datetime64: descriptors.append({ 'type': "TimeColumn", 'name': c, 'count': desc['count'], 'unique': desc['unique'], 'first': desc['first'], 'last': desc['last'], }) # ContinuousColumn else: descriptors.append({ 'type': "ContinuousColumn", 'name': c, 'count': desc['count'], 'mean': "%.2f"%desc['mean'], 'std': "%.2f"%desc['std'], 'min': "%.2f"%desc['min'], 'max': "%.2f"%desc['max'], }) self.columns = descriptors
bsd-3-clause
lamastex/scalable-data-science
db/week9/18_sparklingTensorFlow/034_SampleML_SparkTensorFlow.py
2
18640
# Databricks notebook source exported at Tue, 28 Jun 2016 09:51:56 UTC # MAGIC %md # MAGIC # MAGIC # [Scalable Data Science](http://www.math.canterbury.ac.nz/~r.sainudiin/courses/ScalableDataScience/) # MAGIC # MAGIC # MAGIC ### prepared by [Paul Brouwers](https://www.linkedin.com/in/paul-brouwers-5365117a), [Raazesh Sainudiin](https://nz.linkedin.com/in/raazesh-sainudiin-45955845) and [Sivanand Sivaram](https://www.linkedin.com/in/sivanand) # MAGIC # MAGIC *supported by* [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/databricks_logoTM_200px.png)](https://databricks.com/) # MAGIC and # MAGIC [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/AWS_logoTM_200px.png)](https://www.awseducate.com/microsite/CommunitiesEngageHome) # COMMAND ---------- # MAGIC %md # MAGIC The [html source url](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/db/week9/18_sparklingTensorFlow/034_SampleML_SparkTensorFlow.html) of this databricks notebook and its recorded Uji ![Image of Uji, Dogen's Time-Being](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/UjiTimeBeingDogen.png "uji"): # MAGIC # MAGIC [![sds/uji/week9/18_sparklingTensorFlow/034_SampleML_SparkTensorFlow](http://img.youtube.com/vi/iDyeK3GvFpo/0.jpg)](https://www.youtube.com/v/iDyeK3GvFpo?rel=0&autoplay=1&modestbranding=1&start=4844) # COMMAND ---------- # MAGIC %md # MAGIC # Distributed labeling of images using TensorFlow # MAGIC # MAGIC **Home work** notebook for week 9. # MAGIC # MAGIC This is essentially a tested copy of the databricks community edition notebook: # MAGIC # MAGIC * [https://docs.cloud.databricks.com/docs/latest/sample_applications/index.html#Sample%20ML/SparkTensorFlow.html](https://docs.cloud.databricks.com/docs/latest/sample_applications/index.html#Sample%20ML/SparkTensorFlow.html) # MAGIC # MAGIC This tutorial shows how to run TensorFlow models using Spark and Databricks. At the end of this tutorial, you will be able to classify images on a Spark cluster, using a neural network. # MAGIC # MAGIC TensorFlow is a new framework released by Google for numerical computations and neural networks. TensorFlow models can directly be embedded within pipelines to perform complex recognition tasks on datasets. This tutorial shows how to label a set of images, from a stock neural network model that was already trained. # MAGIC # MAGIC If the **classClusterTensorFlow** cluster is running already then you can just attach this notebook to it and start carrying on with this tutorial. # MAGIC # MAGIC > This notebook should work on the cluster named **classClusterTensorFlow** on this shard (either attach your notebook to this cluster or create and attach to a cluster named classClusterTensorFlow as instructed in the companion notebook `033_SetupCluster_SparkTensorFlow`). If you want to run this script on a larger cluster, you need to follow the [setup instructions in this notebook](https://databricks-staging-cloudfront.staging.cloud.databricks.com/public/c65da9a2fa40e45a2028cddebe45b54c/8637560089690848/619805605040471/6977722904629137/d77d0d1390.html). # MAGIC # MAGIC This tutorial is adapted from the tutorial published by Google on the [official TensorFlow website](http://www.tensorflow.org). # COMMAND ---------- # MAGIC %md # MAGIC Let's sky-dive into [official TensorFlow website](http://www.tensorflow.org) to get a view from the "stratosphere" with enough oxygen :) # COMMAND ---------- # MAGIC %md # MAGIC ### Installing TensorFlow # MAGIC # MAGIC The TensorFlow library needs to be installed directly on the nodes of the cluster. Running the next cell installs it on your cluster if it is not there already. Running this command may take one minute or more. # COMMAND ---------- try: import tensorflow as tf print "TensorFlow is already installed" except ImportError: print "Installing TensorFlow" import subprocess subprocess.check_call(["/databricks/python/bin/pip", "install", "https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.6.0-cp27-none-linux_x86_64.whl"]) print "TensorFlow has been installed on this cluster" # COMMAND ---------- # MAGIC %md # MAGIC TensorFlow runs as a regular Python library. The following command runs a very simple TensorFlow program. # COMMAND ---------- def my_function(i): import tensorflow as tf with tf.Session(): return tf.constant("Hello, TensorFlow!").eval() print sc.parallelize(range(5)).map(my_function).collect() # COMMAND ---------- # MAGIC %md # MAGIC ### Labeling images # MAGIC # MAGIC We are now going to take an existing neural network model that has already been trained on a large corpus (the Inception V3 model), and we are going to apply it to images downloaded from the internet. # MAGIC # MAGIC The code in the next cell contains some utility functions to download this model from the internet. For the purpose of this notebook it is not critical to understand what it is doing. # COMMAND ---------- # Imports: import numpy as np import tensorflow as tf import os from tensorflow.python.platform import gfile import os.path import re import sys import tarfile from subprocess import Popen, PIPE, STDOUT from six.moves import urllib def run(cmd): p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) return p.stdout.read() from PIL import Image import matplotlib.image as mpimg import matplotlib.pyplot as plt # All the constants to run this notebook. model_dir = '/tmp/imagenet' image_file = "" num_top_predictions = 5 DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' # ?modify this to IMAGES_INDEX_URL = 'http://image-net.org/imagenet_data/urls/imagenet_fall11_urls.tgz' # ? modify this # The number of images to process. image_batch_size = 10 max_content = 5000L # Downloading functions: def read_file_index(): """Reads the index file from ImageNet (up to a limit), and returns the content (pairs of image id, image url) grouped in small batches. """ from six.moves import urllib content = urllib.request.urlopen(IMAGES_INDEX_URL) data = content.read(max_content) tmpfile = "/tmp/imagenet.tgz" with open(tmpfile, 'wb') as f: f.write(data) run("tar -xOzf %s > /tmp/imagenet.txt" % tmpfile) with open("/tmp/imagenet.txt", 'r') as f: lines = [l.split() for l in f] input_data = [tuple(elts) for elts in lines if len(elts) == 2] return [input_data[i:i+image_batch_size] for i in range(0,len(input_data), image_batch_size)] def load_lookup(): """Loads a human readable English name for each softmax node. Returns: dict from integer node ID to human-readable string. """ label_lookup_path = os.path.join(model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') uid_lookup_path = os.path.join(model_dir, 'imagenet_synset_to_human_label_map.txt') if not gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r'[n\d]*[ \S,]*') for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def maybe_download_and_extract(): """Download and extract model tar file.""" from six.moves import urllib dest_directory = model_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): filepath2, _ = urllib.request.urlretrieve(DATA_URL, filepath) print("filepath2", filepath2) statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory) else: print('Data already downloaded:', filepath, os.stat(filepath)) def display_image(url): """Downloads an image from a URL and displays it in Databricks.""" filename = url.split('/')[-1] filepath = os.path.join(model_dir, filename) urllib.request.urlretrieve(url, filepath) image = os.path.join(model_dir, filename) image_png = image.replace('.jpg','.png') Image.open(image).save(image_png,'PNG') img = mpimg.imread(image_png) plt.imshow(img) display() # COMMAND ---------- # MAGIC %md # MAGIC The following cell downloads the data from the internet and loads the model in memory: # COMMAND ---------- maybe_download_and_extract() node_lookup = load_lookup() model_path = os.path.join(model_dir, 'classify_image_graph_def.pb') with gfile.FastGFile(model_path, 'rb') as f: model_data = f.read() # COMMAND ---------- # MAGIC %md # MAGIC We are now going to download some image URLs from the [ImageNet](http://image-net.org) project. ImageNet is a large collection of images from the internet that is commonly used as a benchmark in image recognition tasks. # COMMAND ---------- batched_data = read_file_index() num_images = sum([len(batch) for batch in batched_data]) print "There are %d images grouped in %d batches" % (num_images, len(batched_data)) # COMMAND ---------- # MAGIC %md # MAGIC The labeling process can now start. We are going to use Spark to schedule the labeling of the images across our cluster, using TensorFlow. # MAGIC # MAGIC The neural network model is quite large (250MB), so we will share it across the cluster using Spark's broadcasting mechanism: once it is loaded onto a machine, it will not be loaded again. # COMMAND ---------- node_lookup_bc = sc.broadcast(node_lookup) model_data_bc = sc.broadcast(model_data) # COMMAND ---------- # MAGIC %md # MAGIC We can now write the code that runs on each executor. It is split into two methods: # MAGIC - the function `run_image` that takes a TensorFlow session already containing the graph of computations as well as a URL. This function fetches the image from the internet, passes it to the neural network and returns the list of predictions for this method # MAGIC - the function `run_image_batch` that takes a set or URLs returns predictions for each of them. This is the function called by Spark. For efficiency reasons, it loads the graph of computations once before running the whole batch of images sequentially. # COMMAND ---------- # Functions: run_image and run_image_batch def run_image(sess, img_id, img_url, node_lookup): """Fetches an image from the web and uses the trained neural network to infer the topics of this image.""" from six.moves import urllib from urllib2 import HTTPError try: image_data = urllib.request.urlopen(img_url, timeout=1.0).read() softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) except HTTPError: return (img_id, img_url, None) except: # a) The data returned may be invalid JPEG # b) The download may time out return (img_id, img_url, None) predictions = np.squeeze(predictions) top_k = predictions.argsort()[-num_top_predictions:][::-1] scores = [] for node_id in top_k: if node_id not in node_lookup: human_string = '' else: human_string = node_lookup[node_id] score = predictions[node_id] scores.append((human_string, score)) return (img_id, img_url, scores) def apply_batch(batch): with tf.Graph().as_default() as g: graph_def = tf.GraphDef() graph_def.ParseFromString(model_data_bc.value) tf.import_graph_def(graph_def, name='') with tf.Session() as sess: labelled = [run_image(sess, img_id, img_url, node_lookup_bc.value) for (img_id, img_url) in batch] return [tup for tup in labelled if tup[2] is not None] # COMMAND ---------- # MAGIC %md # MAGIC Let us see how the function `run_image` performs with a portrait of [Grace Hopper](https://en.wikipedia.org/wiki/Grace_Hopper), one of the most famous women in Computer Sciences: # COMMAND ---------- url = "https://upload.wikimedia.org/wikipedia/commons/5/55/Grace_Hopper.jpg" display_image(url) # COMMAND ---------- # MAGIC %md # MAGIC Here is the inference results we get for this image, which is quite accurate: # COMMAND ---------- with tf.Graph().as_default() as g: graph_def = tf.GraphDef() graph_def.ParseFromString(model_data) tf.import_graph_def(graph_def, name='') with tf.Session() as sess: res = run_image(sess, None, url, node_lookup)[-1] for (keyword, weight) in res: print '{:.8}: {}'.format(str(weight), keyword) # COMMAND ---------- # MAGIC %md # MAGIC This code is now going to be run on the dataset using Spark: # COMMAND ---------- # MAGIC %md # MAGIC Two Runs with just 8 nodes of size 6GB RAM per node. # COMMAND ---------- urls = sc.parallelize(batched_data, numSlices=len(batched_data)) labelled_images = urls.flatMap(apply_batch) local_labelled_images = labelled_images.collect() # COMMAND ---------- urls = sc.parallelize(batched_data, numSlices=len(batched_data)) labelled_images = urls.flatMap(apply_batch) local_labelled_images = labelled_images.collect() # COMMAND ---------- # MAGIC %md # MAGIC Now let us just change the cluster settings (`Clusters -> Configure ... ` and use dropdown menu and change number of nodes to 4). # COMMAND ---------- # MAGIC %md # MAGIC Run with just 4 nodes. # COMMAND ---------- urls = sc.parallelize(batched_data, numSlices=len(batched_data)) labelled_images = urls.flatMap(apply_batch) local_labelled_images = labelled_images.collect() # COMMAND ---------- urls = sc.parallelize(batched_data, numSlices=len(batched_data)) labelled_images = urls.flatMap(apply_batch) local_labelled_images = labelled_images.collect() # COMMAND ---------- # MAGIC %md # MAGIC Let us have a look at one of the images we just classified: # COMMAND ---------- (_, url, tags) = local_labelled_images[5] display_image(url) # COMMAND ---------- tags # COMMAND ---------- # MAGIC %md # MAGIC **You Try** changing one of the images by changing '50' below to some number between 0 and 109. # COMMAND ---------- len(local_labelled_images) # COMMAND ---------- (_, url, tags) = local_labelled_images[15] display_image(url) # COMMAND ---------- tags # COMMAND ---------- # MAGIC %md This is the end of this tutorial. You can clone this tutorial and modify it to suit your needs. Enjoy! # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC *** # MAGIC *** # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # Scalable Object Recognition in the Cloud for a Swarm of Robots # MAGIC ### Date: 9:45 am - 5:00 pm, Tuesday June 21, 2016 # MAGIC ### Co-organization: IEEE RAS NZ Chapter, CLAWAR, University of Canterbury, University of Lincoln # MAGIC ### Venue: Room KF7, Kirkwood Village, University of Canterbury, Kirkwood Avenue, Christchurch, New Zealand # MAGIC #### by Raazesh Sainudiin done as a student project (near live) # COMMAND ---------- # MAGIC %md # MAGIC * Google used GPUs to train the model we saw earlier # MAGIC * Use the best tool for the job but use Spark to integrate predictions from multiple images streaming in from a swarm of robots, for example. # COMMAND ---------- # MAGIC %md # MAGIC #### Can we load the pre-trained model into flying drones to let them scout out which trees have fruits ready for picking? # MAGIC # MAGIC Let's get some apple images (and try other fruits too) to test model identification capabilities from a google search on images for: # MAGIC * "fruit trees", "unripe fruit trees", etc. # MAGIC * finding the url of the image and feeding it to the pre-trained model, # MAGIC * and seeing how well the pre-trained model does. # COMMAND ---------- url = "http://static1.squarespace.com/static/548b6971e4b0af3bfe38cd6f/t/56a7d76c42f5526d030146c8/1462916503492/Fruit-Tree-Apple-Tree.jpg" display_image(url) # COMMAND ---------- with tf.Graph().as_default() as g: graph_def = tf.GraphDef() graph_def.ParseFromString(model_data) tf.import_graph_def(graph_def, name='') with tf.Session() as sess: res = run_image(sess, None, url, node_lookup)[-1] for (keyword, weight) in res: print '{:.8}: {}'.format(str(weight), keyword) # COMMAND ---------- # MAGIC %md # MAGIC The results don't look too great at identifying the apples. # MAGIC # MAGIC You can train your own model with your own training data for a more specific machine vision / object-identification task. See for example: # MAGIC * [https://github.com/tensorflow/models/tree/master/inception](https://github.com/tensorflow/models/tree/master/inception). # MAGIC # MAGIC One can even combine this with map-matching done in Week10 to make an atlas of indentified objects if these pre-trained models are inside a swarm of flying drones with GPS locations that are map-matched, for instance. # COMMAND ---------- # MAGIC %md # MAGIC # MAGIC # [Scalable Data Science](http://www.math.canterbury.ac.nz/~r.sainudiin/courses/ScalableDataScience/) # MAGIC # MAGIC # MAGIC ### prepared by [Paul Brouwers](https://www.linkedin.com/in/paul-brouwers-5365117a), [Raazesh Sainudiin](https://nz.linkedin.com/in/raazesh-sainudiin-45955845) and [Sivanand Sivaram](https://www.linkedin.com/in/sivanand) # MAGIC # MAGIC *supported by* [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/databricks_logoTM_200px.png)](https://databricks.com/) # MAGIC and # MAGIC [![](https://raw.githubusercontent.com/raazesh-sainudiin/scalable-data-science/master/images/AWS_logoTM_200px.png)](https://www.awseducate.com/microsite/CommunitiesEngageHome)
unlicense
yxiong/xy_python_utils
xy_python_utils/quaternion.py
1
4627
#!/usr/bin/env python # # Author: Ying Xiong. # Created: Mar 18, 2014. """Utility functions for quaternion and spatial rotation. A quaternion is represented by a 4-vector `q` as:: q = q[0] + q[1]*i + q[2]*j + q[3]*k. The validity of input to the utility functions are not explicitly checked for efficiency reasons. ======== ================================================================ Abbr. Meaning ======== ================================================================ quat Quaternion, 4-vector. vec Vector, 3-vector. ax, axis Axis, 3- unit vector. ang Angle, in unit of radian. rot Rotation. rotMatx Rotation matrix, 3x3 orthogonal matrix. HProd Hamilton product. conj Conjugate. recip Reciprocal. ======== ================================================================ """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np def quatConj(q): """Return the conjugate of quaternion `q`.""" return np.append(q[0], -q[1:]) def quatHProd(p, q): """Compute the Hamilton product of quaternions `p` and `q`.""" r = np.array([p[0]*q[0] - p[1]*q[1] - p[2]*q[2] - p[3]*q[3], p[0]*q[1] + p[1]*q[0] + p[2]*q[3] - p[3]*q[2], p[0]*q[2] - p[1]*q[3] + p[2]*q[0] + p[3]*q[1], p[0]*q[3] + p[1]*q[2] - p[2]*q[1] + p[3]*q[0]]) return r def quatRecip(q): """Compute the reciprocal of quaternion `q`.""" return quatConj(q) / np.dot(q,q) def quatFromAxisAng(ax, theta): """Get a quaternion that performs the rotation around axis `ax` for angle `theta`, given as:: q = (r, v) = (cos(theta/2), sin(theta/2)*ax). Note that the input `ax` needs to be a 3x1 unit vector.""" return np.append(np.cos(theta/2), np.sin(theta/2)*ax) def quatFromRotMatx(R): """Get a quaternion from a given rotation matrix `R`.""" q = np.zeros(4) q[0] = ( R[0,0] + R[1,1] + R[2,2] + 1) / 4.0 q[1] = ( R[0,0] - R[1,1] - R[2,2] + 1) / 4.0 q[2] = (-R[0,0] + R[1,1] - R[2,2] + 1) / 4.0 q[3] = (-R[0,0] - R[1,1] + R[2,2] + 1) / 4.0 q[q<0] = 0 # Avoid complex number by numerical error. q = np.sqrt(q) q[1] *= np.sign(R[2,1] - R[1,2]) q[2] *= np.sign(R[0,2] - R[2,0]) q[3] *= np.sign(R[1,0] - R[0,1]) return q def quatToRotMatx(q): """Get a rotation matrix from the given unit quaternion `q`.""" R = np.zeros((3,3)) R[0,0] = 1 - 2*(q[2]**2 + q[3]**2) R[1,1] = 1 - 2*(q[1]**2 + q[3]**2) R[2,2] = 1 - 2*(q[1]**2 + q[2]**2) R[0,1] = 2 * (q[1]*q[2] - q[0]*q[3]) R[1,0] = 2 * (q[1]*q[2] + q[0]*q[3]) R[0,2] = 2 * (q[1]*q[3] + q[0]*q[2]) R[2,0] = 2 * (q[1]*q[3] - q[0]*q[2]) R[1,2] = 2 * (q[2]*q[3] - q[0]*q[1]) R[2,1] = 2 * (q[2]*q[3] + q[0]*q[1]) return R def rotVecByQuat(u, q): """Rotate a 3-vector `u` according to the quaternion `q`. The output `v` is also a 3-vector such that:: [0; v] = q * [0; u] * q^{-1} with Hamilton product.""" v = quatHProd(quatHProd(q, np.append(0, u)), quatRecip(q)) return v[1:] def rotVecByAxisAng(u, ax, theta): """Rotate the 3-vector `u` around axis `ax` for angle `theta` (radians), counter-clockwisely when looking at inverse axis direction. Note that the input `ax` needs to be a 3x1 unit vector.""" q = quatFromAxisAng(ax, theta) return rotVecByQuat(u, q) def quatDemo(): # Rotation axis. ax = np.array([1.0, 1.0, 1.0]) ax = ax / np.linalg.norm(ax) # Rotation angle. theta = -5*np.pi/6 # Original vector. u = [0.5, 0.6, np.sqrt(3)/2]; u /= np.linalg.norm(u) # Draw the circle frame. nSamples = 1000 t = np.linspace(-np.pi, np.pi, nSamples) z = np.zeros(t.shape) fig = plt.figure() fig_ax = fig.add_subplot(111, projection="3d", aspect="equal") fig_ax.plot(np.cos(t), np.sin(t), z, 'b') fig_ax.plot(z, np.cos(t), np.sin(t), 'b') fig_ax.plot(np.cos(t), z, np.sin(t), 'b') # Draw rotation axis. fig_ax.plot([0, ax[0]*2], [0, ax[1]*2], [0, ax[2]*2], 'r') # Rotate the `u` vector and draw results. fig_ax.plot([0, u[0]], [0, u[1]], [0, u[2]], 'm') v = rotVecByAxisAng(u, ax, theta) fig_ax.plot([0, v[0]], [0, v[1]], [0, v[2]], 'm') # Draw the circle that is all rotations of `u` across `ax` with different # angles. v = np.zeros((3, len(t))) for i,theta in enumerate(t): v[:,i] = rotVecByAxisAng(u, ax, theta) fig_ax.plot(v[0,:], v[1,:], v[2,:], 'm') fig_ax.view_init(elev=8, azim=80) plt.show() if __name__ == "__main__": quatDemo()
mit
mblondel/scikit-learn
sklearn/linear_model/tests/test_sgd.py
3
44257
import pickle import unittest import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import raises from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_warns_message from sklearn import linear_model, datasets, metrics from sklearn.base import clone from sklearn.linear_model import SGDClassifier, SGDRegressor from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler class SparseSGDClassifier(SGDClassifier): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).fit(X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw) def decision_function(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).decision_function(X) def predict_proba(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).predict_proba(X) class SparseSGDRegressor(SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.decision_function(self, X, *args, **kw) # Test Data # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2; string class labels X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5], [1, 1], [0.75, 0.5], [1.5, 1.5], [-1, -1], [0, -0.5], [1, -1]]) Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3 T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]]) true_result2 = ["one", "two", "three"] # test sample 3 X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]]) Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) # test sample 4 - two more or less redundent feature groups X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0], [1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0], [0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1], [0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]]) Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) iris = datasets.load_iris() # test sample 5 - test sample 1 as binary classification problem X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y5 = [1, 1, 1, 2, 2, 2] true_result5 = [0, 1, 1] # Classification Test Case class CommonTest(object): def factory(self, **kwargs): if "random_state" not in kwargs: kwargs["random_state"] = 42 return self.factory_class(**kwargs) # a simple implementation of ASGD to use for testing # uses squared loss to find the gradient def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0): if weight_init is None: weights = np.zeros(X.shape[1]) else: weights = weight_init average_weights = np.zeros(X.shape[1]) intercept = intercept_init average_intercept = 0.0 decay = 1.0 # sparse data has a fixed decay of .01 if (isinstance(self, SparseSGDClassifierTestCase) or isinstance(self, SparseSGDRegressorTestCase)): decay = .01 for i, entry in enumerate(X): p = np.dot(entry, weights) p += intercept gradient = p - y[i] weights *= 1.0 - (eta * alpha) weights += -(eta * gradient * entry) intercept += -(eta * gradient) * decay average_weights *= i average_weights += weights average_weights /= i + 1.0 average_intercept *= i average_intercept += intercept average_intercept /= i + 1.0 return average_weights, average_intercept def _test_warm_start(self, X, Y, lr): # Test that explicit warm restart... clf = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf.fit(X, Y) clf2 = self.factory(alpha=0.001, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf2.fit(X, Y, coef_init=clf.coef_.copy(), intercept_init=clf.intercept_.copy()) # ... and implicit warm restart are equivalent. clf3 = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, warm_start=True, learning_rate=lr) clf3.fit(X, Y) assert_equal(clf3.t_, clf.t_) assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.001) clf3.fit(X, Y) assert_equal(clf3.t_, clf2.t_) assert_array_almost_equal(clf3.coef_, clf2.coef_) def test_warm_start_constant(self): self._test_warm_start(X, Y, "constant") def test_warm_start_invscaling(self): self._test_warm_start(X, Y, "invscaling") def test_warm_start_optimal(self): self._test_warm_start(X, Y, "optimal") def test_input_format(self): """Input format tests. """ clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) Y_ = np.array(Y)[:, np.newaxis] Y_ = np.c_[Y_, Y_] assert_raises(ValueError, clf.fit, X, Y_) def test_clone(self): """Test whether clone works ok. """ clf = self.factory(alpha=0.01, n_iter=5, penalty='l1') clf = clone(clf) clf.set_params(penalty='l2') clf.fit(X, Y) clf2 = self.factory(alpha=0.01, n_iter=5, penalty='l2') clf2.fit(X, Y) assert_array_equal(clf.coef_, clf2.coef_) def test_plain_has_no_average_attr(self): clf = self.factory(average=True, eta0=.01) clf.fit(X, Y) assert_true(hasattr(clf, 'average_coef_')) assert_true(hasattr(clf, 'average_intercept_')) assert_true(hasattr(clf, 'standard_intercept_')) assert_true(hasattr(clf, 'standard_coef_')) clf = self.factory() clf.fit(X, Y) assert_false(hasattr(clf, 'average_coef_')) assert_false(hasattr(clf, 'average_intercept_')) assert_false(hasattr(clf, 'standard_intercept_')) assert_false(hasattr(clf, 'standard_coef_')) def test_late_onset_averaging_not_reached(self): clf1 = self.factory(average=600) clf2 = self.factory() for _ in range(100): if isinstance(clf1, SGDClassifier): clf1.partial_fit(X, Y, classes=np.unique(Y)) clf2.partial_fit(X, Y, classes=np.unique(Y)) else: clf1.partial_fit(X, Y) clf2.partial_fit(X, Y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16) assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16) def test_late_onset_averaging_reached(self): eta0 = .001 alpha = .0001 Y_encode = np.array(Y) Y_encode[Y_encode == 1] = -1.0 Y_encode[Y_encode == 2] = 1.0 clf1 = self.factory(average=7, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=2, shuffle=False) clf2 = self.factory(average=0, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=1, shuffle=False) clf1.fit(X, Y_encode) clf2.fit(X, Y_encode) average_weights, average_intercept = \ self.asgd(X, Y_encode, eta0, alpha, weight_init=clf2.coef_.ravel(), intercept_init=clf2.intercept_) assert_array_almost_equal(clf1.coef_.ravel(), average_weights.ravel(), decimal=16) assert_almost_equal(clf1.intercept_, average_intercept, decimal=16) class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDClassifier def test_sgd(self): """Check that SGD gives any results :-)""" for loss in ("hinge", "squared_hinge", "log", "modified_huber"): clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True, loss=loss, n_iter=10, shuffle=True) clf.fit(X, Y) # assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7) assert_array_equal(clf.predict(T), true_result) @raises(ValueError) def test_sgd_bad_l1_ratio(self): """Check whether expected ValueError on bad l1_ratio""" self.factory(l1_ratio=1.1) @raises(ValueError) def test_sgd_bad_learning_rate_schedule(self): """Check whether expected ValueError on bad learning_rate""" self.factory(learning_rate="<unknown>") @raises(ValueError) def test_sgd_bad_eta0(self): """Check whether expected ValueError on bad eta0""" self.factory(eta0=0, learning_rate="constant") @raises(ValueError) def test_sgd_bad_alpha(self): """Check whether expected ValueError on bad alpha""" self.factory(alpha=-.1) @raises(ValueError) def test_sgd_bad_penalty(self): """Check whether expected ValueError on bad penalty""" self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): """Check whether expected ValueError on bad loss""" self.factory(loss="foobar") @raises(ValueError) def test_sgd_n_iter_param(self): """Test parameter validity check""" self.factory(n_iter=-10000) @raises(ValueError) def test_sgd_shuffle_param(self): """Test parameter validity check""" self.factory(shuffle="false") @raises(TypeError) def test_argument_coef(self): """Checks coef_init not allowed as model argument (only fit)""" # Provided coef_ does not match dataset. self.factory(coef_init=np.zeros((3,))).fit(X, Y) @raises(ValueError) def test_provide_coef(self): """Checks coef_init shape for the warm starts""" # Provided coef_ does not match dataset. self.factory().fit(X, Y, coef_init=np.zeros((3,))) @raises(ValueError) def test_set_intercept(self): """Checks intercept_ shape for the warm starts""" # Provided intercept_ does not match dataset. self.factory().fit(X, Y, intercept_init=np.zeros((3,))) def test_set_intercept_binary(self): """Checks intercept_ shape for the warm starts in binary case""" self.factory().fit(X5, Y5, intercept_init=0) def test_average_binary_computed_correctly(self): """Checks the SGDClassifier correctly computes the average weights""" eta = .1 alpha = 2. n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) # simple linear function without noise y = np.dot(X, w) y = np.sign(y) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) average_weights = average_weights.reshape(1, -1) assert_array_almost_equal(clf.coef_, average_weights, decimal=14) assert_almost_equal(clf.intercept_, average_intercept, decimal=14) def test_set_intercept_to_intercept(self): """Checks intercept_ shape consistency for the warm starts""" # Inconsistent intercept_ shape. clf = self.factory().fit(X5, Y5) self.factory().fit(X5, Y5, intercept_init=clf.intercept_) clf = self.factory().fit(X, Y) self.factory().fit(X, Y, intercept_init=clf.intercept_) @raises(ValueError) def test_sgd_at_least_two_labels(self): """Target must have at least two labels""" self.factory(alpha=0.01, n_iter=20).fit(X2, np.ones(9)) def test_partial_fit_weight_class_auto(self): """partial_fit with class_weight='auto' not supported""" assert_raises_regexp(ValueError, "class_weight 'auto' is not supported for " "partial_fit. In order to use 'auto' weights, " "use compute_class_weight\('auto', classes, y\). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.", self.factory(class_weight='auto').partial_fit, X, Y, classes=np.unique(Y)) def test_sgd_multiclass(self): """Multi-class test case""" clf = self.factory(alpha=0.01, n_iter=20).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_average(self): eta = .001 alpha = .01 """Multi-class average test case""" clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) np_Y2 = np.array(Y2) clf.fit(X2, np_Y2) classes = np.unique(np_Y2) for i, cl in enumerate(classes): y_i = np.ones(np_Y2.shape[0]) y_i[np_Y2 != cl] = -1 average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha) assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16) assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16) def test_sgd_multiclass_with_init_coef(self): """Multi-class test case""" clf = self.factory(alpha=0.01, n_iter=20) clf.fit(X2, Y2, coef_init=np.zeros((3, 2)), intercept_init=np.zeros(3)) assert_equal(clf.coef_.shape, (3, 2)) assert_true(clf.intercept_.shape, (3,)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_njobs(self): """Multi-class test case with multi-core support""" clf = self.factory(alpha=0.01, n_iter=20, n_jobs=2).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_set_coef_multiclass(self): """Checks coef_init and intercept_init shape for for multi-class problems""" # Provided coef_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2))) # Provided coef_ does match dataset clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2))) # Provided intercept_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, intercept_init=np.zeros((1,))) # Provided intercept_ does match dataset. clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,))) def test_sgd_proba(self): """Check SGD.predict_proba""" # Hinge loss does not allow for conditional prob estimate. # We cannot use the factory here, because it defines predict_proba # anyway. clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=10).fit(X, Y) assert_false(hasattr(clf, "predict_proba")) assert_false(hasattr(clf, "predict_log_proba")) # log and modified_huber losses can output probability estimates # binary case for loss in ["log", "modified_huber"]: clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X, Y) p = clf.predict_proba([3, 2]) assert_true(p[0, 1] > 0.5) p = clf.predict_proba([-1, -1]) assert_true(p[0, 1] < 0.5) p = clf.predict_log_proba([3, 2]) assert_true(p[0, 1] > p[0, 0]) p = clf.predict_log_proba([-1, -1]) assert_true(p[0, 1] < p[0, 0]) # log loss multiclass probability estimates clf = self.factory(loss="log", alpha=0.01, n_iter=10).fit(X2, Y2) d = clf.decision_function([[.1, -.1], [.3, .2]]) p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert_true(np.all(p[0] >= 0)) p = clf.predict_proba([-1, -1]) d = clf.decision_function([-1, -1]) assert_array_equal(np.argsort(p[0]), np.argsort(d[0])) l = clf.predict_log_proba([3, 2]) p = clf.predict_proba([3, 2]) assert_array_almost_equal(np.log(p), l) l = clf.predict_log_proba([-1, -1]) p = clf.predict_proba([-1, -1]) assert_array_almost_equal(np.log(p), l) # Modified Huber multiclass probability estimates; requires a separate # test because the hard zero/one probabilities may destroy the # ordering present in decision_function output. clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X2, Y2) d = clf.decision_function([3, 2]) p = clf.predict_proba([3, 2]) if not isinstance(self, SparseSGDClassifierTestCase): assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1)) else: # XXX the sparse test gets a different X2 (?) assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1)) # the following sample produces decision_function values < -1, # which would cause naive normalization to fail (see comment # in SGDClassifier.predict_proba) x = X.mean(axis=0) d = clf.decision_function(x) if np.all(d < -1): # XXX not true in sparse test case (why?) p = clf.predict_proba(x) assert_array_almost_equal(p[0], [1 / 3.] * 3) def test_sgd_l1(self): """Test L1 regularization""" n = len(X4) rng = np.random.RandomState(13) idx = np.arange(n) rng.shuffle(idx) X = X4[idx, :] Y = Y4[idx] clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False, n_iter=2000, shuffle=False) clf.fit(X, Y) assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,))) pred = clf.predict(X) assert_array_equal(pred, Y) # test sparsify with dense inputs clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) # pickle and unpickle with sparse coef_ clf = pickle.loads(pickle.dumps(clf)) assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) def test_class_weights(self): """ Test class weights. """ X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_equal_class_weight(self): """Test if equal class weights approx. equals no class weights. """ X = [[1, 0], [1, 0], [0, 1], [0, 1]] y = [0, 0, 1, 1] clf = self.factory(alpha=0.1, n_iter=1000, class_weight=None) clf.fit(X, y) X = [[1, 0], [0, 1]] y = [0, 1] clf_weighted = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X, y) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @raises(ValueError) def test_wrong_class_weight_label(self): """ValueError due to not existing class label.""" clf = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5}) clf.fit(X, Y) @raises(ValueError) def test_wrong_class_weight_format(self): """ValueError due to wrong class_weight argument type.""" clf = self.factory(alpha=0.1, n_iter=1000, class_weight=[0.5]) clf.fit(X, Y) def test_class_weight_warning(self): """Tests that class_weight passed through fit raises warning. This test should be removed after deprecating support for this""" clf = self.factory() warning_message = ("You are trying to set class_weight through the fit " "method, which is deprecated and will be removed in" "v0.17 of scikit-learn. Pass the class_weight into " "the constructor instead.") assert_warns_message(DeprecationWarning, warning_message, clf.fit, X4, Y4, class_weight=1) def test_weights_multiplied(self): """Tests that class_weight and sample_weight are multiplicative""" class_weights = {1: .6, 2: .3} sample_weights = np.random.random(Y4.shape[0]) multiplied_together = np.copy(sample_weights) multiplied_together[Y4 == 1] *= class_weights[1] multiplied_together[Y4 == 2] *= class_weights[2] clf1 = self.factory(alpha=0.1, n_iter=20, class_weight=class_weights) clf2 = self.factory(alpha=0.1, n_iter=20) clf1.fit(X4, Y4, sample_weight=sample_weights) clf2.fit(X4, Y4, sample_weight=multiplied_together) assert_array_equal(clf1.coef_, clf2.coef_) def test_auto_weight(self): """Test class weights for imbalanced data""" # compute reference metrics on iris dataset that is quite balanced by # default X, y = iris.data, iris.target X = scale(X) idx = np.arange(X.shape[0]) rng = np.random.RandomState(6) rng.shuffle(idx) X = X[idx] y = y[idx] clf = self.factory(alpha=0.0001, n_iter=1000, class_weight=None, shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf.predict(X), average='weighted'), 0.96, decimal=1) # make the same prediction using automated class_weight clf_auto = self.factory(alpha=0.0001, n_iter=1000, class_weight="auto", shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf_auto.predict(X), average='weighted'), 0.96, decimal=1) # Make sure that in the balanced case it does not change anything # to use "auto" assert_array_almost_equal(clf.coef_, clf_auto.coef_, 6) # build an very very imbalanced dataset out of iris data X_0 = X[y == 0, :] y_0 = y[y == 0] X_imbalanced = np.vstack([X] + [X_0] * 10) y_imbalanced = np.concatenate([y] + [y_0] * 10) # fit a model on the imbalanced data without class weight info clf = self.factory(n_iter=1000, class_weight=None, shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit a model with auto class_weight enabled clf = self.factory(n_iter=1000, class_weight="auto", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit another using a fit parameter override clf = self.factory(n_iter=1000, class_weight="auto", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) def test_sample_weights(self): """Test weights on individual samples""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @raises(ValueError) def test_wrong_sample_weights(self): """Test if ValueError is raised if sample_weight has wrong shape""" clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) # provided sample_weight too long clf.fit(X, Y, sample_weight=np.arange(7)) @raises(ValueError) def test_partial_fit_exception(self): clf = self.factory(alpha=0.01) # classes was not specified clf.partial_fit(X3, Y3) def test_partial_fit_binary(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y) clf.partial_fit(X[:third], Y[:third], classes=classes) assert_equal(clf.coef_.shape, (1, X.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) y_pred = clf.predict(T) assert_array_equal(y_pred, true_result) def test_partial_fit_multiclass(self): third = X2.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y2) clf.partial_fit(X2[:third], Y2[:third], classes=classes) assert_equal(clf.coef_.shape, (3, X2.shape[1])) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) id1 = id(clf.coef_.data) clf.partial_fit(X2[third:], Y2[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def test_fit_then_partial_fit(self): """Partial_fit should work after initial fit in the multiclass case. Non-regression test for #2496; fit would previously produce a Fortran-ordered coef_ that subsequent partial_fit couldn't handle. """ clf = self.factory() clf.fit(X2, Y2) clf.partial_fit(X2, Y2) # no exception here def _test_partial_fit_equal_fit(self, lr): for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)): clf = self.factory(alpha=0.01, eta0=0.01, n_iter=2, learning_rate=lr, shuffle=False) clf.fit(X_, Y_) y_pred = clf.decision_function(T_) t = clf.t_ classes = np.unique(Y_) clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X_, Y_, classes=classes) y_pred2 = clf.decision_function(T_) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_regression_losses(self): clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="squared_epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, loss="huber") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01, loss="squared_loss") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) def test_warm_start_multiclass(self): self._test_warm_start(X2, Y2, "optimal") def test_multiple_fit(self): """Test multiple calls of fit w/ different shaped inputs.""" clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) assert_true(hasattr(clf, "coef_")) # Non-regression test: try fitting with a different label set. y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)] clf.fit(X[:, :-1], y) class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase): """Run exactly the same tests using the sparse representation variant""" factory_class = SparseSGDClassifier ############################################################################### # Regression Test Case class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDRegressor def test_sgd(self): """Check that SGD gives any results.""" clf = self.factory(alpha=0.1, n_iter=2, fit_intercept=False) clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) assert_equal(clf.coef_[0], clf.coef_[1]) @raises(ValueError) def test_sgd_bad_penalty(self): """Check whether expected ValueError on bad penalty""" self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): """Check whether expected ValueError on bad loss""" self.factory(loss="foobar") def test_sgd_averaged_computed_correctly(self): """Tests the average regressor matches the naive implementation""" eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_averaged_partial_fit(self): """Tests whether the partial fit yields the same average as the fit""" eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)]) clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16) def test_average_sparse(self): """Checks the average weights on data with 0s""" eta = .001 alpha = .01 clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) n_samples = Y3.shape[0] clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)]) clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_least_squares_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_sgd_epsilon_insensitive(self): xmin, xmax = -5, 5 n_samples = 100 X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.99) # simple linear function with noise y = 0.5 * X.ravel() \ + np.random.randn(n_samples, 1).ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.5) def test_sgd_huber_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_elasticnet_convergence(self): """Check that the SGD output is consistent with coordinate descent""" n_samples, n_features = 1000, 5 rng = np.random.RandomState(0) X = np.random.randn(n_samples, n_features) # ground_truth linear model that generate y from X and to which the # models should converge if the regularizer would be set to 0.0 ground_truth_coef = rng.randn(n_features) y = np.dot(X, ground_truth_coef) # XXX: alpha = 0.1 seems to cause convergence problems for alpha in [0.01, 0.001]: for l1_ratio in [0.5, 0.8, 1.0]: cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) cd.fit(X, y) sgd = self.factory(penalty='elasticnet', n_iter=50, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) sgd.fit(X, y) err_msg = ("cd and sgd did not converge to comparable " "results for alpha=%f and l1_ratio=%f" % (alpha, l1_ratio)) assert_almost_equal(cd.coef_, sgd.coef_, decimal=2, err_msg=err_msg) def test_partial_fit(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) clf.partial_fit(X[:third], Y[:third]) assert_equal(clf.coef_.shape, (X.shape[1], )) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def _test_partial_fit_equal_fit(self, lr): clf = self.factory(alpha=0.01, n_iter=2, eta0=0.01, learning_rate=lr, shuffle=False) clf.fit(X, Y) y_pred = clf.predict(T) t = clf.t_ clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X, Y) y_pred2 = clf.predict(T) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_loss_function_epsilon(self): clf = self.factory(epsilon=0.9) clf.set_params(epsilon=0.1) assert clf.loss_functions['huber'][1] == 0.1 class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase): """Run exactly the same tests using the sparse representation variant""" factory_class = SparseSGDRegressor def test_l1_ratio(): """Test if l1 ratio extremes match L1 and L2 penalty settings. """ X, y = datasets.make_classification(n_samples=1000, n_features=100, n_informative=20, random_state=1234) # test if elasticnet with l1_ratio near 1 gives same result as pure l1 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.9999999999, random_state=42).fit(X, y) est_l1 = SGDClassifier(alpha=0.001, penalty='l1', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l1.coef_) # test if elasticnet with l1_ratio near 0 gives same result as pure l2 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.0000000001, random_state=42).fit(X, y) est_l2 = SGDClassifier(alpha=0.001, penalty='l2', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l2.coef_) def test_underflow_or_overlow(): with np.errstate(all='raise'): # Generate some weird data with hugely unscaled features rng = np.random.RandomState(0) n_samples = 100 n_features = 10 X = rng.normal(size=(n_samples, n_features)) X[:, :2] *= 1e300 assert_true(np.isfinite(X).all()) # Use MinMaxScaler to scale the data without introducing a numerical # instability (computing the standard deviation naively is not possible # on this data) X_scaled = MinMaxScaler().fit_transform(X) assert_true(np.isfinite(X_scaled).all()) # Define a ground truth on the scaled data ground_truth = rng.normal(size=n_features) y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32) assert_array_equal(np.unique(y), [0, 1]) model = SGDClassifier(alpha=0.1, loss='squared_hinge', n_iter=500) # smoke test: model is stable on scaled data model.fit(X_scaled, y) assert_true(np.isfinite(model.coef_).all()) # model is numerically unstable on unscaled data msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*" " Scaling input data with StandardScaler or MinMaxScaler" " might help.") assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y) def test_numerical_stability_large_gradient(): # Non regression test case for numerical stability on scaled problems # where the gradient can still explode with some losses model = SGDClassifier(loss='squared_hinge', n_iter=10, shuffle=True, penalty='elasticnet', l1_ratio=0.3, alpha=0.01, eta0=0.001, random_state=0) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_true(np.isfinite(model.coef_).all()) def test_large_regularization(): # Non regression tests for numerical stability issues caused by large # regularization parameters for penalty in ['l2', 'l1', 'elasticnet']: model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1, n_iter=5, penalty=penalty, shuffle=False) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
bsd-3-clause
nicholsn/ncanda-data-integration
scripts/reporting/check_gradient_tables.py
4
6786
#!/usr/bin/en python import os import sys import glob import json import numpy as np import pandas as pd from lxml import objectify def read_xml_sidecar(filepath): """ Read a CMTK xml sidecar file. Returns ======= lxml.objectify """ abs_path = os.path.abspath(filepath) with open(abs_path, 'rb') as fi: lines = fi.readlines() lines.insert(1, '<root>') lines.append('</root>') string = ''.join(lines) strip_ge = string.replace('dicom:GE:', '') strip_dicom = strip_ge.replace('dicom:','') result = objectify.fromstring(strip_dicom) return result def get_array(array_string): """ Parse an array from XML string Returns ======= np.array """ l = array_string.text.split(' ') return np.fromiter(l, np.float) def get_gradient_table(parsed_sidecar, decimals=None): """ Get the bvector table for a single image Returns ======= np.array (rounded to 1 decimal) """ b_vector = get_array(parsed_sidecar.mr.dwi.bVector) b_vector_image = get_array(parsed_sidecar.mr.dwi.bVectorImage) b_vector_standard = get_array(parsed_sidecar.mr.dwi.bVectorStandard) if not decimals: decimals = 1 return np.around([b_vector, b_vector_image, b_vector_standard], decimals=decimals) def get_cases(cases_root, case=None): """ Get a list of cases from root dir, optionally for a single case """ match = 'NCANDA_S*' if case: match = case return glob.glob(os.path.join(cases_root, match)) def get_dti_stack(case, arm=None, event=None): if arm: path = os.path.join(case, arm) else: path = os.path.join(case, '*') if event: path = os.path.join(path, event) else: path = os.path.join(path,'*') path = os.path.join(path, 'diffusion/native/dti60b1000/*.xml') return glob.glob(path) def get_all_gradients(dti_stack, decimals=None): """ Parses a list of dti sidecar files for subject. Returns ======= list of np.array """ gradiets_per_frame = list() for xml in dti_stack: sidecar = read_xml_sidecar(xml) gradiets_per_frame.append(get_gradient_table(sidecar, decimals=decimals)) return gradiets_per_frame def get_site_scanner(site): """ Returns the "ground truth" case for gradients. """ site_scanner = dict(A='Siemens', B='GE', C='GE', D='Siemens', E='GE') return site_scanner.get(site) def get_ground_truth_gradients(args=None): """ Return a dictionary for scanner:gratient """ # Choose arbitrary cases for ground truth test_path = '/fs/ncanda-share/pipeline/cases' scanner_subject = dict(Siemens='NCANDA_S00061', GE='NCANDA_S00033') # Paths to scanner specific gradients siemens_path = os.path.join(test_path, scanner_subject.get('Siemens')) ge_path = os.path.join(test_path, scanner_subject.get('GE')) # Get ground truth for standard baseline test_arm = 'standard' test_event = 'baseline' # Gets files for each scanner siemens_stack = get_dti_stack(siemens_path, arm=test_arm, event=test_event) ge_stack = get_dti_stack(ge_path, arm=test_arm, event=test_event) siemens_stack.sort() ge_stack.sort() # Parse the xml files to get scanner specific gradients per frame siemens_gradients = get_all_gradients(siemens_stack, decimals=args.decimals) ge_gradients = get_all_gradients(ge_stack, decimals=args.decimals) return dict(Siemens=siemens_gradients, GE=ge_gradients) def main(args=None): # Get the gradient tables for all cases and compare to ground truth cases = get_cases(args.base_dir, case=args.case) # Demographics from pipeline to grab case to scanner mapping demo_path = '/fs/ncanda-share/pipeline/summaries/demographics.csv' demographics = pd.read_csv(demo_path, index_col=['subject', 'arm', 'visit']) gradient_map = get_ground_truth_gradients(args=args) for case in cases: if args.verbose: print("Processing: {}".format(case)) # Get the case's site sid = os.path.basename(case) site = demographics.loc[sid, args.arm, args.event].site scanner = get_site_scanner(site) gradients = gradient_map.get(scanner) case_dti = os.path.join(args.base_dir, case) case_stack = get_dti_stack(case_dti, arm=args.arm, event=args.event) case_stack.sort() case_gradients = get_all_gradients(case_stack, decimals=args.decimals) errors = list() for idx, frame in enumerate(case_gradients): # if there is a frame that doesn't match, report it. if not (gradients[idx]==frame).all(): errors.append(idx) if errors: key = os.path.join(case, args.arm, args.event, 'diffusion/native/dti60b1000') result = dict(subject_site_id=key, frames=errors, error="Gradient tables do not match for frames.") print(json.dumps(result, sort_keys=True)) if __name__ == '__main__': import argparse formatter = argparse.RawDescriptionHelpFormatter default = 'default: %(default)s' parser = argparse.ArgumentParser(prog="check_gradient_tables.py", description=__doc__, formatter_class=formatter) parser.add_argument('-a', '--arm', dest="arm", help="Study arm. {}".format(default), default='standard') parser.add_argument('-b', '--base-dir', dest="base_dir", help="Study base directory. {}".format(default), default='/fs/ncanda-share/pipeline/cases') parser.add_argument('-d', '--decimals', dest="decimals", help="Number of decimals. {}".format(default), default=3) parser.add_argument('-e', '--event', dest="event", help="Study event. {}".format(default), default='baseline') parser.add_argument('-c', '--case', dest="case", help="Study case. {}".format(default), default=None) parser.add_argument('-v', '--verbose', dest="verbose", help="Turn on verbose", action='store_true') argv = parser.parse_args() sys.exit(main(args=argv))
bsd-3-clause
liangz0707/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
Roboticmechart22/sms-tools
lectures/06-Harmonic-model/plots-code/f0Twm-piano.py
19
1261
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackman import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF import stft as STFT import sineModel as SM import harmonicModel as HM (fs, x) = UF.wavread('../../../sounds/piano.wav') w = np.blackman(1501) N = 2048 t = -90 minf0 = 100 maxf0 = 300 f0et = 1 maxnpeaksTwm = 4 H = 128 x1 = x[1.5*fs:1.8*fs] plt.figure(1, figsize=(9, 7)) mX, pX = STFT.stftAnal(x, fs, w, N, H) f0 = HM.f0Detection(x, fs, w, N, H, t, minf0, maxf0, f0et) f0 = UF.cleaningTrack(f0, 5) yf0 = UF.sinewaveSynth(f0, .8, H, fs) f0[f0==0] = np.nan maxplotfreq = 800.0 numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) plt.autoscale(tight=True) plt.plot(frmTime, f0, linewidth=2, color='k') plt.autoscale(tight=True) plt.title('mX + f0 (piano.wav), TWM') plt.tight_layout() plt.savefig('f0Twm-piano.png') UF.wavwrite(yf0, fs, 'f0Twm-piano.wav') plt.show()
agpl-3.0
caryan/PyBio
OrthoGroups/make_matrix.py
1
2302
import glob from Bio import SeqIO import pandas as pd from progressbar import Percentage, ProgressBar, RotatingMarker, ETA MICdf = pd.read_csv('antibiogram_july.csv', index_col=0) fileNames = glob.glob('*.afa') matrixDFs = {} #This can take a long time so put up a progress bar widgets = ['Working: ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA(), ' '] pbar = ProgressBar(widgets=widgets, maxval=len(fileNames)) pbar.start() for ct, fileName in enumerate(fileNames): pbar.update(ct) with open(fileName, 'r') as FID: seqs = list(SeqIO.parse(FID, 'fasta')) #Find the reference record first refName = 'PAO1' ## seqNames = [] ## for seq in seqs: ## seqNames.append(seq.id.split('|')[0]) ## if seqNames[-1] == refName: ## refSeq = seq.seq.tostring() for seq in seqs: if seq.id.split('|')[0] == refName: refSeq = seq.seq.tostring() break #Now loop through again and output the matrix ## with open(fileName.split('.')[0] + '.matrix', 'w') as FID: ## for seq in MICdf.index: ## FID.write(seq + ', ') ## FID.write(str(MICdf['meropenem'][seq])+', ') ## if seq in seqNames: ## FID.write(', '.join(['0' if (c1 == c2) else '1' for c1,c2 in zip(seqs[seqNames.index(seq)].seq.tostring(), refSeq)])) ## else: ## FID.write(', '.join(['2']*len(refSeq))) ## FID.write('\n') #Create a DF comparing each to the reference strain groupName = fileName.split('.')[0] matrixDFs[groupName] = pd.DataFrame( { seq.id.split('|')[0]: pd.Series([0 if (c1 == c2) else 1 for c1,c2 in zip(seq.seq.tostring(), refSeq)], index = ['V' + str(ct+1) + '_' + groupName for ct in range(len(refSeq))] ) for seq in seqs }) #Concatentate into one DF totMatrix = pd.concat(matrixDFs.values(), axis=0) #We now sum along the rows and discard values close to zero or close the total number #in order to only look at interesting ones counts = totMatrix.sum(axis=1) #Uncomment to plot the histogram of counts import matplotlib.pyplot as plt plt.hist(counts.values, 100) plt.show() cutOff = 10 interestingMatrix = totMatrix.loc[(counts>cutOff) & (counts < totMatrix.shape[1]-cutOff), :] #Replace the NaN's with 2 interestingMatrix.fillna(2, inplace=True) #Push the result out to file interestingMatrix.to_csv('BigMatrix2.tsv', sep='\t')
gpl-3.0
mhdella/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
allenlavoie/tensorflow
tensorflow/contrib/timeseries/examples/predict_test.py
80
2487
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that the TensorFlow parts of the prediction example run.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from os import path from tensorflow.contrib.timeseries.examples import predict from tensorflow.python.platform import test _MODULE_PATH = path.dirname(__file__) _DATA_FILE = path.join(_MODULE_PATH, "data/period_trend.csv") class PeriodTrendExampleTest(test.TestCase): def test_shapes_and_variance_structural(self): (times, observed, all_times, mean, upper_limit, lower_limit ) = predict.structural_ensemble_train_and_predict(_DATA_FILE) # Just check that plotting will probably be OK. We can't actually run the # plotting code since we don't want to pull in matplotlib as a dependency # for this test. self.assertAllEqual([500], times.shape) self.assertAllEqual([500], observed.shape) self.assertAllEqual([700], all_times.shape) self.assertAllEqual([700], mean.shape) self.assertAllEqual([700], upper_limit.shape) self.assertAllEqual([700], lower_limit.shape) # Check that variance hasn't blown up too much. This is a relatively good # indication that training was successful. self.assertLess(upper_limit[-1] - lower_limit[-1], 1.5 * (upper_limit[0] - lower_limit[0])) def test_ar(self): (times, observed, all_times, mean, upper_limit, lower_limit) = predict.ar_train_and_predict(_DATA_FILE) self.assertAllEqual(times.shape, observed.shape) self.assertAllEqual(all_times.shape, mean.shape) self.assertAllEqual(all_times.shape, upper_limit.shape) self.assertAllEqual(all_times.shape, lower_limit.shape) self.assertLess((upper_limit - lower_limit).mean(), 4.) if __name__ == "__main__": test.main()
apache-2.0
ZenDevelopmentSystems/scikit-learn
examples/hetero_feature_union.py
288
6236
""" ============================================= Feature Union with Heterogeneous Data Sources ============================================= Datasets can often contain components of that require different feature extraction and processing pipelines. This scenario might occur when: 1. Your dataset consists of heterogeneous data types (e.g. raster images and text captions) 2. Your dataset is stored in a Pandas DataFrame and different columns require different processing pipelines. This example demonstrates how to use :class:`sklearn.feature_extraction.FeatureUnion` on a dataset containing different types of features. We use the 20-newsgroups dataset and compute standard bag-of-words features for the subject line and body in separate pipelines as well as ad hoc features on the body. We combine them (with weights) using a FeatureUnion and finally train a classifier on the combined set of features. The choice of features is not particularly helpful, but serves to illustrate the technique. """ # Author: Matt Terry <[email protected]> # # License: BSD 3 clause from __future__ import print_function import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.datasets import fetch_20newsgroups from sklearn.datasets.twenty_newsgroups import strip_newsgroup_footer from sklearn.datasets.twenty_newsgroups import strip_newsgroup_quoting from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.svm import SVC class ItemSelector(BaseEstimator, TransformerMixin): """For data grouped by feature, select subset of data at a provided key. The data is expected to be stored in a 2D data structure, where the first index is over features and the second is over samples. i.e. >> len(data[key]) == n_samples Please note that this is the opposite convention to sklearn feature matrixes (where the first index corresponds to sample). ItemSelector only requires that the collection implement getitem (data[key]). Examples include: a dict of lists, 2D numpy array, Pandas DataFrame, numpy record array, etc. >> data = {'a': [1, 5, 2, 5, 2, 8], 'b': [9, 4, 1, 4, 1, 3]} >> ds = ItemSelector(key='a') >> data['a'] == ds.transform(data) ItemSelector is not designed to handle data grouped by sample. (e.g. a list of dicts). If your data is structured this way, consider a transformer along the lines of `sklearn.feature_extraction.DictVectorizer`. Parameters ---------- key : hashable, required The key corresponding to the desired value in a mappable. """ def __init__(self, key): self.key = key def fit(self, x, y=None): return self def transform(self, data_dict): return data_dict[self.key] class TextStats(BaseEstimator, TransformerMixin): """Extract features from each document for DictVectorizer""" def fit(self, x, y=None): return self def transform(self, posts): return [{'length': len(text), 'num_sentences': text.count('.')} for text in posts] class SubjectBodyExtractor(BaseEstimator, TransformerMixin): """Extract the subject & body from a usenet post in a single pass. Takes a sequence of strings and produces a dict of sequences. Keys are `subject` and `body`. """ def fit(self, x, y=None): return self def transform(self, posts): features = np.recarray(shape=(len(posts),), dtype=[('subject', object), ('body', object)]) for i, text in enumerate(posts): headers, _, bod = text.partition('\n\n') bod = strip_newsgroup_footer(bod) bod = strip_newsgroup_quoting(bod) features['body'][i] = bod prefix = 'Subject:' sub = '' for line in headers.split('\n'): if line.startswith(prefix): sub = line[len(prefix):] break features['subject'][i] = sub return features pipeline = Pipeline([ # Extract the subject & body ('subjectbody', SubjectBodyExtractor()), # Use FeatureUnion to combine the features from subject and body ('union', FeatureUnion( transformer_list=[ # Pipeline for pulling features from the post's subject line ('subject', Pipeline([ ('selector', ItemSelector(key='subject')), ('tfidf', TfidfVectorizer(min_df=50)), ])), # Pipeline for standard bag-of-words model for body ('body_bow', Pipeline([ ('selector', ItemSelector(key='body')), ('tfidf', TfidfVectorizer()), ('best', TruncatedSVD(n_components=50)), ])), # Pipeline for pulling ad hoc features from post's body ('body_stats', Pipeline([ ('selector', ItemSelector(key='body')), ('stats', TextStats()), # returns a list of dicts ('vect', DictVectorizer()), # list of dicts -> feature matrix ])), ], # weight components in FeatureUnion transformer_weights={ 'subject': 0.8, 'body_bow': 0.5, 'body_stats': 1.0, }, )), # Use a SVC classifier on the combined features ('svc', SVC(kernel='linear')), ]) # limit the list of categories to make running this exmaple faster. categories = ['alt.atheism', 'talk.religion.misc'] train = fetch_20newsgroups(random_state=1, subset='train', categories=categories, ) test = fetch_20newsgroups(random_state=1, subset='test', categories=categories, ) pipeline.fit(train.data, train.target) y = pipeline.predict(test.data) print(classification_report(y, test.target))
bsd-3-clause
KasperPRasmussen/bokeh
bokeh/core/compat/mplexporter/renderers/vega_renderer.py
54
5284
import warnings import json import random from .base import Renderer from ..exporter import Exporter class VegaRenderer(Renderer): def open_figure(self, fig, props): self.props = props self.figwidth = int(props['figwidth'] * props['dpi']) self.figheight = int(props['figheight'] * props['dpi']) self.data = [] self.scales = [] self.axes = [] self.marks = [] def open_axes(self, ax, props): if len(self.axes) > 0: warnings.warn("multiple axes not yet supported") self.axes = [dict(type="x", scale="x", ticks=10), dict(type="y", scale="y", ticks=10)] self.scales = [dict(name="x", domain=props['xlim'], type="linear", range="width", ), dict(name="y", domain=props['ylim'], type="linear", range="height", ),] def draw_line(self, data, coordinates, style, label, mplobj=None): if coordinates != 'data': warnings.warn("Only data coordinates supported. Skipping this") dataname = "table{0:03d}".format(len(self.data) + 1) # TODO: respect the other style settings self.data.append({'name': dataname, 'values': [dict(x=d[0], y=d[1]) for d in data]}) self.marks.append({'type': 'line', 'from': {'data': dataname}, 'properties': { "enter": { "interpolate": {"value": "monotone"}, "x": {"scale": "x", "field": "data.x"}, "y": {"scale": "y", "field": "data.y"}, "stroke": {"value": style['color']}, "strokeOpacity": {"value": style['alpha']}, "strokeWidth": {"value": style['linewidth']}, } } }) def draw_markers(self, data, coordinates, style, label, mplobj=None): if coordinates != 'data': warnings.warn("Only data coordinates supported. Skipping this") dataname = "table{0:03d}".format(len(self.data) + 1) # TODO: respect the other style settings self.data.append({'name': dataname, 'values': [dict(x=d[0], y=d[1]) for d in data]}) self.marks.append({'type': 'symbol', 'from': {'data': dataname}, 'properties': { "enter": { "interpolate": {"value": "monotone"}, "x": {"scale": "x", "field": "data.x"}, "y": {"scale": "y", "field": "data.y"}, "fill": {"value": style['facecolor']}, "fillOpacity": {"value": style['alpha']}, "stroke": {"value": style['edgecolor']}, "strokeOpacity": {"value": style['alpha']}, "strokeWidth": {"value": style['edgewidth']}, } } }) def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): if text_type == 'xlabel': self.axes[0]['title'] = text elif text_type == 'ylabel': self.axes[1]['title'] = text class VegaHTML(object): def __init__(self, renderer): self.specification = dict(width=renderer.figwidth, height=renderer.figheight, data=renderer.data, scales=renderer.scales, axes=renderer.axes, marks=renderer.marks) def html(self): """Build the HTML representation for IPython.""" id = random.randint(0, 2 ** 16) html = '<div id="vis%d"></div>' % id html += '<script>\n' html += VEGA_TEMPLATE % (json.dumps(self.specification), id) html += '</script>\n' return html def _repr_html_(self): return self.html() def fig_to_vega(fig, notebook=False): """Convert a matplotlib figure to vega dictionary if notebook=True, then return an object which will display in a notebook otherwise, return an HTML string. """ renderer = VegaRenderer() Exporter(renderer).run(fig) vega_html = VegaHTML(renderer) if notebook: return vega_html else: return vega_html.html() VEGA_TEMPLATE = """ ( function() { var _do_plot = function() { if ( (typeof vg == 'undefined') && (typeof IPython != 'undefined')) { $([IPython.events]).on("vega_loaded.vincent", _do_plot); return; } vg.parse.spec(%s, function(chart) { chart({el: "#vis%d"}).update(); }); }; _do_plot(); })(); """
bsd-3-clause
airanmehr/bio
Scripts/TimeSeriesPaper/Simulation/msmsSelection.py
1
6914
''' Copyleft May 27, 2016 Arya Iranmehr, PhD Student, Bafna Lab, UC San Diego, Email: [email protected] ''' import numpy as np; np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; pd.options.display.max_rows = 20; pd.options.display.expand_frame_repr = False import seaborn as sns import pylab as plt; import os; home = os.path.expanduser('~') + '/' import Utils.Util as utl import Utils.Estimate as est import Utils.Simulation as Simulation import Scripts.Miscellaneous.RNN.Evaluate as evl import Utils.Plots as pplt reload(Simulation) comaleName = r'\sc{Clear}' sns.set_style("whitegrid", {"grid.color": ".9", 'axes.linewidth': .5, "grid.linewidth": ".09"}) def SFS(): suffix = 'sweep' for suffix in ('sweep', 'finale'): df = pd.read_pickle(utl.outpath + 'msmsSelection/{}.df'.format(suffix)) sfs = [] for i, x in df.iteritems(): zz = pd.concat([est.Estimate.getAllEstimatesX(y.dropna()).set_index('method') for t, y in x.iterrows()], axis=1).T zz.index = pd.MultiIndex.from_product([[i[0]], [i[1]], x.index], names=['s', 'i', 'gen']) sfs += [zz] a = pd.concat(sfs).sort_index() df = a.groupby(level=[0, 1]).sum() df.columns = map(lambda x: x + '(Dynamic)', df.columns) dfl = a.groupby(level=[0, 1]).apply(lambda x: x.iloc[-1]) dfl.columns = map(lambda x: x + '(Static)', dfl.columns) pd.concat([df, dfl], axis=1).to_pickle(utl.outpath + 'ROC/SFS.{}.msms.df'.format(suffix)) def loadNu(suffix): df = pd.read_pickle(utl.outpath + 'msmsSelection/{}.df'.format(suffix)) x = df.apply(lambda x: pd.Series(x[25000].sort_index().values)).applymap(lambda x: (x, 1 - x)[x < 0.5]).round(3); x.columns = x.columns * 10 return x def comale(): for suffix in ('sweep', 'finale'): x = loadNu(suffix) res = [] for s in np.arange(0, 0.50001, 0.01): T = pd.read_pickle(utl.outpath + 'transition/simulation/S{:02.0f}.df'.format(s * 100)) res += [x.apply(lambda y: sum([T.loc[y.values[i], y.values[i + 1]] for i in range(y.size - 1)]), axis=1)] res = pd.concat(res, axis=1); res.columns = np.arange(0, 0.50001, 0.01) df = pd.concat([res[0], res.idxmax(1), res.max(1)], axis=1) df.columns = ['null', 's', 'alt'] df.to_pickle(utl.outpath + 'ROC/COMALE.{}.msms.df'.format(suffix)) return df def FIT(): for suffix in ('sweep', 'finale'): X = loadNu(suffix) import scipy.stats as sc MAF = 1. / (1000 * 2) MIN_VAR = MAF * (1 - MAF) n = X.shape[1] def FITsite(xx): x = pd.DataFrame(xx.values, index=xx.index) increments = x.diff().iloc[1:] std = 2 * pd.DataFrame(((x * (1 - x)).iloc[:-1]).applymap(np.sqrt).values, index=increments.index).applymap( lambda x: max(x, MIN_VAR)) * 10 y = increments / std statistic = y.mean() / y.std() / np.sqrt(n) return -np.log((sc.t.sf(np.abs(statistic), n - 1) * 2).mean()) df = pd.DataFrame(X.apply(FITsite, axis=1).fillna(0), columns=['FIT']) df.to_pickle(utl.outpath + 'ROC/FIT.{}.msms.df'.format(suffix)) def GP(): suffix = 'sweep' for suffix in ('sweep', 'finale'): df = loadNu(suffix) import Scripts.Miscellaneous.GaussianProcess.Estimate as GP df = df.apply(lambda x: GP.singleLocus(x.values[:, None, None], np.append(np.ones(int(x.values[0] * 200)), np.zeros( int((1 - x.values[0]) * 200)))[:, None], 1000, 2e-8, np.array([0, 10, 20, 30, 40, 50]), 0), axis=1) df.to_pickle('{}ROC/GP.{}.msms.df'.format(utl.outpath, suffix)) def getPower(df): neg = pd.DataFrame(df.loc[0]) neg['label'] = -1; def f(x): pos = pd.DataFrame(x.loc[x.name]) pos.columns = [df.name] pos['label'] = 1; return evl.Power(pd.concat([pos, neg]), FPth=0.05) sel = df[df.index.get_level_values('s') != 0] return sel.groupby(level=0).apply(f) def plotPowerSFS(fontsize=6): dpi = pplt.PLOS.dpi fig, axes = plt.subplots(1, 2, sharey=True, sharex=True, figsize=(4, 2), dpi=pplt.PLOS.dpi); pplt.setStyle(lw=1); print (axes) suffix = 'finale' i = 0 titles = {0: '(A)', 1: '(B)'} for i, suffix in enumerate(['sweep', 'finale']): X = pd.read_pickle(utl.outpath + 'msmsSelection/finale.df').apply( lambda x: pd.Series(x[25000].sort_index().values)); X.columns = X.columns * 10 gp = pd.read_pickle('{}ROC/GP.{}.msms.df'.format(utl.outpath, suffix))['LR']; gp.name = 'GP' gp[0.005] -= 5e-2 # b=50 # gp[0.005].hist(alpha=0.5,color='r',bins=b);gp[0].hist(bins=b) a = pd.read_pickle('{}ROC/COMALE.{}.msms.df'.format(utl.outpath, suffix)); a = (a.alt - a.null) + a.index.get_level_values('s') * (0, 20)[suffix == 'sweep']; a.name = comaleName a.fillna(0, inplace=True) a = pd.concat([a, gp, pd.read_pickle('{}ROC/FIT.{}.msms.df'.format(utl.outpath, suffix)), pd.read_pickle('{}ROC/SFS.{}.msms.df'.format(utl.outpath, suffix))[ ['SFSelect(Dynamic)', 'TajimaD(Dynamic)', 'SFSelect(Static)', 'TajimaD(Static)']]], axis=1) a[['TajimaD(Dynamic)', 'TajimaD(Static)']] *= -1 df = a.apply(getPower) df color = list(np.array(pplt.getColorMap(df.shape[1]))[[1, 0] + range(2, df.shape[1])]) markers = list(np.array(pplt.getMarker(10))[[0, 2, 7, 1, 3, 4, 5]]) xticks = df.index.values df.index = range(1, df.shape[0] + 1) df.plot(ax=axes[i], legend=False, color=color, grid=True, markersize=6, style=markers); axes[i].set_xticks(df.index) axes[i].set_xticklabels(xticks); # df.plot(ax=plt.gca(),kind='bar', legend=False, color=color, grid=True) axes[i].axhline(y=5, color='k'); axes[i].set_xlabel(r'$s$'); axes[i].set_yticks(np.sort(np.append(np.arange(20, 101, 20), [5]))) axes[i].set_ylim([-5, 110]) axes[i].set_xlim([0.75, 4.25]) if not i: plt.ylabel('Power'); handles, labels = axes[i].get_legend_handles_labels() axes[i].legend(handles[::-1], labels[::-1], loc='upper left', fontsize=fontsize) axes[i].set_title(titles[i]) pplt.setSize(axes[i], fontsize) plt.gcf().subplots_adjust(bottom=0.2) pplt.savefig('naturalee', dpi=dpi) plt.show() # GP() # FIT() # comale() # SFS() # plotPowerSFS()
mit
liebermeister/flux-enzyme-cost-minimization
scripts/plot_supp_figures.py
1
40078
# -*- coding: utf-8 -*- """ Created on Sat Dec 3 17:32:45 2016 @author: eladn """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from mpl_toolkits.mplot3d import Axes3D # NOTE!!! keep this for the 3D plots import zipfile import definitions as D from prepare_data import get_concatenated_raw_data, get_df_from_pareto_zipfile from sensitivity_analysis import Sensitivity from monod_surface import plot_surface, \ plot_surface_diff, \ plot_monod_surface, \ plot_conc_versus_uptake_figure, \ plot_glucose_dual_pareto, \ plot_growth_rate_hist, \ interpolate_single_condition, \ plot_glucose_sweep, \ SweepInterpolator, \ get_glucose_sweep_df, \ get_anaerobic_glucose_sweep_df from monod_curve import plot_monod_scatter, calculate_monod_parameters from epistasis import Epistasis from tsne import plot_tsne_figure import tempfile import shutil import pareto_sampling import seaborn as sns figure_data = D.get_figure_data() if __name__ == '__main__': # %% Figure S1 - same as 3c, but compared to the biomass rate # instead of growth rate figS1, axS1 = plt.subplots(1, 2, figsize=(9, 4.5)) data = figure_data['standard'] # remove oxygen-sensitive EFMs data.loc[data[D.STRICTLY_ANAEROBIC_L], D.GROWTH_RATE_L] = 0 D.plot_basic_pareto(data, axS1[0], x=D.YIELD_L, y=D.BIOMASS_PROD_PER_ENZ_L, facecolors=D.PARETO_NEUTRAL_COLOR, edgecolors='none') axS1[0].set_ylabel('enzyme-specific biomass production\n$r_{BM} = v_{BM}/E_{met}$ [gr dw h$^{-1}$ / gr enz]') axS1[0].set_xlim(-1e-3, 1.1*data[D.YIELD_L].max()) axS1[0].set_ylim(-1e-3, 1.15*data[D.BIOMASS_PROD_PER_ENZ_L].max()) axS1[0].set_title('glucose = 100 mM, O$_2$ = 3.7 mM') axS1[0].annotate('c', xy=(0.02, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) for y in range(0, 14, 2): axS1[0].plot([-1e-3, 1.1*data[D.YIELD_L].max()], [y, y], 'k-', alpha=0.2) D.plot_basic_pareto(data, axS1[1], x=D.YIELD_L, y=D.GROWTH_RATE_L, facecolors=D.PARETO_NEUTRAL_COLOR, edgecolors='none') axS1[1].set_xlim(-1e-3, 1.1*data[D.YIELD_L].max()) axS1[1].set_ylim(-1e-3, 1.15*data[D.GROWTH_RATE_L].max()) axS1[1].set_title('glucose = 100 mM, O$_2$ = 3.7 mM') axS1[1].annotate('d', xy=(0.02, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) for y in map(D.GR_FUNCTION, range(0, 18, 2)): axS1[1].plot([-1e-3, 1.1*data[D.YIELD_L].max()], [y, y], 'k-', alpha=0.2) figS1.tight_layout() D.savefig(figS1, 'S1') # %% # SI Figure 3: comparing sum of flux/SA to the total enzyme cost figS3, axS3 = plt.subplots(1, 1, figsize=(5, 5)) data = figure_data['standard'] inds_to_remove = data.isnull().any(axis=1) | data[D.STRICTLY_ANAEROBIC_L] data = data.loc[~inds_to_remove, :] D.plot_basic_pareto(data, x=D.TOT_FLUX_SA_L, y=D.TOT_ENZYME_L, ax=axS3, edgecolors='none', facecolors=D.PARETO_NEUTRAL_COLOR) axS3.set_xscale('log') axS3.set_yscale('log') minval, maxval = (1e-2, 40) # draw the x=y line axS3.plot([minval, maxval], [minval, maxval], '-', color='k', linewidth=1) # draw the two bounding diagonal lines (which bound the function x-y) # from above and below min_ratio = (data[D.TOT_ENZYME_L] / data[D.TOT_FLUX_SA_L]).min() max_ratio = (data[D.TOT_ENZYME_L] / data[D.TOT_FLUX_SA_L]).max() color_min = (1, 0, 0) color_max = (0, 0, 1) axS3.plot([minval, maxval/min_ratio], [minval*min_ratio, maxval], '-', color=color_min, linewidth=1) axS3.annotate(xy=(10, 10*min_ratio), s='y = %.1f x' % min_ratio, xycoords='data', xytext=(10, 3), va='top', ha='center', color=color_min, arrowprops=dict(color=color_min, shrink=0.02, width=1, headwidth=3)) axS3.plot([minval, maxval/max_ratio], [minval*max_ratio, maxval], '-', color=color_max, linewidth=1, alpha=1) axS3.annotate(xy=(20/max_ratio, 20), s='y = %.1f x' % max_ratio, xycoords='data', xytext=(1, 20), va='center', ha='right', color=color_max, arrowprops=dict(color=color_max, shrink=0.02, width=1, headwidth=3)) # mark the two extreme points (the ones with the minimal x and minimal # y values) min_x = data[D.TOT_FLUX_SA_L].min() min_y = data[D.TOT_ENZYME_L].min() for efm, row in data.iterrows(): x = row[D.TOT_FLUX_SA_L] y = row[D.TOT_ENZYME_L] if x == min_x: axS3.annotate(xy=(x, y), s='min. ideal\ncost = %.3f [h$^{-1}$]' % min_x, xycoords='data', fontsize=12, ha='center', xytext=(x*1.4, y*20), rotation=0, arrowprops=dict(color='black', shrink=0.02, width=1, headwidth=3)) if y == min_y: axS3.annotate(xy=(x, y), s='min. actual\ncost = %.3f [h$^{-1}$]' % min_y, xycoords='data', fontsize=12, va='center', xytext=(x*5, y), rotation=0, arrowprops=dict(color='black', shrink=0.02, width=1, headwidth=3)) axS3.set_xlim(minval, maxval) axS3.set_ylim(minval, maxval) axS3.set_xlabel(r'ideal cost [gr enz / gr dw h$^{-1}$]') axS3.set_ylabel(r'actual cost [gr enz / gr dw h$^{-1}$]') figS3.tight_layout() D.savefig(figS3, 'S3') # %% SI Figure 5 - sweep for the kcat values of biomass reaction figS5, axS5 = plt.subplots(1, 1, figsize=(5, 5)) D.plot_sweep(figure_data['sweep_kcat_r70'], r'$k_{cat}$ of biomass reaction [s$^{-1}$]', efm_dict=D.efm_dict, ax=axS5, legend_loc='lower center') axS5.set_xscale('log') maxy = axS5.axes.yaxis.get_view_interval()[1] axS5.plot([100, 100], [0.0, maxy], '--', color='grey', linewidth=1) axS5.text(100, maxy, r'default $k_{cat}$', va='bottom', ha='center', color='grey') D.savefig(figS5, 'S5') # %% SI Figure 6 - t-SNE projections figS6 = plot_tsne_figure(figure_data) D.savefig(figS6, 'S6') # %% SI Figure 7 # make bar plots for each reaction, counting how many EFMs it participates figS7, axS7 = plt.subplots(2, 2, figsize=(15, 12)) for i, ax in enumerate(axS7.flat): ax.annotate(chr(ord('a')+i), xy=(0.04, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) rates1_df, _, _, _ = get_concatenated_raw_data('standard') rates2_df, _, _, _ = get_concatenated_raw_data('anaerobic') rates_df = pd.concat([rates1_df, rates2_df]).drop_duplicates() reaction_counts = 100 * (rates_df.abs() > 1e-8).sum(0) / rates_df.shape[0] plt.subplots_adjust(hspace=0.3) reaction_counts.sort_values(inplace=True) reaction_counts.plot(kind='bar', ax=axS7[0, 0], color=D.BAR_COLOR, linewidth=0) axS7[0, 0].set_ylim(0, 100) axS7[0, 0].set_ylabel('\% of EFMs using this reaction') axS7[0, 0].set_xticklabels(map(D.GET_REACTION_NAME, reaction_counts.index)) rates_df = rates_df.drop(9999) # remove "exp" which is the last index efm_counts = (rates_df.abs() > 1e-8).sum(1) efm_counts.hist(bins=np.arange(20, 40)-0.5, ax=axS7[0, 1], color=D.BAR_COLOR, rwidth=0.4) axS7[0, 1].set_xlabel('no. of active reactions') axS7[0, 1].set_ylabel('no. of EFMs') axS7[0, 1].set_xlim(22, 36) # Figure that calculates the correlation between each EFM and # the "experimental" flow, and overlays that information on the # standard "Pareto" plot data = figure_data['standard'].copy() data.loc[data[D.STRICTLY_ANAEROBIC_L], D.GROWTH_RATE_L] = 0 CORR_FLUX_L = 'Flux Spearman correlation' CORR_ENZ_L = 'Enzyme Spearman correlation' # read the measured fluxes exp_flux_df = D.get_projected_exp_fluxes() # remove the exchange reactions (xchg_*) exp_flux_df = exp_flux_df.loc[exp_flux_df.index.str.find('xchg') != 0, :] exp_flux_df.index = map(D.FIX_REACTION_ID, exp_flux_df.index) rates_df, params_df, km_df, enzyme_abundance_df = \ get_concatenated_raw_data('standard') # calculate correlation coefficients between the enzyme abundances and # the measured abundances (from Schmidt et al. 2015, glucose batch) X = enzyme_abundance_df.transpose() # in order to convert the enzyme abundances to realistic values, we need # to scale by a factor of 0.004 (see SI text, section S2.5) X *= 0.004 y = map(D.PROTEOME_DICT.get, enzyme_abundance_df.columns) X['measured'] = pd.Series(index=enzyme_abundance_df.columns, data=y) X_pred = X.iloc[:, 0:-1].as_matrix() X_meas = X.iloc[:, -1].as_matrix() data[CORR_FLUX_L] = rates_df.transpose().corr('spearman').loc[9999] data[CORR_ENZ_L] = X.corr('spearman').loc['measured'] # Pareto plot of correlation between predicted and measured fluxes axS7[1, 0].set_title('Match with measured fluxes') D.plot_basic_pareto(data, axS7[1, 0], x=D.YIELD_L, y=D.GROWTH_RATE_L, c=CORR_FLUX_L, cmap='copper_r', vmin=0, vmax=1, linewidth=0, s=30, edgecolor='k') # Pareto plot of correlation between predicted and measured enzyme levels axS7[1, 1].set_title('Match with measured enzyme abundance') D.plot_basic_pareto(data, axS7[1, 1], x=D.YIELD_L, y=D.GROWTH_RATE_L, c=CORR_ENZ_L, cmap='copper_r', vmin=0, vmax=1, linewidth=0, s=30, edgecolor='k') annot_color = (0.1, 0.1, 0.8) for ax in axS7[1, :]: ax.set_xlim(-1e-3, 1.1*data[D.YIELD_L].max()) ax.set_ylim(-1e-3, 1.15*data[D.GROWTH_RATE_L].max()) for efm in D.efm_dict.keys(): xy = np.array(data.loc[efm, [D.YIELD_L, D.GROWTH_RATE_L]].tolist()) xytext = xy.copy() xytext[0] = 0.1 * ax.get_xlim()[1] + 0.8 * xy[0] xytext[1] += 0.07 ax.annotate(xy=xy, s=D.efm_dict[efm]['label'], xycoords='data', xytext=xytext, ha='left', va='bottom', color=annot_color, fontsize=16, arrowprops=dict(facecolor=annot_color, shrink=0.1, width=3, headwidth=6)) figS7.tight_layout() D.savefig(figS7, 'S7') # %% SI Figure 8 - pareto plot with 4 alternative EFM features figS8, axS8 = plt.subplots(2, 3, figsize=(13, 8), sharex=True, sharey=True) plot_parameters = [{'title': 'succinate:fumarate cycling', 'c': D.SUC_FUM_CYCLE_L}, {'title': 'ammonia uptake', 'c': D.NH3_L}, {'title': 'ED pathway', 'c': D.ED_L}, {'title': 'pentose phosphate pathway', 'c': D.PPP_L}, {'title': 'upper glycolysis', 'c': D.UPPER_GLYCOLYSIS_L, 'cmap': 'coolwarm'}, {'title': 'pyruvate dehydrogenase', 'c': D.PDH_L} ] data = figure_data['standard'] for i, (ax, d) in enumerate(zip(list(axS8.flat), plot_parameters)): ax.annotate(chr(ord('a')+i), xy=(0.04, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) D.plot_basic_pareto(data, ax=ax, x=D.YIELD_L, y=D.GROWTH_RATE_L, c=d['c'], cmap=d.get('cmap', 'copper_r'), linewidth=0, s=20) ax.set_title(d['title']) ax.set_xlim(-1e-3, 1.05*data[D.YIELD_L].max()) ax.set_ylim(-1e-3, 1.05*data[D.GROWTH_RATE_L].max()) figS8.tight_layout() D.savefig(figS8, 'S8') # %% SI Figure 9 - comparing yield to other EFM parameters figS9, axS9 = plt.subplots(2, 2, figsize=(7, 7)) plot_parameters = [{'y': D.ACE_L, 'ymin': -0.001, 'ax': axS9[0, 0]}, {'y': D.OXYGEN_L, 'ymin': -0.001, 'ax': axS9[0, 1]}, {'y': D.N_REACTION_L, 'ymin': 20.0, 'ax': axS9[1, 0]}, {'y': D.TOT_FLUX_L, 'ymin': 0.0, 'ax': axS9[1, 1]}] data = pd.concat([figure_data['standard'], figure_data['anaerobic']]) data = data.reset_index().groupby('EFM').first() data.fillna(0, inplace=True) for i, d in enumerate(plot_parameters): d['ax'].annotate(chr(ord('a')+i), xy=(0.04, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) D.plot_basic_pareto(data, ax=d['ax'], x=D.YIELD_L, y=d['y'], efm_dict=D.efm_dict, edgecolors='none', facecolors=(0.85, 0.85, 0.85), show_efm_labels=True) d['ax'].set_xlim(-0.1, None) d['ax'].set_ylim(d['ymin'], None) figS9.tight_layout() D.savefig(figS9, 'S9') # %% SI figure 10 - histogram of all different EFM growth # rates in a specific condition figS10, (axS10a, axS10b) = plt.subplots(1, 2, figsize=(8, 4), sharey=True) plot_growth_rate_hist(ax=axS10a) plot_growth_rate_hist(oxygen=D.LOW_CONC['oxygen'], ax=axS10b) axS10b.set_ylabel('') figS10.tight_layout() D.savefig(figS10, 'S10') # %% SI Figure 11 figS11, axS11 = plt.subplots(1, 1, figsize=(5, 5)) plot_glucose_dual_pareto(figure_data['standard'], axS11, draw_lines=False) axS11.set_xlim(-1e-3, None) axS11.set_ylim(-1e-3, None) D.savefig(figS11, 'S11') # %% SI Figure 12 figS12 = plot_monod_surface(figure_data) figS12.tight_layout(pad=0.1) D.savefig(figS12, 'S12') # %% SI figure 13 - scatter 3D plot of the glucose uptake, oxygen uptake, # growth rate figS13 = plot_conc_versus_uptake_figure(figure_data) figS13.tight_layout(w_pad=3.5, h_pad=2) D.savefig(figS13, 'S13') # %% SI figure 14 - scatter plots in different environmental conditions figS14, axS14 = plt.subplots(2, 2, figsize=(8, 8), sharex=True, sharey=True) params = [{'glucose': D.STD_CONC['glucoseExt'], 'oxygen': D.STD_CONC['oxygen'], 'ax': axS14[0, 0]}, {'glucose': D.STD_CONC['glucoseExt'], 'oxygen': D.LOW_CONC['oxygen'], 'ax': axS14[0, 1]}, {'glucose': D.LOW_CONC['glucoseExt'], 'oxygen': D.STD_CONC['oxygen'], 'ax': axS14[1, 0]}] data = figure_data['standard'] plot_list = [("require oxygen", (0.95, 0.7, 0.7), ~data[D.STRICTLY_ANAEROBIC_L] & data[D.STRICTLY_AEROBIC_L]), ("oxygen sensitive", (0.4, 0.7, 0.95), data[D.STRICTLY_ANAEROBIC_L] & ~data[D.STRICTLY_AEROBIC_L]), ("facultative", (0.9, 0.5, 0.9), ~data[D.STRICTLY_ANAEROBIC_L] & ~data[D.STRICTLY_AEROBIC_L])] x = D.YIELD_L y = D.GROWTH_RATE_L for d in params: ax = d['ax'] ax.set_title('glucose = %g mM, O$_2$ = %g mM' % (d['glucose'], d['oxygen'])) gr = interpolate_single_condition(glucose=d['glucose'], oxygen=d['oxygen']) for label, color, efms in plot_list: xdata = data.loc[efms, x] ydata = gr[efms] ax.scatter(xdata, ydata, s=12, marker='o', alpha=1, edgecolors='none', color=color, label=label) for efm, (col, lab) in D.efm_dict.items(): if efm in data.index: ax.plot(data.at[efm, x], gr[efm], markersize=5, marker='o', color=col, label=None) ax.annotate(lab, xy=(data.at[efm, x], gr[efm]), xytext=(0, 5), textcoords='offset points', ha='center', va='bottom', color=col) # plot the anaerobic condition data ax = axS14[1, 1] ax.set_title('glucose = %g mM, no O$_2$' % D.STD_CONC['glucoseExt']) data = figure_data['anaerobic'].copy().drop(9999) plot_list = [("require oxygen", (0.95, 0.7, 0.7), []), ("oxygen sensitive", (0.4, 0.7, 0.95), data[D.STRICTLY_ANAEROBIC_L] & ~data[D.STRICTLY_AEROBIC_L]), ("facultative", (0.9, 0.5, 0.9), ~data[D.STRICTLY_ANAEROBIC_L] & ~data[D.STRICTLY_AEROBIC_L])] for label, color, efms in plot_list: xdata = data.loc[efms, D.YIELD_L] ydata = data.loc[efms, D.GROWTH_RATE_L] ax.scatter(xdata, ydata, s=12, marker='o', alpha=1, edgecolors='none', color=color, label=label) for efm, (col, lab) in D.efm_dict.items(): if efm in data.index: ax.plot(data.at[efm, x], gr[efm], markersize=5, marker='o', color=col, label=None) ax.annotate(lab, xy=(data.at[efm, x], gr[efm]), xytext=(0, 5), textcoords='offset points', ha='center', va='bottom', color=col) leg = ax.legend(loc='lower right', frameon=True) leg.get_frame().set_facecolor('#EEEEEE') for i, (d, ax) in enumerate(zip(plot_parameters, axS14.flat)): ax.annotate(chr(ord('a')+i), xy=(0.04, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) ax.set_xlim(-1e-3, None) ax.set_ylim(-1e-3, None) ax.set_ylabel(D.GROWTH_RATE_L) ax.set_xlabel(D.YIELD_L) figS14.tight_layout() D.savefig(figS14, 'S14') # %% SI Figure 15 - create protein allocation pie charts of selected EFMs # focus only on the selected EFMs, and rename the columns according # to the 3-letter acronyms efms = D.efm_dict.keys() _, efm_names = zip(*map(D.efm_dict.get, efms)) # load data for the pie charts from the pareto plot rates_df, params_df, km_df, enzyme_abundance_df = \ get_concatenated_raw_data('standard') # calculate the total cost of metabolic enzymes # it is given in hours, for the time required from the biomass reaction # to produce a mass equal to the mass of metabolic enzymes E_i = enzyme_abundance_df.loc[efms, :].mul(params_df['weight'].fillna(0)) E_i.rename(index=dict(zip(efms, efm_names)), inplace=True) E_met = E_i.sum(1) # total metabolic enzyme in grams per EFM v_BM = D.BIOMASS_MW * rates_df.loc[efms, D.R_BIOMASS] * D.SECONDS_IN_HOUR v_BM.rename(index=dict(zip(efms, efm_names)), inplace=True) # the growth rate in [1/h] if the biomass was 100% metabolic enzymes r_BM = v_BM / E_met n_fig_rows = int(np.ceil((len(D.efm_dict))/2.0)) figS15, axS15 = plt.subplots(n_fig_rows, 2, figsize=(10, 5 * n_fig_rows)) for ax, efm in zip(axS15.flat, efm_names): E_i_efm = E_i.loc[efm, :].sort_values(ascending=False) E_i_efm = E_i_efm / E_i_efm.sum() E_lumped = E_i_efm.drop(E_i_efm[E_i_efm.cumsum() > 0.95].index) E_lumped.loc[D.REMAINDER_L] = E_i_efm[E_i_efm.cumsum() > 0.95].sum() E_lumped.name = '' E_lumped.plot.pie(colors=list(map(D.reaction_to_rgb, E_lumped.index)), labels=list(map(D.GET_REACTION_NAME, E_lumped.index)), ax=ax) ax.set_title(r'\textbf{%s}' % efm + '\n' + D.TOT_ENZYME_L + ' = %.2f' % (1.0/r_BM[efm])) D.savefig(figS15, 'S15') # %% SI Figure 16 - allocation area plots for glucose sweep rates_df, full_df = get_concatenated_raw_data('sweep_glucose') efms = D.efm_dict.keys() figS16, axS16 = plt.subplots(len(efms), 4, figsize=(20, 4 * len(efms))) for i, efm in enumerate(efms): df = full_df[full_df['efm'] == efm] if df.shape[0] == 0: continue v_BM = D.BIOMASS_MW * D.SECONDS_IN_HOUR * rates_df.at[efm, D.R_BIOMASS] # make a new DataFrame where the index is the glucose concentration # and the columns are the reactions and values are the costs. absol = full_df[full_df['efm'] == efm].pivot(index=full_df.columns[1], columns='reaction', values='E_i') D.allocation_area_plot(absol/v_BM, axS16[i, 0], axS16[i, 1], xlabel='external glucose level [mM]') axS16[i, 0].annotate(D.efm_dict[efm][1], xy=(0.04, 0.95), xycoords='axes fraction', ha='left', va='top', size=20) # allocation area plots for oxygen sweep rates_df, full_df = get_concatenated_raw_data('sweep_oxygen') efms = D.efm_dict.keys() reactions = list(rates_df.columns) for i, efm in enumerate(efms): df = full_df[full_df['efm'] == efm] if df.shape[0] == 0: continue v_BM = D.BIOMASS_MW * D.SECONDS_IN_HOUR * rates_df.at[efm, D.R_BIOMASS] # make a new DataFrame where the index is the glucose concentration # and the columns are the reactions and values are the costs. absol = full_df[full_df['efm'] == efm].pivot(index=full_df.columns[1], columns='reaction', values='E_i') D.allocation_area_plot(absol/v_BM, axS16[i, 2], axS16[i, 3], xlabel='O$_2$ level [mM]') axS16[i, 2].annotate(D.efm_dict[efm][1], xy=(0.04, 0.95), xycoords='axes fraction', ha='left', va='top', size=20) axS16[0, 1].set_title('Varying glucose levels', fontsize=25, ha='right', va='bottom') axS16[0, 2].set_title('Varying oxygen levels', fontsize=25, ha='left', va='bottom') figS16.tight_layout(h_pad=2.0) D.savefig(figS16, 'S16') # %% SI Figure 17 - Monod figure monod_dfs = calculate_monod_parameters(figure_data) figS17 = plot_monod_scatter(monod_dfs) D.savefig(figS17, 'S17') # %% SI Figure 18 - sensitivity to kcat of tpi (R6r) figS18, axS18 = plt.subplots(1, 3, figsize=(12, 5), sharey=True) for i, ax in enumerate(axS18): ax.annotate(chr(ord('a')+i), xy=(0.04, 0.98), xycoords='axes fraction', fontsize=20, ha='left', va='top') axS18[0].set_title(r'effect of the $k_{cat}$ of \emph{tpi}') D.plot_dual_pareto(figure_data['standard'], 'std. $k_{cat}$ (7800 [$s^{-1}$])', figure_data['low_kcat_r6r'], 'low $k_{cat}$ (7.8 [$s^{-1}$])', s=8, ax=axS18[0], x=D.YIELD_L, y=D.GROWTH_RATE_L, draw_lines=False) axS18[0].set_xlim(0, None) axS18[0].legend(loc='upper center', fontsize=12) s = Sensitivity.from_figure_name('standard') s.write_sensitivity_tables() s.plot_sensitivity_as_errorbar(axS18[1], 'R6r', foldchange=2) axS18[1].set_xlim(0, None) axS18[1].set_title(r'sensitivity to 2-fold change in $k_{cat}$') maxy = figure_data['sweep_kcat_r6r'].max().max() * 1.2 D.plot_sweep(figure_data['sweep_kcat_r6r'], r'$k_{cat}$ [$s^{-1}$]', efm_dict=D.efm_dict, ax=axS18[2], legend_loc='center left', legend_fontsize=10) axS18[2].set_xscale('log') axS18[2].set_ylim(0, maxy) axS18[2].fill_between([7837/2.0, 7837*2.0], 0, maxy, color=(0.9, 0.9, 0.9)) axS18[2].plot([7837, 7837], [0.0, maxy], '--', color='grey', linewidth=1) axS18[2].text(7837, maxy*1.01, r'std. $k_{cat}$', ha='center', color='grey') axS18[2].plot([7.837, 7.837], [0.0, maxy], '--', color='grey', linewidth=1) axS18[2].text(7.837, maxy*1.01, r'low $k_{cat}$', ha='center', color='grey') figS18.tight_layout() D.savefig(figS18, 'S18') # %% figS19 = plt.figure(figsize=(10, 10)) axS19a = figS19.add_subplot(2, 2, 1, projection='3d') axS19b = figS19.add_subplot(2, 2, 2, projection='3d') axS19c = figS19.add_subplot(2, 2, 3, projection='3d') axS19d = figS19.add_subplot(2, 2, 4, projection='3d') plot_surface(axS19a, figure_data['standard'], c=D.GROWTH_RATE_L, cmap='Oranges', vmax=0.7, sweep_cache_fname='sweep2d_win_200x200.csv') plot_surface_diff(axS19b, ko_cache_fname='sweep2d_edko_win_200x200.csv') plot_surface_diff(axS19c, ko_cache_fname='sweep2d_empko_win_200x200.csv') plot_surface_diff(axS19d, ko_cache_fname='sweep2d_oxphosko_win_200x200.csv') axS19a.set_title('wild-type') axS19b.set_title('ED knockout') axS19c.set_title('EMP knockout') axS19d.set_title('OxPhos knockout') axS19a.set_zlim(0, 1) axS19b.set_zlim(0, 1) axS19c.set_zlim(0, 1) axS19d.set_zlim(0, 1) figS19.tight_layout(h_pad=2) D.savefig(figS19, 'S19') # %% S20 and S21 - epistasis plots e = Epistasis(figure_data) figS20 = e.plot_gr_epistasis() figS20.savefig(os.path.join(D.OUTPUT_DIR, 'FigS20.pdf')) figS21 = e.plot_yield_epistasis() D.savefig(figS21, 'S21') # %% convert EFM visualization flux plots from SVG to EPS with zipfile.ZipFile(D.ZIP_SVG_FNAME, 'r') as z: for efm, (_, efm_name) in D.efm_dict.items(): with tempfile.NamedTemporaryFile(delete=True, suffix='.svg') as tmp_fp: # extract the SVG file from the ZIP file and save it as a temp # file. with z.open('efm%04d.svg' % efm, 'r') as svg_fp: shutil.copyfileobj(svg_fp, tmp_fp) # then use inkscape to convert the SVG to EPS eps_fname = os.path.join(D.OUTPUT_DIR, 'FigS22_%s.eps' % efm_name) os.system('inkscape %s -E %s' % (tmp_fp.name, eps_fname)) # %% fig S25 - glucose sweep at anaerobic conditions # find the "winning" EFM for each glucose level and make a color-coded # plot like the 3D surface plots def plot_1D_sweep(interpolated_df, ax0, ax1, ax2, color_func=None): best_df = pd.DataFrame(index=interpolated_df.index, columns=[D.GROWTH_RATE_L, 'best_efm', 'hexcolor']) best_df[D.GROWTH_RATE_L] = interpolated_df.max(axis=1) best_df['best_efm'] = interpolated_df.idxmax(axis=1) best_efms = sorted(best_df['best_efm'].unique()) if color_func is None: color_dict = dict(zip(best_efms, D.cycle_colors(len(best_efms), h0=0.02, s=1))) color_func = color_dict.get best_df['hexcolor'] = best_df['best_efm'].apply(color_func) ax0.plot(interpolated_df.index, interpolated_df, '-', linewidth=1, alpha=0.2, color=(0.5, 0.5, 0.8)) ax0.set_xscale('log') ax0.set_xlim(0.6e-4, 1.5e4) ax0.set_ylim(1e-3, 0.86) ax0.set_xlabel(D.GLU_COL) ax0.set_ylabel(D.GROWTH_RATE_L) d = list(zip(best_df.index, best_df[D.GROWTH_RATE_L])) segments = zip(d[:-1], d[1:]) colors = list(best_df['hexcolor'].iloc[1:].values) for efm in best_efms: if efm in D.efm_dict: label = D.efm_dict[efm]['label'] else: label = 'EFM %04d' % efm ax1.plot(interpolated_df.index, interpolated_df[efm], label='_nolegend_', linestyle='-', color=D.efm_to_hex(efm), linewidth=0.5, alpha=0.5) ax1.plot([0, 1], [-1, -1], label=label, color=color_func(efm), linewidth=2) coll = LineCollection(segments, colors=colors, linewidths=2) ax1.add_collection(coll) ax1.legend(loc='best', fontsize=12) ax1.set_xscale('log') ax1.set_xlim(0.6e-4, 1.5e4) ax1.set_ylim(1e-3, 0.86) ax1.set_xlabel(D.GLU_COL) ax1.set_ylabel(D.GROWTH_RATE_L) ax2.plot(best_df[D.GROWTH_RATE_L], best_df.index, '-', color=(0.5, 0.5, 0.8), linewidth=2) ax2.set_xlim(0, 0.7) ax2.set_ylim(0, 0.1) ax2.set_xlabel(D.GROWTH_RATE_L) ax2.set_ylabel('residual ' + D.GLU_COL) low_o2 = 0.0115 figS25, axs25 = plt.subplots(3, 3, figsize=(10, 10)) axs25[0, 1].set_title('anaerobic') axs25[1, 1].set_title(r'low $O_2$ (%.1f $\mu$M)' % (low_o2*1e3)) axs25[2, 1].set_title(r'std. $O_2$ (%g mM)' % D.STD_CONC['oxygen']) interpolated_df = get_anaerobic_glucose_sweep_df(figure_data) plot_1D_sweep(interpolated_df, axs25[0, 0], axs25[0, 1], axs25[0, 2], None) interpolated_df = get_glucose_sweep_df(oxygen_conc=low_o2) plot_1D_sweep(interpolated_df, axs25[1, 0], axs25[1, 1], axs25[1, 2], D.efm_to_hex) interpolated_df = get_glucose_sweep_df(oxygen_conc=D.STD_CONC['oxygen']) plot_1D_sweep(interpolated_df, axs25[2, 0], axs25[2, 1], axs25[2, 2], D.efm_to_hex) for i, ax in enumerate(axs25.flat): ax.annotate(chr(ord('a')+i), xy=(0.02, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) figS25.tight_layout() D.savefig(figS25, 'S25') # %% measured protein abundances (if available) # S26 - correlation between EFM protein abundance predictions and rates_df, params_df, km_df, enzyme_abundance_df = \ get_concatenated_raw_data('standard') # calculate correlation coefficients between the enzyme abundances and # the measured abundances (from Schmidt et al. 2015, glucose batch) X = enzyme_abundance_df.transpose() # in order to convert the enzyme abundances to realistic values, we need # to scale by a factor of 0.004 (see SI text, section S2.5) X *= 0.004 y = map(D.PROTEOME_DICT.get, enzyme_abundance_df.columns) X['measured'] = pd.Series(index=enzyme_abundance_df.columns, data=y) X_pred = X.iloc[:, 0:-1].as_matrix() X_meas = X.iloc[:, -1].as_matrix() data = figure_data['standard'].copy() CORR_ENZ_L = 'enzyme abundance correlation' data[CORR_ENZ_L] = X.corr('spearman').loc['measured'] # replace all zeros with a minimum protein level of 1 nM, # which represents the noise level (~1 molecule per cell) RMSE_ENZ_L = 'enzyme abundance RMSE' y = np.tile(X_meas, (X_pred.shape[1], 1)) data[RMSE_ENZ_L] = np.sqrt(np.square(X_pred.T - y).mean(1)) figS26 = plt.figure(figsize=(12, 5)) axS26a = figS26.add_subplot(1, 2, 1) axS26a.set_title('Spearman correlation') axS26b = figS26.add_subplot(1, 2, 2) axS26b.set_title('exp') D.plot_basic_pareto(data, axS26a, x=D.YIELD_L, y=D.GROWTH_RATE_L, c=CORR_ENZ_L, cmap='copper_r') for efm in D.efm_dict.keys(): xy = np.array(data.loc[efm, [D.YIELD_L, D.GROWTH_RATE_L]].tolist()) xytext = xy + np.array((0, 0.07)) axS26a.annotate(xy=xy, s=D.efm_dict[efm]['label'], xycoords='data', xytext=xytext, ha='center', arrowprops=dict(facecolor='black', shrink=0.05, width=2, headwidth=4)) axS26a.set_xlim(-1e-3, 1.1*data[D.YIELD_L].max()) axS26a.set_ylim(-1e-3, 1.15*data[D.GROWTH_RATE_L].max()) X[X == 0] = 1e-5 X.fillna(1e-5, inplace=True) axS26b.plot(X.loc[:, 'measured'], X.loc[:, 9999], 'o', alpha=0.3) axS26b.plot([1e-5, 1], [1e-5, 1], 'b--') for i in X.index: xy = np.array(X.loc[i, ['measured', 9999]].tolist()) axS26b.text(xy[0], xy[1], i, fontsize=8, ha='center', va='bottom') axS26b.set_xscale('log') axS26b.set_yscale('log') axS26b.set_ylabel('predicted enzyme abundance [mM]') axS26b.set_xlabel('measured enzyme abundance [mM]') D.savefig(figS26, 'S26') # %% glucose sweeps for low and high oxygen levels figS27, axs27 = plt.subplots(1, 3, figsize=(12, 4)) low_o2 = 0.009 std_o2 = D.STD_CONC['oxygen'] axs27[0].set_title('low $O_2$ (%g mM)' % low_o2) axs27[1].set_title('std. $O_2$ (%g mM)' % std_o2) plot_glucose_sweep(axs27[0], oxygen_conc=low_o2, ylim=(0, 0.86), legend_loc='upper center', mark_glucose=False) plot_glucose_sweep(axs27[1], oxygen_conc=std_o2, ylim=(0, 0.86), legend_loc=None, mark_glucose=False) glu_grid = np.logspace(-4, -1, 200) interp_data_df = pd.DataFrame(index=glu_grid, columns=D.efm_dict.keys()) interpolator = SweepInterpolator.interpolate_2D_sweep(D.efm_dict.keys()) for efm in [1565]: gr = [interpolator.calc_gr(efm, g, std_o2) for g in glu_grid] axs27[2].plot(gr, glu_grid, '-', color=D.efm_dict[efm]['color']) axs27[2].set_xlabel(D.GROWTH_RATE_L) axs27[2].set_ylabel('residual ' + D.GLU_COL) axs27[2].set_title(r'std. $O_2$, only \emph{max-gr}') for i, ax in enumerate(axs27): ax.annotate(chr(ord('a')+i), xy=(0.02, 0.98), xycoords='axes fraction', ha='left', va='top', size=20) figS27.tight_layout() D.savefig(figS27, 'S27') # %% A Pareto figure focusing only on the Pareto-optimal EFMs and # neighboring points (generated by random sampling) figS28, axs28 = plt.subplots(1, 1, figsize=(5, 5)) sampled_data = pd.read_pickle(pareto_sampling.PICKLE_FNAME) xdata = sampled_data[D.YIELD_L] ydata = sampled_data[D.GROWTH_RATE_L] sampled_data.plot.scatter(x=D.YIELD_L, y=D.GROWTH_RATE_L, marker='.', c=(.9, .9, .9), s=10, edgecolors=None, alpha=0.5, ax=axs28, zorder=1) axs28.set_xlabel(D.YIELD_L) axs28.set_ylabel(D.GROWTH_RATE_L) pareto_df = D.get_pareto(sampled_data, D.YIELD_L, D.GROWTH_RATE_L) pareto_df.plot.scatter(x=D.YIELD_L, y=D.GROWTH_RATE_L, marker='s', color='k', s=15, ax=axs28, legend=None, zorder=2) efm_data = figure_data['standard'] efm_data.plot.scatter(x=D.YIELD_L, y=D.GROWTH_RATE_L, marker='.', c=(1, 0.6, 0.6), s=15, edgecolors=None, alpha=1, ax=axs28, zorder=3) pareto_df = D.get_pareto(efm_data, D.YIELD_L, D.GROWTH_RATE_L) pareto_df.plot.scatter(x=D.YIELD_L, y=D.GROWTH_RATE_L, marker='s', c='r', s=30, edgecolors=None, alpha=1, ax=axs28, zorder=4) for efm, (col, lab) in D.efm_dict.items(): if efm in pareto_df.index: axs28.annotate(lab, xy=(pareto_df.at[efm, D.YIELD_L], pareto_df.at[efm, D.GROWTH_RATE_L]), xytext=(5, 6), textcoords='offset points', ha='left', va='bottom', color='r') axs28.set_xlim(18.5, 23.3) axs28.set_ylim(0.3, 0.8) D.savefig(figS28, 'S28') # %% A box plot of the capacity utilization across EFMs (grouped by reactions) figS29, axS29 = plt.subplots(2, 1, figsize=(10, 10)) fig_name_and_titles = [('standard', 'glucose = %g mM, O$_2$ = %g mM' % (D.STD_CONC['glucoseExt'], D.STD_CONC['oxygen']), axS29[0], True), ('anaerobic', 'glucose = %g mM, no O$_2$' % (D.STD_CONC['glucoseExt']), axS29[1], False)] for i, (fig_name, fig_title, ax, show_exp) in enumerate(fig_name_and_titles): ax.set_title(fig_title) ax.annotate(chr(ord('a')+i), xy=(0.01, 0.98), xycoords='axes fraction', fontsize=20, ha='left', va='top') # read the raw files again, now including all kinetic parameters # and individual enzyme abundances at the ECM optimum zip_fnames, regex = D.DATA_FILES[fig_name] rates, params, kms, enzymes = get_df_from_pareto_zipfile(zip_fnames[0]) rates.round(3).to_csv( os.path.join(D.OUTPUT_DIR, '%s_rates.csv' % fig_name)) enzymes.round(3).to_csv( os.path.join(D.OUTPUT_DIR, '%s_enzyme_abundance.csv' % fig_name)) # calculate the reverse kcats for the reversible reactions kms['s_i * K_i'] = np.log(kms['Km']) * kms['coefficient'] pi_km = kms.groupby(['reaction']).sum()['s_i * K_i'] pi_km = pi_km.apply(np.exp) params['prod(Km)'] = pi_km params.rename(columns={'kcat': 'kcat_fwd [1/s]'}, inplace=True) params['kcat_rev [1/s]'] = \ params['kcat_fwd [1/s]'] * params['prod(Km)'] / params['Keq'] # enzyme abundances in the result files are given in moles, and # are the optimal amounts that enable the catalysis of the reaction # according to the rates in the rates. Multiplying the abundance # by the kcat values would give us the maximal capacity, which is # higher than the actual rate (given in "rates") rates = rates.reset_index().melt( id_vars='efm', var_name='reaction', value_name='rate [mM/s]') enzymes = enzymes.reset_index().melt( id_vars='efm', var_name='reaction', value_name='enzyme [mM]') caputil_df = pd.merge(rates, enzymes, on=['efm', 'reaction']) # drop the cases where the enzyme levels were 0 caputil_df = caputil_df[caputil_df['enzyme [mM]'] > 0] caputil_df['kapp [1/s]'] = \ caputil_df['rate [mM/s]'] / caputil_df['enzyme [mM]'] # to calculate the capacity usage, # we need to divide each kapp by the kcat, which # is tricky, because it depends on the flux direction. caputil_df = caputil_df.join( params[['kcat_fwd [1/s]', 'kcat_rev [1/s]']], on='reaction') caputil_df['kcat [1/s]'] = caputil_df['kcat_fwd [1/s]'] # for all cases where the flux is negative rev_idx = caputil_df[caputil_df['rate [mM/s]'] < 0].index caputil_df.loc[rev_idx, 'kcat [1/s]'] = caputil_df.loc[rev_idx, 'kcat_rev [1/s]'] caputil_df.loc[rev_idx, 'kapp [1/s]'] = -caputil_df.loc[rev_idx, 'kapp [1/s]'] caputil_df['capacity utilization'] = \ caputil_df['kapp [1/s]'] / caputil_df['kcat [1/s]'] caputil_exp = caputil_df[caputil_df['efm'] == 9999].set_index('reaction') caputil_df = caputil_df[caputil_df['efm'] != 9999] cap_util_median = caputil_df.groupby('reaction').median() order = cap_util_median.sort_values(by='capacity utilization').index # TODO: add the cap. util. of the "exp" flux mode in a different color # and also the measured one for glucose media (get from Dan) ax_box = sns.boxplot(x='reaction', y='capacity utilization', data=caputil_df, order=order, ax=ax) ax_box.set_xticklabels(order, rotation=90) ax_box.set_xlabel('') boxes = ax_box.artists for i, r in enumerate(order): boxes[i].set_facecolor(D.reaction_to_rgb(r)) if show_exp: if r in caputil_exp.index: ax.plot(i, caputil_exp.at[r, 'capacity utilization'], markerfacecolor=(1, 0, 0), marker='o') else: ax.plot(i, -0.05, markerfacecolor=(1, 0, 0), marker='.') figS29.tight_layout() D.savefig(figS29, 'S29')
gpl-2.0
peterwilletts24/Python-Scripts
EMBRACE/Plot_Time_Variablity_408_flymake.py
2
13444
""" Load npy xy, plot and save """ import os, sys import matplotlib #matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! import matplotlib.pyplot as plt import matplotlib.cm as mpl_cm from matplotlib import rc from matplotlib.font_manager import FontProperties from matplotlib import rcParams from matplotlib import cm import pdb import linecache import datetime def PrintException(): exc_type, exc_obj, tb = sys.exc_info() f = tb.tb_frame lineno = tb.tb_lineno filename = f.f_code.co_filename linecache.checkcache(filename) line = linecache.getline(filename, lineno, f.f_globals) print 'EXCEPTION IN ({}, LINE {} "{}"): {}'.format(filename, lineno, line.strip(), exc_obj) rc('text', usetex=True) rcParams['text.usetex']=True rcParams['text.latex.unicode']=True rc('font', family = 'serif', serif = 'cmr10') font = {'family' : 'normal', 'weight' : 'bold', 'size' : 14} matplotlib.rc('font', **font) import numpy as np from datetime import timedelta import datetime import math import imp import re from textwrap import wrap import iris.analysis.geometry from shapely.geometry import Polygon model_name_convert_legend = imp.load_source('util', '/nfs/see-fs-01_users/eepdw/python_scripts/modules/model_name_convert_legend.py') imp.load_source('IrisFunctions', '/nfs/see-fs-01_users/eepdw/python_scripts/modules/IrisFunctions.py') from IrisFunctions import * #unrotate = imp.load_source('util', '/home/pwille/python_scripts/modules/unrotate_pole.py') utc_to_local=datetime.timedelta(hours=5, minutes=30) ############### # Things to change top_dir='/nfs/a90/eepdw/Data/EMBRACE' save_dir='/nfs/a90/eepdw/Figures/EMBRACE/TimeVariability' file_name = 'TimeVar_408_land_domain_constrain__and_oro_not_greater_than_data_monsoon_trough.npz' diag_title = 'Area Averaged Rainfall' area='monsoon_trough' types_of_plot=['large_domain_only', '8_and_12_km_only', 'all'] #types_of_plot=['8_and_12_km_only', 'all'] types_of_plot=['all'] types_of_plot=['large_domain_only', '8_and_12_km_only', 'all', '8_and_12_km_plus', '8_and_12_km_par_only', '8_and_12_km_exp_only'] formatter = matplotlib.dates.DateFormatter('%d %b') # lon_max = 101.866 # lon_min = 64.115 # lat_max= 33. # lat_min=-6.79 #trmm_dir = '/nfs/a90/eepdw/Data/Observations/Satellite/TRMM/Diurnal/' #trmm_file = "trmm_diurnal_average_lat_%s_%s_lon_%s_%s.npz" % (lat_min,lat_max, lon_min, lon_max) def main(): for type_of_plot in types_of_plot: if type_of_plot=='large_domain_only': experiment_ids_p = [ 'djznw', 'dkjxq', 'djznq' ] # Params experiment_ids_e = ['dkhgu', 'dkbhu'] # Explicit if type_of_plot=='8_and_12_km_par_only': experiment_ids_p = [ 'dkmbq', 'dklzq' ] # Params experiment_ids_e = [] # Explicit if type_of_plot=='8_and_12_km_exp_only': experiment_ids_p = [] # Params experiment_ids_e = ['dklyu', 'dklwu', 'dkmgw'] # Explicit if type_of_plot=='8_and_12_km_plus': experiment_ids_p = [ 'djznw' ,'dkmbq', 'dklzq' ] # Params experiment_ids_e = ['dklyu', 'dkmgw', 'dklwu', 'dkbhu'] # Explicit if type_of_plot=='8_and_12_km_only': experiment_ids_p = [ 'djznw', 'dkmbq', 'dklzq' ] # Params experiment_ids_e = ['dklyu', 'dkmgw', 'dklwu', 'dkbhu'] # Explicit if type_of_plot=='all': experiment_ids_p = ['djznw', 'djzny', 'djznq', 'dklzq', 'dkmbq', 'dkjxq' ] # Most of Params experiment_ids_e = ['dklwu', 'dklyu', 'dkmgw', 'djzns', 'dkbhu', 'djznu', 'dkhgu'] # Most of Explicit NUM_COLOURS = 16 cmap=cm.get_cmap(cm.Set1, NUM_COLOURS) #cgen = (cmap(1.*i/NUM_COLORS) for i in range(NUM_COLORS)) #for ls in ['land', 'sea', 'total']: for ls in ['land']: fig = plt.figure(figsize=(12,6)) ax = fig.add_subplot(111) #legendEntries=[] #legendtext=[] if ls=='sea': bbox_anchor=-0.25 else: bbox_anchor=0 # Change the legend label colors to almost black #texts = l0.texts #for t in texts: #t.set_color('#262626') legendEntries=[] legendtext=[] for c, experiment_id in enumerate(experiment_ids_p): expmin1 = experiment_id[:-1] if (experiment_id=='djznw'): print experiment_id colour = cmap(1.*1/NUM_COLOURS) linewidth=0.2 linestylez='--' if (experiment_id=='djzny'): print experiment_id colour = cmap(1.*3/NUM_COLOURS) linewidth=0.5 linestylez='--' if ((experiment_id=='djznq') or (experiment_id=='dkjxq')): print experiment_id colour = cmap(1.*11/NUM_COLOURS) linewidth=0.8 if (experiment_id=='djznq'): linestylez='--' if (experiment_id=='dkjxq'): linestylez=':' if ((experiment_id=='dklzq') or (experiment_id=='dklwu')): print experiment_id colour = cmap(1.*7/NUM_COLOURS) linewidth=1 if (experiment_id=='dklzq'): linestylez='--' if (experiment_id=='dklwu'): linestylez='-' if ((experiment_id=='dklyu') or (experiment_id=='dkmbq')): print experiment_id colour = cmap(1.*9/NUM_COLOURS) linewidth=1.3 if (experiment_id=='dkmbq'): linestylez='--' if (experiment_id=='dklyu'): linestylez='-' if (experiment_id=='djzns'): print experiment_id colour = cmap(1.*11/NUM_COLOURS) linewidth=1.6 linestylez='-' if ((experiment_id=='dkbhu')or (experiment_id=='dkhgu')): print experiment_id colour = cmap(1.*13/NUM_COLOURS) linewidth=1.9 if (experiment_id=='dkbhu'): linestylez='-' if (experiment_id=='dkhgu'): linestylez=':' if (experiment_id=='djznu'): print experiment_id colour = cmap(1.*15/NUM_COLOURS) linewidth=2. linestylez='-' try: plotnp = np.load('%s/%s/%s/%s' % (top_dir, expmin1, experiment_id, file_name)) #if (ls != 'total'): # Make own time x-axis (local) #pdb.set_trace() time_arg_sort=np.argsort(plotnp['time_coords']) #time_sort = plotnp[1][hour_arg_sort] try: data_sort = plotnp['data'][:,-3][time_arg_sort] except Exception: data_sort = plotnp['data'][time_arg_sort] #minute_min,hour_min = math.modf(plotnp['time_coords'].points.min()) #minute_max,hour_max = math.modf(plotnp['time_coords'].points.max()) plot_dates = ConvertHoursSince1970ToDatetime(plotnp['time_coords'][time_arg_sort]) #pdb.set_trace() l, = plt.plot_date(plot_dates, data_sort, label=model_name_convert_legend.main(experiment_id), linewidth=linewidth, linestyle=linestylez, marker='', markersize=2, fmt='', color=colour) #else: # l, = plt.plot_date(d, plotnp*3600, label=model_name_convert_legend.main(experiment_id), linewidth=linewidth, linestyle=linestylez, marker='', markersize=2, fmt='', color=colour) legendEntries.append(l) legendtext.append('%s' % (model_name_convert_legend.main(experiment_id))) except Exception, e: print e PrintException() pass l1=plt.legend(legendEntries, legendtext, title='Parametrised', loc=9, frameon=False, prop={'size':12}, bbox_to_anchor=(0+bbox_anchor, 0,1, 1)) # Change the legend label colors to almost black texts = l1.texts for t in texts: t.set_color('#262626') legendEntries=[] legendtext=[] c1=0 for c, experiment_id in enumerate(experiment_ids_e): if (experiment_id=='djznw'): print experiment_id colour = cmap(1.*1/NUM_COLOURS) linewidth=0.2 linestylez='--' if (experiment_id=='djzny'): print experiment_id colour = cmap(1.*3/NUM_COLOURS) linewidth=0.5 linestylez='--' if ((experiment_id=='djznq') or (experiment_id=='dkjxq')): print experiment_id colour = cmap(1.*11/NUM_COLOURS) linewidth=0.8 if (experiment_id=='djznq'): linestylez='--' if (experiment_id=='dkjxq'): linestylez=':' if ((experiment_id=='dklzq') or (experiment_id=='dklwu')): print experiment_id colour = cmap(1.*7/NUM_COLOURS) linewidth=1 if (experiment_id=='dklzq'): linestylez='--' if (experiment_id=='dklwu'): linestylez='-' if ((experiment_id=='dklyu') or (experiment_id=='dkmbq')): print experiment_id colour = cmap(1.*9/NUM_COLOURS) linewidth=1.3 if (experiment_id=='dkmbq'): linestylez='--' if (experiment_id=='dklyu'): linestylez='-' if (experiment_id=='djzns'): print experiment_id colour = cmap(1.*11/NUM_COLOURS) linewidth=1.6 linestylez='-' if ((experiment_id=='dkbhu')or (experiment_id=='dkhgu')): print experiment_id colour = cmap(1.*13/NUM_COLOURS) linewidth=1.9 if (experiment_id=='dkbhu'): linestylez='-' if (experiment_id=='dkhgu'): linestylez=':' if (experiment_id=='djznu'): print experiment_id colour = cmap(1.*15/NUM_COLOURS) linewidth=2. linestylez='-' expmin1 = experiment_id[:-1] try: plotnp = np.load('%s/%s/%s/%s' % (top_dir, expmin1, experiment_id, file_name)) time_arg_sort=np.argsort(plotnp['time_coords']) #time_sort = plotnp[1][hour_arg_sort] try: data_sort = plotnp['data'][:,-3][time_arg_sort] except Exception: data_sort = plotnp['data'][time_arg_sort] #minute_min,hour_min = math.modf(plotnp['time_coords'].points.min()) #minute_max,hour_max = math.modf(plotnp['time_coords'].points.max()) #pdb.set_trace() plot_dates = ConvertHoursSince1970ToDatetime(plotnp['time_coords'][time_arg_sort]) l, = plt.plot_date(plot_dates, data_sort, label=model_name_convert_legend.main(experiment_id), linewidth=linewidth, linestyle=linestylez, marker='', markersize=2, fmt='', color=colour) #else: #else: #l, = plt.plot_date(d, plotnp*3600, label='%s' % (model_name_convert_legend.main(experiment_id)), linewidth=linewidth, linestyle=linestylez, marker='', markersize=2, fmt='', color=colour) legendEntries.append(l) legendtext.append('%s' % (model_name_convert_legend.main(experiment_id))) except Exception, e: print e PrintException() pass l2=plt.legend(legendEntries, legendtext, title='Explicit', loc=9, frameon=False, prop={'size':12}, bbox_to_anchor=(0.155+bbox_anchor, 0,1, 1)) plt.gca().add_artist(l1) #plt.gca().add_artist(l0) plt.gca().xaxis.set_major_formatter(formatter) # Change the legend label colors to almost black texts = l2.texts for t in texts: t.set_color('#262626') plt.xlabel('Time (Local)') plt.ylabel('${mm h^-1}$') title='Domain Averaged %s - %s' % (diag_title, ls) t=re.sub('(.{68} )', '\\1\n', str(title), 0, re.DOTALL) t = re.sub(r'[(\']', ' ', t) t = re.sub(r'[\',)]', ' ', t) pp_filenodot= file_name.replace(".", "") # Bit of formatting # Set colour of axis lines spines_to_keep = ['bottom', 'left'] for spine in spines_to_keep: ax.spines[spine].set_linewidth(0.5) ax.spines[spine].set_color('#262626') # Remove top and right axes lines ("spines") spines_to_remove = ['top', 'right'] for spine in spines_to_remove: ax.spines[spine].set_visible(False) # Get rid of ticks. The position of the numbers is informative enough of # the position of the value. #ax.xaxis.set_ticks_position('none') ax.yaxis.set_ticks_position('none') # Change the labels to the off-black ax.xaxis.label.set_color('#262626') ax.yaxis.label.set_color('#262626') if not os.path.exists(save_dir): os.makedirs(save_dir) plt.savefig('%s/EMBRACE_%s_%s_%s_%s_notitle.png' % (save_dir, area, pp_filenodot, ls, type_of_plot), format='png', bbox_inches='tight') fig.autofmt_xdate() #plt.title('\n'.join(wrap('%s' % (t.title()), 1000,replace_whitespace=False)), fontsize=16) #plt.show() #plt.savefig('%s/EMBRACE_Diurnal__monsoon_trough_%s_%s_%s.png' % (save_dir, pp_filenodot, ls, type_of_plot), # format='png', bbox_inches='tight') #plt.close() #except Exception, e: #print e if __name__ == '__main__': main()
mit
NixaSoftware/CVis
venv/lib/python2.7/site-packages/pandas/tests/indexing/test_indexing.py
2
36653
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 """ test fancy indexing & misc """ import pytest from warnings import catch_warnings from datetime import datetime from pandas.core.dtypes.common import ( is_integer_dtype, is_float_dtype) from pandas.compat import range, lrange, lzip, StringIO import numpy as np import pandas as pd from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas import NaT, DataFrame, Index, Series, MultiIndex import pandas.util.testing as tm from pandas.tests.indexing.common import Base, _mklbl # ------------------------------------------------------------------------ # Indexing test cases class TestFancy(Base): """ pure get/set item & fancy indexing """ def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) # invalid def f(): df.loc[df.index[2:5], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) pytest.raises(ValueError, f) # valid df.loc[df.index[2:6], 'bar'] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], 'bar'] expected = Series([2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name='bar') tm.assert_series_equal(result, expected) # dtype getting changed? df = DataFrame(index=Index(lrange(1, 11))) df['foo'] = np.zeros(10, dtype=np.float64) df['bar'] = np.zeros(10, dtype=np.complex) def f(): df[2:5] = np.arange(1, 4) * 1j pytest.raises(ValueError, f) def test_inf_upcast(self): # GH 16957 # We should be able to use np.inf as a key # np.inf should cause an index to convert to float # Test with np.inf in rows df = pd.DataFrame(columns=[0]) df.loc[1] = 1 df.loc[2] = 2 df.loc[np.inf] = 3 # make sure we can look up the value assert df.loc[np.inf, 0] == 3 result = df.index expected = pd.Float64Index([1, 2, np.inf]) tm.assert_index_equal(result, expected) # Test with np.inf in columns df = pd.DataFrame() df.loc[0, 0] = 1 df.loc[1, 1] = 2 df.loc[0, np.inf] = 3 result = df.columns expected = pd.Float64Index([0, 1, np.inf]) tm.assert_index_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan assert df['c'].dtype == np.float64 df.loc[0, 'c'] = 'foo' expected = DataFrame([{"a": 1, "c": 'foo'}, {"a": 3, "b": 2, "c": np.nan}]) tm.assert_frame_equal(df, expected) # GH10280 df = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=list('ab'), columns=['foo', 'bar', 'baz']) for val in [3.14, 'wxyz']: left = df.copy() left.loc['a', 'bar'] = val right = DataFrame([[0, val, 2], [3, 4, 5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) assert is_integer_dtype(left['foo']) assert is_integer_dtype(left['baz']) left = DataFrame(np.arange(6, dtype='int64').reshape(2, 3) / 10.0, index=list('ab'), columns=['foo', 'bar', 'baz']) left.loc['a', 'bar'] = 'wxyz' right = DataFrame([[0, 'wxyz', .2], [.3, .4, .5]], index=list('ab'), columns=['foo', 'bar', 'baz']) tm.assert_frame_equal(left, right) assert is_float_dtype(left['foo']) assert is_float_dtype(left['baz']) def test_dups_fancy_indexing(self): # GH 3455 from pandas.util.testing import makeCustomDataframe as mkdf df = mkdf(10, 3) df.columns = ['a', 'a', 'b'] result = df[['b', 'a']].columns expected = Index(['b', 'a', 'a']) tm.assert_index_equal(result, expected) # across dtypes df = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']], columns=list('aaaaaaa')) df.head() str(df) result = DataFrame([[1, 2, 1., 2., 3., 'foo', 'bar']]) result.columns = list('aaaaaaa') # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) # GH 3561, dups not in selected order df = DataFrame( {'test': [5, 7, 9, 11], 'test1': [4., 5, 6, 7], 'other': list('abcd')}, index=['A', 'A', 'B', 'C']) rows = ['C', 'B'] expected = DataFrame( {'test': [11, 9], 'test1': [7., 6], 'other': ['d', 'c']}, index=rows) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ['C', 'B', 'E'] expected = DataFrame( {'test': [11, 9, np.nan], 'test1': [7., 6, np.nan], 'other': ['d', 'c', np.nan]}, index=rows) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = df.loc[rows] tm.assert_frame_equal(result, expected) # see GH5553, make sure we use the right indexer rows = ['F', 'G', 'H', 'C', 'B', 'E'] expected = DataFrame({'test': [np.nan, np.nan, np.nan, 11, 9, np.nan], 'test1': [np.nan, np.nan, np.nan, 7., 6, np.nan], 'other': [np.nan, np.nan, np.nan, 'd', 'c', np.nan]}, index=rows) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = df.loc[rows] tm.assert_frame_equal(result, expected) # inconsistent returns for unique/duplicate indices when values are # missing df = DataFrame(np.random.randn(4, 3), index=list('ABCD')) expected = df.reindex(['E']) dfnu = DataFrame(np.random.randn(5, 3), index=list('AABCD')) with catch_warnings(record=True): result = dfnu.ix[['E']] tm.assert_frame_equal(result, expected) # ToDo: check_index_type can be True after GH 11497 # GH 4619; duplicate indexer with missing label df = DataFrame({"A": [0, 1, 2]}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = df.loc[[0, 8, 0]] expected = DataFrame({"A": [0, np.nan, 0]}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) df = DataFrame({"A": list('abc')}) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = df.loc[[0, 8, 0]] expected = DataFrame({"A": ['a', np.nan, 'a']}, index=[0, 8, 0]) tm.assert_frame_equal(result, expected, check_index_type=False) # non unique with non unique selector df = DataFrame({'test': [5, 7, 9, 11]}, index=['A', 'A', 'B', 'C']) expected = DataFrame( {'test': [5, 7, 5, 7, np.nan]}, index=['A', 'A', 'A', 'A', 'E']) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = df.loc[['A', 'A', 'E']] tm.assert_frame_equal(result, expected) # GH 5835 # dups on index and missing values df = DataFrame( np.random.randn(5, 5), columns=['A', 'B', 'B', 'B', 'A']) expected = pd.concat( [df.loc[:, ['A', 'B']], DataFrame(np.nan, columns=['C'], index=df.index)], axis=1) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = df.loc[:, ['A', 'B', 'C']] tm.assert_frame_equal(result, expected) # GH 6504, multi-axis indexing df = DataFrame(np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=['a', 'b']) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ['a', 'b']] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ['a', 'b']] tm.assert_frame_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame({'a': {1: 'aaa', 2: 'bbb', 3: 'ccc'}, 'b': {1: 111, 2: 222, 3: 333}}) # this works, new column is created correctly df['test'] = df['a'].apply(lambda x: '_' if x == 'aaa' else x) # this does not work, ie column test is not changed idx = df['test'] == '_' temp = df.loc[idx, 'a'].apply(lambda x: '-----' if x == 'aaa' else x) df.loc[idx, 'test'] = temp assert df.iloc[0, 2] == '-----' # if I look at df, then element [0,2] equals '_'. If instead I type # df.ix[idx,'test'], I get '-----', finally by typing df.iloc[0,2] I # get '_'. def test_multitype_list_index_access(self): # GH 10610 df = pd.DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with pytest.raises(KeyError): df[[22, 26, -8]] assert df[21].shape[0] == df.shape[0] def test_set_index_nan(self): # GH 3586 df = DataFrame({'PRuid': {17: 'nonQC', 18: 'nonQC', 19: 'nonQC', 20: '10', 21: '11', 22: '12', 23: '13', 24: '24', 25: '35', 26: '46', 27: '47', 28: '48', 29: '59', 30: '10'}, 'QC': {17: 0.0, 18: 0.0, 19: 0.0, 20: np.nan, 21: np.nan, 22: np.nan, 23: np.nan, 24: 1.0, 25: np.nan, 26: np.nan, 27: np.nan, 28: np.nan, 29: np.nan, 30: np.nan}, 'data': {17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006}, 'year': {17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986}}).reset_index() result = df.set_index(['year', 'PRuid', 'QC']).reset_index().reindex( columns=df.columns) tm.assert_frame_equal(result, df) def test_multi_nan_indexing(self): # GH 3588 df = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}) result = df.set_index(['a', 'b'], drop=False) expected = DataFrame({"a": ['R1', 'R2', np.nan, 'R4'], 'b': ["C1", "C2", "C3", "C4"], "c": [10, 15, np.nan, 20]}, index=[Index(['R1', 'R2', np.nan, 'R4'], name='a'), Index(['C1', 'C2', 'C3', 'C4'], name='b')]) tm.assert_frame_equal(result, expected) def test_multi_assign(self): # GH 3626, an assignement of a sub-df to a df df = DataFrame({'FC': ['a', 'b', 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': lrange(6), 'col2': lrange(6, 12)}) df.iloc[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isna() cols = ['col1', 'col2'] dft = df2 * 2 dft.iloc[3, 3] = np.nan expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': Series([0, 1, 4, 6, 8, 10]), 'col2': [12, 7, 16, np.nan, 20, 22]}) # frame on rhs df2.loc[mask, cols] = dft.loc[mask, cols] tm.assert_frame_equal(df2, expected) df2.loc[mask, cols] = dft.loc[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs # coerces to float64 because values has float64 dtype # GH 14001 expected = DataFrame({'FC': ['a', np.nan, 'a', 'b', 'a', 'b'], 'PF': [0, 0, 0, 0, 1, 1], 'col1': [0., 1., 4., 6., 8., 10.], 'col2': [12, 7, 16, np.nan, 20, 22]}) df2 = df.copy() df2.loc[mask, cols] = dft.loc[mask, cols].values tm.assert_frame_equal(df2, expected) df2.loc[mask, cols] = dft.loc[mask, cols].values tm.assert_frame_equal(df2, expected) # broadcasting on the rhs is required df = DataFrame(dict(A=[1, 2, 0, 0, 0], B=[0, 0, 0, 10, 11], C=[ 0, 0, 0, 10, 11], D=[3, 4, 5, 6, 7])) expected = df.copy() mask = expected['A'] == 0 for col in ['A', 'B']: expected.loc[mask, col] = df['D'] df.loc[df['A'] == 0, ['A', 'B']] = df['D'] tm.assert_frame_equal(df, expected) def test_setitem_list(self): # GH 6043 # ix with a list df = DataFrame(index=[0, 1], columns=[0]) with catch_warnings(record=True): df.ix[1, 0] = [1, 2, 3] df.ix[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) with catch_warnings(record=True): result.ix[1, 0] = [1, 2] tm.assert_frame_equal(result, df) # ix with an object class TO(object): def __init__(self, value): self.value = value def __str__(self): return "[{0}]".format(self.value) __repr__ = __str__ def __eq__(self, other): return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) with catch_warnings(record=True): df.ix[1, 0] = TO(1) df.ix[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) with catch_warnings(record=True): result.ix[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) with catch_warnings(record=True): df.ix[1, 0] = TO(1) df.ix[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = pd.DataFrame([1], pd.Index([pd.Timestamp('2011-01-01')], dtype=object)) assert df.index.is_all_dates with pytest.raises(KeyError): df['2011'] with pytest.raises(KeyError): df.loc['2011', 0] df = pd.DataFrame() assert not df.index.is_all_dates with pytest.raises(KeyError): df['2011'] with pytest.raises(KeyError): df.loc['2011', 0] def test_mi_access(self): # GH 4145 data = """h1 main h3 sub h5 0 a A 1 A1 1 1 b B 2 B1 2 2 c B 3 A1 3 3 d A 4 B2 4 4 e A 5 B2 5 5 f B 6 A2 6 """ df = pd.read_csv(StringIO(data), sep=r'\s+', index_col=0) df2 = df.set_index(['main', 'sub']).T.sort_index(1) index = Index(['h1', 'h3', 'h5']) columns = MultiIndex.from_tuples([('A', 'A1')], names=['main', 'sub']) expected = DataFrame([['a', 1, 1]], index=columns, columns=index).T result = df2.loc[:, ('A', 'A1')] tm.assert_frame_equal(result, expected) result = df2[('A', 'A1')] tm.assert_frame_equal(result, expected) # GH 4146, not returning a block manager when selecting a unique index # from a duplicate index # as of 4879, this returns a Series (which is similar to what happens # with a non-unique) expected = Series(['a', 1, 1], index=['h1', 'h3', 'h5'], name='A1') result = df2['A']['A1'] tm.assert_series_equal(result, expected) # selecting a non_unique from the 2nd level expected = DataFrame([['d', 4, 4], ['e', 5, 5]], index=Index(['B2', 'B2'], name='sub'), columns=['h1', 'h3', 'h5'], ).T result = df2['A']['B2'] tm.assert_frame_equal(result, expected) def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame([['1', '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame([[1, 2, '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, 'A'] = df.loc[:, 'A'].astype(np.int64) expected = DataFrame([[1, '2', '3', '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ['B', 'C']] = df.loc[:, ['B', 'C']].astype(np.int64) expected = DataFrame([['1', 2, 3, '.4', 5, 6., 'foo']], columns=list('ABCDEFG')) tm.assert_frame_equal(df, expected) # full replacements / no nans df = DataFrame({'A': [1., 2., 3., 4.]}) df.iloc[:, 0] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({'A': [1., 2., 3., 4.]}) df.loc[:, 'A'] = df['A'].astype(np.int64) expected = DataFrame({'A': [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) def test_astype_assignment_with_dups(self): # GH 4686 # assignment with dups that has a dtype change cols = pd.MultiIndex.from_tuples([('A', '1'), ('B', '1'), ('A', '2')]) df = DataFrame(np.arange(3).reshape((1, 3)), columns=cols, dtype=object) index = df.index.copy() df['A'] = df['A'].astype(np.float64) tm.assert_index_equal(df.index, index) # TODO(wesm): unused variables # result = df.get_dtype_counts().sort_index() # expected = Series({'float64': 2, 'object': 1}).sort_index() @pytest.mark.parametrize("index,val", [ (pd.Index([0, 1, 2]), 2), (pd.Index([0, 1, '2']), '2'), (pd.Index([0, 1, 2, np.inf, 4]), 4), (pd.Index([0, 1, 2, np.nan, 4]), 4), (pd.Index([0, 1, 2, np.inf]), np.inf), (pd.Index([0, 1, 2, np.nan]), np.nan), ]) def test_index_contains(self, index, val): assert val in index @pytest.mark.parametrize("index,val", [ (pd.Index([0, 1, 2]), '2'), (pd.Index([0, 1, '2']), 2), (pd.Index([0, 1, 2, np.inf]), 4), (pd.Index([0, 1, 2, np.nan]), 4), (pd.Index([0, 1, 2, np.inf]), np.nan), (pd.Index([0, 1, 2, np.nan]), np.inf), # Checking if np.inf in Int64Index should not cause an OverflowError # Related to GH 16957 (pd.Int64Index([0, 1, 2]), np.inf), (pd.Int64Index([0, 1, 2]), np.nan), (pd.UInt64Index([0, 1, 2]), np.inf), (pd.UInt64Index([0, 1, 2]), np.nan), ]) def test_index_not_contains(self, index, val): assert val not in index def test_index_type_coercion(self): with catch_warnings(record=True): # GH 11836 # if we have an index type and set it with something that looks # to numpy like the same, but is actually, not # (e.g. setting with a float or string '0') # then we need to coerce to object # integer indexes for s in [Series(range(5)), Series(range(5), index=range(1, 6))]: assert s.index.is_integer() for indexer in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 exp = s.index if 0 not in s: exp = Index(s.index.tolist() + [0]) tm.assert_index_equal(s2.index, exp) s2 = s.copy() indexer(s2)['0'] = 0 assert s2.index.is_object() for s in [Series(range(5), index=np.arange(5.))]: assert s.index.is_floating() for idxr in [lambda x: x.ix, lambda x: x.loc, lambda x: x]: s2 = s.copy() idxr(s2)[0.1] = 0 assert s2.index.is_floating() assert idxr(s2)[0.1] == 0 s2 = s.copy() idxr(s2)[0.0] = 0 tm.assert_index_equal(s2.index, s.index) s2 = s.copy() idxr(s2)['0'] = 0 assert s2.index.is_object() class TestMisc(Base): def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_float_index_to_mixed(self): df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)}) df['a'] = 10 tm.assert_frame_equal(DataFrame({0.0: df[0.0], 1.0: df[1.0], 'a': [10] * 10}), df) def test_float_index_non_scalar_assignment(self): df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.]) df.loc[df.index[:2]] = 1 expected = DataFrame({'a': [1, 1, 3], 'b': [1, 1, 5]}, index=df.index) tm.assert_frame_equal(expected, df) df = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}, index=[1., 2., 3.]) df2 = df.copy() df.loc[df.index] = df.loc[df.index] tm.assert_frame_equal(df, df2) def test_float_index_at_iat(self): s = pd.Series([1, 2, 3], index=[0.1, 0.2, 0.3]) for el, item in s.iteritems(): assert s.at[el] == item for i in range(len(s)): assert s.iat[i] == i + 1 def test_rhs_alignment(self): # GH8258, tests that both rows & columns are aligned to what is # assigned to. covers both uniform data-type & multi-type cases def run_tests(df, rhs, right): # label, index, slice r, i, s = list('bcd'), [1, 2, 3], slice(1, 4) c, j, l = ['joe', 'jolie'], [1, 2], slice(1, 3) left = df.copy() left.loc[r, c] = rhs tm.assert_frame_equal(left, right) left = df.copy() left.iloc[i, j] = rhs tm.assert_frame_equal(left, right) left = df.copy() with catch_warnings(record=True): left.ix[s, l] = rhs tm.assert_frame_equal(left, right) left = df.copy() with catch_warnings(record=True): left.ix[i, j] = rhs tm.assert_frame_equal(left, right) left = df.copy() with catch_warnings(record=True): left.ix[r, c] = rhs tm.assert_frame_equal(left, right) xs = np.arange(20).reshape(5, 4) cols = ['jim', 'joe', 'jolie', 'joline'] df = pd.DataFrame(xs, columns=cols, index=list('abcde')) # right hand side; permute the indices and multiplpy by -2 rhs = -2 * df.iloc[3:0:-1, 2:0:-1] # expected `right` result; just multiply by -2 right = df.copy() right.iloc[1:4, 1:3] *= -2 # run tests with uniform dtypes run_tests(df, rhs, right) # make frames multi-type & re-run tests for frame in [df, rhs, right]: frame['joe'] = frame['joe'].astype('float64') frame['jolie'] = frame['jolie'].map('@{0}'.format) run_tests(df, rhs, right) def test_str_label_slicing_with_negative_step(self): SLC = pd.IndexSlice def assert_slices_equivalent(l_slc, i_slc): tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) if not idx.is_integer: # For integer indices, ix and plain getitem are position-based. tm.assert_series_equal(s[l_slc], s.iloc[i_slc]) tm.assert_series_equal(s.loc[l_slc], s.iloc[i_slc]) for idx in [_mklbl('A', 20), np.arange(20) + 100, np.linspace(100, 150, 20)]: idx = Index(idx) s = Series(np.arange(20), index=idx) assert_slices_equivalent(SLC[idx[9]::-1], SLC[9::-1]) assert_slices_equivalent(SLC[:idx[9]:-1], SLC[:8:-1]) assert_slices_equivalent(SLC[idx[13]:idx[9]:-1], SLC[13:8:-1]) assert_slices_equivalent(SLC[idx[9]:idx[13]:-1], SLC[:0]) def test_slice_with_zero_step_raises(self): s = Series(np.arange(20), index=_mklbl('A', 20)) tm.assert_raises_regex(ValueError, 'slice step cannot be zero', lambda: s[::0]) tm.assert_raises_regex(ValueError, 'slice step cannot be zero', lambda: s.loc[::0]) with catch_warnings(record=True): tm.assert_raises_regex(ValueError, 'slice step cannot be zero', lambda: s.ix[::0]) def test_indexing_assignment_dict_already_exists(self): df = pd.DataFrame({'x': [1, 2, 6], 'y': [2, 2, 8], 'z': [-5, 0, 5]}).set_index('z') expected = df.copy() rhs = dict(x=9, y=99) df.loc[5] = rhs expected.loc[5] = [9, 99] tm.assert_frame_equal(df, expected) def test_indexing_dtypes_on_empty(self): # Check that .iloc and .ix return correct dtypes GH9983 df = DataFrame({'a': [1, 2, 3], 'b': ['b', 'b2', 'b3']}) with catch_warnings(record=True): df2 = df.ix[[], :] assert df2.loc[:, 'a'].dtype == np.int64 tm.assert_series_equal(df2.loc[:, 'a'], df2.iloc[:, 0]) with catch_warnings(record=True): tm.assert_series_equal(df2.loc[:, 'a'], df2.ix[:, 0]) def test_range_in_series_indexing(self): # range can cause an indexing error # GH 11652 for x in [5, 999999, 1000000]: s = pd.Series(index=range(x)) s.loc[range(1)] = 42 tm.assert_series_equal(s.loc[range(1)], Series(42.0, index=[0])) s.loc[range(2)] = 43 tm.assert_series_equal(s.loc[range(2)], Series(43.0, index=[0, 1])) def test_non_reducing_slice(self): df = pd.DataFrame([[0, 1], [2, 3]]) slices = [ # pd.IndexSlice[:, :], pd.IndexSlice[:, 1], pd.IndexSlice[1, :], pd.IndexSlice[[1], [1]], pd.IndexSlice[1, [1]], pd.IndexSlice[[1], 1], pd.IndexSlice[1], pd.IndexSlice[1, 1], slice(None, None, None), [0, 1], np.array([0, 1]), pd.Series([0, 1]) ] for slice_ in slices: tslice_ = _non_reducing_slice(slice_) assert isinstance(df.loc[tslice_], DataFrame) def test_list_slice(self): # like dataframe getitem slices = [['A'], pd.Series(['A']), np.array(['A'])] df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}, index=['A', 'B']) expected = pd.IndexSlice[:, ['A']] for subset in slices: result = _non_reducing_slice(subset) tm.assert_frame_equal(df.loc[result], df.loc[expected]) def test_maybe_numeric_slice(self): df = pd.DataFrame({'A': [1, 2], 'B': ['c', 'd'], 'C': [True, False]}) result = _maybe_numeric_slice(df, slice_=None) expected = pd.IndexSlice[:, ['A']] assert result == expected result = _maybe_numeric_slice(df, None, include_bool=True) expected = pd.IndexSlice[:, ['A', 'C']] result = _maybe_numeric_slice(df, [1]) expected = [1] assert result == expected def test_partial_boolean_frame_indexing(self): # GH 17170 df = pd.DataFrame(np.arange(9.).reshape(3, 3), index=list('abc'), columns=list('ABC')) index_df = pd.DataFrame(1, index=list('ab'), columns=list('AB')) result = df[index_df.notnull()] expected = pd.DataFrame(np.array([[0., 1., np.nan], [3., 4., np.nan], [np.nan] * 3]), index=list('abc'), columns=list('ABC')) tm.assert_frame_equal(result, expected) class TestSeriesNoneCoercion(object): EXPECTED_RESULTS = [ # For numeric series, we should coerce to NaN. ([1, 2, 3], [np.nan, 2, 3]), ([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0]), # For datetime series, we should coerce to NaT. ([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]), # For objects, we should preserve the None value. (["foo", "bar", "baz"], [None, "bar", "baz"]), ] def test_coercion_with_setitem(self): for start_data, expected_result in self.EXPECTED_RESULTS: start_series = Series(start_data) start_series[0] = None expected_series = Series(expected_result) tm.assert_series_equal(start_series, expected_series) def test_coercion_with_loc_setitem(self): for start_data, expected_result in self.EXPECTED_RESULTS: start_series = Series(start_data) start_series.loc[0] = None expected_series = Series(expected_result) tm.assert_series_equal(start_series, expected_series) def test_coercion_with_setitem_and_series(self): for start_data, expected_result in self.EXPECTED_RESULTS: start_series = Series(start_data) start_series[start_series == start_series[0]] = None expected_series = Series(expected_result) tm.assert_series_equal(start_series, expected_series) def test_coercion_with_loc_and_series(self): for start_data, expected_result in self.EXPECTED_RESULTS: start_series = Series(start_data) start_series.loc[start_series == start_series[0]] = None expected_series = Series(expected_result) tm.assert_series_equal(start_series, expected_series) class TestDataframeNoneCoercion(object): EXPECTED_SINGLE_ROW_RESULTS = [ # For numeric series, we should coerce to NaN. ([1, 2, 3], [np.nan, 2, 3]), ([1.0, 2.0, 3.0], [np.nan, 2.0, 3.0]), # For datetime series, we should coerce to NaT. ([datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)]), # For objects, we should preserve the None value. (["foo", "bar", "baz"], [None, "bar", "baz"]), ] def test_coercion_with_loc(self): for start_data, expected_result, in self.EXPECTED_SINGLE_ROW_RESULTS: start_dataframe = DataFrame({'foo': start_data}) start_dataframe.loc[0, ['foo']] = None expected_dataframe = DataFrame({'foo': expected_result}) tm.assert_frame_equal(start_dataframe, expected_dataframe) def test_coercion_with_setitem_and_dataframe(self): for start_data, expected_result, in self.EXPECTED_SINGLE_ROW_RESULTS: start_dataframe = DataFrame({'foo': start_data}) start_dataframe[start_dataframe['foo'] == start_dataframe['foo'][ 0]] = None expected_dataframe = DataFrame({'foo': expected_result}) tm.assert_frame_equal(start_dataframe, expected_dataframe) def test_none_coercion_loc_and_dataframe(self): for start_data, expected_result, in self.EXPECTED_SINGLE_ROW_RESULTS: start_dataframe = DataFrame({'foo': start_data}) start_dataframe.loc[start_dataframe['foo'] == start_dataframe[ 'foo'][0]] = None expected_dataframe = DataFrame({'foo': expected_result}) tm.assert_frame_equal(start_dataframe, expected_dataframe) def test_none_coercion_mixed_dtypes(self): start_dataframe = DataFrame({ 'a': [1, 2, 3], 'b': [1.0, 2.0, 3.0], 'c': [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], 'd': ['a', 'b', 'c'] }) start_dataframe.iloc[0] = None exp = DataFrame({'a': [np.nan, 2, 3], 'b': [np.nan, 2.0, 3.0], 'c': [NaT, datetime(2000, 1, 2), datetime(2000, 1, 3)], 'd': [None, 'b', 'c']}) tm.assert_frame_equal(start_dataframe, exp)
apache-2.0
idc9/law-net
vertex_metrics_experiment/chalboards/rankscore_experiment_search.py
1
3973
import glob import numpy as np import random as random import pandas as pd from math import * from datetime import datetime from experiment_helper_functions import * from pipeline_helper_functions import * from attachment_model_inference import * def get_rankscores_search(G, test_params, metrics, subnet_dir, num_to_keep): """ Computes rank scores for each metric individually in metrics list """ # sample test cases test_cases = get_test_cases(G, test_params['active_years'], test_params['num_test_cases'], test_params['seed']) # load snapshots snapshots_dict = load_snapshots(subnet_dir) # load tfidf matrix tfidf_matrix, op_id_to_bow_id = load_tf_idf(subnet_dir + 'nlp/') # ranking scores for each test case scores = pd.DataFrame(index=[c['name'] for c in test_cases], columns=metrics) # get scores for each metric for metric in metrics: # compute scores on test cases scores[metric] = get_test_case_scores_search(G, test_cases, snapshots_dict, metric, tfidf_matrix, op_id_to_bow_id, num_to_keep) return scores def get_test_case_scores_search(G, test_cases, snapshots_dict, metric, tfidf_matrix, op_id_to_bow_id, num_to_keep): """ computes the scores for each test case returns a pandas series indexed by test case clids # TODO: this could be parallelized """ # compute scores for each test case scores = pd.Series(index=[c['name'] for c in test_cases]) for test_case in test_cases: scores[test_case['name']] = get_rankscore_search(G, test_case, snapshots_dict, metric, tfidf_matrix, op_id_to_bow_id, num_to_keep) return scores def get_rankscore_search(G, test_case, snapshots_dict, metric, tfidf_matrix, op_id_to_bow_id, num_to_keep): """ Gets the rank score for a given test case """ # converted ig index to CL id cited_cases = get_cited_cases(G, test_case) # get vetex metrics in year before citing year snapshot_year = test_case['year'] - 1 # grab data frame of vertex metrics for test case's snapshot snapshot_df = snapshots_dict['vertex_metrics_' + str(int(snapshot_year))] # restrict ourselves to ancestors of ing # case strictly before ing year ancentors = [v.index for v in G.vs.select(year_le=snapshot_year)] # all edges from ing case to previous cases edgelist = zip([test_case.index] * len(ancentors), ancentors) columns_to_use = [metric, 'similarity'] # grab edge data edge_data = get_edge_data(G, edgelist, snapshot_df, columns_to_use=columns_to_use, tfidf_matrix=tfidf_matrix, op_id_to_bow_id=op_id_to_bow_id, metric_normalization=None, edge_status=None) # retun subset of similar cases edge_data = edge_data.sort_values(by='similarity', ascending=False).iloc[0:num_to_keep] # case rankings (CL ids) ancestor_ranking = rank_cases_by_metric(edge_data, metric) # cited cases that are apart of the 'search' searched_cases = [e.split('_')[1] for e in edge_data.index] # [e[1] for e in sored_edges] searched_cases_cited = set(cited_cases).intersection(set(searched_cases)) # if none of the cited cases are in the search return nan if len(searched_cases_cited) > 0: # compute rank score score = score_ranking(searched_cases_cited, ancestor_ranking) else: score = np.nan return score
mit
thalro/TFModels
tfmodels/base.py
1
13766
import os import cPickle as pickle import inspect import numpy as np from sklearn.base import BaseEstimator,ClassifierMixin from sklearn.preprocessing import LabelBinarizer import tensorflow as tf tfDtype = tf.float32 npDtype = np.float32 TFMODEL_SAVE_SCOPE = 'tfmodel' def recursive_argspec(cls): if cls is object: return [] try: argspec = inspect.getargspec(cls.__init__) args = argspec.args except: args = [] if isinstance(cls,type): bases = cls.__bases__ else: bases = cls.__class__.__bases__ for base in bases: args += recursive_argspec(base) return [a for a in args if a!='self'] class BatchIndGernerator(object): def __init__(self, batchsize,N,iterations,shuffle = True,start_iteration = 0): if batchsize is None: self.batchsize = N else: self.batchsize = batchsize self.N = N self.iterations = iterations self.currentiteration = start_iteration self.queue = [] self.shuffle = shuffle def __iter__(self): return self def next(self): if self.iterations == 0 or \ len(self.queue)==0 and self.currentiteration >= self.iterations: raise StopIteration else: if len(self.queue) ==0 : self.currentiteration += 1 inds = np.arange(self.N) if self.shuffle: np.random.shuffle(inds) self.queue = inds inds = self.queue[:self.batchsize] self.queue = self.queue[self.batchsize:] return inds,self.currentiteration class BatchGernerator(object): def __init__(self,X,y=None,batchsize=128,iterations=10,shuffle = True,start_iteration = 0,preprocessors = [],preprocessor_args = [],is_training = True): self.ind_gernerator = BatchIndGernerator(batchsize=batchsize, N=X.shape[0], iterations=iterations,shuffle = shuffle,start_iteration = start_iteration) self.preprocessors = [p(**pa) for p,pa in zip(preprocessors,preprocessor_args)] self.X = X self.y = y self.is_training = is_training def __iter__(self): return self def next(self): inds,currrentiteration = self.ind_gernerator.next() Xbatch = self.X[inds] if self.y is not None: ybatch = self.y[inds] else: ybatch = None for prep in self.preprocessors: try: Xbatch = prep.fit_transform(Xbatch,ybatch,is_training = self.is_training) except: Xbatch = prep.fit_transform(Xbatch,ybatch) return Xbatch,ybatch,currrentiteration class TFBaseEstimator(BaseEstimator): def __init__(self,n_jobs = 1): self.train_step = None self.predict_step = None self.is_fitted = False try: tf.reset_default_graph() except: print 'could not reset default graph' if n_jobs!=-1: config = tf.ConfigProto(intra_op_parallelism_threads=n_jobs, inter_op_parallelism_threads=n_jobs, \ allow_soft_placement=True, device_count = {'CPU': n_jobs}) self.session = tf.Session(config=config) else: self.session = tf.Session() with tf.variable_scope(TFMODEL_SAVE_SCOPE): self.global_step_tensor = tf.Variable(0,name = 'global_step', trainable=False) @classmethod def _get_param_names(cls): """ this overrides the method of sklearn BaseEstimator so that param names are also collected from super classes. """ return sorted(recursive_argspec(cls)) def get_tf_vars(self): vars = tf.trainable_variables() var_names = [v.name for v in vars] return zip(self.session.run(vars),var_names) def save(self,fname): #tf_vars =self.get_tf_vars_as_ndarrays() params = self.get_params() pickle.dump((params,self.is_fitted), open(fname+'.params','w'),protocol = 2) # save the tf session var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=TFMODEL_SAVE_SCOPE) saver = tf.train.Saver(var_list = var_list) saver.save(self.session,fname+'.session') def load(self,fname): params,is_fitted = pickle.load(open(fname+'.params')) self.set_params(**params) # fit has to be run to construct the graph first iterations = self.iterations self.iterations =0 dummy_X = np.zeros([1]+list(self.feature_shape)) dummy_y = np.zeros([1,self.n_outputs]) self.fit(dummy_X,dummy_y) self.iterations =iterations saver = tf.train.Saver()#import_meta_graph(fname+'.session.meta') saver.restore(self.session,fname+'.session') def __del__(self): self.session.close() del self.session class TFBaseClassifier(TFBaseEstimator,ClassifierMixin): """ a base class for classifier models. this class should be instantiated. """ def __init__(self,random_state=None,learning_rate = 0.1,learning_rates=None,iterations = 10,batchsize = None,print_interval= 10,verbose = False,output_type ='softmax',epsilon = 1e-9,multilabel = False,multilabel_threshold = 0.2,batch_preprocessors = [], batch_preprocessor_args = [],feature_shape = None,n_outputs = None,*kwargs): super(TFBaseClassifier, self).__init__(*kwargs) self.classes_ = None self.n_classes = None self.x = None self.y_ = None self.feature_shape = None self.n_outputs = None self.warm_start = False self.learning_rate_tensor = None self.prediction = None self.random_state = random_state self.feature_shape = feature_shape self.n_outputs = n_outputs # learning rate and iterations can also be lists if not isinstance(iterations, (list, tuple, np.ndarray)): iterations = [iterations] if learning_rates is None: learning_rates = [learning_rate] assert len(learning_rates)==len(iterations), 'learning_rates and iterations must have same length' self.learning_rates = learning_rates self.learning_rate = learning_rate self.iterations = iterations self.batchsize = batchsize self.print_interval = print_interval self.verbose = verbose if output_type not in ['softmax','sigmoid']: raise ValueError('output_type must be either softmax or sigmoid') self.output_type = output_type self.epsilon = epsilon self.is_training = tf.placeholder(tf.bool) self.multilabel = multilabel self.multilabel_threshold = multilabel_threshold self.batch_preprocessors = batch_preprocessors self.batch_preprocessor_args = batch_preprocessor_args self.train_feed_dict = {} self.test_feed_dict = {} def fit(self,X,y,warm_start = False): original_batchsize = self.batchsize if self.batchsize is None: self.batchsize = X.shape[0] self.warm_start = warm_start if self.random_state is not None and not warm_start: np.random.seed(self.random_state) tf.set_random_seed(self.random_state) # targets need to be binarized lb = LabelBinarizer() bin_y = lb.fit_transform(y) if bin_y.shape[1]==1: bin_y = np.concatenate([1-bin_y,bin_y],axis = 1) self.classes_ = np.arange(bin_y.shape[1]) self.n_classes = len(self.classes_) self.n_outputs = bin_y.shape[1] # push some data through preprocessors, to see final feature shape feature = X[:1] for prep,args in zip(self.batch_preprocessors,self.batch_preprocessor_args): preproc = prep(**args) feature = preproc.fit_transform(feature) self.feature_shape = list(feature.shape[1:]) if not self.is_fitted: with tf.variable_scope(TFMODEL_SAVE_SCOPE): # place holder for the input and output self.x = tf.placeholder(tf.float32,[None]+self.feature_shape,name = 'self.x') self.y = tf.placeholder(tf.float32,[None,self.n_outputs],name = 'self.y') self.learning_rate_tensor = tf.placeholder(tf.float32,shape = [],name = 'learning_rate') # create graph self.predict_step = self._predict_step() self.loss = self._loss_func() # op for train step self.train_step = self._train_step() if self.output_type == 'softmax': self.prediction = tf.nn.softmax(self.predict_step) elif self.output_type == 'sigmoid': self.prediction = tf.nn.sigmoid(self.predict_step) # initialize variables if not self.warm_start: self._init_vars() # run the training self._train_loop(X,bin_y) self.is_fitted = True self.batchsize = original_batchsize return self def _init_vars(self): self.session.run(tf.global_variables_initializer()) def _opt_var_list(self): return tf.trainable_variables() def predict_proba(self,X): if not self.is_fitted: print 'not fitted' return output = [] with self.session.as_default(): # make sure that batch preprocessors are created in the same graph batches = BatchGernerator(X,None,self.batchsize,1,shuffle = False, preprocessors = self.batch_preprocessors, preprocessor_args = self.batch_preprocessor_args, is_training = False) for (Xbatch,ybatch,iteration) in batches: feed_dict = {self.x:Xbatch.astype(float),self.is_training:False} feed_dict.update(self.test_feed_dict) output.append(self.session.run(self.prediction,feed_dict=feed_dict)) return np.concatenate(output,axis =0) def predict(self,X): if not self.is_fitted: print 'not fitted' return proba = self.predict_proba(X) if self.multilabel: return proba>self.multilabel_threshold else: return self.classes_[np.argmax(proba,axis=1)] def _train_loop(self,X,y): #ensure that iterations is list in case it has been changed if not isinstance(self.iterations, (list, tuple, np.ndarray)): self.iterations = [self.iterations] current_iteration = 0 iteration = 0 for iterations,learning_rate in zip(self.iterations,self.learning_rates): self.learning_rate = learning_rate with self.session.as_default(): # make sure that batch preprocessors are created in the same graph batches = BatchGernerator(X,y,self.batchsize, iterations+iteration, start_iteration = iteration,preprocessors = self.batch_preprocessors, preprocessor_args = self.batch_preprocessor_args,is_training = True) for i,(Xbatch,ybatch,iteration) in enumerate(batches): if iteration>current_iteration: current_iteration+=1 self._iteration_callback() feed_dict = {self.x:Xbatch,self.y:ybatch,self.is_training:True,self.learning_rate_tensor:self.learning_rate} feed_dict.update(self.train_feed_dict) self.session.run(self.train_step,feed_dict = feed_dict) if self.verbose and i%self.print_interval ==0: feed_dict = {self.x:Xbatch,self.y:ybatch,self.is_training:False} feed_dict.update(self.test_feed_dict) loss = self.session.run(self.loss,feed_dict = feed_dict) print 'iteration ',iteration,', batch ',i ,', loss ',loss,', learning rate ',learning_rate def _loss_func(self): # override for more fancy stuff if self.output_type == 'softmax': loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y, logits=self.predict_step))+tf.reduce_sum(tf.losses.get_regularization_losses()) elif self.output_type == 'sigmoid': loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.y, logits=self.predict_step))+tf.reduce_sum(tf.losses.get_regularization_losses()) return loss def _train_step(self): #override for more fancy stuff # this is needed for so that batch_normalization forks update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = tf.train.AdamOptimizer(learning_rate = self.learning_rate_tensor,epsilon = self.epsilon).minimize(self.loss,global_step = self.global_step_tensor,var_list = self._opt_var_list()) return train_op def _iteration_callback(self): # this is executed at the beginning of each iteration # and can be overridden with useful stuff return None def _create_graph(self): # this needs to be filled raise NotImplementedError def _predict_step(self): # this needs to be filled raise NotImplementedError
gpl-3.0
ajmedford/catmap
catmap/mappers/mapper_base.py
1
5839
"""Class for `mapping' equilibrium coverages and rates through descriptor space. This class acts as a base class to be inherited by other mapper classes, but is not functional on its own. get_rxn_parameter_map(descriptor_ranges,resolution): Uses a scaler object to determine the reaction parameters as a function of descriptor space. May be useful for debugging or providing intuition about rate determining steps. Should return a list of the form [[descriptor_1,descriptor_2,...],[rxn_parameter1, rxn_parameter2, ...]] save_map(map,map_file): creates a pickle of the "map" list and dumps it to the map_file load_map(map_file): loads a "map" list by loading a pickle from the map_file A functional derived mapper class must also contain the methods: get_coverage_map(descriptor_ranges,resolution): a function which returns a list of the form [[descriptor_1,descriptor_2,...], [cvg_ads1,cvg_ads2,...]] get_rates_map(descriptor_ranges,resolution): a function which returns a list of the form [[descriptor_1,descriptor_2,...], [rate_rxn1,rate_rxn2,...]] """ from matplotlib.mlab import griddata import numpy as np import mpmath as mp import cPickle as pickle import os from copy import copy from catmap.model import ReactionModel from catmap import ReactionModelWrapper from catmap import plt class MapperBase(ReactionModelWrapper): # XXX : Having an instantiated object as default parameter # may have side-effects since every instance of MapperBase will have # the identical instance of ReactionModel as its attribute # Unless this is deliberately so, one should better use e.g. None # as the default value and then instantiate ReactionModel in the # function body of __init__ . def __init__(self,reaction_model=ReactionModel()): self._rxm = reaction_model self._solver_output = ['coverage','rate', #outputs requiring solver 'turnover_frequency','selectivity','rate_control', 'noninteracting_coverages'] def get_point_output(self,descriptors,*args,**kwargs): self.solver.compile() self._output_variables = [v for v in self.output_variables] self._descriptors = descriptors params = self.scaler.get_rxn_parameters(descriptors) self._params = params if True in [v in self._solver_output for v in self.output_variables]: if 'coverage' not in self._output_variables: self._output_variables = ['coverage'] + self._output_variables elif self._output_variables[0] != 'coverage': self._output_variables.remove('coverage') self._output_variables = ['coverage'] + self._output_variables self.output_labels['coverage'] = self.adsorbate_names self.output_labels['rate'] = self.elementary_rxns # Need coverages for solver vars for out in self._output_variables: if getattr(self,'get_point_'+out): val = getattr(self,'get_point_'+out)(descriptors,*args,**kwargs) setattr(self,'_'+out,val) self.solver.set_output_attrs(params) self.scaler.set_output_attrs(descriptors) for out in self.output_variables: mapp = getattr(self,'_'+out+'_temp',{}) mapp[repr(descriptors)] = getattr(self,'_'+out) setattr(self,'_'+out+'_temp',mapp) def get_output_map(self,descriptor_ranges,resolution,*args,**kwargs): self.solver.compile() self._output_variables = [v for v in self.output_variables] if True in [v in self._solver_output for v in self.output_variables]: #determines whether or not solver is needed if 'coverage' not in self._output_variables: self._output_variables = ['coverage'] + self._output_variables self._coverage_map = None elif self._output_variables[0] != 'coverage': self._output_variables.remove('coverage') self._output_variables = ['coverage'] + self._output_variables # Need coverages for solver vars ismapped = False for out in self._output_variables: if getattr(self,'get_'+out+'_map'): val = getattr(self,'get_'+out+'_map')( descriptor_ranges,resolution,*args,**kwargs) setattr(self,out+'_map',val) ismapped = True if ismapped == False: #HACK - the following code is copy-pasted from min_resid_mapper. #need to abstract it out. resolution = np.array(resolution) if resolution.size == 1: resx = resy = float(resolution) elif resolution.size == 2: resx = resolution[0] resy = resolution[1] else: raise ValueError('Resolution is not the correct shape') d1min,d1max = descriptor_ranges[0] d2min,d2max = descriptor_ranges[1] d1Vals = np.linspace(d1min,d1max,resx) d2Vals = np.linspace(d2min,d2max,resy) #ENDHACK for d1V in d1Vals: for d2V in d2Vals: self._descriptors = [d1V,d2V] self.get_point_output(self._descriptors) for out in self.output_variables: # if getattr(self,out+'_map'): # mapp = getattr(self,out+'_map') # else: map_dict = getattr(self,'_'+out+'_temp',[]) mapp = [] for key in map_dict: mapp.append([eval(key),map_dict[key]]) setattr(self,out+'_map',mapp) if getattr(self,out+'_map_file'): outfile = getattr(self,out+'_map_file') self.save_map(mapp,outfile)
gpl-3.0
idlead/scikit-learn
doc/conf.py
26
8446
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2015, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
matthewpklein/battsimpy
tests/heat_grad_test.py
1
1297
import numpy from matplotlib import pyplot as plt def grad_mat( N, x ) : G = numpy.zeros( [N,N] ) for i in range(1,N-1) : G[i,[i-1, i+1]] = [ -1./(x[i+1]-x[i-1]), 1./(x[i+1]-x[i-1]) ] G[0,[0,1]] = [-1./(x[1]-x[0]),1./(x[1]-x[0])] G[-1,[-2,-1]] = [-1./(x[-1]-x[-2]),1./(x[-1]-x[-2])] return G ### Control volumes and node points (mid node points and edge node points) Ns = 10 Na = 20 Nc = 20 N = Na + Ns + Nc X = 1e-6*(55+25+65) x_e = numpy.linspace( 0.0, X, N+1 ) x_m = numpy.array( [ 0.5*(x_e[i+1]+x_e[i]) for i in range(N) ], dtype='d' ) vols = numpy.array( [ (x_e[i+1] - x_e[i]) for i in range(N)], dtype='d' ) # Useful sub-meshes for the phi_s functions x_m_a = x_m[:Na] x_m_c = x_m[-Nc:] x_e_a = x_e[:Na+1] x_e_c = x_e[-Nc-1:] vols_a = vols[:Na] vols_c = vols[-Nc:] k=0.1 K = numpy.diag( numpy.ones(N)*k ) G = grad_mat( N, x_m ) phi = numpy.linspace( 0.2, 0., N ) phi = phi**2 / 0.1 dphi = numpy.gradient(phi)/numpy.gradient(x_m) eq0 = sum( k*(dphi**2)*vols ) eq1 = sum( k*(G.dot(phi))*(G.dot(phi))*vols ) eq2 = vols.dot( k*(G.dot(phi))*(G.dot(phi)) ) eq3 = (vols.dot( k*numpy.diag(G.dot(phi)).dot(G) )).dot(phi) print (vols.dot( k*numpy.diag(G.dot(phi)).dot(G) )) print eq0, eq1, eq2, eq3 plt.figure() plt.plot( x_m, G.dot(phi) ) plt.show()
gpl-3.0
AlexisEidelman/Til
til/data/utils/matching.py
2
7963
# -*- coding:utf-8 -*- ''' Created on 23 juil. 2013 Alexis Eidelman ''' import pdb import string import pandas as pd import time import numpy as np import sys def _varname_or_index(word, list_col): if list_col is None: return "'" + word + "'" else: return str(list_col.index(word)) def _rewrite_score(score, first, other, list_col1=None, list_col2=None ): ''' Return a new string and a list of variables of other If list_columns is not None, change name by position, useful for the use of numpy ''' other_var = [] list_words = score.replace("(", "( ").replace(")", " )").split() final = '' exclude = set(string.punctuation) for word in list_words: if len(word) > 1: try: exclude = set(string.punctuation) word2 = ''.join(ch for ch in word if ch not in exclude) float(word2) except: if 'other.' in word: word = word[6:] other_var += [_varname_or_index(word, None)[1:-1]] word = _varname_or_index(word, list_col2) word = other + "[:," + word + "]" else: word = _varname_or_index(word, list_col1) word = first + "[" + word + "]" final += word return final, list(set(other_var)) #astuce pour avoir des valeurs uniques class Matching(object): #TODO: Faire des sous classes Matching_cells et matching_simple, ce serait plus propre ''' Comment réaliser un matching de la table 1 et de la table 2 method : fafs : 'first arrived, first served ''' def __init__(self, table1, table2, score): self.table1 = table1 self.table2 = table2 if table2.columns.tolist() != table1.columns.tolist(): raise Exception("Les variables doivent être les mêmes dans les deux tables") if not isinstance(score, basestring): raise Exception("Le score doit être un caractere, désolé") self.score_str = score def evaluate(self, orderby, method): table2 = self.table2 index_init = self.table1.index if orderby is not None: table1 = self.table1.sort(orderby) else: table1 = self.table1.loc[np.random.permutation(index_init)] index_init = table1.index #TODO: interdire les na table2 = table2.fillna(0) table1 = table1.fillna(0) if len(table1) > len(table2): print ("WARNING : La table de gauche doit être la plus petite, "\ "traduire le score dans l'autre sens et changer l'ordre." \ "pour l'instant table1 est reduite à la taille de table2. ") table1 = table1[:len(table2)] index_modif = table1.index score_str, vars = _rewrite_score(self.score_str, 'temp', 'table2', table1.columns.tolist(), table2.columns.tolist()) n = len(table1) if method=='cells': groups2 = table2.groupby(vars) cells_ini = pd.DataFrame(groups2.groups.keys(),columns =vars) score_str, vars = _rewrite_score(self.score_str, 'temp', 'cells', table1.columns.tolist(), vars) size = pd.DataFrame(groups2.size(), columns = ['size']) if len(size) != len(cells_ini): raise Exception('Oups, il y a un problème de valeurs nulles a priori') cells_ini = cells_ini.merge(size, left_on=vars, right_index=True, how='left') cells_ini['id'] = cells_ini.index # conversion en numpy #NOTE: initially dtype were np.int64 but sometime it's not enought # however, it's not very important. table1 = np.array(table1, dtype=np.int64) cells = np.array(cells_ini, dtype=np.int64) #definition de la boucle nvar = len(vars)-1 else: # conversion en numpy table1 = np.array(table1, dtype=np.int64) table2 = np.array(table2, dtype=np.int64) # #definition de la boucle # def real_match_cell(k, cells): # temp = table1[k] # score = eval(score_str) # idx = score.argmax() # idx2 = cells[idx,nvar+2] # match[k] = idx2 # cells[idx,nvar+1] -= 1 # if cells[idx,nvar+1]==0: # print idx # cells = np.delete(cells, idx, 0) # if cells[idx,nvar+1]<=0: # pdb.set_trace() # def real_match_simple(k, table2): # temp = table1[k] # score = eval(score_str) # idx = score.argmax() # idx2 = cells[idx,nvar+1] # match[k] = idx2 # table2 = np.delete(table2, idx, 0) match = np.empty(n, dtype=np.int64) percent = 0 start = time.clock() #check assert cells[:, nvar + 1].min() > 0 if method == 'cells': for k in xrange(n): # real_match_cells(k,cells) temp = table1[k] score = eval(score_str) idx = score.argmax() # if score[idx] > 0: # pdb.set_trace() idx2 = cells[idx, nvar + 2] match[k] = idx2 cells[idx, nvar + 1] -= 1 if cells[idx, nvar + 1]==0: cells = np.delete(cells, idx, 0) # update progress bar percent_done = (k * 100) / n to_display = percent_done - percent if to_display: chars_to_write = list("." * to_display) offset = 9 - (percent % 10) while offset < to_display: chars_to_write[offset] = '|' offset += 10 sys.stdout.write(''.join(chars_to_write)) percent = percent_done else: for k in xrange(n): # real_match_simple(k,table2) temp = table1[k] score = eval(score_str) idx = score.argmax() idx2 = cells[idx,nvar+1] match[k] = idx2 table2 = np.delete(table2, idx, 0) # update progress bar percent_done = (k * 100) / n to_display = percent_done - percent if to_display: chars_to_write = list("." * to_display) offset = 9 - (percent % 10) while offset < to_display: chars_to_write[offset] = '|' offset += 10 sys.stdout.write(''.join(chars_to_write)) percent = percent_done match = pd.Series(match, index = index_modif).sort_index() if method == 'cells': match_ini = match.copy() match_count = match.value_counts() for group in match_count.index: nb_selected = match_count[group] keys_group = cells_ini.loc[group,vars].tolist() try: match[match_ini==group] = groups2.groups[tuple(keys_group)][:nb_selected] if nb_selected == 1 : value = groups2.groups[tuple(keys_group)][:nb_selected][0] match[match_ini==group] = int(value) except: pdb.set_trace() print 'temps dédié au real_matching :', time.clock() - start assert match.nunique() == len(match) return match
gpl-3.0
bhanu-mnit/EvoML
evoml/subsampling/auto_segment_FEMPT.py
1
11138
# -*- coding: utf-8 -*- """ Copyright 2016 Bhanu Pratap and Harsh Nisar. This file is part of the Evoml library. The Evoml library is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License v3 or later. Check the licesne file recieved along with the software for further details. """ ## Algorithm: FEMPO ## Fitness each model private oob. ## The fitness function of ensemble is the average of the RMSE of each child model over private ## oob set for respective models. ## mutators: same as before. def warn(*args, **kwargs): pass import warnings warnings.warn = warn import numpy as np import pandas as pd import random # from mutators import segment_mutator from .evaluators import eval_each_model_PT_KNN_EG from .mutators import segment_mutator_EG from .util import EstimatorGene from .util import centroid_df from .util import distance from deap import algorithms from deap import base from deap import creator from deap import tools from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils.validation import check_X_y, check_is_fitted from sklearn.linear_model import LinearRegression, LassoCV from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import train_test_split from sklearn.base import clone from sklearn.metrics import mean_squared_error def get_mdl_sample(sample_percentage, pool_data, base_estimator): """ Returns an instance of EstimatorGene fit with a random sample of the pool data. Assumes the last column is the dependent column. If sample percentage is given as None, then creates samples based on random sample percentages. """ if sample_percentage == None: #TODO: Can parameterize this min and max range too. But for now, let it flow. sample_percentage = random.randrange(0.1, 1, _int=float) data = pool_data.sample(frac=sample_percentage, replace = False) X = data.iloc[:, 0:-1] y = data.iloc[:, -1] # Can only be used for FEMPT return EstimatorGene(X, y, base_estimator, private_test = True) def similar_individual(ind1, ind2): return np.all(ind1.fitness.values == ind2.fitness.values) class BasicSegmenter_FEMPT(BaseEstimator, RegressorMixin): """ Uses basic evolutionary algorithm to find the best subsets of X and trains Linear Regression on each subset. For given row of input, prediction is based on the model trained on segment closest to input. Same as the BasicSegmenter, but uses list of trained models instead of DataFrames as each individual. Done to boost performance. Algorithm: FEMPO Fitness each model private oob. The fitness function of ensemble is the average of the RMSE of each child model over private oob set for respective models. Parameters ---------- n : Integer, optional, default, 10 The number of segments you want in your dataset. base_estimator: estimator, default, LinearRegression The basic estimator for all segments. test_size : float, optional, default, 0.2 Test size that the algorithm internally uses in its fitness function. n_population : Integer, optional, default, 30 The number of ensembles present in population. init_sample_percentage : float, optional, default, 0.2 Attributes ----------- best_enstimator_ : estimator segments_ : list of DataFrames """ def __init__(self, n = 10, test_size = 0.2, n_population = 30, cxpb=0.5, mutpb=0.5, ngen=50, tournsize = 3, init_sample_percentage = 0.2, indpb =0.20, crossover_func = tools.cxTwoPoint, statistics = True, base_estimator = LinearRegression(), n_votes = 1, unseen_x = None, unseen_y = None): self.n = n self.test_size = test_size self.cxpb = cxpb self.mutpb = mutpb self.ngen = ngen self.tournsize = tournsize self.init_sample_percentage = init_sample_percentage #self.base_estimator = base_estimator self.indpb = indpb self.n_population = n_population self.crossover_func = crossover_func self.statistics = statistics self.base_estimator = base_estimator self.n_votes = n_votes self.unseen_x = unseen_x self.unseen_y = unseen_y def fit(self, X, y): # Is returning NDFrame and hence errors in concat. # X, y = check_X_y(X, y) self.X_ = X self._X_mean = X.mean() self._X_std = X.std() X = (X - self._X_mean)/self._X_std # X_train, X_test, y_train, y_test = train_test_split(X, y, # test_size=self.test_size) # There is no test created in this. Private oob is used. df = pd.concat([X, y], axis = 1) # print df_train.shape # print df_test.shape # #print df_train.columns # mdl = LinearRegression().fit(df_train[x_columns], df_train[y_column]) # print df_train[y_column].ndim # mdl = LassoCV().fit(df_train[x_columns], df_train[y_column]) # print np.sqrt(mean_squared_error(mdl.predict(df_test[x_columns]), df_test[y_column])) ### Setting toolbox creator.create("FitnessMax", base.Fitness, weights=(-1.0,)) creator.create("Individual", list , fitness=creator.FitnessMax) toolbox = base.Toolbox() ## In this case we will also need to pass the base estimator. toolbox.register("mdl_sample", get_mdl_sample, self.init_sample_percentage, df, self.base_estimator) ## Thinking what our individual will be? A list of scikit mdls, a list of dataframes, or a mixed class. ## Evaluations on individuals are saved and not done again if the fitness remains unchanged. ## In that case models don't need to created again, but they need to be saved for evaluati # n = 10, defines an ensemble of ten. #todo: Can push the parameter uptop later toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.mdl_sample, self.n) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", eval_each_model_PT_KNN_EG, df = df, base_estimator = self.base_estimator, n_votes = self.n_votes) toolbox.register("mate", self.crossover_func) toolbox.register("mutate", segment_mutator_EG, pool_data = df, indpb = self.indpb, private_test = True) toolbox.register("select", tools.selTournament, tournsize= self.tournsize) pop = toolbox.population(n = self.n_population) hof = tools.HallOfFame(1, similar=similar_individual) #hof = tools.ParetoFront(similar=similar_individual) def eval_unseen_per_gen(ind, unseen_x = self.unseen_x, unseen_y = self.unseen_y): """ Unseen is taken from init params and is a complete """ ensembles = [] centroids = [] X = unseen_x.copy() # scaling using the mean and std of the original train data. X = (X - self._X_mean)/self._X_std for eg_ in ind: df_ = eg_.get_data() ensembles.append(eg_.estimator) centroids.append(centroid_df(df_.iloc[:,0:-1])) y_preds_ensemble = [] ensembles = np.array(ensembles) for row in X.values: distances = np.array([distance(row, centroid) for centroid in centroids]) model_ixs = distances.argsort()[:self.n_votes] models = ensembles[model_ixs] y_pred = np.mean([mdl.predict(row)[0] for mdl in models]) y_preds_ensemble.append(y_pred) ## MSE return mean_squared_error(y_preds_ensemble, unseen_y) if self.statistics != None: stats = tools.Statistics(lambda ind: ind.fitness.values) # stats_fitness = tools.Statistics(key = lambda ind: ind.fitness.values) # stats_unseen_performance = tools.Statistics(key = eval_unseen_per_gen) # mstats = tools.MultiStatistics(fitness=stats_fitness, unseen = stats_unseen_performance) # stats = tools.Statistics(eval_unseen_per_gen) stats.register("avg", np.mean) stats.register("std", np.std) stats.register("min", np.min) stats.register("max", np.max) # mstats.register("avg", np.mean) # mstats.register("std", np.std) # mstats.register("min", np.min) # mstats.register("max", np.max) else: #None stats = self.statistics #stats = tools.Statistics(lambda ind: [x.shape[0] for x in ind]) self.pop, self.log = algorithms.eaSimple(pop, toolbox, cxpb=self.cxpb, mutpb=self.mutpb, ngen=self.ngen, stats=stats, halloffame= hof, verbose = True) self.segments_ = hof[0] # print self.segments_ #should be setting these pop, stats, hof return self def predict(self, X): ensembles = [] centroids = [] # scaling using the mean and std of the original train data. X = (X - self._X_mean)/self._X_std for eg_ in self.segments_: df_ = eg_.get_data() # clf = LinearRegression() # clf = self.base_estimator() # clf = clf.fit(df_.iloc[:,0:-1], df_.iloc[:,-1]) # EG.estimator is already fit with the internal data. ensembles.append(eg_.estimator) centroids.append(centroid_df(df_.iloc[:,0:-1])) ## for sum of mse return uncomment these #y_pred = clf.predict(df_test[x_columns]) #mse = mean_squared_error(y_pred, df_test[y_column]) #total_mse.append(mse) #print total_mse y_preds_ensemble = [] ensembles = np.array(ensembles) for row in X.values: distances = np.array([distance(row, centroid) for centroid in centroids]) # model_index = np.argmin(distances) #todo: optional use the average of the 2 min distances ka prediction. # get n_votes centroids closest to the row. model_ixs = distances.argsort()[:self.n_votes] models = ensembles[model_ixs] # mean of all predictions. y_pred = np.mean([mdl.predict(row)[0] for mdl in models]) y_preds_ensemble.append(y_pred) return pd.Series(y_preds_ensemble)
gpl-3.0
RPGOne/scikit-learn
sklearn/ensemble/partial_dependence.py
25
15121
"""Partial dependence plots for tree ensembles. """ # Authors: Peter Prettenhofer # License: BSD 3 clause from itertools import count import numbers import numpy as np from scipy.stats.mstats import mquantiles from ..utils.extmath import cartesian from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import map, range, zip from ..utils import check_array from ..tree._tree import DTYPE from ._gradient_boosting import _partial_dependence_tree from .gradient_boosting import BaseGradientBoosting def _grid_from_X(X, percentiles=(0.05, 0.95), grid_resolution=100): """Generate a grid of points based on the ``percentiles of ``X``. The grid is generated by placing ``grid_resolution`` equally spaced points between the ``percentiles`` of each column of ``X``. Parameters ---------- X : ndarray The data percentiles : tuple of floats The percentiles which are used to construct the extreme values of the grid axes. grid_resolution : int The number of equally spaced points that are placed on the grid. Returns ------- grid : ndarray All data points on the grid; ``grid.shape[1] == X.shape[1]`` and ``grid.shape[0] == grid_resolution * X.shape[1]``. axes : seq of ndarray The axes with which the grid has been created. """ if len(percentiles) != 2: raise ValueError('percentile must be tuple of len 2') if not all(0. <= x <= 1. for x in percentiles): raise ValueError('percentile values must be in [0, 1]') axes = [] for col in range(X.shape[1]): uniques = np.unique(X[:, col]) if uniques.shape[0] < grid_resolution: # feature has low resolution use unique vals axis = uniques else: emp_percentiles = mquantiles(X, prob=percentiles, axis=0) # create axis based on percentiles and grid resolution axis = np.linspace(emp_percentiles[0, col], emp_percentiles[1, col], num=grid_resolution, endpoint=True) axes.append(axis) return cartesian(axes), axes def partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0.05, 0.95), grid_resolution=100): """Partial dependence of ``target_variables``. Partial dependence plots show the dependence between the joint values of the ``target_variables`` and the function represented by the ``gbrt``. Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. target_variables : array-like, dtype=int The target features for which the partial dependecy should be computed (size should be smaller than 3 for visual renderings). grid : array-like, shape=(n_points, len(target_variables)) The grid of ``target_variables`` values for which the partial dependecy should be evaluated (either ``grid`` or ``X`` must be specified). X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. It is used to generate a ``grid`` for the ``target_variables``. The ``grid`` comprises ``grid_resolution`` equally spaced points between the two ``percentiles``. percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used create the extreme values for the ``grid``. Only if ``X`` is not None. grid_resolution : int, default=100 The number of equally spaced points on the ``grid``. Returns ------- pdp : array, shape=(n_classes, n_points) The partial dependence function evaluated on the ``grid``. For regression and binary classification ``n_classes==1``. axes : seq of ndarray or None The axes with which the grid has been created or None if the grid has been given. Examples -------- >>> samples = [[0, 0, 2], [1, 0, 0]] >>> labels = [0, 1] >>> from sklearn.ensemble import GradientBoostingClassifier >>> gb = GradientBoostingClassifier(random_state=0).fit(samples, labels) >>> kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2) >>> partial_dependence(gb, [0], **kwargs) # doctest: +SKIP (array([[-4.52..., 4.52...]]), [array([ 0., 1.])]) """ if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) if (grid is None and X is None) or (grid is not None and X is not None): raise ValueError('Either grid or X must be specified') target_variables = np.asarray(target_variables, dtype=np.int32, order='C').ravel() if any([not (0 <= fx < gbrt.n_features) for fx in target_variables]): raise ValueError('target_variables must be in [0, %d]' % (gbrt.n_features - 1)) if X is not None: X = check_array(X, dtype=DTYPE, order='C') grid, axes = _grid_from_X(X[:, target_variables], percentiles, grid_resolution) else: assert grid is not None # dont return axes if grid is given axes = None # grid must be 2d if grid.ndim == 1: grid = grid[:, np.newaxis] if grid.ndim != 2: raise ValueError('grid must be 2d but is %dd' % grid.ndim) grid = np.asarray(grid, dtype=DTYPE, order='C') assert grid.shape[1] == target_variables.shape[0] n_trees_per_stage = gbrt.estimators_.shape[1] n_estimators = gbrt.estimators_.shape[0] pdp = np.zeros((n_trees_per_stage, grid.shape[0],), dtype=np.float64, order='C') for stage in range(n_estimators): for k in range(n_trees_per_stage): tree = gbrt.estimators_[stage, k].tree_ _partial_dependence_tree(tree, grid, target_variables, gbrt.learning_rate, pdp[k]) return pdp, axes def plot_partial_dependence(gbrt, X, features, feature_names=None, label=None, n_cols=3, grid_resolution=100, percentiles=(0.05, 0.95), n_jobs=1, verbose=0, ax=None, line_kw=None, contour_kw=None, **fig_kw): """Partial dependence plots for ``features``. The ``len(features)`` plots are arranged in a grid with ``n_cols`` columns. Two-way partial dependence plots are plotted as contour plots. Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. features : seq of tuples or ints If seq[i] is an int or a tuple with one int value, a one-way PDP is created; if seq[i] is a tuple of two ints, a two-way PDP is created. feature_names : seq of str Name of each feature; feature_names[i] holds the name of the feature with index i. label : object The class label for which the PDPs should be computed. Only if gbrt is a multi-class model. Must be in ``gbrt.classes_``. n_cols : int The number of columns in the grid plot (default: 3). percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used to create the extreme values for the PDP axes. grid_resolution : int, default=100 The number of equally spaced points on the axes. n_jobs : int The number of CPUs to use to compute the PDs. -1 means 'all CPUs'. Defaults to 1. verbose : int Verbose output during PD computations. Defaults to 0. ax : Matplotlib axis object, default None An axis object onto which the plots will be drawn. line_kw : dict Dict with keywords passed to the ``matplotlib.pyplot.plot`` call. For one-way partial dependence plots. contour_kw : dict Dict with keywords passed to the ``matplotlib.pyplot.plot`` call. For two-way partial dependence plots. fig_kw : dict Dict with keywords passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns ------- fig : figure The Matplotlib Figure object. axs : seq of Axis objects A seq of Axis objects, one for each subplot. Examples -------- >>> from sklearn.datasets import make_friedman1 >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_friedman1() >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y) >>> fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP ... """ import matplotlib.pyplot as plt from matplotlib import transforms from matplotlib.ticker import MaxNLocator from matplotlib.ticker import ScalarFormatter if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) # set label_idx for multi-class GBRT if hasattr(gbrt, 'classes_') and np.size(gbrt.classes_) > 2: if label is None: raise ValueError('label is not given for multi-class PDP') label_idx = np.searchsorted(gbrt.classes_, label) if gbrt.classes_[label_idx] != label: raise ValueError('label %s not in ``gbrt.classes_``' % str(label)) else: # regression and binary classification label_idx = 0 X = check_array(X, dtype=DTYPE, order='C') if gbrt.n_features != X.shape[1]: raise ValueError('X.shape[1] does not match gbrt.n_features') if line_kw is None: line_kw = {'color': 'green'} if contour_kw is None: contour_kw = {} # convert feature_names to list if feature_names is None: # if not feature_names use fx indices as name feature_names = [str(i) for i in range(gbrt.n_features)] elif isinstance(feature_names, np.ndarray): feature_names = feature_names.tolist() def convert_feature(fx): if isinstance(fx, six.string_types): try: fx = feature_names.index(fx) except ValueError: raise ValueError('Feature %s not in feature_names' % fx) return fx # convert features into a seq of int tuples tmp_features = [] for fxs in features: if isinstance(fxs, (numbers.Integral,) + six.string_types): fxs = (fxs,) try: fxs = np.array([convert_feature(fx) for fx in fxs], dtype=np.int32) except TypeError: raise ValueError('features must be either int, str, or tuple ' 'of int/str') if not (1 <= np.size(fxs) <= 2): raise ValueError('target features must be either one or two') tmp_features.append(fxs) features = tmp_features names = [] try: for fxs in features: l = [] # explicit loop so "i" is bound for exception below for i in fxs: l.append(feature_names[i]) names.append(l) except IndexError: raise ValueError('features[i] must be in [0, n_features) ' 'but was %d' % i) # compute PD functions pd_result = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(partial_dependence)(gbrt, fxs, X=X, grid_resolution=grid_resolution, percentiles=percentiles) for fxs in features) # get global min and max values of PD grouped by plot type pdp_lim = {} for pdp, axes in pd_result: min_pd, max_pd = pdp[label_idx].min(), pdp[label_idx].max() n_fx = len(axes) old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd)) min_pd = min(min_pd, old_min_pd) max_pd = max(max_pd, old_max_pd) pdp_lim[n_fx] = (min_pd, max_pd) # create contour levels for two-way plots if 2 in pdp_lim: Z_level = np.linspace(*pdp_lim[2], num=8) if ax is None: fig = plt.figure(**fig_kw) else: fig = ax.get_figure() fig.clear() n_cols = min(n_cols, len(features)) n_rows = int(np.ceil(len(features) / float(n_cols))) axs = [] for i, fx, name, (pdp, axes) in zip(count(), features, names, pd_result): ax = fig.add_subplot(n_rows, n_cols, i + 1) if len(axes) == 1: ax.plot(axes[0], pdp[label_idx].ravel(), **line_kw) else: # make contour plot assert len(axes) == 2 XX, YY = np.meshgrid(axes[0], axes[1]) Z = pdp[label_idx].reshape(list(map(np.size, axes))).T CS = ax.contour(XX, YY, Z, levels=Z_level, linewidths=0.5, colors='k') ax.contourf(XX, YY, Z, levels=Z_level, vmax=Z_level[-1], vmin=Z_level[0], alpha=0.75, **contour_kw) ax.clabel(CS, fmt='%2.2f', colors='k', fontsize=10, inline=True) # plot data deciles + axes labels deciles = mquantiles(X[:, fx[0]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) ylim = ax.get_ylim() ax.vlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_xlabel(name[0]) ax.set_ylim(ylim) # prevent x-axis ticks from overlapping ax.xaxis.set_major_locator(MaxNLocator(nbins=6, prune='lower')) tick_formatter = ScalarFormatter() tick_formatter.set_powerlimits((-3, 4)) ax.xaxis.set_major_formatter(tick_formatter) if len(axes) > 1: # two-way PDP - y-axis deciles + labels deciles = mquantiles(X[:, fx[1]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) xlim = ax.get_xlim() ax.hlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_ylabel(name[1]) # hline erases xlim ax.set_xlim(xlim) else: ax.set_ylabel('Partial dependence') if len(axes) == 1: ax.set_ylim(pdp_lim[1]) axs.append(ax) fig.subplots_adjust(bottom=0.15, top=0.7, left=0.1, right=0.95, wspace=0.4, hspace=0.3) return fig, axs
bsd-3-clause
kyoungrok0517/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter2_MorePyMC/separation_plot.py
86
1494
# separation plot # Author: Cameron Davidson-Pilon,2013 # see http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf import matplotlib.pyplot as plt import numpy as np def separation_plot( p, y, **kwargs ): """ This function creates a separation plot for logistic and probit classification. See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf p: The proportions/probabilities, can be a nxM matrix which represents M models. y: the 0-1 response variables. """ assert p.shape[0] == y.shape[0], "p.shape[0] != y.shape[0]" n = p.shape[0] try: M = p.shape[1] except: p = p.reshape( n, 1 ) M = p.shape[1] #colors = np.array( ["#fdf2db", "#e44a32"] ) colors_bmh = np.array( ["#eeeeee", "#348ABD"] ) fig = plt.figure( )#figsize = (8, 1.3*M) ) for i in range(M): ax = fig.add_subplot(M, 1, i+1) ix = np.argsort( p[:,i] ) #plot the different bars bars = ax.bar( np.arange(n), np.ones(n), width=1., color = colors_bmh[ y[ix].astype(int) ], edgecolor = 'none') ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), "k", linewidth = 1.,drawstyle="steps-post" ) #create expected value bar. ax.vlines( [(1-p[ix,i]).sum()], [0], [1] ) #ax.grid(False) #ax.axis('off') plt.xlim( 0, n) plt.tight_layout() return
mit
lxneng/incubator-airflow
scripts/perf/scheduler_ops_metrics.py
5
7245
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import pandas as pd import sys from airflow import configuration, settings from airflow.jobs import SchedulerJob from airflow.models import DagBag, DagModel, DagRun, TaskInstance from airflow.utils import timezone from airflow.utils.state import State SUBDIR = 'scripts/perf/dags' DAG_IDS = ['perf_dag_1', 'perf_dag_2'] MAX_RUNTIME_SECS = 6 class SchedulerMetricsJob(SchedulerJob): """ This class extends SchedulerJob to instrument the execution performance of task instances contained in each DAG. We want to know if any DAG is starved of resources, and this will be reflected in the stats printed out at the end of the test run. The following metrics will be instrumented for each task instance (dag_id, task_id, execution_date) tuple: 1. Queuing delay - time taken from starting the executor to the task instance to be added to the executor queue. 2. Start delay - time taken from starting the executor to the task instance to start execution. 3. Land time - time taken from starting the executor to task instance completion. 4. Duration - time taken for executing the task instance. The DAGs implement bash operators that call the system wait command. This is representative of typical operators run on Airflow - queries that are run on remote systems and spend the majority of their time on I/O wait. To Run: $ python scripts/perf/scheduler_ops_metrics.py [timeout] You can specify timeout in seconds as an optional parameter. Its default value is 6 seconds. """ __mapper_args__ = { 'polymorphic_identity': 'SchedulerMetricsJob' } def print_stats(self): """ Print operational metrics for the scheduler test. """ session = settings.Session() TI = TaskInstance tis = ( session .query(TI) .filter(TI.dag_id.in_(DAG_IDS)) .all() ) successful_tis = [x for x in tis if x.state == State.SUCCESS] ti_perf = [(ti.dag_id, ti.task_id, ti.execution_date, (ti.queued_dttm - self.start_date).total_seconds(), (ti.start_date - self.start_date).total_seconds(), (ti.end_date - self.start_date).total_seconds(), ti.duration) for ti in successful_tis] ti_perf_df = pd.DataFrame(ti_perf, columns=['dag_id', 'task_id', 'execution_date', 'queue_delay', 'start_delay', 'land_time', 'duration']) print('Performance Results') print('###################') for dag_id in DAG_IDS: print('DAG {}'.format(dag_id)) print(ti_perf_df[ti_perf_df['dag_id'] == dag_id]) print('###################') if len(tis) > len(successful_tis): print("WARNING!! The following task instances haven't completed") print(pd.DataFrame([(ti.dag_id, ti.task_id, ti.execution_date, ti.state) for ti in filter(lambda x: x.state != State.SUCCESS, tis)], columns=['dag_id', 'task_id', 'execution_date', 'state'])) session.commit() def heartbeat(self): """ Override the scheduler heartbeat to determine when the test is complete """ super(SchedulerMetricsJob, self).heartbeat() session = settings.Session() # Get all the relevant task instances TI = TaskInstance successful_tis = ( session .query(TI) .filter(TI.dag_id.in_(DAG_IDS)) .filter(TI.state.in_([State.SUCCESS])) .all() ) session.commit() dagbag = DagBag(SUBDIR) dags = [dagbag.dags[dag_id] for dag_id in DAG_IDS] # the tasks in perf_dag_1 and per_dag_2 have a daily schedule interval. num_task_instances = sum([(timezone.utcnow() - task.start_date).days for dag in dags for task in dag.tasks]) if (len(successful_tis) == num_task_instances or (timezone.utcnow() - self.start_date).total_seconds() > MAX_RUNTIME_SECS): if len(successful_tis) == num_task_instances: self.log.info("All tasks processed! Printing stats.") else: self.log.info("Test timeout reached. " "Printing available stats.") self.print_stats() set_dags_paused_state(True) sys.exit() def clear_dag_runs(): """ Remove any existing DAG runs for the perf test DAGs. """ session = settings.Session() drs = session.query(DagRun).filter( DagRun.dag_id.in_(DAG_IDS), ).all() for dr in drs: logging.info('Deleting DagRun :: {}'.format(dr)) session.delete(dr) def clear_dag_task_instances(): """ Remove any existing task instances for the perf test DAGs. """ session = settings.Session() TI = TaskInstance tis = ( session .query(TI) .filter(TI.dag_id.in_(DAG_IDS)) .all() ) for ti in tis: logging.info('Deleting TaskInstance :: {}'.format(ti)) session.delete(ti) session.commit() def set_dags_paused_state(is_paused): """ Toggle the pause state of the DAGs in the test. """ session = settings.Session() dms = session.query(DagModel).filter( DagModel.dag_id.in_(DAG_IDS)) for dm in dms: logging.info('Setting DAG :: {} is_paused={}'.format(dm, is_paused)) dm.is_paused = is_paused session.commit() def main(): global MAX_RUNTIME_SECS if len(sys.argv) > 1: try: max_runtime_secs = int(sys.argv[1]) if max_runtime_secs < 1: raise ValueError MAX_RUNTIME_SECS = max_runtime_secs except ValueError: logging.error('Specify a positive integer for timeout.') sys.exit(1) configuration.load_test_config() set_dags_paused_state(False) clear_dag_runs() clear_dag_task_instances() job = SchedulerMetricsJob(dag_ids=DAG_IDS, subdir=SUBDIR) job.run() if __name__ == "__main__": main()
apache-2.0
hmendozap/auto-sklearn
test/test_pipeline/components/classification/test_libsvm_svc.py
1
3192
import unittest from autosklearn.pipeline.components.classification.libsvm_svc import LibSVM_SVC from autosklearn.pipeline.util import _test_classifier, \ _test_classifier_predict_proba, get_dataset import numpy as np import sklearn.metrics import sklearn.svm class LibSVM_SVCComponentTest(unittest.TestCase): def test_default_configuration(self): for i in range(10): predictions, targets = _test_classifier(LibSVM_SVC, dataset='iris') self.assertAlmostEqual(0.96, sklearn.metrics.accuracy_score(predictions, targets)) def test_default_configuration_predict_proba(self): for i in range(10): predictions, targets = _test_classifier_predict_proba( LibSVM_SVC, sparse=True, dataset='digits', train_size_maximum=500) self.assertAlmostEqual(4.6680593525563063, sklearn.metrics.log_loss(targets, predictions)) for i in range(10): predictions, targets = _test_classifier_predict_proba( LibSVM_SVC, sparse=True, dataset='iris') self.assertAlmostEqual(0.8649665185853217, sklearn.metrics.log_loss(targets, predictions)) # 2 class for i in range(10): X_train, Y_train, X_test, Y_test = get_dataset(dataset='iris') remove_training_data = Y_train == 2 remove_test_data = Y_test == 2 X_train = X_train[~remove_training_data] Y_train = Y_train[~remove_training_data] X_test = X_test[~remove_test_data] Y_test = Y_test[~remove_test_data] ss = sklearn.preprocessing.StandardScaler() X_train = ss.fit_transform(X_train) configuration_space = LibSVM_SVC.get_hyperparameter_search_space() default = configuration_space.get_default_configuration() cls = LibSVM_SVC(random_state=1, **{hp_name: default[hp_name] for hp_name in default if default[hp_name] is not None}) cls = cls.fit(X_train, Y_train) prediction = cls.predict_proba(X_test) self.assertAlmostEqual(sklearn.metrics.log_loss(Y_test, prediction), 0.69323680119641773) def test_default_configuration_binary(self): for i in range(10): predictions, targets = _test_classifier(LibSVM_SVC, make_binary=True) self.assertAlmostEqual(1.0, sklearn.metrics.accuracy_score( predictions, targets)) def test_target_algorithm_multioutput_multiclass_support(self): cls = sklearn.svm.SVC() X = np.random.random((10, 10)) y = np.random.randint(0, 1, size=(10, 10)) self.assertRaisesRegexp(ValueError, 'bad input shape \(10, 10\)', cls.fit, X, y)
bsd-3-clause
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/nltk/draw/dispersion.py
5
1744
# Natural Language Toolkit: Dispersion Plots # # Copyright (C) 2001-2015 NLTK Project # Author: Steven Bird <[email protected]> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ A utility for displaying lexical dispersion. """ def dispersion_plot(text, words, ignore_case=False, title="Lexical Dispersion Plot"): """ Generate a lexical dispersion plot. :param text: The source text :type text: list(str) or enum(str) :param words: The target words :type words: list of str :param ignore_case: flag to set if case should be ignored when searching text :type ignore_case: bool """ try: from matplotlib import pylab except ImportError: raise ValueError('The plot function requires matplotlib to be installed.' 'See http://matplotlib.org/') text = list(text) words.reverse() if ignore_case: words_to_comp = list(map(str.lower, words)) text_to_comp = list(map(str.lower, text)) else: words_to_comp = words text_to_comp = text points = [(x,y) for x in range(len(text_to_comp)) for y in range(len(words_to_comp)) if text_to_comp[x] == words_to_comp[y]] if points: x, y = list(zip(*points)) else: x = y = () pylab.plot(x, y, "b|", scalex=.1) pylab.yticks(list(range(len(words))), words, color="b") pylab.ylim(-1, len(words)) pylab.title(title) pylab.xlabel("Word Offset") pylab.show() if __name__ == '__main__': import nltk.compat from nltk.corpus import gutenberg words = ['Elinor', 'Marianne', 'Edward', 'Willoughby'] dispersion_plot(gutenberg.words('austen-sense.txt'), words)
gpl-2.0
legaultmarc/grstools
grstools/scripts/evaluate.py
1
11742
""" Evaluate the performance of constructed GRS or of the variant selection procedure. """ # This file is part of grstools. # # The MIT License (MIT) # # Copyright (c) 2017 Marc-Andre Legault # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os import argparse import json import logging import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from genetest.statistics import model_map from genetest.phenotypes.dataframe import DataFrameContainer from ..utils import regress as _regress from ..utils import parse_computed_grs_file plt.style.use("ggplot") matplotlib.rc("font", size="7") logger = logging.getLogger(__name__) def _parse_data(args): phenotypes = pd.read_csv( args.phenotypes_filename, index_col=args.phenotypes_sample_column, sep=args.phenotypes_separator, ) phenotypes.index = phenotypes.index.astype(str) grs = parse_computed_grs_file(args.grs_filename) return pd.merge(phenotypes, grs, left_index=True, right_index=True) def regress(args): # Parse the GRS and phenotypes. df = _parse_data(args) # Standardize if needed. if args.std_y: if args.test == "logistic": logger.warning( "Ignoring the --std-y option for logistic regression. This " "flag should only be used for linear regression." ) else: y = df[args.phenotype] df[args.phenotype] = (y - y.mean()) / y.std() # Do the regression. formula = "{} ~ grs".format(args.phenotype) stats = _regress(formula, args.test, DataFrameContainer(df)) if args.no_plot: print(json.dumps(stats)) return # Rename columns for plotting. df = df[[args.phenotype, "grs"]] df.columns = ("y", "grs") # Create the plot. if args.test == "linear": n = df.dropna().shape[0] logger.info("Running linear regression based on {} samples.".format(n)) return _linear_regress_plot(df, stats, args.out, args.phenotype_label) if args.test == "logistic": return _logistic_regress_plot(df, stats, args.out, args.phenotype_label) else: raise ValueError() def _get_dummy_artist(): return Rectangle( (0, 0), 1, 1, fc="w", fill=False, edgecolor="none", linewidth=0 ) def _linear_regress_plot(df, stats, out, phenotype_label): data_marker, = plt.plot(df["grs"], df["y"], "o", markersize=0.5) xmin = df["grs"].min() xmax = df["grs"].max() line_marker, = plt.plot( [xmin, xmax], [stats["beta"] * xmin + stats["intercept"], stats["beta"] * xmax + stats["intercept"]], "-", linewidth=0.5, color="black", ) plt.xlabel("GRS") plt.ylabel(phenotype_label) # Add extra info to the legend. plt.legend( (_get_dummy_artist(), data_marker, line_marker), ( r"$\beta={:.3g}\ ({:.3g}, {:.3g}),\ (p={:.4g},\ R^2={:.3g})$" "".format(stats["beta"], stats["CI"][0], stats["CI"][1], stats["p-value"], stats["R2"]), "data", "$y = {:.3g}grs + {:.3g}$" "".format(stats["beta"], stats["intercept"]) ) ) if out is None: plt.show() else: if out.endswith("png"): plt.savefig(out, dpi=500) else: plt.savefig(out) def _logistic_regress_plot(df, stats, out, phenotype_label): odds_ratio = np.exp(stats["beta"]) odds_ratio_ci = [np.exp(i) for i in stats["CI"]] # Add the odd ratio or else the stats are for nothing. artists = [_get_dummy_artist()] labels = [ "OR={:.3f} ({:.3f}, {:.3f}) (p={:.3g})" "".format(odds_ratio, odds_ratio_ci[0], odds_ratio_ci[1], stats["p-value"]) ] levels = sorted(df["y"].dropna().unique()) boxplot_data = [] for i, level in enumerate(levels): data = df.loc[df["y"] == level, "grs"] boxplot_data.append(data.dropna().values) noise = (np.random.random(data.shape[0]) - 0.5) / 4 lines, = plt.plot( np.full_like(data, i + 1) + noise, data, "o", markersize=0.5, ) artists.append(lines) labels.append( "GRS mean = {:.4f} ($\sigma={:.4f}$)" "".format(data.mean(), data.std()) ) plt.boxplot(boxplot_data, showfliers=False, medianprops={"color": "black"}) if phenotype_label == "Phenotype": phenotype_label = "Phenotype level" plt.xlabel(phenotype_label) plt.xticks(range(1, len(levels) + 1), levels) plt.ylabel("GRS") plt.legend(artists, labels) if out is None: plt.show() else: if out.endswith("png"): plt.savefig(out, dpi=500) else: plt.savefig(out) def dichotomize_plot(args): """Compares differente quantiles of dichotomization.""" # Read the files. df = _parse_data(args) df["group"] = np.nan df["intercept"] = 1 df = df[["group", "intercept", "grs", args.phenotype]] # Init the statistical test. test = model_map[args.test]() qs = [] upper_ci = [] lower_ci = [] ns = [] betas = [] for q in np.linspace(0.05, 0.5, 200): low, high = df[["grs"]].quantile([q, 1 - q]).values.T[0] df["group"] = np.nan df.loc[df["grs"] <= low, "group"] = 0 df.loc[df["grs"] >= high, "group"] = 1 cur = df.dropna() stats = test.fit( cur[[args.phenotype]], cur[["group", "intercept"]] ) qs.append(q) betas.append(stats["group"]["coef"]) ns.append(df.dropna().shape[0]) upper_ci.append(stats["group"]["upper_ci"]) lower_ci.append(stats["group"]["lower_ci"]) fig, ax1 = plt.subplots() beta_line, = ax1.plot(qs, betas) ci_line, = ax1.plot(qs, upper_ci, "--", color="gray", linewidth=0.2) ax1.plot(qs, lower_ci, "--", color="gray", linewidth=0.2) ax1.set_ylabel(r"$\beta$") ax1.set_xlabel("Quantile used to form groups (0.5 is median)") ax2 = ax1.twinx() ax2.grid(False, which="both") n_line, = ax2.plot(qs, ns, "-", linewidth=0.2) ax2.set_ylabel("effective n") plt.legend( (beta_line, ci_line, n_line), (r"$\beta$", "95% CI", "$n$"), loc="upper center" ) if args.out: plt.savefig(args.out) else: plt.show() def roc_curve(args): from sklearn.metrics import roc_curve, auc grs = None grs_filenames = [args.grs_filename] + args.other_grs for filename in grs_filenames: name = os.path.basename(filename) if grs is None: grs = parse_computed_grs_file(filename) grs.columns = [name] else: _cur = parse_computed_grs_file(filename) _cur.columns = [name] grs = pd.merge(grs, _cur, left_index=True, right_index=True) grs_names = grs.columns phenotypes = pd.read_csv( args.phenotypes_filename, index_col=args.phenotypes_sample_column, sep=args.phenotypes_separator, ) phenotypes.index = phenotypes.index.astype(str) df = phenotypes.join(grs) df = df.dropna() artists = [] labels = [] plt.figure(figsize=(5, 5)) for name in grs_names: fpr, tpr, _ = roc_curve(df[args.phenotype], df[name]) _auc = auc(fpr, tpr) artist, = plt.plot( fpr, tpr, linewidth=0.4, ) artists.append(artist) if len(grs_names) > 1: labels.append("{}; AUC={:.3f}".format(name, _auc)) else: labels.append("AUC={:.3f}".format(_auc)) plt.legend(artists, labels) plt.plot([0, 1], [0, 1], "--", color="gray", linewidth=0.2) plt.xlim([0, 1]) plt.ylim([0, 1]) plt.xlabel("False positive rate") plt.ylabel("True positive rate") if args.out: plt.savefig(args.out) else: plt.show() def main(): args = parse_args() command_handlers = { "regress": regress, "dichotomize-plot": dichotomize_plot, "roc": roc_curve, } command_handlers[args.command](args) def _add_phenotype_arguments(parser): parser.add_argument("--phenotypes-filename", type=str) parser.add_argument("--phenotypes-sample-column", type=str, default="sample") parser.add_argument("--phenotypes-separator", type=str, default=",") parser.add_argument("--phenotype", type=str) def parse_args(): parser = argparse.ArgumentParser( description="Utilities to evaluate the performance of GRS." ) parent = argparse.ArgumentParser(add_help=False) # General arguments. parent.add_argument( "grs_filename", help="Path to the file containing the computed GRS." ) parent.add_argument("--out", "-o", default=None, type=str) subparser = parser.add_subparsers( dest="command", ) subparser.required = True # Regress # TODO # To evaluate the performance of discretized GRS, it might be interesting # to generate simular plots of y ~ GRS. Then it could be qregress for # continuous GRS and dregress for discretized GRS. regress_parse = subparser.add_parser( "regress", help="Regress the GRS on a discrete or continuous outcome.", parents=[parent] ) _add_phenotype_arguments(regress_parse) regress_parse.add_argument("--test", type=str) regress_parse.add_argument("--no-plot", action="store_true") regress_parse.add_argument( "--std-y", action="store_true", help="Standardize the phenotype before the regression. This should " "only be used for linear regression." ) regress_parse.add_argument( "--phenotype-label", default="Phenotype", type=str, help="Label for the phenotype axis." ) # Dichotomize plot. dichotomize_parse = subparser.add_parser( "dichotomize-plot", help="A plot to help identify ideal dichotmizatin parameters.", parents=[parent] ) _add_phenotype_arguments(dichotomize_parse) dichotomize_parse.add_argument("--test", type=str) # ROC and roll curves. roc_parse = subparser.add_parser( "roc", help="Draw a ROC curve for a GRS (given a binary phenotype).", parents=[parent] ) roc_parse.add_argument( "other_grs", help="Other GRS to include in the ROC plot.", nargs="*" ) _add_phenotype_arguments(roc_parse) return parser.parse_args()
mit
danieledwardknudsen/weather
modelbuilding.py
1
8787
import logging as l import pandas as pd import multiprocessing as mp from time import time import os from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor from sklearn import linear_model from sklearn.pipeline import make_pipeline from sklearn.model_selection import GridSearchCV from sklearn.externals import joblib global count global num_models count = 0 num_models = 0 def run(cfg: dict) -> None: """ Builds forecasting models and saves them and their results to disk""" training_data = "" # subsets of the training data that we will use to test model performance relative to input size subsets = cfg['MODELING']['subsets'].split(', ') # get X and Y columns one_row = pd.read_csv(cfg['EXPORT']['filename'], nrows=1) cols = one_row.columns Y_cols = list() # get all the y columns present in this dataset # assuming they're identified with 'future' for col in cols: if (str(col)).startswith('future'): Y_cols.append(str(col)) # get directory we will store our results in base_dir = '{0}/{1}'.format(cfg['FILES']['cwd'], cfg['MODELING']['results_directory']) # if the directory doesn't exist, create it if not os.path.exists(base_dir): os.mkdir(base_dir) num_models = 4 * len(Y_cols) * len(subsets) count = 0 # read in the full training set #training_data = pd.read_csv( # cfg['EXPORT']['filename']) # filter out any records that don't have a real reading in the target variable # for y_col in Y_cols: # training_data = training_data[training_data[y_col] > 0] # just in case, remove any null values #training_data.dropna(axis=0, how='any', inplace=True) # for each subset of the training set... for subset in subsets: # create a subset directory subs_dir = '{0}/{1}_{2}'.format(base_dir, 'subset_', subset) if not os.path.exists(subs_dir): os.mkdir(subs_dir) # for each target feature... for col in Y_cols: # pool of workers workers = mp.pool.Pool( (int(cfg['RUN_CONFIGURATION']['max_threads']))) # X data training_data = pd.read_csv(cfg['EXPORT']['filename']) training_data = training_data[training_data[col] > 0] X = training_data.drop(Y_cols, axis=1) # get the Y_set Y = training_data[col] del(training_data) #Y = training_data[training_data[col] > 0][col] #X = X.reindex(X.index.intersection(Y.index)) # split the training set into trainin data and testing data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, train_size=int(subset), test_size=int(cfg['MODELING']['test_size']), random_state=int(time()), shuffle=True) args = (X_train, Y_train, X_test, Y_test, col, cfg, subs_dir) # Start ridge regression if not cfg['MODELING']['ridge'] == 'False': if cfg['MODELING']['ridge'] == 'True': workers.apply_async( func=generate_ridge_model, args=args, callback=done) # Start linear regression if not cfg['MODELING']['linreg'] == 'False': if cfg['MODELING']['linreg'] == 'True': workers.apply_async( func=generate_linreg_model, args=args, callback=done) # Start stochastic gradient descent regression if not cfg['MODELING']['sgd'] == 'False': if cfg['MODELING']['sgd'] == 'True': workers.apply_async( func=generate_sgd_model, args=args, callback=done) # Start random forest regression if not cfg['MODELING']['random_forest'] == 'False': if cfg['MODELING']['random_forest'] == 'True': workers.apply_async( func=generate_rf_model, args=args, callback=done) workers.close() workers.join() def done() -> None: count = count + 1 print('completed {0} out of {1} models.'.format( count, num_models)) def generate_rf_model(X_train: pd.DataFrame, Y_train: pd.DataFrame, X_test: pd.DataFrame, Y_test: pd.DataFrame, column: str, cfg: dict, subs_dir: str) -> None: """ Generate a random forest model from a multi-column X dataframe, a single column Y dataframe, and a column name string that will be used to generate the model file name. The function then returns a dataframe that is the intersection of the test set and result set """ excel_path, pkl_path = remove_existing_data(subs_dir, 'rf', column) writer = pd.ExcelWriter(excel_path) pipeline = make_pipeline(preprocessing.StandardScaler( ), RandomForestRegressor(criterion="mae")) hyperparameters = {'randomforestregressor__max_features': ['sqrt', 'log2'], 'randomforestregressor__max_depth': [5], 'randomforestregressor__n_estimators': [10, 100, 500]} clf = GridSearchCV(pipeline, hyperparameters, verbose=True) clf.fit(X_train, Y_train) joblib.dump(clf, pkl_path) Y_pred = pd.DataFrame(clf.predict(X_test)) Y_test = pd.DataFrame(Y_test) Y_pred.to_excel(writer, sheet_name='pred') Y_test.to_excel(writer, sheet_name='test') writer.save() done() def generate_sgd_model(X_train: pd.DataFrame, Y_train: pd.DataFrame, X_test: pd.DataFrame, Y_test: pd.DataFrame, column: str, cfg: dict, subs_dir: str) -> None: """ Generate a stochastic gradient descent model from a multi-column X dataframe, a single column Y dataframe, and a column name string that will be used to generate the model file name. """ excel_path, pkl_path = remove_existing_data(subs_dir, 'sgd', column) writer = pd.ExcelWriter(excel_path) pipeline = make_pipeline(preprocessing.StandardScaler( ), linear_model.SGDRegressor(criterion="mae")) hyperparameters = {'sgdregressor__alpha': [.00001, 1, 100], 'sgdregressor__max_iter': [10, 100, 1000, 10000], } clf = GridSearchCV(pipeline, hyperparameters, verbose=True) clf.fit(X_train, Y_train) joblib.dump(clf, pkl_path) Y_pred = pd.DataFrame(clf.predict(X_test)) Y_test = pd.DataFrame(Y_test) Y_pred.to_excel(writer, sheet_name='pred') Y_test.to_excel(writer, sheet_name='test') writer.save() done() def generate_linreg_model(X_train: pd.DataFrame, Y_train: pd.DataFrame, X_test: pd.DataFrame, Y_test: pd.DataFrame, column: str, cfg: dict, subs_dir: str) -> None: """ Generate a stochastic gradient descent model from a multi-column X dataframe, a single column Y dataframe, and a column name string that will be used to generate the file name. """ excel_path, pkl_path = remove_existing_data(subs_dir, 'linreg', column) writer = pd.ExcelWriter(excel_path) clf = linear_model.LinearRegression(normalize=True) clf.fit(X_train, Y_train) joblib.dump(clf, pkl_path) Y_pred = pd.DataFrame(clf.predict(X_test)) Y_test = pd.DataFrame(Y_test) Y_pred.to_excel(writer, sheet_name='pred') Y_test.to_excel(writer, sheet_name='test') writer.save() done() def generate_ridge_model(X_train: pd.DataFrame, Y_train: pd.DataFrame, X_test: pd.DataFrame, Y_test: pd.DataFrame, column: str, cfg: dict, subs_dir: str) -> None: """ Generate a ridge model from a multi-column X dataframe, a single column Y dataframe, and a column name string that will be used to generate the model file name. """ excel_path, pkl_path = remove_existing_data(subs_dir, 'ridge', column) writer = pd.ExcelWriter(excel_path) clf = linear_model.RidgeCV( alphas=(.0001, 0.1, 1.0, 10.0, 100), normalize=True) clf.fit(X_train, Y_train) joblib.dump(clf, pkl_path) Y_pred = pd.DataFrame(clf.predict(X_test)) Y_test = pd.DataFrame(Y_test) Y_pred.to_excel(writer, sheet_name='pred') Y_test.to_excel(writer, sheet_name='test') writer.save() done() def remove_existing_data(subs_dir: str, model: str, column: str)->(str, str): """ Removes the existing pickle and spreadsheet for this model returns the pickle path and spreadsheet path to save new results """ excel_path = '{0}/{1}{2}.xlsx'.format(subs_dir, model, column) if(os.path.exists(excel_path)): os.remove(excel_path) pkl_path = '{0}/{1}{2}.pkl'.format(subs_dir, model, column) if(os.path.exists(pkl_path)): os.remove(pkl_path) return (excel_path, pkl_path)
gpl-3.0