repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
mfjb/scikit-learn
examples/cluster/plot_cluster_iris.py
350
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
Trevortds/Etymachine
Etymachine.py
1
14570
# import requests import re # import os # import subprocess import nltk import pylab as pl import tsvopener import dawg from nltk.corpus import brown import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm test_text = "four score and seven years ago, our fathers brought fourth\ on this continent a new nation." tokenized_text = nltk.word_tokenize(test_text) new_category_dict = tsvopener.open_tsv("stat_categorized.tsv") category_dawg = dawg.BytesDAWG([(x, str.encode(new_category_dict[x])) for x in new_category_dict.keys()]) def make_lexicon_pie(input_dict, title): ''' Make a pie of the full lexicon based on the given mapping of words to languages :input_dict: dict of words to language sources :title: title to put on the pie chart ''' e = 0 f = 0 n = 0 l = 0 g = 0 o = 0 for word in input_dict.keys(): label = input_dict[word] if label == "English": e += 1 elif label == "French": f += 1 elif label == "Norse": n += 1 elif label == "Latin": l += 1 elif label == "Greek": g += 1 else: o += 1 total = e + f + n + l + g + o fracs = [o/total, n/total, g/total, l/total, f/total, e/total] labels = 'Other', 'Norse', 'Greek', 'Latin', 'French', 'English' pl.figure(figsize=(6, 6)) pl.axes([0.1, 0.1, 0.8, 0.8]) pl.pie(fracs, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) pl.title(title) pl.show() def make_analysis_pie(sentences, title="Pie Chart", token=False, ignore_unknowns=False, show=True): ''' Analyzes the given text and generates a pie chart to show the proportions of etymological origins in it. :sentences: tagged sentences from the Brown corpus :title: title to go on the chart :token: whether to count token frequencies instead of word frequencies :ignore_unknowns: whether to have a slice for unknowns in the chart :show: whether to show the chart after completeion. :return: the proportions of each language origin in the text in the order 'Unknown', 'Other', 'Norse', 'Greek', 'Latin', 'French', 'Old English' ''' e = f = n = g = l = o = u = 0 if token: already_seen = [] unknowns = [] for sentence in sentences: for word, tag in sentence: if token: if word in already_seen: continue else: already_seen.append(word) label = label_word(word, tag) if label == "Unknown": label = label_word(word.lower(), tag) if label == "English": e += 1 elif label == "French": f += 1 elif label == "Norse": n += 1 elif label == "Latin": l += 1 elif label == "Greek": g += 1 elif label == "Other": o += 1 elif label == "Unknown": unknowns.append((word, tag)) u += 1 total = u + e + f + n + l + g + o fracs = [u/total, o/total, n/total, g/total, l/total, f/total, e/total] labels = 'Unknown', 'Other', 'Norse', 'Greek', 'Latin', 'French', 'Old English' colors = 'r', 'orange', 'b', 'c', 'm', 'y', 'g' if ignore_unknowns: total = e + f + n + l + g + o fracs = [o/total, n/total, g/total, l/total, f/total, e/total] labels = 'Other', 'Norse', 'Greek', 'Latin', 'French', 'English' colors = 'orange', 'b', 'c', 'm', 'y', 'g' pl.figure(figsize=(6, 6)) pl.axes([0.1, 0.1, 0.8, 0.8]) pl.pie(fracs, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) pl.title(title) if show: pl.show() return fracs # return [e, f, n, l, g, o, u, total] # make_pie(new_category_dict, "Proportions of etymologies in the lexicon") def reduce_brown_pos(word, brown_tag): ''' Turns a brown part of speech into a word part of speech. :word: the word in question :brown_tag: the tag from the brown corpus :return: the etymdict equivalent of the brown tag, or "skip" for punctuation, or None for unknowns ''' skip_tags = ['(', ')', '*', ',', '--', '.', ':', '\'\'', '``', '\'', '.-HL', ',-HL', '(-HL', ')-HL'] if brown_tag in skip_tags: return "skip" elif brown_tag.startswith("B"): return "v" elif brown_tag.startswith("H"): return "v" elif brown_tag.startswith("V"): return "v" elif brown_tag.startswith("P"): return "pron" elif brown_tag.startswith("N"): return "n" elif brown_tag.startswith("J"): return "adj" elif brown_tag.startswith("W"): return "pron" elif brown_tag.startswith("R"): return "adv" elif brown_tag.startswith("U"): return "interj" elif brown_tag.startswith("Q"): return "adj" elif brown_tag.startswith("DO"): return "v" elif brown_tag.startswith("DT"): return "adj" elif brown_tag.startswith("I"): return "prep" elif brown_tag.startswith("CC"): return "conj" elif brown_tag.startswith("CS"): return "conj" elif brown_tag.startswith("CD"): return "skip" elif brown_tag.startswith("M"): return "v" elif brown_tag.startswith("AP"): return "adj" elif brown_tag.startswith("FW"): return None elif brown_tag.startswith("OD"): return "adj" elif brown_tag.startswith("EX"): return "adv.,conj" # elif "$" in word: late addition, not reflected in submitted charts # return "skip" else: print(word, " ", brown_tag) return None ''' first, check if the word by itself is in the dictionary if it's not, then check if there's only one entry with "word (" if it's not, then take the part of speech and look if still not, then lemmatize and look ''' lemmatizer = nltk.stem.WordNetLemmatizer() def label_word(word, brown_tag, lemmatized=False): ''' return the etymological category of the word given :word: the word in question :brown_tag: the tag in the brown corpus :lemmatized: whether this word has been lemmatized yet :return: {'Unknown', 'Other', 'Norse', 'Greek', 'Latin', 'French', 'Old English'} ''' brown_tag = re.sub("-HL", "", brown_tag) brown_tag = re.sub("-TL", "", brown_tag) if word in category_dawg: return category_dawg[word][0].decode() if word.lower() in category_dawg: return category_dawg[word.lower()][0].decode() if len(category_dawg.keys(word + " (")) > 0: return category_dawg[category_dawg.keys(word)[0]][0].decode() etymtag = reduce_brown_pos(word, brown_tag) if etymtag is None: return "Unknown" if etymtag == "skip": return "skip" word_n_tag = word + " (" + etymtag + ".)" word_n_tag_n_number = word + " (" + etymtag + ".1)" if word_n_tag in category_dawg: return category_dawg[word_n_tag][0].decode() if word_n_tag_n_number in category_dawg: return category_dawg[word_n_tag_n_number][0].decode() if lemmatized: return "Unknown" if etymtag == "n": wordnet_tag = "n" elif etymtag == "v": wordnet_tag = "v" elif etymtag == "adj": wordnet_tag = "a" elif etymtag == "adv": wordnet_tag = "v" else: return "Unknown" lemma = lemmatizer.lemmatize(word, pos=wordnet_tag) return label_word(lemma, brown_tag, lemmatized=True) def big_pie_maker(): ''' Big function to make lots of pies. Generates pies for each of six texts, with and without token frequencies, and then shows them. ''' sentences = brown.tagged_sents("ca09") title = "Words in 1961 Philadelphia Inquirer political article" print(title) make_analysis_pie(sentences, title, show=False) title = "Tokens in 1961 Philadelphia Inquirer political article" make_analysis_pie(sentences, title, show=False, token=True) sentences = brown.tagged_sents("cm01") title = "Words in Robert A Henlein's Stranger in a Strange Land" print(title) make_analysis_pie(sentences, title, show=False) title = "Tokens in Robert A Henlein's Stranger in a Strange Land" make_analysis_pie(sentences, title, show=False, token=True) sentences = brown.tagged_sents("cp26") title = "Words in Evrin D Krause's The Snake" print(title) make_analysis_pie(sentences, title, show=False) title = "Tokens in Evrin D Krause's The Snake" make_analysis_pie(sentences, title, show=False, token=True) sentences = brown.tagged_sents("cd07") title = "Words in Peter Eversveld's Faith Amid Fear" print(title) make_analysis_pie(sentences, title, show=False) title = "Tokens in Peter Eversveld's Faith Amid Fear" make_analysis_pie(sentences, title, show=False, token=True) sentences = brown.tagged_sents("ch09") title = "Words in the Public Laws of the 87th Congress" print(title) make_analysis_pie(sentences, title, show=False) title = "Tokens in the Public Laws of the 87th Congress" make_analysis_pie(sentences, title, show=False, token=True) sentences = brown.tagged_sents("cj16") title = "Words in Nagaraj and Black: Wound-Tumor Virus Antigen" print(title) make_analysis_pie(sentences, title, show=False) title = "Tokens in Nagaraj and Black: Wound-Tumor Virus Antigen" make_analysis_pie(sentences, title, show=False, token=True) pl.show() # big_pie_maker() # Take a sample of the words labeled "other" # otherwords = [] # for words in new_category_dict.keys(): # if new_category_dict[words] == "Other": # otherwords.append(words) # print("number of 'other': ", len(otherwords)) # import random # random.shuffle(otherwords) # print(otherwords[:100]) # this code borrowed from stackoverflow, I'm really not sure how it works # I only added the color. def plot_clustered_stacked(dfall, labels=None, title="multiple stacked bar plot", H="/", **kwargs): """ Given a list of dataframes, with identical columns and index, create a clustered stacked bar plot. labels is a list of the names of the dataframe, used for the legend title is a string for the title of the plot H is the hatch used for identification of the different dataframe""" n_df = len(dfall) n_col = len(dfall[0].columns) n_ind = len(dfall[0].index) axe = plt.subplot(111) colors = 'r', 'orange', 'b', 'c', 'm', 'y', 'g' colors = colors[::-1] for df in dfall : # for each data frame axe = df.plot(kind="bar", linewidth=0, stacked=True, ax=axe, legend=False, grid=False, colors=colors, **kwargs) # make bar plots h,l = axe.get_legend_handles_labels() # get the handles we want to modify for i in range(0, n_df * n_col, n_col): # len(h) = n_col * n_df for j, pa in enumerate(h[i:i+n_col]): for rect in pa.patches: # for each index rect.set_x(rect.get_x() + 1 / float(n_df + 1) * i / float(n_col)) rect.set_hatch(H * int(i / n_col)) #edited part rect.set_width(1 / float(n_df + 1)) axe.set_xticks((np.arange(0, 2 * n_ind, 2) + 1 / float(n_df + 1)) / 2.) axe.set_xticklabels(df.index, rotation = 0) axe.set_title(title) # Add invisible data to add another legend n=[] for i in range(n_df): n.append(axe.bar(0, 0, color="gray", hatch=H * i)) l1 = axe.legend(h[:n_col], l[:n_col], loc=[1.01, 0.5]) if labels is not None: l2 = plt.legend(n, labels, loc=[1.01, 0.1]) axe.add_artist(l1) return axe # create dataframes def big_chart_maker(): sentences = brown.tagged_sents("ca09") word_matrix = np.matrix(make_analysis_pie(sentences, show=False)[::-1]) token_matrix = np.matrix(make_analysis_pie(sentences, show=False, token=True)[::-1]) sentences = brown.tagged_sents("cm01") new_words = make_analysis_pie(sentences, show=False)[::-1] new_tokens = make_analysis_pie(sentences, show=False, token=True)[::-1] word_matrix = np.vstack((word_matrix, new_words)) token_matrix = np.vstack((token_matrix, new_tokens)) sentences = brown.tagged_sents("cp26") new_words = make_analysis_pie(sentences, show=False)[::-1] new_tokens = make_analysis_pie(sentences, show=False, token=True)[::-1] word_matrix = np.vstack((word_matrix, new_words)) token_matrix = np.vstack((token_matrix, new_tokens)) sentences = brown.tagged_sents("cd07") new_words = make_analysis_pie(sentences, show=False)[::-1] new_tokens = make_analysis_pie(sentences, show=False, token=True)[::-1] word_matrix = np.vstack((word_matrix, new_words)) token_matrix = np.vstack((token_matrix, new_tokens)) sentences = brown.tagged_sents("ch09") new_words = make_analysis_pie(sentences, show=False)[::-1] new_tokens = make_analysis_pie(sentences, show=False, token=True)[::-1] word_matrix = np.vstack((word_matrix, new_words)) token_matrix = np.vstack((token_matrix, new_tokens)) sentences = brown.tagged_sents("cj16") new_words = make_analysis_pie(sentences, show=False)[::-1] new_tokens = make_analysis_pie(sentences, show=False, token=True)[::-1] word_matrix = np.vstack((word_matrix, new_words)) token_matrix = np.vstack((token_matrix, new_tokens)) df1 = pd.DataFrame(word_matrix, index=["News", "Sci-fi", "Romance", "Religion", "Legal", "Medical"], columns=['Unknown', 'Other', 'Norse', 'Greek', 'Latin', 'French', 'Old English'][::-1]) df2 = pd.DataFrame(token_matrix, index=["News", "Sci-fi", "Romance", "Religion", "Legal", "Medical"], columns=['Unknown', 'Other', 'Norse', 'Greek', 'Latin', 'French', 'Old English'][::-1]) # Then, just call : plot_clustered_stacked([df1, df2],["Words", "Tokens"], title="Proportions of etymological origins in several texts") plt.show()
gpl-2.0
pwalczysko/openmicroscopy
components/tools/OmeroPy/src/omero/install/jvmcfg.py
10
16253
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2014 Glencoe Software, Inc. All Rights Reserved. # Use is subject to license terms supplied in LICENSE.txt # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ Automatic configuration of memory settings for Java servers. """ from types import StringType from shlex import split import logging LOGGER = logging.getLogger("omero.install.jvmcfg") def strip_dict(map, prefix=("omero", "jvmcfg"), suffix=(), limit=1): """ For the given dictionary, return a copy of the dictionary where all entries not matching the prefix, suffix, and limit have been removed and where all remaining keys have had the prefix and suffix stripped. The limit describes the number of elements that are allowed in the new key after stripping prefix and suffix. """ if isinstance(prefix, StringType): prefix = tuple(prefix.split(".")) if isinstance(suffix, StringType): suffix = tuple(suffix.split(".")) rv = dict() if not map: return dict() def __strip_dict(k, v, prefix, suffix, rv): key = tuple(k.split(".")) ksz = len(key) psz = len(prefix) ssz = len(suffix) if ksz <= (psz + ssz): return # No way to strip if smaller if key[0:psz] == prefix and key[ksz-ssz:] == suffix: newkey = key[psz:ksz-ssz] if len(newkey) == limit: newkey = ".".join(newkey) rv[newkey] = v for k, v in map.items(): __strip_dict(k, v, prefix, suffix, rv) return rv class StrategyRegistry(dict): def __init__(self, *args, **kwargs): super(dict, self).__init__(*args, **kwargs) STRATEGY_REGISTRY = StrategyRegistry() class Settings(object): """ Container for the config options found in etc/grid/config.xml """ def __init__(self, server_values=None, global_values=None): if server_values is None: self.__server = dict() else: self.__server = server_values if global_values is None: self.__global = dict() else: self.__global = global_values self.__static = { "strategy": PercentStrategy, "append": "", "perm_gen": "128m", "heap_dump": "off", "heap_size": "512m", "system_memory": None, "max_system_memory": "48000", "min_system_memory": "3414", } self.__manual = dict() def __getattr__(self, key): return self.lookup(key) def lookup(self, key, default=None): if key in self.__manual: return self.__manual[key] elif key in self.__server: return self.__server[key] elif key in self.__global: return self.__global[key] elif key in self.__static: return self.__static[key] else: return default def overwrite(self, key, value, always=False): if self.was_set(key) and not always: # Then we leave it as the user requested return else: self.__manual[key] = value def was_set(self, key): return key in self.__server or key in self.__global def get_strategy(self): return STRATEGY_REGISTRY.get(self.strategy, self.strategy) def __str__(self): rv = dict() rv.update(self.__server) rv.update(self.__global) if not rv: rv = "" return 'Settings(%s)' % rv class Strategy(object): """ Strategy for calculating memory settings. Primary class of the memory module. """ def __init__(self, name, settings=None): """ 'name' argument should likely be one of: ('blitz', 'indexer', 'pixeldata', 'repository') """ if settings is None: settings = Settings() self.name = name self.settings = settings if type(self) == Strategy: raise Exception("Must subclass!") # Memory helpers def system_memory_mb(self): """ Returns a tuple, in MB, of available, active, and total memory. "total" memory is found by calling to first a Python library (if installed) and otherwise a Java class. If "system_memory" is set, it will short-circuit both methods. "active" memory is set to "total" but limited by "min_system_memory" and "max_system_memory". "available" may not be accurate, and in some cases will be set to total. """ available, total = None, None if self.settings.system_memory is not None: total = int(self.settings.system_memory) available = total else: pymem = self._system_memory_mb_psutil() if pymem is not None: available, total = pymem else: available, total = self._system_memory_mb_java() max_system_memory = int(self.settings.max_system_memory) min_system_memory = int(self.settings.min_system_memory) active = max(min(total, max_system_memory), min_system_memory) return available, active, total def _system_memory_mb_psutil(self): try: import psutil pymem = psutil.virtual_memory() return (pymem.free/1000000, pymem.total/1000000) except ImportError: LOGGER.debug("No psutil installed") return None def _system_memory_mb_java(self): import omero.cli import omero.java # Copied from db.py. Needs better dir detection cwd = omero.cli.CLI().dir server_jar = cwd / "lib" / "server" / "server.jar" cmd = ["ome.services.util.JvmSettingsCheck", "--psutil"] p = omero.java.popen(["-cp", str(server_jar)] + cmd) o, e = p.communicate() if p.poll() != 0: LOGGER.warn("Failed to invoke java:\nout:%s\nerr:%s", o, e) rv = dict() for line in o.split("\n"): line = line.strip() if not line: continue parts = line.split(":") if len(parts) == 1: parts.append("") rv[parts[0]] = parts[1] try: free = long(rv["Free"]) / 1000000 except: LOGGER.warn("Failed to parse Free from %s", rv) free = 2000 try: total = long(rv["Total"]) / 1000000 except: LOGGER.warn("Failed to parse Total from %s", rv) total = 4000 return (free, total) # API Getters def get_heap_size(self, sz=None): if sz is None or self.settings.was_set("heap_size"): sz = self.settings.heap_size if str(sz).startswith("-X"): return sz else: rv = "-Xmx%s" % sz if rv[-1].lower() not in ("b", "k", "m", "g"): rv = "%sm" % rv return rv def get_heap_dump(self): hd = self.settings.heap_dump if hd == "off": return "" elif hd in ("on", "cwd", "tmp"): return "-XX:+HeapDumpOnOutOfMemoryError" def get_perm_gen(self): pg = self.settings.perm_gen if str(pg).startswith("-XX"): return pg else: return "-XX:MaxPermSize=%s" % pg def get_append(self): values = [] if self.settings.heap_dump == "tmp": import tempfile tmp = tempfile.gettempdir() values.append("-XX:HeapDumpPath=%s" % tmp) return values + split(self.settings.append) def get_memory_settings(self): values = [ self.get_heap_size(), self.get_heap_dump(), self.get_perm_gen(), ] if any([x.startswith("-XX:MaxPermSize") for x in values]): values.append("-XX:+IgnoreUnrecognizedVMOptions") values += self.get_append() return [x for x in values if x] class ManualStrategy(Strategy): """ Simplest strategy which assumes all values have been set and simply uses them or their defaults. """ class PercentStrategy(Strategy): """ Strategy based on a percent of available memory. """ PERCENT_DEFAULTS = ( ("blitz", 15), ("pixeldata", 15), ("indexer", 10), ("repository", 10), ("other", 1), ) def __init__(self, name, settings=None): super(PercentStrategy, self).__init__(name, settings) self.defaults = dict(self.PERCENT_DEFAULTS) self.use_active = True def get_heap_size(self): """ Uses the results of the default settings of calculate_heap_size() as an argument to get_heap_size(), in other words some percent of the active memory. """ sz = self.calculate_heap_size() return super(PercentStrategy, self).get_heap_size(sz) def get_percent(self): other = self.defaults.get("other", "1") default = self.defaults.get(self.name, other) percent = int(self.settings.lookup("percent", default)) return percent def get_perm_gen(self): available, active, total = self.system_memory_mb() choice = self.use_active and active or total if choice <= 4000: if choice >= 2000: self.settings.overwrite("perm_gen", "256m") elif choice <= 8000: self.settings.overwrite("perm_gen", "512m") else: self.settings.overwrite("perm_gen", "1g") return super(PercentStrategy, self).get_perm_gen() def calculate_heap_size(self, method=None): """ Re-calculates the appropriate heap size based on the value of get_percent(). The "active" memory returned by method() will be used by default, but can be modified to use "total" via the "use_active" flag. """ if method is None: method = self.system_memory_mb available, active, total = method() choice = self.use_active and active or total percent = self.get_percent() calculated = choice * int(percent) / 100 return calculated def usage_table(self, min=10, max=20): total_mb = [2**x for x in range(min, max)] for total in total_mb: method = lambda: (total, total, total) yield total, self.calculate_heap_size(method) STRATEGY_REGISTRY["manual"] = ManualStrategy STRATEGY_REGISTRY["percent"] = PercentStrategy def read_settings(template_xml): """ Read the memory settings from the template file """ rv = dict() for template in template_xml.findall("server-template"): for server in template.findall("server"): for option in server.findall("option"): o = option.text if o.startswith("-Xmx") | o.startswith("-XX"): rv.setdefault(server.get('id'), []).append(o) return rv def adjust_settings(config, template_xml, blitz=None, indexer=None, pixeldata=None, repository=None): """ Takes an omero.config.ConfigXml object and adjusts the memory settings. Primary entry point to the memory module. """ from xml.etree.ElementTree import Element from collections import defaultdict replacements = dict() options = dict() for template in template_xml.findall("server-template"): for server in template.findall("server"): for option in server.findall("option"): o = option.text if o.startswith("MEMORY:"): options[o[7:]] = (server, option) for props in server.findall("properties"): for prop in props.findall("property"): name = prop.attrib.get("name", "") if name.startswith("REPLACEMENT:"): replacements[name[12:]] = (server, prop) rv = defaultdict(list) m = config.as_map() loop = (("blitz", blitz), ("indexer", indexer), ("pixeldata", pixeldata), ("repository", repository)) for name, StrategyType in loop: if name not in options: raise Exception( "Cannot find %s option. Make sure templates.xml was " "not copied from an older server" % name) for name, StrategyType in loop: specific = strip_dict(m, suffix=name) defaults = strip_dict(m) settings = Settings(specific, defaults) rv[name].append(settings) if StrategyType is None: StrategyType = settings.get_strategy() if not callable(StrategyType): raise Exception("Bad strategy: %s" % StrategyType) strategy = StrategyType(name, settings) settings = strategy.get_memory_settings() server, option = options[name] idx = 0 for v in settings: rv[name].append(v) if idx == 0: option.text = v else: elem = Element("option") elem.text = v server.insert(idx, elem) idx += 1 # Now we check for any other properties and # put them where the replacement should go. for k, v in m.items(): r = [] suffix = ".%s" % name size = len(suffix) if k.endswith(suffix): k = k[:-size] r.append((k, v)) server, replacement = replacements[name] idx = 0 for k, v in r: if idx == 0: replacement.attrib["name"] = k replacement.attrib["value"] = v else: elem = Element("property", name=k, value=v) server.append(elem) return rv def usage_charts(path, min=0, max=20, Strategy=PercentStrategy, name="blitz"): # See http://matplotlib.org/examples/pylab_examples/anscombe.html from pylab import array from pylab import axis from pylab import gca from pylab import subplot from pylab import plot from pylab import setp from pylab import savefig from pylab import text points = 200 x = array([2 ** (x / points) / 1000 for x in range(min*points, max*points)]) y_configs = ( (Settings({}), 'A'), (Settings({"percent": "20"}), 'B'), (Settings({}), 'C'), (Settings({"max_system_memory": "10000"}), 'D'), ) def f(cfg): s = Strategy(name, settings=cfg[0]) y = [] for total in x: method = lambda: (total, total, total) y.append(s.calculate_heap_size(method)) return y y1 = f(y_configs[0]) y2 = f(y_configs[1]) y3 = f(y_configs[2]) y4 = f(y_configs[3]) axis_values = [0, 20, 0, 6] def ticks_f(): setp(gca(), xticks=(8, 16), yticks=(2, 4)) def text_f(which): cfg = y_configs[which] # s = cfg[0] txt = "%s" % (cfg[1],) text(2, 2, txt, fontsize=20) subplot(221) plot(x, y1) axis(axis_values) text_f(0) ticks_f() subplot(222) plot(x, y2) axis(axis_values) text_f(1) ticks_f() subplot(223) plot(x, y3) axis(axis_values) text_f(2) ticks_f() subplot(224) plot(x, y4) axis(axis_values) text_f(3) ticks_f() savefig(path)
gpl-2.0
Walter1218/rpn_detector_tf
batch_generate.py
1
15624
import pandas as pd import numpy as np import cv2, utils import random import copy import threading import itertools import numpy.random as npr class Box(): def __init__(self, x, y, w, h): self.x = x self.y = y self.w = w self.h = h def get_img_by_name(df,ind,size=(960,640), dataset = 'PASCAL_VOC'): file_name = df['FileName'][ind] #print(file_name) img = cv2.imread(file_name) img_size = np.shape(img) img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) img = cv2.resize(img,size) if(dataset == 'PASCAL_VOC'): name_str = file_name.split('/') name_str = name_str[-1] else: name_str = file_name.split('/') #print(name_str) name = name_str[2] + '/' + name_str[3] + '/' + name_str[4] + '/' + name_str[5] + '/' #print(name) name_str = name + name_str[-1] #print(name_str) #print(file_name) bb_boxes = df[df['Frame'] == name_str].reset_index() img_size_post = np.shape(img) #TODO,(add data augment support) return name_str,img,bb_boxes def target_label_generate(gta, anchor_box ,mc ,is_multi_layer = False, DEBUG = False): """ target label generate function, input: gta: ground truth anchor_box: anchor box, default is anchor_box[0] is_multi_layer: later will support multi feature detector returmn: target label(fg/bg) array target bbox regression array(target bbox delta, bbox_in_weight, bbox)out_weight) """ anchor_box = anchor_box[0] #default anchor_box[0] is H:40, W:60, because the rf is 16 in vgg(conv5_3) H, W = (40, 60) num_anchor_box_per_grid = mc.ANCHOR_PER_GRID gta = bbox_transform(gta, is_df = True) gta = bbox2cxcy(gta) #target_label = np.zeros((H, W, num_anchor_box_per_grid), dtype=np.float32) #target_bbox_delta = np.zeros((H, W, num_anchor_box_per_grid, 4), dtype=np.float32) #bbox_in_w = np.zeros((H, W, num_anchor_box_per_grid, 4), dtype=np.float32) #bbox_out_w = np.zeros((H, W, num_anchor_box_per_grid, 4), dtype=np.float32) #is valid, only inside anchor box is valid img_size = (mc.IMAGE_WIDTH, mc.IMAGE_HEIGHT) #transfer center_x, center_y, w, h to xmin, ymin, xmax, ymax bbox_xy = bbox_transform(anchor_box, is_df = False) _allowed_border = 0 inds_inside = np.where( (bbox_xy[:, 0] >= -_allowed_border) & (bbox_xy[:, 1] >= -_allowed_border) & (bbox_xy[:, 2] < img_size[0] + _allowed_border) & # width (bbox_xy[:, 3] < img_size[1] + _allowed_border) # height )[0] out_inside = np.where( (bbox_xy[:, 0] < -_allowed_border) & (bbox_xy[:, 1] < -_allowed_border) & (bbox_xy[:, 2] >= img_size[0] + _allowed_border) & # width (bbox_xy[:, 3] >= img_size[1] + _allowed_border) # height )[0] #if(DEBUG): # print('the valid anchors have ',len(inds_inside)) #valid_anchors valid_anchors = anchor_box[inds_inside] anchors = coord2box(valid_anchors) groundtruth = coord2box(gta) #print(anchors) num_of_anchors = len(anchors) num_of_gta = len(groundtruth) overlaps_table = np.zeros((num_of_anchors, num_of_gta)) for i in range(num_of_anchors): for j in range(num_of_gta): overlaps_table[i,j] = utils.box_iou(anchors[i], groundtruth[j]) #overlaps_table = utils.bbox_overlaps(anchors, groundtruth) if(DEBUG): print('the shape of overlaps table {0}'.format(overlaps_table.shape)) print('the number of groundtruth is', len(groundtruth)) print('the number of valid anchor box is', len(anchors)) #pick the postive and negative samples referenced from overlaps table #argmax overlaps for each groundtruth gt_argmax_overlaps = overlaps_table.argmax(axis=0) if(DEBUG): print('the shape of gt_argmax_overlaps is ',gt_argmax_overlaps.shape) print('the value in gt_argmax_overlaps is ',gt_argmax_overlaps) argmax_overlaps = overlaps_table.argmax(axis = 1) if(DEBUG): print('the shape of argmax_overlaps is ', argmax_overlaps.shape) print('the value in argmax_overlaps is ', argmax_overlaps) #overlaps groundtruth gt_max_overlaps = overlaps_table[gt_argmax_overlaps,np.arange(overlaps_table.shape[1])] gt_argmax_overlaps = np.where(overlaps_table == gt_max_overlaps)[0] if(DEBUG): print('the shape of processed gt_argmax_overlaps is ', gt_argmax_overlaps.shape) print('the value in processed gt_argmax_overlaps is ', gt_argmax_overlaps) #used this to select postive/ negative/ no care samples max_overlaps = overlaps_table[np.arange(len(valid_anchors)), argmax_overlaps] if(DEBUG): print('the shape of max overlaps table is ', max_overlaps.shape) target_labels = pick_samples(max_overlaps, gt_argmax_overlaps, mc) #target_labels[out_inside] = -1 if(DEBUG): num_pos_samples = len(np.where(target_labels == 1)[0]) num_neg_samples = len(np.where(target_labels == 0)[0]) print('the number of postive samples is ', num_pos_samples) print('the number os negative samples is ', num_neg_samples) #subsampling, default subsampling methods is random sample target_labels = subsampling(target_labels, mc) if(DEBUG): num_pos_samples = len(np.where(target_labels == 1)[0]) num_neg_samples = len(np.where(target_labels == 0)[0]) print('After subsampling, the number of postive samples is ', num_pos_samples) print('After subsampling, the number os negative samples is ', num_neg_samples) #target cls label #if(mc.cls = True): #bbox delta label target_delta, bbox_in_w, bbox_out_w = target_bbox(out_inside, valid_anchors, gta[argmax_overlaps,:], target_labels, mc) if(DEBUG): print('the shape of target_delta is ',target_delta.shape) print('the shape of bbox_in_w is ',bbox_in_w.shape) print('the shape of bbox_out_w is ',bbox_out_w.shape) #UNMAP TO original feature images total_anchors = num_anchor_box_per_grid * H * W labels = unmap2original(target_labels, total_anchors, inds_inside, fill=-1) bbox_targets = unmap2original(target_delta, total_anchors, inds_inside, fill=0) bbox_inside_weights = unmap2original(bbox_in_w, total_anchors, inds_inside, fill=0) bbox_outside_weights = unmap2original(bbox_out_w, total_anchors, inds_inside, fill=0) #labels = target_labels #bbox_targets = target_delta #bbox_inside_weights = bbox_in_w #bbox_outside_weights = bbox_out_w #bbox_targets[out_inside] = 0 #bbox_inside_weights[out_inside] = 0 #bbox_outside_weights[out_inside] = 0 if(DEBUG): print('the shape of target labels is ', labels.shape) print('the shape of bbox_target is', bbox_targets.shape) print('the shape of bbox_in_w is', bbox_inside_weights.shape) print('the shape of bbox_out_w is', bbox_outside_weights.shape) #reshape #labels = labels.reshape((H, W, num_anchor_box_per_grid)) #bbox_targets = bbox_targets.reshape((H, W, num_anchor_box_per_grid * 4)) #bbox_inside_weights = bbox_inside_weights.reshape((H, W, num_anchor_box_per_grid * 4)) #bbox_outside_weights = bbox_outside_weights.reshape((H, W, num_anchor_box_per_grid * 4)) labels = labels.reshape((mc.H , mc.W , mc.ANCHOR_PER_GRID)) rpn_labels = labels #print(rpn_labels.shape) # bbox_targets bbox_targets = bbox_targets \ .reshape((mc.H , mc.W , mc.ANCHOR_PER_GRID * 4)) rpn_bbox_targets = bbox_targets # bbox_inside_weights bbox_inside_weights = bbox_inside_weights \ .reshape((mc.H , mc.W , mc.ANCHOR_PER_GRID * 4)) #assert bbox_inside_weights.shape[2] == height #assert bbox_inside_weights.shape[3] == width rpn_bbox_inside_weights = bbox_inside_weights # bbox_outside_weights bbox_outside_weights = bbox_outside_weights \ .reshape((mc.H , mc.W , mc.ANCHOR_PER_GRID * 4)) #assert bbox_outside_weights.shape[2] == height #assert bbox_outside_weights.shape[3] == width rpn_bbox_outside_weights = bbox_outside_weights if(DEBUG): print('overlaps_table', overlaps_table.shape) print('overlaps_table displayed', overlaps_table) num_gta = overlaps_table.shape[1] print('number of gta',num_gta) #if(mc.cls): # num_gta = overlaps_table.shape[1] # cls_map = cls_mapping(valid_anchors, overlaps_table, target_labels, gta, num_gta, mc) # cls_map = unmap2original(cls_map, total_anchors, inds_inside, fill=-1) # cls_map = cls_map.reshape((mc.H, mc.W, mc.ANCHOR_PER_GRID)) #print(cls_map.shape) # return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights, cls_map #else: return rpn_labels, rpn_bbox_targets, rpn_bbox_inside_weights, rpn_bbox_outside_weights, gta def cls_mapping(valid_anchors, overlaps_table, target_labels, gta, num_gta, mc): dim = overlaps_table.shape[0] target_cls_label = np.zeros((dim, ), dtype = np.float32) #for i in range(num_gta): # print('the orientations of index i is',gta[i,4]) #print('this gta, the overlaps looks as',overlaps_table[:,i]) postive_index = np.where(target_labels == 1 )[0] anchor_box = valid_anchors #print('the coordinate of postive samples anchor box is',anchor_box[postive_index]) ref_anchors = anchor_box[postive_index] cls_overlaps_table = np.zeros((len(postive_index), num_gta)) anchors = coord2box(ref_anchors) groundtruth = coord2box(gta) for i in range(len(postive_index)): for j in range(num_gta): cls_overlaps_table[i,j] = utils.box_iou(anchors[i], groundtruth[j]) #print(cls_overlaps_table) #print(cls_overlaps_table.argmax(axis = 1)) cls_idx = cls_overlaps_table.argmax(axis = 1) #print(gta[cls_idx,4],postive_index[cls_idx]) for i in range(num_gta): pos_idx_gta = np.where(cls_idx == i)[0] #print('the groundtruth index {0} , postive index is {1}'.format(i, postive_index[pos_idx_gta])) if(int(gta[i,4]) == 1): target_cls_label[postive_index[pos_idx_gta]] = 1 else: target_cls_label[postive_index[pos_idx_gta]] = 0 #print(np.where(target_cls_label[:,int(gta[i,4] + 1)] == 1)[0]) #for i in range(len(cls_idx)): #print('the psotive samples', np.where(target_labels > 0)[0]) #for i in range(len(gta)): #print(gta[i,4]) # target_cls_label[] return target_cls_label def unmap2original(data, count, inds, fill=0): if len(data.shape) == 1: ret = np.empty((count, ), dtype=np.float32) ret.fill(fill) ret[inds] = data else: ret = np.empty((count, ) + data.shape[1:], dtype=np.float32) ret.fill(fill) ret[inds, :] = data return ret def target_bbox(out_inside, anchor_box, gt_boxes, target_labels, mc): #create target bbox delta here target_delta = np.zeros((len(anchor_box), 4), dtype = np.float32) target_delta = utils.bbox_delta_convert(anchor_box, gt_boxes) target_delta[out_inside] = 0 bbox_in_w = np.zeros((len(anchor_box), 4), dtype = np.float32) bbox_out_w = np.zeros((len(anchor_box), 4), dtype = np.float32) RPN_BBOX_INSIDE_WEIGHTS = mc.RPN_BBOX_INSIDE_WEIGHTS RPN_POSITIVE_WEIGHT = mc.RPN_POSITIVE_WEIGHT bbox_in_w[target_labels == 1] = np.array(RPN_BBOX_INSIDE_WEIGHTS) if RPN_POSITIVE_WEIGHT < 0: # uniform weighting of examples (given non-uniform sampling) num_examples = np.sum(target_labels >= 0) positive_weights = np.ones((1, 4)) * 1.0 / num_examples negative_weights = np.ones((1, 4)) * 1.0 / num_examples else: assert ((RPN_POSITIVE_WEIGHT > 0) & (RPN_POSITIVE_WEIGHT < 1)) positive_weights = (RPN_POSITIVE_WEIGHT / np.sum(target_labels == 1)) negative_weights = ((1.0 - RPN_POSITIVE_WEIGHT) / np.sum(target_labels == 0)) bbox_out_w[target_labels == 1] = positive_weights bbox_out_w[target_labels == 0] = negative_weights return target_delta, bbox_in_w, bbox_out_w def pick_samples(max_overlaps, gt_argmax_overlaps, mc): negative_threshould = mc.neg_max_overlaps postive_threshould = mc.pos_min_overlaps #initialize target labels here #like the original faster rcnn model, we set postive samples as 1, negative samples as 0, and -1 for no care target_labels = np.empty((len(max_overlaps), ), dtype=np.int32) #all target labels will fill -1 first target_labels.fill(-1) #negative samples, < negative_threshould target_labels[max_overlaps < negative_threshould] = 0 #all gt argmax, the maximun overlaps of each groundtruth set as postive samples target_labels[gt_argmax_overlaps] = 1 #postive samples, >= postive_threshould target_labels[max_overlaps >= postive_threshould] = 1 return target_labels def subsampling(target_labels, mc, sampling_methods = 'random'): """ Random Sampling, Bootstracp and Mixture methods now, only support random sampling methods """ fraction = mc.RPN_FRACTION batch_size = mc.RPN_BATCH_SIZE bal_num_of_pos = int(fraction * batch_size) fg = np.where(target_labels == 1)[0] if(len(fg) > bal_num_of_pos): #subsampling the postive samples disable_inds = npr.choice(fg, size=(len(fg) - bal_num_of_pos), replace=False) target_labels[disable_inds] = -1 bal_num_of_neg = batch_size - np.sum(target_labels == 1) bg = np.where(target_labels == 0)[0] if(len(bg) > bal_num_of_neg): #subsampling the negative samples disable_inds = npr.choice(bg, size=(len(bg) - bal_num_of_neg), replace=False) target_labels[disable_inds] = -1 return target_labels def coord2box(bbox): boxes = [] for i in range(len(bbox)): x = bbox[i,0] y = bbox[i,1] w = bbox[i,2] h = bbox[i,3] boxes.append(Box(x,y,w,h)) return boxes def bbox2cxcy(bb_boxes): gta = np.zeros((len(bb_boxes), 5)) for i in range(len(bb_boxes)): gta[i,0] = bb_boxes[i,0] + (bb_boxes[i,2] - bb_boxes[i,0]) / 2 gta[i,1] = bb_boxes[i,1] + (bb_boxes[i,3] - bb_boxes[i,1]) / 2 gta[i,2] = (bb_boxes[i,2] - bb_boxes[i,0]) gta[i,3] = (bb_boxes[i,3] - bb_boxes[i,1]) gta[i,4] = bb_boxes[i,4] return gta def bbox_transform(bb_boxes, is_df = True): """ convert the x_center, y_center, w, h to xmin, ymin, xmax, ymax type """ gta = np.zeros((len(bb_boxes), 5)) #print(gta.shape) if(is_df): for i in range(len(bb_boxes)): """ gta index: 0: xmin -> x_center - (w / 2.) 1: ymin -> y_center - (h / 2.) 2: xmax -> x_center + (w / 2.) 3: ymax -> y_center + (h / 2.) """ gta[i,0] = bb_boxes.iloc[i]['x_center'] - (bb_boxes.iloc[i]['w'] / 2.) gta[i,1] = bb_boxes.iloc[i]['y_center'] - (bb_boxes.iloc[i]['h'] / 2.) gta[i,2] = bb_boxes.iloc[i]['x_center'] + (bb_boxes.iloc[i]['w'] / 2.) gta[i,3] = bb_boxes.iloc[i]['y_center'] + (bb_boxes.iloc[i]['h'] / 2.) gta[i,4] = bb_boxes.iloc[i]['label'] else: for i in range(len(bb_boxes)): cx = bb_boxes[i,0] cy = bb_boxes[i,1] w = bb_boxes[i,2] h = bb_boxes[i,3] gta[i,0] = cx - (w / 2.) gta[i,1] = cy - (h / 2.) gta[i,2] = cx + (w / 2.) gta[i,3] = cy + (h / 2.) #gta[i,4] = bb_boxes[i,4] return gta#data
apache-2.0
harisbal/pandas
pandas/tests/tslibs/test_array_to_datetime.py
3
7110
# -*- coding: utf-8 -*- from datetime import datetime, date import numpy as np import pytest import pytz from dateutil.tz.tz import tzoffset from pandas._libs import tslib from pandas.compat.numpy import np_array_datetime64_compat import pandas.util.testing as tm class TestParseISO8601(object): @pytest.mark.parametrize('date_str, exp', [ ('2011-01-02', datetime(2011, 1, 2)), ('2011-1-2', datetime(2011, 1, 2)), ('2011-01', datetime(2011, 1, 1)), ('2011-1', datetime(2011, 1, 1)), ('2011 01 02', datetime(2011, 1, 2)), ('2011.01.02', datetime(2011, 1, 2)), ('2011/01/02', datetime(2011, 1, 2)), ('2011\\01\\02', datetime(2011, 1, 2)), ('2013-01-01 05:30:00', datetime(2013, 1, 1, 5, 30)), ('2013-1-1 5:30:00', datetime(2013, 1, 1, 5, 30))]) def test_parsers_iso8601(self, date_str, exp): # GH#12060 # test only the iso parser - flexibility to different # separators and leadings 0s # Timestamp construction falls back to dateutil actual = tslib._test_parse_iso8601(date_str) assert actual == exp @pytest.mark.parametrize( 'date_str', ['2011-01/02', '2011^11^11', '201401', '201111', '200101', # mixed separated and unseparated '2005-0101', '200501-01', '20010101 12:3456', '20010101 1234:56', # HHMMSS must have two digits in # each component if unseparated '20010101 1', '20010101 123', '20010101 12345', '20010101 12345Z', # wrong separator for HHMMSS '2001-01-01 12-34-56']) def test_parsers_iso8601_invalid(self, date_str): # separators must all match - YYYYMM not valid with pytest.raises(ValueError): tslib._test_parse_iso8601(date_str) class TestArrayToDatetime(object): def test_parsing_valid_dates(self): arr = np.array(['01-01-2013', '01-02-2013'], dtype=object) result, _ = tslib.array_to_datetime(arr) expected = ['2013-01-01T00:00:00.000000000-0000', '2013-01-02T00:00:00.000000000-0000'] tm.assert_numpy_array_equal( result, np_array_datetime64_compat(expected, dtype='M8[ns]')) arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object) result, _ = tslib.array_to_datetime(arr) expected = ['2013-09-16T00:00:00.000000000-0000', '2013-09-17T00:00:00.000000000-0000'] tm.assert_numpy_array_equal( result, np_array_datetime64_compat(expected, dtype='M8[ns]')) @pytest.mark.parametrize('dt_string, expected_tz', [ ['01-01-2013 08:00:00+08:00', pytz.FixedOffset(480)], ['2013-01-01T08:00:00.000000000+0800', pytz.FixedOffset(480)], ['2012-12-31T16:00:00.000000000-0800', pytz.FixedOffset(-480)], ['12-31-2012 23:00:00-01:00', pytz.FixedOffset(-60)]]) def test_parsing_timezone_offsets(self, dt_string, expected_tz): # All of these datetime strings with offsets are equivalent # to the same datetime after the timezone offset is added arr = np.array(['01-01-2013 00:00:00'], dtype=object) expected, _ = tslib.array_to_datetime(arr) arr = np.array([dt_string], dtype=object) result, result_tz = tslib.array_to_datetime(arr) tm.assert_numpy_array_equal(result, expected) assert result_tz is expected_tz def test_parsing_non_iso_timezone_offset(self): dt_string = '01-01-2013T00:00:00.000000000+0000' arr = np.array([dt_string], dtype=object) result, result_tz = tslib.array_to_datetime(arr) expected = np.array([np.datetime64('2013-01-01 00:00:00.000000000')]) tm.assert_numpy_array_equal(result, expected) assert result_tz is pytz.FixedOffset(0) def test_parsing_different_timezone_offsets(self): # GH 17697 data = ["2015-11-18 15:30:00+05:30", "2015-11-18 15:30:00+06:30"] data = np.array(data, dtype=object) result, result_tz = tslib.array_to_datetime(data) expected = np.array([datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 19800)), datetime(2015, 11, 18, 15, 30, tzinfo=tzoffset(None, 23400))], dtype=object) tm.assert_numpy_array_equal(result, expected) assert result_tz is None def test_number_looking_strings_not_into_datetime(self): # GH#4601 # These strings don't look like datetimes so they shouldn't be # attempted to be converted arr = np.array(['-352.737091', '183.575577'], dtype=object) result, _ = tslib.array_to_datetime(arr, errors='ignore') tm.assert_numpy_array_equal(result, arr) arr = np.array(['1', '2', '3', '4', '5'], dtype=object) result, _ = tslib.array_to_datetime(arr, errors='ignore') tm.assert_numpy_array_equal(result, arr) @pytest.mark.parametrize('invalid_date', [ date(1000, 1, 1), datetime(1000, 1, 1), '1000-01-01', 'Jan 1, 1000', np.datetime64('1000-01-01')]) def test_coerce_outside_ns_bounds(self, invalid_date): arr = np.array([invalid_date], dtype='object') with pytest.raises(ValueError): tslib.array_to_datetime(arr, errors='raise') result, _ = tslib.array_to_datetime(arr, errors='coerce') expected = np.array([tslib.iNaT], dtype='M8[ns]') tm.assert_numpy_array_equal(result, expected) def test_coerce_outside_ns_bounds_one_valid(self): arr = np.array(['1/1/1000', '1/1/2000'], dtype=object) result, _ = tslib.array_to_datetime(arr, errors='coerce') expected = [tslib.iNaT, '2000-01-01T00:00:00.000000000-0000'] tm.assert_numpy_array_equal( result, np_array_datetime64_compat(expected, dtype='M8[ns]')) def test_coerce_of_invalid_datetimes(self): arr = np.array(['01-01-2013', 'not_a_date', '1'], dtype=object) # Without coercing, the presence of any invalid dates prevents # any values from being converted result, _ = tslib.array_to_datetime(arr, errors='ignore') tm.assert_numpy_array_equal(result, arr) # With coercing, the invalid dates becomes iNaT result, _ = tslib.array_to_datetime(arr, errors='coerce') expected = ['2013-01-01T00:00:00.000000000-0000', tslib.iNaT, tslib.iNaT] tm.assert_numpy_array_equal( result, np_array_datetime64_compat(expected, dtype='M8[ns]')) def test_to_datetime_barely_out_of_bounds(self): # GH#19529 # GH#19382 close enough to bounds that dropping nanos would result # in an in-bounds datetime arr = np.array(['2262-04-11 23:47:16.854775808'], dtype=object) with pytest.raises(tslib.OutOfBoundsDatetime): tslib.array_to_datetime(arr)
bsd-3-clause
jayflo/scikit-learn
examples/linear_model/plot_ols_3d.py
350
2040
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Sparsity Example: Fitting only features 1 and 2 ========================================================= Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong coefficient on the full model, it does not give us much regarding `y` when compared to just feature 1 """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets, linear_model diabetes = datasets.load_diabetes() indices = (0, 1) X_train = diabetes.data[:-20, indices] X_test = diabetes.data[-20:, indices] y_train = diabetes.target[:-20] y_test = diabetes.target[-20:] ols = linear_model.LinearRegression() ols.fit(X_train, y_train) ############################################################################### # Plot the figure def plot_figs(fig_num, elev, azim, X_train, clf): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, elev=elev, azim=azim) ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+') ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]), np.array([[-.1, .15], [-.1, .15]]), clf.predict(np.array([[-.1, -.1, .15, .15], [-.1, .15, -.1, .15]]).T ).reshape((2, 2)), alpha=.5) ax.set_xlabel('X_1') ax.set_ylabel('X_2') ax.set_zlabel('Y') ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) #Generate the three different figures from different views elev = 43.5 azim = -110 plot_figs(1, elev, azim, X_train, ols) elev = -.5 azim = 0 plot_figs(2, elev, azim, X_train, ols) elev = -.5 azim = 90 plot_figs(3, elev, azim, X_train, ols) plt.show()
bsd-3-clause
phoebe-project/phoebe2-docs
2.2/tutorials/ecc.py
1
2155
#!/usr/bin/env python # coding: utf-8 # Eccentricity (Volume Conservation) # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.2 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.2,<2.3"') # As always, let's do imports and initialize a logger and a new Bundle. See [Building a System](building_a_system.ipynb) for more details. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() # Relevant Parameters # ---------------------------- # # In[3]: print(b.get_parameter(qualifier='ecc')) # In[4]: print(b.get_parameter(qualifier='ecosw', context='component')) # In[5]: print(b.get_parameter(qualifier='esinw', context='component')) # Relevant Constraints # ----------------------------- # In[6]: print(b.get_parameter(qualifier='ecosw', context='constraint')) # In[7]: print(b.get_parameter(qualifier='esinw', context='constraint')) # Influence on Meshes (volume conservation) # ---------------------------- # # In[8]: b.add_dataset('mesh', times=np.linspace(0,1,11), columns=['volume']) # In[9]: b.set_value('ecc', 0.2) # In[10]: b.run_compute() # In[11]: print(b['volume@primary@model']) # In[12]: afig, mplfig = b['mesh01'].plot(x='times', y='volume', show=True) # In[13]: b.remove_dataset('mesh01') # Influence on Radial Velocities # ---------------------------------- # # In[14]: b.add_dataset('rv', times=np.linspace(0,1,51)) # In[15]: b.run_compute() # In[16]: afig, mplfig = b['rv@model'].plot(show=True) # In[17]: b.remove_dataset('rv01') # Influence on Light Curves (fluxes) # ----------------------------------------- # # In[18]: b.add_dataset('lc', times=np.linspace(0,1,51)) # In[19]: b.run_compute() # In[20]: afig, mplfig = b['lc@model'].plot(show=True)
gpl-3.0
pydata/xarray
xarray/core/combine.py
1
33931
import itertools import warnings from collections import Counter import pandas as pd from . import dtypes from .concat import concat from .dataarray import DataArray from .dataset import Dataset from .merge import merge from .utils import iterate_nested def _infer_concat_order_from_positions(datasets): return dict(_infer_tile_ids_from_nested_list(datasets, ())) def _infer_tile_ids_from_nested_list(entry, current_pos): """ Given a list of lists (of lists...) of objects, returns a iterator which returns a tuple containing the index of each object in the nested list structure as the key, and the object. This can then be called by the dict constructor to create a dictionary of the objects organised by their position in the original nested list. Recursively traverses the given structure, while keeping track of the current position. Should work for any type of object which isn't a list. Parameters ---------- entry : list[list[obj, obj, ...], ...] List of lists of arbitrary depth, containing objects in the order they are to be concatenated. Returns ------- combined_tile_ids : dict[tuple(int, ...), obj] """ if isinstance(entry, list): for i, item in enumerate(entry): yield from _infer_tile_ids_from_nested_list(item, current_pos + (i,)) else: yield current_pos, entry def _ensure_same_types(series, dim): if series.dtype == object: types = set(series.map(type)) if len(types) > 1: types = ", ".join(t.__name__ for t in types) raise TypeError( f"Cannot combine along dimension '{dim}' with mixed types." f" Found: {types}." ) def _infer_concat_order_from_coords(datasets): concat_dims = [] tile_ids = [() for ds in datasets] # All datasets have same variables because they've been grouped as such ds0 = datasets[0] for dim in ds0.dims: # Check if dim is a coordinate dimension if dim in ds0: # Need to read coordinate values to do ordering indexes = [ds.xindexes.get(dim) for ds in datasets] if any(index is None for index in indexes): raise ValueError( "Every dimension needs a coordinate for " "inferring concatenation order" ) # TODO (benbovy, flexible indexes): all indexes should be Pandas.Index # get pd.Index objects from Index objects indexes = [index.array for index in indexes] # If dimension coordinate values are same on every dataset then # should be leaving this dimension alone (it's just a "bystander") if not all(index.equals(indexes[0]) for index in indexes[1:]): # Infer order datasets should be arranged in along this dim concat_dims.append(dim) if all(index.is_monotonic_increasing for index in indexes): ascending = True elif all(index.is_monotonic_decreasing for index in indexes): ascending = False else: raise ValueError( "Coordinate variable {} is neither " "monotonically increasing nor " "monotonically decreasing on all datasets".format(dim) ) # Assume that any two datasets whose coord along dim starts # with the same value have the same coord values throughout. if any(index.size == 0 for index in indexes): raise ValueError("Cannot handle size zero dimensions") first_items = pd.Index([index[0] for index in indexes]) series = first_items.to_series() # ensure series does not contain mixed types, e.g. cftime calendars _ensure_same_types(series, dim) # Sort datasets along dim # We want rank but with identical elements given identical # position indices - they should be concatenated along another # dimension, not along this one rank = series.rank( method="dense", ascending=ascending, numeric_only=False ) order = rank.astype(int).values - 1 # Append positions along extra dimension to structure which # encodes the multi-dimensional concatentation order tile_ids = [ tile_id + (position,) for tile_id, position in zip(tile_ids, order) ] if len(datasets) > 1 and not concat_dims: raise ValueError( "Could not find any dimension coordinates to use to " "order the datasets for concatenation" ) combined_ids = dict(zip(tile_ids, datasets)) return combined_ids, concat_dims def _check_dimension_depth_tile_ids(combined_tile_ids): """ Check all tuples are the same length, i.e. check that all lists are nested to the same depth. """ tile_ids = combined_tile_ids.keys() nesting_depths = [len(tile_id) for tile_id in tile_ids] if not nesting_depths: nesting_depths = [0] if set(nesting_depths) != {nesting_depths[0]}: raise ValueError( "The supplied objects do not form a hypercube because" " sub-lists do not have consistent depths" ) # return these just to be reused in _check_shape_tile_ids return tile_ids, nesting_depths def _check_shape_tile_ids(combined_tile_ids): """Check all lists along one dimension are same length.""" tile_ids, nesting_depths = _check_dimension_depth_tile_ids(combined_tile_ids) for dim in range(nesting_depths[0]): indices_along_dim = [tile_id[dim] for tile_id in tile_ids] occurrences = Counter(indices_along_dim) if len(set(occurrences.values())) != 1: raise ValueError( "The supplied objects do not form a hypercube " "because sub-lists do not have consistent " "lengths along dimension" + str(dim) ) def _combine_nd( combined_ids, concat_dims, data_vars="all", coords="different", compat="no_conflicts", fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): """ Combines an N-dimensional structure of datasets into one by applying a series of either concat and merge operations along each dimension. No checks are performed on the consistency of the datasets, concat_dims or tile_IDs, because it is assumed that this has already been done. Parameters ---------- combined_ids : Dict[Tuple[int, ...]], xarray.Dataset] Structure containing all datasets to be concatenated with "tile_IDs" as keys, which specify position within the desired final combined result. concat_dims : sequence of str The dimensions along which the datasets should be concatenated. Must be in order, and the length must match the length of the tuples used as keys in combined_ids. If the string is a dimension name then concat along that dimension, if it is None then merge. Returns ------- combined_ds : xarray.Dataset """ example_tile_id = next(iter(combined_ids.keys())) n_dims = len(example_tile_id) if len(concat_dims) != n_dims: raise ValueError( "concat_dims has length {} but the datasets " "passed are nested in a {}-dimensional structure".format( len(concat_dims), n_dims ) ) # Each iteration of this loop reduces the length of the tile_ids tuples # by one. It always combines along the first dimension, removing the first # element of the tuple for concat_dim in concat_dims: combined_ids = _combine_all_along_first_dim( combined_ids, dim=concat_dim, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) (combined_ds,) = combined_ids.values() return combined_ds def _combine_all_along_first_dim( combined_ids, dim, data_vars, coords, compat, fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): # Group into lines of datasets which must be combined along dim # need to sort by _new_tile_id first for groupby to work # TODO: is the sorted need? combined_ids = dict(sorted(combined_ids.items(), key=_new_tile_id)) grouped = itertools.groupby(combined_ids.items(), key=_new_tile_id) # Combine all of these datasets along dim new_combined_ids = {} for new_id, group in grouped: combined_ids = dict(sorted(group)) datasets = combined_ids.values() new_combined_ids[new_id] = _combine_1d( datasets, dim, compat, data_vars, coords, fill_value, join, combine_attrs ) return new_combined_ids def _combine_1d( datasets, concat_dim, compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): """ Applies either concat or merge to 1D list of datasets depending on value of concat_dim """ if concat_dim is not None: try: combined = concat( datasets, dim=concat_dim, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) except ValueError as err: if "encountered unexpected variable" in str(err): raise ValueError( "These objects cannot be combined using only " "xarray.combine_nested, instead either use " "xarray.combine_by_coords, or do it manually " "with xarray.concat, xarray.merge and " "xarray.align" ) else: raise else: combined = merge( datasets, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) return combined def _new_tile_id(single_id_ds_pair): tile_id, ds = single_id_ds_pair return tile_id[1:] def _nested_combine( datasets, concat_dims, compat, data_vars, coords, ids, fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): if len(datasets) == 0: return Dataset() # Arrange datasets for concatenation # Use information from the shape of the user input if not ids: # Determine tile_IDs by structure of input in N-D # (i.e. ordering in list-of-lists) combined_ids = _infer_concat_order_from_positions(datasets) else: # Already sorted so just use the ids already passed combined_ids = dict(zip(ids, datasets)) # Check that the inferred shape is combinable _check_shape_tile_ids(combined_ids) # Apply series of concatenate or merge operations along each dimension combined = _combine_nd( combined_ids, concat_dims, compat=compat, data_vars=data_vars, coords=coords, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) return combined def combine_nested( datasets, concat_dim, compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", combine_attrs="drop", ): """ Explicitly combine an N-dimensional grid of datasets into one by using a succession of concat and merge operations along each dimension of the grid. Does not sort the supplied datasets under any circumstances, so the datasets must be passed in the order you wish them to be concatenated. It does align coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use concat/merge explicitly. To concatenate along multiple dimensions the datasets must be passed as a nested list-of-lists, with a depth equal to the length of ``concat_dims``. ``combine_nested`` will concatenate along the top-level list first. Useful for combining datasets from a set of nested directories, or for collecting the output of a simulation parallelized along multiple dimensions. Parameters ---------- datasets : list or nested list of Dataset Dataset objects to combine. If concatenation or merging along more than one dimension is desired, then datasets must be supplied in a nested list-of-lists. concat_dim : str, or list of str, DataArray, Index or None Dimensions along which to concatenate variables, as used by :py:func:`xarray.concat`. Set ``concat_dim=[..., None, ...]`` explicitly to disable concatenation and merge instead along a particular dimension. The position of ``None`` in the list specifies the dimension of the nested-list input along which to merge. Must be the same length as the depth of the list passed to ``datasets``. compat : {"identical", "equals", "broadcast_equals", \ "no_conflicts", "override"}, optional String indicating how to compare variables of the same name for potential merge conflicts: - "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. - "equals": all values and dimensions must be the same. - "identical": all values, dimensions and attributes must be the same. - "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - "override": skip comparing and pick variable from first dataset data_vars : {"minimal", "different", "all" or list of str}, optional Details are in the documentation of concat coords : {"minimal", "different", "all" or list of str}, optional Details are in the documentation of concat fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names to fill values. Use a data array's name to refer to its values. join : {"outer", "inner", "left", "right", "exact"}, optional String indicating how to combine differing indexes (excluding concat_dim) in objects - "outer": use the union of object indexes - "inner": use the intersection of object indexes - "left": use indexes from the first object with each dimension - "right": use indexes from the last object with each dimension - "exact": instead of aligning, raise `ValueError` when indexes to be aligned are not equal - "override": if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"} or callable, default: "drop" A callable or a string indicating how to combine attrs of the objects being merged: - "drop": empty attrs on returned Dataset. - "identical": all attrs must be the same on every object. - "no_conflicts": attrs from all objects are combined, any that have the same name must also have the same value. - "drop_conflicts": attrs from all objects are combined, any that have the same name but different values are dropped. - "override": skip comparing and copy attrs from the first dataset to the result. If a callable, it must expect a sequence of ``attrs`` dicts and a context object as its only parameters. Returns ------- combined : xarray.Dataset Examples -------- A common task is collecting data from a parallelized simulation in which each process wrote out to a separate file. A domain which was decomposed into 4 parts, 2 each along both the x and y axes, requires organising the datasets into a doubly-nested list, e.g: >>> x1y1 = xr.Dataset( ... { ... "temperature": (("x", "y"), np.random.randn(2, 2)), ... "precipitation": (("x", "y"), np.random.randn(2, 2)), ... } ... ) >>> x1y1 <xarray.Dataset> Dimensions: (x: 2, y: 2) Dimensions without coordinates: x, y Data variables: temperature (x, y) float64 1.764 0.4002 0.9787 2.241 precipitation (x, y) float64 1.868 -0.9773 0.9501 -0.1514 >>> x1y2 = xr.Dataset( ... { ... "temperature": (("x", "y"), np.random.randn(2, 2)), ... "precipitation": (("x", "y"), np.random.randn(2, 2)), ... } ... ) >>> x2y1 = xr.Dataset( ... { ... "temperature": (("x", "y"), np.random.randn(2, 2)), ... "precipitation": (("x", "y"), np.random.randn(2, 2)), ... } ... ) >>> x2y2 = xr.Dataset( ... { ... "temperature": (("x", "y"), np.random.randn(2, 2)), ... "precipitation": (("x", "y"), np.random.randn(2, 2)), ... } ... ) >>> ds_grid = [[x1y1, x1y2], [x2y1, x2y2]] >>> combined = xr.combine_nested(ds_grid, concat_dim=["x", "y"]) >>> combined <xarray.Dataset> Dimensions: (x: 4, y: 4) Dimensions without coordinates: x, y Data variables: temperature (x, y) float64 1.764 0.4002 -0.1032 ... 0.04576 -0.1872 precipitation (x, y) float64 1.868 -0.9773 0.761 ... -0.7422 0.1549 0.3782 ``combine_nested`` can also be used to explicitly merge datasets with different variables. For example if we have 4 datasets, which are divided along two times, and contain two different variables, we can pass ``None`` to ``concat_dim`` to specify the dimension of the nested list over which we wish to use ``merge`` instead of ``concat``: >>> t1temp = xr.Dataset({"temperature": ("t", np.random.randn(5))}) >>> t1temp <xarray.Dataset> Dimensions: (t: 5) Dimensions without coordinates: t Data variables: temperature (t) float64 -0.8878 -1.981 -0.3479 0.1563 1.23 >>> t1precip = xr.Dataset({"precipitation": ("t", np.random.randn(5))}) >>> t1precip <xarray.Dataset> Dimensions: (t: 5) Dimensions without coordinates: t Data variables: precipitation (t) float64 1.202 -0.3873 -0.3023 -1.049 -1.42 >>> t2temp = xr.Dataset({"temperature": ("t", np.random.randn(5))}) >>> t2precip = xr.Dataset({"precipitation": ("t", np.random.randn(5))}) >>> ds_grid = [[t1temp, t1precip], [t2temp, t2precip]] >>> combined = xr.combine_nested(ds_grid, concat_dim=["t", None]) >>> combined <xarray.Dataset> Dimensions: (t: 10) Dimensions without coordinates: t Data variables: temperature (t) float64 -0.8878 -1.981 -0.3479 ... -0.5097 -0.4381 -1.253 precipitation (t) float64 1.202 -0.3873 -0.3023 ... -0.2127 -0.8955 0.3869 See also -------- concat merge """ mixed_datasets_and_arrays = any( isinstance(obj, Dataset) for obj in iterate_nested(datasets) ) and any( isinstance(obj, DataArray) and obj.name is None for obj in iterate_nested(datasets) ) if mixed_datasets_and_arrays: raise ValueError("Can't combine datasets with unnamed arrays.") if isinstance(concat_dim, (str, DataArray)) or concat_dim is None: concat_dim = [concat_dim] # The IDs argument tells _nested_combine that datasets aren't yet sorted return _nested_combine( datasets, concat_dims=concat_dim, compat=compat, data_vars=data_vars, coords=coords, ids=False, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) def vars_as_keys(ds): return tuple(sorted(ds)) def _combine_single_variable_hypercube( datasets, fill_value=dtypes.NA, data_vars="all", coords="different", compat="no_conflicts", join="outer", combine_attrs="no_conflicts", ): """ Attempt to combine a list of Datasets into a hypercube using their coordinates. All provided Datasets must belong to a single variable, ie. must be assigned the same variable name. This precondition is not checked by this function, so the caller is assumed to know what it's doing. This function is NOT part of the public API. """ if len(datasets) == 0: raise ValueError( "At least one Dataset is required to resolve variable names " "for combined hypercube." ) combined_ids, concat_dims = _infer_concat_order_from_coords(list(datasets)) if fill_value is None: # check that datasets form complete hypercube _check_shape_tile_ids(combined_ids) else: # check only that all datasets have same dimension depth for these # vars _check_dimension_depth_tile_ids(combined_ids) # Concatenate along all of concat_dims one by one to create single ds concatenated = _combine_nd( combined_ids, concat_dims=concat_dims, data_vars=data_vars, coords=coords, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, ) # Check the overall coordinates are monotonically increasing for dim in concat_dims: indexes = concatenated.indexes.get(dim) if not (indexes.is_monotonic_increasing or indexes.is_monotonic_decreasing): raise ValueError( "Resulting object does not have monotonic" " global indexes along dimension {}".format(dim) ) return concatenated # TODO remove empty list default param after version 0.19, see PR4696 def combine_by_coords( data_objects=[], compat="no_conflicts", data_vars="all", coords="different", fill_value=dtypes.NA, join="outer", combine_attrs="no_conflicts", datasets=None, ): """ Attempt to auto-magically combine the given datasets (or data arrays) into one by using dimension coordinates. This method attempts to combine a group of datasets along any number of dimensions into a single entity by inspecting coords and metadata and using a combination of concat and merge. Will attempt to order the datasets such that the values in their dimension coordinates are monotonic along all dimensions. If it cannot determine the order in which to concatenate the datasets, it will raise a ValueError. Non-coordinate dimensions will be ignored, as will any coordinate dimensions which do not vary between each dataset. Aligns coordinates, but different variables on datasets can cause it to fail under some scenarios. In complex cases, you may need to clean up your data and use concat/merge explicitly (also see `combine_nested`). Works well if, for example, you have N years of data and M data variables, and each combination of a distinct time period and set of data variables is saved as its own dataset. Also useful for if you have a simulation which is parallelized in multiple dimensions, but has global coordinates saved in each file specifying the positions of points within the global domain. Parameters ---------- data_objects : sequence of xarray.Dataset or sequence of xarray.DataArray Data objects to combine. compat : {"identical", "equals", "broadcast_equals", "no_conflicts", "override"}, optional String indicating how to compare variables of the same name for potential conflicts: - "broadcast_equals": all values must be equal when variables are broadcast against each other to ensure common dimensions. - "equals": all values and dimensions must be the same. - "identical": all values, dimensions and attributes must be the same. - "no_conflicts": only values which are not null in both datasets must be equal. The returned dataset then contains the combination of all non-null values. - "override": skip comparing and pick variable from first dataset data_vars : {"minimal", "different", "all" or list of str}, optional These data variables will be concatenated together: * "minimal": Only data variables in which the dimension already appears are included. * "different": Data variables which are not equal (ignoring attributes) across all datasets are also concatenated (as well as all for which dimension already appears). Beware: this option may load the data payload of data variables into memory if they are not already loaded. * "all": All data variables will be concatenated. * list of str: The listed data variables will be concatenated, in addition to the "minimal" data variables. If objects are DataArrays, `data_vars` must be "all". coords : {"minimal", "different", "all"} or list of str, optional As per the "data_vars" kwarg, but for coordinate variables. fill_value : scalar or dict-like, optional Value to use for newly missing values. If a dict-like, maps variable names to fill values. Use a data array's name to refer to its values. If None, raises a ValueError if the passed Datasets do not create a complete hypercube. join : {"outer", "inner", "left", "right", "exact"}, optional String indicating how to combine differing indexes in objects - "outer": use the union of object indexes - "inner": use the intersection of object indexes - "left": use indexes from the first object with each dimension - "right": use indexes from the last object with each dimension - "exact": instead of aligning, raise `ValueError` when indexes to be aligned are not equal - "override": if indexes are of same size, rewrite indexes to be those of the first object with that dimension. Indexes for the same dimension must have the same size in all objects. combine_attrs : {"drop", "identical", "no_conflicts", "drop_conflicts", \ "override"} or callable, default: "drop" A callable or a string indicating how to combine attrs of the objects being merged: - "drop": empty attrs on returned Dataset. - "identical": all attrs must be the same on every object. - "no_conflicts": attrs from all objects are combined, any that have the same name must also have the same value. - "drop_conflicts": attrs from all objects are combined, any that have the same name but different values are dropped. - "override": skip comparing and copy attrs from the first dataset to the result. If a callable, it must expect a sequence of ``attrs`` dicts and a context object as its only parameters. Returns ------- combined : xarray.Dataset See also -------- concat merge combine_nested Examples -------- Combining two datasets using their common dimension coordinates. Notice they are concatenated based on the values in their dimension coordinates, not on their position in the list passed to `combine_by_coords`. >>> x1 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [0, 1], "x": [10, 20, 30]}, ... ) >>> x2 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [10, 20, 30]}, ... ) >>> x3 = xr.Dataset( ... { ... "temperature": (("y", "x"), 20 * np.random.rand(6).reshape(2, 3)), ... "precipitation": (("y", "x"), np.random.rand(6).reshape(2, 3)), ... }, ... coords={"y": [2, 3], "x": [40, 50, 60]}, ... ) >>> x1 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 10.98 14.3 12.06 10.9 8.473 12.92 precipitation (y, x) float64 0.4376 0.8918 0.9637 0.3834 0.7917 0.5289 >>> x2 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 11.36 18.51 1.421 1.743 0.4044 16.65 precipitation (y, x) float64 0.7782 0.87 0.9786 0.7992 0.4615 0.7805 >>> x3 <xarray.Dataset> Dimensions: (y: 2, x: 3) Coordinates: * y (y) int64 2 3 * x (x) int64 40 50 60 Data variables: temperature (y, x) float64 2.365 12.8 2.867 18.89 10.44 8.293 precipitation (y, x) float64 0.2646 0.7742 0.4562 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x2, x1]) <xarray.Dataset> Dimensions: (y: 4, x: 3) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 Data variables: temperature (y, x) float64 10.98 14.3 12.06 10.9 ... 1.743 0.4044 16.65 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.7992 0.4615 0.7805 >>> xr.combine_by_coords([x3, x1]) <xarray.Dataset> Dimensions: (y: 4, x: 6) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 nan ... nan 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x3, x1], join="override") <xarray.Dataset> Dimensions: (y: 2, x: 6) Coordinates: * y (y) int64 0 1 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 2.365 ... 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 >>> xr.combine_by_coords([x1, x2, x3]) <xarray.Dataset> Dimensions: (y: 4, x: 6) Coordinates: * y (y) int64 0 1 2 3 * x (x) int64 10 20 30 40 50 60 Data variables: temperature (y, x) float64 10.98 14.3 12.06 nan ... 18.89 10.44 8.293 precipitation (y, x) float64 0.4376 0.8918 0.9637 ... 0.5684 0.01879 0.6176 """ # TODO remove after version 0.19, see PR4696 if datasets is not None: warnings.warn( "The datasets argument has been renamed to `data_objects`." " In future passing a value for datasets will raise an error." ) data_objects = datasets if not data_objects: return Dataset() mixed_arrays_and_datasets = any( isinstance(data_object, DataArray) and data_object.name is None for data_object in data_objects ) and any(isinstance(data_object, Dataset) for data_object in data_objects) if mixed_arrays_and_datasets: raise ValueError("Can't automatically combine datasets with unnamed arrays.") all_unnamed_data_arrays = all( isinstance(data_object, DataArray) and data_object.name is None for data_object in data_objects ) if all_unnamed_data_arrays: unnamed_arrays = data_objects temp_datasets = [data_array._to_temp_dataset() for data_array in unnamed_arrays] combined_temp_dataset = _combine_single_variable_hypercube( temp_datasets, fill_value=fill_value, data_vars=data_vars, coords=coords, compat=compat, join=join, combine_attrs=combine_attrs, ) return DataArray()._from_temp_dataset(combined_temp_dataset) else: # Group by data vars sorted_datasets = sorted(data_objects, key=vars_as_keys) grouped_by_vars = itertools.groupby(sorted_datasets, key=vars_as_keys) # Perform the multidimensional combine on each group of data variables # before merging back together concatenated_grouped_by_data_vars = [] for vars, datasets_with_same_vars in grouped_by_vars: concatenated = _combine_single_variable_hypercube( list(datasets_with_same_vars), fill_value=fill_value, data_vars=data_vars, coords=coords, compat=compat, join=join, combine_attrs=combine_attrs, ) concatenated_grouped_by_data_vars.append(concatenated) return merge( concatenated_grouped_by_data_vars, compat=compat, fill_value=fill_value, join=join, combine_attrs=combine_attrs, )
apache-2.0
erramuzpe/NeuroVault
neurovault/settings.py
2
11986
# Django settings for neurovault project. import os import sys import tempfile from datetime import timedelta import matplotlib from kombu import Exchange, Queue matplotlib.use('Agg') BASE_DIR = os.path.dirname(os.path.abspath(__file__)) DEBUG = True DOMAIN_NAME = "http://neurovault.org" TEMPLATE_DEBUG = DEBUG ADMINS = ( (('Chris', '[email protected]')) ) MANAGERS = ADMINS SITE_ID = 1 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'postgres', # The following settings are not used with sqlite3: 'USER': 'postgres', 'HOST': 'db', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '5432', # Set to empty string for default. } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["*"] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'Europe/Berlin' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = os.path.join(BASE_DIR,'media') MEDIA_URL = '/public/media/' PRIVATE_MEDIA_ROOT = '/var/www/image_data' PRIVATE_MEDIA_URL = '/media/images' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '/var/www/static' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'neurovault.apps.statmaps.middleware.CollectionRedirectMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'neurovault.urls' TEST_RUNNER = 'django.test.runner.DiscoverRunner' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'neurovault.wsgi.application' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': (), 'OPTIONS': {'context_processors': ("django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.tz", "django.contrib.messages.context_processors.messages", 'django.core.context_processors.request'), 'loaders': ('hamlpy.template.loaders.HamlPyFilesystemLoader', 'hamlpy.template.loaders.HamlPyAppDirectoriesLoader', 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', )} } ] INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'neurovault.apps.main', 'neurovault.apps.statmaps', 'neurovault.apps.users', 'django.contrib.sitemaps', # Uncomment the next line to enable the admin: 'django.contrib.admin', # Uncomment the next line to enable admin documentation: #'django.contrib.admindocs', 'social.apps.django_app.default', 'rest_framework', 'taggit', 'crispy_forms', 'coffeescript', 'taggit_templatetags', #'south', 'dbbackup', 'polymorphic', 'djcelery', 'django_cleanup', 'file_resubmit', 'django_mailgun', 'django_hstore', 'guardian', 'oauth2_provider', 'fixture_media' ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. # LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # 'filters': { # 'require_debug_false': { # '()': 'django.utils.log.RequireDebugFalse' # } # }, # 'handlers': { # 'mail_admins': { # 'level': 'ERROR', # 'filters': ['require_debug_false'], # 'class': 'django.utils.log.AdminEmailHandler' # } # }, # 'loggers': { # 'django.request': { # 'handlers': ['mail_admins'], # 'level': 'ERROR', # 'propagate': True, # }, # } # } AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'social.backends.facebook.FacebookOAuth2', 'social.backends.google.GoogleOAuth2', 'guardian.backends.ObjectPermissionBackend', ) SOCIAL_AUTH_PIPELINE = ( 'social.pipeline.social_auth.social_details', 'social.pipeline.social_auth.social_uid', 'social.pipeline.social_auth.auth_allowed', 'social.pipeline.social_auth.social_user', 'social.pipeline.user.get_username', 'social.pipeline.social_auth.associate_by_email', # <--- enable this one 'social.pipeline.user.create_user', 'social.pipeline.social_auth.associate_user', 'social.pipeline.social_auth.load_extra_data', 'social.pipeline.user.user_details' ) SOCIAL_AUTH_FACEBOOK_SCOPE = ['email'] SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer' REST_FRAMEWORK = { # Use hyperlinked styles by default. # Only used if the `serializer_class` attribute is not set on a view. 'DEFAULT_MODEL_SERIALIZER_CLASS': 'rest_framework.serializers.HyperlinkedModelSerializer', # LimitOffsetPagination will allow to set a ?limit= and ?offset= # variable in the URL. 'DEFAULT_PAGINATION_CLASS': 'neurovault.api.pagination.StandardResultPagination', # Use Django's standard `django.contrib.auth` permissions, # or allow read-only access for unauthenticated users. 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' ], 'DEFAULT_AUTHENTICATION_CLASSES': ( 'oauth2_provider.ext.rest_framework.OAuth2Authentication', ), 'DEFAULT_RENDERER_CLASSES': ( 'neurovault.api.utils.ExplicitUnicodeJSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', ), 'UNICODE_JSON': True, } OAUTH2_PROVIDER = { 'REQUEST_APPROVAL_PROMPT': 'auto' } LOGIN_REDIRECT_URL = '/my_collections/' #LOGIN_URL = '/login-form/' #LOGIN_ERROR_URL = '/login-error/' CRISPY_TEMPLATE_PACK = 'bootstrap3' DBBACKUP_STORAGE = 'dbbackup.storage.dropbox_storage' DBBACKUP_TOKENS_FILEPATH = '/home/filo/dbtokens' DBBACKUP_POSTGRES_BACKUP_COMMAND = 'export PGPASSWORD=neurovault\n pg_dump --username={adminuser} --host={host} --port={port} {databasename} >' # For Apache, use 'sendfile.backends.xsendfile' # For Nginx, use 'sendfile.backends.nginx' # For Devserver, use 'sendfile.backends.development' SENDFILE_BACKEND = 'sendfile.backends.development' PRIVATE_MEDIA_REDIRECT_HEADER = 'X-Accel-Redirect' PYCORTEX_DATASTORE = os.path.join(BASE_DIR,'pycortex_data') CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, "file_resubmit": { 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache', "LOCATION": '/tmp/file_resubmit/' } } # Mandrill config EMAIL_BACKEND = 'django_mailgun.MailgunBackend' MAILGUN_ACCESS_KEY = 'key-3ax6xnjp29jd6fds4gc373sgvjxteol0' # replace with a real key in production MAILGUN_SERVER_NAME = 'samples.mailgun.org'# replace with 'neurovault.org' in production DEFAULT_FROM_EMAIL = "[email protected]" if os.path.exists('/usr/local/share/pycortex/db/fsaverage'): STATICFILES_DIRS = ( ('pycortex-resources', '/usr/local/lib/python2.7/site-packages/cortex/webgl/resources'), ('pycortex-ctmcache', '/usr/local/share/pycortex/db/fsaverage/cache') ) # Celery config BROKER_URL = 'redis://redis:6379/0' CELERY_RESULT_BACKEND = 'djcelery.backends.database:DatabaseBackend' CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_DEFAULT_QUEUE = 'default' CELERY_QUEUES = ( Queue('default', Exchange('default'), routing_key='default'), ) CELERY_IMPORTS = ('neurovault.apps.statmaps.tasks', ) CELERYBEAT_SCHEDULE = { 'anima_crawl_every day': { 'task': 'crawl_anima', 'schedule': timedelta(days=1) }, } CELERY_TIMEZONE = 'Europe/Berlin' ANONYMOUS_USER_ID = -1 DEFAULT_OAUTH_APPLICATION_ID = -1 DEFAULT_OAUTH_APP_NAME = 'DefaultOAuthApp' DEFAULT_OAUTH_APP_OWNER_ID = -2 DEFAULT_OAUTH_APP_OWNER_USERNAME = 'DefaultAppOwner' OAUTH_PERSONAL_TOKEN_LENGTH = 40 # Bogus secret key. try: from secrets import * except ImportError: from bogus_secrets import * try: from local_settings import * except ImportError: pass # freesurfer/pycortex environment os.environ["XDG_CONFIG_HOME"] = PYCORTEX_DATASTORE os.environ["FREESURFER_HOME"] = "/opt/freesurfer" os.environ["SUBJECTS_DIR"] = os.path.join(os.environ["FREESURFER_HOME"],"subjects") os.environ["FSLOUTPUTTYPE"] = "NIFTI_GZ" # provToolbox path os.environ["PATH"] += os.pathsep + '/path/to/lib/provToolbox/bin' #CELERYBEAT_SCHEDULE = { # 'run_make_correlation_df': { # 'task': 'neurovault.apps.statmaps.tasks...', # 'schedule': timedelta(minutes=30), # }, #} # or manage periodic schedule in django admin #CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler' if "test" in sys.argv or "benchmark" in sys.argv: test_media_root = os.path.join(tempfile.mkdtemp(prefix="neurovault_test_")) PRIVATE_MEDIA_ROOT = test_media_root CELERY_ALWAYS_EAGER = True CELERY_EAGER_PROPAGATES_EXCEPTIONS = True TAGGIT_CASE_INSENSITIVE=True FIXTURE_DIRS = ( 'apps/statmaps/fixtures/', ) MEDIA_ROOT = PRIVATE_MEDIA_ROOT
mit
jakobworldpeace/scikit-learn
sklearn/tree/export.py
35
16873
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Trevor Stephens <[email protected]> # License: BSD 3 clause import numpy as np import warnings from ..externals import six from . import _criterion from . import _tree def _color_brew(n): """Generate n colors with equally spaced hues. Parameters ---------- n : int The number of colors required. Returns ------- color_list : list, length n List of n tuples of form (R, G, B) being the components of each color. """ color_list = [] # Initialize saturation & value; calculate chroma & value shift s, v = 0.75, 0.9 c = s * v m = v - c for h in np.arange(25, 385, 360. / n).astype(int): # Calculate some intermediate values h_bar = h / 60. x = c * (1 - abs((h_bar % 2) - 1)) # Initialize RGB with same hue & chroma as our color rgb = [(c, x, 0), (x, c, 0), (0, c, x), (0, x, c), (x, 0, c), (c, 0, x), (c, x, 0)] r, g, b = rgb[int(h_bar)] # Shift the initial RGB values to match value and store rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))] color_list.append(rgb) return color_list class Sentinel(object): def __repr__(): return '"tree.dot"' SENTINEL = Sentinel() def export_graphviz(decision_tree, out_file=SENTINEL, max_depth=None, feature_names=None, class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, rotate=False, rounded=False, special_characters=False): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Read more in the :ref:`User Guide <tree>`. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default='tree.dot') Handle or name of the output file. If ``None``, the result is returned as a string. This will the default from version 0.20. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. feature_names : list of strings, optional (default=None) Names of each of the features. class_names : list of strings, bool or None, optional (default=None) Names of each of the target classes in ascending numerical order. Only relevant for classification and not supported for multi-output. If ``True``, shows a symbolic representation of the class name. label : {'all', 'root', 'none'}, optional (default='all') Whether to show informative labels for impurity, etc. Options include 'all' to show at every node, 'root' to show only at the top root node, or 'none' to not show at any node. filled : bool, optional (default=False) When set to ``True``, paint nodes to indicate majority class for classification, extremity of values for regression, or purity of node for multi-output. leaves_parallel : bool, optional (default=False) When set to ``True``, draw all leaf nodes at the bottom of the tree. impurity : bool, optional (default=True) When set to ``True``, show the impurity at each node. node_ids : bool, optional (default=False) When set to ``True``, show the ID number on each node. proportion : bool, optional (default=False) When set to ``True``, change the display of 'values' and/or 'samples' to be proportions and percentages respectively. rotate : bool, optional (default=False) When set to ``True``, orient tree left to right rather than top-down. rounded : bool, optional (default=False) When set to ``True``, draw node boxes with rounded corners and use Helvetica fonts instead of Times-Roman. special_characters : bool, optional (default=False) When set to ``False``, ignore special characters for PostScript compatibility. Returns ------- dot_data : string String representation of the input tree in GraphViz dot format. Only returned if ``out_file`` is None. .. versionadded:: 0.18 Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def get_color(value): # Find the appropriate color & intensity for a node if colors['bounds'] is None: # Classification tree color = list(colors['rgb'][np.argmax(value)]) sorted_values = sorted(value, reverse=True) if len(sorted_values) == 1: alpha = 0 else: alpha = int(np.round(255 * (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1]), 0)) else: # Regression tree or multi-output color = list(colors['rgb'][0]) alpha = int(np.round(255 * ((value - colors['bounds'][0]) / (colors['bounds'][1] - colors['bounds'][0])), 0)) # Return html color code in #RRGGBBAA format color.append(alpha) hex_codes = [str(i) for i in range(10)] hex_codes.extend(['a', 'b', 'c', 'd', 'e', 'f']) color = [hex_codes[c // 16] + hex_codes[c % 16] for c in color] return '#' + ''.join(color) def node_to_str(tree, node_id, criterion): # Generate the node content string if tree.n_outputs == 1: value = tree.value[node_id][0, :] else: value = tree.value[node_id] # Should labels be shown? labels = (label == 'root' and node_id == 0) or label == 'all' # PostScript compatibility for special characters if special_characters: characters = ['&#35;', '<SUB>', '</SUB>', '&le;', '<br/>', '>'] node_string = '<' else: characters = ['#', '[', ']', '<=', '\\n', '"'] node_string = '"' # Write node ID if node_ids: if labels: node_string += 'node ' node_string += characters[0] + str(node_id) + characters[4] # Write decision criteria if tree.children_left[node_id] != _tree.TREE_LEAF: # Always write node decision criteria, except for leaves if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X%s%s%s" % (characters[1], tree.feature[node_id], characters[2]) node_string += '%s %s %s%s' % (feature, characters[3], round(tree.threshold[node_id], 4), characters[4]) # Write impurity if impurity: if isinstance(criterion, _criterion.FriedmanMSE): criterion = "friedman_mse" elif not isinstance(criterion, six.string_types): criterion = "impurity" if labels: node_string += '%s = ' % criterion node_string += (str(round(tree.impurity[node_id], 4)) + characters[4]) # Write node sample count if labels: node_string += 'samples = ' if proportion: percent = (100. * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])) node_string += (str(round(percent, 1)) + '%' + characters[4]) else: node_string += (str(tree.n_node_samples[node_id]) + characters[4]) # Write node class distribution / regression value if proportion and tree.n_classes[0] != 1: # For classification this will show the proportion of samples value = value / tree.weighted_n_node_samples[node_id] if labels: node_string += 'value = ' if tree.n_classes[0] == 1: # Regression value_text = np.around(value, 4) elif proportion: # Classification value_text = np.around(value, 2) elif np.all(np.equal(np.mod(value, 1), 0)): # Classification without floating-point weights value_text = value.astype(int) else: # Classification with floating-point weights value_text = np.around(value, 4) # Strip whitespace value_text = str(value_text.astype('S32')).replace("b'", "'") value_text = value_text.replace("' '", ", ").replace("'", "") if tree.n_classes[0] == 1 and tree.n_outputs == 1: value_text = value_text.replace("[", "").replace("]", "") value_text = value_text.replace("\n ", characters[4]) node_string += value_text + characters[4] # Write node majority class if (class_names is not None and tree.n_classes[0] != 1 and tree.n_outputs == 1): # Only done for single-output classification trees if labels: node_string += 'class = ' if class_names is not True: class_name = class_names[np.argmax(value)] else: class_name = "y%s%s%s" % (characters[1], np.argmax(value), characters[2]) node_string += class_name # Clean up any trailing newlines if node_string[-2:] == '\\n': node_string = node_string[:-2] if node_string[-5:] == '<br/>': node_string = node_string[:-5] return node_string + characters[5] def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: # Collect ranks for 'leaf' option in plot_options if left_child == _tree.TREE_LEAF: ranks['leaves'].append(str(node_id)) elif str(depth) not in ranks: ranks[str(depth)] = [str(node_id)] else: ranks[str(depth)].append(str(node_id)) out_file.write('%d [label=%s' % (node_id, node_to_str(tree, node_id, criterion))) if filled: # Fetch appropriate color for node if 'rgb' not in colors: # Initialize colors and bounds if required colors['rgb'] = _color_brew(tree.n_classes[0]) if tree.n_outputs != 1: # Find max and min impurities for multi-output colors['bounds'] = (np.min(-tree.impurity), np.max(-tree.impurity)) elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1: # Find max and min values in leaf nodes for regression colors['bounds'] = (np.min(tree.value), np.max(tree.value)) if tree.n_outputs == 1: node_val = (tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]) if tree.n_classes[0] == 1: # Regression node_val = tree.value[node_id][0, :] else: # If multi-output color node by impurity node_val = -tree.impurity[node_id] out_file.write(', fillcolor="%s"' % get_color(node_val)) out_file.write('] ;\n') if parent is not None: # Add edge to parent out_file.write('%d -> %d' % (parent, node_id)) if parent == 0: # Draw True/False labels if parent is root node angles = np.array([45, -45]) * ((rotate - .5) * -2) out_file.write(' [labeldistance=2.5, labelangle=') if node_id == 1: out_file.write('%d, headlabel="True"]' % angles[0]) else: out_file.write('%d, headlabel="False"]' % angles[1]) out_file.write(' ;\n') if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: ranks['leaves'].append(str(node_id)) out_file.write('%d [label="(...)"' % node_id) if filled: # color cropped nodes grey out_file.write(', fillcolor="#C0C0C0"') out_file.write('] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False return_string = False try: if out_file == SENTINEL: warnings.warn("out_file can be set to None starting from 0.18. " "This will be the default in 0.20.", DeprecationWarning) out_file = "tree.dot" if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True if out_file is None: return_string = True out_file = six.StringIO() # The depth of each node for plotting with 'leaf' option ranks = {'leaves': []} # The colors to render each node with colors = {'bounds': None} out_file.write('digraph Tree {\n') # Specify node aesthetics out_file.write('node [shape=box') rounded_filled = [] if filled: rounded_filled.append('filled') if rounded: rounded_filled.append('rounded') if len(rounded_filled) > 0: out_file.write(', style="%s", color="black"' % ", ".join(rounded_filled)) if rounded: out_file.write(', fontname=helvetica') out_file.write('] ;\n') # Specify graph & edge aesthetics if leaves_parallel: out_file.write('graph [ranksep=equally, splines=polyline] ;\n') if rounded: out_file.write('edge [fontname=helvetica] ;\n') if rotate: out_file.write('rankdir=LR ;\n') # Now recurse the tree and add node & edge attributes if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) # If required, draw leaf nodes at same depth as each other if leaves_parallel: for rank in sorted(ranks): out_file.write("{rank=same ; " + "; ".join(r for r in ranks[rank]) + "} ;\n") out_file.write("}") if return_string: return out_file.getvalue() finally: if own_file: out_file.close()
bsd-3-clause
rajegannathan/grasp-lift-eeg-cat-dog-solution-updated
python-packages/mne-python-0.10/tutorials/plot_epochs_to_data_frame.py
12
8847
""" .. _tut_io_export_pandas: ================================= Export epochs to Pandas DataFrame ================================= In this example the pandas exporter will be used to produce a DataFrame object. After exploring some basic features a split-apply-combine work flow will be conducted to examine the latencies of the response maxima across epochs and conditions. Note. Equivalent methods are available for raw and evoked data objects. Short Pandas Primer ------------------- Pandas Data Frames ~~~~~~~~~~~~~~~~~~ A data frame can be thought of as a combination of matrix, list and dict: It knows about linear algebra and element-wise operations but is size mutable and allows for labeled access to its data. In addition, the pandas data frame class provides many useful methods for restructuring, reshaping and visualizing data. As most methods return data frame instances, operations can be chained with ease; this allows to write efficient one-liners. Technically a DataFrame can be seen as a high-level container for numpy arrays and hence switching back and forth between numpy arrays and DataFrames is very easy. Taken together, these features qualify data frames for inter operation with databases and for interactive data exploration / analysis. Additionally, pandas interfaces with the R statistical computing language that covers a huge amount of statistical functionality. Export Options ~~~~~~~~~~~~~~ The pandas exporter comes with a few options worth being commented. Pandas DataFrame objects use a so called hierarchical index. This can be thought of as an array of unique tuples, in our case, representing the higher dimensional MEG data in a 2D data table. The column names are the channel names from the epoch object. The channels can be accessed like entries of a dictionary: df['MEG 2333'] Epochs and time slices can be accessed with the .ix method: epochs_df.ix[(1, 2), 'MEG 2333'] However, it is also possible to include this index as regular categorial data columns which yields a long table format typically used for repeated measure designs. To take control of this feature, on export, you can specify which of the three dimensions 'condition', 'epoch' and 'time' is passed to the Pandas index using the index parameter. Note that this decision is revertible any time, as demonstrated below. Similarly, for convenience, it is possible to scale the times, e.g. from seconds to milliseconds. Some Instance Methods ~~~~~~~~~~~~~~~~~~~~~ Most numpy methods and many ufuncs can be found as instance methods, e.g. mean, median, var, std, mul, , max, argmax etc. Below an incomplete listing of additional useful data frame instance methods: apply : apply function to data. Any kind of custom function can be applied to the data. In combination with lambda this can be very useful. describe : quickly generate summary stats Very useful for exploring data. groupby : generate subgroups and initialize a 'split-apply-combine' operation. Creates a group object. Subsequently, methods like apply, agg, or transform can be used to manipulate the underlying data separately but simultaneously. Finally, reset_index can be used to combine the results back into a data frame. plot : wrapper around plt.plot However it comes with some special options. For examples see below. shape : shape attribute gets the dimensions of the data frame. values : return underlying numpy array. to_records : export data as numpy record array. to_dict : export data as dict of arrays. Reference ~~~~~~~~~ More information and additional introductory materials can be found at the pandas doc sites: http://pandas.pydata.org/pandas-docs/stable/ """ # Author: Denis Engemann <[email protected]> # # License: BSD (3-clause) import mne import matplotlib.pyplot as plt import numpy as np from mne.io import Raw from mne.datasets import sample print(__doc__) # turn on interactive mode plt.ion() data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' raw = Raw(raw_fname) # For simplicity we will only consider the first 10 epochs events = mne.read_events(event_fname)[:10] # Add a bad channel raw.info['bads'] += ['MEG 2443'] picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, exclude='bads') tmin, tmax = -0.2, 0.5 baseline = (None, 0) reject = dict(grad=4000e-13, eog=150e-6) event_id = dict(auditory_l=1, auditory_r=2, visual_l=3, visual_r=4) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=baseline, preload=True, reject=reject) ############################################################################### # Export DataFrame # The following parameters will scale the channels and times plotting # friendly. The info columns 'epoch' and 'time' will be used as hierarchical # index whereas the condition is treated as categorial data. Note that # this is optional. By passing None you could also print out all nesting # factors in a long table style commonly used for analyzing repeated measure # designs. index, scale_time, scalings = ['epoch', 'time'], 1e3, dict(grad=1e13) df = epochs.to_data_frame(picks=None, scalings=scalings, scale_time=scale_time, index=index) # Create MEG channel selector and drop EOG channel. meg_chs = [c for c in df.columns if 'MEG' in c] df.pop('EOG 061') # this works just like with a list. ############################################################################### # Explore Pandas MultiIndex # Pandas is using a MultiIndex or hierarchical index to handle higher # dimensionality while at the same time representing data in a flat 2d manner. print(df.index.names, df.index.levels) # Inspecting the index object unveils that 'epoch', 'time' are used # for subsetting data. We can take advantage of that by using the # .ix attribute, where in this case the first position indexes the MultiIndex # and the second the columns, that is, channels. # Plot some channels across the first three epochs xticks, sel = np.arange(3, 600, 120), meg_chs[:15] df.ix[:3, sel].plot(xticks=xticks) mne.viz.tight_layout() # slice the time starting at t0 in epoch 2 and ending 500ms after # the base line in epoch 3. Note that the second part of the tuple # represents time in milliseconds from stimulus onset. df.ix[(1, 0):(3, 500), sel].plot(xticks=xticks) mne.viz.tight_layout() # Note: For convenience the index was converted from floating point values # to integer values. To restore the original values you can e.g. say # df['times'] = np.tile(epoch.times, len(epochs_times) # We now reset the index of the DataFrame to expose some Pandas # pivoting functionality. To simplify the groupby operation we # we drop the indices to treat epoch and time as categroial factors. df = df.reset_index() # The ensuing DataFrame then is split into subsets reflecting a crossing # between condition and trial number. The idea is that we can broadcast # operations into each cell simultaneously. factors = ['condition', 'epoch'] sel = factors + ['MEG 1332', 'MEG 1342'] grouped = df[sel].groupby(factors) # To make the plot labels more readable let's edit the values of 'condition'. df.condition = df.condition.apply(lambda name: name + ' ') # Now we compare the mean of two channels response across conditions. grouped.mean().plot(kind='bar', stacked=True, title='Mean MEG Response', color=['steelblue', 'orange']) mne.viz.tight_layout() # We can even accomplish more complicated tasks in a few lines calling # apply method and passing a function. Assume we wanted to know the time # slice of the maximum response for each condition. max_latency = grouped[sel[2]].apply(lambda x: df.time[x.argmax()]) print(max_latency) # Then make the plot labels more readable let's edit the values of 'condition'. df.condition = df.condition.apply(lambda name: name + ' ') plt.figure() max_latency.plot(kind='barh', title='Latency of Maximum Reponse', color=['steelblue']) mne.viz.tight_layout() # Finally, we will again remove the index to create a proper data table that # can be used with statistical packages like statsmodels or R. final_df = max_latency.reset_index() final_df.rename(columns={0: sel[2]}) # as the index is oblivious of names. # The index is now written into regular columns so it can be used as factor. print(final_df) # To save as csv file, uncomment the next line. # final_df.to_csv('my_epochs.csv') # Note. Data Frames can be easily concatenated, e.g., across subjects. # E.g. say: # # import pandas as pd # group = pd.concat([df_1, df_2]) # group['subject'] = np.r_[np.ones(len(df_1)), np.ones(len(df_2)) + 1]
bsd-3-clause
PyPSA/PyPSA
pypsa/plot.py
1
32392
## Copyright 2015-2017 Tom Brown (FIAS), Jonas Hoersch (FIAS) ## This program is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 3 of the ## License, or (at your option) any later version. ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## You should have received a copy of the GNU General Public License ## along with this program. If not, see <http://www.gnu.org/licenses/>. """Functions for plotting networks. """ import pandas as pd import numpy as np import networkx as nx import warnings import logging logger = logging.getLogger(__name__) __author__ = "Tom Brown (FIAS), Jonas Hoersch (FIAS), Fabian Hofmann (FIAS), Fabian Neumann (KIT)" __copyright__ = "Copyright 2015-2020 Tom Brown (FIAS), Jonas Hoersch (FIAS); Copyright 2019-2020 Fabian Hofmann (FIAS), Fabian Neumann (KIT), GNU GPL 3" import matplotlib.pyplot as plt from matplotlib.patches import Wedge, Circle from matplotlib.collections import LineCollection, PatchCollection from matplotlib.patches import FancyArrow cartopy_present = True try: import cartopy import cartopy.crs as ccrs import cartopy.mpl.geoaxes import requests except ImportError: cartopy_present = False pltly_present = True try: import plotly.offline as pltly import plotly.graph_objects as go except ImportError: pltly_present = False def plot(n, margin=None, ax=None, geomap=True, projection=None, bus_colors='cadetblue', bus_alpha=1, bus_sizes=2e-2, bus_cmap=None, line_colors='rosybrown', link_colors='darkseagreen', transformer_colors='orange', line_widths=1.5, link_widths=1.5, transformer_widths=1.5, line_cmap=None, link_cmap=None, transformer_cmap=None, flow=None, branch_components=None, layouter=None, title="", boundaries=None, geometry=False, jitter=None, color_geomap=None): """ Plot the network buses and lines using matplotlib and cartopy. Parameters ---------- margin : float Margin at the sides as proportion of distance between max/min x,y ax : matplotlib ax, defaults to plt.gca() Axis to which to plot the network geomap: bool/str, default True Switch to use Cartopy and draw geographical features. If string is passed, it will be used as a resolution argument, valid options are '10m', '50m' and '110m'. projection: cartopy.crs.Projection, defaults to None Define the projection of your geomap, only valid if cartopy is installed. If None (default) is passed the projection for cartopy is set to cartopy.crs.PlateCarree bus_colors : dict/pandas.Series Colors for the buses, defaults to "cadetblue". If bus_sizes is a pandas.Series with a Multiindex, bus_colors defaults to the n.carriers['color'] column. bus_alpha : float Adds alpha channel to buses, defaults to 1. bus_sizes : dict/pandas.Series Sizes of bus points, defaults to 1e-2. If a multiindexed Series is passed, the function will draw pies for each bus (first index level) with segments of different color (second index level). Such a Series is ob- tained by e.g. n.generators.groupby(['bus', 'carrier']).p_nom.sum() bus_cmap : plt.cm.ColorMap/str If bus_colors are floats, this color map will assign the colors line_colors : str/pandas.Series Colors for the lines, defaults to 'rosybrown'. link_colors : str/pandas.Series Colors for the links, defaults to 'darkseagreen'. transfomer_colors : str/pandas.Series Colors for the transfomer, defaults to 'orange'. line_widths : dict/pandas.Series Widths of lines, defaults to 1.5 link_widths : dict/pandas.Series Widths of links, defaults to 1.5 transformer_widths : dict/pandas.Series Widths of transformer, defaults to 1.5 line_cmap : plt.cm.ColorMap/str|dict If line_colors are floats, this color map will assign the colors. link_cmap : plt.cm.ColorMap/str|dict If link_colors are floats, this color map will assign the colors. transformer_cmap : plt.cm.ColorMap/str|dict If transformer_colors are floats, this color map will assign the colors. flow : snapshot/pandas.Series/function/string Flow to be displayed in the plot, defaults to None. If an element of n.snapshots is given, the flow at this timestamp will be displayed. If an aggregation function is given, is will be applied to the total network flow via pandas.DataFrame.agg (accepts also function names). Otherwise flows can be specified by passing a pandas Series with MultiIndex including all necessary branch components. Use the line_widths argument to additionally adjust the size of the flow arrows. layouter : networkx.drawing.layout function, default None Layouting function from `networkx <https://networkx.github.io/>`_ which overrules coordinates given in ``n.buses[['x','y']]``. See `list <https://networkx.github.io/documentation/stable/reference/drawing.html#module-networkx.drawing.layout>`_ of available options. title : string Graph title boundaries : list of four floats Boundaries of the plot in format [x1,x2,y1,y2] branch_components : list of str Branch components to be plotted, defaults to Line and Link. jitter : None|float Amount of random noise to add to bus positions to distinguish overlapping buses color_geomap : dict or bool Specify colors to paint land and sea areas in. If True, it defaults to `{'ocean': 'lightblue', 'land': 'whitesmoke'}`. If no dictionary is provided, colors are white. Returns ------- bus_collection, branch_collection1, ... : tuple of Collections Collections for buses and branches. """ x, y = _get_coordinates(n, layouter=layouter) if boundaries is None and margin: boundaries = sum(zip(*compute_bbox_with_margins(margin, x, y)), ()) if geomap: if not cartopy_present: logger.warning("Cartopy needs to be installed to use `geomap=True`.") geomap = False if projection is None: projection = get_projection_from_crs(n.srid) if ax is None: ax = plt.gca(projection=projection) else: assert isinstance(ax, cartopy.mpl.geoaxes.GeoAxesSubplot), ( 'The passed axis is not a GeoAxesSubplot. You can ' 'create one with: \nimport cartopy.crs as ccrs \n' 'fig, ax = plt.subplots(' 'subplot_kw={"projection":ccrs.PlateCarree()})') transform = draw_map_cartopy(n, x, y, ax, geomap, color_geomap) x, y, z = ax.projection.transform_points(transform, x.values, y.values).T x, y = pd.Series(x, n.buses.index), pd.Series(y, n.buses.index) if boundaries is not None: ax.set_extent(boundaries, crs=transform) elif ax is None: ax = plt.gca() if not geomap and boundaries: ax.axis(boundaries) ax.set_aspect('equal') ax.axis('off') ax.set_title(title) # Plot buses: if jitter is not None: x = x + np.random.uniform(low=-jitter, high=jitter, size=len(x)) y = y + np.random.uniform(low=-jitter, high=jitter, size=len(y)) if isinstance(bus_sizes, pd.Series) and isinstance(bus_sizes.index, pd.MultiIndex): # We are drawing pies to show all the different shares assert len(bus_sizes.index.levels[0].difference(n.buses.index)) == 0, \ "The first MultiIndex level of bus_sizes must contain buses" if isinstance(bus_colors, dict): bus_colors = pd.Series(bus_colors) # case bus_colors isn't a series or dict: look in n.carriers for existent colors if not isinstance(bus_colors, pd.Series): bus_colors = n.carriers.color.dropna() assert bus_sizes.index.levels[1].isin(bus_colors.index).all(), ( "Colors not defined for all elements in the second MultiIndex " "level of bus_sizes, please make sure that all the elements are " "included in bus_colors or in n.carriers.color") bus_sizes = bus_sizes.sort_index(level=0, sort_remaining=False) if geomap: bus_sizes = bus_sizes * projected_area_factor(ax, n.srid)**2 patches = [] for b_i in bus_sizes.index.levels[0]: s = bus_sizes.loc[b_i] radius = s.sum()**0.5 if radius == 0.0: ratios = s else: ratios = s/s.sum() start = 0.25 for i, ratio in ratios.iteritems(): patches.append(Wedge((x.at[b_i], y.at[b_i]), radius, 360*start, 360*(start+ratio), facecolor=bus_colors[i], alpha=bus_alpha)) start += ratio bus_collection = PatchCollection(patches, match_original=True, zorder=5) ax.add_collection(bus_collection) else: c = pd.Series(bus_colors, index=n.buses.index) s = pd.Series(bus_sizes, index=n.buses.index, dtype="float") if geomap: s = s * projected_area_factor(ax, n.srid)**2 if bus_cmap is not None and c.dtype is np.dtype('float'): if isinstance(bus_cmap, str): bus_cmap = plt.cm.get_cmap(bus_cmap) norm = plt.Normalize(vmin=c.min(), vmax=c.max()) c = c.apply(lambda cval: bus_cmap(norm(cval))) patches = [] for b_i in s.index: radius = s.at[b_i]**0.5 patches.append(Circle((x.at[b_i], y.at[b_i]), radius, facecolor=c.at[b_i], alpha=bus_alpha)) bus_collection = PatchCollection(patches, match_original=True, zorder=5) ax.add_collection(bus_collection) # Plot branches: if isinstance(line_widths, pd.Series): if isinstance(line_widths.index, pd.MultiIndex): raise TypeError("Index of argument 'line_widths' is a Multiindex, " "this is not support since pypsa v0.17. " "Set differing widths with arguments 'line_widths', " "'link_widths' and 'transformer_widths'.") if isinstance(line_colors, pd.Series): if isinstance(line_colors.index, pd.MultiIndex): raise TypeError("Index of argument 'line_colors' is a Multiindex, " "this is not support since pypsa v0.17. " "Set differing colors with arguments 'line_colors', " "'link_colors' and 'transformer_colors'.") if branch_components is None: branch_components = n.branch_components branch_colors = {'Line': line_colors, 'Link': link_colors, 'Transformer': transformer_colors} branch_widths = {'Line': line_widths, 'Link': link_widths, 'Transformer': transformer_widths} branch_cmap = {'Line': line_cmap, 'Link': link_cmap, 'Transformer': transformer_cmap} branch_collections = [] arrow_collections = [] if flow is not None: rough_scale = sum(len(n.df(c)) for c in branch_components) + 100 flow = _flow_ds_from_arg(flow, n, branch_components) / rough_scale for c in n.iterate_components(branch_components): b_widths = as_branch_series(branch_widths[c.name], 'width', c.name, n) b_colors = as_branch_series(branch_colors[c.name], 'color', c.name, n) b_nums = None b_cmap = branch_cmap[c.name] b_flow = flow.get(c.name, None) if flow is not None else None if issubclass(b_colors.dtype.type, np.number): b_nums = b_colors b_colors = None if not geometry: segments = (np.asarray(((c.df.bus0.map(x), c.df.bus0.map(y)), (c.df.bus1.map(x), c.df.bus1.map(y)))) .transpose(2, 0, 1)) else: from shapely.wkt import loads from shapely.geometry import LineString linestrings = c.df.geometry[lambda ds: ds != ''].map(loads) assert all(isinstance(ls, LineString) for ls in linestrings), ( "The WKT-encoded geometry in the 'geometry' column must be " "composed of LineStrings") segments = np.asarray(list(linestrings.map(np.asarray))) if b_flow is not None: coords = pd.DataFrame({'x1': c.df.bus0.map(x), 'y1': c.df.bus0.map(y), 'x2': c.df.bus1.map(x), 'y2': c.df.bus1.map(y)}) b_flow = b_flow.mul(b_widths[b_flow.index], fill_value=0) # update the line width, allows to set line widths separately from flows b_widths.update((5 * b_flow.abs()).pipe(np.sqrt)) area_factor = projected_area_factor(ax, n.srid) f_collection = directed_flow(coords, b_flow, b_colors, area_factor, b_cmap) if b_nums is not None: f_collection.set_array(np.asarray(b_nums)) f_collection.set_cmap(b_cmap) f_collection.autoscale() arrow_collections.append(f_collection) ax.add_collection(f_collection) b_collection = LineCollection(segments, linewidths=b_widths, antialiaseds=(1,), colors=b_colors, transOffset=ax.transData) if b_nums is not None: b_collection.set_array(np.asarray(b_nums)) b_collection.set_cmap(b_cmap) b_collection.autoscale() ax.add_collection(b_collection) b_collection.set_zorder(3) branch_collections.append(b_collection) if boundaries is None: ax.autoscale() return (bus_collection,) + tuple(branch_collections) + tuple(arrow_collections) def as_branch_series(ser, arg, c, n): ser = pd.Series(ser, index=n.df(c).index) assert not ser.isnull().any(), (f'{c}_{arg}s does not specify all ' f'entries. Missing values for {c}: {list(ser[ser.isnull()].index)}') return ser def get_projection_from_crs(crs): if crs == 4326: # if data is in latlon system, return default map with latlon system return ccrs.PlateCarree() try: return ccrs.epsg(crs) except requests.RequestException: logger.warning("A connection to http://epsg.io/ is " "required for a projected coordinate reference system. " "Falling back to latlong.") except ValueError: logger.warning("'{crs}' does not define a projected coordinate system. " "Falling back to latlong.".format(crs=crs)) return ccrs.PlateCarree() def compute_bbox_with_margins(margin, x, y): 'Helper function to compute bounding box for the plot' # set margins pos = np.asarray((x, y)) minxy, maxxy = pos.min(axis=1), pos.max(axis=1) xy1 = minxy - margin*(maxxy - minxy) xy2 = maxxy + margin*(maxxy - minxy) return tuple(xy1), tuple(xy2) def projected_area_factor(ax, original_crs=4326): """ Helper function to get the area scale of the current projection in reference to the default projection. The default 'original crs' is assumed to be 4326, which translates to the cartopy default cartopy.crs.PlateCarree() """ if not hasattr(ax, 'projection'): return 1 if isinstance(ax.projection, ccrs.PlateCarree): return 1 x1, x2, y1, y2 = ax.get_extent() pbounds = \ get_projection_from_crs(original_crs).transform_points(ax.projection, np.array([x1, x2]), np.array([y1, y2])) return np.sqrt(abs((x2 - x1) * (y2 - y1)) /abs((pbounds[0] - pbounds[1])[:2].prod())) def draw_map_cartopy(n, x, y, ax, geomap=True, color_geomap=None): resolution = '50m' if isinstance(geomap, bool) else geomap assert resolution in ['10m', '50m', '110m'], ( "Resolution has to be one of '10m', '50m', '110m'") axis_transformation = get_projection_from_crs(n.srid) if color_geomap is None: color_geomap = {'ocean': 'w', 'land': 'w'} elif color_geomap and not isinstance(color_geomap, dict): color_geomap = {'ocean': 'lightblue', 'land': 'whitesmoke'} ax.add_feature(cartopy.feature.LAND.with_scale(resolution), facecolor=color_geomap['land']) ax.add_feature(cartopy.feature.OCEAN.with_scale(resolution), facecolor=color_geomap['ocean']) ax.coastlines(linewidth=0.4, zorder=2, resolution=resolution) border = cartopy.feature.BORDERS.with_scale(resolution) ax.add_feature(border, linewidth=0.3) return axis_transformation def _flow_ds_from_arg(flow, n, branch_components): if isinstance(flow, pd.Series): if not isinstance(flow.index, pd.MultiIndex): raise ValueError("Argument 'flow' is a pandas.Series without " "a MultiIndex. Please provide a multiindexed series, with " "the first level being a subset of 'branch_components'.") return flow if flow in n.snapshots: return (pd.concat([n.pnl(c).p0.loc[flow] for c in branch_components], keys=branch_components, sort=True)) elif isinstance(flow, str) or callable(flow): return (pd.concat([n.pnl(c).p0 for c in branch_components], axis=1, keys=branch_components, sort=True) .agg(flow, axis=0)) def directed_flow(coords, flow, color, area_factor=1, cmap=None): """ Helper function to generate arrows from flow data. """ # this funtion is used for diplaying arrows representing the network flow data = pd.DataFrame( {'arrowsize': flow.abs().pipe(np.sqrt).clip(lower=1e-8), 'direction': np.sign(flow), 'linelength': (np.sqrt((coords.x1 - coords.x2)**2. + (coords.y1 - coords.y2)**2))}) data = data.join(coords) if area_factor: data['arrowsize']= data['arrowsize'].mul(area_factor) data['arrowtolarge'] = (1.5 * data.arrowsize > data.linelength) # swap coords for negativ directions data.loc[data.direction == -1., ['x1', 'x2', 'y1', 'y2']] = \ data.loc[data.direction == -1., ['x2', 'x1', 'y2', 'y1']].values if ((data.linelength > 0.) & (~data.arrowtolarge)).any(): data['arrows'] = ( data[(data.linelength > 0.) & (~data.arrowtolarge)] .apply(lambda ds: FancyArrow(ds.x1, ds.y1, 0.6*(ds.x2 - ds.x1) - ds.arrowsize * 0.75 * (ds.x2 - ds.x1) / ds.linelength, 0.6 * (ds.y2 - ds.y1) - ds.arrowsize * 0.75 * (ds.y2 - ds.y1)/ds.linelength, head_width=ds.arrowsize), axis=1)) data.loc[(data.linelength > 0.) & (data.arrowtolarge), 'arrows'] = \ (data[(data.linelength > 0.) & (data.arrowtolarge)] .apply(lambda ds: FancyArrow(ds.x1, ds.y1, 0.001*(ds.x2 - ds.x1), 0.001*(ds.y2 - ds.y1), head_width=ds.arrowsize), axis=1)) data = data.dropna(subset=['arrows']) arrowcol = PatchCollection(data.arrows, color=color, edgecolors='k', linewidths=0., zorder=4, alpha=1) return arrowcol def autogenerate_coordinates(n, assign=False, layouter=None): """ Automatically generate bus coordinates for the network graph according to a layouting function from `networkx <https://networkx.github.io/>`_. Parameters ---------- n : pypsa.Network assign : bool, default False Assign generated coordinates to the network bus coordinates at ``n.buses[['x','y']]``. layouter : networkx.drawing.layout function, default None Layouting function from `networkx <https://networkx.github.io/>`_. See `list <https://networkx.github.io/documentation/stable/reference/drawing.html#module-networkx.drawing.layout>`_ of available options. By default coordinates are determined for a `planar layout <https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.layout.planar_layout.html#networkx.drawing.layout.planar_layout>`_ if the network graph is planar, otherwise for a `Kamada-Kawai layout <https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.layout.kamada_kawai_layout.html#networkx.drawing.layout.kamada_kawai_layout>`_. Returns ------- coordinates : pd.DataFrame DataFrame containing the generated coordinates with buses as index and ['x', 'y'] as columns. Examples -------- >>> autogenerate_coordinates(network) >>> autogenerate_coordinates(network, assign=True, layouter=nx.circle_layout) """ G = n.graph() if layouter is None: is_planar = nx.check_planarity(G)[0] if is_planar: layouter = nx.planar_layout else: layouter = nx.kamada_kawai_layout coordinates = pd.DataFrame(layouter(G)).T.rename({0: 'x', 1: 'y'}, axis=1) if assign: n.buses[['x', 'y']] = coordinates return coordinates def _get_coordinates(n, layouter=None): if layouter is not None or n.buses[['x', 'y']].isin([np.nan, 0]).all().all(): coordinates = autogenerate_coordinates(n, layouter=layouter) return coordinates["x"], coordinates["y"] else: return n.buses["x"], n.buses["y"] _token_required_mb_styles = ['basic', 'streets', 'outdoors', 'light', 'dark', 'satellite', 'satellite-streets'] _open__mb_styles = ['open-street-map', 'white-bg', 'carto-positron', 'carto-darkmatter', 'stamen-terrain', 'stamen-toner', 'stamen-watercolor'] #This function was borne out of a breakout group at the October 2017 #Munich Open Energy Modelling Initiative Workshop to hack together a #working example of plotly for networks, see: #https://forum.openmod-initiative.org/t/breakout-group-on-visualising-networks-with-plotly/384/7 #We thank Bryn Pickering for holding the tutorial on plotly which #inspired the breakout group and for contributing ideas to the iplot #function below. def iplot(n, fig=None, bus_colors='cadetblue', bus_alpha=1, bus_sizes=10, bus_cmap=None, bus_colorbar=None, bus_text=None, line_colors='rosybrown', link_colors='darkseagreen', transformer_colors='orange', line_widths=3, link_widths=3, transformer_widths=3, line_text=None, link_text=None, transformer_text=None, layouter=None, title="", size=None, branch_components=None, iplot=True, jitter=None, mapbox=False, mapbox_style='open-street-map', mapbox_token="",mapbox_parameters={}): """ Plot the network buses and lines interactively using plotly. Parameters ---------- fig : dict, default None If not None, figure is built upon this fig. bus_colors : dict/pandas.Series Colors for the buses, defaults to "cadetblue". If bus_sizes is a pandas.Series with a Multiindex, bus_colors defaults to the n.carriers['color'] column. bus_alpha : float Adds alpha channel to buses, defaults to 1. bus_sizes : float/pandas.Series Sizes of bus points, defaults to 10. bus_cmap : plt.cm.ColorMap/str If bus_colors are floats, this color map will assign the colors bus_colorbar : dict Plotly colorbar, e.g. {'title' : 'my colorbar'} bus_text : pandas.Series Text for each bus, defaults to bus names line_colors : str/pandas.Series Colors for the lines, defaults to 'rosybrown'. link_colors : str/pandas.Series Colors for the links, defaults to 'darkseagreen'. transfomer_colors : str/pandas.Series Colors for the transfomer, defaults to 'orange'. line_widths : dict/pandas.Series Widths of lines, defaults to 1.5 link_widths : dict/pandas.Series Widths of links, defaults to 1.5 transformer_widths : dict/pandas.Series Widths of transformer, defaults to 1.5 line_text : pandas.Series Text for lines, defaults to line names. link_text : pandas.Series Text for links, defaults to link names. tranformer_text : pandas.Series Text for transformers, defaults to transformer names. layouter : networkx.drawing.layout function, default None Layouting function from `networkx <https://networkx.github.io/>`_ which overrules coordinates given in ``n.buses[['x','y']]``. See `list <https://networkx.github.io/documentation/stable/reference/drawing.html#module-networkx.drawing.layout>`_ of available options. title : string Graph title size : None|tuple Tuple specifying width and height of figure; e.g. (width, heigh). branch_components : list of str Branch components to be plotted, defaults to Line and Link. iplot : bool, default True Automatically do an interactive plot of the figure. jitter : None|float Amount of random noise to add to bus positions to distinguish overlapping buses mapbox : bool, default False Switch to use Mapbox. mapbox_style : str, default 'open-street-map' Define the mapbox layout style of the interactive plot. If this is set to a mapbox layout, the argument ``mapbox_token`` must be a valid Mapbox API access token. Valid open layouts are: open-street-map, white-bg, carto-positron, carto-darkmatter, stamen-terrain, stamen-toner, stamen-watercolor Valid mapbox layouts are: basic, streets, outdoors, light, dark, satellite, satellite-streets mapbox_token : string Mapbox API access token. Obtain from https://www.mapbox.com. Can also be included in mapbox_parameters as `accesstoken=mapbox_token`. mapbox_parameters : dict Configuration parameters of the Mapbox layout. E.g. {"bearing": 5, "pitch": 10, "zoom": 1, "style": 'dark'}. Returns ------- fig: dictionary for plotly figure """ if fig is None: fig = dict(data=[],layout={}) if bus_text is None: bus_text = 'Bus ' + n.buses.index x, y = _get_coordinates(n, layouter=layouter) if jitter is not None: x = x + np.random.uniform(low=-jitter, high=jitter, size=len(x)) y = y + np.random.uniform(low=-jitter, high=jitter, size=len(y)) bus_trace = dict(x=x, y=y, text=bus_text, type="scatter", mode="markers", hoverinfo="text", opacity=bus_alpha, marker=dict(color=bus_colors, size=bus_sizes)) if bus_cmap is not None: bus_trace['marker']['colorscale'] = bus_cmap if bus_colorbar is not None: bus_trace['marker']['colorbar'] = bus_colorbar # Plot branches: if isinstance(line_widths, pd.Series): if isinstance(line_widths.index, pd.MultiIndex): raise TypeError("Index of argument 'line_widths' is a Multiindex, " "this is not support since pypsa v0.17. " "Set differing widths with arguments 'line_widths', " "'link_widths' and 'transformer_widths'.") if isinstance(line_colors, pd.Series): if isinstance(line_colors.index, pd.MultiIndex): raise TypeError("Index of argument 'line_colors' is a Multiindex, " "this is not support since pypsa v0.17. " "Set differing colors with arguments 'line_colors', " "'link_colors' and 'transformer_colors'.") if branch_components is None: branch_components = n.branch_components branch_colors = {'Line': line_colors, 'Link': link_colors, 'Transformer': transformer_colors} branch_widths = {'Line': line_widths, 'Link': link_widths, 'Transformer': transformer_widths} branch_text = {'Line': line_text, 'Link': link_text, 'Transformer': transformer_text} shapes = [] shape_traces = [] for c in n.iterate_components(branch_components): b_widths = as_branch_series(branch_widths[c.name], 'width', c.name, n) b_colors = as_branch_series(branch_colors[c.name], 'color', c.name, n) b_text = branch_text[c.name] if b_text is None: b_text = c.name + ' ' + c.df.index x0 = c.df.bus0.map(x) x1 = c.df.bus1.map(x) y0 = c.df.bus0.map(y) y1 = c.df.bus1.map(y) for b in c.df.index: shapes.append(dict(type='line', opacity=0.8, x0=x0[b], y0=y0[b], x1=x1[b], y1=y1[b], line=dict(color=b_colors[b], width=b_widths[b]))) shape_traces.append(dict(x=0.5*(x0+x1), y=0.5*(y0+y1), text=b_text, type="scatter", mode="markers", hoverinfo="text", marker=dict(opacity=0.))) if mapbox: shape_traces_latlon = [] for st in shape_traces: st['lon'] = st.pop('x') st['lat'] = st.pop('y') shape_traces_latlon.append(go.Scattermapbox(st)) shape_traces = shape_traces_latlon shapes_mapbox = [] for s in shapes: s['lon'] = [s.pop('x0'), s.pop('x1')] s['lat'] = [s.pop('y0'), s.pop('y1')] shapes_mapbox.append(go.Scattermapbox(s, mode='lines')) shapes = shapes_mapbox bus_trace['lon'] = bus_trace.pop('x') bus_trace['lat'] = bus_trace.pop('y') bus_trace = go.Scattermapbox(bus_trace) fig['data'].extend(shapes + shape_traces + [bus_trace]) else: fig['data'].extend([bus_trace]+shape_traces) fig['layout'].update(dict(title=title, hovermode='closest', showlegend=False)) if size is not None: assert len(size) == 2, "Parameter size must specify a tuple (width, height)." fig['layout'].update(dict(width=size[0], height=size[1])) if mapbox: if mapbox_token != "": mapbox_parameters['accesstoken'] = mapbox_token mapbox_parameters.setdefault('style', mapbox_style) if mapbox_parameters['style'] in _token_required_mb_styles: assert 'accesstoken' in mapbox_parameters.keys(), ("Using Mapbox " "layout styles requires a valid access token from https://www.mapbox.com/, " f"style which do not require a token are:\n{', '.join(_open__mb_styles)}.") if 'center' not in mapbox_parameters.keys(): lon=(n.buses.x.min() + n.buses.x.max()) / 2 lat=(n.buses.y.min() + n.buses.y.max()) / 2 mapbox_parameters['center'] = dict(lat=lat, lon=lon) if 'zoom' not in mapbox_parameters.keys(): mapbox_parameters['zoom'] = 2 fig['layout']['mapbox'] = mapbox_parameters else: fig['layout']['shapes'] = shapes if iplot: if not pltly_present: logger.warning("Plotly is not present, so interactive plotting won't work.") else: pltly.iplot(fig) return fig
gpl-3.0
lhilt/scipy
scipy/optimize/nonlin.py
4
48289
r""" Nonlinear solvers ----------------- .. currentmodule:: scipy.optimize This is a collection of general-purpose nonlinear multidimensional solvers. These solvers find *x* for which *F(x) = 0*. Both *x* and *F* can be multidimensional. Routines ~~~~~~~~ Large-scale nonlinear solvers: .. autosummary:: newton_krylov anderson General nonlinear solvers: .. autosummary:: broyden1 broyden2 Simple iterations: .. autosummary:: excitingmixing linearmixing diagbroyden Examples ~~~~~~~~ **Small problem** >>> def F(x): ... return np.cos(x) + x[::-1] - [1, 2, 3, 4] >>> import scipy.optimize >>> x = scipy.optimize.broyden1(F, [1,1,1,1], f_tol=1e-14) >>> x array([ 4.04674914, 3.91158389, 2.71791677, 1.61756251]) >>> np.cos(x) + x[::-1] array([ 1., 2., 3., 4.]) **Large problem** Suppose that we needed to solve the following integrodifferential equation on the square :math:`[0,1]\times[0,1]`: .. math:: \nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2 with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of the square. The solution can be found using the `newton_krylov` solver: .. plot:: import numpy as np from scipy.optimize import newton_krylov from numpy import cosh, zeros_like, mgrid, zeros # parameters nx, ny = 75, 75 hx, hy = 1./(nx-1), 1./(ny-1) P_left, P_right = 0, 0 P_top, P_bottom = 1, 0 def residual(P): d2x = zeros_like(P) d2y = zeros_like(P) d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy return d2x + d2y - 10*cosh(P).mean()**2 # solve guess = zeros((nx, ny), float) sol = newton_krylov(residual, guess, method='lgmres', verbose=1) print('Residual: %g' % abs(residual(sol)).max()) # visualize import matplotlib.pyplot as plt x, y = mgrid[0:1:(nx*1j), 0:1:(ny*1j)] plt.pcolor(x, y, sol) plt.colorbar() plt.show() """ # Copyright (C) 2009, Pauli Virtanen <[email protected]> # Distributed under the same license as SciPy. from __future__ import division, print_function, absolute_import import sys import numpy as np from scipy._lib.six import callable, exec_, xrange from scipy.linalg import norm, solve, inv, qr, svd, LinAlgError from numpy import asarray, dot, vdot import scipy.sparse.linalg import scipy.sparse from scipy.linalg import get_blas_funcs import inspect from scipy._lib._util import getargspec_no_self as _getargspec from .linesearch import scalar_search_wolfe1, scalar_search_armijo __all__ = [ 'broyden1', 'broyden2', 'anderson', 'linearmixing', 'diagbroyden', 'excitingmixing', 'newton_krylov'] #------------------------------------------------------------------------------ # Utility functions #------------------------------------------------------------------------------ class NoConvergence(Exception): pass def maxnorm(x): return np.absolute(x).max() def _as_inexact(x): """Return `x` as an array, of either floats or complex floats""" x = asarray(x) if not np.issubdtype(x.dtype, np.inexact): return asarray(x, dtype=np.float_) return x def _array_like(x, x0): """Return ndarray `x` as same array subclass and shape as `x0`""" x = np.reshape(x, np.shape(x0)) wrap = getattr(x0, '__array_wrap__', x.__array_wrap__) return wrap(x) def _safe_norm(v): if not np.isfinite(v).all(): return np.array(np.inf) return norm(v) #------------------------------------------------------------------------------ # Generic nonlinear solver machinery #------------------------------------------------------------------------------ _doc_parts = dict( params_basic=""" F : function(x) -> f Function whose root to find; should take and return an array-like object. xin : array_like Initial guess for the solution """.strip(), params_extra=""" iter : int, optional Number of iterations to make. If omitted (default), make as many as required to meet tolerances. verbose : bool, optional Print status to stdout on every iteration. maxiter : int, optional Maximum number of iterations to make. If more are needed to meet convergence, `NoConvergence` is raised. f_tol : float, optional Absolute tolerance (in max-norm) for the residual. If omitted, default is 6e-6. f_rtol : float, optional Relative tolerance for the residual. If omitted, not used. x_tol : float, optional Absolute minimum step size, as determined from the Jacobian approximation. If the step size is smaller than this, optimization is terminated as successful. If omitted, not used. x_rtol : float, optional Relative minimum step size. If omitted, not used. tol_norm : function(vector) -> scalar, optional Norm to use in convergence check. Default is the maximum norm. line_search : {None, 'armijo' (default), 'wolfe'}, optional Which type of a line search to use to determine the step size in the direction given by the Jacobian approximation. Defaults to 'armijo'. callback : function, optional Optional callback function. It is called on every iteration as ``callback(x, f)`` where `x` is the current solution and `f` the corresponding residual. Returns ------- sol : ndarray An array (of similar array type as `x0`) containing the final solution. Raises ------ NoConvergence When a solution was not found. """.strip() ) def _set_doc(obj): if obj.__doc__: obj.__doc__ = obj.__doc__ % _doc_parts def nonlin_solve(F, x0, jacobian='krylov', iter=None, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, full_output=False, raise_exception=True): """ Find a root of a function, in a way suitable for large-scale problems. Parameters ---------- %(params_basic)s jacobian : Jacobian A Jacobian approximation: `Jacobian` object or something that `asjacobian` can transform to one. Alternatively, a string specifying which of the builtin Jacobian approximations to use: krylov, broyden1, broyden2, anderson diagbroyden, linearmixing, excitingmixing %(params_extra)s full_output : bool If true, returns a dictionary `info` containing convergence information. raise_exception : bool If True, a `NoConvergence` exception is raise if no solution is found. See Also -------- asjacobian, Jacobian Notes ----- This algorithm implements the inexact Newton method, with backtracking or full line searches. Several Jacobian approximations are available, including Krylov and Quasi-Newton methods. References ---------- .. [KIM] C. T. Kelley, \"Iterative Methods for Linear and Nonlinear Equations\". Society for Industrial and Applied Mathematics. (1995) https://archive.siam.org/books/kelley/fr16/ """ # Can't use default parameters because it's being explicitly passed as None # from the calling function, so we need to set it here. tol_norm = maxnorm if tol_norm is None else tol_norm condition = TerminationCondition(f_tol=f_tol, f_rtol=f_rtol, x_tol=x_tol, x_rtol=x_rtol, iter=iter, norm=tol_norm) x0 = _as_inexact(x0) func = lambda z: _as_inexact(F(_array_like(z, x0))).flatten() x = x0.flatten() dx = np.inf Fx = func(x) Fx_norm = norm(Fx) jacobian = asjacobian(jacobian) jacobian.setup(x.copy(), Fx, func) if maxiter is None: if iter is not None: maxiter = iter + 1 else: maxiter = 100*(x.size+1) if line_search is True: line_search = 'armijo' elif line_search is False: line_search = None if line_search not in (None, 'armijo', 'wolfe'): raise ValueError("Invalid line search") # Solver tolerance selection gamma = 0.9 eta_max = 0.9999 eta_treshold = 0.1 eta = 1e-3 for n in xrange(maxiter): status = condition.check(Fx, x, dx) if status: break # The tolerance, as computed for scipy.sparse.linalg.* routines tol = min(eta, eta*Fx_norm) dx = -jacobian.solve(Fx, tol=tol) if norm(dx) == 0: raise ValueError("Jacobian inversion yielded zero vector. " "This indicates a bug in the Jacobian " "approximation.") # Line search, or Newton step if line_search: s, x, Fx, Fx_norm_new = _nonlin_line_search(func, x, Fx, dx, line_search) else: s = 1.0 x = x + dx Fx = func(x) Fx_norm_new = norm(Fx) jacobian.update(x.copy(), Fx) if callback: callback(x, Fx) # Adjust forcing parameters for inexact methods eta_A = gamma * Fx_norm_new**2 / Fx_norm**2 if gamma * eta**2 < eta_treshold: eta = min(eta_max, eta_A) else: eta = min(eta_max, max(eta_A, gamma*eta**2)) Fx_norm = Fx_norm_new # Print status if verbose: sys.stdout.write("%d: |F(x)| = %g; step %g\n" % ( n, tol_norm(Fx), s)) sys.stdout.flush() else: if raise_exception: raise NoConvergence(_array_like(x, x0)) else: status = 2 if full_output: info = {'nit': condition.iteration, 'fun': Fx, 'status': status, 'success': status == 1, 'message': {1: 'A solution was found at the specified ' 'tolerance.', 2: 'The maximum number of iterations allowed ' 'has been reached.' }[status] } return _array_like(x, x0), info else: return _array_like(x, x0) _set_doc(nonlin_solve) def _nonlin_line_search(func, x, Fx, dx, search_type='armijo', rdiff=1e-8, smin=1e-2): tmp_s = [0] tmp_Fx = [Fx] tmp_phi = [norm(Fx)**2] s_norm = norm(x) / norm(dx) def phi(s, store=True): if s == tmp_s[0]: return tmp_phi[0] xt = x + s*dx v = func(xt) p = _safe_norm(v)**2 if store: tmp_s[0] = s tmp_phi[0] = p tmp_Fx[0] = v return p def derphi(s): ds = (abs(s) + s_norm + 1) * rdiff return (phi(s+ds, store=False) - phi(s)) / ds if search_type == 'wolfe': s, phi1, phi0 = scalar_search_wolfe1(phi, derphi, tmp_phi[0], xtol=1e-2, amin=smin) elif search_type == 'armijo': s, phi1 = scalar_search_armijo(phi, tmp_phi[0], -tmp_phi[0], amin=smin) if s is None: # XXX: No suitable step length found. Take the full Newton step, # and hope for the best. s = 1.0 x = x + s*dx if s == tmp_s[0]: Fx = tmp_Fx[0] else: Fx = func(x) Fx_norm = norm(Fx) return s, x, Fx, Fx_norm class TerminationCondition(object): """ Termination condition for an iteration. It is terminated if - |F| < f_rtol*|F_0|, AND - |F| < f_tol AND - |dx| < x_rtol*|x|, AND - |dx| < x_tol """ def __init__(self, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, iter=None, norm=maxnorm): if f_tol is None: f_tol = np.finfo(np.float_).eps ** (1./3) if f_rtol is None: f_rtol = np.inf if x_tol is None: x_tol = np.inf if x_rtol is None: x_rtol = np.inf self.x_tol = x_tol self.x_rtol = x_rtol self.f_tol = f_tol self.f_rtol = f_rtol self.norm = norm self.iter = iter self.f0_norm = None self.iteration = 0 def check(self, f, x, dx): self.iteration += 1 f_norm = self.norm(f) x_norm = self.norm(x) dx_norm = self.norm(dx) if self.f0_norm is None: self.f0_norm = f_norm if f_norm == 0: return 1 if self.iter is not None: # backwards compatibility with SciPy 0.6.0 return 2 * (self.iteration > self.iter) # NB: condition must succeed for rtol=inf even if norm == 0 return int((f_norm <= self.f_tol and f_norm/self.f_rtol <= self.f0_norm) and (dx_norm <= self.x_tol and dx_norm/self.x_rtol <= x_norm)) #------------------------------------------------------------------------------ # Generic Jacobian approximation #------------------------------------------------------------------------------ class Jacobian(object): """ Common interface for Jacobians or Jacobian approximations. The optional methods come useful when implementing trust region etc. algorithms that often require evaluating transposes of the Jacobian. Methods ------- solve Returns J^-1 * v update Updates Jacobian to point `x` (where the function has residual `Fx`) matvec : optional Returns J * v rmatvec : optional Returns A^H * v rsolve : optional Returns A^-H * v matmat : optional Returns A * V, where V is a dense matrix with dimensions (N,K). todense : optional Form the dense Jacobian matrix. Necessary for dense trust region algorithms, and useful for testing. Attributes ---------- shape Matrix dimensions (M, N) dtype Data type of the matrix. func : callable, optional Function the Jacobian corresponds to """ def __init__(self, **kw): names = ["solve", "update", "matvec", "rmatvec", "rsolve", "matmat", "todense", "shape", "dtype"] for name, value in kw.items(): if name not in names: raise ValueError("Unknown keyword argument %s" % name) if value is not None: setattr(self, name, kw[name]) if hasattr(self, 'todense'): self.__array__ = lambda: self.todense() def aspreconditioner(self): return InverseJacobian(self) def solve(self, v, tol=0): raise NotImplementedError def update(self, x, F): pass def setup(self, x, F, func): self.func = func self.shape = (F.size, x.size) self.dtype = F.dtype if self.__class__.setup is Jacobian.setup: # Call on the first point unless overridden self.update(x, F) class InverseJacobian(object): def __init__(self, jacobian): self.jacobian = jacobian self.matvec = jacobian.solve self.update = jacobian.update if hasattr(jacobian, 'setup'): self.setup = jacobian.setup if hasattr(jacobian, 'rsolve'): self.rmatvec = jacobian.rsolve @property def shape(self): return self.jacobian.shape @property def dtype(self): return self.jacobian.dtype def asjacobian(J): """ Convert given object to one suitable for use as a Jacobian. """ spsolve = scipy.sparse.linalg.spsolve if isinstance(J, Jacobian): return J elif inspect.isclass(J) and issubclass(J, Jacobian): return J() elif isinstance(J, np.ndarray): if J.ndim > 2: raise ValueError('array must have rank <= 2') J = np.atleast_2d(np.asarray(J)) if J.shape[0] != J.shape[1]: raise ValueError('array must be square') return Jacobian(matvec=lambda v: dot(J, v), rmatvec=lambda v: dot(J.conj().T, v), solve=lambda v: solve(J, v), rsolve=lambda v: solve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif scipy.sparse.isspmatrix(J): if J.shape[0] != J.shape[1]: raise ValueError('matrix must be square') return Jacobian(matvec=lambda v: J*v, rmatvec=lambda v: J.conj().T * v, solve=lambda v: spsolve(J, v), rsolve=lambda v: spsolve(J.conj().T, v), dtype=J.dtype, shape=J.shape) elif hasattr(J, 'shape') and hasattr(J, 'dtype') and hasattr(J, 'solve'): return Jacobian(matvec=getattr(J, 'matvec'), rmatvec=getattr(J, 'rmatvec'), solve=J.solve, rsolve=getattr(J, 'rsolve'), update=getattr(J, 'update'), setup=getattr(J, 'setup'), dtype=J.dtype, shape=J.shape) elif callable(J): # Assume it's a function J(x) that returns the Jacobian class Jac(Jacobian): def update(self, x, F): self.x = x def solve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m, v) elif scipy.sparse.isspmatrix(m): return spsolve(m, v) else: raise ValueError("Unknown matrix type") def matvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m, v) elif scipy.sparse.isspmatrix(m): return m*v else: raise ValueError("Unknown matrix type") def rsolve(self, v, tol=0): m = J(self.x) if isinstance(m, np.ndarray): return solve(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return spsolve(m.conj().T, v) else: raise ValueError("Unknown matrix type") def rmatvec(self, v): m = J(self.x) if isinstance(m, np.ndarray): return dot(m.conj().T, v) elif scipy.sparse.isspmatrix(m): return m.conj().T * v else: raise ValueError("Unknown matrix type") return Jac() elif isinstance(J, str): return dict(broyden1=BroydenFirst, broyden2=BroydenSecond, anderson=Anderson, diagbroyden=DiagBroyden, linearmixing=LinearMixing, excitingmixing=ExcitingMixing, krylov=KrylovJacobian)[J]() else: raise TypeError('Cannot convert object to a Jacobian') #------------------------------------------------------------------------------ # Broyden #------------------------------------------------------------------------------ class GenericBroyden(Jacobian): def setup(self, x0, f0, func): Jacobian.setup(self, x0, f0, func) self.last_f = f0 self.last_x = x0 if hasattr(self, 'alpha') and self.alpha is None: # Autoscale the initial Jacobian parameter # unless we have already guessed the solution. normf0 = norm(f0) if normf0: self.alpha = 0.5*max(norm(x0), 1) / normf0 else: self.alpha = 1.0 def _update(self, x, f, dx, df, dx_norm, df_norm): raise NotImplementedError def update(self, x, f): df = f - self.last_f dx = x - self.last_x self._update(x, f, dx, df, norm(dx), norm(df)) self.last_f = f self.last_x = x class LowRankMatrix(object): r""" A matrix represented as .. math:: \alpha I + \sum_{n=0}^{n=M} c_n d_n^\dagger However, if the rank of the matrix reaches the dimension of the vectors, full matrix representation will be used thereon. """ def __init__(self, alpha, n, dtype): self.alpha = alpha self.cs = [] self.ds = [] self.n = n self.dtype = dtype self.collapsed = None @staticmethod def _matvec(v, alpha, cs, ds): axpy, scal, dotc = get_blas_funcs(['axpy', 'scal', 'dotc'], cs[:1] + [v]) w = alpha * v for c, d in zip(cs, ds): a = dotc(d, v) w = axpy(c, w, w.size, a) return w @staticmethod def _solve(v, alpha, cs, ds): """Evaluate w = M^-1 v""" if len(cs) == 0: return v/alpha # (B + C D^H)^-1 = B^-1 - B^-1 C (I + D^H B^-1 C)^-1 D^H B^-1 axpy, dotc = get_blas_funcs(['axpy', 'dotc'], cs[:1] + [v]) c0 = cs[0] A = alpha * np.identity(len(cs), dtype=c0.dtype) for i, d in enumerate(ds): for j, c in enumerate(cs): A[i,j] += dotc(d, c) q = np.zeros(len(cs), dtype=c0.dtype) for j, d in enumerate(ds): q[j] = dotc(d, v) q /= alpha q = solve(A, q) w = v/alpha for c, qc in zip(cs, q): w = axpy(c, w, w.size, -qc) return w def matvec(self, v): """Evaluate w = M v""" if self.collapsed is not None: return np.dot(self.collapsed, v) return LowRankMatrix._matvec(v, self.alpha, self.cs, self.ds) def rmatvec(self, v): """Evaluate w = M^H v""" if self.collapsed is not None: return np.dot(self.collapsed.T.conj(), v) return LowRankMatrix._matvec(v, np.conj(self.alpha), self.ds, self.cs) def solve(self, v, tol=0): """Evaluate w = M^-1 v""" if self.collapsed is not None: return solve(self.collapsed, v) return LowRankMatrix._solve(v, self.alpha, self.cs, self.ds) def rsolve(self, v, tol=0): """Evaluate w = M^-H v""" if self.collapsed is not None: return solve(self.collapsed.T.conj(), v) return LowRankMatrix._solve(v, np.conj(self.alpha), self.ds, self.cs) def append(self, c, d): if self.collapsed is not None: self.collapsed += c[:,None] * d[None,:].conj() return self.cs.append(c) self.ds.append(d) if len(self.cs) > c.size: self.collapse() def __array__(self): if self.collapsed is not None: return self.collapsed Gm = self.alpha*np.identity(self.n, dtype=self.dtype) for c, d in zip(self.cs, self.ds): Gm += c[:,None]*d[None,:].conj() return Gm def collapse(self): """Collapse the low-rank matrix to a full-rank one.""" self.collapsed = np.array(self) self.cs = None self.ds = None self.alpha = None def restart_reduce(self, rank): """ Reduce the rank of the matrix by dropping all vectors. """ if self.collapsed is not None: return assert rank > 0 if len(self.cs) > rank: del self.cs[:] del self.ds[:] def simple_reduce(self, rank): """ Reduce the rank of the matrix by dropping oldest vectors. """ if self.collapsed is not None: return assert rank > 0 while len(self.cs) > rank: del self.cs[0] del self.ds[0] def svd_reduce(self, max_rank, to_retain=None): """ Reduce the rank of the matrix by retaining some SVD components. This corresponds to the \"Broyden Rank Reduction Inverse\" algorithm described in [1]_. Note that the SVD decomposition can be done by solving only a problem whose size is the effective rank of this matrix, which is viable even for large problems. Parameters ---------- max_rank : int Maximum rank of this matrix after reduction. to_retain : int, optional Number of SVD components to retain when reduction is done (ie. rank > max_rank). Default is ``max_rank - 2``. References ---------- .. [1] B.A. van der Rotten, PhD thesis, \"A limited memory Broyden method to solve high-dimensional systems of nonlinear equations\". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003). https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf """ if self.collapsed is not None: return p = max_rank if to_retain is not None: q = to_retain else: q = p - 2 if self.cs: p = min(p, len(self.cs[0])) q = max(0, min(q, p-1)) m = len(self.cs) if m < p: # nothing to do return C = np.array(self.cs).T D = np.array(self.ds).T D, R = qr(D, mode='economic') C = dot(C, R.T.conj()) U, S, WH = svd(C, full_matrices=False, compute_uv=True) C = dot(C, inv(WH)) D = dot(D, WH.T.conj()) for k in xrange(q): self.cs[k] = C[:,k].copy() self.ds[k] = D[:,k].copy() del self.cs[q:] del self.ds[q:] _doc_parts['broyden_params'] = """ alpha : float, optional Initial guess for the Jacobian is ``(-1/alpha)``. reduction_method : str or tuple, optional Method used in ensuring that the rank of the Broyden matrix stays low. Can either be a string giving the name of the method, or a tuple of the form ``(method, param1, param2, ...)`` that gives the name of the method and values for additional parameters. Methods available: - ``restart``: drop all matrix columns. Has no extra parameters. - ``simple``: drop oldest matrix column. Has no extra parameters. - ``svd``: keep only the most significant SVD components. Takes an extra parameter, ``to_retain``, which determines the number of SVD components to retain when rank reduction is done. Default is ``max_rank - 2``. max_rank : int, optional Maximum rank for the Broyden matrix. Default is infinity (ie., no rank reduction). """.strip() class BroydenFirst(GenericBroyden): r""" Find a root of a function, using Broyden's first Jacobian approximation. This method is also known as \"Broyden's good method\". Parameters ---------- %(params_basic)s %(broyden_params)s %(params_extra)s See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='broyden1'`` in particular. Notes ----- This algorithm implements the inverse Jacobian Quasi-Newton update .. math:: H_+ = H + (dx - H df) dx^\dagger H / ( dx^\dagger H df) which corresponds to Broyden's first Jacobian update .. math:: J_+ = J + (df - J dx) dx^\dagger / dx^\dagger dx References ---------- .. [1] B.A. van der Rotten, PhD thesis, \"A limited memory Broyden method to solve high-dimensional systems of nonlinear equations\". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003). https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf """ def __init__(self, alpha=None, reduction_method='restart', max_rank=None): GenericBroyden.__init__(self) self.alpha = alpha self.Gm = None if max_rank is None: max_rank = np.inf self.max_rank = max_rank if isinstance(reduction_method, str): reduce_params = () else: reduce_params = reduction_method[1:] reduction_method = reduction_method[0] reduce_params = (max_rank - 1,) + reduce_params if reduction_method == 'svd': self._reduce = lambda: self.Gm.svd_reduce(*reduce_params) elif reduction_method == 'simple': self._reduce = lambda: self.Gm.simple_reduce(*reduce_params) elif reduction_method == 'restart': self._reduce = lambda: self.Gm.restart_reduce(*reduce_params) else: raise ValueError("Unknown rank reduction method '%s'" % reduction_method) def setup(self, x, F, func): GenericBroyden.setup(self, x, F, func) self.Gm = LowRankMatrix(-self.alpha, self.shape[0], self.dtype) def todense(self): return inv(self.Gm) def solve(self, f, tol=0): r = self.Gm.matvec(f) if not np.isfinite(r).all(): # singular; reset the Jacobian approximation self.setup(self.last_x, self.last_f, self.func) return self.Gm.matvec(f) def matvec(self, f): return self.Gm.solve(f) def rsolve(self, f, tol=0): return self.Gm.rmatvec(f) def rmatvec(self, f): return self.Gm.rsolve(f) def _update(self, x, f, dx, df, dx_norm, df_norm): self._reduce() # reduce first to preserve secant condition v = self.Gm.rmatvec(dx) c = dx - self.Gm.matvec(df) d = v / vdot(df, v) self.Gm.append(c, d) class BroydenSecond(BroydenFirst): """ Find a root of a function, using Broyden\'s second Jacobian approximation. This method is also known as \"Broyden's bad method\". Parameters ---------- %(params_basic)s %(broyden_params)s %(params_extra)s See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='broyden2'`` in particular. Notes ----- This algorithm implements the inverse Jacobian Quasi-Newton update .. math:: H_+ = H + (dx - H df) df^\\dagger / ( df^\\dagger df) corresponding to Broyden's second method. References ---------- .. [1] B.A. van der Rotten, PhD thesis, \"A limited memory Broyden method to solve high-dimensional systems of nonlinear equations\". Mathematisch Instituut, Universiteit Leiden, The Netherlands (2003). https://web.archive.org/web/20161022015821/http://www.math.leidenuniv.nl/scripties/Rotten.pdf """ def _update(self, x, f, dx, df, dx_norm, df_norm): self._reduce() # reduce first to preserve secant condition v = df c = dx - self.Gm.matvec(df) d = v / df_norm**2 self.Gm.append(c, d) #------------------------------------------------------------------------------ # Broyden-like (restricted memory) #------------------------------------------------------------------------------ class Anderson(GenericBroyden): """ Find a root of a function, using (extended) Anderson mixing. The Jacobian is formed by for a 'best' solution in the space spanned by last `M` vectors. As a result, only a MxM matrix inversions and MxN multiplications are required. [Ey]_ Parameters ---------- %(params_basic)s alpha : float, optional Initial guess for the Jacobian is (-1/alpha). M : float, optional Number of previous vectors to retain. Defaults to 5. w0 : float, optional Regularization parameter for numerical stability. Compared to unity, good values of the order of 0.01. %(params_extra)s See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='anderson'`` in particular. References ---------- .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996). """ # Note: # # Anderson method maintains a rank M approximation of the inverse Jacobian, # # J^-1 v ~ -v*alpha + (dX + alpha dF) A^-1 dF^H v # A = W + dF^H dF # W = w0^2 diag(dF^H dF) # # so that for w0 = 0 the secant condition applies for last M iterates, ie., # # J^-1 df_j = dx_j # # for all j = 0 ... M-1. # # Moreover, (from Sherman-Morrison-Woodbury formula) # # J v ~ [ b I - b^2 C (I + b dF^H A^-1 C)^-1 dF^H ] v # C = (dX + alpha dF) A^-1 # b = -1/alpha # # and after simplification # # J v ~ -v/alpha + (dX/alpha + dF) (dF^H dX - alpha W)^-1 dF^H v # def __init__(self, alpha=None, w0=0.01, M=5): GenericBroyden.__init__(self) self.alpha = alpha self.M = M self.dx = [] self.df = [] self.gamma = None self.w0 = w0 def solve(self, f, tol=0): dx = -self.alpha*f n = len(self.dx) if n == 0: return dx df_f = np.empty(n, dtype=f.dtype) for k in xrange(n): df_f[k] = vdot(self.df[k], f) try: gamma = solve(self.a, df_f) except LinAlgError: # singular; reset the Jacobian approximation del self.dx[:] del self.df[:] return dx for m in xrange(n): dx += gamma[m]*(self.dx[m] + self.alpha*self.df[m]) return dx def matvec(self, f): dx = -f/self.alpha n = len(self.dx) if n == 0: return dx df_f = np.empty(n, dtype=f.dtype) for k in xrange(n): df_f[k] = vdot(self.df[k], f) b = np.empty((n, n), dtype=f.dtype) for i in xrange(n): for j in xrange(n): b[i,j] = vdot(self.df[i], self.dx[j]) if i == j and self.w0 != 0: b[i,j] -= vdot(self.df[i], self.df[i])*self.w0**2*self.alpha gamma = solve(b, df_f) for m in xrange(n): dx += gamma[m]*(self.df[m] + self.dx[m]/self.alpha) return dx def _update(self, x, f, dx, df, dx_norm, df_norm): if self.M == 0: return self.dx.append(dx) self.df.append(df) while len(self.dx) > self.M: self.dx.pop(0) self.df.pop(0) n = len(self.dx) a = np.zeros((n, n), dtype=f.dtype) for i in xrange(n): for j in xrange(i, n): if i == j: wd = self.w0**2 else: wd = 0 a[i,j] = (1+wd)*vdot(self.df[i], self.df[j]) a += np.triu(a, 1).T.conj() self.a = a #------------------------------------------------------------------------------ # Simple iterations #------------------------------------------------------------------------------ class DiagBroyden(GenericBroyden): """ Find a root of a function, using diagonal Broyden Jacobian approximation. The Jacobian approximation is derived from previous iterations, by retaining only the diagonal of Broyden matrices. .. warning:: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem. Parameters ---------- %(params_basic)s alpha : float, optional Initial guess for the Jacobian is (-1/alpha). %(params_extra)s See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='diagbroyden'`` in particular. """ def __init__(self, alpha=None): GenericBroyden.__init__(self) self.alpha = alpha def setup(self, x, F, func): GenericBroyden.setup(self, x, F, func) self.d = np.full((self.shape[0],), 1 / self.alpha, dtype=self.dtype) def solve(self, f, tol=0): return -f / self.d def matvec(self, f): return -f * self.d def rsolve(self, f, tol=0): return -f / self.d.conj() def rmatvec(self, f): return -f * self.d.conj() def todense(self): return np.diag(-self.d) def _update(self, x, f, dx, df, dx_norm, df_norm): self.d -= (df + self.d*dx)*dx/dx_norm**2 class LinearMixing(GenericBroyden): """ Find a root of a function, using a scalar Jacobian approximation. .. warning:: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem. Parameters ---------- %(params_basic)s alpha : float, optional The Jacobian approximation is (-1/alpha). %(params_extra)s See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='linearmixing'`` in particular. """ def __init__(self, alpha=None): GenericBroyden.__init__(self) self.alpha = alpha def solve(self, f, tol=0): return -f*self.alpha def matvec(self, f): return -f/self.alpha def rsolve(self, f, tol=0): return -f*np.conj(self.alpha) def rmatvec(self, f): return -f/np.conj(self.alpha) def todense(self): return np.diag(np.full(self.shape[0], -1/self.alpha)) def _update(self, x, f, dx, df, dx_norm, df_norm): pass class ExcitingMixing(GenericBroyden): """ Find a root of a function, using a tuned diagonal Jacobian approximation. The Jacobian matrix is diagonal and is tuned on each iteration. .. warning:: This algorithm may be useful for specific problems, but whether it will work may depend strongly on the problem. See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='excitingmixing'`` in particular. Parameters ---------- %(params_basic)s alpha : float, optional Initial Jacobian approximation is (-1/alpha). alphamax : float, optional The entries of the diagonal Jacobian are kept in the range ``[alpha, alphamax]``. %(params_extra)s """ def __init__(self, alpha=None, alphamax=1.0): GenericBroyden.__init__(self) self.alpha = alpha self.alphamax = alphamax self.beta = None def setup(self, x, F, func): GenericBroyden.setup(self, x, F, func) self.beta = np.full((self.shape[0],), self.alpha, dtype=self.dtype) def solve(self, f, tol=0): return -f*self.beta def matvec(self, f): return -f/self.beta def rsolve(self, f, tol=0): return -f*self.beta.conj() def rmatvec(self, f): return -f/self.beta.conj() def todense(self): return np.diag(-1/self.beta) def _update(self, x, f, dx, df, dx_norm, df_norm): incr = f*self.last_f > 0 self.beta[incr] += self.alpha self.beta[~incr] = self.alpha np.clip(self.beta, 0, self.alphamax, out=self.beta) #------------------------------------------------------------------------------ # Iterative/Krylov approximated Jacobians #------------------------------------------------------------------------------ class KrylovJacobian(Jacobian): r""" Find a root of a function, using Krylov approximation for inverse Jacobian. This method is suitable for solving large-scale problems. Parameters ---------- %(params_basic)s rdiff : float, optional Relative step size to use in numerical differentiation. method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function Krylov method to use to approximate the Jacobian. Can be a string, or a function implementing the same interface as the iterative solvers in `scipy.sparse.linalg`. The default is `scipy.sparse.linalg.lgmres`. inner_M : LinearOperator or InverseJacobian Preconditioner for the inner Krylov iteration. Note that you can use also inverse Jacobians as (adaptive) preconditioners. For example, >>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian >>> from scipy.optimize.nonlin import InverseJacobian >>> jac = BroydenFirst() >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac)) If the preconditioner has a method named 'update', it will be called as ``update(x, f)`` after each nonlinear step, with ``x`` giving the current point, and ``f`` the current function value. inner_tol, inner_maxiter, ... Parameters to pass on to the \"inner\" Krylov solver. See `scipy.sparse.linalg.gmres` for details. outer_k : int, optional Size of the subspace kept across LGMRES nonlinear iterations. See `scipy.sparse.linalg.lgmres` for details. %(params_extra)s See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='krylov'`` in particular. scipy.sparse.linalg.gmres scipy.sparse.linalg.lgmres Notes ----- This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian with an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which are conveniently approximated by a finite difference: .. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems. SciPy's `scipy.sparse.linalg` module offers a selection of Krylov solvers to choose from. The default here is `lgmres`, which is a variant of restarted GMRES iteration that reuses some of the information obtained in the previous Newton steps to invert Jacobians in subsequent steps. For a review on Newton-Krylov methods, see for example [1]_, and for the LGMRES sparse inverse method, see [2]_. References ---------- .. [1] D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004). :doi:`10.1016/j.jcp.2003.08.010` .. [2] A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005). :doi:`10.1137/S0895479803422014` """ def __init__(self, rdiff=None, method='lgmres', inner_maxiter=20, inner_M=None, outer_k=10, **kw): self.preconditioner = inner_M self.rdiff = rdiff self.method = dict( bicgstab=scipy.sparse.linalg.bicgstab, gmres=scipy.sparse.linalg.gmres, lgmres=scipy.sparse.linalg.lgmres, cgs=scipy.sparse.linalg.cgs, minres=scipy.sparse.linalg.minres, ).get(method, method) self.method_kw = dict(maxiter=inner_maxiter, M=self.preconditioner) if self.method is scipy.sparse.linalg.gmres: # Replace GMRES's outer iteration with Newton steps self.method_kw['restrt'] = inner_maxiter self.method_kw['maxiter'] = 1 self.method_kw.setdefault('atol', 0) elif self.method is scipy.sparse.linalg.gcrotmk: self.method_kw.setdefault('atol', 0) elif self.method is scipy.sparse.linalg.lgmres: self.method_kw['outer_k'] = outer_k # Replace LGMRES's outer iteration with Newton steps self.method_kw['maxiter'] = 1 # Carry LGMRES's `outer_v` vectors across nonlinear iterations self.method_kw.setdefault('outer_v', []) self.method_kw.setdefault('prepend_outer_v', True) # But don't carry the corresponding Jacobian*v products, in case # the Jacobian changes a lot in the nonlinear step # # XXX: some trust-region inspired ideas might be more efficient... # See eg. Brown & Saad. But needs to be implemented separately # since it's not an inexact Newton method. self.method_kw.setdefault('store_outer_Av', False) self.method_kw.setdefault('atol', 0) for key, value in kw.items(): if not key.startswith('inner_'): raise ValueError("Unknown parameter %s" % key) self.method_kw[key[6:]] = value def _update_diff_step(self): mx = abs(self.x0).max() mf = abs(self.f0).max() self.omega = self.rdiff * max(1, mx) / max(1, mf) def matvec(self, v): nv = norm(v) if nv == 0: return 0*v sc = self.omega / nv r = (self.func(self.x0 + sc*v) - self.f0) / sc if not np.all(np.isfinite(r)) and np.all(np.isfinite(v)): raise ValueError('Function returned non-finite results') return r def solve(self, rhs, tol=0): if 'tol' in self.method_kw: sol, info = self.method(self.op, rhs, **self.method_kw) else: sol, info = self.method(self.op, rhs, tol=tol, **self.method_kw) return sol def update(self, x, f): self.x0 = x self.f0 = f self._update_diff_step() # Update also the preconditioner, if possible if self.preconditioner is not None: if hasattr(self.preconditioner, 'update'): self.preconditioner.update(x, f) def setup(self, x, f, func): Jacobian.setup(self, x, f, func) self.x0 = x self.f0 = f self.op = scipy.sparse.linalg.aslinearoperator(self) if self.rdiff is None: self.rdiff = np.finfo(x.dtype).eps ** (1./2) self._update_diff_step() # Setup also the preconditioner, if possible if self.preconditioner is not None: if hasattr(self.preconditioner, 'setup'): self.preconditioner.setup(x, f, func) #------------------------------------------------------------------------------ # Wrapper functions #------------------------------------------------------------------------------ def _nonlin_wrapper(name, jac): """ Construct a solver wrapper with given name and jacobian approx. It inspects the keyword arguments of ``jac.__init__``, and allows to use the same arguments in the wrapper function, in addition to the keyword arguments of `nonlin_solve` """ args, varargs, varkw, defaults = _getargspec(jac.__init__) kwargs = list(zip(args[-len(defaults):], defaults)) kw_str = ", ".join(["%s=%r" % (k, v) for k, v in kwargs]) if kw_str: kw_str = ", " + kw_str kwkw_str = ", ".join(["%s=%s" % (k, k) for k, v in kwargs]) if kwkw_str: kwkw_str = kwkw_str + ", " # Construct the wrapper function so that its keyword arguments # are visible in pydoc.help etc. wrapper = """ def %(name)s(F, xin, iter=None %(kw)s, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None, **kw): jac = %(jac)s(%(kwkw)s **kw) return nonlin_solve(F, xin, jac, iter, verbose, maxiter, f_tol, f_rtol, x_tol, x_rtol, tol_norm, line_search, callback) """ wrapper = wrapper % dict(name=name, kw=kw_str, jac=jac.__name__, kwkw=kwkw_str) ns = {} ns.update(globals()) exec_(wrapper, ns) func = ns[name] func.__doc__ = jac.__doc__ _set_doc(func) return func broyden1 = _nonlin_wrapper('broyden1', BroydenFirst) broyden2 = _nonlin_wrapper('broyden2', BroydenSecond) anderson = _nonlin_wrapper('anderson', Anderson) linearmixing = _nonlin_wrapper('linearmixing', LinearMixing) diagbroyden = _nonlin_wrapper('diagbroyden', DiagBroyden) excitingmixing = _nonlin_wrapper('excitingmixing', ExcitingMixing) newton_krylov = _nonlin_wrapper('newton_krylov', KrylovJacobian)
bsd-3-clause
darcamo/pyphysim
tests/simulations_package_test.py
1
131568
#!/usr/bin/env python # pylint: disable=E1101,E1103,W0403 """ Tests for the modules in the simulations package. Each module has doctests for its functions and all we need to do is run all of them. """ import doctest import glob import json import os import sys import unittest from copy import copy from itertools import repeat from pathlib import Path import numpy as np from pyphysim import progressbar from pyphysim.simulations import (configobjvalidation, parameters, results, runner, simulationhelpers) # noinspection PyProtectedMember from pyphysim.simulations.configobjvalidation import ( _parse_float_range_expr, integer_scalar_or_integer_numpy_array_check, real_scalar_or_real_numpy_array_check) from pyphysim.simulations.parameters import (SimulationParameters, combine_simulation_parameters) from pyphysim.simulations.results import (Result, SimulationResults, combine_simulation_results) from pyphysim.simulations.runner import (SimulationRunner, SkipThisOne, get_common_parser) from pyphysim.util.misc import calc_confidence_interval try: # noinspection PyUnresolvedReferences from ipyparallel import CompositeError _IPYTHON_AVAILABLE = True except ImportError: # pragma: no cover _IPYTHON_AVAILABLE = False try: # pragma: nocover # noinspection PyUnresolvedReferences from pandas import DataFrame assert DataFrame # Avoid unused import warning for DataFrame _PANDAS_AVAILABLE = True except ImportError: # pragma: nocover _PANDAS_AVAILABLE = False def delete_file_if_possible(filename): """ Try to delete the file with name `filename`. Parameters ---------- filename : str The name of the file to be removed. """ try: os.remove(filename) except OSError: # pragma: no cover pass # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxx Doctests xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # noinspection PyMethodMayBeStatic class SimulationsDoctestsTestCase(unittest.TestCase): """ Test case that run all the doctests in the modules of the simulations package. """ def test_configobjvalidation(self) -> None: """Run configobjvalidation doctests""" doctest.testmod(configobjvalidation) def test_parameters(self) -> None: """Run parameters doctests""" doctest.testmod(parameters) def test_progressbar(self) -> None: """Run progressbar doctests""" doctest.testmod(progressbar) def test_results(self) -> None: """Run results doctests""" doctest.testmod(results) def test_simulationhelpers(self) -> None: """Run simulationhelpers doctests""" doctest.testmod(simulationhelpers) def test_runner(self) -> None: """Run runner doctests""" doctest.testmod(runner) class SimulationHelpersTestCase(unittest.TestCase): def test_get_common_parser(self) -> None: p = get_common_parser() p2 = get_common_parser() self.assertTrue(p is p2) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxx configobjvalidation Module xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # noinspection PyUnboundLocalVariable class ConfigobjvalidationModuleFunctionsTestCase(unittest.TestCase): """ Unit-tests for the module functions in the in the configobjvalidation module. """ def setUp(self) -> None: """Called before each test.""" pass def test_parse_range_expr(self) -> None: try: # noinspection PyUnresolvedReferences import validate except ImportError: # pragma: no cover self.skipTest("test_parse_range_expr - " "The validate module is not installed") expr = "10:15" expected_parsed_expr = np.r_[10:15] parsed_expr = _parse_float_range_expr(expr) np.testing.assert_array_almost_equal(expected_parsed_expr, parsed_expr) expr = "10:2:15" expected_parsed_expr = np.r_[10:15:2] parsed_expr = _parse_float_range_expr(expr) np.testing.assert_array_almost_equal(expected_parsed_expr, parsed_expr) expr = "-3.4:0.5:5" expected_parsed_expr = np.r_[-3.4:5.0:0.5] parsed_expr = _parse_float_range_expr(expr) np.testing.assert_array_almost_equal(expected_parsed_expr, parsed_expr) # xxxxx Test invalid values xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx expr = "a string" with self.assertRaises(validate.VdtTypeError): _parse_float_range_expr(expr) expr = "10,5" with self.assertRaises(validate.VdtTypeError): _parse_float_range_expr(expr) expr = "10.5." with self.assertRaises(validate.VdtTypeError): _parse_float_range_expr(expr) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Note: Since the "real_scalar_or_real_numpy_array_check" function will # call the "real_numpy_array_check" function we only need a test case # for the "real_scalar_or_real_numpy_array_check" function. def test_real_scalar_or_real_numpy_array_check(self) -> None: try: # noinspection PyUnresolvedReferences import validate except ImportError: # pragma: no cover self.skipTest("test_real_scalar_or_real_numpy_array_check - " "The validate module is not installed") # xxxxxxxxxx Try to parse float scalar values xxxxxxxxxxxxxxxxxxxxx value = "4.6" expected_parsed_value = 4.6 self.assertAlmostEqual(real_scalar_or_real_numpy_array_check(value), expected_parsed_value) self.assertTrue( isinstance(real_scalar_or_real_numpy_array_check(value), float)) value = "76.21" expected_parsed_value = 76.21 self.assertAlmostEqual(real_scalar_or_real_numpy_array_check(value), expected_parsed_value) self.assertTrue( isinstance(real_scalar_or_real_numpy_array_check(value), float)) # Test validation against the minimum and maximum allowed value value = "5.7" with self.assertRaises(validate.VdtValueTooSmallError): real_scalar_or_real_numpy_array_check(value, min=10.0) with self.assertRaises(validate.VdtValueTooBigError): real_scalar_or_real_numpy_array_check(value, max=5.0) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Now we will parse range expressions xxxxxxxxxxxxxxxxxx # Test when the input is a list of strings (with the numbers) list_of_strings = ['0', '6', '17'] parsed_array = real_scalar_or_real_numpy_array_check(list_of_strings, min=0, max=30) expected_parsed_array = np.array([0., 6., 17.]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('float')) np.testing.assert_array_almost_equal(parsed_array, expected_parsed_array) # Test when the input is a string representation of a list with # numbers and range expressions. array_string = "[0 5 10:15]" parsed_array = real_scalar_or_real_numpy_array_check(array_string, min=0, max=30) expected_parsed_array = np.array([0., 5., 10., 11., 12., 13., 14.]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('float')) np.testing.assert_array_almost_equal(parsed_array, expected_parsed_array) array_string = "10:15" parsed_array = real_scalar_or_real_numpy_array_check(array_string, min=0, max=30) expected_parsed_array = np.array([10., 11., 12., 13., 14.]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('float')) np.testing.assert_array_almost_equal(parsed_array, expected_parsed_array) array_string = "[10:15]" parsed_array = real_scalar_or_real_numpy_array_check(array_string, min=0, max=30) expected_parsed_array = np.array([10., 11., 12., 13., 14.]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('float')) np.testing.assert_array_almost_equal(parsed_array, expected_parsed_array) array_string = "[0,5,10:15,20]" parsed_array = real_scalar_or_real_numpy_array_check(array_string, min=0, max=30) expected_parsed_array = np.array( [0., 5., 10., 11., 12., 13., 14., 20.]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('float')) np.testing.assert_array_almost_equal(parsed_array, expected_parsed_array) # xxxxx Test validation against the minimum allowed value xxxxxxxxx array_string = "[0,5,10:15,20]" with self.assertRaises(validate.VdtValueTooSmallError): real_scalar_or_real_numpy_array_check(array_string, min=4, max=30) # xxxxx Test validation against the minimum allowed value xxxxxxxxx with self.assertRaises(validate.VdtValueTooBigError): real_scalar_or_real_numpy_array_check(array_string, min=0, max=15) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Note: Since the "integer_scalar_or_integer_numpy_array_check" # function will call the "integer_numpy_array_check" function we only # need a test case for the # "integer_scalar_or_integer_numpy_array_check" function. def test_integer_scalar_or_integer_numpy_array_check(self) -> None: try: # noinspection PyUnresolvedReferences import validate except ImportError: # pragma: no cover self.skipTest("test_integer_scalar_or_integer_numpy_array_check - " "The validate module is not installed") # xxxxxxxxxx Try to parse float scalar values xxxxxxxxxxxxxxxxxxxxx value = "4" expected_parsed_value = 4 self.assertAlmostEqual( integer_scalar_or_integer_numpy_array_check(value), expected_parsed_value) self.assertTrue( isinstance(integer_scalar_or_integer_numpy_array_check(value), int)) value = "76" expected_parsed_value = 76 self.assertAlmostEqual( integer_scalar_or_integer_numpy_array_check(value), expected_parsed_value) self.assertTrue( isinstance(integer_scalar_or_integer_numpy_array_check(value), int)) # Test validation against the minimum and maximum allowed value value = "6" with self.assertRaises(validate.VdtValueTooSmallError): integer_scalar_or_integer_numpy_array_check(value, min=10) with self.assertRaises(validate.VdtValueTooBigError): integer_scalar_or_integer_numpy_array_check(value, max=5) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Now we will parse range expressions xxxxxxxxxxxxxxxxxx # test when the input is a list of strings list_of_strings = ['0', '6', '17'] parsed_array = integer_scalar_or_integer_numpy_array_check( list_of_strings, min=0, max=30) expected_parsed_array = np.array([0, 6, 17]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('int')) np.testing.assert_array_equal(parsed_array, expected_parsed_array) array_string = "[0 5 10:15]" parsed_array = integer_scalar_or_integer_numpy_array_check( array_string, min=0, max=30) expected_parsed_array = np.array([0, 5, 10, 11, 12, 13, 14]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('int')) np.testing.assert_array_equal(parsed_array, expected_parsed_array) array_string = "10:15" parsed_array = integer_scalar_or_integer_numpy_array_check( array_string, min=0, max=30) expected_parsed_array = np.array([10, 11, 12, 13, 14]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('int')) np.testing.assert_array_equal(parsed_array, expected_parsed_array) array_string = "[10:15]" parsed_array = integer_scalar_or_integer_numpy_array_check( array_string, min=0, max=30) expected_parsed_array = np.array([10, 11, 12, 13, 14]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('int')) np.testing.assert_array_equal(parsed_array, expected_parsed_array) array_string = "[0,5,10:15,20]" parsed_array = integer_scalar_or_integer_numpy_array_check( array_string, min=0, max=30) expected_parsed_array = np.array([0, 5, 10, 11, 12, 13, 14, 20]) self.assertTrue(np.array(parsed_array).dtype is np.dtype('int')) np.testing.assert_array_equal(parsed_array, expected_parsed_array) # xxxxx Test validation against the minimum allowed value xxxxxxxxx array_string = "[0,5,10:15,20]" with self.assertRaises(validate.VdtValueTooSmallError): integer_scalar_or_integer_numpy_array_check(array_string, min=4, max=30) with self.assertRaises(validate.VdtValueTooBigError): integer_scalar_or_integer_numpy_array_check(array_string, min=0, max=15) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxx Parameters Module xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx class ParametersModuleFunctionsTestCase(unittest.TestCase): """ Unit-tests for the functions in the parameters module. """ def setUp(self) -> None: """Called before each test.""" pass def test_combine_simulation_parameters(self) -> None: sim_params1 = SimulationParameters.create({ 'first': 10, 'second': 20, 'third': np.array([1, 3, 2, 5]), 'fourth': ['A', 'B'] }) sim_params1.set_unpack_parameter('third') sim_params1.set_unpack_parameter('fourth') sim_params2 = SimulationParameters.create({ 'first': 10, 'second': 20, 'third': np.array([-1, 1, 3, 8]) }) sim_params2.set_unpack_parameter('third') sim_params3 = SimulationParameters.create({ 'first': 10, 'third': np.array([-1, 1, 3, 8]), 'fourth': ['B', 'C'] }) sim_params3.set_unpack_parameter('third') sim_params3.set_unpack_parameter('fourth') sim_params4 = SimulationParameters.create({ 'first': 10, 'second': 30, 'third': np.array([-1, 1, 3, 8]), 'fourth': ['B', 'C'] }) sim_params4.set_unpack_parameter('third') sim_params4.set_unpack_parameter('fourth') sim_params5 = SimulationParameters.create({ 'first': 10, 'second': 20, 'third': np.array([-1, 1, 3, 8]), 'fourth': ['B', 'C'] }) sim_params5.set_unpack_parameter('fourth') sim_params6 = SimulationParameters.create({ 'first': 10, 'second': 20, 'third': np.array([-1, 1, 3, 8]), 'fourth': ['B', 'C'] }) sim_params6.set_unpack_parameter('third') sim_params6.set_unpack_parameter('fourth') # xxxxxxxxxx Test invalid cases xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx with self.assertRaises(RuntimeError): # sim_params2 does not have the same parameters of sim_params1 combine_simulation_parameters(sim_params1, sim_params2) with self.assertRaises(RuntimeError): # sim_params3 does not have the same parameters of sim_params1 combine_simulation_parameters(sim_params1, sim_params3) with self.assertRaises(RuntimeError): # sim_params4 has the same parameters of sim_params1, but the # value of one of the fixed parameters is different combine_simulation_parameters(sim_params1, sim_params4) with self.assertRaises(RuntimeError): # sim_params4 has the same parameters of sim_params1, but the # parameters set to be unpacked are different combine_simulation_parameters(sim_params1, sim_params5) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test the valid case xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx union = combine_simulation_parameters(sim_params1, sim_params6) self.assertEqual(union['first'], sim_params1['first']) self.assertEqual(union['second'], sim_params1['second']) np.testing.assert_array_almost_equal(union['third'], np.array([-1, 1, 2, 3, 5, 8])) np.testing.assert_array_equal(union['fourth'], np.array(['A', 'B', 'C'])) self.assertEqual(set(union.unpacked_parameters), {'third', 'fourth'}) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx class SimulationParametersTestCase(unittest.TestCase): """ Unit-tests for the SimulationParameters class in the parameters module. """ def setUp(self) -> None: params_dict = {'first': 10, 'second': 20} self.sim_params = SimulationParameters.create(params_dict) def test_create(self) -> None: # The create method was already called in the setUp. self.assertEqual(len(self.sim_params), 2) self.assertEqual(self.sim_params['first'], 10) self.assertEqual(self.sim_params['second'], 20) def test_add(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.assertEqual(len(self.sim_params), 3) np.testing.assert_array_equal(self.sim_params['third'], np.array([1, 3, 2, 5])) # We can also add a parameter with __setitem__ self.sim_params["fourth"] = 17.5 self.assertEqual(len(self.sim_params), 4) np.testing.assert_array_equal(self.sim_params['fourth'], 17.5) def test_unpacking_parameters(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.assertEqual(self.sim_params.get_num_unpacked_variations(), 1) # Test the correct static parameters (should be all parameters for # now) self.assertEqual(set(self.sim_params.fixed_parameters), {'first', 'second', 'third', 'fourth'}) # Let's unpack the parameters 'third' and 'fourth' self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') # One unpacked param with four values and other with two will give # us 4x2=8 unpacked variations. Let's test the # get_num_unpacked_variations() method. self.assertEqual(self.sim_params.get_num_unpacked_variations(), 8) # We make the unpacked_parameters and the expected value sets # because the order does not matter self.assertEqual(set(self.sim_params.unpacked_parameters), {'third', 'fourth'}) # We may have 8 variations, but there are still only 4 parameters self.assertEqual(len(self.sim_params), 4) # Test the correct static parameters self.assertEqual(set(self.sim_params.fixed_parameters), {'first', 'second'}) # Test if an exception is raised if we try to set a non iterable # parameter to be unpacked. self.sim_params.add('fifth', 10) with self.assertRaises(ValueError): self.sim_params.set_unpack_parameter('fifth') # Test if an exception is thrown if we try to set a non existing # parameter to be unset. with self.assertRaises(ValueError): self.sim_params.set_unpack_parameter('sixth') # xxxxx THIS TEST WILL NOT BE PERFORMED IN PYTHON 3 xxxxxxxxxxxxxxx if sys.version_info[0] < 3: # Now that a few parameters were added and set to be unpacked, # lets test the representation of the SimulationParameters # object. Note that the parameters that are marked for # unpacking have '*' appended to their name. self.assertEqual( self.sim_params.__repr__(), "{'second': 20, 'fifth': 10, 'fourth*': ['A', 'B'], " "'third*': [1 3 2 5], 'first': 10}") # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Test if we can unset a parameter that was previously set to be # unpacked. self.sim_params.set_unpack_parameter('fourth', False) self.assertEqual(set(self.sim_params.unpacked_parameters), {'third'}) def test_remove(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.sim_params.add('fifth', ['Z', 'W', 'Y']) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') # Remove parameters second and third self.sim_params.remove('second') # Note that this parameter was marked to be unpacked self.sim_params.remove('third') expected_parameters = { 'first': 10, 'fourth': ['A', 'B'], 'fifth': ['Z', 'W', 'Y'] } expected_unpacked_parameters = {'fourth'} self.assertEqual(self.sim_params.parameters, expected_parameters) self.assertEqual(set(self.sim_params.unpacked_parameters), expected_unpacked_parameters) def test_equal_and_not_equal_operators(self) -> None: other = SimulationParameters() self.assertFalse(self.sim_params == other) self.assertTrue(self.sim_params != other) other.add('first', 10) other.add('second', 20) self.assertTrue(self.sim_params == other) self.assertFalse(self.sim_params != other) self.sim_params.add('third', np.array([1, 3, 2, 5])) self.assertFalse(self.sim_params == other) other.add('third', np.array([1, 3, 2, 5])) self.assertTrue(self.sim_params == other) self.sim_params.set_unpack_parameter('third') self.assertFalse(self.sim_params == other) other.set_unpack_parameter('third') self.assertTrue(self.sim_params == other) other.parameters['third'][2] = 10 self.assertFalse(self.sim_params == other) self.sim_params.parameters['third'][2] = 10 self.assertTrue(self.sim_params == other) # The rep_max parameter is not considering when testing if two # SimulationParameters objects are equal or not. other.add('rep_max', 30) self.sim_params.add('rep_max', 40) self.assertTrue(self.sim_params == other) # Test comparison with something of a different class # noinspection PyTypeChecker self.assertFalse(self.sim_params == 10.4) # Test if two objects are different if the _unpack_index value is # different a = SimulationParameters() a.add('first', [10, 20, 30]) a.add('second', [60, 20, 0]) a.set_unpack_parameter('first') b = SimulationParameters() b.add('first', [10, 20, 30]) b.add('second', [60, 20, 0]) b.set_unpack_parameter('first') self.assertTrue(a == b) a._unpack_index = 1 b._unpack_index = 3 self.assertFalse(a == b) def test_repr(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.set_unpack_parameter("third") self.assertEqual(repr(self.sim_params), "{'first': 10, 'second': 20, 'third*': [1 3 2 5]}") def test_get_unpacked_params_list(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) unpacked_param_list = self.sim_params.get_unpacked_params_list() self.assertEqual(unpacked_param_list, [self.sim_params]) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') params_dict = {'first': [], 'second': [], 'third': [], 'fourth': []} unpacked_param_list = self.sim_params.get_unpacked_params_list() for i in unpacked_param_list: # This will add value multiple times when it shouldn't params_dict['first'].append(i['first']) params_dict['second'].append(i['second']) params_dict['third'].append(i['third']) params_dict['fourth'].append(i['fourth']) # We change all values to sets to remove repeated values for # testing purposes. self.assertEqual(set(params_dict['first']), {self.sim_params['first']}) self.assertEqual(set(params_dict['second']), {self.sim_params['second']}) self.assertEqual(set(params_dict['third']), set(self.sim_params['third'])) self.assertEqual(set(params_dict['fourth']), set(self.sim_params['fourth'])) # Test if the _unpack_index and the _original_sim_params member # variables are correct for each unpacked variation for i in range(self.sim_params.get_num_unpacked_variations()): self.assertEqual(unpacked_param_list[i]._unpack_index, i) self.assertTrue( unpacked_param_list[i]._original_sim_params is self.sim_params) def test_get_num_unpacked_variations(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.assertEqual(self.sim_params.get_num_unpacked_variations(), 1) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') # One unpacked param with four values and other with two will give # us 4x2=8 unpacked variations. Let's test the # get_num_unpacked_variations() method. self.assertEqual(self.sim_params.get_num_unpacked_variations(), 8) # Get the unpacked params list. unpacked_params_list = self.sim_params.get_unpacked_params_list() # If we call the get_num_unpacked_variations method of a unpacked # SimulationParameters object, it should return the number of # unpacked variations of the PARENT object, instead just returning # 1. for u in unpacked_params_list: self.assertEqual(self.sim_params.get_num_unpacked_variations(), u.get_num_unpacked_variations()) def test_get_pack_indexes(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.sim_params.add('fifth', ['Z', 'X', 'W']) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') self.sim_params.set_unpack_parameter('fifth') unpacked_list = self.sim_params.get_unpacked_params_list() # The parameters 'third' and 'fourth' are marked to be unpacked, # while the parameters 'first' and 'second' will always be the # same. The combinations after unpacking are shown below (the order # might be different depending on which version of the python # interpreter was used) # # {'second': 20, 'fifth': Z, 'fourth': A, 'third': 1, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': A, 'third': 3, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': A, 'third': 2, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': A, 'third': 5, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': B, 'third': 1, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': B, 'third': 3, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': B, 'third': 2, 'first': 10} # {'second': 20, 'fifth': Z, 'fourth': B, 'third': 5, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': A, 'third': 1, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': A, 'third': 3, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': A, 'third': 2, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': A, 'third': 5, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': B, 'third': 1, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': B, 'third': 3, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': B, 'third': 2, 'first': 10} # {'second': 20, 'fifth': X, 'fourth': B, 'third': 5, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': A, 'third': 1, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': A, 'third': 3, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': A, 'third': 2, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': A, 'third': 5, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': B, 'third': 1, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': B, 'third': 3, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': B, 'third': 2, 'first': 10} # {'second': 20, 'fifth': W, 'fourth': B, 'third': 5, 'first': 10} # # Lets focus on the 'third' and 'fourth' parameters, since they are # the only ones changing. Suppose we want to get the indexes # corresponding to varying the 'fourth' parameters with the 'third' # parameter equal to 2. We create a dictionary fixed_third_2 = {'third': 2} # Get the indexes where the third parameter has a value of 2. fixed_third_2_indexes = self.sim_params.get_pack_indexes(fixed_third_2) self.assertEqual(len(fixed_third_2_indexes), 6) # Now we test if for these indexes the value of the third parameter # is really 2 for i in fixed_third_2_indexes: self.assertEqual(unpacked_list[i]['third'], 2) fixed_third_5 = {'third': 5} fixed_third_5_indexes = self.sim_params.get_pack_indexes(fixed_third_5) self.assertEqual(len(fixed_third_5_indexes), 6) for i in fixed_third_5_indexes: self.assertEqual(unpacked_list[i]['third'], 5) # now lets fix the 'fourth' parameter and let the 'third' vary. fixed_fourth_A = {'fourth': 'A'} fixed_fourth_A_indexes = self.sim_params.get_pack_indexes( fixed_fourth_A) self.assertEqual(len(fixed_fourth_A_indexes), 12) for i in fixed_fourth_A_indexes: self.assertEqual(unpacked_list[i]['fourth'], 'A') fixed_fourth_B = {'fourth': 'B'} fixed_fourth_B_indexes = self.sim_params.get_pack_indexes( fixed_fourth_B) self.assertEqual(len(fixed_fourth_B_indexes), 12) for i in fixed_fourth_B_indexes: self.assertEqual(unpacked_list[i]['fourth'], 'B') # Lets try to fix some invalid value to see if an exception is # raised fixed_fourth_invalid = {'fourth': 'C'} with self.assertRaises(ValueError): # This should raise a ValueError, since the parameter 'fourth' # has no value 'C' self.sim_params.get_pack_indexes(fixed_fourth_invalid) # Now lets fix the third, fourth and fifth parameters. This should # get me a single index. index1 = self.sim_params.get_pack_indexes({ 'third': 5, 'fourth': 'B', 'fifth': 'Z' })[0] # Now we use the index to get an element in the unpacked_list and # check if the values are the ones that we have fixed. self.assertEqual(unpacked_list[index1]['third'], 5) self.assertEqual(unpacked_list[index1]['fourth'], 'B') self.assertEqual(unpacked_list[index1]['fifth'], 'Z') index2 = self.sim_params.get_pack_indexes({ 'third': 5, 'fourth': 'B', 'fifth': 'X' })[0] # Now we use the index to get an element in the unpacked_list and # check if the values are the ones that we have fixed. self.assertEqual(unpacked_list[index2]['third'], 5) self.assertEqual(unpacked_list[index2]['fourth'], 'B') self.assertEqual(unpacked_list[index2]['fifth'], 'X') index3 = self.sim_params.get_pack_indexes({ 'third': 2, 'fourth': 'A', 'fifth': 'Z' })[0] # Now we use the index to get an element in the unpacked_list and # check if the values are the ones that we have fixed. self.assertEqual(unpacked_list[index3]['third'], 2) self.assertEqual(unpacked_list[index3]['fourth'], 'A') self.assertEqual(unpacked_list[index3]['fifth'], 'Z') def test_to_dict_and_from_dict(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') # xxxxxxxxxx Test converting to and from a dictionary xxxxxxxxxxxxx # First test converting to a dictionary out = self.sim_params._to_dict() self.assertIsInstance(out, dict) self.assertEqual(out['parameters'], self.sim_params.parameters) self.assertEqual(out['unpacked_parameters_set'], self.sim_params._unpacked_parameters_set) self.assertEqual(out['unpack_index'], self.sim_params._unpack_index) self.assertEqual(out['original_sim_params'], self.sim_params._original_sim_params) # Now test converting from the dictionary sim_params = SimulationParameters._from_dict(out) self.assertEqual(sim_params, self.sim_params) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat tests with unpacked parameters xxxxxxxxxxxxxxxx # First test converting to a dictionary sim_params_unpacked_list = self.sim_params.get_unpacked_params_list() for sim_params_elem in sim_params_unpacked_list: # sim_params_elem = sim_params_unpacked_list[0] out_elem = sim_params_elem._to_dict() self.assertIsInstance(out_elem, dict) self.assertEqual(out_elem['parameters'], sim_params_elem.parameters) self.assertEqual(out_elem['unpacked_parameters_set'], sim_params_elem._unpacked_parameters_set) self.assertEqual(out_elem['unpack_index'], sim_params_elem._unpack_index) self.assertEqual(out_elem['original_sim_params'], sim_params_elem._original_sim_params._to_dict()) # Now test converting from the dictionary sim_params_elem_d = SimulationParameters._from_dict(out_elem) self.assertEqual(sim_params_elem, sim_params_elem_d) self.assertEqual(sim_params_elem_d._original_sim_params, self.sim_params) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test with an empty SimulationParameters xxxxxxxxxxxxxx empty_simparams = SimulationParameters() empty_simparams_dict = empty_simparams._to_dict() empty_simparams_d = SimulationParameters._from_dict( empty_simparams_dict) self.assertEqual(empty_simparams, empty_simparams_d) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_to_json_and_from_json(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') # xxxxxxxxxx Test converting to and from a json xxxxxxxxxxxxxxxxxxx # First test converting to json encoded_params = self.sim_params.to_json() self.assertIsInstance(encoded_params, str) # This will raise an exception if encoded_params is not valid json _ = json.loads(encoded_params) # Now test converting from json decoded_params = SimulationParameters.from_json(encoded_params) self.assertTrue(self.sim_params == decoded_params) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat tests with unpacked parameters xxxxxxxxxxxxxxxx sim_params_unpacked_list = self.sim_params.get_unpacked_params_list() for sim_params_elem in sim_params_unpacked_list: # First test converting to json encoded_sim_params_elem = sim_params_elem.to_json() self.assertIsInstance(encoded_sim_params_elem, str) # This will raise an exception if encoded_params is not valid json _ = json.loads(encoded_params) # Now test converting from json decoded_sim_params_elem = SimulationParameters.from_json( encoded_sim_params_elem) self.assertEqual(decoded_sim_params_elem, sim_params_elem) self.assertEqual(decoded_sim_params_elem._original_sim_params, self.sim_params) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_save_to_and_load_from_pickle_file(self) -> None: self.sim_params.add('third', np.array([1, 3, 2, 5])) self.sim_params.add('fourth', ['A', 'B']) self.sim_params.set_unpack_parameter('third') self.sim_params.set_unpack_parameter('fourth') filename = 'params.pickle' # Let's make sure the file does not exist delete_file_if_possible(filename) # Save to the file self.sim_params.save_to_pickled_file(filename) # Load from the file sim_params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(self.sim_params['first'], sim_params2['first']) self.assertEqual(self.sim_params['second'], sim_params2['second']) self.assertEqual(len(self.sim_params), len(sim_params2)) self.assertEqual(self.sim_params.get_num_unpacked_variations(), sim_params2.get_num_unpacked_variations()) # Delete the where the parameters were saved delete_file_if_possible(filename) # xxxxx Test saving and loading one of the unpacked variations xxxx filename2 = 'params_3.pickle' fourth_unpacked_param = self.sim_params.get_unpacked_params_list()[3] fourth_unpacked_param.save_to_pickled_file(filename2) fourth_unpacked_param2 = SimulationParameters.load_from_pickled_file( filename2) self.assertEqual(fourth_unpacked_param, fourth_unpacked_param2) # Delete the where the parameters were saved delete_file_if_possible(filename2) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_save_and_load_sanity(self) -> None: # Test if when saving and loading the simulation parameters the # list of unpacked parameters is in the same order. # # Previously the order of the list of unpacked parameters could # change after saving and loading the SimulationParameters object # from a file. This would cause problems for the SimulationResults # class. This bug was fixed by making sure the order of the # unpacked parameters list is fixed (sorted by alphabetic order) # and here we test for the bug in case it ever comes back after # some code change. params = SimulationParameters.create({ 'first': np.array([0, 5, 10, 26]), 'second': ['aha', 'ahe'], 'third': [10], 'fourth': [30], 'fifth': ['hum', 'blabla'], 'sixth': ['a', 'b', 'c'], 'seventh': ['ok', 'not ok', 'maybe'] }) filename = 'paramsfile.pickle' # Test without unpacking any parameter unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the first one and test params.set_unpack_parameter('first') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the second one and test again params.set_unpack_parameter('second') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the third one and test again params.set_unpack_parameter('third') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the fourth one and test again params.set_unpack_parameter('fourth') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the fifth one and test again params.set_unpack_parameter('fifth') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the sixth one and test again params.set_unpack_parameter('sixth') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # Unpack the seventh one and test again params.set_unpack_parameter('seventh') unpacked_parameters = copy(params.unpacked_parameters) delete_file_if_possible(filename) params.save_to_pickled_file(filename) params2 = SimulationParameters.load_from_pickled_file(filename) self.assertEqual(unpacked_parameters, params2.unpacked_parameters) delete_file_if_possible(filename) # noinspection PyUnresolvedReferences def test_load_from_config_file(self) -> None: try: import configobj import validate del configobj del validate except ImportError: # pragma: no cover self.skipTest( "test_load_from_config_file - " "This configobj and validate modules must be installed.") filename = 'test_config_file.txt' # xxxxxxxxxx Write the config file xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # First we delete the file if it exists delete_file_if_possible(filename) fid = open(filename, 'w') fid.write("modo=test\n[Scenario]\nSNR=0,5,10\nM=4\nmodulator=PSK\n" "[IA Algorithm]\nmax_iterations=60") fid.close() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Read the parameters from the file xxxxxxxxxxxxxxxxxxxx # Since we are not specifying a "validation spec" all parameters # will be read as strings or list of strings. params = SimulationParameters.load_from_config_file(filename) self.assertEqual(len(params), 5) self.assertEqual(params['modo'], 'test') self.assertEqual(params['SNR'], ['0', '5', '10']) self.assertEqual(params['M'], '4') self.assertEqual(params['modulator'], 'PSK') self.assertEqual(params['max_iterations'], '60') # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxx Read the parameters from file with a validation spec xxxxxx spec = """modo=string [Scenario] SNR=real_numpy_array(default=15) M=integer(min=4, max=512, default=4) modulator=option('PSK', 'QAM', 'BPSK', default="PSK") [IA Algorithm] max_iterations=integer(min=1) unpacked_parameters=string_list(default=list('SNR')) """.split("\n") params2 = SimulationParameters.load_from_config_file(filename, spec) self.assertEqual(len(params2), 6) self.assertEqual(params2['modo'], 'test') np.testing.assert_array_almost_equal(params2['SNR'], np.array([0., 5., 10.])) self.assertEqual(params2['M'], 4) self.assertEqual(params2['modulator'], 'PSK') self.assertEqual(params2['max_iterations'], 60) self.assertEqual(params2['unpacked_parameters'], ['SNR']) self.assertEqual(params2.unpacked_parameters, ['SNR']) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Lets create an invalid config file and try to load the parameters # First we provide an invalid value for M fid = open(filename, 'w') fid.write("modo=test\n[Scenario]\nSNR=0,5,10\nM=-4\nmodulator=PSK\n" "[IA Algorithm]\nmax_iterations=60") fid.close() with self.assertRaises(Exception): SimulationParameters.load_from_config_file(filename, spec) # Now we do not provide the required parameter max_iterations fid = open(filename, 'w') fid.write("modo=test\n[Scenario]\nSNR=0,5,10\nM=4\nmodulator=PSK\n" "[IA Algorithm]") fid.close() with self.assertRaises(Exception): SimulationParameters.load_from_config_file(filename, spec) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Remove the config file used in this test xxxxxxxxxxxxx delete_file_if_possible(filename) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_to_dataframe(self) -> None: # If the pandas package is not installed, we will skip testing this # method if not _PANDAS_AVAILABLE: # pragma: nocover self.skipTest("test_to_dataframe - Pandas is not installed") # Create some dummy parameters (including two parameters set to be # unpacked) params = SimulationParameters() # Try converting an empty SimulationParameters df = params.to_dataframe() self.assertTrue(isinstance(df, DataFrame)) self.assertTrue(df.empty) params.add("extra", 2.3) params.add("SNR", np.array([0, 3, 6, 9])) params.add("bias", [1.2, 1.6]) params.set_unpack_parameter('SNR') params.set_unpack_parameter('bias') params.add("Name", "Some string") df = params.to_dataframe() self.assertEqual(len(df.columns), 4) self.assertEqual(len(df), params.get_num_unpacked_variations()) col_names = ["SNR", "bias", "Name", "extra"] for name in col_names: self.assertIn(name, df.columns) for i, l in enumerate(params.get_unpacked_params_list()): for col_names in ["SNR", "bias", "Name", "extra"]: self.assertAlmostEqual(l[col_names], df.loc[i, col_names]) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxx Results Module xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx class ResultsModuleFunctionsTestCase(unittest.TestCase): def setUp(self) -> None: """Called before each test.""" pass def test_combine_simulation_results(self) -> None: dummyrunner = _DummyRunner() dummyrunner.simulate() dummyrunner2 = _DummyRunner() dummyrunner2.simulate() dummyrunner3 = _DummyRunner() dummyrunner3.params.add('extra', np.array([4.1, 5.7, 6.2])) dummyrunner3.simulate() results1 = dummyrunner.results results2 = dummyrunner2.results results3 = dummyrunner3.results results2.add_new_result('bla', Result.SUMTYPE, 10) # Lets modify the result1 just to make the tests later not trivial for r in results1['lala']: r._value += 0.8 # If both SimulationResults objects do not have exactly the same # results (names, not values), an exception will be raised. with self.assertRaises(RuntimeError): combine_simulation_results(results1, results2) # results1 and results3 can be combined union = combine_simulation_results(results1, results3) # xxxxxxxxxx Test the parameters of the combined object xxxxxxxxxxx # Note that combine_simulation_parameters is already tested comb_params = combine_simulation_parameters(results1.params, results3.params) # Test if the parameters of the combined result object are correct self.assertEqual(comb_params, union.params) # xxxxxxxxxx Test the results of the combined object xxxxxxxxxxxxxx # Note that the 'elapsed_time' and 'num_skipped_reps' results are # always added by the SimulationRunner class. self.assertEqual(set(union.get_result_names()), {'elapsed_time', 'lala', 'num_skipped_reps'}) # The unpacked param list of union is (the order might be different) # [{'bias': 1.3, 'SNR': 0.0, 'extra': 2.2}, # {'bias': 1.3, 'SNR': 0.0, 'extra': 4.1}, # {'bias': 1.3, 'SNR': 0.0, 'extra': 5.7}, # {'bias': 1.3, 'SNR': 0.0, 'extra': 6.2}, # {'bias': 1.3, 'SNR': 5.0, 'extra': 2.2}, # {'bias': 1.3, 'SNR': 5.0, 'extra': 4.1}, # {'bias': 1.3, 'SNR': 5.0, 'extra': 5.7}, # {'bias': 1.3, 'SNR': 5.0, 'extra': 6.2}, # {'bias': 1.3, 'SNR': 10.0, 'extra': 2.2}, # {'bias': 1.3, 'SNR': 10.0, 'extra': 4.1}, # {'bias': 1.3, 'SNR': 10.0, 'extra': 5.7}, # {'bias': 1.3, 'SNR': 10.0, 'extra': 6.2}, # {'bias': 1.3, 'SNR': 15.0, 'extra': 2.2}, # {'bias': 1.3, 'SNR': 15.0, 'extra': 4.1}, # {'bias': 1.3, 'SNR': 15.0, 'extra': 5.7}, # {'bias': 1.3, 'SNR': 15.0, 'extra': 6.2}, # {'bias': 1.3, 'SNR': 20.0, 'extra': 2.2}, # {'bias': 1.3, 'SNR': 20.0, 'extra': 4.1}, # {'bias': 1.3, 'SNR': 20.0, 'extra': 5.7}, # {'bias': 1.3, 'SNR': 20.0, 'extra': 6.2}] # # The number of updates of each result in union should be equal to # 2, except for the results corresponding to the 'extra' parameter # value of 4.1, which is repeated in results1 and results3. all_indexes = set(range(union.params.get_num_unpacked_variations())) index_extra_4dot1 = set(union.params.get_pack_indexes({'extra': 4.1})) other_indexes = all_indexes - index_extra_4dot1 for index in index_extra_4dot1: self.assertEqual(union['lala'][index].num_updates, 4) for index in other_indexes: self.assertEqual(union['lala'][index].num_updates, 2) # Calculate the expected lala results expected_lala_results = list( repeat(0, union.params.get_num_unpacked_variations())) for index, variation in enumerate( union.params.get_unpacked_params_list()): count = 0. snr = variation['SNR'] extra = variation['extra'] try: r1index = results1.params.get_pack_indexes({ 'SNR': snr, 'extra': extra })[0] count += 1. expected_lala_results[index] \ += results1['lala'][r1index].get_result() except ValueError: pass try: r3index = results3.params.get_pack_indexes({ 'SNR': snr, 'extra': extra })[0] count += 1. expected_lala_results[index] \ += results3['lala'][r3index].get_result() except ValueError: pass expected_lala_results[index] /= count union_lala_results = [v.get_result() for v in union['lala']] self.assertEqual(expected_lala_results, union_lala_results) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx class ResultTestCase(unittest.TestCase): """ Unit-tests for the Result class in the results module. """ def setUp(self) -> None: """Called before each test.""" self.result1 = Result("name", Result.SUMTYPE) self.result2 = Result("name2", Result.RATIOTYPE) self.result3 = Result("name3", Result.MISCTYPE) self.result4 = Result("name4", Result.CHOICETYPE, choice_num=6) def test_init(self) -> None: # Test if an exception is raised if we try to create a result type # with choice_num not being an integer with self.assertRaises(RuntimeError): # noinspection PyTypeChecker Result("name4", Result.CHOICETYPE, choice_num=6.6) def test_get_update_type(self) -> None: """ Test the two properties, one to get the update type code and other to get the update type name. Note that both properties reflect the value of the same variable, the self._update_type variable. """ self.assertEqual(self.result1.type_code, Result.SUMTYPE) self.assertEqual(self.result1.type_name, "SUMTYPE") self.assertEqual(self.result2.type_code, Result.RATIOTYPE) self.assertEqual(self.result2.type_name, "RATIOTYPE") self.assertEqual(self.result3.type_code, Result.MISCTYPE) self.assertEqual(self.result3.type_name, "MISCTYPE") self.assertEqual(self.result4.type_code, Result.CHOICETYPE) self.assertEqual(self.result4.type_name, "CHOICETYPE") # Test that the possible type codes are different self.assertEqual( 4, len({ Result.SUMTYPE, Result.RATIOTYPE, Result.MISCTYPE, Result.CHOICETYPE })) def test_update(self) -> None: # Test the update function of the SUMTYPE self.result1.update(13) self.result1.update(4) self.assertEqual(self.result1._value, 17) self.assertEqual(self.result1.get_result(), 17) # Test the update function of the RATIOTYPE self.result2.update(3, 4) self.result2.update(9, 36) self.assertEqual(self.result2._value, 12) self.assertEqual(self.result2._total, 40) self.assertEqual(self.result2.get_result(), 0.3) self.result2.update(12, 8) self.assertEqual(self.result2.get_result(), 0.5) # Test the update function of the MISCTYPE. Note how we can store # anything. self.result3.update("First") self.assertEqual(self.result3.get_result(), "First") self.result3.update("Second") self.assertEqual(self.result3.get_result(), "Second") self.result3.update(0.4) self.assertEqual(self.result3.get_result(), 0.4) self.result3.update(0.4) self.assertEqual(self.result3.get_result(), 0.4) # Test the update function of the CHOICETYPE. self.result4.update(0) self.result4.update(1) self.result4.update(0) self.result4.update(4) np.testing.assert_array_almost_equal(self.result4.get_result(), [.5, .25, 0, 0, .25, 0]) self.result4.update(5) np.testing.assert_array_almost_equal(self.result4.get_result(), [.4, .2, 0, 0, .2, .2]) # Test if an exception is raised when updating a Result of the # RATIOTYPE without specifying both the value and the total. with self.assertRaises(ValueError): self.result2.update(3) # Test if an exception is thrown when updating a result of some # unknown type # noinspection PyTypeChecker result_invalid = Result('invalid', 'invalid_type') with self.assertRaises(ValueError): result_invalid.update(10) # Test if an exception is raised for the CHOICETYPE if the updated # value is not a correct index. with self.assertRaises(IndexError): self.result4.update(8) with self.assertRaises(AssertionError): self.result4.update(3.4) def test_update_with_accumulate(self) -> None: result1 = Result('name', Result.SUMTYPE, accumulate_values=True) self.assertEqual(result1.accumulate_values_bool, result1._accumulate_values_bool) result1.update(13) result1.update(30) self.assertEqual(result1._value, 43) self.assertEqual(result1.get_result(), 43) self.assertEqual(result1._total, 0) self.assertEqual(result1._value_list, [13, 30]) self.assertEqual(result1._total_list, []) result2 = Result('name', Result.RATIOTYPE, accumulate_values=True) result2.update(3, 10) result2.update(6, 7) result2.update(1, 15) self.assertEqual(result2._value, 10) self.assertEqual(result2._total, 32) self.assertEqual(result2.get_result(), 0.3125) self.assertEqual(result2._value_list, [3, 6, 1]) self.assertEqual(result2._total_list, [10, 7, 15]) result3 = Result('name', Result.MISCTYPE, accumulate_values=True) result3.update(3) result3.update("some string") result3.update(2) self.assertEqual(result3._value, 2) self.assertEqual(result3._total, 0) self.assertEqual(result3.get_result(), 2) self.assertEqual(result3._value_list, [3, "some string", 2]) self.assertEqual(result3._total_list, []) result4 = Result('name', Result.CHOICETYPE, accumulate_values=True, choice_num=5) result4.update(3) result4.update(1) result4.update(0) result4.update(3) result4.update(4) np.testing.assert_array_almost_equal(result4._value, [1, 1, 0, 2, 1]) np.testing.assert_array_almost_equal(result4.get_result(), [.2, .2, 0, .4, .2]) self.assertEqual(result4._total, 5) self.assertEqual(result4._value_list, [3, 1, 0, 3, 4]) self.assertEqual(result4._total_list, []) def test_create(self) -> None: r1 = Result.create(name='nome1', update_type=Result.SUMTYPE, value=10.4, accumulate_values=False) r1.update(3.5) self.assertEqual(r1.num_updates, 2) self.assertEqual(r1.get_result(), 13.9) self.assertEqual(r1._value_list, []) self.assertEqual(r1._total_list, []) r2 = Result.create(name='nome2', update_type=Result.RATIOTYPE, value=10.4, total=20.2, accumulate_values=True) r2.update(2, 3) r2.update(4.2, 5.3) self.assertEqual(r2.num_updates, 3) self.assertAlmostEqual(r2.get_result(), 0.58245614) self.assertEqual(r2._value_list, [10.4, 2, 4.2]) self.assertEqual(r2._total_list, [20.2, 3, 5.3]) r3 = Result.create(name='nome3', update_type=Result.MISCTYPE, value='valor', accumulate_values=True) self.assertEqual(r3.num_updates, 1) self.assertEqual(r3.get_result(), 'valor') with self.assertRaises(RuntimeError): # Try to create a result of CHOICETYPE without specifying the total # raises an exception Result.create(name='nome4', update_type=Result.CHOICETYPE, value=3, accumulate_values=True) r4 = Result.create(name='nome4', update_type=Result.CHOICETYPE, value=3, total=6, accumulate_values=True) r4.update(5) self.assertEqual(r4.num_updates, 2) np.testing.assert_equal(r4._value, [0, 0, 0, 1, 0, 1]) def test_merge(self) -> None: # Test merge of Results of SUMTYPE self.result1.update(13) self.result1.update(30) result_sum_before1 = self.result1._result_sum result_sum_sqr_before1 = self.result1._result_squared_sum result1_other = Result.create("name", Result.SUMTYPE, 11) expected_result_sum1 = result_sum_before1 + result1_other._result_sum expected_result_sqr_sum1 = (result_sum_sqr_before1 + result1_other._result_squared_sum) self.result1.merge(result1_other) self.assertEqual(self.result1.name, "name") self.assertEqual(self.result1.get_result(), 54) self.assertEqual(self.result1.num_updates, 3) self.assertEqual(self.result1._result_sum, expected_result_sum1) self.assertEqual(self.result1._result_squared_sum, expected_result_sqr_sum1) # Test merge of Results of RATIOTYPE self.result2.update(3, 10) self.result2.update(6, 7) self.result2.update(1, 15) result_sum_before2 = self.result2._result_sum result_sum_sqr_before2 = self.result2._result_squared_sum result2_other = Result.create("name2", Result.RATIOTYPE, 34, 50) result2_other.update(12, 18) expected_result_sum2 = result_sum_before2 + result2_other._result_sum expected_result_sqr_sum2 = (result_sum_sqr_before2 + result2_other._result_squared_sum) self.result2.merge(result2_other) self.assertEqual(self.result2.name, "name2") self.assertEqual(self.result2._value, 56) self.assertEqual(self.result2._total, 100) self.assertEqual(self.result2.get_result(), 0.56) self.assertEqual(self.result2.num_updates, 5) self.assertEqual(self.result2._result_sum, expected_result_sum2) self.assertEqual(self.result2._result_squared_sum, expected_result_sqr_sum2) # Test merge of Results of MISCTYPE # There is no merge for misc type and an exception should be raised self.result3.update(0.4) result3_other = Result.create("name3", Result.MISCTYPE, 3) # with self.assertRaises(AssertionError): self.result3.merge(result3_other) self.assertEqual(self.result3.get_result(), 3) # Test merge of Results of CHOICETYPE result4_other = Result.create("name4", Result.CHOICETYPE, 3, 6) result4_other.update(2) self.result4.update(1) self.result4.update(0) self.result4.update(3) self.result4.merge(result4_other) self.assertEqual(self.result4.name, 'name4') np.testing.assert_array_almost_equal(self.result4._value, [1, 1, 1, 2, 0, 0]) self.assertEqual(self.result4._total, 5) np.testing.assert_array_almost_equal(self.result4.get_result(), [.2, .2, .2, .4, 0, 0]) self.assertEqual(self.result4.num_updates, 5) # Test merging results with different name or type result5 = Result.create("name5", Result.SUMTYPE, 3) with self.assertRaises(AssertionError): self.result1.merge(result5) result6 = Result.create("name", Result.RATIOTYPE, 3, 4) with self.assertRaises(AssertionError): self.result1.merge(result6) def test_merge_with_accumulate(self) -> None: result1 = Result('name', Result.SUMTYPE, accumulate_values=True) result1.update(13) result1.update(30) result1_other = Result.create("name", Result.SUMTYPE, 11, accumulate_values=True) result1_other.update(22) result1_other.update(4) result1.merge(result1_other) self.assertEqual(result1.get_result(), 80) self.assertEqual(result1._value_list, [13, 30, 11, 22, 4]) self.assertEqual(result1._total_list, []) result2 = Result('name2', Result.RATIOTYPE, accumulate_values=True) result2.update(3, 10) result2.update(6, 7) result2.update(1, 15) result2_other = Result.create("name2", Result.RATIOTYPE, 34, 50, accumulate_values=True) result2_other.update(12, 18) result2.merge(result2_other) self.assertEqual(result2._value, 56) self.assertEqual(result2._value_list, [3, 6, 1, 34, 12]) self.assertEqual(result2._total, 100) self.assertEqual(result2._total_list, [10, 7, 15, 50, 18]) self.assertEqual(result2.get_result(), 0.56) self.assertEqual(result2.num_updates, 5) # Test if an exception is raised if we try to merge with a Result # object which does not have the accumulate_values property set to # True result3 = Result('name2', Result.RATIOTYPE, accumulate_values=False) result3.update(2, 6) result3.update(7, 15) result3.update(2, 5) with self.assertRaises(AssertionError): result2.merge(result3) # Not that the opposite is possible. That is, a Result object # without accumulated values can be merged with a Result object # with accumulated values. In that case, the accumulated values of # the second object will be ignored. result3.merge(result2) self.assertEqual(result3._value, 67) self.assertEqual(result3._total, 126) self.assertEqual(result3._value_list, []) self.assertEqual(result3._total_list, []) # Test for the CHOICETYPE type result4 = Result.create('name4', Result.CHOICETYPE, 2, 4, accumulate_values=True) result4.update(0) result4.update(3) result4_other = Result.create('name4', Result.CHOICETYPE, 0, 4, accumulate_values=True) result4_other.update(3) result4.merge(result4_other) self.assertEqual(result4._value_list, [2, 0, 3, 0, 3]) self.assertEqual(result4._total_list, []) np.testing.assert_array_almost_equal(result4.get_result(), np.array([2, 0, 1, 2]) / 5.) def test_get_result_mean_and_var(self) -> None: # Test for Result.SUMTYPE result1 = Result('name', Result.SUMTYPE, accumulate_values=True) result1.update(13) result1.update(30) result1_other = Result.create("name", Result.SUMTYPE, 11, accumulate_values=True) result1_other.update(22) result1_other.update(4) result1.merge(result1_other) self.assertEqual(result1.get_result(), 80) expected_mean1 = np.array(result1._value_list, dtype=float).mean() self.assertAlmostEqual(result1.get_result_mean(), expected_mean1) expected_var1 = np.array(result1._value_list).var() self.assertAlmostEqual(result1.get_result_var(), expected_var1) # Test for Result.RATIOTYPE result2 = Result('name2', Result.RATIOTYPE, accumulate_values=True) result2.update(3, 10) result2.update(6, 7) result2.update(1, 15) result2_other = Result.create("name2", Result.RATIOTYPE, 34, 50, accumulate_values=True) result2_other.update(12, 18) result2.merge(result2_other) aux2 = (np.array(result2._value_list, dtype=float) / np.array(result2._total_list, dtype=float)) expected_mean2 = aux2.mean() self.assertAlmostEqual(result2.get_result_mean(), expected_mean2) expected_var2 = aux2.var() self.assertAlmostEqual(result2.get_result_var(), expected_var2) def test_representation(self) -> None: self.assertEqual(self.result1.__repr__(), "Result -> name: Nothing yet") self.assertEqual(self.result2.__repr__(), "Result -> name2: 0/0 -> NaN") self.assertEqual(self.result3.__repr__(), "Result -> name3: Nothing yet") self.assertEqual(self.result4.__repr__(), "Result -> name4: Nothing yet") self.result1.update(10) self.result2.update(2, 4) self.result3.update(0.4) self.result4.update(3) self.result4.update(2) self.assertEqual(self.result1.__repr__(), "Result -> name: 10") self.assertEqual(self.result2.__repr__(), "Result -> name2: 2/4 -> 0.5") self.assertEqual(self.result3.__repr__(), "Result -> name3: 0.4") self.assertEqual(self.result4.__repr__(), "Result -> name4: [0. 0. 0.5 0.5 0. 0. ]") def test_equal_and_not_equal_operators(self) -> None: self.result1.update(10) self.result1.update(7) result1 = Result.create("name", Result.SUMTYPE, 7) result1.update(10) self.assertTrue(self.result1 == result1) self.assertFalse(self.result1 != result1) result1_other = Result.create("name", Result.SUMTYPE, 7) result1_other.update(9) self.assertFalse(self.result1 == result1_other) self.assertTrue(self.result1 != result1_other) result1._update_type_code = 1 self.assertFalse(self.result1 == result1) self.assertTrue(self.result1 != result1) # Also test for the CHOICETYPE type, since it store the _value # member variable as a numpy array self.result4.update(3) self.result4.update(1) result4 = Result.create('name4', Result.CHOICETYPE, 1, 4) result4.update(3) # result4 only has 4 elements, while self.result6 has 6. self.assertTrue(self.result4 != result4) result4_other = Result.create('name4', Result.CHOICETYPE, 1, 6) result4_other.update(3) self.assertTrue(self.result4 == result4_other) result4_other.update(2) self.result4.update(1) self.assertFalse(self.result4 == result4_other) # Test comparison with something of a different class self.assertFalse(self.result4 == 10.4) def test_calc_confidence_interval(self) -> None: # Test if an exceptions is raised for a Result object of the # MISCTYPE update type. with self.assertRaises(RuntimeError): # A result object of the MISCTYPE type cannot use the # calc_confidence_interval method, since this update ignores # the accumulate_values option and never accumulates any value. self.result3.get_confidence_interval() # # Test if an exception is raised if the accumulate_values option # # was not set to True # with self.assertRaises(RuntimeError): # self.result1.get_confidence_interval() result = Result('name', Result.RATIOTYPE, accumulate_values=True) # # Test if an exception is raised if there are not stored values yet # with self.assertRaises(RuntimeError): # result.get_confidence_interval() # Now lets finally store some values. result.update(10, 30) result.update(3, 24) result.update(15, 42) result.update(5, 7) # Calculate the expected confidence interval A = (np.array(result._value_list, dtype=float) / np.array(result._total_list, dtype=float)) expected_confidence_interval = calc_confidence_interval(A.mean(), A.std(), A.size, P=95) confidence_interval = result.get_confidence_interval(P=95) np.testing.assert_array_almost_equal(expected_confidence_interval, confidence_interval) def test_to_dict_from_dict(self) -> None: self.result1.update(13) self.result1.update(30) self.result2.update(3, 10) self.result2.update(6, 7) self.result2.update(1, 15) self.result3.update(3) self.result3.update("some string") self.result3.update(2) self.result4.update(3) self.result4.update(1) self.result4.update(0) self.result4.update(3) self.result4.update(4) # xxxxxxxxxx Test converting to a dictionary xxxxxxxxxxxxxxxxxxxxxx result1_dict = self.result1.to_dict() result2_dict = self.result2.to_dict() result3_dict = self.result3.to_dict() result4_dict = self.result4.to_dict() self.assertIsInstance(result1_dict, dict) self.assertIsInstance(result2_dict, dict) self.assertIsInstance(result3_dict, dict) self.assertIsInstance(result4_dict, dict) # We will not test individual dictionary keys here, since we will # test later if we can recover the actual Result object from the # dictionary and that should be enough. # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test converting from a dictionary xxxxxxxxxxxxxxxxxxxx result1 = Result.from_dict(result1_dict) result2 = Result.from_dict(result2_dict) result3 = Result.from_dict(result3_dict) result4 = Result.from_dict(result4_dict) self.assertEqual(self.result1, result1) self.assertEqual(self.result2, result2) self.assertEqual(self.result3, result3) self.assertEqual(self.result4, result4) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_to_json_and_from_json(self) -> None: self.result1.update(13) self.result1.update(30) self.result2.update(3, 10) self.result2.update(6, 7) self.result2.update(1, 15) self.result3.update(3) self.result3.update("some string") self.result3.update(2) self.result4.update(3) self.result4.update(1) self.result4.update(0) self.result4.update(3) self.result4.update(4) # TODO: finish implementation # xxxxxxxxxx Test converting to and from a json xxxxxxxxxxxxxxxxxxx # First test converting to json result1_json = self.result1.to_json() result2_json = self.result2.to_json() result3_json = self.result3.to_json() result4_json = self.result4.to_json() # This will raise an exception if encoded_params is not valid json _ = json.loads(result1_json) _ = json.loads(result2_json) _ = json.loads(result3_json) _ = json.loads(result4_json) # Now test converting from json result1 = Result.from_json(result1_json) result2 = Result.from_json(result2_json) result3 = Result.from_json(result3_json) result4 = Result.from_json(result4_json) self.assertEqual(self.result1, result1) self.assertEqual(self.result2, result2) self.assertEqual(self.result3, result3) self.assertEqual(self.result4, result4) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # noinspection PyMethodMayBeStatic class SimulationResultsTestCase(unittest.TestCase): """ Unit-tests for the SimulationResults class in the results module. """ def setUp(self) -> None: # First SimulationResults object self.simresults = SimulationResults() self.simresults.add_new_result("lala", Result.SUMTYPE, 13) result2 = Result("lele", Result.RATIOTYPE) result2.update(3, 10) result2.update(8, 10) self.simresults.add_result(result2) result4 = Result.create('lulu', Result.CHOICETYPE, 3, 6) result4.update(1) self.simresults.add_result(result4) # Second SimulationResults object self.other_simresults = SimulationResults() result1_other = Result.create('lala', Result.SUMTYPE, 30) result2_other = Result.create('lele', Result.RATIOTYPE, 4, 10) result3 = Result.create('lili', Result.MISCTYPE, "a string") self.other_simresults.add_result(result1_other) self.other_simresults.add_result(result2_other) self.other_simresults.add_result(result3) result4_other = Result.create('lulu', Result.CHOICETYPE, 0, 6) result4_other.update(5) result4_other.update(5) self.other_simresults.add_result(result4_other) def test_params_property(self) -> None: params = SimulationParameters() params.add('number', 10) params.add('name', 'lala') # Try to set the parameters to an invalid object with self.assertRaises(ValueError): # noinspection PyTypeChecker self.simresults.set_parameters(10) # Set the simulation parameters self.simresults.set_parameters(params) # test the get property params2 = self.simresults.params self.assertEqual(len(params), len(params2)) self.assertEqual(params['number'], params2['number']) self.assertEqual(params['name'], params2['name']) def test_get_result_names(self) -> None: # The output of the get_result_names is a list of names. We # transform it into a set in this test only to make the order of # the names unimportant. expected_output = {'lala', 'lele', 'lulu'} self.assertEqual(set(self.simresults.get_result_names()), expected_output) # Test also the representation of the SimulationResults object self.assertEqual(self.simresults.__repr__(), """SimulationResults: ['lala', 'lele', 'lulu']""") def test_add_result(self) -> None: # Add a result with the same name of an existing result -> Should # replace it result1_other = Result.create("lala", Result.SUMTYPE, 25) self.simresults.add_result(result1_other) self.assertEqual(len(self.simresults['lala']), 1) self.assertEqual(self.simresults['lala'][0].get_result(), 25) # Add a new result result3 = Result.create('lili', Result.MISCTYPE, "a string") self.simresults.add_result(result3) self.assertEqual(set(self.simresults.get_result_names()), {"lala", "lele", "lili", "lulu"}) self.assertEqual(self.simresults['lili'][0].get_result(), "a string") def test_append_result(self) -> None: result1_other = Result.create("lala", Result.SUMTYPE, 25) self.simresults.append_result(result1_other) # Since we append a new Result with the name 'lala', then now we # should have two Results for 'lala' (in a simulation these two # results would probably corresponds to 'lala' results with # different simulation parameters) self.assertEqual(len(self.simresults['lala']), 2) self.assertEqual(self.simresults['lala'][0].get_result(), 13) self.assertEqual(self.simresults['lala'][1].get_result(), 25) # Test if an exception is thrown if we try to append result with a # different type result1_wrong = Result.create("lala", Result.RATIOTYPE, 25, 30) with self.assertRaises(ValueError): self.simresults.append_result(result1_wrong) def test_append_all_results(self) -> None: self.simresults.append_all_results(self.other_simresults) # Note that self.simresults only has the 'lala' and 'lele' results. # After we append the results in self.other_simresults # self.simresults should have also the 'lili' result, but with only # a single result for 'lili' and two results for both 'lala' and # 'lele'.. self.assertEqual(set(self.simresults.get_result_names()), {"lulu", "lala", "lele", "lili"}) self.assertEqual(len(self.simresults['lala']), 2) self.assertEqual(len(self.simresults['lele']), 2) self.assertEqual(len(self.simresults['lili']), 1) self.assertEqual(len(self.simresults['lulu']), 2) def test_merge_all_results(self) -> None: # Note that even though there is a 'lili' result in # self.other_simresults, only 'lala' and 'lele' will be # merged. Also, self.other_simresults must have all the results in # self.simresults otherwise there will be a KeyError. self.simresults.merge_all_results(self.other_simresults) self.assertEqual(self.simresults['lala'][-1].get_result(), 43) self.assertEqual(self.simresults['lele'][-1].get_result(), (11. + 4.) / (20. + 10.)) # One update from the 'lala' result in self.simresults and other # from the 'lala' result in self.other_simresults self.assertEqual(self.simresults['lala'][0].num_updates, 2) # Two updates from the 'lele' result in self.simresults and other # from the 'lele' result in self.other_simresults self.assertEqual(self.simresults['lele'][0].num_updates, 3) # Test if an empty SimulationResults object can merge with another # SimulationResults object. emptyresults = SimulationResults() emptyresults.merge_all_results(self.simresults) self.assertEqual(set(emptyresults.get_result_names()), {'lala', 'lele', 'lulu'}) # xxxxx Test the merge with the num_skipped_reps result xxxxxxxxxxx simresults1 = SimulationResults() simresults2 = SimulationResults() simresults1.add_new_result('name1', Result.SUMTYPE, 3) simresults1.add_new_result('num_skipped_reps', Result.SUMTYPE, 3) simresults2.add_new_result('name1', Result.SUMTYPE, 2) simresults1.merge_all_results(simresults2) self.assertEqual(set(simresults1.get_result_names()), {'name1', 'num_skipped_reps'}) self.assertEqual(set(simresults2.get_result_names()), {'name1'}) simresults3 = SimulationResults() simresults3.add_new_result('name1', Result.SUMTYPE, 4) simresults3.merge_all_results(simresults1) self.assertEqual(set(simresults3.get_result_names()), {'name1', 'num_skipped_reps'}) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_equal_and_not_equal_operators(self) -> None: elapsed_time_result = Result.create('elapsed_time', Result.SUMTYPE, 30) self.simresults.add_result(elapsed_time_result) simresults = SimulationResults() lala_result = Result('lala', Result.SUMTYPE) lele_result = Result('lele', Result.RATIOTYPE) lulu_result = Result('lulu', Result.CHOICETYPE, choice_num=6) lala_result.update(13) lele_result.update(8, 10) lele_result.update(3, 10) lulu_result.update(3) lulu_result.update(1) elapsed_time_result2 = Result.create('elapsed_time', Result.SUMTYPE, 20) simresults.add_result(lala_result) simresults.add_result(lele_result) simresults.add_result(lulu_result) simresults.add_result(elapsed_time_result2) # Note that the elapsed_time result is different, but it is not # accounted self.assertTrue(self.simresults == simresults) self.assertFalse(self.simresults != simresults) # Let's change the parameters in the SimulationResults objects to # see if it impacts equality simresults.params.add('value', 10) self.assertFalse(self.simresults == simresults) self.assertTrue(self.simresults != simresults) self.simresults.params.add('value', 10) self.assertTrue(self.simresults == simresults) self.assertFalse(self.simresults != simresults) # Let's change one Result in one of them to see if it impacts # equality simresults['lala'][0].update(5) self.assertFalse(self.simresults == simresults) self.assertTrue(self.simresults != simresults) self.simresults['lala'][0].update(5) self.assertTrue(self.simresults == simresults) self.assertFalse(self.simresults != simresults) # Lets add a new result to one of them which is not in the other lili_result = Result('lili', Result.SUMTYPE) simresults.add_result(lili_result) self.assertFalse(self.simresults == simresults) self.assertTrue(self.simresults != simresults) # Let's test with something of a different class # noinspection PyTypeChecker self.assertFalse(self.simresults == 20) def test_get_result_values_list(self) -> None: self.simresults.append_all_results(self.other_simresults) self.assertEqual(self.simresults.get_result_values_list('lala'), [13, 30]) self.assertEqual(self.simresults.get_result_values_list('lele'), [0.55, 0.4]) lulu_list = self.simresults.get_result_values_list('lulu') np.testing.assert_array_almost_equal( lulu_list[0], np.array([0., 0.5, 0., 0.5, 0., 0.])) np.testing.assert_array_almost_equal( lulu_list[1], np.array([0.33333333, 0., 0., 0., 0., 0.66666667])) # There is only one result for 'lili', which comes from # self.other_simresults. self.assertEqual(self.simresults.get_result_values_list('lili'), ['a string']) def test_get_result_values_confidence_intervals(self) -> None: simresults = SimulationResults() simresults.params.add('P', [1, 2]) simresults.params.set_unpack_parameter('P') result = Result('name', Result.RATIOTYPE, accumulate_values=True) result_other = Result('name', Result.RATIOTYPE, accumulate_values=True) result.update(3, 10) result.update(7, 9) result.update(2, 5) result.update(3, 3) result.update(7, 15) result_other.update(13, 15) result_other.update(15, 20) result_other.update(4, 9) simresults.add_result(result) simresults.append_result(result_other) P = 95 # Confidence level of 95% list_of_confidence_intervals \ = simresults.get_result_values_confidence_intervals('name', P) # Calculates the expected list of confidence intervals expected_list_of_confidence_intervals \ = [i.get_confidence_interval(P) for i in simresults['name']] # Test of they are equal for a, b in zip(list_of_confidence_intervals, expected_list_of_confidence_intervals): np.testing.assert_array_almost_equal(a, b) # xxxxxxxxxx Test for a subset of the parameters xxxxxxxxxxxxxxxxxx c1 = simresults.get_result_values_confidence_intervals( 'name', P, fixed_params={'P': 1.0}) c2 = simresults.get_result_values_confidence_intervals( 'name', P, fixed_params={'P': 2.0}) np.testing.assert_array_almost_equal( c1[0], expected_list_of_confidence_intervals[0]) np.testing.assert_array_almost_equal( c2[0], expected_list_of_confidence_intervals[1]) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_to_dict_from_dict(self) -> None: # xxxxxxxxxx Test converting to a dictionary xxxxxxxxxxxxxxxxxxxxxx simresults_dict = self.simresults._to_dict() self.assertIsInstance(simresults_dict, dict) # We will not test all individual dictionary keys here, since we # will test later if we can recover the actual SimulationResults # object from the dictionary and that should be enough. # For now we only test in the individual Result objects in # SimulationResults were converted to their own dictionary # representations # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test converting from a dictionary xxxxxxxxxxxxxxxxxxxx simresults = SimulationResults._from_dict(simresults_dict) self.assertEqual(self.simresults, simresults) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_to_json_and_from_json(self) -> None: # xxxxxxxxxx Test converting to and from a json xxxxxxxxxxxxxxxxxxx # First test converting to json simresults_json = self.simresults.to_json() # This will raise an exception if encoded_params is not valid json _ = json.loads(simresults_json) # Now test converting from json simresults = SimulationResults.from_json(simresults_json) self.assertEqual(self.simresults, simresults) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_save_to_and_load_from_file(self) -> None: base_filename = 'results_({age})_({temperature})_({factor})' base_pickle_filename = "{0}.pickle".format(base_filename) base_json_filename = "{0}.json".format(base_filename) # Set simulation parameters self.simresults.params.add('factor', 0.5) self.simresults.params.add('temperature', 50.5) self.simresults.params.add('age', 3) # xxxxx Add a result with accumulate set to True xxxxxxxxxxxxxxxxxx result_acu = Result('name', Result.SUMTYPE, accumulate_values=True) result_acu.update(13) result_acu.update(30) self.simresults.add_result(result_acu) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Save to the file and get the actual filename used to save the file # Note that if we pass the base filename without extension a 'pickle' # extension will be added filename_pickle = self.simresults.save_to_file(base_filename) filename_json = self.simresults.save_to_file(base_json_filename) # Load from the file simresults2 = SimulationResults.load_from_file(filename_pickle) simresults3 = SimulationResults.load_from_file(filename_json) # xxxxxxxxxx Test file saved and loaded from pickle file xxxxxxxxxx self.assertEqual(simresults2.original_filename, base_pickle_filename) self.assertEqual(len(self.simresults), len(simresults2)) self.assertEqual(set(self.simresults.get_result_names()), set(simresults2.get_result_names())) self.assertEqual(self.simresults['lala'][0].type_code, simresults2['lala'][0].type_code) self.assertEqual(self.simresults['lele'][0].type_code, simresults2['lele'][0].type_code) self.assertEqual(self.simresults['lulu'][0].type_code, simresults2['lulu'][0].type_code) self.assertAlmostEqual( self.simresults['lala'][0].get_result(), simresults2['lala'][0].get_result(), ) self.assertAlmostEqual( self.simresults['lele'][0].get_result(), simresults2['lele'][0].get_result(), ) np.testing.assert_array_almost_equal( self.simresults['lulu'][0].get_result(), simresults2['lulu'][0].get_result(), ) self.assertAlmostEqual( self.simresults['name'][0].get_result(), simresults2['name'][0].get_result(), ) # test if the parameters were also saved self.assertEqual(self.simresults.params['age'], simresults2.params['age']) self.assertAlmostEqual(self.simresults.params['temperature'], simresults2.params['temperature']) self.assertAlmostEqual(self.simresults.params['factor'], simresults2.params['factor']) # Delete the where the results were saved delete_file_if_possible(filename_pickle) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test file saved and loaded from json file xxxxxxxxxxxx # This will raise an exception if encoded_params is not valid json with open(filename_json, 'r') as fid: _ = json.load(fid) self.assertEqual(simresults3.original_filename, base_json_filename) self.assertEqual(len(self.simresults), len(simresults3)) self.assertEqual(set(self.simresults.get_result_names()), set(simresults3.get_result_names())) self.assertEqual(self.simresults['lala'][0].type_code, simresults3['lala'][0].type_code) self.assertEqual(self.simresults['lele'][0].type_code, simresults3['lele'][0].type_code) self.assertEqual(self.simresults['lulu'][0].type_code, simresults3['lulu'][0].type_code) self.assertAlmostEqual( self.simresults['lala'][0].get_result(), simresults3['lala'][0].get_result(), ) self.assertAlmostEqual( self.simresults['lele'][0].get_result(), simresults3['lele'][0].get_result(), ) np.testing.assert_array_almost_equal( self.simresults['lulu'][0].get_result(), simresults3['lulu'][0].get_result(), ) self.assertAlmostEqual( self.simresults['name'][0].get_result(), simresults3['name'][0].get_result(), ) # test if the parameters were also saved self.assertEqual(self.simresults.params['age'], simresults3.params['age']) self.assertAlmostEqual(self.simresults.params['temperature'], simresults3.params['temperature']) self.assertAlmostEqual(self.simresults.params['factor'], simresults3.params['factor']) # Delete the where the results were saved delete_file_if_possible(filename_json) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_to_dataframe(self) -> None: # If the pandas package is not installed, we will skip testing this # method if not _PANDAS_AVAILABLE: # pragma: nocover self.skipTest("test_to_dataframe - Pandas is not installed") # Create some dummy parameters (including two parameters set to be # unpacked) params = SimulationParameters() params.add("extra", 2.3) params.add("SNR", np.array([0, 3, 6, 9])) params.add("bias", [1.2, 1.6]) params.set_unpack_parameter('SNR') params.set_unpack_parameter('bias') params.add("Name", "Some string") sim_results = SimulationResults() # Try converting an empty SimulationResults df = sim_results.to_dataframe() self.assertTrue(isinstance(df, DataFrame)) self.assertTrue(df.empty) for p in params.get_unpacked_params_list(): extra = p['extra'] SNR = p['SNR'] bias = p['bias'] sim_results.append_result( Result.create('res1', Result.SUMTYPE, extra * SNR + bias)) sim_results.append_result( Result.create('res2', Result.SUMTYPE, bias * SNR + extra)) sim_results.set_parameters(params) # When a simulation results is obtained from the simulation runner it # will also have a "runner_reps" attribute that should be converted to the dtaframe runned_reps = [2] * params.get_num_unpacked_variations() sim_results.runned_reps = runned_reps # Now lets convert this SimulationResults object to a pandas # DataFrame df = sim_results.to_dataframe() # The DataFrame should have the same number of rows as the number # of parameters variations self.assertEqual(len(df), params.get_num_unpacked_variations()) # Test the parameters expected_bias = [a['bias'] for a in params.get_unpacked_params_list()] expected_SNR = [a['SNR'] for a in params.get_unpacked_params_list()] expected_name = [a['Name'] for a in params.get_unpacked_params_list()] expected_extra \ = [a['extra'] for a in params.get_unpacked_params_list()] np.testing.assert_array_equal(df.bias, expected_bias) np.testing.assert_array_equal(df.SNR, expected_SNR) np.testing.assert_array_equal(df.Name, expected_name) np.testing.assert_array_equal(df.extra, expected_extra) np.testing.assert_array_equal(df.runned_reps, runned_reps) # Test the results for index, p in enumerate(params.get_unpacked_params_list()): extra = p['extra'] SNR = p['SNR'] bias = p['bias'] expected_res1 = extra * SNR + bias expected_res2 = bias * SNR + extra self.assertAlmostEqual(expected_res1, df.res1[index]) self.assertAlmostEqual(expected_res2, df.res2[index]) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxx Runner Module xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # This function is used in test methods for the SimulationRunner class def _delete_pickle_files(): """ Delete all files with a '.pickle' extension in the current folder. """ files = glob.glob('*.pickle') for f in files: os.remove(f) try: # Remove files in the partial_results folder files = glob.glob('./partial_results/*.pickle') for f in files: os.remove(f) os.rmdir('./partial_results') except OSError: # pragma: nocover pass def _delete_progressbar_output_files(): # pragma: no cover """ Delete all the files with *results*.txt names in the current folder. """ progressbar_files = glob.glob('*results*.txt') for f in progressbar_files: # pragma: no cover try: os.remove(f) except OSError: # pragma: nocover pass # Define a _DummyRunner class for the testing the simulate and # simulate_in_parallel methods in the SimulationRunner class. class _DummyRunner(SimulationRunner): def __init__(self): super().__init__(read_command_line_args=False) # Set the progress bar message to None to avoid print the # progressbar in these testes. self.rep_max = 2 self.update_progress_function_style = None # Now we add a dummy parameter to our runner object self.params.add('SNR', np.array([0., 5., 10., 15., 20.])) self.params.add('bias', 1.3) self.params.add('extra', np.array([2.2, 4.1])) self.params.set_unpack_parameter('SNR') self.params.set_unpack_parameter('extra') self.delete_partial_results_bool = True @staticmethod def calc_result(SNR, bias, extra): value = 1.2 * SNR + bias + extra return value def _run_simulation(self, current_params): SNR = current_params['SNR'] bias = current_params['bias'] extra = current_params['extra'] sim_results = SimulationResults() value = self.calc_result(SNR, bias, extra) # The correct result will be SNR * 1.2 + 1.3 + extra sim_results.add_new_result('lala', Result.RATIOTYPE, value, 1) return sim_results class _DummyRunnerRandom(SimulationRunner): # pragma: no cover def __init__(self): super().__init__(read_command_line_args=False) # Set the progress bar message to None to avoid print the # progressbar in these testes. self.rep_max = 2 self.update_progress_function_style = None # Now we add a dummy parameter to our runner object self.params.add('P', np.array([2., 2., 2., 2., 2.])) self.params.set_unpack_parameter('P') self.delete_partial_results_bool = True self.rs = np.random.RandomState() self.rs2 = np.random.RandomState() def _on_simulate_current_params_start(self, current_params): # Ideally we should re-seed any random number sources stored in a # SimulationRunner object. However, for testing purposes we will # only re-seed self.rs2 here. self.rs2.seed() def _run_simulation(self, current_params): P = current_params['P'] sim_results = SimulationResults() # This will have a different value for each simulation parameters random_value = np.random.random_sample() value = 1.2 * P + random_value sim_results.add_new_result('result1', Result.RATIOTYPE, value, 1) random_value2 = self.rs.rand() value2 = 1.2 * P + random_value2 sim_results.add_new_result('result2', Result.RATIOTYPE, value2, 1) # self.rs2.seed() random_value3 = self.rs2.rand() value3 = 1.2 * P + random_value3 sim_results.add_new_result('result3', Result.RATIOTYPE, value3, 1) return sim_results # Define a _DummyRunnerWithSkip class for the testing the simulate when a # SkipThisOne exception is raised in the implemented _run_simulation # method. class _DummyRunnerWithSkip(SimulationRunner): def __init__(self): super().__init__(read_command_line_args=False) # This is used only for testing purposes. You would not have this # attribute in derives classes from SimulationRunner self._num_skipped = -1 self.rep_max = 5 self.update_progress_function_style = None # Now we add a dummy parameter to our runner object self.params.add('SNR', np.array([0., 5., 10., 15., 20.])) self.params.add('bias', 1.3) self.params.add('extra', np.array([2.2, 4.1])) self.params.set_unpack_parameter('SNR') self.params.set_unpack_parameter('extra') self.delete_partial_results_bool = True @staticmethod def calc_result(SNR, bias, extra): value = 1.2 * SNR + bias + extra return value def _run_simulation(self, current_params): # In practice, you would raise a SkipThisOne exception when some # problem occurs, such as a bad channel realization, singular # matrix in some algorithm, etc. Here will will raise this # exception in the first two times the _run_simulation method is # called for testing purposes. if self._num_skipped < 2: self._num_skipped += 1 if self._num_skipped > 0: raise SkipThisOne('Skipping this one') else: pass # pragma: nocover SNR = current_params['SNR'] bias = current_params['bias'] extra = current_params['extra'] sim_results = SimulationResults() value = self.calc_result(SNR, bias, extra) # The correct result will be SNR * 1.2 + 1.3 + extra sim_results.add_new_result('lala', Result.RATIOTYPE, value, 1) return sim_results # noinspection PyUnboundLocalVariable class SimulationRunnerTestCase(unittest.TestCase): """ Unit-tests for the SimulationRunner class in the runner module. """ def setUp(self) -> None: self.runner = SimulationRunner(read_command_line_args=False) # Test if the SimulationRunner sets a few default attributes in its init # method. def test_default_values(self) -> None: # Note that we are also testing the elapsed_time and runned_reps # properties, which should just return these attributes. self.assertEqual(self.runner.rep_max, 1) self.assertEqual(self.runner.elapsed_time, "0.00s") self.assertEqual(self.runner.runned_reps, []) self.assertTrue(isinstance(self.runner.params, SimulationParameters)) self.assertTrue(isinstance(self.runner.results, SimulationResults)) self.assertEqual(self.runner.progressbar_message, "Progress") self.assertEqual(self.runner.update_progress_function_style, 'text2') def test_not_implemented_methods(self) -> None: # self.assertRaises(NotImplementedError, # self.S1._get_vertex_positions) with self.assertRaises(NotImplementedError): # noinspection PyTypeChecker self.runner._run_simulation(None) def test_keep_going(self) -> None: # the _keep_going method in the SimulationRunner class should # return True # noinspection PyTypeChecker self.assertTrue(self.runner._keep_going(None, None, None)) def test_set_results_filename(self) -> None: dummyrunner = _DummyRunner() dummyrunner.set_results_filename() self.assertIsNone(dummyrunner.results_filename) dummyrunner.set_results_filename("some_name_{bias}_{extra}") # Note that this line would be unnecessary if we had call the # 'simulate' method of dummyrunner. dummyrunner.results.set_parameters(dummyrunner.params) self.assertEqual("some_name_1.3_[2.2,4.1].pickle", dummyrunner.results_filename) # xxxxxxxxxx Test setting file name with extension xxxxxxxxxxxxxxxx dummyrunner2 = _DummyRunner() dummyrunner2.set_results_filename() self.assertIsNone(dummyrunner2.results_filename) dummyrunner2.set_results_filename("some_name_{bias}_{extra}.pickle") # Note that this line would be unnecessary if we had call the # 'simulate' method of dummyrunner. dummyrunner2.results.set_parameters(dummyrunner.params) self.assertEqual("some_name_1.3_[2.2,4.1].pickle", dummyrunner2.results_filename) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx def test_simulate(self) -> None: self.runner.progressbar_message = "Simulating" self.assertEqual(self.runner.progressbar_message, "Simulating") self.assertEqual(self.runner.partial_results_folder, 'partial_results') self.runner.partial_results_folder = "partial_test_results" # from tests.simulations_package_test import _DummyRunner dummyrunner = _DummyRunner() # xxxxxxxxxx Set the name of the results file xxxxxxxxxxxxxxxxxxxxx filename = 'dummyrunner_results_bias_{bias}' dummyrunner.set_results_filename(filename) # We will set the progress_output_type to 'file' # This will make the progressbar print to a file, instead of stdout dummyrunner.progress_output_type = 'file' # Default is 'screen' self.assertEqual(dummyrunner.progress_output_type, 'file') # Note that progress_output_type can only be 'screen' of 'file' and any # other value raises an exception without changing the value with self.assertRaises(RuntimeError): dummyrunner.progress_output_type = 'invalid_value' # type: ignore self.assertEqual(dummyrunner.progress_output_type, 'file') # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform a simulation of a single params variation xxxx delete_file_if_possible( "partial_results/dummyrunner_results_bias_1.3_unpack_03.pickle") partial_file = Path( "partial_results/dummyrunner_results_bias_1.3_unpack_03.pickle") self.assertFalse(partial_file.exists()) dummyrunner.simulate(param_variation_index=3) self.assertTrue(partial_file.exists()) delete_file_if_possible( "partial_results/dummyrunner_results_bias_1.3_unpack_03.pickle") # The results in the SImulationRunner is still empty, since only partial # results were saved to a file self.assertEqual(len(dummyrunner.results), 0) dummyrunner.clear() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the simulation xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # The results will be the SNR values multiplied by 1.2. plus the # bias parameter self.assertEqual(dummyrunner.runned_reps, []) dummyrunner.simulate() self.assertGreater(dummyrunner._simulation_tracking._elapsed_time, 0.0) self.assertEqual(dummyrunner.runned_reps, [dummyrunner.rep_max] * dummyrunner.params.get_num_unpacked_variations()) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the tests xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx results_extra_1 = dummyrunner.results.get_result_values_list( 'lala', {'extra': 2.2}) expected_results_extra_1 = [3.5, 9.5, 15.5, 21.5, 27.5] np.testing.assert_array_almost_equal(results_extra_1, expected_results_extra_1) results_extra_2 = dummyrunner.results.get_result_values_list( 'lala', {'extra': 4.1}) expected_results_extra_2 = [5.4, 11.4, 17.4, 23.4, 29.4] np.testing.assert_array_almost_equal(results_extra_2, expected_results_extra_2) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test if the results were saved correctly xxxxxxxxxxxxx sim_results = SimulationResults.load_from_file( dummyrunner.results_filename) self.assertEqual(sim_results, dummyrunner.results) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat the test xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Now we do not set the results filename dummyrunner2 = _DummyRunner() dummyrunner2.simulate() self.assertGreater(dummyrunner2._simulation_tracking._elapsed_time, 0.0) self.assertEqual(dummyrunner.results, dummyrunner2.results) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat the test with wrong partial results xxxxxxxxxxx # First we run a usual simulation and keep the partial results dummyrunner3 = _DummyRunner() dummyrunner3.set_results_filename('dummyrunner3_results') self.assertEqual(dummyrunner3.delete_partial_results_bool, True) dummyrunner3.delete_partial_results_bool = False self.assertEqual(dummyrunner3.delete_partial_results_bool, False) dummyrunner3.simulate() self.assertGreater(dummyrunner3._simulation_tracking._elapsed_time, 0.0) # Now we change the bias parameter dummyrunner3.params.add('bias', 1.5) # If we run a simulation with different parameters it will try to # load the partial results with wrong parameters and an exception # should be raised with self.assertRaises(ValueError): dummyrunner3.simulate() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat the test loading the partial results xxxxxxxxxx dummyrunner4 = _DummyRunner() dummyrunner4.set_results_filename('dummyrunner3_results') dummyrunner4.delete_partial_results_bool = True dummyrunner4.simulate() self.assertGreater(dummyrunner4._simulation_tracking._elapsed_time, 0.0) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Delete the pickle files in the same folder _delete_pickle_files() def test_simulate_with_param_variation_index(self) -> None: # Test the "simulate" method when the param_variation_index # argument is specified. # from tests.simulations_package_test import _DummyRunner dummyrunner = _DummyRunner() # Try to simulate for a given param_variation_index before setting # the filename. This should raise an exception. with self.assertRaises(RuntimeError): dummyrunner.simulate(3) # xxxxxxxxxx Set the name of the results file xxxxxxxxxxxxxxxxxxxxx filename = 'dummyrunner_results_bias_{bias}' dummyrunner.set_results_filename(filename) # This will make the progressbar print to a file, instead of stdout dummyrunner.progress_output_type = 'file' # Default is 'screen' # Now we perform the simulation dummyrunner.simulate(param_variation_index=4) # Note that `dummyrunner.runned_reps` is not a list, but an integer self.assertEqual(dummyrunner.runned_reps, 2) pr = SimulationResults.load_from_file( 'partial_results/dummyrunner_results_bias_1.3_unpack_04.pickle') # Get the parameters from the loded result bias = pr.params['bias'] snr = pr.params['SNR'] extra = pr.params['extra'] # Calculate the expected value expected_value = _DummyRunner.calc_result(snr, bias, extra) self.assertEqual(len(pr['lala']), 1) self.assertAlmostEqual(pr['lala'][0].get_result(), expected_value) _delete_pickle_files() # This test method is normally skipped, unless you have started an # IPython cluster with a "tests" profile so that you have at least one # engine running. def test_simulate_in_parallel(self) -> None: # pragma: no cover if not _IPYTHON_AVAILABLE: self.skipTest( "test_simulate_in_parallel - IPython is not installed") try: from ipyparallel import Client cl = Client(profile=b"tests", timeout=1.0) dview = cl.direct_view() # Reset the engines so that we don't have variables there from # last computations dview.execute('%reset') dview.execute('import sys') # We use block=True to ensure that all engines have modified # their path to include the folder with the simulator before we # create the load lanced view in the following. dview.execute('sys.path.append("{0}")'.format(os.getcwd()), block=True) lview = cl.load_balanced_view() if len(lview) == 0: self.skipTest("test_simulate_in_parallel - " "At least one IPython engine must be running.") except IOError: self.skipTest( "test_simulate_in_parallel - " "The IPython engines were not found. ('tests' profile)") # noinspection PyUnresolvedReferences from tests.simulations_package_test import _DummyRunner dview.execute('import simulations_package_test', block=True) sim_runner = _DummyRunner() sim_runner.progressbar_message = 'bla' # runner.update_progress_function_style = 'text1' # xxxxxxxxxx Set the name of the results file xxxxxxxxxxxxxxxxxxxxx filename = 'runner_results_bias_{bias}.pickle' sim_runner.set_results_filename(filename) # This will make the progressbar print to a file, instead of stdout sim_runner.progress_output_type = 'file' # Default is 'screen' # Remove old file from previous test run _delete_pickle_files() # Delete all the *results*.txt files (created by the progressbar) _delete_progressbar_output_files() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx self.assertEqual(sim_runner.runned_reps, []) sim_runner.simulate_in_parallel(lview) self.assertGreater(sim_runner._simulation_tracking._elapsed_time, 0.0) self.assertEqual(sim_runner.runned_reps, [sim_runner.rep_max] * sim_runner.params.get_num_unpacked_variations()) results_extra_1 = sim_runner.results.get_result_values_list( 'lala', {'extra': 2.2}) expected_results_extra_1 = [3.5, 9.5, 15.5, 21.5, 27.5] np.testing.assert_array_almost_equal(results_extra_1, expected_results_extra_1) results_extra_2 = sim_runner.results.get_result_values_list( 'lala', {'extra': 4.1}) expected_results_extra_2 = [5.4, 11.4, 17.4, 23.4, 29.4] np.testing.assert_array_almost_equal(results_extra_2, expected_results_extra_2) # xxxxxxxxxx Test if the results were saved correctly xxxxxxxxxxxxx sim_results = SimulationResults.load_from_file( sim_runner.results_filename) self.assertEqual(sim_results, sim_runner.results) _delete_pickle_files() _delete_progressbar_output_files() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat the test xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Now we do not set the results filename runner2 = _DummyRunner() runner2.simulate_in_parallel(lview) self.assertEqual(sim_results, runner2.results) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Repeat the test with wrong partial results xxxxxxxxxxx runner3 = _DummyRunner() runner3.set_results_filename('runner3_results') runner3.delete_partial_results_bool = False runner3.simulate_in_parallel(lview) # Now we change the bias parameter runner3.params.add('bias', 1.5) # If we run a simulation with different parameters it will try to # load the partial results with wrong parameters and an exception # should be raised. The raised Exception is an ValueError, but # since they are raised in the IPython engines, IPython itself will # raise a CompositeError exception. with self.assertRaises(CompositeError): runner3.simulate_in_parallel(lview) # Delete all *.pickle files in the same folder _delete_pickle_files() # Delete all the *results*.txt files (created by the progressbar) _delete_progressbar_output_files() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # This test method is normally skipped, unless you have started an # IPython cluster with a "tests" profile so that you have at least one # engine running. def test_simulate_in_parallel_with_random_values( # pragma: no cover self) -> None: if not _IPYTHON_AVAILABLE: self.skipTest("test_simulate_in_parallel_with_random_values - " "IPython is not installed") try: from ipyparallel import Client cl = Client(profile=b"tests", timeout=1.0) dview = cl.direct_view() # Reset the engines so that we don't have variables there from # last computations dview.execute('%reset') dview.execute('import sys') # We use block=True to ensure that all engines have modified # their path to include the folder with the simulator before we # create the load lanced view in the following. dview.execute('sys.path.append("{0}")'.format(os.getcwd()), block=True) lview = cl.load_balanced_view() if len(lview) == 0: # pragma: no cover self.skipTest("At least one IPython engine must be running.") except IOError: # pragma: no cover self.skipTest("test_simulate_in_parallel_with_random_values - " "The IPython engines were not found. ('tests' " "profile)") # # # This test is intended to clarify some special care that must be # taken regarding random sources when using the # simulate_in_parallel method. # # The _DummyRunnerRandom class will generate three results which # are generated as a sum of one element of the 'P' parameter and a # random value. The 'P' parameter is an array with 5 elements, all # of them equal to 2.0. That means that if we didn't have a random # part all elements in the returned results would be equal. # noinspection PyUnresolvedReferences from tests.simulations_package_test import _DummyRunnerRandom dummyrunnerrandom = _DummyRunnerRandom() dummyrunnerrandom.simulate_in_parallel(lview) # For the result1 the random part is generated by calling the # numpy.random.rand function inside _run_simulation. Because we are # using the module level function 'rand' we are using the global # RandomState object in numpy. This global RandomState object will # be naturally different in each ipython engine and thus each # element in result1 will be different. result1 = dummyrunnerrandom.results.get_result_values_list('result1') self.assertNotAlmostEqual(result1[0], result1[1]) self.assertNotAlmostEqual(result1[1], result1[2]) self.assertNotAlmostEqual(result1[2], result1[3]) self.assertNotAlmostEqual(result1[3], result1[4]) self.assertEqual(len(set(result1)), 5) # 5 different elements # print; print result1 # For result2 the random part is generated by calling the rand # method of a RandomState object created in the __init__ method of # the _DummyRunnerRandom object. The problem is that each ipython # engine will receive a copy of the _DummyRunnerRandom object and # thus of the RandomState object. That means that for each value of # the parameter 'P' the same random value will be generated and # thus 'result2' will have 5 equal elements. result2 = dummyrunnerrandom.results.get_result_values_list('result2') self.assertAlmostEqual(result2[0], result2[1]) self.assertAlmostEqual(result2[1], result2[2]) self.assertAlmostEqual(result2[2], result2[3]) self.assertAlmostEqual(result2[3], result2[4]) self.assertEqual(len(set(result2)), 1) # 5 equal elements # print; print result2 # For result3 the random part is generated by calling the rand # method of a RandomState object created in the __init__ method of # the _DummyRunnerRandom object. However, in the # _on_simulate_current_params_start method we re-seed this # RandomState object. Since _on_simulate_current_params_start is # called once for each different value of the 'P' parameter, then # the random value will be different for each value in 'P' and thus # result3 will have 5 different values. result3 = dummyrunnerrandom.results.get_result_values_list('result3') self.assertNotAlmostEqual(result3[0], result3[1]) self.assertNotAlmostEqual(result3[1], result3[2]) self.assertNotAlmostEqual(result3[2], result3[3]) self.assertNotAlmostEqual(result3[3], result3[4]) self.assertEqual(len(set(result3)), 5) # 5 different elements # Test the simulate method when the SkipThisOne exception is raised in # the _run_simulation method. def test_simulate_with_skipthisone(self) -> None: # from tests.simulations_package_test import _DummyRunnerWithSkip dummyrunner = _DummyRunnerWithSkip() # xxxxxxxxxx Set the name of the results file xxxxxxxxxxxxxxxxxxxxx filename = 'dummyrunnerwithskip_results_bias_{bias}' dummyrunner.set_results_filename(filename) # This will make the progressbar print to a file, instead of stdout dummyrunner.progress_output_type = 'file' # Default is 'screen' # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the simulation xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # The results will be the SNR values multiplied by 1.2. plus the # bias parameter dummyrunner.simulate() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Perform the tests xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx results_extra_1 = dummyrunner.results.get_result_values_list( 'lala', {'extra': 2.2}) expected_results_extra_1 = [3.5, 9.5, 15.5, 21.5, 27.5] np.testing.assert_array_almost_equal(results_extra_1, expected_results_extra_1) results_extra_2 = dummyrunner.results.get_result_values_list( 'lala', {'extra': 4.1}) expected_results_extra_2 = [5.4, 11.4, 17.4, 23.4, 29.4] np.testing.assert_array_almost_equal(results_extra_2, expected_results_extra_2) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # xxxxxxxxxx Test if the results were saved correctly xxxxxxxxxxxxx sim_results = SimulationResults.load_from_file( dummyrunner.results_filename) self.assertEqual(sim_results, dummyrunner.results) # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # # xxxxxxxxxx Repeat the test xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # # Now we do not set the results filename # dummyrunner2 = _DummyRunner() # dummyrunner2.simulate() # self.assertEqual(dummyrunner.results, dummyrunner2.results) # # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # # xxxxxxxxxx Repeat the test with wrong partial results xxxxxxxxxxx # # First we run a usual simulation and keep the partial results # dummyrunner3 = _DummyRunner() # dummyrunner3.set_results_filename('dummyrunner3_results') # dummyrunner3.delete_partial_results_bool = False # dummyrunner3.simulate() # # Now we change the bias parameter # dummyrunner3.params.add('bias', 1.5) # # If we run a simulation with different parameters it will try to # # load the partial results with wrong parameters and an exception # # should be raised # with self.assertRaises(ValueError): # dummyrunner3.simulate() # # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # # xxxxxxxxxx Repeat the test loading the partial results xxxxxxxxxx # dummyrunner4 = _DummyRunner() # dummyrunner4.set_results_filename('dummyrunner3_results') # dummyrunner4.delete_partial_results_bool = True # dummyrunner4.simulate() # # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx # Delete the pickle files in the same folder _delete_pickle_files() # xxxxxxxxxx Doctests xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx if __name__ == "__main__": unittest.main() # xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
gpl-2.0
Jimmy-Morzaria/scikit-learn
examples/linear_model/plot_sgd_separating_hyperplane.py
260
1219
""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
DentonW/Ps-H-Scattering
General Code/Python Scripts/Extrapolation.py
1
15927
#!/usr/bin/python #TODO: Add checks for whether files are good #TODO: Make relative difference function import sys, scipy, pylab import numpy as np from math import * import matplotlib.pyplot as plt from xml.dom.minidom import parse, parseString from xml.dom import minidom def NumTermsOmega(omega): # Return the number of terms for a given omega """Uses combination with repetition to determine the number of terms for a given omega""" f = factorial k = 6 omega = omega + 1 n = f(omega+k-1) / (f(k) * f(omega-1)) return int(n) def FindTerms(FileName, NumTerms): """Reorders the first NumTerms of the output of Todd program to find omega breakpoints""" f = open(FileName, 'r') # Get the value of omega Omega = int(f.readline().split()[1]) print "Omega =", Omega # Skip these lines for i in range(3): f.readline() Terms = [] for line in f: s = line.split() if len(s) == 0: break if s[0].isdigit(): Terms.append(int(s[0])) f.close() print NumTerms, len(Terms) if NumTerms > len(Terms): print("Requesting more terms than are available in file...exiting.") exit() print "Number of terms in file", FileName, ": ", len(Terms) print "Number of terms to use:", str(NumTerms) print TermsSub = Terms[0:NumTerms] TermsSub.sort() # Create a list of numbers of terms for the full set for omega = 1 through Omega FoundTerms = [] OmegaTerms = [] for i in range(Omega+1): OmegaTerms.append(NumTermsOmega(i)) for i in range(Omega+1): for j in range(len(TermsSub)): if TermsSub[j] == OmegaTerms[i]: print "Found", OmegaTerms[i], "at position", j+1 FoundTerms = FoundTerms + [j+1] break if TermsSub[j] > OmegaTerms[i]: #print "Found next term past", OmegaTerms[i], "at position", j+1 #FoundTerms = FoundTerms + [j+1] print "Found term before", OmegaTerms[i], "at position", j FoundTerms = FoundTerms + [j] break if TermsSub[len(TermsSub)-1] != OmegaTerms[Omega]: print "Last term at", len(TermsSub), "is less than", OmegaTerms[Omega] FoundTerms = FoundTerms + [len(TermsSub)] # Just here to put some extra space after running print return FoundTerms def Extrapolate(Phases, Omega, OmegaPower, LowerOmega): """Fits the data to a straight line use SciPy's polyfit""" xdata = range(LowerOmega, Omega+1) xdata[:] = [x**OmegaPower for x in xdata] ydata = [] for i in range(LowerOmega, Omega+1): ydata = ydata + [tan(Phases[i])] fit = scipy.polyfit(xdata, ydata, 1, None, True) polycoeffs = fit[0] residuals = fit[1][0] ExtrapData = [polycoeffs, residuals, xdata, ydata] return ExtrapData def ExtrapolatePlot(Phases, Omega, OmegaPower, LowerOmega): """Plots the fitted line for the extrapolation""" ExtrapData = Extrapolate(Phases, Omega, OmegaPower, LowerOmega) yfit = scipy.polyval(ExtrapData[0], ExtrapData[2]) print yfit yfit = np.append(yfit, ExtrapData[0][1]) print yfit p1 = plt.plot(ExtrapData[2], ExtrapData[3], 'k.') ExtrapData[2].append(0.0) p2 = plt.plot(ExtrapData[2], yfit, 'r-') print ExtrapData[2] print ExtrapData[3] plt.show() return def ToBool(s): if (s.lower() == 'true'): return True return False def ReadXMLData(xmldoc, tag): """ Helper function for ReadPhaseShifts """ itemlist = xmldoc.getElementsByTagName(tag) data = [] for s in itemlist: data.append(str(s.childNodes[0].nodeValue)) if len(data) > 1: print "More than one set found for ", tag if data == []: return None return data[0] def ReadPhaseShifts(Filename, FoundTerms, NumTests): """ Reads the complete list of phase shifts from a given phase file and returns a 2D array. """ xmldoc = minidom.parse(Filename) # Read the XML file shortfile = ReadXMLData(xmldoc, 'shortfile') longfile = ReadXMLData(xmldoc, 'longfile') energyfile = ReadXMLData(xmldoc, 'energyfile') lvalue = int(ReadXMLData(xmldoc, 'lvalue')) numterms = int(ReadXMLData(xmldoc, 'numterms')) numsets = int(ReadXMLData(xmldoc, 'numsets')) shielding = ReadXMLData(xmldoc, 'shielding') #if shielding == None: # Not found in the input file # shielding = 2*lvalue + 1 #@TODO: Is this a valid assumption? #else: # shielding = int(shielding) if shielding != None: shielding = int(shielding) explambda = ReadXMLData(xmldoc, 'lambda') # Read in nonlinear parameters #@TODO: Handle multiple sets alpha = float(ReadXMLData(xmldoc, 'alpha')) beta = float(ReadXMLData(xmldoc, 'beta')) gamma = float(ReadXMLData(xmldoc, 'gamma')) kappa = float(ReadXMLData(xmldoc, 'kappa')) mu = float(ReadXMLData(xmldoc, 'mu')) ordering = ReadXMLData(xmldoc, 'ordering') # Boolean values paired = ReadXMLData(xmldoc, 'paired') reorder = ReadXMLData(xmldoc, 'reorder') paired = ToBool(paired) reorder = ToBool(reorder) # Read in the phase shift data data = str(ReadXMLData(xmldoc, 'data')) data = data.split('\n') data = data[1:len(data)-1] # First and last entries are blanks from the newlines if len(data) != numterms+1: # Include the +1 for the 0th entry return None phases = [] for n,d in enumerate(data): if n not in FoundTerms: continue line = d.split() if n != int(line[0]): print "Phase shift file indices do not match!" return None if len(line) != NumTests+1: print "Missing phase shift data on line " + str(n) return None line = [float(i) for i in line[1:]] phases.append(line) return phases # def GetPhaseShifts(f, FoundTerms, TotalTerms, NumTests): # """Reads phase shifts at specified terms""" # Omega = len(FoundTerms)-1 # # for i in range(3): # f.readline() # # PhaseShifts = range(NumTests) # for i in range(NumTests): # PhaseShifts[i] = [] # j = 0 # Corresponds to Omega = 0 # # for i in range(1,FoundTerms[Omega]+1): # Assuming that the last term is the highest for Omega. # #@TODO: Check for end of file somehow? # line = f.readline() # if line[0] == '0': # line = f.readline() # s = line.split() # if (len(s) == 0): # print " " # print "Error reading phase shifts: line length of 0" # exit() # if (len(s) < NumTests): # print " " # print "Error reading phase shifts: line length of " + str(len(s)) + " < " + str(NumTests) # exit() # # if i == FoundTerms[j]: # j = j + 1 # if j > Omega+1: # print "Internal error reading phase shifts" # This shouldn't happen. # return [] # for k in range(NumTests): # #PhaseShifts[k+1] = PhaseShifts[k+1] + [float(s[k+1])] # PhaseShifts[k].append(float(s[k+1])) # # # Skip rest of terms if we are not using them all # print "Skipping " + str(TotalTerms-FoundTerms[Omega]+1) + " terms" # for i in range(1,TotalTerms-FoundTerms[Omega]+1): # f.readline() # # return PhaseShifts # # Main function follows # # These are hardcoded right now, but we could probably write something to read them in later. # 109 of these! #@TODO: Could also just read from file and match up, but that will probably be difficult. Headings = [ "Kohn", "Inverse Kohn", "Complex Kohn (S)", "Complex Kohn (T)", "Gen Kohn tau = 0.0", "Gen Kohn tau = 0.1", "Gen Kohn tau = 0.2", "Gen Kohn tau = 0.3", "Gen Kohn tau = 0.4", "Gen Kohn tau = 0.5", "Gen Kohn tau = 0.6", "Gen Kohn tau = 0.7", "Gen Kohn tau = pi/4", "Gen Kohn tau = 0.8", "Gen Kohn tau = 0.9", "Gen Kohn tau = 1.0", "Gen Kohn tau = 1.1", "Gen Kohn tau = 1.2", "Gen Kohn tau = 1.3", "Gen Kohn tau = 1.4", "Gen Kohn tau = 1.5", "Gen Kohn tau = pi/2", "Gen Kohn tau = 1.6", "Gen Kohn tau = 1.7", "Gen Kohn tau = 1.8", "Gen Kohn tau = 1.9", "Gen Kohn tau = 2.0", "Gen Kohn tau = 2.1", "Gen Kohn tau = 2.2", "Gen Kohn tau = 2.3", "Gen Kohn tau = 3*pi/4", "Gen Kohn tau = 2.4", "Gen Kohn tau = 2.5", "Gen Kohn tau = 2.6", "Gen Kohn tau = 2.7", "Gen Kohn tau = 2.8", "Gen Kohn tau = 2.9", "Gen Kohn tau = 3.0", "Gen Kohn tau = pi", "Gen T Kohn tau = 0.0", "Gen T Kohn tau = 0.1", "Gen T Kohn tau = 0.2", "Gen T Kohn tau = 0.3", "Gen T Kohn tau = 0.4", "Gen T Kohn tau = 0.5", "Gen T Kohn tau = 0.6", "Gen T Kohn tau = 0.7", "Gen T Kohn tau = pi/4", "Gen T Kohn tau = 0.8", "Gen T Kohn tau = 0.9", "Gen T Kohn tau = 1.0", "Gen T Kohn tau = 1.1", "Gen T Kohn tau = 1.2", "Gen T Kohn tau = 1.3", "Gen T Kohn tau = 1.4", "Gen T Kohn tau = 1.5", "Gen T Kohn tau = pi/2", "Gen T Kohn tau = 1.6", "Gen T Kohn tau = 1.7", "Gen T Kohn tau = 1.8", "Gen T Kohn tau = 1.9", "Gen T Kohn tau = 2.0", "Gen T Kohn tau = 2.1", "Gen T Kohn tau = 2.2", "Gen T Kohn tau = 2.3", "Gen T Kohn tau = 3*pi/4", "Gen T Kohn tau = 2.4", "Gen T Kohn tau = 2.5", "Gen T Kohn tau = 2.6", "Gen T Kohn tau = 2.7", "Gen T Kohn tau = 2.8", "Gen T Kohn tau = 2.9", "Gen T Kohn tau = 3.0", "Gen T Kohn tau = pi", "Gen S Kohn tau = 0.0", "Gen S Kohn tau = 0.1", "Gen S Kohn tau = 0.2", "Gen S Kohn tau = 0.3", "Gen S Kohn tau = 0.4", "Gen S Kohn tau = 0.5", "Gen S Kohn tau = 0.6", "Gen S Kohn tau = 0.7", "Gen S Kohn tau = pi/4", "Gen S Kohn tau = 0.8", "Gen S Kohn tau = 0.9", "Gen S Kohn tau = 1.0", "Gen S Kohn tau = 1.1", "Gen S Kohn tau = 1.2", "Gen S Kohn tau = 1.3", "Gen S Kohn tau = 1.4", "Gen S Kohn tau = 1.5", "Gen S Kohn tau = pi/2", "Gen S Kohn tau = 1.6", "Gen S Kohn tau = 1.7", "Gen S Kohn tau = 1.8", "Gen S Kohn tau = 1.9", "Gen S Kohn tau = 2.0", "Gen S Kohn tau = 2.1", "Gen S Kohn tau = 2.2", "Gen S Kohn tau = 2.3", "Gen S Kohn tau = 3*pi/4", "Gen S Kohn tau = 2.4", "Gen S Kohn tau = 2.5", "Gen S Kohn tau = 2.6", "Gen S Kohn tau = 2.7", "Gen S Kohn tau = 2.8", "Gen S Kohn tau = 2.9", "Gen S Kohn tau = 3.0", "Gen S Kohn tau = pi" ] NumTests = 109 #@TODO: Could just calculate the length of Headings # Headings = [ "Kohn", "Inverse Kohn", "Complex Kohn (S)", "Complex Kohn (T)", "Gen Kohn tau = 0.0", "Gen Kohn tau = 0.1", "Gen Kohn tau = 0.2", "Gen Kohn tau = 0.3", # "Gen Kohn tau = 0.4", "Gen Kohn tau = 0.5", "Gen Kohn tau = 0.6", "Gen Kohn tau = 0.7", "Gen Kohn tau = pi/4", "Gen Kohn tau = 0.8", "Gen Kohn tau = 0.9", # "Gen Kohn tau = 1.0", "Gen Kohn tau = 1.1", "Gen Kohn tau = 1.2", "Gen Kohn tau = 1.3", "Gen Kohn tau = 1.4", "Gen Kohn tau = 1.5", "Gen Kohn tau = pi/2", # "Gen Kohn tau = 1.6", "Gen Kohn tau = 1.7", "Gen Kohn tau = 1.8", "Gen Kohn tau = 1.9", "Gen Kohn tau = 2.0", "Gen Kohn tau = 2.1", "Gen Kohn tau = 2.2", # "Gen Kohn tau = 2.3", "Gen Kohn tau = 3*pi/4", "Gen Kohn tau = 2.4", "Gen Kohn tau = 2.5", "Gen Kohn tau = 2.6", "Gen Kohn tau = 2.7", "Gen Kohn tau = 2.8", # "Gen Kohn tau = 2.9", "Gen Kohn tau = 3.0", "Gen Kohn tau = pi" ] # NumTests = 39 if len(sys.argv) < 6: print """Usage: Extrapolation.py <energyfile> <phasefile> <outputfile> <# of terms in file> <# of terms to use> <lower omega> <optional: upper omega> Example: Extrapolation.py energy.txt phase.txt output.txt 1216 1216 3""" exit() if sys.argv[4].isdigit() == False: print "Error: The fourth argument must be a number." exit() if sys.argv[5].isdigit() == False: print "Error: The fifth argument must be a number." exit() if sys.argv[6].isdigit() == False: print "Error: The sixth argument must be a number." exit() FoundTerms = FindTerms(sys.argv[1], int(sys.argv[5])) Omega = len(FoundTerms)-1 UpperOmega = Omega LowerOmega = int(sys.argv[6]) if len(sys.argv) > 7: if sys.argv[7].isdigit() == False: print "Error: The seventh argument must be a number." exit() UpperOmega = int(sys.argv[7]) if UpperOmega < LowerOmega or UpperOmega < 0: print "Error: Upper omega must be in the range " + str(LowerOmega) + "-" + str(Omega) exit() if LowerOmega > UpperOmega: print "Error: Lower omega must be in the range 0-" + str(UpperOmega) exit() print g = open(sys.argv[3], 'w') g.write("Results from " + sys.argv[1] + " and " + sys.argv[2] + "\n") g.write(" with " + str(sys.argv[5]) + " terms and starting at omega = " + str(sys.argv[6]) + "\n\n") g.write("Extrapolated values\n") g.write("-------------------\n") PhaseShiftLists = range(NumTests) ExtrapolationLists = range(NumTests) DList = range(NumTests) for i in range(NumTests): PhaseShiftLists[i] = [] ExtrapolationLists[i] = [] DList[i] = [] PhaseShifts = np.array(ReadPhaseShifts(sys.argv[2], FoundTerms, NumTests)) #print PhaseShifts #print len(PhaseShifts[0]) #exit() # Iterate over the sets of tests for j in range(NumTests): RMin = 1.0e5 # Just some very high value MinVal = 0 Phases = PhaseShifts[:,j] # This loop iterates from d = -6 to -0.1 in increments of 0.01, testing the extrapolation fit by # comparing the residuals. The d that gives the smallest residuals is used, and the extrapolation # is saved. for i in range(0,690): Residuals = Extrapolate(Phases, UpperOmega, -7.0+i/100.0, LowerOmega)[1] if Residuals < RMin: RMin = Residuals MinVal = i print print "Results for " + Headings[j] + ":" print "Smallest residuals at", -7.0+MinVal/100.0, "of", RMin DList[j] = -7.0+MinVal/100.0 PhaseShiftLists[j] = Phases Extrapolation = Extrapolate(Phases, UpperOmega, -7.0+MinVal/100.0, LowerOmega) ExtrapolationLists[j] = Extrapolation print "Extrapolated value =", atan(Extrapolation[0][1]) print "Relative difference % =", abs((atan(Extrapolation[0][1]) - Phases[np.size(Phases)-1]) / (atan(Extrapolation[0][1]) + Phases[np.size(Phases)-1]) * 2) * 100 print "Coefficients: ", Extrapolation[0] Line = Headings[j] + ": " + str(atan(Extrapolation[0][1])) + "\n" g.write(Line) print "w3 - w4: " + str(abs(Phases[3] - Phases[4])) if UpperOmega >= 5: print "w4 - w5: " + str(abs(Phases[4] - Phases[5])) if UpperOmega >= 6: print "w5 - w6: " + str(abs(Phases[5] - Phases[6])) if UpperOmega >= 7: print "w6 - w7: " + str(abs(Phases[6] - Phases[7])) g.write("\n") g.write("\n") g.write("\n") g.write("More detailed analysis\n") g.write("----------------------\n") g.write("\n") g.write("Reordered terms:\n") for i in range(len(FoundTerms)): g.write("Found " + str(NumTermsOmega(i)) + " at position " + str(FoundTerms[i]) + "\n") g.write("\n") for i in range(NumTests): g.write("\nResults for " + Headings[i] + ":\n") g.write("Phase shifts: ") for j in range(len(PhaseShiftLists[i])): g.write(str(PhaseShiftLists[i][j]) + " ") g.write("\n") g.write("Phase shift differences in omega: ") for j in range(len(PhaseShiftLists[i]) - 1): g.write(str(abs(PhaseShiftLists[i][j] - PhaseShiftLists[i][j+1])) + " ") g.write("\n") g.write("Phase shift difference ratios: ") for j in range(len(PhaseShiftLists[i]) - 2): #print PhaseShiftLists[i][j], PhaseShiftLists[i][j+1], PhaseShiftLists[i][j+2] g.write(str(abs( (PhaseShiftLists[i][j+1] - PhaseShiftLists[i][j+2]) / (PhaseShiftLists[i][j] - PhaseShiftLists[i][j+1]) )) + " ") g.write("\n") for j in range(LowerOmega+1,UpperOmega): if abs(PhaseShiftLists[i][j] - PhaseShiftLists[i][j+1]) > abs(PhaseShiftLists[i][j-1] - PhaseShiftLists[i][j]): g.write("No convergence pattern exists.\n") g.write("Smallest residuals at d = " + str(DList[i]) + " of " + str(ExtrapolationLists[i][1]) + "\n") g.write("Coefficients of " + str(ExtrapolationLists[i][0]) + "\n") reldiff = abs((atan(ExtrapolationLists[i][0][1]) - PhaseShiftLists[i][len(PhaseShiftLists[i])-1]) / (atan(ExtrapolationLists[i][0][1]) + PhaseShiftLists[i][len(PhaseShiftLists[i])-1]) * 2) * 100 g.write("Relative difference % = " + str(reldiff) + "\n") g.write("Extrapolated value = " + str(atan(ExtrapolationLists[i][0][1])) + "\n") # This can be re-enabled to look at the fit lines with the phase shifts. #if i == 3: # S-matrix # ExtrapolatePlot(PhaseShiftLists[i], Omega, DList[i], LowerOmega) g.close() exit()
mit
bzcheeseman/phys211
Alex/Compton Scattering/analysis.py
1
2151
from scipy import optimize import numpy as np import matplotlib.pyplot as plt #constants mc2 = 511. #keV E = 662. #keV, energy of initial gamma photons angles1 = np.array([0.17453293,0.26179939,0.38397244,0.52359878,0.61086524,1.04719755,1.22173048,1.30899694]) angles2 = np.array([1.30899694,1.3962634,1.57079633,1.74532925,2.0943951,2.35619449,0.78539816]) en1 = np.array([645.94535489,638.70777021,609.75743148,572.12199113,558.37058023,404.93378497,361.50827687,342.6905567]) en2 = np.array([339.09451519,322.89846155,291.97872279,274.31030064,227.9306925,206.58134907,482.65044515]) en1err = np.array([6.3184713,6.26564529,6.05434124,5.77964599,5.67927657,4.55936515,4.24240908,4.10506146]) en2err = np.array([4.10100687,3.98279443,3.75711613,3.6281571, 3.28963966,3.13381417,5.14879897]) angles = np.append(angles1, angles2) en = np.append(en1, en2) enerr = np.append(en1err, en2err) def fitfunc(p, x): y=(p[0]/p[1])*(1-np.cos(x)) return p[0]/(1+y) def residual(p, x, y, dy): return (fitfunc(p, x)-y)/dy p = [E, mc2] #expected pf, cov, info, mesg, success = optimize.leastsq(residual, p, args=(angles, en, enerr), full_output=1) chisq = sum(info["fvec"]*info["fvec"]) dof = len(en)-len(pf) pferr = [np.sqrt(cov[i,i]) for i in range(len(pf))] print pf print cov fig1 = plt.figure() ax1 = plt.axes() ax1.errorbar(angles, en, xerr=0., yerr=enerr, fmt='k.', label = 'Data') T = np.linspace(angles.min(), angles.max(), 5000) ax1.plot(T, fitfunc(pf, T), 'r-', label = 'Fit') ax1.plot(T, fitfunc(p, T), 'b-', label = 'Theory') ax1.set_title('Compton Scattering Energy Fit') ax1.set_xlabel('Angle (radians), x') ax1.set_ylabel('Energy (keV), E\'') ax1.legend() textfit = '$E\' = E / ((1 + (E/m_e c^2)(1 - cos(x)))$ \n' \ '$E = %.2f \pm %.2f$ keV \n' \ '$m_e c^2 = %.2f \pm %.2f$ keV \n' \ '$\chi^2= %.2f$ \n' \ '$N = %i$ (dof) \n' \ '$\chi^2/N = % .2f$' \ % (pf[0], pferr[0], pf[1], pferr[1], chisq, dof, chisq/dof) ax1.text(0.05, .33, textfit, transform=ax1.transAxes, fontsize=12, verticalalignment='top') plt.show()
lgpl-3.0
alvarofierroclavero/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
RobertABT/heightmap
build/matplotlib/lib/mpl_toolkits/axes_grid1/colorbar.py
4
27744
''' Colorbar toolkit with two classes and a function: :class:`ColorbarBase` the base class with full colorbar drawing functionality. It can be used as-is to make a colorbar for a given colormap; a mappable object (e.g., image) is not needed. :class:`Colorbar` the derived class for use with images or contour plots. :func:`make_axes` a function for resizing an axes and adding a second axes suitable for a colorbar The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes` and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`. ''' import numpy as np import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cm as cm from matplotlib import docstring import matplotlib.ticker as ticker import matplotlib.cbook as cbook import matplotlib.collections as collections import matplotlib.contour as contour from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.transforms import Bbox make_axes_kw_doc = ''' ============= ==================================================== Property Description ============= ==================================================== *orientation* vertical or horizontal *fraction* 0.15; fraction of original axes to use for colorbar *pad* 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new image axes *shrink* 1.0; fraction by which to shrink the colorbar *aspect* 20; ratio of long to short dimensions ============= ==================================================== ''' colormap_kw_doc = ''' =========== ==================================================== Property Description =========== ==================================================== *extend* [ 'neither' | 'both' | 'min' | 'max' ] If not 'neither', make pointed end(s) for out-of- range values. These are set for a given colormap using the colormap set_under and set_over methods. *spacing* [ 'uniform' | 'proportional' ] Uniform spacing gives each discrete color the same space; proportional makes the space proportional to the data interval. *ticks* [ None | list of ticks | Locator object ] If None, ticks are determined automatically from the input. *format* [ None | format string | Formatter object ] If None, the :class:`~matplotlib.ticker.ScalarFormatter` is used. If a format string is given, e.g., '%.3f', that is used. An alternative :class:`~matplotlib.ticker.Formatter` object may be given instead. *drawedges* [ False | True ] If true, draw lines at color boundaries. =========== ==================================================== The following will probably be useful only in the context of indexed colors (that is, when the mappable has norm=NoNorm()), or other unusual circumstances. ============ =================================================== Property Description ============ =================================================== *boundaries* None or a sequence *values* None or a sequence which must be of length 1 less than the sequence of *boundaries*. For each region delimited by adjacent entries in *boundaries*, the color mapped to the corresponding value in values will be used. ============ =================================================== ''' colorbar_doc = ''' Add a colorbar to a plot. Function signatures for the :mod:`~matplotlib.pyplot` interface; all but the first are also method signatures for the :meth:`~matplotlib.figure.Figure.colorbar` method:: colorbar(**kwargs) colorbar(mappable, **kwargs) colorbar(mappable, cax=cax, **kwargs) colorbar(mappable, ax=ax, **kwargs) arguments: *mappable* the :class:`~matplotlib.image.Image`, :class:`~matplotlib.contour.ContourSet`, etc. to which the colorbar applies; this argument is mandatory for the :meth:`~matplotlib.figure.Figure.colorbar` method but optional for the :func:`~matplotlib.pyplot.colorbar` function, which sets the default to the current image. keyword arguments: *cax* None | axes object into which the colorbar will be drawn *ax* None | parent axes object from which space for a new colorbar axes will be stolen Additional keyword arguments are of two kinds: axes properties: %s colorbar properties: %s If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend* kwarg is included automatically. Note that the *shrink* kwarg provides a simple way to keep a vertical colorbar, for example, from being taller than the axes of the mappable to which the colorbar is attached; but it is a manual method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a smaller value of *shrink*. For more precise control, you can manually specify the positions of the axes objects in which the mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs. It is known that some vector graphics viewer (svg and pdf) renders white gaps between segments of the colorbar. This is due to bugs in the viewers not matplotlib. As a workaround the colorbar can be rendered with overlapping segments:: cbar = colorbar() cbar.solids.set_edgecolor("face") draw() However this has negative consequences in other circumstances. Particularly with semi transparent images (alpha < 1) and colorbar extensions and is not enabled by default see (issue #1188). returns: :class:`~matplotlib.colorbar.Colorbar` instance; see also its base class, :class:`~matplotlib.colorbar.ColorbarBase`. Call the :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method to label the colorbar. The transData of the *cax* is adjusted so that the limits in the longest axis actually corresponds to the limits in colorbar range. On the other hand, the shortest axis has a data limits of [1,2], whose unconventional value is to prevent underflow when log scale is used. ''' % (make_axes_kw_doc, colormap_kw_doc) docstring.interpd.update(colorbar_doc=colorbar_doc) class CbarAxesLocator(object): """ CbarAxesLocator is a axes_locator for colorbar axes. It adjust the position of the axes to make a room for extended ends, i.e., the extended ends are located outside the axes area. """ def __init__(self, locator=None, extend="neither", orientation="vertical"): """ *locator* : the bbox returned from the locator is used as a initial axes location. If None, axes.bbox is used. *extend* : same as in ColorbarBase *orientation* : same as in ColorbarBase """ self._locator = locator self.extesion_fraction = 0.05 self.extend = extend self.orientation = orientation def get_original_position(self, axes, renderer): """ get the original position of the axes. """ if self._locator is None: bbox = axes.get_position(original=True) else: bbox = self._locator(axes, renderer) return bbox def get_end_vertices(self): """ return a tuple of two vertices for the colorbar extended ends. The first vertices is for the minimum end, and the second is for the maximum end. """ # Note that concatenating two vertices needs to make a # vertices for the frame. extesion_fraction = self.extesion_fraction corx = extesion_fraction*2. cory = 1./(1. - corx) x1, y1, w, h = 0, 0, 1, 1 x2, y2 = x1 + w, y1 + h dw, dh = w*extesion_fraction, h*extesion_fraction*cory if self.extend in ["min", "both"]: bottom = [(x1, y1), (x1+w/2., y1-dh), (x2, y1)] else: bottom = [(x1, y1), (x2, y1)] if self.extend in ["max", "both"]: top = [(x2, y2), (x1+w/2., y2+dh), (x1, y2)] else: top = [(x2, y2), (x1, y2)] if self.orientation == "horizontal": bottom = [(y,x) for (x,y) in bottom] top = [(y,x) for (x,y) in top] return bottom, top def get_path_patch(self): """ get the path for axes patch """ end1, end2 = self.get_end_vertices() verts = [] + end1 + end2 + end1[:1] return Path(verts) def get_path_ends(self): """ get the paths for extended ends """ end1, end2 = self.get_end_vertices() return Path(end1), Path(end2) def __call__(self, axes, renderer): """ Return the adjusted position of the axes """ bbox0 = self.get_original_position(axes, renderer) bbox = bbox0 x1, y1, w, h = bbox.bounds extesion_fraction = self.extesion_fraction dw, dh = w*extesion_fraction, h*extesion_fraction if self.extend in ["min", "both"]: if self.orientation == "horizontal": x1 = x1 + dw else: y1 = y1+dh if self.extend in ["max", "both"]: if self.orientation == "horizontal": w = w-2*dw else: h = h-2*dh return Bbox.from_bounds(x1, y1, w, h) class ColorbarBase(cm.ScalarMappable): ''' Draw a colorbar in an existing axes. This is a base class for the :class:`Colorbar` class, which is the basis for the :func:`~matplotlib.pyplot.colorbar` method and pylab function. It is also useful by itself for showing a colormap. If the *cmap* kwarg is given but *boundaries* and *values* are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and over-value colors, specify the *norm* as:: colors.Normalize(clip=False) To show the colors versus index instead of on the 0-1 scale, use:: norm=colors.NoNorm. Useful attributes: :attr:`ax` the Axes instance in which the colorbar is drawn :attr:`lines` a LineCollection if lines were drawn, otherwise None :attr:`dividers` a LineCollection if *drawedges* is True, otherwise None Useful public methods are :meth:`set_label` and :meth:`add_lines`. ''' def __init__(self, ax, cmap=None, norm=None, alpha=1.0, values=None, boundaries=None, orientation='vertical', extend='neither', spacing='uniform', # uniform or proportional ticks=None, format=None, drawedges=False, filled=True, ): self.ax = ax if cmap is None: cmap = cm.get_cmap() if norm is None: norm = colors.Normalize() self.alpha = alpha cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm) self.values = values self.boundaries = boundaries self.extend = extend self.spacing = spacing self.orientation = orientation self.drawedges = drawedges self.filled = filled # artists self.solids = None self.lines = None self.dividers = None self.extension_patch1 = None self.extension_patch2 = None if orientation == "vertical": self.cbar_axis = self.ax.yaxis else: self.cbar_axis = self.ax.xaxis if format is None: if isinstance(self.norm, colors.LogNorm): # change both axis for proper aspect self.ax.xaxis.set_scale("log") self.ax.yaxis.set_scale("log") self.ax._update_transScale() self.cbar_axis.set_minor_locator(ticker.NullLocator()) formatter = ticker.LogFormatter() else: formatter = None elif cbook.is_string_like(format): formatter = ticker.FormatStrFormatter(format) else: formatter = format # Assume it is a Formatter if formatter is None: formatter = self.cbar_axis.get_major_formatter() else: self.cbar_axis.set_major_formatter(formatter) if cbook.iterable(ticks): self.cbar_axis.set_ticks(ticks) elif ticks is not None: self.cbar_axis.set_major_locator(ticks) else: self._select_locator(formatter) self._config_axes() self.update_artists() self.set_label_text('') def _get_colorbar_limits(self): """ initial limits for colorbar range. The returned min, max values will be used to create colorbar solid(?) and etc. """ if self.boundaries is not None: C = self.boundaries if self.extend in ["min", "both"]: C = C[1:] if self.extend in ["max", "both"]: C = C[:-1] return min(C), max(C) else: return self.get_clim() def _config_axes(self): ''' Adjust the properties of the axes to be adequate for colorbar display. ''' ax = self.ax axes_locator = CbarAxesLocator(ax.get_axes_locator(), extend=self.extend, orientation=self.orientation) ax.set_axes_locator(axes_locator) # override the get_data_ratio for the aspect works. def _f(): return 1. ax.get_data_ratio = _f ax.get_data_ratio_log = _f ax.set_frame_on(True) ax.set_navigate(False) self.ax.set_autoscalex_on(False) self.ax.set_autoscaley_on(False) if self.orientation == 'horizontal': ax.xaxis.set_label_position('bottom') ax.set_yticks([]) else: ax.set_xticks([]) ax.yaxis.set_label_position('right') ax.yaxis.set_ticks_position('right') def update_artists(self): """ Update the colorbar associated artists, *filled* and *ends*. Note that *lines* are not updated. This needs to be called whenever clim of associated image changes. """ self._process_values() self._add_ends() X, Y = self._mesh() if self.filled: C = self._values[:,np.newaxis] self._add_solids(X, Y, C) ax = self.ax vmin, vmax = self._get_colorbar_limits() if self.orientation == 'horizontal': ax.set_ylim(1, 2) ax.set_xlim(vmin, vmax) else: ax.set_xlim(1, 2) ax.set_ylim(vmin, vmax) def _add_ends(self): """ Create patches from extended ends and add them to the axes. """ del self.extension_patch1 del self.extension_patch2 path1, path2 = self.ax.get_axes_locator().get_path_ends() fc=mpl.rcParams['axes.facecolor'] ec=mpl.rcParams['axes.edgecolor'] linewidths=0.5*mpl.rcParams['axes.linewidth'] self.extension_patch1 = PathPatch(path1, fc=fc, ec=ec, lw=linewidths, zorder=2., transform=self.ax.transAxes, clip_on=False) self.extension_patch2 = PathPatch(path2, fc=fc, ec=ec, lw=linewidths, zorder=2., transform=self.ax.transAxes, clip_on=False) self.ax.add_artist(self.extension_patch1) self.ax.add_artist(self.extension_patch2) def _set_label_text(self): """ set label. """ self.cbar_axis.set_label_text(self._label, **self._labelkw) def set_label_text(self, label, **kw): ''' Label the long axis of the colorbar ''' self._label = label self._labelkw = kw self._set_label_text() def _edges(self, X, Y): ''' Return the separator line segments; helper for _add_solids. ''' N = X.shape[0] # Using the non-array form of these line segments is much # simpler than making them into arrays. if self.orientation == 'vertical': return [zip(X[i], Y[i]) for i in range(1, N-1)] else: return [zip(Y[i], X[i]) for i in range(1, N-1)] def _add_solids(self, X, Y, C): ''' Draw the colors using :meth:`~matplotlib.axes.Axes.pcolormesh`; optionally add separators. ''' ## Change to pcolorfast after fixing bugs in some backends... if self.extend in ["min", "both"]: cc = self.to_rgba([C[0][0]]) self.extension_patch1.set_fc(cc[0]) X, Y, C = X[1:], Y[1:], C[1:] if self.extend in ["max", "both"]: cc = self.to_rgba([C[-1][0]]) self.extension_patch2.set_fc(cc[0]) X, Y, C = X[:-1], Y[:-1], C[:-1] if self.orientation == 'vertical': args = (X, Y, C) else: args = (np.transpose(Y), np.transpose(X), np.transpose(C)) kw = {'cmap':self.cmap, 'norm':self.norm, 'shading':'flat', 'alpha':self.alpha, } del self.solids del self.dividers col = self.ax.pcolormesh(*args, **kw) self.solids = col if self.drawedges: self.dividers = collections.LineCollection(self._edges(X,Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=(0.5*mpl.rcParams['axes.linewidth'],), ) self.ax.add_collection(self.dividers) else: self.dividers = None def add_lines(self, levels, colors, linewidths): ''' Draw lines on the colorbar. It deletes preexisting lines. ''' del self.lines N = len(levels) x = np.array([1.0, 2.0]) X, Y = np.meshgrid(x,levels) if self.orientation == 'vertical': xy = [zip(X[i], Y[i]) for i in range(N)] else: xy = [zip(Y[i], X[i]) for i in range(N)] col = collections.LineCollection(xy, linewidths=linewidths, ) self.lines = col col.set_color(colors) self.ax.add_collection(col) def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator) def _process_values(self, b=None): ''' Set the :attr:`_boundaries` and :attr:`_values` attributes based on the input boundaries and values. Input boundaries can be *self.boundaries* or the argument *b*. ''' if b is None: b = self.boundaries if b is not None: self._boundaries = np.asarray(b, dtype=float) if self.values is None: self._values = 0.5*(self._boundaries[:-1] + self._boundaries[1:]) if isinstance(self.norm, colors.NoNorm): self._values = (self._values + 0.00001).astype(np.int16) return self._values = np.array(self.values) return if self.values is not None: self._values = np.array(self.values) if self.boundaries is None: b = np.zeros(len(self.values)+1, 'd') b[1:-1] = 0.5*(self._values[:-1] - self._values[1:]) b[0] = 2.0*b[1] - b[2] b[-1] = 2.0*b[-2] - b[-3] self._boundaries = b return self._boundaries = np.array(self.boundaries) return # Neither boundaries nor values are specified; # make reasonable ones based on cmap and norm. if isinstance(self.norm, colors.NoNorm): b = self._uniform_y(self.cmap.N+1) * self.cmap.N - 0.5 v = np.zeros((len(b)-1,), dtype=np.int16) v = np.arange(self.cmap.N, dtype=np.int16) self._boundaries = b self._values = v return elif isinstance(self.norm, colors.BoundaryNorm): b = np.array(self.norm.boundaries) v = np.zeros((len(b)-1,), dtype=float) bi = self.norm.boundaries v = 0.5*(bi[:-1] + bi[1:]) self._boundaries = b self._values = v return else: b = self._uniform_y(self.cmap.N+1) self._process_values(b) def _uniform_y(self, N): ''' Return colorbar data coordinates for *N* uniformly spaced boundaries. ''' vmin, vmax = self._get_colorbar_limits() if isinstance(self.norm, colors.LogNorm): y = np.logspace(np.log10(vmin), np.log10(vmax), N) else: y = np.linspace(vmin, vmax, N) return y def _mesh(self): ''' Return X,Y, the coordinate arrays for the colorbar pcolormesh. These are suitable for a vertical colorbar; swapping and transposition for a horizontal colorbar are done outside this function. ''' x = np.array([1.0, 2.0]) if self.spacing == 'uniform': y = self._uniform_y(len(self._boundaries)) else: y = self._boundaries self._y = y X, Y = np.meshgrid(x,y) return X, Y def set_alpha(self, alpha): """ set alpha value. """ self.alpha = alpha class Colorbar(ColorbarBase): def __init__(self, ax, mappable, **kw): mappable.autoscale_None() # Ensure mappable.norm.vmin, vmax # are set when colorbar is called, # even if mappable.draw has not yet # been called. This will not change # vmin, vmax if they are already set. self.mappable = mappable kw['cmap'] = mappable.cmap kw['norm'] = mappable.norm kw['alpha'] = mappable.get_alpha() if isinstance(mappable, contour.ContourSet): CS = mappable kw['boundaries'] = CS._levels kw['values'] = CS.cvalues kw['extend'] = CS.extend #kw['ticks'] = CS._levels kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10)) kw['filled'] = CS.filled ColorbarBase.__init__(self, ax, **kw) if not CS.filled: self.add_lines(CS) else: ColorbarBase.__init__(self, ax, **kw) def add_lines(self, CS): ''' Add the lines from a non-filled :class:`~matplotlib.contour.ContourSet` to the colorbar. ''' if not isinstance(CS, contour.ContourSet) or CS.filled: raise ValueError('add_lines is only for a ContourSet of lines') tcolors = [c[0] for c in CS.tcolors] tlinewidths = [t[0] for t in CS.tlinewidths] # The following was an attempt to get the colorbar lines # to follow subsequent changes in the contour lines, # but more work is needed: specifically, a careful # look at event sequences, and at how # to make one object track another automatically. #tcolors = [col.get_colors()[0] for col in CS.collections] #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections] #print 'tlinewidths:', tlinewidths ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths) def update_bruteforce(self, mappable): """ Update the colorbar artists to reflect the change of the associated mappable. """ self.update_artists() if isinstance(mappable, contour.ContourSet): if not mappable.filled: self.add_lines(mappable) @docstring.Substitution(make_axes_kw_doc) def make_axes(parent, **kw): ''' Resize and reposition a parent axes, and return a child axes suitable for a colorbar:: cax, kw = make_axes(parent, **kw) Keyword arguments may include the following (with defaults): *orientation* 'vertical' or 'horizontal' %s All but the first of these are stripped from the input kw set. Returns (cax, kw), the child axes and the reduced kw dictionary. ''' orientation = kw.setdefault('orientation', 'vertical') fraction = kw.pop('fraction', 0.15) shrink = kw.pop('shrink', 1.0) aspect = kw.pop('aspect', 20) #pb = transforms.PBox(parent.get_position()) pb = parent.get_position(original=True).frozen() if orientation == 'vertical': pad = kw.pop('pad', 0.05) x1 = 1.0-fraction pb1, pbx, pbcb = pb.splitx(x1-pad, x1) pbcb = pbcb.shrunk(1.0, shrink).anchored('C', pbcb) anchor = (0.0, 0.5) panchor = (1.0, 0.5) else: pad = kw.pop('pad', 0.15) pbcb, pbx, pb1 = pb.splity(fraction, fraction+pad) pbcb = pbcb.shrunk(shrink, 1.0).anchored('C', pbcb) aspect = 1.0/aspect anchor = (0.5, 1.0) panchor = (0.5, 0.0) parent.set_position(pb1) parent.set_anchor(panchor) fig = parent.get_figure() cax = fig.add_axes(pbcb) cax.set_aspect(aspect, anchor=anchor, adjustable='box') return cax, kw def colorbar(mappable, cax=None, ax=None, **kw): """ Create a colorbar for a ScalarMappable instance. Documentation for the pylab thin wrapper: %(colorbar_doc)s """ import matplotlib.pyplot as plt if ax is None: ax = plt.gca() if cax is None: cax, kw = make_axes(ax, **kw) cax.hold(True) cb = Colorbar(cax, mappable, **kw) def on_changed(m): cb.set_cmap(m.get_cmap()) cb.set_clim(m.get_clim()) cb.update_bruteforce(m) cbid = mappable.callbacksSM.connect('changed', on_changed) mappable.colorbar = cb ax.figure.sca(ax) return cb
mit
mindbergh/PrivacyPolicyAnalyser
www/ppa/classifier/classify.py
1
3514
""" Copyright 2015 Austin Ankney, Ming Fang, Wenjun Wang and Yao Zhou Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This file defines the concrete control flow logic This script is the main entry for classifier. It does action classification and extract keywords from the incoming query. =========================================================================== TODO([email protected]): - Reconsider the type words - Consider action 6,7,8 in one query - log force change of aid - update _type_recognition function Usage: refer to demo.py Dependency: numpy, scipy, sklearn Author: Wenjun Wang<[email protected]> Date: July 1, 2015 """ import pickle import os from liblinearutil import * from www.settings import BASE_DIR from ppa.classifier.feature import * class Classifier(object): modeldir = os.path.abspath(BASE_DIR + "/ppa/classifier/models/") stopword_path = os.path.abspath(BASE_DIR + "/ppa/classifier/english.stp") def __init__(self): """ All variables which would be used by every query classification and parsing are listed here. Only need to create Classifier object once, i.e. initialize once """ self._model = self._get_model() self.stopwords = stopword(self.stopword_path) self.feature_list = self._get_feature_list() self.feature_arg = parse_options('-uni -pos2 -stem -stprm') self.labels = [0, 1] def _get_model(self): """Load model This function is called during initialization Return: models, action model and type model """ m1 = load_model(self.modeldir + '/model') return m1 def _get_feature_list(self): """Load feature file This function is called during initialization Return: Feature list """ with open(self.modeldir + '/features', 'r') as infile: feature_list = pickle.load(infile) return feature_list def _convert_query_to_dictionary(self, query): """Convert each user query to the format required by LibLINEAR Args and Need: query: the raw query, like 'What do people think of ?' self.feature_list: a list of unique features generated by function feature_generator Return: Convert user's query: store information in a dictionary, which is a member of a list. """ features = feature_generator(query, self.stopwords, self.feature_arg) onerow = {} for f in features: try: onerow[self.feature_list.index(f) + 1] = 1 except ValueError: pass return [onerow] def classify(self, query): """Does query classification, which decides which action need to be taken This function is called by self.action_info Return: Action id """ x = self._convert_query_to_dictionary(query) p_label, p_val = predict(self.labels, x, self._model, '-b 0') return int(p_label[0])
apache-2.0
pompiduskus/scikit-learn
sklearn/linear_model/tests/test_coordinate_descent.py
40
23697
# Authors: Olivier Grisel <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause from sys import version_info import numpy as np from scipy import interpolate, sparse from copy import deepcopy from sklearn.datasets import load_boston from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import TempMemmap from sklearn.linear_model.coordinate_descent import Lasso, \ LassoCV, ElasticNet, ElasticNetCV, MultiTaskLasso, MultiTaskElasticNet, \ MultiTaskElasticNetCV, MultiTaskLassoCV, lasso_path, enet_path from sklearn.linear_model import LassoLarsCV, lars_path def check_warnings(): if version_info < (2, 6): raise SkipTest("Testing for warnings is not supported in versions \ older than Python 2.6") def test_lasso_zero(): # Check that the lasso can handle zero data without crashing X = [[0], [0], [0]] y = [0, 0, 0] clf = Lasso(alpha=0.1).fit(X, y) pred = clf.predict([[1], [2], [3]]) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_lasso_toy(): # Test Lasso on a toy example for various values of alpha. # When validating this against glmnet notice that glmnet divides it # against nobs. X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line T = [[2], [3], [4]] # test sample clf = Lasso(alpha=1e-8) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.85]) assert_array_almost_equal(pred, [1.7, 2.55, 3.4]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) clf = Lasso(alpha=1) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.0]) assert_array_almost_equal(pred, [0, 0, 0]) assert_almost_equal(clf.dual_gap_, 0) def test_enet_toy(): # Test ElasticNet for various parameters of alpha and l1_ratio. # Actually, the parameters alpha = 0 should not be allowed. However, # we test it as a border case. # ElasticNet is tested with and without precomputed Gram matrix X = np.array([[-1.], [0.], [1.]]) Y = [-1, 0, 1] # just a straight line T = [[2.], [3.], [4.]] # test sample # this should be the same as lasso clf = ElasticNet(alpha=1e-8, l1_ratio=1.0) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(pred, [2, 3, 4]) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.3, max_iter=100, precompute=False) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=True) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf.set_params(max_iter=100, precompute=np.dot(X.T, X)) clf.fit(X, Y) # with Gram pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.50819], decimal=3) assert_array_almost_equal(pred, [1.0163, 1.5245, 2.0327], decimal=3) assert_almost_equal(clf.dual_gap_, 0) clf = ElasticNet(alpha=0.5, l1_ratio=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [0.45454], 3) assert_array_almost_equal(pred, [0.9090, 1.3636, 1.8181], 3) assert_almost_equal(clf.dual_gap_, 0) def build_dataset(n_samples=50, n_features=200, n_informative_features=10, n_targets=1): """ build an ill-posed linear regression problem with many noisy features and comparatively few samples """ random_state = np.random.RandomState(0) if n_targets > 1: w = random_state.randn(n_features, n_targets) else: w = random_state.randn(n_features) w[n_informative_features:] = 0.0 X = random_state.randn(n_samples, n_features) y = np.dot(X, w) X_test = random_state.randn(n_samples, n_features) y_test = np.dot(X_test, w) return X, y, X_test, y_test def test_lasso_cv(): X, y, X_test, y_test = build_dataset() max_iter = 150 clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter).fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) clf = LassoCV(n_alphas=10, eps=1e-3, max_iter=max_iter, precompute=True) clf.fit(X, y) assert_almost_equal(clf.alpha_, 0.056, 2) # Check that the lars and the coordinate descent implementation # select a similar alpha lars = LassoLarsCV(normalize=False, max_iter=30).fit(X, y) # for this we check that they don't fall in the grid of # clf.alphas further than 1 assert_true(np.abs( np.searchsorted(clf.alphas_[::-1], lars.alpha_) - np.searchsorted(clf.alphas_[::-1], clf.alpha_)) <= 1) # check that they also give a similar MSE mse_lars = interpolate.interp1d(lars.cv_alphas_, lars.cv_mse_path_.T) np.testing.assert_approx_equal(mse_lars(clf.alphas_[5]).mean(), clf.mse_path_[5].mean(), significant=2) # test set assert_greater(clf.score(X_test, y_test), 0.99) def test_lasso_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient clf_unconstrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) clf_unconstrained.fit(X, y) assert_true(min(clf_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients clf_constrained = LassoCV(n_alphas=3, eps=1e-1, max_iter=max_iter, positive=True, cv=2, n_jobs=1) clf_constrained.fit(X, y) assert_true(min(clf_constrained.coef_) >= 0) def test_lasso_path_return_models_vs_new_return_gives_same_coefficients(): # Test that lasso_path with lars_path style output gives the # same result # Some toy data X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T y = np.array([1, 2, 3.1]) alphas = [5., 1., .5] # Use lars_path and lasso_path(new output) with 1D linear interpolation # to compute the the same path alphas_lars, _, coef_path_lars = lars_path(X, y, method='lasso') coef_path_cont_lars = interpolate.interp1d(alphas_lars[::-1], coef_path_lars[:, ::-1]) alphas_lasso2, coef_path_lasso2, _ = lasso_path(X, y, alphas=alphas, return_models=False) coef_path_cont_lasso = interpolate.interp1d(alphas_lasso2[::-1], coef_path_lasso2[:, ::-1]) assert_array_almost_equal( coef_path_cont_lasso(alphas), coef_path_cont_lars(alphas), decimal=1) def test_enet_path(): # We use a large number of samples and of informative features so that # the l1_ratio selected is more toward ridge than lasso X, y, X_test, y_test = build_dataset(n_samples=200, n_features=100, n_informative_features=100) max_iter = 150 # Here we have a small number of iterations, and thus the # ElasticNet might not converge. This is to speed up tests clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) clf = ElasticNetCV(alphas=[0.01, 0.05, 0.1], eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter, precompute=True) ignore_warnings(clf.fit)(X, y) # Well-conditioned settings, we should have selected our # smallest penalty assert_almost_equal(clf.alpha_, min(clf.alphas_)) # Non-sparse ground truth: we should have seleted an elastic-net # that is closer to ridge than to lasso assert_equal(clf.l1_ratio_, min(clf.l1_ratio)) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) # Multi-output/target case X, y, X_test, y_test = build_dataset(n_features=10, n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7], cv=3, max_iter=max_iter) ignore_warnings(clf.fit)(X, y) # We are in well-conditioned settings with low noise: we should # have a good test-set performance assert_greater(clf.score(X_test, y_test), 0.99) assert_equal(clf.coef_.shape, (3, 10)) # Mono-output should have same cross-validated alpha_ and l1_ratio_ # in both cases. X, y, _, _ = build_dataset(n_features=10) clf1 = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) clf2 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf2.fit(X, y[:, np.newaxis]) assert_almost_equal(clf1.l1_ratio_, clf2.l1_ratio_) assert_almost_equal(clf1.alpha_, clf2.alpha_) def test_path_parameters(): X, y, _, _ = build_dataset() max_iter = 100 clf = ElasticNetCV(n_alphas=50, eps=1e-3, max_iter=max_iter, l1_ratio=0.5, tol=1e-3) clf.fit(X, y) # new params assert_almost_equal(0.5, clf.l1_ratio) assert_equal(50, clf.n_alphas) assert_equal(50, len(clf.alphas_)) def test_warm_start(): X, y, _, _ = build_dataset() clf = ElasticNet(alpha=0.1, max_iter=5, warm_start=True) ignore_warnings(clf.fit)(X, y) ignore_warnings(clf.fit)(X, y) # do a second round with 5 iterations clf2 = ElasticNet(alpha=0.1, max_iter=10) ignore_warnings(clf2.fit)(X, y) assert_array_almost_equal(clf2.coef_, clf.coef_) def test_lasso_alpha_warning(): X = [[-1], [0], [1]] Y = [-1, 0, 1] # just a straight line clf = Lasso(alpha=0) assert_warns(UserWarning, clf.fit, X, Y) def test_lasso_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope lasso = Lasso(alpha=0.1, max_iter=1000, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) lasso = Lasso(alpha=0.1, max_iter=1000, precompute=True, positive=True) lasso.fit(X, y) assert_true(min(lasso.coef_) >= 0) def test_enet_positive_constraint(): X = [[-1], [0], [1]] y = [1, 0, -1] # just a straight line with negative slope enet = ElasticNet(alpha=0.1, max_iter=1000, positive=True) enet.fit(X, y) assert_true(min(enet.coef_) >= 0) def test_enet_cv_positive_constraint(): X, y, X_test, y_test = build_dataset() max_iter = 500 # Ensure the unconstrained fit has a negative coefficient enetcv_unconstrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, n_jobs=1) enetcv_unconstrained.fit(X, y) assert_true(min(enetcv_unconstrained.coef_) < 0) # On same data, constrained fit has non-negative coefficients enetcv_constrained = ElasticNetCV(n_alphas=3, eps=1e-1, max_iter=max_iter, cv=2, positive=True, n_jobs=1) enetcv_constrained.fit(X, y) assert_true(min(enetcv_constrained.coef_) >= 0) def test_uniform_targets(): enet = ElasticNetCV(fit_intercept=True, n_alphas=3) m_enet = MultiTaskElasticNetCV(fit_intercept=True, n_alphas=3) lasso = LassoCV(fit_intercept=True, n_alphas=3) m_lasso = MultiTaskLassoCV(fit_intercept=True, n_alphas=3) models_single_task = (enet, lasso) models_multi_task = (m_enet, m_lasso) rng = np.random.RandomState(0) X_train = rng.random_sample(size=(10, 3)) X_test = rng.random_sample(size=(10, 3)) y1 = np.empty(10) y2 = np.empty((10, 2)) for model in models_single_task: for y_values in (0, 5): y1.fill(y_values) assert_array_equal(model.fit(X_train, y1).predict(X_test), y1) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) for model in models_multi_task: for y_values in (0, 5): y2[:, 0].fill(y_values) y2[:, 1].fill(2 * y_values) assert_array_equal(model.fit(X_train, y2).predict(X_test), y2) assert_array_equal(model.alphas_, [np.finfo(float).resolution]*3) def test_multi_task_lasso_and_enet(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] # Y_test = np.c_[y_test, y_test] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) clf = MultiTaskElasticNet(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_lasso_readonly_data(): X = np.array([[-1], [0], [1]]) Y = np.array([-1, 0, 1]) # just a straight line T = np.array([[2], [3], [4]]) # test sample with TempMemmap((X, Y)) as (X, Y): clf = Lasso(alpha=0.5) clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.coef_, [.25]) assert_array_almost_equal(pred, [0.5, 0.75, 1.]) assert_almost_equal(clf.dual_gap_, 0) def test_multi_task_lasso_readonly_data(): X, y, X_test, y_test = build_dataset() Y = np.c_[y, y] with TempMemmap((X, Y)) as (X, Y): Y = np.c_[y, y] clf = MultiTaskLasso(alpha=1, tol=1e-8).fit(X, Y) assert_true(0 < clf.dual_gap_ < 1e-5) assert_array_almost_equal(clf.coef_[0], clf.coef_[1]) def test_enet_multitarget(): n_targets = 3 X, y, _, _ = build_dataset(n_samples=10, n_features=8, n_informative_features=10, n_targets=n_targets) estimator = ElasticNet(alpha=0.01, fit_intercept=True) estimator.fit(X, y) coef, intercept, dual_gap = (estimator.coef_, estimator.intercept_, estimator.dual_gap_) for k in range(n_targets): estimator.fit(X, y[:, k]) assert_array_almost_equal(coef[k, :], estimator.coef_) assert_array_almost_equal(intercept[k], estimator.intercept_) assert_array_almost_equal(dual_gap[k], estimator.dual_gap_) def test_multioutput_enetcv_error(): X = np.random.randn(10, 2) y = np.random.randn(10, 2) clf = ElasticNetCV() assert_raises(ValueError, clf.fit, X, y) def test_multitask_enet_and_lasso_cv(): X, y, _, _ = build_dataset(n_features=100, n_targets=3) clf = MultiTaskElasticNetCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00556, 3) clf = MultiTaskLassoCV().fit(X, y) assert_almost_equal(clf.alpha_, 0.00278, 3) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskElasticNetCV(n_alphas=50, eps=1e-3, max_iter=100, l1_ratio=[0.3, 0.5], tol=1e-3) clf.fit(X, y) assert_equal(0.5, clf.l1_ratio_) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((2, 50, 3), clf.mse_path_.shape) assert_equal((2, 50), clf.alphas_.shape) X, y, _, _ = build_dataset(n_targets=3) clf = MultiTaskLassoCV(n_alphas=50, eps=1e-3, max_iter=100, tol=1e-3) clf.fit(X, y) assert_equal((3, X.shape[1]), clf.coef_.shape) assert_equal((3, ), clf.intercept_.shape) assert_equal((50, 3), clf.mse_path_.shape) assert_equal(50, len(clf.alphas_)) def test_1d_multioutput_enet_and_multitask_enet_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = ElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf.fit(X, y[:, 0]) clf1 = MultiTaskElasticNetCV(n_alphas=5, eps=2e-3, l1_ratio=[0.5, 0.7]) clf1.fit(X, y) assert_almost_equal(clf.l1_ratio_, clf1.l1_ratio_) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_1d_multioutput_lasso_and_multitask_lasso_cv(): X, y, _, _ = build_dataset(n_features=10) y = y[:, np.newaxis] clf = LassoCV(n_alphas=5, eps=2e-3) clf.fit(X, y[:, 0]) clf1 = MultiTaskLassoCV(n_alphas=5, eps=2e-3) clf1.fit(X, y) assert_almost_equal(clf.alpha_, clf1.alpha_) assert_almost_equal(clf.coef_, clf1.coef_[0]) assert_almost_equal(clf.intercept_, clf1.intercept_[0]) def test_sparse_input_dtype_enet_and_lassocv(): X, y, _, _ = build_dataset(n_features=10) clf = ElasticNetCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = ElasticNetCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) clf = LassoCV(n_alphas=5) clf.fit(sparse.csr_matrix(X), y) clf1 = LassoCV(n_alphas=5) clf1.fit(sparse.csr_matrix(X, dtype=np.float32), y) assert_almost_equal(clf.alpha_, clf1.alpha_, decimal=6) assert_almost_equal(clf.coef_, clf1.coef_, decimal=6) def test_precompute_invalid_argument(): X, y, _, _ = build_dataset() for clf in [ElasticNetCV(precompute="invalid"), LassoCV(precompute="invalid")]: assert_raises(ValueError, clf.fit, X, y) def test_warm_start_convergence(): X, y, _, _ = build_dataset() model = ElasticNet(alpha=1e-3, tol=1e-3).fit(X, y) n_iter_reference = model.n_iter_ # This dataset is not trivial enough for the model to converge in one pass. assert_greater(n_iter_reference, 2) # Check that n_iter_ is invariant to multiple calls to fit # when warm_start=False, all else being equal. model.fit(X, y) n_iter_cold_start = model.n_iter_ assert_equal(n_iter_cold_start, n_iter_reference) # Fit the same model again, using a warm start: the optimizer just performs # a single pass before checking that it has already converged model.set_params(warm_start=True) model.fit(X, y) n_iter_warm_start = model.n_iter_ assert_equal(n_iter_warm_start, 1) def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_) def test_random_descent(): # Test that both random and cyclic selection give the same results. # Ensure that the test models fully converge and check a wide # range of conditions. # This uses the coordinate descent algo using the gram trick. X, y, _, _ = build_dataset(n_samples=50, n_features=20) clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # This uses the descent algo without the gram trick clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X.T, y[:20]) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X.T, y[:20]) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Sparse Case clf_cyclic = ElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(sparse.csr_matrix(X), y) clf_random = ElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(sparse.csr_matrix(X), y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Multioutput case. new_y = np.hstack((y[:, np.newaxis], y[:, np.newaxis])) clf_cyclic = MultiTaskElasticNet(selection='cyclic', tol=1e-8) clf_cyclic.fit(X, new_y) clf_random = MultiTaskElasticNet(selection='random', tol=1e-8, random_state=42) clf_random.fit(X, new_y) assert_array_almost_equal(clf_cyclic.coef_, clf_random.coef_) assert_almost_equal(clf_cyclic.intercept_, clf_random.intercept_) # Raise error when selection is not in cyclic or random. clf_random = ElasticNet(selection='invalid') assert_raises(ValueError, clf_random.fit, X, y) def test_deprection_precompute_enet(): # Test that setting precompute="auto" gives a Deprecation Warning. X, y, _, _ = build_dataset(n_samples=20, n_features=10) clf = ElasticNet(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) clf = Lasso(precompute="auto") assert_warns(DeprecationWarning, clf.fit, X, y) def test_enet_path_positive(): # Test that the coefs returned by positive=True in enet_path are positive X, y, _, _ = build_dataset(n_samples=50, n_features=50) for path in [enet_path, lasso_path]: pos_path_coef = path(X, y, positive=True)[1] assert_true(np.all(pos_path_coef >= 0)) def test_sparse_dense_descent_paths(): # Test that dense and sparse input give the same input for descent paths. X, y, _, _ = build_dataset(n_samples=50, n_features=20) csr = sparse.csr_matrix(X) for path in [enet_path, lasso_path]: _, coefs, _ = path(X, y, fit_intercept=False) _, sparse_coefs, _ = path(csr, y, fit_intercept=False) assert_array_almost_equal(coefs, sparse_coefs)
bsd-3-clause
BerryAI/Acai
OpenMRS/test_game_data/test_cf_hf_gd_game.py
1
1377
""" test_cf_hf_gd.py ~~~ This module contains testing function of SVD method to discover hidden features in collaborative filtering method In this tesing file, we generate rating matrix for 1k user playing history of songs in Million Song Dataset. Because there are large amount of miss match in two data source, we only generate rate matrix of tracks in MSD which are played by 1k user dataset. Then we user Gradient Descent method to discover the hidden features in the CF methods. :auther: Alexander Z Wang """ import numpy import sys import time sys.path.append('../cf') sys.path.append('../read_game_data') import matplotlib.pyplot as plt import acai_game as ag import cf_hidden_feature as ch k = 5 lean_rate = 0.001 lambda_rate = 0.04 max_iter = 10000 GD_method = 1 user_rate_dict = ag.get_user_rate_dict() user_weight, hidden_feature, res_norm = ch.get_hidden_feature_matrix_GD( user_rate_dict, k, lean_rate, lambda_rate, max_iter, GD_method) predict_matrix = user_weight.dot(hidden_feature.T) print predict_matrix.shape print res_norm[-1] print "hidden features of 10 songs" print hidden_feature[0:10, :] hist, bin_edges = numpy.histogram(hidden_feature, bins=20) print hist print bin_edges # Plot convergence # plt.plot(res_norm) # plt.ylabel('Norm of Error') # plt.xlabel('Iteration Steps') # plt.show()
mit
rafael-radkowski/ME325
FatigueDiagram_General.py
1
18240
"""Failure theories for ductile materials - principal stress example # -*- coding: utf-8 -*- This module provides and example explaining the failure theorie for ductile materials in a plane. The user can set the principal stresses and the yield stress for a material. The class show a plot with the two envelopes and the principal stress: Implemented theories are: - Maximum shear stress theory or Tresca theory - Distortion enerty theory or von Mises theory. User input: - Yield strength - Principal stresses Press 'e' for manual input. Example: root = Tk() root.geometry("800x600+300+300") app = DuctileMaterial_FailureTheory_01() root.mainloop() or from a console. $ python DuctileFailureTheory01.py Note that this script was developed and tested with Python 3.5.3 Attributes: - Todo: * Rafael Radkowski Iowa State University Dec. 28, 2018 [email protected] All copyright reserved. """ # matplotlib import platform import matplotlib if platform.system() == 'Darwin': matplotlib.use("TkAgg") from matplotlib import pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg # tkinter for the display from tkinter import * from tkinter import Canvas, messagebox from tkinter import Tk, BOTH, W, N, E, S from tkinter.ttk import Frame, Button, Label, Scale, Checkbutton, Combobox import tkinter as tk # for images from PIL import Image, ImageTk from ME325Common.UnitConversion import * from ME325Common.METypes import * from ME325Common.DynamicLoadTheories import * from ME325Common.InputHelpers import * class FatigueDiagram_General(Frame): """ This class implements examples for two failure theories for ductile materials. See documentation """ # limits limit_stress = 1000 # in MPa or N/mm2. Needs to be converted into ksi # default values default_Sut = 110 default_Sy = 90 default_Se = 35 default_Sa = 20 default_Sm = 30 # canvas __canvas = 0 # The plot __the_plot = None slider_length = 200 # dicts __labels = {} __sliders = {} __output = {} __checkboxes = {} __results = {} # variables __var = {} # checkbox __checkbox_helpers = 0 __combo = 0 __units = ["SI", "USCS"] __unit_str = "(N/mm^2)" #material __mat = None # recursion stop __rec = True #submenu menu = None entry_items = ["Sut", "Sy", "Se", "Sa", "Sm"] def __init__(self): super().__init__() self.__mat = DMaterialData(110, 95, 35) # the plot self.__the_plot = FatigueDiagramPlot() # init ui self.initUI() # menu self.menu = DataEntryMenu(self.master, self.manual_entry_callback) # update ui self.update_values(0.0) # ----------- Update the outputs ---------- def update_plot(self): """ Update the plot area :return: """ self.__mat.Sut = self.__var["Sut"].get() self.__mat.Sy = self.__var["Sy"].get() self.__mat.Se = self.__var["Se"].get() Sa = self.__var["Sa"].get() Sm = self.__var["Sm"].get() # Update the plot self.__the_plot.update_plot(Sa, Sm, self.__mat) self.__canvas.draw_idle() #self.menu.update_plot(s1, s2, a1) def update_output_display(self): """ Update the output display, the stresses and factor of safeties this panel shows. :return: """ self.__var["n_Goodman"].set(str(round(self.__results["n_Goodman"],2))) self.__var["n_Sonderberg"].set(str(round(self.__results["n_Sonderberg"], 2))) self.__var["n_Gerber"].set(str(round(self.__results["n_Gerber"], 2))) return # ---------Widget callbacks --------------- def update_values(self, val): """ Update function for all widgets. The function updates the input values. Note that all slider widgets call this functions :param val: The value the widget passes :return: - """ # stops recursion when updating the slider at a different location if self.__rec == False: return self.__update_slider("Sut", 2) self.__update_slider("Sy", 2) self.__update_slider("Se", 2) self.__update_slider("Sa", 2) self.__update_slider("Sm", 2) Sut = self.__var["Sut"].get() Sy = self.__var["Sy"].get() Se = self.__var["Se"].get() Sa = self.__var["Sa"].get() Sm = self.__var["Sm"].get() # check for limits if Sut < Sy: self.__sliders["Sut"].set( Sy + 1) if Sy < Se: self.__sliders["Sy"].set(Se + 1) # calc results self.__results["n_Goodman"] = FatigueDiagram.calc_mod_Goodman_FoS(Sa, Sm, Se, Sut ) self.__results["n_Sonderberg"] = FatigueDiagram.calc_Sonderberg_FoS(Sa, Sm, Se, Sy) self.__results["n_Gerber"] = FatigueDiagram.calc_Gerber_FoS(Sa, Sm, Se, Sut) self.update_plot() self.update_output_display() def cb_update(self): """ Checkbox update. Captures the ckeckbox clicks. Checkboxes do not pass any arguments to the function :return: """ #self.failure_theory_plts.showVonMisesPlt(int(self.cb_mises.get())) #self.failure_theory_plts.showTrescaPlt(int(self.cb_tresca.get())) if self.__checkbox_helpers.get() == 1: self.__show_helpers = True else: self.__show_helpers = False self.__the_plot.set_helpers(self.__show_helpers) self.__canvas.draw_idle() #self.update_values(0) def cb2_update(self): visible = True if self.__checkboxes["Goodman"].get() != 1: visible = False self.__the_plot.set_visible(0, visible) visible = True if self.__checkboxes["Gerber"].get() != 1: visible = False self.__the_plot.set_visible(1, visible) visible = True if self.__checkboxes["Sonderberg"].get() != 1: visible = False self.__the_plot.set_visible(2, visible) visible = True if self.__checkboxes["Yield"].get() != 1: visible = False self.__the_plot.set_visible(3, visible) self.__canvas.draw_idle() def key_callback(self, event): """ Create a subwindow to allow for user input :param event: :return: """ if event.char == 'e': self.create_subUI() elif event.char == 'd': return def manual_entry_callback(self): """ Apply the values that the user set in the sub window :return: """ try: d = self.menu.get() self.__sliders["Sut"].set(float(d[self.entry_items[0]].get())) self.__sliders["Sy"].set(float(d[self.entry_items[1]].get())) self.__sliders["Se"].set(float(d[self.entry_items[2]].get())) self.__sliders["Sa"].set(float(d[self.entry_items[3]].get())) self.__sliders["Sm"].set(float(d[self.entry_items[4]].get())) # get values self.update_values(0) except ValueError: print("Something went wrong - invalid numbers") except KeyError: print("Something went wrong - wrong key") def __combobox_callback(self, event): c = self.__combo.get() self.__change_unit(c) self.update() def __save_plot(self): try: p = self.__the_plot.save_plot() messagebox.showinfo("Save Plot", str("Saved the plot as: " + p)) except: pass try: self.menu.save_plot() except: pass def __change_unit(self, unit): self.__rec = False if unit == self.__units[0]: # change to si units self.__unit_str = "(N/mm^2)" self.__the_plot.set_units(0) self.__sliders["Sut"].configure(from_=0, to=self.limit_stress) self.__sliders["Sy"].configure(from_=0, to=self.limit_stress) self.__sliders["Se"].configure(from_=0, to=self.limit_stress) self.__sliders["Sa"].configure(from_=0, to=self.limit_stress) self.__sliders["Sm"].configure(from_=0, to=self.limit_stress) self.__sliders["Sut"].set(UnitConversion.psi_to_Nmm2(self.__var["Sut"].get()) * 1000) self.__sliders["Sy"].set(UnitConversion.psi_to_Nmm2(self.__var["Sy"].get()) * 1000) self.__sliders["Se"].set(UnitConversion.psi_to_Nmm2(self.__var["Se"].get()) * 1000) self.__sliders["Sa"].set(UnitConversion.psi_to_Nmm2(self.__var["Sa"].get()) * 1000) self.__sliders["Sm"].set(UnitConversion.psi_to_Nmm2(self.__var["Sm"].get()) * 1000) else: # change to uscs units self.__unit_str = "(ksi)" self.__the_plot.set_units(1) self.__sliders["Sut"].configure(from_=0, to=UnitConversion.Nmm2_to_psi(self.limit_stress / 1000)) self.__sliders["Sut"].set(UnitConversion.Nmm2_to_psi(self.__var["Sut"].get()) / 1000) self.__sliders["Sy"].configure(from_=0, to=UnitConversion.Nmm2_to_psi(self.limit_stress / 1000)) self.__sliders["Sy"].set(UnitConversion.Nmm2_to_psi(self.__var["Sy"].get()) / 1000) self.__sliders["Se"].configure(from_=0, to=UnitConversion.Nmm2_to_psi(self.limit_stress / 1000)) self.__sliders["Se"].set(UnitConversion.Nmm2_to_psi(self.__var["Se"].get()) / 1000) self.__sliders["Sa"].configure(from_=0, to=UnitConversion.Nmm2_to_psi(self.limit_stress / 1000)) self.__sliders["Sa"].set(UnitConversion.Nmm2_to_psi(self.__var["Sa"].get()) / 1000) self.__sliders["Sm"].configure(from_=0, to=UnitConversion.Nmm2_to_psi(self.limit_stress / 1000)) self.__sliders["Sm"].set(UnitConversion.Nmm2_to_psi(self.__var["Sm"].get()) / 1000) self.__labels["Sut"].configure(text=str("Sut " + self.__unit_str + ":")) self.__labels["Sy"].configure(text=str("Sy " + self.__unit_str + ":")) self.__labels["Se"].configure(text=str("Se " + self.__unit_str + ":")) self.__labels["Sa"].configure(text=str("Sa " + self.__unit_str + ":")) self.__labels["Sm"].configure(text=str("Sm " + self.__unit_str + ":")) self.__canvas.draw_idle() self.__rec = True self.update_values(0) # ------------ Inits --------------- def create_subUI(self): """ Create a window that allows a user to manually enter all the values instead of using sliders :return: """ try: self.menu.create("Enter data", self.entry_items) d = {self.entry_items[0]: self.__var["Sut"].get(), self.entry_items[1]: self.__var["Sy"].get(), self.entry_items[2]: self.__var["Se"].get(), self.entry_items[3]: self.__var["Sa"].get(), self.entry_items[4]: self.__var["Sa"].get()} self.menu.set(d) except ValueError: print("Something went wrong") def create_plot(self): """ Create the plot that shows the failure theories :return: """ fig = self.__the_plot.create_plot(8) # 9 -> figure size self.__canvas = FigureCanvasTkAgg(fig, master=self) self.__canvas.draw() def initUI(self): """ Init the user interface and all widgets :return: - """ rows_for_plot = 24 cols_for_plot = 5 output_row_start = 14 self.master.title("ME 325 Machine Component Design") self.pack(fill=BOTH, expand=True) # keyboard binding self.master.bind("e", self.key_callback) self.master.bind("d", self.key_callback) self.columnconfigure(0, weight=1) # first and last column can expand self.columnconfigure(0, pad=7) self.rowconfigure(rows_for_plot, weight=1) self.rowconfigure(rows_for_plot, pad=7) lbl = Label(self, text="Mohr's Circle for plane materials") lbl.grid(sticky=W, pady=4, padx=5) self.__canvas = Canvas(self, width=300, height=300) self.create_plot() self.__canvas.get_tk_widget().grid(row=1, column=0, columnspan=cols_for_plot, rowspan=rows_for_plot, padx=5, sticky=E + W + S + N) Label(self, text="Input:",font='Helvetica 14 bold').grid(sticky=NW, row=1, column=cols_for_plot+1) #----------- # INPUT self.__add_slider("Sut", self.default_Sut, 0, self.limit_stress, 2, cols_for_plot) self.__add_slider("Sy", self.default_Sy, 0, self.limit_stress, 4, cols_for_plot) self.__add_slider("Se", self.default_Se, 0, self.limit_stress, 6, cols_for_plot) self.__add_slider("Sa", self.default_Sa, 0, self.limit_stress, 8, cols_for_plot) self.__add_slider("Sm", self.default_Sm, 0, self.limit_stress, 10, cols_for_plot) ##--------------------------------------------------------------------------------- # OUTPUT Label(self, text="Output:",font='Helvetica 14 bold').grid(sticky=NW, row=output_row_start, column=cols_for_plot+1) # s1 self.__add_label("n_Goodman", "n_Goodman", 0.0, output_row_start, cols_for_plot) self.__add_label("n_Gerber", "n_Gerber", 0.0, output_row_start+1, cols_for_plot) self.__add_label("n_Sonderberg", "n_Sonderberg", 0.0, output_row_start+2, cols_for_plot) ##--------------------------------------------------------------------------------- # Display Label(self, text="Display:", font='Helvetica 14 bold').grid(sticky=NW, row=output_row_start+5, column=cols_for_plot + 1) self.__add_checkbox("Goodman", "Goodman line", output_row_start + 6, cols_for_plot + 1, self.cb2_update) self.__add_checkbox("Gerber", "Gerber line" , output_row_start+7, cols_for_plot + 1, self.cb2_update) self.__add_checkbox("Sonderberg", "Sonderberg line", output_row_start + 8, cols_for_plot + 1, self.cb2_update) self.__add_checkbox("Yield", "Yield stress", output_row_start + 9, cols_for_plot + 1, self.cb2_update) #Label(self, text="press 'd' for details ",font='Helvetica 12').grid(sticky=NW, row=output_row_start + 6, # column=cols_for_plot+1, columnspan=2) ##--------------------------------------------------------------------------------- # Others cbtn = Button(self, text="Exit", command=self.quit) cbtn.grid(row=rows_for_plot+1, column=cols_for_plot+2, pady=4, sticky=E) Button(self, text="Save", command=self.__save_plot).grid(row=rows_for_plot + 1, column=cols_for_plot+1, pady=4, sticky=W) self.__checkbox_helpers = IntVar() self.__checkbox_helpers.set(1) check1 = Checkbutton(self, text="Helpers", variable=self.__checkbox_helpers, command=self.cb_update) check1.grid(row=rows_for_plot+1, column=cols_for_plot-1, sticky=W) Label(self, text="press 'e' for manual input.", font='Helvetica 12').grid(row=rows_for_plot+1, column=0, sticky=W, padx=7) self.__combo = Combobox(self, values=self.__units, state='readonly', width=6) self.__combo.grid(sticky=W, row=rows_for_plot+1, column=cols_for_plot-4, columnspan=1, padx=1, pady=0) self.__combo.current(0) self.__combo.bind("<<ComboboxSelected>>", self.__combobox_callback) def __add_slider(self, name, default_value, min, max, row_, cols_): self.__labels[name] = Label(self, text=str(name + " " + self.__unit_str + ":"), width=15) self.__labels[name].grid(sticky=W, row=row_, column=cols_ + 1) self.__var[str(name + "_str")] = StringVar() self.__var[str(name + "_str")].set(str(default_value)) self.__var[name] = DoubleVar() self.__var[name].set(default_value) self.__output[name] = Label(self, textvariable=self.__var[str(name + "_str")]) self.__output[name].grid(sticky=W, row=row_, column=cols_ + 2) self.__sliders[name] = Scale(self, value=default_value, from_=min, to=max, orient=HORIZONTAL, length=self.slider_length, command=self.update_values) self.__sliders[name].grid(sticky=W, row=row_+1, column=cols_ + 1, columnspan=2) def __update_slider(self, name, round_): try: # update value self.__var[name].set(round(self.__sliders[name].get(), round_)) self.__var[str(name + "_str")].set(str(self.__var[name].get())) except RecursionError: pass def __add_label(self, name, text_, default_value, row_, col_ ): self.__labels[name] = Label(self, text=str(text_ + " " + self.__unit_str + ":")) self.__labels[name].grid(sticky=W, row=row_ + 1, column=col_ + 1) self.__var[name] = StringVar() self.__var[name].set(str(default_value)) self.__output[name] = Label(self, textvariable=self.__var[name]) self.__output[name].grid(sticky=W, row=row_ + 1, column=col_ + 2) def __add_checkbox(self, name_, text_ , row_, col_, callback_): self.__checkboxes[name_] = IntVar() self.__checkboxes[name_].set(1) check1 = Checkbutton(self, text=text_, variable=self.__checkboxes[name_], command=callback_) check1.grid(row=row_, column=col_, sticky=W) def main(): root = Tk() root.geometry("900x720+300+300") app = FatigueDiagram_General() # To jump the window to the front root.attributes("-topmost", True) root.after_idle(root.attributes, '-topmost', False) # run root.mainloop() if __name__ == '__main__': main()
mit
meduz/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
78
6016
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from sklearn.utils import check_random_state from sklearn.utils.testing import assert_raises from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile from sklearn.ensemble.gradient_boosting import QuantileLossFunction def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float64) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float64) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float64) y.fill(0.0) sw = np.ones(102, dtype=np.float64) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float64) y.fill(1.0) sw = np.ones(102, dtype=np.float64) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_quantile_loss_function(): # Non regression test for the QuantileLossFunction object # There was a sign problem when evaluating the function # for negative values of 'ytrue - ypred' x = np.asarray([-1.0, 0.0, 1.0]) y_found = QuantileLossFunction(1, 0.9)(x, np.zeros_like(x)) y_expected = np.asarray([0.1, 0.0, 0.9]).mean() np.testing.assert_allclose(y_found, y_expected) def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
JeanKossaifi/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
mkdubik/multinet-evaluation
plot/t3.py
1
1050
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from os import listdir from pdb import set_trace import matplotlib.pyplot as plt from t1 import process_memory_log, collect_data def main(): plt.figure(1) data = collect_data('telemetry/t3/') x = sorted(data[data.keys()[0]].keys()) def plot(data, method, what): y = data[method] y = [y[k][what] for k in sorted(y.keys())] a1, = plt.plot(x, y, '-', linewidth=2, label = method) return a1 a = plot(data, 'glouvain', 0) c = plot(data, 'pmm', 0) plt.xlabel('Actors (thousand)', fontsize = 14) plt.ylabel('computational time (s)', fontsize = 14) plt.legend(handles = [a, c], loc = 2, title = 'L = 3, $\mu$ = 0.3') plt.xticks(x) plt.savefig('t3a') plt.figure(2) a = plot(data, 'glouvain', 1) c = plot(data, 'pmm', 1) plt.xlabel('Actors (thousand)', fontsize = 14) plt.ylabel('peak memory usage (megabytes)', fontsize = 14) plt.legend(handles = [a, c], loc = 2, title = 'L = 3, $\mu$ = 0.3') plt.xticks(x) plt.savefig('t3b') if __name__ == "__main__": main()
gpl-2.0
Jeff20/scipy_2015_sklearn_tutorial
notebooks/helpers.py
19
5046
import numpy as np from collections import defaultdict import os from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.feature_extraction import DictVectorizer # Can also use pandas! def process_titanic_line(line): # Split line on "," to get fields without comma confusion vals = line.strip().split('",') # replace spurious " characters vals = [v.replace('"', '') for v in vals] pclass = int(vals[0]) survived = int(vals[1]) name = str(vals[2]) sex = str(vals[3]) try: age = float(vals[4]) except ValueError: # Blank age age = -1 sibsp = float(vals[5]) parch = int(vals[6]) ticket = str(vals[7]) try: fare = float(vals[8]) except ValueError: # Blank fare fare = -1 cabin = str(vals[9]) embarked = str(vals[10]) boat = str(vals[11]) homedest = str(vals[12]) line_dict = {'pclass': pclass, 'survived': survived, 'name': name, 'sex': sex, 'age': age, 'sibsp': sibsp, 'parch': parch, 'ticket': ticket, 'fare': fare, 'cabin': cabin, 'embarked': embarked, 'boat': boat, 'homedest': homedest} return line_dict def load_titanic(test_size=.25, feature_skip_tuple=(), random_state=1999): f = open(os.path.join('datasets', 'titanic', 'titanic3.csv')) # Remove . from home.dest, split on quotes because some fields have commas keys = f.readline().strip().replace('.', '').split('","') lines = f.readlines() f.close() string_keys = ['name', 'sex', 'ticket', 'cabin', 'embarked', 'boat', 'homedest'] string_keys = [s for s in string_keys if s not in feature_skip_tuple] numeric_keys = ['pclass', 'age', 'sibsp', 'parch', 'fare'] numeric_keys = [n for n in numeric_keys if n not in feature_skip_tuple] train_vectorizer_list = [] test_vectorizer_list = [] n_samples = len(lines) numeric_data = np.zeros((n_samples, len(numeric_keys))) numeric_labels = np.zeros((n_samples,), dtype=int) # Doing this twice is horribly inefficient but the file is small... for n, l in enumerate(lines): line_dict = process_titanic_line(l) strings = {k: line_dict[k] for k in string_keys} numeric_labels[n] = line_dict["survived"] sss = StratifiedShuffleSplit(numeric_labels, n_iter=1, test_size=test_size, random_state=12) # This is a weird way to get the indices but it works train_idx = None test_idx = None for train_idx, test_idx in sss: pass for n, l in enumerate(lines): line_dict = process_titanic_line(l) strings = {k: line_dict[k] for k in string_keys} if n in train_idx: train_vectorizer_list.append(strings) else: test_vectorizer_list.append(strings) numeric_data[n] = np.asarray([line_dict[k] for k in numeric_keys]) train_numeric = numeric_data[train_idx] test_numeric = numeric_data[test_idx] train_labels = numeric_labels[train_idx] test_labels = numeric_labels[test_idx] vec = DictVectorizer() # .toarray() due to returning a scipy sparse array train_categorical = vec.fit_transform(train_vectorizer_list).toarray() test_categorical = vec.transform(test_vectorizer_list).toarray() train_data = np.concatenate([train_numeric, train_categorical], axis=1) test_data = np.concatenate([test_numeric, test_categorical], axis=1) keys = numeric_keys + string_keys return keys, train_data, test_data, train_labels, test_labels FIELDNAMES = ('polarity', 'id', 'date', 'query', 'author', 'text') def read_sentiment_csv(csv_file, fieldnames=FIELDNAMES, max_count=None, n_partitions=1, partition_id=0): import csv # put the import inside for use in IPython.parallel def file_opener(csv_file): try: open(csv_file, 'r', encoding="latin1").close() return open(csv_file, 'r', encoding="latin1") except TypeError: # Python 2 does not have encoding arg return open(csv_file, 'rb') texts = [] targets = [] with file_opener(csv_file) as f: reader = csv.DictReader(f, fieldnames=fieldnames, delimiter=',', quotechar='"') pos_count, neg_count = 0, 0 for i, d in enumerate(reader): if i % n_partitions != partition_id: # Skip entry if not in the requested partition continue if d['polarity'] == '4': if max_count and pos_count >= max_count / 2: continue pos_count += 1 texts.append(d['text']) targets.append(1) elif d['polarity'] == '0': if max_count and neg_count >= max_count / 2: continue neg_count += 1 texts.append(d['text']) targets.append(-1) return texts, targets
cc0-1.0
giffordw/astrofuncs
findpotential/__init__.py
1
11153
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' NUMERICAL AND NFW MASS/DENSITY/POTENTIAL/V_ESC CALCULATIONS Description: The main function to call is find_potential(). There are several other supporting functions which can be called as well. find_potential(gal_data, clus_data, red_z, Rvir): gal_data -- A (Nx6) array with the column order as: gal_x,gal_y,gal_z,gal_vx,gal_vy,gal_vz. The positions are assummed to be in [Mpc] and the velocities in [km/s] clus_data -- A 6 element array with order: clus_x,clus_y,clus_z,clus_vx,clus_vy,clus_vz. The positions are assummed to be in [Mpc] and the velocities in [km/s] red_z -- The cluster redshift Rvir -- The virial radius or critical radius (r200). Assummed to be in [Mpc] Outputs: The program calculates the cumulative mass profile, density profile, potential profile, and escape velocity for each cluster. There are no file outputs, however the program creates two plots that can be saved. The first is the cumulative/NFW mass profiles and the second is the phase space plot with the various escape velocity solutions overplotted. Author: Dan Gifford Year: 2014 Institution: University of Michigan Email: [email protected] ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' from __future__ import division from math import * import astropy.units as u import astropy.constants as const import matplotlib.pyplot as plt import astropy import numpy as np import scipy.optimize as optimize from astropy.io import ascii from scipy import ndimage from astropy.io import fits as pyfits from scipy.integrate import cumtrapz #####CONSTANTS##### h = 0.73 #km/s/Mpc/100.0 rmax = 10 #Mpc G =4.518e-48 #Mpc^3 / (Msol s2) bin_size = 0.01/h #Mpc def NFW_cumulative_mass(r,rho_0,r_0): '''returns NFW cumulative mass integrated to infinity (it converges)''' D = r / r_0 return 4 * np.pi * rho_0 * (r_0**3) * ( np.log(1+D) - ( D / (1+D) ) ) def fit_NFW(radii,cummass,rfit,p0): '''uses scipy.optimize.curve_fit to find solution. Takes the rgrid, cumulative mass profile, rcrit radius, and parameter guesses [rho_0,r_0] ''' #select indices within rfit (should be the virial radius) vir, = np.where(radii <= rfit) NFW_array,pcov = optimize.curve_fit(NFW_cumulative_mass,radii[vir],cummass[vir],\ p0=p0) return NFW_array,pcov def density(r,mass): '''Takes radial grid and cumulative mass profile and returns a density profile in Msol/Mpc^3''' dens = np.zeros(r.size) for ii in range(dens.size): if ii == 0: dens[ii] = mass[ii]/(4/3.0*np.pi*(r[ii]**3-r[ii-1]**3)) else: dens[ii] = (mass[ii]-mass[ii-1])/(4/3.0*np.pi*(r[ii]**3-r[ii-1]**3)) return dens def numerical_potential(r,dens): '''Integrates the density profile to solve for the potential profile. This is the 2 integral method. Returned units are in Mpc^2/s^2 ''' deriv1 = dens*r**2 deriv2 = dens*r inner = cumtrapz(deriv1,r) outer = -cumtrapz(deriv2[::-1],r[::-1]) return -4*np.pi*G*(1.0/r[1:-1]*inner[:-1] + outer[::-1][1:]) def phi_N(r,rho_0,r_0): '''Returns NFW potential integrated to infinity (it converges). Returned units are in Mpc^2/s^2''' D = r / r_0 return (-4*np.pi*G*rho_0*r_0**2*((np.log(1+D))/D)) class find_potential: def __init__(self,gal_data,clus_data,red_z=None,Rvir=None): '''Main Program. See main doc for details''' #####TESTING##### try: assert gal_data.shape[1] == 6 except: raise Exception, 'Your galaxy array has shape {0}x{1} and needs to be {0}x6. Please reshape!'.format(gal_data.shape[0],gal_data.shape[1]) try: assert clus_data.size == 6 except: raise Exception, 'Oops! You have not fed the function the correct number of cluster values.' if red_z == None: raise Exception, 'Please pass the function a cluster redshift!' if Rvir == None: raise Exception, 'Please pass the function a cluster virial/critical radius!' ################# GAL_R = np.sqrt((gal_data[:,0]-clus_data[0])**2 + (gal_data[:,1]-clus_data[1])**2 + (gal_data[:,2]-clus_data[2])**2) #3D galaxy radial distances GAL_V = np.sqrt((gal_data[:,3]-clus_data[3])**2 + (gal_data[:,4]-clus_data[4])**2 + (gal_data[:,5]-clus_data[5])**2) #3D galaxy peculiar velocities Mpcbin = np.where(GAL_R <= rmax) #identify indices of particles within 'rmax' of cluster. crit = 2.774946e11*h*h*(0.75+0.25/(1+red_z)**3) #critical density of universe in solar masses/Mpc^3 av_dens = (0.25/(1+red_z)**3)*crit #average density of universe #filter particles to within 'Mpcbin' range self.GAL_R_3Mpc = GAL_R[Mpcbin] self.GAL_V_3Mpc = GAL_V[Mpcbin] self.radial = gal_data[:,3][Mpcbin]*(gal_data[:,0][Mpcbin]/self.GAL_R_3Mpc) + gal_data[:,4][Mpcbin]*(gal_data[:,1][Mpcbin]/self.GAL_R_3Mpc) + gal_data[:,5][Mpcbin]*(gal_data[:,2][Mpcbin]/self.GAL_R_3Mpc) #radial velocity in km/s number_of_particles_in_bin,bin_edges = np.histogram(self.GAL_R_3Mpc,np.arange(0,rmax,bin_size)) #bin particles by radial distance self.rbin = (bin_edges[1:]+bin_edges[:-1])/2.0 #the grid of r-values associated with each radial bin #### calculate cumulative mass profile (M<r): particle_mass = 8.6e8/h #Millennium particle mass self.cumulative_mass_profile = particle_mass * np.cumsum(number_of_particles_in_bin)# solar masses '''plot cumulative mass profile M(<r)''' plt.plot(self.rbin, self.cumulative_mass_profile) ############ NFW fit ############# #parameter guesses: self.rho_0_guess = 5e14 # Msol / Mpc3 self.r_0_guess = 0.4 #Mpc NFW_array,pcov = fit_NFW(self.rbin,self.cumulative_mass_profile,Rvir,[self.rho_0_guess,self.r_0_guess]) #first element of optimization curve fit output array. units: Msol/[Mpc]^3 self.rho_0 = NFW_array[0] #* u.Msol * u.Mpc**-3 #second element of optimization curve fit output array. units: [Mpc] self.r_0 = NFW_array[1] #* u.Mpc print 'normalization: {0:.3e} Msol/Mpc^3 scale radius: {1:.3f} Mpc'.format(self.rho_0,self.r_0) self.NFW_mass_profile = NFW_cumulative_mass(self.rbin,self.rho_0,self.r_0) '''plot cumulative mass profile M(<r) FIT''' plt.plot(self.rbin, self.NFW_mass_profile) #plt.savefig('path_to_figs/'+str(i)+'profile.png') plt.close() #plt.show() #Now numerically solve for density and potential profiles self.dens_NFW = density(self.rbin,self.NFW_mass_profile) - av_dens #Msol/Mpc^3 self.dens = density(self.rbin,self.cumulative_mass_profile) - av_dens #Msol/Mpc^3 self.potential_numerical = numerical_potential(self.rbin,self.dens) #Mpc^2/s^2 self.potential_NFW_numerical = numerical_potential(self.rbin,self.dens_NFW) #Mpc^2/s^2 ############# Escape Velocity profiles ############# #escape velocity profile self.v_esc_NFW = np.sqrt(-2 * phi_N(self.rbin,self.rho_0,self.r_0))*3.086e19 #km/s self.v_esc_NFW_numerical = np.sqrt(-2 * self.potential_NFW_numerical)*3.086e19 #km/s self.v_esc_numerical = np.sqrt(-2 * self.potential_numerical)*3.086e19 #km/s #hubble param escape calculation q = 0.25/2.0 - 0.75 H2 = (h*100*3.24e-20)**2 re = (G*self.cumulative_mass_profile[1:-1]/(-q*H2))**(1/3.0) #re = (G*M200[i]*1e10/(-q*H2))**(1/3.0) self.v_esc_hflow = np.sqrt(self.v_esc_numerical**2 + (q*(h*100)**2*(self.rbin[1:-1]**2)))# - 3*re**2))) #km/s #Chris's GM/R + dm calc base = -G*self.cumulative_mass_profile[self.rbin<=Rvir][-1]/Rvir dm = -G*np.append(self.cumulative_mass_profile[0],self.cumulative_mass_profile[1:] - self.cumulative_mass_profile[:-1])/self.rbin self.potential_chris = (base + dm)*(3.086e19)**2 + (q*(h*100)**2*(self.rbin**2)) #km^2/s^2 self.v_esc_chris = np.sqrt(-2*self.potential_chris) #km/s #Chris's integral + dm calc base = self.potential_numerical dm = dm[1:-1] self.potential_chris_tot = (base + dm)*(3.086e19)**2 + (q*(h*100)**2*(self.rbin[1:-1]**2)) #km^2/s^2 self.v_esc_chris_tot = np.sqrt(-2*self.potential_chris_tot) #km/s if __name__ == '__main__': #####Read in catalog data##### redshift,rcrit,M200,veldisp,halox,haloy,haloz,halovx,halovy,halovz = np.loadtxt('/n/Christoq1/giffordw/Millenium/biglosclusters.csv',dtype='float',delimiter=',',usecols=(4,5,6,8,9,10,11,12,13,14),unpack=True) fileID = np.loadtxt('/n/Christoq1/MILLENNIUM/100Halos/particles/cmiller.csv',dtype='string',delimiter=',',skiprows=1,usecols=(0,),unpack=True) for i in range(1):#fileID.size): #Loop over range(N) clusters IDh = fileID[i] ID = np.loadtxt('/n/Christoq1/giffordw/Millenium/biglosclusters.csv',dtype='string',delimiter=',',usecols=(0,),unpack=True) Rvir = (rcrit[ID==IDh]/(1+redshift[ID==IDh]))[0] / h # Mpc fits = pyfits.open('/n/Christoq1/MILLENNIUM/100Halos/particles/t'+str(i)+'_cmiller.dat.fits') #open particle fits file data = fits[1].data gal_x = data.field('PPX')/h gal_y = data.field('PPY')/h gal_z = data.field('PPZ')/h gal_vx = data.field('VVX') gal_vy = data.field('VVY') gal_vz = data.field('VVZ') gal_ob = find_potential(np.column_stack((gal_x,gal_y,gal_z,gal_vx,gal_vy,gal_vz)),np.array([0.0,0.0,0.0,halovx[ID==IDh],halovy[ID==IDh],halovz[ID==IDh]]),redshift[ID==IDh][0],Rvir) s,ax = plt.subplots(1,figsize=(17,10)) # plot up particles ax.plot(gal_ob.GAL_R_3Mpc,gal_ob.radial,'ko',markersize=1,alpha=0.3) ax.plot(gal_ob.rbin,gal_ob.v_esc_NFW,'b')# NFW escape velocity ax.plot(gal_ob.rbin,-gal_ob.v_esc_NFW,'b') ax.plot(gal_ob.rbin[1:-1],gal_ob.v_esc_NFW_numerical,'b--')# numerical NFW escape velocity ax.plot(gal_ob.rbin[1:-1],-gal_ob.v_esc_NFW_numerical,'b--') ax.plot(gal_ob.rbin[1:-1],gal_ob.v_esc_hflow,color='g')# numerical escape velocity ax.plot(gal_ob.rbin[1:-1],-gal_ob.v_esc_hflow,color='g') ax.plot(gal_ob.rbin,gal_ob.v_esc_chris,color='orange')# Chris escape velocity ax.plot(gal_ob.rbin,-gal_ob.v_esc_chris,color='orange') #format plot ax.axvline(Rvir,color='k',ls='--',alpha=0.5) ax.set_xlabel('r [Mpc]') ax.set_ylabel('$ \sqrt{-2\phi_{N}}$ [km/s]',fontsize=13) ax.set_xlim(0,3)#Rvir) #plt.savefig('path_to_figs/'+str(i)+'phase.png') #plt.show() plt.close() print 'DONE WITH CLUSTER {0}'.format(i)
mit
umn-earth-surface/IceFlow
examples/Iceland2017.py
1
1597
import iceflow ic = iceflow.IceFlow() self = ic import numpy as np import scipy from scipy.io import loadmat from scipy.sparse import linalg import os import sys from matplotlib import pyplot as plt ic.useGRASS = True ic.location='Iceland' ic.gisbase = '/usr/local/src/grass7_trunk/dist.x86_64-unknown-linux-gnu' ic.run_length_years = 1000. # years ic.t_start_years = 0. # years ic.dt_years = 1 ic.record_frequency_years = 50 ic.elevation = 'elev' ic.north = 792000 ic.south = 240000 ic.west = 108000 ic.east = 868000 ic.dx = 4000 ic.dy = 4000 """ ic.mass_balance_parameterization = 'TP_PDD' # Goes to Ta variable ic.temperature_melt_season = 'TwentiethCenturyTemp_NCAR_CIRES_JJA_degC' ic.melt_season_length_days = 120 #self.Pa /= 1000. / self.secyr # e.g., PRISM is in mm/yr, change to m/s. # CONVERT THIS IN GRASS BEFOREHAND!!! <---------------------------------------- # Goes to Pair variable ic.precipitation_solid = 'TwentiethCenturyPrecip_NCAR_CIRES_annual' ic.T_correction = -5 ic.P_factor = 1 ic.b_maximum_per_year = 1 # [m/yr] """ ic.mass_balance_parameterization = 'ELA' ic.ELA = 800 ic.dbdz_per_year = 1E-3 # 1 m/yr over 1 km -- EDIT THIS TO FIT DATA! ic.b_maximum_per_year = .3 # [m/yr] # Set this up to automatically number IceFlow outputs using glob ic.output_filename=None ic.output_figure=None ic.plot_at_end_flag=False ic.plot_during_run_flag = True #ic.plot_t_years = ic.run_length_years ic.boundary_condition = 'Dirichlet0' ic.GRASS_raster_ice_extent = 'FakeMeasuredExtents' ic.verbose = False # Flexure ic.isostatic = False ic.initialize() ic.run() ic.finalize()
gpl-3.0
lucadealfaro/crowdranker
modules/rank.py
1
31858
# -*- coding: utf-8 -*- import numpy as np import random #import matplotlib.pyplot as plt import time import math class Cost: """ Class contains cost function. """ def __init__(self, cost_type='top-k', rank_cost_coefficient=-1): self.cost_type = cost_type self.rank_cost_coefficient = rank_cost_coefficient def calculate(self, i, k, id2rank): # ranking starts from 0, so first k rank are 0, 1, ..., k - 1 if self.cost_type == 'top-k': if id2rank[i] < k: return 1 else: return 0 elif self.cost_type == 'one_over_rank': return 1./( 1 + id2rank[i]) elif self.cost_type == 'rank_power_alpha': if self.rank_cost_coefficient == 0: raise Exception("If coefficient is zero then cost object should be None!") return (1 + id2rank[i]) ** self.rank_cost_coefficient elif self.cost_type == 'two_steps': if id2rank[i] < k: return 1 if id2rank[i] < 3 * k / 2: return 0.5 return 0 elif self.cost_type == 'piecewise': a = 0.25 x = id2rank[i] if x < k: return (-1) * a / k * x + 1 + a if x < 2 * k: return - 1. / k * x + 2 return 0 elif self.cost_type == 'smooth-top-k': beta = 2 return 1.0 / (1 + (id2rank[i]/float(k)) ** beta) else: raise Exception('Cost funtion type is not specified') class Rank: """ Class contains methods for ranking items based on items comparison. """ def __init__(self, items, alpha=0.9, num_bins=2001, cost_obj=None, k=None, init_dist_type='gauss'): """ Arguments: - items is a list of original items id. function. If cost_obj is None then we don't use any reward function and treat each item equally. - alpha is the annealing coefficient for distribution update. - num_bins is the number of histogram bins. - cost_obj is an object of type Cost, in other words it is reward - init_distr_type is type of ditribution we use for initialization quality distributions """ # items are indexed by 0, 1, ..., num_items - 1 in the class but # "outside" they have ids from orig_items_id, so orig_items_id[n] # is original id of item n. self.orig_items_id = items num_items = len(items) self.num_items = num_items self.num_bins = num_bins self.cost_obj = cost_obj self.alpha = alpha # Constant k is for top-k problems. self.k = k # qdistr is numpy two dimensional array which represents quality # distribution, i-th row is a distribution for an item with id equals i. # qdistr is initialized as uniform distribution. if init_dist_type == 'unif': self.qdistr = np.zeros((num_items ,num_bins)) + 1./num_bins elif init_dist_type == 'gauss': # Does a Gaussian distribution centered in the center. #print num_items, num_bins x, y = np.mgrid[0:num_items, 0:num_bins] self.qdistr = np.zeros((self.num_items, self.num_bins)) for i in xrange(self.num_items): self.qdistr[i, :] = self.get_normal_vector(self.num_bins, self.num_bins / 2, self.num_bins / 8) #self.qdistr = scipy.stats.distributions.norm.pdf(y, loc=num_bins / 2, scale = num_bins / 8) # Normalization. #self.qdistr = self.qdistr / np.sum(self.qdistr, 1) [:, np.newaxis] self.qdistr_init = self.qdistr.copy() # Plotting, for testing. #plt.plot(self.qdistr[0, :]) #plt.draw() #time.sleep(2) #plt.close('all') self.rank2id, self.id2rank = self.compute_ranks(self.qdistr) # generate true items quality and rank self.generate_true_items_quality() self.rank2id_true, self.id2rank_true = \ self.compute_ranks(self.qdistr_true) # Computing true quality vector; quality_true[i] is true quality # of item i. #self.quality_true = self.avg(self.qdistr_true) self.quality_true = self.num_items - self.id2rank_true @classmethod def from_qdistr_param(cls, items, qdistr_param, alpha=0.6, num_bins=2001, cost_obj=None): """ Alternative constructor for creating rank object from quality distributions parameters. Arguments are the same like in __init__ method but qdistr_param is a list with mean and stdev for each item such that qdistr_param[2*i] and qdistr[2*i + 1] are mean and stdev for items[i]. """ result = cls(items, alpha, num_bins, cost_obj, k=None, init_dist_type='gauss') result.restore_qdistr_from_parameters(qdistr_param) return result def get_normal_vector(self, num_bins, average, stdev): x_array = np.arange(num_bins) dist = x_array - average # In literature sigma is standard deviation and sigma**2 is variance. d = np.exp(-dist * dist / (2.0 * stdev * stdev)) d = d / np.sum(d) return d #def plot_distributions(self, hold=False, **kwargs): # plt.clf() # for i in range(self.num_items): # plt.plot(self.qdistr[i, :]) # #plt.title(self.get_title_for_plot(**kwargs)) # if hold: # plt.show() # else: # plt.ioff() # plt.draw() # time.sleep(.3) #def get_title_for_plot(self, **kwargs): # result = '' # for key in kwargs: # result += '%s %s, ' % (key, kwargs[key]) # result += 'raking error %s %%, ' % self.get_ranking_error() # result += 'quality metric %s ' % self.get_quality_metric() # return result def generate_true_items_quality(self): identity = np.eye(self.num_items) zeros = np.zeros((self.num_items, self.num_bins - self.num_items)) self.qdistr_true = np.hstack((identity, zeros)) def compute_ranks(self, quality_distr): """ Returns two vectors: id2rank and rank2id. id2rank[i] is a rank of an item with id i. rank2id[i] is an id of an item with rank i. """ avg = self.avg(quality_distr) rank2id = avg.argsort()[::-1] id2rank = rank2id.argsort() return rank2id, id2rank def compute_percentile(self): # Rank is from 0, 1, ..., num_items - 1 val = 100 / float(self.num_items) id2percentile = {} for idx in xrange(self.num_items): id2percentile[idx] = val * (self.num_items - self.id2rank[idx]) return id2percentile def avg(self, quality_distr): """ returns vector v with average qualities for each item. v[i] is the average quality of the item with id i. """ # grid_b is a matrix consisting of vertically stacked vector # (0, 1, ..., num_bins - 1) grid_b, _ = np.meshgrid(np.arange(self.num_bins), np.arange(self.num_items)) # Actually values are from 1 to num_bins. grid_b = grid_b + 1 # avg[i] is expected value of quality distribution for item with id i. avg = np.sum(quality_distr * grid_b, 1) return avg def update(self, sorted_items, new_item=None, alpha_annealing=None, annealing_type='before_normalization_uniform'): """ Main update function. Given sorted_items and new_item it updates quality distributions and items ranks. Method returns dictionary d such that d['sumbission id'] is a list [percentile, average, stdev], i.e. percentile of the submission, average and stdev of quaility distribution of it. If alpha_annealing is None then we use old self.alpha otherwise we set self.alpha to alpha_annealing. Arguments: - sorted_items is a list of items sorted by user such that rank(sorted_items[i]) > rank(sorted_items[j]) for i < j (Worst to Best) - new_item is an id of a submission from sorted_items which was new to the user. If sorted_items contains only two elements then new_item is None. - annealing_type (see n_comparisons_update method) is whether 'before_normalization_uniform' or 'before_normalization_gauss' or 'after_normalization' """ # Setting new annealing coefficient. alpha_old = None if not alpha_annealing is None: alpha_old = self.alpha self.alpha = alpha_annealing # Obtaining ordering in terms of internal ids. sorted_ids = [self.orig_items_id.index(x) for x in sorted_items] self.n_comparisons_update(sorted_ids, annealing_type) id2percentile = self.compute_percentile() qdistr_param = self.get_qdistr_parameters() result = {} for idx in xrange(self.num_items): avrg = qdistr_param[2 * idx] stdev = qdistr_param[2 * idx + 1] result[self.orig_items_id[idx]] = (id2percentile[idx], avrg, stdev) # Setting old alpha back. if not alpha_old is None: self.alpha = alpha_old return result def get_ranking_error_inthe_end_of_round(self, num_items_to_compare): """ TODO(michael): As for now this method is not in use. Write method to return error which is interpretable in terms of ranking. Method returns ranking error in the end of contest round. Each contest consists of rounds. On the first round users compare 2 submissions, on the second round users compare 3 submsissions, etc. Because we don't know true quality of submissions then we need to make assumptions about how noisy will be users and return errors based on experiments. """ # Current assumption is that 5% of users will sort submission randomly # (so 3 students out of 60 will order randomly). # Another assumption is that each user is gaussian user with stdev # equals 2 and any two heighbor submissions have distance 1 in quality. # In experiments with above settings I measured average(avrg_rank_error) # and stdev (stdev_rank_error) of ranking error # (ranking error of item i is |rank(i) - true_rank(i)|). # # Method returns ranking error as avrg_rank_error + 2 * stdev_rank_error if num_items_to_compare == 2: # First round. avrg_rank_error = 10.9 stdev_rank_error = 8.8 elif num_items_to_compare == 3: # Second round. avrg_rank_error = 6.6 stdev_rank_error = 6 elif num_items_to_compare == 4: # Third round. avrg_rank_error = 3.6 stdev_rank_error = 3.6 elif num_items_to_compare == 5: # Fourth round. avrg_rank_error = 2.1 stdev_rank_error = 2.1 elif num_items_to_compare == 6: # Fifth round. avrg_rank_error = 1.4 stdev_rank_error = 1.3 elif num_items_to_compare == 7: # Round number six. avrg_rank_error = 1.2 stdev_rank_error = 1.1 elif num_items_to_compare == 8: # Round number seven. avrg_rank_error = 1 stdev_rank_error = 1 else: return None return avrg_rank_error + 2 * stdev_rank_error def n_comparisons_update(self, descend_list, annealing_type='before_normalization_uniform'): """ Updates quality distributions given n ordered items. Item id is from set {0, 1, ..., num_items - 1} Bins are 0, 1, ..., num_bins - 1 descend_list is a list of id's such that rank(descend_list[i]) > rank(descend_list[j]) if i < j (Worst to Best) annealing type - 'after_normalization' is self explanatory - 'before_normalization_uniform' is using by default, it works best in presence of users who gave random ordering. - 'before_normalization_gauss' works best in presence of gaussian users (users who can swap similar items). """ n = len(descend_list) factorial = math.factorial(n) # Let's denote quality of element descend_list[i] as zi, then # z0 < z1 < ... < z(n-1) where n is length of descend_list. # v[0, x] = Pr(x < z(n-1)) # v[1, x] = Pr(x < z(n-2) < z(n-1)) # v[i, x] = Pr(x < z(n-1-i) < ... < z(n-1)) # v[n-2, x] = Pr(x < z1 < ... < z(n-1)) v = np.zeros((n - 1, self.num_bins)) q = self.qdistr[descend_list[n-1], :] v[0,:] = 1 - np.cumsum(q) # w[0, x] = Pr(z0 < x) # w[1, x] = Pr(z0 < z1 < x) # w[i, x] = Pr(z0 < z1 < ... < z(i) < x) # w[n-2, x] = Pr(z0 < z1 < ... < z(n-2) < x) w = np.zeros((n - 1, self.num_bins)) q = self.qdistr[descend_list[0], :] w[0,:] = np.cumsum(q) - q # Filling v and w. for idx in xrange(1, n - 1, 1): # Matrix v. # Calculating v[idx,:] given v[idx-1,:]. t = self.qdistr[descend_list[n - 1 - idx], :] * v[idx - 1, :] t = t[::-1] t = np.cumsum(t) # Shift. t = self.shift_vector(t) v[idx,:] = t[::-1] # Matrix w. # Calculating w[idx,:] given w[idx-1,:]. t = self.qdistr[descend_list[idx], :] * w[idx - 1, :] t = np.cumsum(t) t = self.shift_vector(t) w[idx,:] = t # Updating distributions. # Update first distributions. idx = descend_list[0] q = self.qdistr[idx,:] q_prime = q * v[-1, :] # Annealing. if annealing_type == 'before_normalization_uniform': self.qdistr[idx,:] = (1.0/factorial) * (1 - self.alpha) * q + \ self.alpha * q_prime self.qdistr[idx,:] = self.qdistr[idx,:] / np.sum(self.qdistr[idx,:]) elif annealing_type == 'after_normalization': q_prime = q_prime / np.sum(q_prime) self.qdistr[idx,:] = (1 - self.alpha) * q + self.alpha * q_prime elif annealing_type == 'before_normalization_gauss': ww = v[-1, :] self.qdistr[idx,:] = (1 - self.alpha) * q *(1 - ww) + \ self.alpha * q * ww self.qdistr[idx,:] = self.qdistr[idx,:] / np.sum(self.qdistr[idx,:]) else: # Should not happen. raise Exception("Error: annealing type is not known.") # Update last distributions. idx = descend_list[-1] q = self.qdistr[idx,:] q_prime = q * w[-1, :] # Annealing. if annealing_type == 'before_normalization_uniform': self.qdistr[idx,:] = (1.0/factorial) * (1 - self.alpha) * q + \ self.alpha * q_prime self.qdistr[idx,:] = self.qdistr[idx,:] / np.sum(self.qdistr[idx,:]) elif annealing_type == 'after_normalization': q_prime = q_prime / np.sum(q_prime) self.qdistr[idx,:] = (1 - self.alpha) * q + self.alpha * q_prime elif annealing_type == 'before_normalization_gauss': ww = w[-1, :] self.qdistr[idx,:] = (1 - self.alpha) * q *(1 - ww) + \ self.alpha * q * ww self.qdistr[idx,:] = self.qdistr[idx,:] / np.sum(self.qdistr[idx,:]) else: # Should not happen. raise Exception("Error: annealing type is not known.") # Update the rest of distributions. for i in range(1, n - 1, 1): idx = descend_list[i] q = self.qdistr[idx,:] q_prime = q * w[i - 1, :] * v[-(i+1), :] # Annealing. if annealing_type == 'before_normalization_uniform': self.qdistr[idx,:] = (1.0/factorial) * (1 - self.alpha) * q + \ self.alpha * q_prime self.qdistr[idx,:] = self.qdistr[idx,:] / np.sum(self.qdistr[idx,:]) elif annealing_type == 'after_normalization': q_prime = q_prime / np.sum(q_prime) self.qdistr[idx,:] = (1 - self.alpha) * q + self.alpha * q_prime elif annealing_type == 'before_normalization_gauss': ww = w[i - 1, :] * v[-(i+1), :] self.qdistr[idx,:] = (1 - self.alpha) * q *(1 - ww) + \ self.alpha * q * ww self.qdistr[idx,:] = self.qdistr[idx,:] / np.sum(self.qdistr[idx,:]) else: # Should not happen. raise Exception("Error: annealing type is not known.") # Update id2rank and rank2id vectors. self.rank2id, self.id2rank = self.compute_ranks(self.qdistr) def sample(self, black_items=None): """ Returns two items to compare. If there is no two items to sample from then None is returned. Sampling by loss-driven comparison algorithm. black_items cannot be sampled. """ indices = range(self.num_items) if (not black_items == None) and (not len(black_items) == 0): indices = [x for x in indices if not x in black_items] if len(indices) < 2: return None # l is len(indices)^2 array; l[idx] is expected loss of for items with ids # idx/len(indices) and idx%len(indices) l = np.zeros(len(indices) ** 2) for i in xrange(len(indices)): for j in xrange(len(indices)): # We are choosing pairs (i, j) such that p(i) < p(j) ii = indices[i] jj = indices[j] if self.id2rank[ii] < self.id2rank[jj]: l[i * len(indices) + j] = self.get_expected_loss(ii, jj) else: l[i * len(indices) + j] = 0 # normalization l /= l.sum() # randomly choosing a pair cs = l.cumsum() rn = np.random.uniform() idx = cs.searchsorted(rn) i, j = idx/len(indices), idx%len(indices) # sanity check ii = indices[i] jj = indices[j] if self.id2rank[ii] >= self.id2rank[jj]: raise Exception('There is an error in sampling!') return ii, jj def sample_n_items(self, n): items = set() while True: i,j = self.sample() items.add(i) items.add(j) if len(items) == n: return list(items) if len(items) > n: items.remove(i if random.random() < 0.5 else j) return list(items) def sample_item(self, old_items, black_items=None, sample_one=True ): """ Method samples an item given items the user received before. If sample_one is true then if old_items is None or empty then method returns one item, otherwise it returns two itmes. black_items is a list with items which should not be sampled. If it is impossible to sample an item then None is returned. """ if black_items == None: black_items = [] if old_items == None or len(old_items) == 0: if len(black_items) == 0: l = self.sample() else: ids = [self.orig_items_id.index(x) for x in black_items] l = self.sample(ids) # If we need two elements. if not sample_one: if l == None: return None return [self.orig_items_id[x] for x in l] # We need only one element. if not l is None: return self.orig_items_id[l[0]] if random.random() < 0.5 else\ self.orig_items_id[l[1]] # We cannot sample two items, try to sample only one. if len(black_items) == len(self.orig_items_id): return None if len(self.orig_items_id) == 0: return None item = [x for x in self.orig_items_id if not x in black_items] return item[0] taken_ids = [idx for idx in range(self.num_items) if \ self.orig_items_id[idx] in old_items] free_ids = [idx for idx in range(self.num_items) if \ (not self.orig_items_id[idx] in old_items and not self.orig_items_id[idx] in black_items)] # If there are no items to pick from then return None. if len(free_ids) == 0: return None # l[idx] is expected loss of for items with ids # idx/len(taken_ids) and idx%len(taken_ids) l = np.zeros(len(taken_ids) * len(free_ids)) for i in xrange(len(taken_ids)): for j in xrange(len(free_ids)): ii = taken_ids[i] jj = free_ids[j] if self.id2rank[ii] < self.id2rank[jj]: l[i * len(free_ids) + j] = self.get_expected_loss(ii, jj) else: l[i * len(free_ids) + j] = self.get_expected_loss(jj, ii) # normalization #print l l /= l.sum() # randomly choosing a pair cs = l.cumsum() rn = np.random.uniform() idx = cs.searchsorted(rn) i, j = idx/len(free_ids), idx%len(free_ids) ii = taken_ids[i] jj = free_ids[j] # sanity check #if self.id2rank[ii] >= self.id2rank[jj]: # raise Exception('There is an error in sampling!') return self.orig_items_id[jj] def shift_vector(self, vec): """ Shifts vector one position right filling the most left element with zero. """ vec[1:] = vec[:-1] vec[0] = 0 return vec def get_expected_loss(self, i, j): """ Calculate expected loss l(i, j) between items i and j. It is implied that r(i) < r(j). """ if self.cost_obj == None: return self.get_missrank_prob(i, j) c_i = self.get_cost(i, self.k, self.id2rank) c_j = self.get_cost(j, self.k, self.id2rank) #return abs(c_i + c_j - c_i * c_j) * self.get_missrank_prob(i, j) return abs(c_i - c_j) * self.get_missrank_prob(i, j) def get_cost(self, i, k, id2rank): return self.cost_obj.calculate(i, k, id2rank) def get_missrank_prob(self, i, k): """ Method returns probability that r(i) > r(k) where r(i) is a rank of an item with id i. """ q_k = self.qdistr[k, :] Q_i = np.cumsum(self.qdistr[i, :]) prob = np.dot(q_k, Q_i) return prob def get_quality_metric(self): """ Returns quality metric for current quality distribution for top-k problem. """ q_true = np.sum(self.quality_true[self.rank2id_true[0:self.k]]) q_alg = np.sum(self.quality_true[self.rank2id[0:self.k]]) val = (q_true - q_alg) / float(self.k) return val def get_ranking_error(self): """ Get ranking error, i.e. ratio of number of items which wrongly have rank less than k to the constant k. """ counter = 0 for idx in xrange(self.num_items): if self.id2rank_true[idx] >= self.k and self.id2rank[idx] < self.k: counter += 1 return 100 * float(counter)/self.k def get_qdistr_parameters(self): """ Method returns array w such that w[2*i], w[2*i+1] are mean and standard deviation of quality distribution of item i (self.qdist[i]) """ w = np.zeros(2 * self.num_items) val = range(self.num_bins) for i in xrange(self.num_items): p = self.qdistr[i,:] w[2 * i] = np.sum(p * val) w[2 * i + 1] = np.sqrt(np.sum(p * (val - w[2 * i]) ** 2)) return w def restore_qdistr_from_parameters(self, w): """ Method restores quality distributions from array w returned by get_qdistr_parameters: w such that w[2*i], w[2*i+1] are mean and standard deviation of quality distribution of item i """ self.qdist = np.zeros((self.num_items, self.num_bins)) y = range(self.num_bins) for i in xrange(self.num_items): mean = w[2 * i] std = w[2 * i + 1] self.qdistr[i, :] = self.get_normal_vector(self.num_bins, mean, std) #self.qdistr[i,:] = scipy.stats.distributions.norm.pdf(y, loc=mean, # scale=std) if np.sum(self.qdistr[i,:]) == 0: print 'ERROR, sum should not be zero !!!' # Normalization. #self.qdistr = self.qdistr / np.sum(self.qdistr, 1) [:, np.newaxis] def evaluate_ordering(self, ordering): """ rank(oredring[i]) > rank(ordering[j]) for i < j (Worst to Best) Function, returns average probability of error. """ n = len(ordering) if n <= 1: return 0 # Below ordering is evaluated using "incremental" way. # Incremental type of ordering evaluation is when for each # entity e in ordering (starting from 2nd one) we compute # error_e = 1 - 2*max(Pr(error)) and total evaluation is # a sum of all error_e. # max(Pr(error)) is a maxmum error that the user made when comparing # entity e. val = 0.0 for i in xrange(0, n, 1): ii = self.orig_items_id.index(ordering[i]) l1 = [self.get_missrank_prob(self.orig_items_id.index(ordering[j]), ii) for j in xrange(i + 1, n, 1)] l2 = [self.get_missrank_prob(ii, self.orig_items_id.index(ordering[j])) for j in xrange(0, i, 1)] #pr_error = 0 #if len(l1) != 0: # pr_error = max(l1) #if len(l2) != 0: # pr_error = max([max(l2), pr_error]) #val += 1 - 2 * pr_error l1.extend(l2) if len(l1) == 0: continue val += 1 - np.mean(l1) return val def evaluate_ordering_using_dirichlet(self, ordering): """ rank(oredring[i]) > rank(ordering[j]) for i < j (Worst to Best). """ if len(ordering) <= 1: return 0 # alpha is a number of "Truth" # beta is a number of "False" alpha, beta = 0.01, 0.01 for i in xrange(len(ordering)): for j in xrange(i + 1, len(ordering), 1): item_i = self.orig_items_id.index(ordering[i]) item_j = self.orig_items_id.index(ordering[j]) # q is a probability that comparison is True #q = 1 - self.get_missrank_prob(item_i, item_j) q = 1 - self.get_missrank_prob(item_j, item_i) # Update alpha and beta. if q > 0.5: alpha += 2 * (q - 0.5) else: beta += 2 * (0.5 - q) # Okay, alpha and beta are computed. # Let's q is a probability that user says True. # The quality of the ordering is 90-th percentile, so we need to compute it. perc = 0.9 # First, numerically compute unnormalised probability mass function of q delta = 0.001 x = np.arange(0 + delta, 1, delta) #print 'alpha', alpha #print 'beta', beta y = x ** (alpha - 1) * (1 - x) ** (beta - 1) # Integral approximation based on trapezoidal rule. y1 = y[:-1] y2 = y[1:] integral_vec = (y2 + y1) / 2 * delta integral = np.sum(integral_vec) cumsum = np.cumsum(integral_vec) threshold = (1 - perc) * integral idx = cumsum.searchsorted(threshold) val = idx * delta return val def sort_items_truthfully(self, items): """ Method is for testing purposes. It simulates sorting by a truthful user. Returns sorted list of items so rank(result[i]) > rank(result[j]) if i > j. #TODO(michael): check this function in case of use """ items_ids = [idx for idx in range(self.num_items) if \ self.orig_items_id[idx] in items] values = np.array(self.quality_true)[items_ids] idx = np.argsort(values) return [self.orig_items_id[x] for x in np.array(items_ids)[idx]] def get_quality_of_order(self, qual_type='avrg_rank_error'): """ Method calculates quality of current order of items. (essentially it should be not quality but error) quality types: inversions - calculates normalized number of inversions. avrg_rank_error - is average of |rank(i) - true_rank(i)| over all items. stdev_rank_error - standard deviation of |rank(i) - true_rank(i)| """ if qual_type == 'inversions': seq = self.id2rank.argsort() seq = [self.id2rank_true[x] for x in seq] _, num_inv = self._sort_and_get_inv_num(seq) return 2.0 * num_inv / len(seq) / (len(seq) - 1) elif qual_type == 'avrg_rank_error': seq = np.abs(self.id2rank_true - self.id2rank) return np.mean(seq) elif qual_type == 'stdev_rank_error': seq = np.abs(self.id2rank_true - self.id2rank) return np.std(seq) else: raise Exception("Quality type is unknown!") def _sort_and_get_inv_num(self, seq): """ Returns tuple (sorted_seq, num_inv) where sorted_seq is sorted sequence seq and num_inv is number of invertions in seq. Increasing order has zeor inversions. Sequence 1, 5, 3, 2, have 3 inversions: (5,3), (5,2) and (3,2) Maximum number of inversion in a sequence of length N is N * (N - 1) / 2 seq is a sequence with unique elements. """ length = len(seq) if length <= 1: return seq, 0 left = seq[: (length / 2)] right = seq[(length / 2) :] left_sorted, num_inv_left = self._sort_and_get_inv_num(left) right_sorted, num_inv_right = self._sort_and_get_inv_num(right) # Merging and counting invertions. length_l, length_r = len(left), len(right) idx_l, idx_r = 0, 0 seq_sorted, num_inv = [0] * length, 0 for idx in xrange(length): if idx_l == length_l: seq_sorted[idx:] = right_sorted[idx_r :] break if idx_r == length_r: seq_sorted[idx:] = left_sorted[idx_l :] break if left_sorted[idx_l] <= right_sorted[idx_r]: seq_sorted[idx] = left_sorted[idx_l] idx_l += 1 else: seq_sorted[idx] = right_sorted[idx_r] idx_r += 1 num_inv += length_l - idx_l num_inv += num_inv_left + num_inv_right return seq_sorted, num_inv
bsd-3-clause
losonczylab/Zaremba_NatNeurosci_2017
losonczy_analysis_bundle/lab/classes/new_interval.py
1
17615
"""Definition of Interval objects. Used to filter/mask data in time. """ try: from bottleneck import nanmin, nanmax except ImportError: from numpy import nanmin, nanmax import numpy as np import pandas as pd class Interval(pd.DataFrame): """Class for defining intervals of interest across ROIs and Trials. Inherits from and stores data as a pandas DataFrame. Each row is an interval defined by the values in the 'start' and 'stop' columns. In addition, there should be at either an 'experiment' or 'trial' column and optionally an 'roi' column. Parameters ---------- intervals : pd.DataFrame, list, dict Interval data will be passed to pd.DataFrame, so see pd.DataFrame for details of possible initialization structure. The result DataFrame must at least have 'start' and 'stop' columns. sampling_interval : float Conversion factor for values stored in 'start'/'stop'; 1. if intervals are in seconds, or the frame period if the intervals are in imaging frames. num_frames : int Duration of all time for the given experiments/trials. Used for converting to mask. Note ---- For details of DataFrame subclassing, see: http://pandas.pydata.org/pandas-docs/stable/internals.html#subclassing-pandas-data-structures """ _metadata = ['_sampling_interval'] def __init__(self, intervals, sampling_interval=1., **kwargs): super(Interval, self).__init__(intervals, **kwargs) assert 'start' in self.columns assert 'stop' in self.columns self._sampling_interval = sampling_interval @property def _constructor(self): return Interval @property def _constructor_sliced(self): return IntervalSeries @property def sampling_interval(self): """Sampling interval of data in seconds.""" return self._sampling_interval @sampling_interval.setter def sampling_interval(self, new_sampling_interval): self.resample(float(new_sampling_interval), inplace=True) @classmethod def from_mask(cls, mask, sampling_interval=1., data=None, **kwargs): """Create an interval object from a boolean mask. Parameters ---------- mask : Nx1 np.ndarray of booleans True within interval, False outside of interval. sampling_interval : float Time between samples, used to convert intervals to time (in seconds). data : dict, optional Additional columns to add to Interval DataFrame. Each key will be a column and the value will be the same for each row. kwargs : optional Additional keyword arguments are passed to the DataFrame init. Returns ------- Interval New Interval object representation of the mask. """ if data is None: data = {} df_list = [] for start, stop in _mask_to_intervals_1d(mask): df_list.append(dict(start=start, stop=stop, **data)) return cls(df_list, sampling_interval=sampling_interval, **kwargs) def resample(self, new_sampling_interval=1., inplace=False): """Change the time units of the data. Parameters ---------- new_sampling_interval : float The new sampling interval of the data. inplace : boolean, optional If True, edit the Interval object in place, if False return a new Interval object. Returns ------- Interval Either the original Interval with new 'start'/'stop' values, or a new Interval """ scale_factor = self.sampling_interval / float(new_sampling_interval) if inplace: dataframe = self else: dataframe = self.copy() dataframe['start'] *= scale_factor dataframe['stop'] *= scale_factor dataframe._sampling_interval = new_sampling_interval if not inplace: return dataframe def merge_intervals(self, inplace=False): """Merge overlapping intervals. As a side-effect of the merging, also sorts all intervals by 'start'. Parameters ---------- inplace : bool """ sampling_interval = self.sampling_interval def join_wrapper(group_df): """Wrapper to correctly wrap and unwrap data for reduce.""" sorted_df = group_df.sort_values(by='start', na_position='first') df_rows = (row for _, row in sorted_df.iterrows()) reduced = reduce(_joiner, df_rows, []) return type(self)(reduced).reset_index(drop=True) if not inplace: dataframe = self.copy() else: dataframe = self other_columns = [col for col in dataframe.columns.values if col not in ['start', 'stop']] dataframe = dataframe.groupby(other_columns).apply( join_wrapper).reset_index(drop=True) dataframe._sampling_interval = sampling_interval if not inplace: return dataframe def durations(self, end_time): """Calculate total durations of intervals. Parameters ---------- end_time : float Max time (in seconds) of the interval. Replaces NaN in 'stop' column. Returns ------- pd.DataFrame """ other_columns = [col for col in self.columns.values if col not in ['start', 'stop']] resampled = self.resample(inplace=False).fillna( {'start': 0, 'stop': end_time}) resampled['duration'] = resampled['stop'] - resampled['start'] result = resampled.groupby(other_columns, as_index=False).agg( lambda x: x['duration'].sum()) return result.drop(['start', 'stop'], axis=1) def __invert__(self): """Invert the time that is in/out of the interval.""" # Need a way to invert ROIs/Trials not present in original df. raise NotImplementedError('Does not reliably invert intervals.') other_columns = [col for col in self.columns.values if col not in ['start', 'stop']] def invert_wrapper(group_df): def row_gen(group_df): for _, row in group_df.iterrows(): # row['_sampling_interval'] = group_df.sampling_interval yield row reduced = reduce(_invert_intersector, row_gen(group_df), []) return reduced result = self.groupby(other_columns).apply(invert_wrapper) result._sampling_interval = self.sampling_interval return result.reset_index(drop=True) def __and__(self, other): """Combine Interval objects to only include overlapping intervals.""" # If we are combining with a non-Interval, use it as a filter # Might also just be able to add all NaN 'start' and 'stop' columns. if all(col not in other.columns for col in ['start', 'stop']): return pd.merge(self, other, how='inner').merge_intervals() other_resampled = other.resample(self.sampling_interval, inplace=False) other_columns = set(self.columns).intersection( other.columns).difference(['start', 'stop']) merged = pd.merge( pd.DataFrame(self), pd.DataFrame(other_resampled), on=list(other_columns), how='inner') merged_rows = (row for _, row in merged.iterrows()) reduced = Interval( reduce(_intersector, merged_rows, []), columns=set(self.columns,).union(other.columns), sampling_interval=self.sampling_interval) return reduced.merge_intervals() def __or__(self, other): """Combine Interval objects as the union of all intervals.""" if all(col not in other.columns for col in ['start', 'stop']): # if all(col in self.columns for col in other.columns): # raise Exception # return pd.merge(self, other, how='outer') raise ValueError( 'Unrecognized other Interval, expecting Interval object.') other_resampled = other.resample(self.sampling_interval, inplace=False) other_columns = set(self.columns).intersection( other.columns).difference(['start', 'stop']) merged = pd.merge( pd.DataFrame(self), pd.DataFrame(other_resampled), on=list(other_columns), how='outer', indicator=True) merged_rows = (row for _, row in merged.iterrows()) reduced = Interval( reduce(_unioner, merged_rows, []), columns=set(self.columns).union(other.columns), sampling_interval=self.sampling_interval) return reduced.merge_intervals() def filter_events(self, events_df, key='value', invert=False): """Filter a DataFrame of event times. Parameters ---------- events_df : pd.DataFrame A DataFrame containing times to filter. Should have columns that match the Interval dataframe: expt, trial, roi, etc. key : string The column containing the data to filter on. Should be at same sampling interval as current Interval. Returns ------- pd.DataFrame A new DataFrame only including events that occurred within the current Interval. """ # Create a copy and also convert to a basic DataFrame (might be an # Interval) events_df = pd.DataFrame(events_df) events_df['_index'] = np.arange(events_df.shape[0]) # 'start' and 'stop' are special columns in an Interval dataframe. # Ensure that we never try to merge on them, and if you want to filter # on one of them, rename to something new. columns = set(list(events_df.columns)).intersection( self.columns).difference(['start', 'stop']) if key in ['start', 'stop']: orig_key = key key = '_value' events_df.rename(columns={orig_key: key}, inplace=True) events = events_df[list(columns) + [key, '_index']] merged = pd.merge(events, self, how='inner') merged['_test'] = (np.isnan(merged['start']) | (merged['start'] <= merged[key])) & \ (np.isnan(merged['stop']) | (merged[key] < merged['stop'])) merged_test = merged[['_index', '_test']] grouped = merged_test.groupby('_index').any().reset_index() result = pd.merge(events_df, grouped, on='_index', how='left') result['_test'] = result['_test'].fillna(False) if invert: result = result[~result['_test']] else: result = result[result['_test']] del result['_test'] del result['_index'] if key is '_value': result.rename(columns={key: orig_key}, inplace=True) return result class IntervalSeries(pd.Series): def __init__(self, *args, **kwargs): super(IntervalSeries, self).__init__(*args, **kwargs) @property def _constructor(self): return IntervalSeries @property def _constructor_expanddim(self): return Interval def concat(intervals, ignore_index=True, **kwargs): """Same functionality as pd.concat. Sampling interval of resulting Interval will match the first Interval. Parameters ---------- ignore_index : bool Changed default to True, but see pd.concat for details. kwargs : optional All other arguments are passed to pd.concat. """ new_sampling_interval = intervals[0].sampling_interval resampled_intervals = [ interval.resample(new_sampling_interval, inplace=False) for interval in intervals] concat_intervals = pd.concat( resampled_intervals, ignore_index=ignore_index, **kwargs) concat_intervals._sampling_interval = new_sampling_interval return concat_intervals def _mask_to_intervals_1d(mask): """Convert a 1d boolean array to Nx2 array of starts/stops. Parameters ---------- mask : Nx1 np.ndarray Returns ------- intervals : Mx2 np.ndarray """ mask_diff = np.diff(mask.astype('int')) starts = np.where(mask_diff == 1)[0] stops = np.where(mask_diff == -1)[0] if len(stops) and (not len(starts) or stops[0] < starts[0]): starts = np.hstack([np.nan, starts]) if len(starts) and (not len(stops) or starts[-1] > stops[-1]): stops = np.hstack([stops, np.nan]) assert len(starts) == len(stops) stacked_intervals = np.vstack([starts, stops]).T stacked_intervals += 1 # result of diff is trimmed down by 1 return stacked_intervals def _joiner(acc, int_df_row): # https://stackoverflow.com/questions/37496759/combining-discrete-and-or-overlapping-time-sequences-from-lists # if an empty list, return the new interval if not len(acc): return [int_df_row] # pop the last interval from the list last = acc.pop() # if the intervals are disjoint, return both if int_df_row['start'] > last['stop']: return acc + [last, int_df_row] # otherwise, join them together last['stop'] = np.max([int_df_row['stop'], last['stop']]) return acc + [last] def _unioner(acc, row): # Expect '_merge', start_x', 'stop_x', 'start_y', and 'stop_y' other_columns = set(row.index).difference( ['start_x', 'stop_x', 'start_y', 'stop_y', '_merge']) indicator = row['_merge'] base_dict = {col: row[col] for col in other_columns} intervals = [{'start': row['start_x'], 'stop': row['stop_x']}, {'start': row['start_y'], 'stop': row['stop_y']}] intervals[0].update(base_dict) intervals[1].update(base_dict) if indicator is 'left_only': return acc + [intervals[0]] elif indicator is 'right_only': return acc + [intervals[1]] if np.isnan(intervals[1]['start']) or \ intervals[1]['start'] < intervals[0]['start']: intervals = intervals[::-1] # if the intervals are disjoint, return both if intervals[0]['stop'] < intervals[1]['start']: return acc + intervals # otherwise, join them together joined_int = intervals[0] joined_int['stop'] = np.max([intervals[0]['stop'], intervals[1]['stop']]) return acc + [joined_int] def _intersector(acc, row): # Expect 'start_x', 'stop_x', 'start_y', and 'stop_y' other_columns = set(row.index).difference( ['start_x', 'stop_x', 'start_y', 'stop_y']) base_dict = {col: row[col] for col in other_columns} merged_int = dict(start=nanmax([row['start_x'], row['start_y']]), stop=nanmin([row['stop_x'], row['stop_y']]), **base_dict) if merged_int['start'] < merged_int['stop'] or \ np.any(np.isnan([merged_int['start'], merged_int['stop']])): return acc + [merged_int] return acc def _invert_intersector(acc, row): row_dict = {key: [val] * 2 for key, val in row.iteritems() # if key not in ['start', 'stop', '_sampling_interval']} if key not in ['start', 'stop']} row_dict['start'] = [np.nan, row['stop']] row_dict['stop'] = [row['start'], np.nan] # row_int = Interval(row_dict, sampling_interval=row['_sampling_interval']) row_int = Interval(row_dict) row_int.dropna(how='all', subset=['start', 'stop'], inplace=True) if not len(acc): return row_int else: return acc & row_int if __name__ == '__main__': run_int = Interval([{'expt': 1, 'start': 2, 'stop': 5}, {'expt': 1, 'start': 7, 'stop': 9}, {'expt': 2, 'start': np.nan, 'stop': 10}, {'expt': 2, 'start': 15, 'stop': np.nan}]) pf_int = Interval([{'expt': 1, 'start': 10, 'stop': 12, 'roi': 1}, {'expt': 1, 'start': 3, 'stop': 4, 'roi': 1}, {'expt': 1, 'start': 8, 'stop': 10, 'roi': 1}, {'expt': 1, 'start': 8, 'stop': 11, 'roi': 2}, {'expt': 2, 'start': np.nan, 'stop': 2, 'roi': 1}, {'expt': 2, 'start': 2, 'stop': 12, 'roi': 1}, {'expt': 2, 'start': 11, 'stop': 13, 'roi': 2}, {'expt': 3, 'start': 2, 'stop': 4, 'roi': 1}]) roi_df = pd.DataFrame([{'expt': 1, 'roi': 1}, {'expt': 1, 'roi': 2}, {'expt': 1, 'roi': 3}, {'expt': 2, 'roi': 1}, {'expt': 3, 'roi': 1}]) trans_events = pd.DataFrame([{'expt': 1, 'roi': 1, 'max': 2, 'amp': 12}, {'expt': 1, 'roi': 1, 'max': 11, 'amp': 1}, {'expt': 1, 'roi': 1, 'max': 20, 'amp': 1}, {'expt': 1, 'roi': 5, 'max': 3, 'amp': 7}, {'expt': 2, 'roi': 1, 'max': 1, 'amp': 3}]) stim_events = pd.DataFrame([{'expt': 1, 'value': 3}, {'expt': 1, 'value': 20}]) z = pd.merge(run_int, roi_df, on=['expt'], how='outer').merge_intervals() x = z | pf_int union = run_int | pf_int intersection = run_int & pf_int # inverted_run = ~ run_int pf_int.filter_events(trans_events, key='max') run_int.duration(100) from pudb import set_trace; set_trace()
mit
trungnt13/scikit-learn
sklearn/metrics/tests/test_pairwise.py
105
22788
import numpy as np from numpy import linalg from scipy.sparse import dok_matrix, csr_matrix, issparse from scipy.spatial.distance import cosine, cityblock, minkowski, wminkowski from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.externals.six import iteritems from sklearn.metrics.pairwise import euclidean_distances from sklearn.metrics.pairwise import manhattan_distances from sklearn.metrics.pairwise import linear_kernel from sklearn.metrics.pairwise import chi2_kernel, additive_chi2_kernel from sklearn.metrics.pairwise import polynomial_kernel from sklearn.metrics.pairwise import rbf_kernel from sklearn.metrics.pairwise import sigmoid_kernel from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_distances from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_distances_argmin_min from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.metrics.pairwise import pairwise_kernels from sklearn.metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS from sklearn.metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from sklearn.metrics.pairwise import PAIRED_DISTANCES from sklearn.metrics.pairwise import check_pairwise_arrays from sklearn.metrics.pairwise import check_paired_arrays from sklearn.metrics.pairwise import _parallel_pairwise from sklearn.metrics.pairwise import paired_distances from sklearn.metrics.pairwise import paired_euclidean_distances from sklearn.metrics.pairwise import paired_manhattan_distances from sklearn.preprocessing import normalize def test_pairwise_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Low-level function for manhattan can divide in blocks to avoid # using too much memory during the broadcasting S3 = manhattan_distances(X, Y, size_threshold=10) assert_array_almost_equal(S, S3) # Test cosine as a string metric versus cosine callable # "cosine" uses sklearn metric, cosine (function) is scipy.spatial S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Tests that precomputed metric returns pointer to, and not copy of, X. S = np.dot(X, X.T) S2 = pairwise_distances(S, metric="precomputed") assert_true(S is S2) # Test with sparse X and Y, # currently only supported for Euclidean, L1 and cosine. X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse, metric="cosine") S2 = cosine_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) S = pairwise_distances(X_sparse, Y_sparse.tocsc(), metric="manhattan") S2 = manhattan_distances(X_sparse.tobsr(), Y_sparse.tocoo()) assert_array_almost_equal(S, S2) S2 = manhattan_distances(X, Y) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # same with Y = None kwds = {"p": 2.0} S = pairwise_distances(X, metric="minkowski", **kwds) S2 = pairwise_distances(X, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") # Test that a value error is raised if the metric is unkown assert_raises(ValueError, pairwise_distances, X, Y, metric="blah") def check_pairwise_parallel(func, metric, kwds): rng = np.random.RandomState(0) for make_data in (np.array, csr_matrix): X = make_data(rng.random_sample((5, 4))) Y = make_data(rng.random_sample((3, 4))) try: S = func(X, metric=metric, n_jobs=1, **kwds) except (TypeError, ValueError) as exc: # Not all metrics support sparse input # ValueError may be triggered by bad callable if make_data is csr_matrix: assert_raises(type(exc), func, X, metric=metric, n_jobs=2, **kwds) continue else: raise S2 = func(X, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) S = func(X, Y, metric=metric, n_jobs=1, **kwds) S2 = func(X, Y, metric=metric, n_jobs=2, **kwds) assert_array_almost_equal(S, S2) def test_pairwise_parallel(): wminkowski_kwds = {'w': np.arange(1, 5).astype('double'), 'p': 1} metrics = [(pairwise_distances, 'euclidean', {}), (pairwise_distances, wminkowski, wminkowski_kwds), (pairwise_distances, 'wminkowski', wminkowski_kwds), (pairwise_kernels, 'polynomial', {'degree': 1}), (pairwise_kernels, callable_rbf_kernel, {'gamma': .1}), ] for func, metric, kwds in metrics: yield check_pairwise_parallel, func, metric, kwds def test_pairwise_callable_nonstrict_metric(): # paired_distances should allow callable metric where metric(x, x) != 0 # Knowing that the callable is a strict metric would allow the diagonal to # be left uncalculated and set to 0. assert_equal(pairwise_distances([[1]], metric=lambda x, y: 5)[0, 0], 5) def callable_rbf_kernel(x, y, **kwds): # Callable version of pairwise.rbf_kernel. K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_pairwise_kernels(): # Test the pairwise_kernels helper function. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in PAIRWISE_KERNEL_FUNCTIONS. test_metrics = ["rbf", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = PAIRWISE_KERNEL_FUNCTIONS[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet assert_raises(ValueError, pairwise_kernels, X_sparse, Y=Y_sparse, metric=metric) continue K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {} kwds['gamma'] = 0.1 K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) # callable function, X=Y K1 = pairwise_kernels(X, Y=X, metric=metric, **kwds) K2 = rbf_kernel(X, Y=X, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def test_paired_distances(): # Test the pairwise_distance helper function. rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) # Euclidean distance, with Y != X. Y = rng.random_sample((5, 4)) for metric, func in iteritems(PAIRED_DISTANCES): S = paired_distances(X, Y, metric=metric) S2 = func(X, Y) assert_array_almost_equal(S, S2) S3 = func(csr_matrix(X), csr_matrix(Y)) assert_array_almost_equal(S, S3) if metric in PAIRWISE_DISTANCE_FUNCTIONS: # Check the the pairwise_distances implementation # gives the same value distances = PAIRWISE_DISTANCE_FUNCTIONS[metric](X, Y) distances = np.diag(distances) assert_array_almost_equal(distances, S) # Check the callable implementation S = paired_distances(X, Y, metric='manhattan') S2 = paired_distances(X, Y, metric=lambda x, y: np.abs(x - y).sum(axis=0)) assert_array_almost_equal(S, S2) # Test that a value error is raised when the lengths of X and Y should not # differ Y = rng.random_sample((3, 4)) assert_raises(ValueError, paired_distances, X, Y) def test_pairwise_distances_argmin_min(): # Check pairwise minimum distances computation for any metric X = [[0], [1]] Y = [[-1], [2]] Xsp = dok_matrix(X) Ysp = csr_matrix(Y, dtype=np.float32) # euclidean metric D, E = pairwise_distances_argmin_min(X, Y, metric="euclidean") D2 = pairwise_distances_argmin(X, Y, metric="euclidean") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # sparse matrix case Dsp, Esp = pairwise_distances_argmin_min(Xsp, Ysp, metric="euclidean") assert_array_equal(Dsp, D) assert_array_equal(Esp, E) # We don't want np.matrix here assert_equal(type(Dsp), np.ndarray) assert_equal(type(Esp), np.ndarray) # Non-euclidean sklearn metric D, E = pairwise_distances_argmin_min(X, Y, metric="manhattan") D2 = pairwise_distances_argmin(X, Y, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(D2, [0, 1]) assert_array_almost_equal(E, [1., 1.]) D, E = pairwise_distances_argmin_min(Xsp, Ysp, metric="manhattan") D2 = pairwise_distances_argmin(Xsp, Ysp, metric="manhattan") assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (callable) D, E = pairwise_distances_argmin_min(X, Y, metric=minkowski, metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Non-euclidean Scipy distance (string) D, E = pairwise_distances_argmin_min(X, Y, metric="minkowski", metric_kwargs={"p": 2}) assert_array_almost_equal(D, [0, 1]) assert_array_almost_equal(E, [1., 1.]) # Compare with naive implementation rng = np.random.RandomState(0) X = rng.randn(97, 149) Y = rng.randn(111, 149) dist = pairwise_distances(X, Y, metric="manhattan") dist_orig_ind = dist.argmin(axis=0) dist_orig_val = dist[dist_orig_ind, range(len(dist_orig_ind))] dist_chunked_ind, dist_chunked_val = pairwise_distances_argmin_min( X, Y, axis=0, metric="manhattan", batch_size=50) np.testing.assert_almost_equal(dist_orig_ind, dist_chunked_ind, decimal=7) np.testing.assert_almost_equal(dist_orig_val, dist_chunked_val, decimal=7) def test_euclidean_distances(): # Check the pairwise Euclidean distances computation X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) # Paired distances def test_paired_euclidean_distances(): # Check the paired Euclidean distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_euclidean_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_paired_manhattan_distances(): # Check the paired manhattan distances computation X = [[0], [0]] Y = [[1], [2]] D = paired_manhattan_distances(X, Y) assert_array_almost_equal(D, [1., 2.]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) # sparse matrices assert_raises(ValueError, chi2_kernel, csr_matrix(X), csr_matrix(Y)) assert_raises(ValueError, additive_chi2_kernel, csr_matrix(X), csr_matrix(Y)) def test_kernel_symmetry(): # Valid kernels should be symmetric rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel, cosine_similarity): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_cosine_similarity_sparse_output(): # Test if cosine_similarity correctly produces sparse output. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) K1 = cosine_similarity(Xcsr, Ycsr, dense_output=False) assert_true(issparse(K1)) K2 = pairwise_kernels(Xcsr, Y=Ycsr, metric="cosine") assert_array_almost_equal(K1.todense(), K2) def test_cosine_similarity(): # Test the cosine_similarity. rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((3, 4)) Xcsr = csr_matrix(X) Ycsr = csr_matrix(Y) for X_, Y_ in ((X, None), (X, Y), (Xcsr, None), (Xcsr, Ycsr)): # Test that the cosine is kernel is equal to a linear kernel when data # has been previously normalized by L2-norm. K1 = pairwise_kernels(X_, Y=Y_, metric="cosine") X_ = normalize(X_) if Y_ is not None: Y_ = normalize(Y_) K2 = pairwise_kernels(X_, Y=Y_, metric="linear") assert_array_almost_equal(K1, K2) def test_check_dense_matrices(): # Ensure that pairwise array check works for dense matrices. # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_array_equal(XA, XA_checked) def test_check_XB_returned(): # Ensure that if XA and XB are given correctly, they return as equal. # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) XB = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_paired_arrays(XA, XB) assert_array_equal(XA, XA_checked) assert_array_equal(XB, XB_checked) def test_check_different_dimensions(): # Ensure an error is raised if the dimensions are different. XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XB = np.resize(np.arange(4 * 9), (4, 9)) assert_raises(ValueError, check_paired_arrays, XA, XB) def test_check_invalid_dimensions(): # Ensure an error is raised on 1D input arrays. XA = np.arange(45) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.resize(np.arange(45), (5, 9)) XB = np.arange(32) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): # Ensures that checks return valid sparse matrices. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) # compare their difference because testing csr matrices for # equality with '==' does not work as expected. assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XB_checked)) assert_equal(abs(XB_sparse - XB_checked).sum(), 0) XA_checked, XA_2_checked = check_pairwise_arrays(XA_sparse, XA_sparse) assert_true(issparse(XA_checked)) assert_equal(abs(XA_sparse - XA_checked).sum(), 0) assert_true(issparse(XA_2_checked)) assert_equal(abs(XA_2_checked - XA_checked).sum(), 0) def tuplify(X): # Turns a numpy matrix (any n-dimensional array) into tuples. s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): # Ensures that checks return valid tuples. rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_array_equal(XA_tuples, XA_checked) assert_array_equal(XB_tuples, XB_checked) def test_check_preserve_type(): # Ensures that type float32 is preserved. XA = np.resize(np.arange(40), (5, 8)).astype(np.float32) XB = np.resize(np.arange(40), (5, 8)).astype(np.float32) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_equal(XA_checked.dtype, np.float32) # both float32 XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA_checked.dtype, np.float32) assert_equal(XB_checked.dtype, np.float32) # mismatched A XA_checked, XB_checked = check_pairwise_arrays(XA.astype(np.float), XB) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float) # mismatched B XA_checked, XB_checked = check_pairwise_arrays(XA, XB.astype(np.float)) assert_equal(XA_checked.dtype, np.float) assert_equal(XB_checked.dtype, np.float)
bsd-3-clause
vantares/trading-with-python
lib/widgets.py
78
3012
# -*- coding: utf-8 -*- """ A collection of widgets for gui building Copyright: Jev Kuznetsov License: BSD """ from __future__ import division import sys from PyQt4.QtCore import * from PyQt4.QtGui import * import numpy as np from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar from matplotlib.figure import Figure import matplotlib.pyplot as plt class MatplotlibWidget(QWidget): def __init__(self,parent=None,grid=True): QWidget.__init__(self,parent) self.grid = grid self.fig = Figure() self.canvas =FigureCanvas(self.fig) self.canvas.setParent(self) self.canvas.mpl_connect('button_press_event', self.onPick) # bind pick event #self.axes = self.fig.add_subplot(111) margins = [0.05,0.1,0.9,0.8] self.axes = self.fig.add_axes(margins) self.toolbar = NavigationToolbar(self.canvas,self) #self.initFigure() layout = QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.setLayout(layout) def onPick(self,event): print 'Pick event' print 'you pressed', event.button, event.xdata, event.ydata def update(self): self.canvas.draw() def plot(self,*args,**kwargs): self.axes.plot(*args,**kwargs) self.axes.grid(self.grid) self.update() def clear(self): self.axes.clear() def initFigure(self): self.axes.grid(True) x = np.linspace(-1,1) y = x**2 self.axes.plot(x,y,'o-') class PlotWindow(QMainWindow): ''' a stand-alone window with embedded matplotlib widget ''' def __init__(self,parent=None): super(PlotWindow,self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.mplWidget = MatplotlibWidget() self.setCentralWidget(self.mplWidget) def plot(self,dataFrame): ''' plot dataframe ''' dataFrame.plot(ax=self.mplWidget.axes) def getAxes(self): return self.mplWidget.axes def getFigure(self): return self.mplWidget.fig def update(self): self.mplWidget.update() class MainForm(QMainWindow): def __init__(self, parent=None): QMainWindow.__init__(self, parent) self.setWindowTitle('Demo: PyQt with matplotlib') self.plot = MatplotlibWidget() self.setCentralWidget(self.plot) self.plot.clear() self.plot.plot(np.random.rand(10),'x-') #--------------------- if __name__=='__main__': app = QApplication(sys.argv) form = MainForm() form.show() app.exec_()
bsd-3-clause
Quantipy/quantipy
tests/test_dataset.py
1
39018
import unittest import os.path import numpy as np import pandas as pd import quantipy as qp from quantipy.core.tools.view.logic import ( has_any, has_all, has_count, not_any, not_all, not_count, is_lt, is_ne, is_gt, is_le, is_eq, is_ge, union, intersection) from quantipy.core.tools.dp.prep import frange freq = qp.core.tools.dp.prep.frequency cross = qp.core.tools.dp.prep.crosstab class TestDataSet(unittest.TestCase): def check_freq(self, dataset, var, show='values'): return freq(dataset._meta, dataset._data, var, show=show) def check_cross(self, dataset, x, y, show='values', rules=False): return cross(dataset._meta, dataset._data, x=x, y=y, show=show, rules=rules) def _get_dataset(self, cases=None): path = os.path.dirname(os.path.abspath(__file__)) + '/' name = 'Example Data (A)' casedata = '{}.csv'.format(name) metadata = '{}.json'.format(name) dataset = qp.DataSet(name, False) dataset.set_verbose_infomsg(False) dataset.read_quantipy(path+metadata, path+casedata) if cases: dataset._data = dataset._data.head(cases) return dataset def test_read_quantipy(self): dataset = self._get_dataset() self.assertTrue(isinstance(dataset._data, pd.DataFrame)) self.assertTrue(isinstance(dataset._meta, dict)) def test_fileinfo(self): dataset = self._get_dataset() meta_def_key = dataset._meta['lib']['default text'] self.assertTrue(dataset.path is not None) self.assertTrue(dataset.name == 'Example Data (A)') self.assertTrue(dataset.filtered == 'no_filter') self.assertTrue(dataset.text_key == meta_def_key) self.assertTrue(dataset.text_key == 'en-GB') self.assertTrue(dataset._verbose_errors is True) self.assertTrue(dataset._verbose_infos is False) self.assertTrue(dataset._dimensions_comp is False) def test_filter(self): dataset = self._get_dataset() f = intersection([{'gender': [2]}, {'age': frange('35-45')}]) alias = 'men: 35 to 45 years old' dataset.filter(alias, f, inplace=True) # alias copied correctly? self.assertEqual(dataset.filtered, alias) # correctly sliced? expected_index_len = 1509 self.assertEqual(len(dataset._data.index), expected_index_len) self.assertEqual(dataset['age'].value_counts().sum(), expected_index_len) expected_gender_codes = [2] expected_age_codes = [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45] self.assertTrue(dataset['gender'].value_counts().index.tolist() == expected_gender_codes) self.assertTrue(sorted(dataset['age'].value_counts().index.tolist()) == expected_age_codes) def test_subset_from_varlist(self): dataset = self._get_dataset() keep = ['gender', 'q1', 'q5', 'q6'] sub_ds = dataset.subset(variables=keep) # only variables from "keep" are left? sub_ds_vars = sub_ds.columns() + sub_ds.masks() expected_vars = sub_ds.unroll(keep, both='all') self.assertTrue(sorted(expected_vars) == sorted(sub_ds_vars)) # data file set only list the "keep" variables? set_vars = sub_ds._variables_from_set('data file') self.assertTrue(sorted(keep) == sorted(set_vars)) # 'sets' & 'lib' list only reduced array masks ref.? lib_ref = sub_ds._meta['lib']['values'] expected_lib_ref = ['q5', 'q6'] self.assertTrue(expected_lib_ref == sorted(lib_ref)) set_keys = sub_ds._meta['sets'].keys() expected_set_keys = ['data file', 'q5', 'q6'] self.assertTrue(expected_set_keys == sorted(set_keys)) # DataFrame columns match "keep" list? df_cols = sub_ds._data.columns[1:] expected_df_cols = sub_ds.unroll(keep) self.assertTrue(sorted(expected_df_cols) == sorted(df_cols)) def test_order_full_change(self): dataset = self._get_dataset() variables = dataset._variables_from_set('data file') new_order = list(sorted(variables, key=lambda v: v.lower())) dataset.order(new_order) new_set_order = dataset._variables_to_set_format(new_order) data_file_items = dataset._meta['sets']['data file']['items'] df_columns = dataset._data.columns.tolist() self.assertEqual(new_set_order, data_file_items) self.assertEqual(dataset.unroll(new_order), df_columns) def test_order_repos_change(self): dataset = self._get_dataset() repos = [{'age': ['q8', 'q5']}, {'q6': 'q7'}, {'q5': 'weight_a'}] dataset.order(reposition=repos) data_file_items = dataset._meta['sets']['data file']['items'] df_columns = dataset._data.columns.tolist() expected_items = ['record_number', 'unique_id', 'q8', 'weight_a', 'q5', 'age', 'birth_day', 'birth_month', 'birth_year', 'gender', 'locality', 'ethnicity', 'religion', 'q1', 'q2', 'q2b', 'q3', 'q4', 'q7', 'q6', 'q8a', 'q9', 'q9a', 'Wave', 'weight_b', 'start_time', 'end_time', 'duration', 'q14_1', 'q14_2', 'q14_3', 'RecordNo'] expected_columns = dataset.unroll(expected_items) self.assertEqual(dataset._variables_to_set_format(expected_items), data_file_items) self.assertEqual(expected_columns, df_columns) def test_categorical_metadata_additions(self): dataset = self._get_dataset() name, qtype, label = 'test', 'single', 'TEST VAR' cats1 = [(4, 'Cat1'), (5, 'Cat2')] cats2 = ['Cat1', 'Cat2'] cats3 = [1, 2] for check, cat in enumerate([cats1, cats2, cats3], start=1): dataset.add_meta(name, qtype, label, cat) values = dataset.values(name) if check == 1: self.assertTrue(values, cats1) elif check == 2: expected_vals = [(1, 'Cat1'), (2, 'Cat2')] self.assertTrue(values, expected_vals) elif check == 3: expected_vals = [(1, ''), (2, '')] self.assertTrue(values, expected_vals) def test_array_metadata(self): dataset = self._get_dataset() meta, data = dataset.split() name, qtype, label = 'array_test', 'delimited set', 'TEST LABEL TEXT' cats = ['Cat 1', 'Cat 2', 'Cat 3', 'Cat 4', 'Cat 5'] items1 = [(1, 'ITEM A'), (3, 'ITEM B'), (6, 'ITEM C')] items2 = ['ITEM A', 'ITEM B', 'ITEM C'] items3 = [4, 5, 6] for check, items in enumerate([items1, items2, items3], start=1): dataset.add_meta(name, qtype, label, cats, items) sources = dataset.sources(name) # catgeories correct? expected_vals = list(enumerate(cats, start=1)) self.assertEqual(dataset.values(name), expected_vals) # items correct? items = dataset.items(name) if check == 1: expected_items = [('array_test_1', 'ITEM A'), ('array_test_3', 'ITEM B'), ('array_test_6', 'ITEM C')] self.assertEqual(items, expected_items) elif check == 2: expected_items = [('array_test_1', 'ITEM A'), ('array_test_2', 'ITEM B'), ('array_test_3', 'ITEM C')] self.assertEqual(items, expected_items) elif check == 3: expected_items = [('array_test_4', ''), ('array_test_5', ''), ('array_test_6', '')] self.assertEqual(items, expected_items) # value object location correct? item_val_ref = dataset._get_value_loc(sources[0]) mask_val_ref = dataset._get_value_loc(name) self.assertEqual(item_val_ref, mask_val_ref) lib_ref = 'lib@values@array_test' self.assertTrue(meta['columns'][sources[0]]['values'] == lib_ref) self.assertTrue(meta['masks'][name]['values'] == lib_ref) # sets entry correct? self.assertTrue('masks@array_test' in meta['sets']['data file']['items']) # parent entry correct? for source in dataset.sources(name): parent_meta = meta['columns'][source]['parent'] expected_parent_meta = {'masks@array_test': {'type': 'array'}} parent_maskref = dataset.parents(source) expected_parent_maskref = ['masks@array_test'] self.assertEqual(parent_meta, expected_parent_meta) self.assertEqual(parent_maskref, expected_parent_maskref) def test_rename_via_masks(self): dataset = self._get_dataset() meta, data = dataset.split() new_name = 'q5_new' dataset.rename('q5', new_name) # name properly changend? self.assertTrue('q5' not in dataset.masks()) self.assertTrue(new_name in dataset.masks()) # item names updated? items = meta['sets'][new_name]['items'] expected_items = ['columns@q5_new_1', 'columns@q5_new_2', 'columns@q5_new_3', 'columns@q5_new_4', 'columns@q5_new_5', 'columns@q5_new_6'] self.assertEqual(items, expected_items) sources = dataset.sources(new_name) expected_sources = [i.split('@')[-1] for i in expected_items] self.assertEqual(sources, expected_sources) # lib reference properly updated? lib_ref_mask = meta['masks'][new_name]['values'] lib_ref_items = meta['columns'][dataset.sources(new_name)[0]]['values'] expected_lib_ref = 'lib@values@q5_new' self.assertEqual(lib_ref_mask, lib_ref_items) self.assertEqual(lib_ref_items, expected_lib_ref) # new parent entry correct? parent_spec = meta['columns'][dataset.sources(new_name)[0]]['parent'] expected_parent_spec = {'masks@{}'.format(new_name): {'type': 'array'}} self.assertEqual(parent_spec, expected_parent_spec) # sets entries replaced? self.assertTrue('masks@q5' not in meta['sets']['data file']['items']) self.assertTrue('masks@q5_new' in meta['sets']['data file']['items']) self.assertTrue('q5' not in meta['sets']) self.assertTrue('q5_new' in meta['sets']) def test_copy_via_masks_full(self): dataset = self._get_dataset() meta, data = dataset.split() suffix = 'test' new_name = 'q5_test' dataset.copy('q5', suffix) # name properly changend? self.assertTrue('q5' in dataset.masks()) self.assertTrue(new_name in dataset.masks()) # item names updated? items = meta['sets'][new_name]['items'] expected_items = ['columns@q5_test_1', 'columns@q5_test_2', 'columns@q5_test_3', 'columns@q5_test_4', 'columns@q5_test_5', 'columns@q5_test_6'] self.assertEqual(items, expected_items) sources = dataset.sources(new_name) old_items_split = [s.split('_') for s in dataset.sources('q5')] expected_sources = ['{}_{}_{}'.format('_'.join(ois[:-1]), suffix, ois[-1]) for ois in old_items_split] self.assertEqual(sources, expected_sources) # lib reference properly updated? lib_ref_mask = meta['masks'][new_name]['values'] lib_ref_items = meta['columns'][dataset.sources(new_name)[0]]['values'] expected_lib_ref = 'lib@values@q5_test' self.assertEqual(lib_ref_mask, lib_ref_items) self.assertEqual(lib_ref_items, expected_lib_ref) # new parent entry correct? parent_spec = meta['columns'][dataset.sources(new_name)[0]]['parent'] expected_parent_spec = {'masks@{}'.format(new_name): {'type': 'array'}} self.assertEqual(parent_spec, expected_parent_spec) # sets entries replaced? self.assertTrue('masks@q5' in meta['sets']['data file']['items']) self.assertTrue('masks@q5_test' in meta['sets']['data file']['items']) self.assertTrue('q5' in meta['sets']) self.assertTrue('q5_test' in meta['sets']) def test_copy_via_masks_sliced_and_reduced(self): dataset = self._get_dataset() meta, data = dataset.split() suffix = 'test' new_name = 'q5_test' slicer = {'gender': [1]} copy_only = [1, 2, 3] dataset.copy('q5', suffix, slicer=slicer, copy_only=copy_only) # name properly changend? self.assertTrue('q5' in dataset.masks()) self.assertTrue(new_name in dataset.masks()) # item names updated? items = meta['sets'][new_name]['items'] expected_items = ['columns@q5_test_1', 'columns@q5_test_2', 'columns@q5_test_3', 'columns@q5_test_4', 'columns@q5_test_5', 'columns@q5_test_6'] self.assertEqual(items, expected_items) sources = dataset.sources(new_name) old_items_split = [s.split('_') for s in dataset.sources('q5')] expected_sources = ['{}_{}_{}'.format('_'.join(ois[:-1]), suffix, ois[-1]) for ois in old_items_split] self.assertEqual(sources, expected_sources) # lib reference properly updated? lib_ref_mask = meta['masks'][new_name]['values'] lib_ref_items = meta['columns'][dataset.sources(new_name)[0]]['values'] expected_lib_ref = 'lib@values@q5_test' self.assertEqual(lib_ref_mask, lib_ref_items) self.assertEqual(lib_ref_items, expected_lib_ref) # new parent entry correct? parent_spec = meta['columns'][dataset.sources(new_name)[0]]['parent'] expected_parent_spec = {'masks@{}'.format(new_name): {'type': 'array'}} self.assertEqual(parent_spec, expected_parent_spec) # sets entries replaced? self.assertTrue('masks@q5' in meta['sets']['data file']['items']) self.assertTrue('masks@q5_test' in meta['sets']['data file']['items']) self.assertTrue('q5' in meta['sets']) self.assertTrue('q5_test' in meta['sets']) # metadata reduced (only codes 1, 2, 3)? self.assertTrue(dataset.codes(new_name) == copy_only) # data sliced and reduced properly? for s in dataset.sources('q5_test'): self.assertTrue(set(dataset[s].dropna().unique()) == set(copy_only)) self.assertTrue(dataset[[s, 'gender']].dropna()['gender'].unique() == 1) def test_transpose(self): dataset = self._get_dataset(cases=500) meta, data = dataset.split() dataset.transpose('q5') # new items are old values? new_items = dataset.items('q5_trans') old_values = dataset.values('q5') check_old_values = [('q5_trans_{}'.format(element), text) for element, text in old_values] self.assertEqual(check_old_values, new_items) # new values are former items? new_values = dataset.value_texts('q5_trans') old_items = dataset.item_texts('q5') self.assertEqual(new_values, old_items) # parent meta correctly updated? trans_parent = meta['columns'][dataset.sources('q5_trans')[0]]['parent'] expected_parent = {'masks@q5_trans': {'type': 'array'}} self.assertEqual(trans_parent, expected_parent) # recoded data is correct? original_ct = dataset.crosstab('q5', text=False) transposed_ct = dataset.crosstab('q5_trans', text=False) self.assertTrue(np.array_equal(original_ct.drop('All', 1, 1).T.values, transposed_ct.drop('All', 1, 1).values)) def test_reorder_values(self): dataset = self._get_dataset() dataset.reorder_values('q8', [96, 1, 98, 4, 3, 2, 5]) df_vals = self.check_freq(dataset, 'q8') df_texts = self.check_freq(dataset, 'q8', 'text') meta = dataset.meta('q8') df_vals_index = df_vals.index.get_level_values(1).tolist() df_vals_index.remove('All') df_texts_index = df_texts.index.get_level_values(1).tolist() df_texts_index.remove('All') # correctly indexed? self.assertTrue(df_vals_index == meta['codes'].tolist()) self.assertTrue(df_texts_index == meta['texts'].tolist()) # correct values? expected = [[2367.0], [283.0], [949.0], [49.0], [970.0], [595.0], [216.0], [1235.0]] self.assertEqual(df_vals.values.tolist(), expected) def test_reorder_values_raises_on_incomplete_list(self): dataset = self._get_dataset() dataset.set_verbose_errmsg(False) new_order = [3, 2, 1] self.assertRaises(ValueError, dataset.reorder_values, 'q8', new_order) def test_set_missings_flagging(self): dataset = self._get_dataset() dataset.set_missings('q8', {'exclude': [1, 2, 98, 96]}) meta = dataset.meta('q8')[['codes', 'missing']] meta.index.name = None meta.columns.name = None missings = [[1, 'exclude'], [2, 'exclude'], [3, None], [4, None], [5, None], [96, 'exclude'], [98, 'exclude']] expected_meta = pd.DataFrame(missings, index=xrange(1, len(missings)+1), columns=['codes', 'missing']) self.assertTrue(all(meta == expected_meta)) def test_set_missings_results(self): dataset = self._get_dataset() dataset.set_missings('q8', {'exclude': [1, 2, 98, 96]}) df = self.check_freq(dataset, 'q8') # check the base base_size = df.iloc[0, 0] expected_base_size = 1058 self.assertEqual(base_size, expected_base_size) # check the index index = df.index.get_level_values(1).tolist() index.remove('All') expected_index = [3, 4, 5] self.assertEqual(index, expected_index) # check categories cat_vals = df.iloc[1:, 0].values.tolist() expected_cat_vals = [595, 970, 1235] self.assertEqual(cat_vals, expected_cat_vals) def test_remove_values(self): dataset = self._get_dataset() dataset.remove_values('q5_1', [1, 2, 97, 98]) # removed from meta data? expected_cat_meta = [[3, "Probably wouldn't"], [4, 'Probably would if asked'], [5, 'Very likely']] self.assertEqual(dataset.meta('q5_1')[['codes', 'texts']].values.tolist(), expected_cat_meta) # removed from case data? expected_cat_vals = [cat[0] for cat in expected_cat_meta] self.assertEqual(sorted(dataset._data['q5_1'].value_counts().index.tolist()), expected_cat_vals) # does the engine correctly handle it? df = self.check_freq(dataset, 'q5_1', show='text') expected_index = [cat[1] for cat in expected_cat_meta] df_index = df.index.get_level_values(1).tolist() df_index.remove('All') self.assertTrue(df_index == expected_index) expected_results = [[5194.0], [2598.0], [124.0], [2472.0]] self.assertEqual(df.values.tolist(), expected_results) def test_extend_values_autocodes(self): dataset = self._get_dataset() meta_before = dataset.meta('q8')[['codes', 'texts']] add_values = ['CAT A', 'CAT B'] dataset.extend_values('q8', add_values) meta_after = dataset.meta('q8')[['codes', 'texts']] # codes are correctly selected? expected_codes_diff = [99, 100] codes_diff = sorted(list(set(meta_after['codes'].values)- set(meta_before['codes'].values))) self.assertEqual(codes_diff, expected_codes_diff) # texts match? expected_values_at_end = ['CAT A', 'CAT B'] self.assertEqual(meta_after['texts'].tail(2).values.tolist(), expected_values_at_end) def test_extend_values_usercodes(self): dataset = self._get_dataset() meta_before = dataset.meta('q8')[['codes', 'texts']] add_values = [(210, 'CAT A'), (102, 'CAT B')] dataset.extend_values('q8', add_values) meta_after = dataset.meta('q8')[['codes', 'texts']] # codes are correct? expected_codes_at_end = [210, 102] self.assertEqual(meta_after['codes'].tail(2).values.tolist(), expected_codes_at_end) # texts match? expected_values_at_end = ['CAT A', 'CAT B'] self.assertEqual(meta_after['texts'].tail(2).values.tolist(), expected_values_at_end) def test_extend_values_no_texts(self): dataset = self._get_dataset() dataset.set_verbose_infomsg(False) meta_before = dataset.meta('q8')[['codes', 'texts']] add_values = [3001, 30002, 3003] dataset.extend_values('q8', add_values) meta_after = dataset.meta('q8')[['codes', 'texts']] # codes are correct? self.assertEqual(meta_after['codes'].tail(3).values.tolist(), add_values) # texts are empty? expected_values_at_end = ['', '', ''] self.assertEqual(meta_after['texts'].tail(3).values.tolist(), expected_values_at_end) def test_extend_values_raises_on_dupes(self): dataset = self._get_dataset() add_values = [(1, 'CAT A'), (2, 'CAT B')] self.assertRaises(ValueError, dataset.extend_values, 'q8', add_values) def test_text_replacements_non_array(self): dataset = self._get_dataset() replace = {'following': 'TEST IN LABEL', 'Breakfast': 'TEST IN VALUES'} dataset.replace_texts(replace=replace) expected_value = 'TEST IN VALUES' expected_label = 'Which of the TEST IN LABEL do you regularly skip?' value_text = dataset._get_valuemap('q8', non_mapped='texts')[0] column_text = dataset.text('q8') self.assertEqual(column_text, expected_label) self.assertEqual(value_text, expected_value) def test_sorting_rules_meta(self): dataset = self._get_dataset() dataset.sorting('q8', fix=[3, 98, 100]) expected_rules = {'x': {'sortx': {'fixed': [3, 98], 'within': False, 'between': False, 'ascending': False, 'sort_on': '@', 'with_weight': 'auto'}}, 'y': {}} # rule correctly set?: i.e. code 100 removed from fix list since it # does not appear in the values meta? self.assertEqual(dataset._meta['columns']['q8']['rules'], expected_rules) def test_force_texts(self): dataset = self._get_dataset() dataset.set_value_texts(name='q4', renamed_vals={1: 'kyllae'}, text_key='fi-FI') dataset.force_texts(copy_to='de-DE', copy_from=['fi-FI','en-GB'], update_existing=False) q4_de_val0 = dataset._meta['columns']['q4']['values'][0]['text']['de-DE'] q4_de_val1 = dataset._meta['columns']['q4']['values'][1]['text']['de-DE'] self.assertEqual(q4_de_val0, 'kyllae') self.assertEqual(q4_de_val1, 'No') q5_de_val0 = dataset._meta['lib']['values']['q5'][0]['text']['de-DE'] self.assertEqual(q5_de_val0, 'I would refuse if asked') def test_validate(self): dataset = self._get_dataset() meta = dataset._meta meta['columns']['q1']['values'][0]['text']['x edits'] = 'test' meta['columns']['q1']['name'] = 'Q1' meta['columns'].pop('q2') meta['masks']['q5']['text'] = {'en-GB': ''} meta['masks']['q6']['text'].pop('en-GB') meta['columns'].pop('q6_3') meta['columns']['q8']['text'] = '' meta['columns']['q8']['values'][3]['text'] = '' meta['columns']['q8']['values'] = meta['columns']['q8']['values'][0:5] index = ['q1', 'q2', 'q5', 'q6', 'q6_1', 'q6_2', 'q6_3', 'q8'] data = {'name': ['x', '', '', '', '', '', '', '' ], 'q_label': ['', '', 'x', '', '', '', '', 'x'], 'values': ['x', '', '', '', '', '', '', 'x'], 'text keys': ['', '', '', 'x', 'x', 'x', '', 'x'], 'source': ['', '', '', 'x', '', '', '', '' ], 'codes': ['', 'x', '', '', '', '', 'x', 'x']} df = pd.DataFrame(data, index=index) df = df[['name', 'q_label', 'values', 'text keys', 'source', 'codes']] df_validate = dataset.validate(False, verbose=False) self.assertTrue(df.equals(df_validate)) def test_compare(self): dataset = self._get_dataset() ds = dataset.clone() dataset.set_value_texts('q1', {2: 'test'}) dataset.set_variable_text('q8', 'test', ['en-GB', 'sv-SE']) dataset.remove_values('q6', [1, 2]) dataset.convert('q6_3', 'delimited set') index = ['q1', 'q6', 'q6_1', 'q6_2', 'q6_3', 'q8'] data = {'type': ['', '', '', '', 'x', ''], 'q_label': ['', '', '', '', '', 'en-GB, sv-SE, '], 'codes': ['', 'x', 'x', 'x', 'x', ''], 'value texts': ['2: en-GB, ', '', '', '', '', '']} df = pd.DataFrame(data, index=index) df = df[['type', 'q_label', 'codes', 'value texts']] df_comp = dataset.compare(ds) self.assertTrue(df.equals(df_comp)) def test_uncode(self): dataset = self._get_dataset() dataset.uncode('q8',{1: 1, 2:2, 5:5}, 'q8', intersect={'gender':1}) dataset.uncode('q8',{3: 3, 4:4, 98:98}, 'q8', intersect={'gender':2}) df = dataset.crosstab('q8', 'gender') result = [[ 1797., 810., 987.], [ 476., 0., 476.], [ 104., 0., 104.], [ 293., 293., 0.], [ 507., 507., 0.], [ 599., 0., 599.], [ 283., 165., 118.], [ 26., 26., 0.]] self.assertEqual(df.values.tolist(), result) def test_derotate_df(self): dataset = self._get_dataset() levels = {'visit': ['visit_1', 'visit_2', 'visit_3']} mapper = [{'q14r{:02}'.format(r): ['q14r{0:02}c{1:02}'.format(r, c) for c in range(1, 4)]} for r in frange('1-5')] ds = dataset.derotate(levels, mapper, 'gender', 'record_number') df_h = ds._data.head(10) df_val = [[x if not np.isnan(x) else 'nan' for x in line] for line in df_h.values.tolist()] result_df = [[1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 8.0, 1.0, 2.0, 4.0, 2.0, 3.0, 1.0], [1.0, 2.0, 2.0, 4.0, 4.0, 4.0, 8.0, 3.0, 3.0, 2.0, 4.0, 3.0, 1.0], [1.0, 3.0, 1.0, 1.0, 1.0, 8.0, 'nan', 4.0, 3.0, 1.0, 3.0, 1.0, 2.0], [1.0, 4.0, 1.0, 5.0, 5.0, 4.0, 8.0, 2.0, 3.0, 2.0, 3.0, 1.0, 1.0], [1.0, 4.0, 2.0, 4.0, 5.0, 4.0, 8.0, 2.0, 1.0, 3.0, 2.0, 1.0, 1.0], [1.0, 5.0, 1.0, 3.0, 3.0, 5.0, 8.0, 4.0, 2.0, 2.0, 1.0, 3.0, 1.0], [1.0, 5.0, 2.0, 5.0, 3.0, 5.0, 8.0, 3.0, 3.0, 3.0, 1.0, 2.0, 1.0], [1.0, 6.0, 1.0, 2.0, 2.0, 8.0, 'nan', 4.0, 2.0, 3.0, 4.0, 2.0, 1.0], [1.0, 7.0, 1.0, 3.0, 3.0, 3.0, 8.0, 2.0, 1.0, 3.0, 2.0, 4.0, 1.0], [1.0, 7.0, 2.0, 3.0, 3.0, 3.0, 8.0, 3.0, 2.0, 1.0, 2.0, 3.0, 1.0]] result_columns = ['@1', 'record_number', 'visit', 'visit_levelled', 'visit_1', 'visit_2', 'visit_3', 'q14r01', 'q14r02', 'q14r03', 'q14r04', 'q14r05', 'gender'] df_len = 18520 self.assertEqual(df_val, result_df) self.assertEqual(df_h.columns.tolist(), result_columns) self.assertEqual(len(ds._data.index), df_len) path_json = '{}/{}.json'.format(ds.path, ds.name) path_csv = '{}/{}.csv'.format(ds.path, ds.name) os.remove(path_json) os.remove(path_csv) def test_derotate_freq(self): dataset = self._get_dataset() levels = {'visit': ['visit_1', 'visit_2', 'visit_3']} mapper = [{'q14r{:02}'.format(r): ['q14r{0:02}c{1:02}'.format(r, c) for c in range(1, 4)]} for r in frange('1-5')] ds = dataset.derotate(levels, mapper, 'gender', 'record_number') val_c = {'visit': {'val': {1: 8255, 2: 6174, 3: 4091}, 'index': [1, 2, 3]}, 'visit_levelled': {'val': {4: 3164, 1: 3105, 5: 3094, 6: 3093, 3: 3082, 2: 2982}, 'index': [4, 1, 5, 6, 3,2]}, 'visit_1': {'val': {4: 3225, 6: 3136, 3: 3081, 2: 3069, 1: 3029, 5: 2980}, 'index': [4, 6, 3, 2, 1, 5]}, 'visit_2': {'val': {1: 2789, 6: 2775, 5: 2765, 3: 2736, 4: 2709, 2: 2665, 8: 2081}, 'index': [1, 6, 5, 3, 4, 2, 8]}, 'visit_3': {'val': {8: 4166, 5: 2181, 4: 2112, 3: 2067, 1: 2040, 6: 2001, 2: 1872}, 'index': [8, 5, 4, 3, 1, 6, 2]}, 'q14r01': {'val': {3: 4683, 1: 4653, 4: 4638, 2: 4546}, 'index': [3, 1, 4, 2]}, 'q14r02': {'val': {4: 4749, 2: 4622, 1: 4598, 3: 4551}, 'index': [4, 2, 1, 3]}, 'q14r03': {'val': {1: 4778, 4: 4643, 3: 4571, 2: 4528}, 'index': [1, 4, 3, 2]}, 'q14r04': {'val': {1: 4665, 2: 4658, 4: 4635, 3: 4562}, 'index': [1, 2, 4, 3]}, 'q14r05': {'val': {2: 4670, 4: 4642, 1: 4607, 3: 4601}, 'index': [2, 4, 1, 3]}, 'gender': {'val': {2: 9637, 1: 8883}, 'index': [2, 1]}} for var in val_c.keys(): series = pd.Series(val_c[var]['val'], index = val_c[var]['index']) compare = all(series == ds._data[var].value_counts()) self.assertTrue(compare) path_json = '{}/{}.json'.format(ds.path, ds.name) path_csv = '{}/{}.csv'.format(ds.path, ds.name) os.remove(path_json) os.remove(path_csv) def test_derotate_meta(self): dataset = self._get_dataset() levels = {'visit': ['visit_1', 'visit_2', 'visit_3']} mapper = [{'q14r{:02}'.format(r): ['q14r{0:02}c{1:02}'.format(r, c) for c in range(1, 4)]} for r in frange('1-5')] ds = dataset.derotate(levels, mapper, 'gender', 'record_number') err = ds.validate(False, False) err_s = None self.assertEqual(err_s, err) path_json = '{}/{}.json'.format(ds.path, ds.name) path_csv = '{}/{}.csv'.format(ds.path, ds.name) os.remove(path_json) os.remove(path_csv) def test_interlock(self): dataset = self._get_dataset() data = dataset._data name, lab = 'q4AgeGen', 'q4 Age Gender' variables = ['q4', {'age': [(1, '18-35', {'age': frange('18-35')}), (2, '30-49', {'age': frange('30-49')}), (3, '50+', {'age': is_ge(50)})]}, 'gender'] dataset.interlock(name, lab, variables) val = [1367,1109,1036,831,736,579,571,550,454,438,340,244] ind = ['10;','8;','9;','7;','3;','8;10;','1;','4;','2;','7;9;','1;3;','2;4;'] s = pd.Series(val, index=ind, name='q4AgeGen') self.assertTrue(all(s==data['q4AgeGen'].value_counts())) values = [(1, u'Yes/18-35/Male'), (2, u'Yes/18-35/Female'), (3, u'Yes/30-49/Male'), (4, u'Yes/30-49/Female'), (5, u'Yes/50+/Male'), (6, u'Yes/50+/Female'), (7, u'No/18-35/Male'), (8, u'No/18-35/Female'), (9, u'No/30-49/Male'), (10, u'No/30-49/Female'), (11, u'No/50+/Male'), (12, u'No/50+/Female')] text = 'q4 Age Gender' self.assertEqual(values, dataset.values('q4AgeGen')) self.assertEqual(text, dataset.text('q4AgeGen')) self.assertTrue(dataset.is_delimited_set('q4AgeGen')) def test_dichotomous_to_delimited_set(self): dataset = self._get_dataset() dataset.dichotomize('q8', None, False) dataset.to_delimited_set('q8_new', dataset.text('q8'), ['q8_1', 'q8_2', 'q8_3', 'q8_4', 'q8_5', 'q8_96', 'q8_98'], from_dichotomous=True, codes_from_name=True) self.assertEqual(dataset.values('q8'), dataset.values('q8_new')) self.assertEqual(dataset['q8'].value_counts().values.tolist(), dataset['q8_new'].value_counts().values.tolist()) self.assertRaises(ValueError, dataset.to_delimited_set, 'q8_new', '', ['age', 'gender']) def test_categorical_to_delimited_set(self): dataset = self._get_dataset() self.assertRaises(ValueError, dataset.to_delimited_set, 'q1_1', '', ['q1', 'q2']) dataset.to_delimited_set('q5_new', dataset.text('q5'), dataset.sources('q5'), False) self.assertEqual(dataset.crosstab('q5_new').values.tolist(), [[8255.0], [3185.0], [2546.0], [4907.0], [287.0], [3907.0], [1005.0], [3640.0]]) for v in dataset.sources('q5'): self.assertEqual(dataset.values('q5_new'), dataset.values(v)) def test_get_value_texts(self): dataset = self._get_dataset() values = [(1, u'Regularly'), (2, u'Irregularly'), (3, u'Never')] self.assertEqual(values, dataset.values('q2b', 'en-GB')) dataset._meta['columns']['q2b']['values'][0]['text']['x edits'] = {'en-GB': 'test'} value_texts = ['test', None, None] self.assertEqual(value_texts, dataset.value_texts('q2b', 'en-GB', 'x')) def test_get_item_texts(self): dataset = self._get_dataset() items = [(u'q6_1', u'Exercise alone'), (u'q6_2', u'Join an exercise class'), (u'q6_3', u'Play any kind of team sport')] self.assertEqual(items, dataset.items('q6', 'en-GB')) dataset._meta['masks']['q6']['items'][2]['text']['x edits'] = {'en-GB': 'test'} item_texts = [None, None, 'test'] self.assertEqual(item_texts, dataset.item_texts('q6', 'en-GB', 'x')) def test_get_variable_text(self): dataset = self._get_dataset() text = 'How often do you take part in any of the following? - Exercise alone' self.assertEqual(text, dataset.text('q6_1', False, 'en-GB')) text = 'Exercise alone' self.assertEqual(text, dataset.text('q6_1', True, 'en-GB')) text = '' self.assertEqual(text, dataset.text('q6_1', True, 'en-GB', 'x')) def test_set_value_texts(self): dataset = self._get_dataset() values = [{u'text': {u'en-GB': u'Strongly disagree'}, u'value': 1}, {u'text': {u'en-GB': 'test1'}, u'value': 2}, {u'text': {u'en-GB': u'Neither agree nor disagree'}, u'value': 3}, {u'text': {u'en-GB': u'Agree', 'y edits': {'en-GB': 'test2'}}, u'value': 4}, {u'text': {u'en-GB': u'Strongly agree'}, u'value': 5}] dataset.set_value_texts('q14_1', {2: 'test1'}, 'en-GB') dataset.set_value_texts('q14_1', {4: 'test2'}, 'en-GB', 'y') value_obj = dataset._meta['lib']['values']['q14_1'] self.assertEqual(value_obj, values) values = [{u'text': {u'en-GB': u'test1'}, u'value': 1}, {u'text': {u'en-GB': u'Irregularly'}, u'value': 2}, {u'text': {u'en-GB': u'Never', u'y edits': {'en-GB': 'test2'}, u'x edits': {'en-GB': 'test2'}}, u'value': 3}] dataset.set_value_texts('q2b', {1: 'test1'}, 'en-GB') dataset.set_value_texts('q2b', {3: 'test2'}, 'en-GB', ['x', 'y']) value_obj = dataset._meta['columns']['q2b']['values'] self.assertEqual(value_obj, values) def test_set_item_texts(self): dataset = self._get_dataset() items = [{u'en-GB': u'Exercise alone'}, {u'en-GB': u'Join an exercise class', 'sv-SE': 'test1', 'x edits': {'sv-SE': 'test', 'en-GB': 'test'}}, {u'en-GB': u'Play any kind of team sport', 'sv-SE': 'test2'}] dataset.set_item_texts('q6', {2: 'test1', 3: 'test2'}, 'sv-SE') dataset.set_item_texts('q6', {2: 'test'}, ['en-GB', 'sv-SE'], 'x') item_obj = [i['text'] for i in dataset._meta['masks']['q6']['items']] self.assertEqual(item_obj, items) def test_set_variable_text(self): dataset = self._get_dataset() text = {'en-GB': 'new text', 'sv-SE': 'new text'} dataset.set_variable_text('q6', 'new text', ['en-GB', 'sv-SE']) dataset.set_variable_text('q6', 'new', ['da-DK'], 'x') text_obj = dataset._meta['masks']['q6']['text'] self.assertEqual(text_obj, text) text = {'en-GB': 'What is your main fitness activity?', 'x edits': {'en-GB': 'edit'}, 'y edits':{'en-GB': 'edit'}} dataset.set_variable_text('q1', 'edit', 'en-GB', ['x', 'y']) def test_crosstab(self): x = 'q14r01c01' dataset = self._get_dataset() dataset.crosstab(x) self.assertEqual(dataset._meta['columns'][x]['values'], 'lib@values@q14_1')
mit
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/plotly/matplotlylib/mplexporter/renderers/vincent_renderer.py
64
1922
import warnings from .base import Renderer from ..exporter import Exporter class VincentRenderer(Renderer): def open_figure(self, fig, props): self.chart = None self.figwidth = int(props['figwidth'] * props['dpi']) self.figheight = int(props['figheight'] * props['dpi']) def draw_line(self, data, coordinates, style, label, mplobj=None): import vincent # only import if VincentRenderer is used if coordinates != 'data': warnings.warn("Only data coordinates supported. Skipping this") linedata = {'x': data[:, 0], 'y': data[:, 1]} line = vincent.Line(linedata, iter_idx='x', width=self.figwidth, height=self.figheight) # TODO: respect the other style settings line.scales['color'].range = [style['color']] if self.chart is None: self.chart = line else: warnings.warn("Multiple plot elements not yet supported") def draw_markers(self, data, coordinates, style, label, mplobj=None): import vincent # only import if VincentRenderer is used if coordinates != 'data': warnings.warn("Only data coordinates supported. Skipping this") markerdata = {'x': data[:, 0], 'y': data[:, 1]} markers = vincent.Scatter(markerdata, iter_idx='x', width=self.figwidth, height=self.figheight) # TODO: respect the other style settings markers.scales['color'].range = [style['facecolor']] if self.chart is None: self.chart = markers else: warnings.warn("Multiple plot elements not yet supported") def fig_to_vincent(fig): """Convert a matplotlib figure to a vincent object""" renderer = VincentRenderer() exporter = Exporter(renderer) exporter.run(fig) return renderer.chart
apache-2.0
jiegec/gnuradio
gr-filter/examples/channelize.py
58
7003
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 2000000 # number of samples to use self._fs = 1000 # initial sampling rate self._M = M = 9 # Number of channels to channelize self._ifs = M*self._fs # initial sampling rate # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._ifs, 475.50, 50, attenuation_dB=100, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc # Create a set of signals at different frequencies # freqs lists the frequencies of the signals that get stored # in the list "signals", which then get summed together self.signals = list() self.add = blocks.add_cc() freqs = [-70, -50, -30, -10, 10, 20, 40, 60, 80] for i in xrange(len(freqs)): f = freqs[i] + (M/2-M+i+1)*self._fs self.signals.append(analog.sig_source_c(self._ifs, analog.GR_SIN_WAVE, f, 1)) self.connect(self.signals[i], (self.add,i)) self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps, 1) # Construct a vector sink for the input signal to the channelizer self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Use this to play with the channel mapping #self.pfb.set_channel_map([5,6,7,8,0,1,2,3,4]) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(blocks.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") Ns = 1000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman fs = tb._ifs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(X)) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
amolsharma99/Implementing-Anomaly-Detection
outlier_detection.py
1
2871
import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from scipy import stats from sklearn import svm from sklearn.covariance import EllipticEnvelope # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "robust covariance estimator": EllipticEnvelope(contamination=.1)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = 0 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(0.5 * n_inliers, 2) - offset X2 = 0.3 * np.random.randn(0.5 * n_inliers, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model with the One-Class SVM plt.figure(figsize=(10, 5)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) y_pred = clf.decision_function(X).ravel() threshold = stats.scoreatpercentile(y_pred, 100 * outliers_fraction) y_pred = y_pred > threshold n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 2, i + 1) subplot.set_title("Outlier detection") subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11)) subplot.set_xlabel("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.94, 0.1, 0.26) plt.show()
mit
alexjc/pylearn2
pylearn2/cross_validation/tests/test_subset_iterators.py
49
2411
""" Test subset iterators. """ import numpy as np from pylearn2.testing.skip import skip_if_no_sklearn def test_validation_k_fold(): """Test ValidationKFold.""" skip_if_no_sklearn() from pylearn2.cross_validation.subset_iterators import ValidationKFold n = 30 # test with indices cv = ValidationKFold(n) for train, valid, test in cv: assert np.unique(np.concatenate((train, valid, test))).size == n assert valid.size == n / cv.n_folds assert test.size == n / cv.n_folds def test_stratified_validation_k_fold(): """Test StratifiedValidationKFold.""" skip_if_no_sklearn() from pylearn2.cross_validation.subset_iterators import ( StratifiedValidationKFold) n = 30 y = np.concatenate((np.zeros(n / 2, dtype=int), np.ones(n / 2, dtype=int))) # test with indices cv = StratifiedValidationKFold(y) for train, valid, test in cv: assert np.unique(np.concatenate((train, valid, test))).size == n assert valid.size == n / cv.n_folds assert test.size == n / cv.n_folds assert np.count_nonzero(y[valid]) == (n / 2) * (1. / cv.n_folds) assert np.count_nonzero(y[test]) == (n / 2) * (1. / cv.n_folds) def test_validation_shuffle_split(): """Test ValidationShuffleSplit.""" skip_if_no_sklearn() from pylearn2.cross_validation.subset_iterators import ( ValidationShuffleSplit) n = 30 # test with indices cv = ValidationShuffleSplit(n) for train, valid, test in cv: assert np.unique(np.concatenate((train, valid, test))).size == n assert valid.size == n * cv.test_size assert test.size == n * cv.test_size def test_stratified_validation_shuffle_split(): """Test StratifiedValidationShuffleSplit.""" skip_if_no_sklearn() from pylearn2.cross_validation.subset_iterators import ( StratifiedValidationShuffleSplit) n = 60 y = np.concatenate((np.zeros(n / 2, dtype=int), np.ones(n / 2, dtype=int))) # test with indices cv = StratifiedValidationShuffleSplit(y) for train, valid, test in cv: assert np.unique(np.concatenate((train, valid, test))).size == n assert valid.size == n * cv.test_size assert test.size == n * cv.test_size assert np.count_nonzero(y[valid]) == (n / 2) * cv.test_size assert np.count_nonzero(y[test]) == (n / 2) * cv.test_size
bsd-3-clause
gkunter/coquery
coquery/installer/coq_install_icle.py
1
17328
# -*- coding: utf-8 -*- """ coq_install_icle.py is part of Coquery. Copyright (c) 2016 Gero Kunter ([email protected]) Coquery is released under the terms of the GNU General Public License (v3). For details, see the file LICENSE that you should have received along with Coquery. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import unicode_literals import re import string import pandas as pd from coquery.corpusbuilder import * from coquery.unicode import utf8 from coquery.bibliography import * """ Right now, there's no straightforward way to make this installer work cross- platform because the corpus uses the MS Access file format .mdb for the meta data. These files can be read in Linux if the mdbtools are installed first. Also, the meza module (available via PyPi) is required. The meta data can be extracted like so: In [1]: from meza import io In [2]: import pandas as pd In [3]: records = io.read( "/usr/local/share/corpora/source/ICLE/DATA/_icle.mdb") In [4]: lst = list(records) In [5]: df = pd.DataFrame(lst) In [6]: df = df.dropna(axis="index", how="all") In [7]: df = df.loc[df["country"].notna()] In [8]: df["monthseng"] = (df["monthseng"].replace("None", pd.np.nan) .astype(float)) In [9]: df["unieng"] = (df["unieng"].replace("None", pd.np.nan) .astype(float)) In [10]: df["filename"] = df["file"] + ".txt" In [11]: df.to_csv( "/usr/local/share/corpora/source/ICLE/meta.csv", index=False) Now, the ICLE can be build from the .txt files with the meta.csv file just created as the meta data file. What is important is that the .txt files are stored in a separate folder – on the CD, they are placed in the DATA folder alongside some binaries which will confuse the corpus builder. """ class BuilderClass(BaseCorpusBuilder): file_filter = "*.*" word_table = "Lexicon" word_id = "WordId" word_label = "Word" word_lemma = "Lemma" word_pos = "POS" word_claws = "CLAWS" corpus_table = "Corpus" corpus_id = "ID" corpus_word_id = "WordId" corpus_source_id = "TextId" corpus_file_id = "FileId" corpus_speaker_id = "SpeakerId" source_table = "Texts" source_id = "TextId" source_batch = "Batch" source_title = "Title" source_type = "Type" source_condition = "Conditions" source_reftool = "Reference_tools" source_exam = "Examination" source_status = "Status" source_institute = "Institute" source_comment = "Comments" speaker_table = "Speakers" speaker_id = "SpeakerId" speaker_age = "Age" speaker_sex = "Gender" speaker_country = "Country" speaker_language = "Native_language" speaker_schoolenglish = "Years_English_at_school" speaker_unienglish = "Years_English_at_university" speaker_abroadenglish = "Months_English_speaking_country" speaker_otherlang1 = "Other_language_1" speaker_otherlang2 = "Other_language_2" speaker_otherlang3 = "Other_language_3" file_table = "Files" file_id = "FileId" file_name = "Filename" file_path = "Path" special_files = ["source_info.csv", "tokens.txt"] special_files = ["tokens.txt"] expected_files = special_files + ["BGSU1003.txt", "CNHK1052.txt"] def __init__(self, gui=False, *args): # all corpus builders have to call the inherited __init__ function: super(BuilderClass, self).__init__(gui, *args) self.create_table_description(self.file_table, [Identifier(self.file_id, "MEDIUMINT(7) UNSIGNED NOT NULL"), Column(self.file_name, "TINYTEXT NOT NULL"), Column(self.file_path, "TINYTEXT NOT NULL")]) self.create_table_description(self.speaker_table, [Identifier(self.speaker_id, "MEDIUMINT(4) UNSIGNED NOT NULL"), Column(self.speaker_age, "TINYINT(2) UNSIGNED"), Column(self.speaker_sex, "ENUM('Female','Male','Unknown') NOT NULL"), Column(self.speaker_country, "VARCHAR(15) NOT NULL"), Column(self.speaker_language, "VARCHAR(17) NOT NULL"), Column(self.speaker_schoolenglish, "TINYINT(2) UNSIGNED"), Column(self.speaker_unienglish, "DECIMAL(1,1) UNSIGNED"), Column(self.speaker_abroadenglish, "DECIMAL(3,2) UNSIGNED"), Column(self.speaker_otherlang1, "VARCHAR(16)"), Column(self.speaker_otherlang2, "VARCHAR(16)"), Column(self.speaker_otherlang3, "VARCHAR(9)"), ]) self.create_table_description(self.word_table, [Identifier(self.word_id, "MEDIUMINT(5) UNSIGNED NOT NULL"), Column(self.word_label, "VARCHAR(60) NOT NULL"), Column(self.word_lemma, "VARCHAR(30) NOT NULL"), Column(self.word_pos, "VARCHAR(10) NOT NULL"), Column(self.word_claws, "VARCHAR(10) NOT NULL")]) self.create_table_description(self.source_table, [Identifier(self.source_id, "MEDIUMINT(4) UNSIGNED NOT NULL"), Column(self.source_batch, "CHAR(19) NOT NULL"), Column(self.source_title, "VARCHAR(434) NOT NULL"), Column(self.source_type, "ENUM('Argumentative','Literary','Other') NOT NULL"), Column(self.source_condition, "ENUM('No Timing','Timed','Unknown') NOT NULL"), Column(self.source_reftool, "ENUM('Yes','No','Unknown') NOT NULL"), Column(self.source_exam, "ENUM('Yes','No','Unknown') NOT NULL"), Column(self.source_status, "ENUM('Complete','Incomplete') NOT NULL"), Column(self.source_institute, "VARCHAR(88) NOT NULL"), Column(self.source_comment, "VARCHAR(141) NOT NULL"), ]) self.create_table_description(self.corpus_table, [Identifier(self.corpus_id, "MEDIUMINT(7) UNSIGNED NOT NULL"), Link(self.corpus_word_id, self.word_table), Link(self.corpus_file_id, self.file_table), Link(self.corpus_source_id, self.source_table), Link(self.corpus_speaker_id, self.speaker_table)]) self._sources = {} self._speakers = {} self._words = {} @staticmethod def get_name(): return "ICLE" @staticmethod def get_db_name(): return "coq_icle" @staticmethod def get_title(): return "The International Corpus of Learner English" @staticmethod def get_language(): return "English" @staticmethod def get_language_code(): return "en-L2" @staticmethod def get_description(): return [ "The International Corpus of Learner English contains argumentative essays written by higher intermediate to advanced learners of English from several mother tongue backgrounds (Bulgarian, Chinese, Czech, Dutch, Finnish, French, German, Italian, Japanese, Norwegian, Polish, Russian, Spanish, Swedish, Tswana, Turkish). The corpus is the result of collaboration with a wide range of partner universities internationally. The first version was published on CD-ROM in 2002, and an expanded version, ICLEv2, was published in 2009. The corpus is highly homogeneous as all partners have adopted the same corpus collection guidelines."] @staticmethod def get_references(): return [InCollection( authors=PersonList(Person(first="Sylviane", last="Granger")), year=2008, contributiontitle="Learner corpora", editors=PersonList( Person(first="Anke", last="Lüdeling"), Person(first="Merja", last="Kytö")), title="Handbook on corpus linguistics", publisher="Mouton de Gruyter", address="Berlin")] @staticmethod def get_url(): return "https://www.uclouvain.be/en-cecl-icle.html" @staticmethod def get_license(): return "The ICLE is available under the terms of a commercial license.</a>." @classmethod def get_file_list(cls, *args, **kwargs): """ Make sure that source_info.csv file appears first in the file list. """ l = super(BuilderClass, cls).get_file_list(*args, **kwargs) for x in list(l): if os.path.basename(x) in cls.special_files: l.remove(x) l.insert(0, x) return l @staticmethod def _filename_to_batch(filename): """ This method should return a string that matches the 'batch' label. """ #{"BGSU": "ICLE-BG-SUN", #"CNHK": "ICLE-CN-HKU", #"CNUK": "ICLE-CN-UK", #"CZKR": "ICLE-CZ-KRAL", #"DBAN": "ICLE-DB-KVH", #"CZKR": "ICLE-CZ-PRAG", #if filename.startswith("BGSU"): #id_str = #elif filename.startswith("CNHK"): #id_str = #elif filename.startswith("CNUK"): #id_str = "ICLE-CN-UK" #return "ICLE return filename def process_file(self, filename): base_name = os.path.basename(filename) print(base_name) if base_name == "source_info.csv": df = pd.read_csv(filename) for i in df.index: row = df.loc[i] if i == 1: print(row) print(row.dtypes) if row.schooleng == -1: row.schooleng = None if row.unieng == -1: row.unieng = None if row.monthseng == -1: row.monthseng = None if row.age == -1: row.age = None self._sources[utf8(row.file)] = ( self.table(self.source_table).add( {self.source_batch: self._filename_to_batch(row.file), self.source_title: utf8(row.title), self.source_type: row.type, self.source_condition: row.conditions, self.source_reftool: row.reftools, self.source_exam: row.exam, self.source_status: row.status, self.source_institute: utf8(row.instit2), self.source_comment: utf8(row.comments)})) self._speakers[utf8(row.file)] = ( self.table(self.speaker_table).add( {self.speaker_age: row.age, self.speaker_sex: row.sex, self.speaker_country: row.country, self.speaker_language: row.llanguage, self.speaker_schoolenglish: row.schooleng, self.speaker_unienglish: row.unieng, self.speaker_abroadenglish: row.monthseng, self.speaker_otherlang1: row.olang1, self.speaker_otherlang2: row.olang2, self.speaker_otherlang3: row.olang3})) elif base_name == "tokens.txt": hold_back = [] with codecs.open(filename, "r", encoding="utf-16") as input_file: _ = input_file.read() for row in input_file: #match = re.match("{(.+),(.+)\.(\w+)\+(.+)}", row) match = re.match("{(.+),(.+)\.(.+)}", row) if match: label = match.group(1) pos = match.group(3) if "+" in pos: pos, _, claws = pos.partition("+") else: claws = pos d = { self.word_label: label, self.word_lemma: match.group(2), self.word_pos: pos, self.word_claws: claws} if label not in self._words: self._words[label] = self.table(self.word_table).add(d) else: hold_back.append(row.strip()) for row in hold_back: if row not in self._words: if row in string.punctuation: d = { self.word_label: row, self.word_lemma: row, self.word_pos: "PUNCT", self.word_claws: "PUNCT"} else: d = {self.word_label: row, self.word_lemma: row.lower(), self.word_pos: "UNKNOWN", self.word_claws: "UNKNOWN"} self._words[row] = self.table(self.word_table).add(d) elif base_name in self.expected_files: self._source_id = self._sources[base_name.partition(".")[0]] self._speaker_id = self._speakers[base_name.partition(".")[0]] d = {self.corpus_file_id: self._file_id, self.corpus_source_id: self._source_id, self.corpus_speaker_id: self._speaker_id} with codecs.open(filename, "r") as input_file: batch = None for row in input_file: if batch is None: """ process batch name """ batch = row else: words = row.split() for word in [x.strip() for x in words]: # handle any word-initial punctuation: while word and word[0] in string.punctuation: d[self.corpus_word_id] = self.table(self.word_table).get_or_insert( {self.word_label: word[0], self.word_lemma: word[0], self.word_pos: "PUNCT", self.word_claws: "PUNCT"}, case=True) self.add_token_to_corpus(dict(d)) word = word[1:] # construct word, taking punctuation and escaped # punctuation into account: l = [] escaped = True for ch in word: # add escaped characters to the word: if escaped: l.append(ch) escaped = False continue # take note of escaping: if ch == "\\": escaped = True continue # add any non-punctuation character to word: if ch not in string.punctuation: l.append(ch) continue # current character is a punctuation mark. # store the current word: if l: w = "".join(l) d[self.corpus_word_id] = self.table(self.word_table).get_or_insert( {self.word_label: w, self.word_lemma: w.lower(), self.word_pos: "UNKNOWN", self.word_claws: "UNKNOWN"}, case=True) self.add_token_to_corpus(dict(d)) l = [] # add any following punctuation marks as # punctuation tokens: d[self.corpus_word_id] = self.table(self.word_table).get_or_insert( {self.word_label: ch, self.word_lemma: ch, self.word_pos: "PUNCT", self.word_claws: "PUNCT"}, case=True) self.add_token_to_corpus(dict(d)) # make sure that the current word is added: if l: w = "".join(l) d[self.corpus_word_id] = self.table(self.word_table).get_or_insert( {self.word_label: w, self.word_lemma: w.lower(), self.word_pos: "UNKNOWN", self.word_claws: "UNKNOWN"}, case=True) self.add_token_to_corpus(dict(d)) def store_filename(self, file_name): if os.path.basename(file_name) not in self.special_files: super(BuilderClass, self).store_filename(file_name) if __name__ == "__main__": BuilderClass().build()
gpl-3.0
dongjoon-hyun/spark
python/pyspark/sql/tests/test_pandas_cogrouped_map.py
20
9306
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from pyspark.sql.functions import array, explode, col, lit, udf, pandas_udf from pyspark.sql.types import DoubleType, StructType, StructField, Row from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message from pyspark.testing.utils import QuietTest if have_pandas: import pandas as pd from pandas.testing import assert_frame_equal if have_pyarrow: import pyarrow as pa # noqa: F401 @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) # type: ignore[arg-type] class CogroupedMapInPandasTests(ReusedSQLTestCase): @property def data1(self): return self.spark.range(10).toDF('id') \ .withColumn("ks", array([lit(i) for i in range(20, 30)])) \ .withColumn("k", explode(col('ks')))\ .withColumn("v", col('k') * 10)\ .drop('ks') @property def data2(self): return self.spark.range(10).toDF('id') \ .withColumn("ks", array([lit(i) for i in range(20, 30)])) \ .withColumn("k", explode(col('ks'))) \ .withColumn("v2", col('k') * 100) \ .drop('ks') def test_simple(self): self._test_merge(self.data1, self.data2) def test_left_group_empty(self): left = self.data1.where(col("id") % 2 == 0) self._test_merge(left, self.data2) def test_right_group_empty(self): right = self.data2.where(col("id") % 2 == 0) self._test_merge(self.data1, right) def test_different_schemas(self): right = self.data2.withColumn('v3', lit('a')) self._test_merge(self.data1, right, 'id long, k int, v int, v2 int, v3 string') def test_complex_group_by(self): left = pd.DataFrame.from_dict({ 'id': [1, 2, 3], 'k': [5, 6, 7], 'v': [9, 10, 11] }) right = pd.DataFrame.from_dict({ 'id': [11, 12, 13], 'k': [5, 6, 7], 'v2': [90, 100, 110] }) left_gdf = self.spark\ .createDataFrame(left)\ .groupby(col('id') % 2 == 0) right_gdf = self.spark \ .createDataFrame(right) \ .groupby(col('id') % 2 == 0) def merge_pandas(l, r): return pd.merge(l[['k', 'v']], r[['k', 'v2']], on=['k']) result = left_gdf \ .cogroup(right_gdf) \ .applyInPandas(merge_pandas, 'k long, v long, v2 long') \ .sort(['k']) \ .toPandas() expected = pd.DataFrame.from_dict({ 'k': [5, 6, 7], 'v': [9, 10, 11], 'v2': [90, 100, 110] }) assert_frame_equal(expected, result) def test_empty_group_by(self): left = self.data1 right = self.data2 def merge_pandas(l, r): return pd.merge(l, r, on=['id', 'k']) result = left.groupby().cogroup(right.groupby())\ .applyInPandas(merge_pandas, 'id long, k int, v int, v2 int') \ .sort(['id', 'k']) \ .toPandas() left = left.toPandas() right = right.toPandas() expected = pd \ .merge(left, right, on=['id', 'k']) \ .sort_values(by=['id', 'k']) assert_frame_equal(expected, result) def test_mixed_scalar_udfs_followed_by_cogrouby_apply(self): df = self.spark.range(0, 10).toDF('v1') df = df.withColumn('v2', udf(lambda x: x + 1, 'int')(df['v1'])) \ .withColumn('v3', pandas_udf(lambda x: x + 2, 'int')(df['v1'])) result = df.groupby().cogroup(df.groupby()) \ .applyInPandas(lambda x, y: pd.DataFrame([(x.sum().sum(), y.sum().sum())]), 'sum1 int, sum2 int').collect() self.assertEqual(result[0]['sum1'], 165) self.assertEqual(result[0]['sum2'], 165) def test_with_key_left(self): self._test_with_key(self.data1, self.data1, isLeft=True) def test_with_key_right(self): self._test_with_key(self.data1, self.data1, isLeft=False) def test_with_key_left_group_empty(self): left = self.data1.where(col("id") % 2 == 0) self._test_with_key(left, self.data1, isLeft=True) def test_with_key_right_group_empty(self): right = self.data1.where(col("id") % 2 == 0) self._test_with_key(self.data1, right, isLeft=False) def test_with_key_complex(self): def left_assign_key(key, l, _): return l.assign(key=key[0]) result = self.data1 \ .groupby(col('id') % 2 == 0)\ .cogroup(self.data2.groupby(col('id') % 2 == 0)) \ .applyInPandas(left_assign_key, 'id long, k int, v int, key boolean') \ .sort(['id', 'k']) \ .toPandas() expected = self.data1.toPandas() expected = expected.assign(key=expected.id % 2 == 0) assert_frame_equal(expected, result) def test_wrong_return_type(self): # Test that we get a sensible exception invalid values passed to apply left = self.data1 right = self.data2 with QuietTest(self.sc): with self.assertRaisesRegex( NotImplementedError, 'Invalid return type.*ArrayType.*TimestampType'): left.groupby('id').cogroup(right.groupby('id')).applyInPandas( lambda l, r: l, 'id long, v array<timestamp>') def test_wrong_args(self): left = self.data1 right = self.data2 with self.assertRaisesRegex(ValueError, 'Invalid function'): left.groupby('id').cogroup(right.groupby('id')) \ .applyInPandas(lambda: 1, StructType([StructField("d", DoubleType())])) def test_case_insensitive_grouping_column(self): # SPARK-31915: case-insensitive grouping column should work. df1 = self.spark.createDataFrame([(1, 1)], ("column", "value")) row = df1.groupby("ColUmn").cogroup( df1.groupby("COLUMN") ).applyInPandas(lambda r, l: r + l, "column long, value long").first() self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) df2 = self.spark.createDataFrame([(1, 1)], ("column", "value")) row = df1.groupby("ColUmn").cogroup( df2.groupby("COLUMN") ).applyInPandas(lambda r, l: r + l, "column long, value long").first() self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) def test_self_join(self): # SPARK-34319: self-join with FlatMapCoGroupsInPandas df = self.spark.createDataFrame([(1, 1)], ("column", "value")) row = df.groupby("ColUmn").cogroup( df.groupby("COLUMN") ).applyInPandas(lambda r, l: r + l, "column long, value long") row = row.join(row).first() self.assertEqual(row.asDict(), Row(column=2, value=2).asDict()) @staticmethod def _test_with_key(left, right, isLeft): def right_assign_key(key, l, r): return l.assign(key=key[0]) if isLeft else r.assign(key=key[0]) result = left \ .groupby('id') \ .cogroup(right.groupby('id')) \ .applyInPandas(right_assign_key, 'id long, k int, v int, key long') \ .toPandas() expected = left.toPandas() if isLeft else right.toPandas() expected = expected.assign(key=expected.id) assert_frame_equal(expected, result) @staticmethod def _test_merge(left, right, output_schema='id long, k int, v int, v2 int'): def merge_pandas(l, r): return pd.merge(l, r, on=['id', 'k']) result = left \ .groupby('id') \ .cogroup(right.groupby('id')) \ .applyInPandas(merge_pandas, output_schema)\ .sort(['id', 'k']) \ .toPandas() left = left.toPandas() right = right.toPandas() expected = pd \ .merge(left, right, on=['id', 'k']) \ .sort_values(by=['id', 'k']) assert_frame_equal(expected, result) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_cogrouped_map import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
macks22/scikit-learn
examples/neighbors/plot_species_kde.py
282
4059
""" ================================================ Kernel Density Estimate of Species Distributions ================================================ This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using a Ball Tree built upon the Haversine distance metric -- i.e. distances over points in latitude/longitude. The dataset is provided by Phillips et. al. (2006). If available, the example uses `basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_ to plot the coast lines and national boundaries of South America. This example does not perform any learning over the data (see :ref:`example_applications_plot_species_distribution_modeling.py` for an example of classification based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in geospatial coordinates. The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. """ # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_species_distributions from sklearn.datasets.species_distributions import construct_grids from sklearn.neighbors import KernelDensity # if basemap is available, we'll use it. # otherwise, we'll improvise later... try: from mpl_toolkits.basemap import Basemap basemap = True except ImportError: basemap = False # Get matrices/arrays of species IDs and locations data = fetch_species_distributions() species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] Xtrain = np.vstack([data['train']['dd lat'], data['train']['dd long']]).T ytrain = np.array([d.decode('ascii').startswith('micro') for d in data['train']['species']], dtype='int') Xtrain *= np.pi / 180. # Convert lat/long to radians # Set up the data grid for the contour plot xgrid, ygrid = construct_grids(data) X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = xy[land_mask] xy *= np.pi / 180. # Plot map of South America with distributions of each species fig = plt.figure() fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) for i in range(2): plt.subplot(1, 2, i + 1) # construct a kernel density estimate of the distribution print(" - computing KDE in spherical coordinates") kde = KernelDensity(bandwidth=0.04, metric='haversine', kernel='gaussian', algorithm='ball_tree') kde.fit(Xtrain[ytrain == i]) # evaluate only on the land: -9999 indicates ocean Z = -9999 + np.zeros(land_mask.shape[0]) Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # plot contours of the density levels = np.linspace(0, Z.max(), 25) plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds) if basemap: print(" - plot coastlines using basemap") m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c') m.drawcoastlines() m.drawcountries() else: print(" - plot coastlines from coverage") plt.contour(X, Y, land_reference, levels=[-9999], colors="k", linestyles="solid") plt.xticks([]) plt.yticks([]) plt.title(species_names[i]) plt.show()
bsd-3-clause
YerevaNN/mimic3-benchmarks
mimic3benchmark/scripts/create_in_hospital_mortality.py
1
3320
from __future__ import absolute_import from __future__ import print_function import os import argparse import pandas as pd import random random.seed(49297) from tqdm import tqdm def process_partition(args, partition, eps=1e-6, n_hours=48): output_dir = os.path.join(args.output_path, partition) if not os.path.exists(output_dir): os.mkdir(output_dir) xy_pairs = [] patients = list(filter(str.isdigit, os.listdir(os.path.join(args.root_path, partition)))) for patient in tqdm(patients, desc='Iterating over patients in {}'.format(partition)): patient_folder = os.path.join(args.root_path, partition, patient) patient_ts_files = list(filter(lambda x: x.find("timeseries") != -1, os.listdir(patient_folder))) for ts_filename in patient_ts_files: with open(os.path.join(patient_folder, ts_filename)) as tsfile: lb_filename = ts_filename.replace("_timeseries", "") label_df = pd.read_csv(os.path.join(patient_folder, lb_filename)) # empty label file if label_df.shape[0] == 0: continue mortality = int(label_df.iloc[0]["Mortality"]) los = 24.0 * label_df.iloc[0]['Length of Stay'] # in hours if pd.isnull(los): print("\n\t(length of stay is missing)", patient, ts_filename) continue if los < n_hours - eps: continue ts_lines = tsfile.readlines() header = ts_lines[0] ts_lines = ts_lines[1:] event_times = [float(line.split(',')[0]) for line in ts_lines] ts_lines = [line for (line, t) in zip(ts_lines, event_times) if -eps < t < n_hours + eps] # no measurements in ICU if len(ts_lines) == 0: print("\n\t(no events in ICU) ", patient, ts_filename) continue output_ts_filename = patient + "_" + ts_filename with open(os.path.join(output_dir, output_ts_filename), "w") as outfile: outfile.write(header) for line in ts_lines: outfile.write(line) xy_pairs.append((output_ts_filename, mortality)) print("Number of created samples:", len(xy_pairs)) if partition == "train": random.shuffle(xy_pairs) if partition == "test": xy_pairs = sorted(xy_pairs) with open(os.path.join(output_dir, "listfile.csv"), "w") as listfile: listfile.write('stay,y_true\n') for (x, y) in xy_pairs: listfile.write('{},{:d}\n'.format(x, y)) def main(): parser = argparse.ArgumentParser(description="Create data for in-hospital mortality prediction task.") parser.add_argument('root_path', type=str, help="Path to root folder containing train and test sets.") parser.add_argument('output_path', type=str, help="Directory where the created data should be stored.") args, _ = parser.parse_known_args() if not os.path.exists(args.output_path): os.makedirs(args.output_path) process_partition(args, "test") process_partition(args, "train") if __name__ == '__main__': main()
mit
gzucolotto/PrimeNumbersPlotting
StatisticCollector.py
1
1674
import time import matplotlib.pyplot as plt import math counter = {} times = {} lables = {} stored_series = {} stored_times = {} stored_labels = {} def method_decorator(method): ''' Decorator to getter method invocations and execution times. ''' def wrapper(*args, **kwargs): key = method if counter.__contains__(key) is False: counter[key] = 0 times[key] = 0 lables[key] = args[0].__module__ init_time = time.time() response = method(*args, **kwargs) total_time = time.time() - init_time counter[key] += 1 times[key] += total_time return response return wrapper def reset_iteration_counters(): ''' Resets the iteration counters. ''' counter.clear() times.clear() lables.clear() def reset_counters(): ''' Resets all counters. ''' counter.clear() times.clear() lables.clear() stored_series.clear() stored_times.clear() stored_labels.clear() def store_iteration(): ''' Stores the iteration. Appends the iteration counter into store counters and reset the interation counters. ''' for key, value in counter.iteritems(): if stored_series.__contains__(key) is False: stored_series[key] = [] stored_times[key] = [] stored_labels[key] = lables[key] stored_series[key].append(value) stored_times[key].append(times[key]) reset_iteration_counters() def generate_report(filename="nroInteration.png"): ''' Generates a report with stored invocation counters. ''' plt.figure() x_series = range(2, stored_series.items()[0][1].__len__() + 2) for key, series in stored_series.iteritems(): plt.plot(x_series, series, label=stored_labels[key]) plt.legend(loc="upper left") plt.grid(True) plt.savefig(filename)
apache-2.0
exepulveda/swfc
python/clustering_kmean_ds4.py
1
2282
import numpy as np import pickle import logging import argparse import csv import matplotlib as mpl mpl.use('agg') from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score from cluster_utils import create_clusters_dict, recode_categorical_values from plotting import scatter_clusters import matplotlib.pyplot as plt import clusteringlib as cl from case_study_2d import attributes,setup_case_study,setup_distances if __name__ == "__main__": filename = 'ds4' X = np.loadtxt("../data/{dataset}.csv".format(dataset=filename),skiprows=1,delimiter=",") locations = X[:,0:2] data = X[:,2:6] #0,1,2,5 are continues true_clusters = X[:,6] N,ND = data.shape var_types = np.ones(ND) seed = 1634120 np.random.seed(seed) standadize = StandardScaler() data_scaled = standadize.fit_transform(data) scale = standadize.scale_ data_F = np.asfortranarray(data,dtype=np.float32) for NC in range(2,11): clustering = KMeans(n_clusters=NC) kmeans_clusters = clustering.fit_predict(data_scaled) sc = silhouette_score(data_scaled,kmeans_clusters) #save data #new_data = np.c_[locations,kmeans_clusters_all] #np.savetxt("../results/{dataset}_clusters_kmeans_{nc}.csv".format(dataset=filename,nc=NC),new_data,delimiter=",",fmt="%.4f") centroids_F = np.asfortranarray(np.empty((NC,ND)),dtype=np.float32) for k in range(NC): indices = np.where(kmeans_clusters == k)[0] centroids_F[k,:] = np.mean(data[indices,:],axis=0) #stats cl.distances.sk_setup(np.asfortranarray(np.float32(scale))) cl.distances.set_variables(np.asfortranarray(np.int32(var_types)),False) #KMeans weights = np.asfortranarray(np.ones((NC,ND),dtype=np.float32)/ ND) clusters = np.asfortranarray(kmeans_clusters,dtype=np.int8) ret_kmeans = cl.clustering.dbi_index(centroids_F,data_F,clusters,weights) ret_sill= cl.clustering.silhouette_index(data_F,clusters,weights) print("KMeans DB Index:",NC,ret_kmeans,ret_sill,sc) cl.distances.reset()
gpl-3.0
cliu3/pf_geolocation
postprocessing/post_process_gpu.py
1
3654
from __future__ import print_function import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import scipy.io import scipy.stats from astropy.time import Time import pandas as pd from my_project import * import os.path #from config import * import sys #tagid = 7 # try: tagid = int(sys.argv[1]) #tagid = 12 # except: # load tag file path_to_tags = '/home/cliu3/pf_geolocation/data/tag_files' tag=scipy.io.loadmat(path_to_tags+'/'+str(tagid)+'_raw.mat',squeeze_me =False,struct_as_record=True) tag=tag['tag'][0,0] release_lon = tag['release_lon'][0,0] release_lat = tag['release_lat'][0,0] [release_x, release_y] = my_project(release_lon, release_lat, 'forward') recapture_lon = tag['recapture_lon'][0,0] recapture_lat = tag['recapture_lat'][0,0] [recapture_x, recapture_y] = my_project(recapture_lon, recapture_lat, 'forward') tagname = str(tagid)+'_'+tag['tag_id'][0] # load result file result = scipy.io.loadmat('result'+tagname+'.mat',squeeze_me =False,struct_as_record=True) particles = result['particles'] mpt_idx = result['mpt_idx'] # determine most probable track mpt_x = particles[:,mpt_idx,0].flatten() mpt_y = particles[:,mpt_idx,1].flatten() (mpt_lon, mpt_lat) = my_project(mpt_x, mpt_y, 'reverse') day_dnum = np.array(range(int(tag['dnum'][0]), int(tag['dnum'][-1])+1)) date = Time(day_dnum-678942,format='mjd',scale='utc').datetime MPT = pd.DataFrame({'date':date, 'lon':mpt_lon, 'lat':mpt_lat, 'X':mpt_x, 'Y':mpt_y}) MPT['date'] = pd.to_datetime(MPT['date']) MPT = MPT[['date', 'X', 'Y', 'lat', 'lon']] MPT.to_csv('mpt_'+tagname+'.csv') #-- calculate cumulative probability distribution # construct daily distrubution using kernel density estimation xmin = particles[:,:,0].min() xmax = particles[:,:,0].max() ymin = particles[:,:,1].min() ymax = particles[:,:,1].max() X, Y = np.meshgrid(np.linspace(xmin,xmax,50), np.linspace(ymin,ymax,50)) positions = np.vstack([X.ravel(), Y.ravel()]) ndays = len(particles) udist = np.zeros_like(X) # for i in range(ndays): # print("Processing kde for Day "+str(i+1)+"/"+str(ndays)+"...") # values = particles[i].T # kernel = scipy.stats.gaussian_kde(values) # Z = np.reshape(kernel(positions).T, X.shape) # Z = Z/Z.max() # udist += Z print("Processing kde...") values = np.vstack([particles[:,:,0].flatten(), particles[:,:,1].flatten()]) kernel = scipy.stats.gaussian_kde(values) udist = np.reshape(kernel(positions).T, X.shape) udist = udist/udist.max() scipy.io.savemat('UD_'+tagname+'.mat',{'X':X, 'Y':Y, 'udist':udist}) # create basemap print('Generating plot...') latStart = 41.15 latEnd = 43.15 lonStart =-71 lonEnd =-68 map = Basemap(projection='merc', lat_0 = 42, lon_0 = -70,resolution = 'h', area_thresh = 0.1,llcrnrlon=lonStart, llcrnrlat=latStart, urcrnrlon=lonEnd, urcrnrlat=latEnd) map.fillcontinents(color = 'green') #-- plot mpt mptlon, mptlat = my_project(mpt_x, mpt_y, 'inverse') mptx, mpty = map(mptlon, mptlat) map.plot(mptx,mpty,'b-') #plot release and recapture location map.plot(mptx[0],mpty[0],'kx',label="Release") recap_x, recap_y = map(recapture_lon, recapture_lat) map.plot(recap_x, recap_y,'k^',markeredgecolor='k',label="Reported Recapture") map.plot(mptx[-1],mpty[-1],'bv',markeredgecolor='b',label="Simulated Recapture") #-- plot uncertainty distribution lon_g, lat_g = my_project(X, Y, 'inverse') map.pcolormesh(lon_g, lat_g,udist,cmap=plt.cm.cubehelix_r,latlon=True,shading='gouraud') plt.legend(numpoints=1,prop={'size':16},loc='lower right') plt.title(tagname+' gpu') plt.savefig('track'+tagname+'_gpu.pdf', dpi=300, bbox_inches='tight')
mit
MadsJensen/RP_scripts
epoching_interupt_subject.py
1
1251
"""Epoch a raw data set. """ import mne import sys import matplotlib matplotlib.use('Agg') from my_settings import * subject = sys.argv[1] # SETTINGS tmin, tmax = -4, 1 raw = mne.io.Raw(save_folder + "%s_interupt_filtered_ica_mc_tsss-raw.fif" % ( subject)) events = mne.find_events(raw) for j in range(len(events)): if events[:, 2][j] == 1 and events[:, 2][j - 1] == 2: events[:, 2][j] = 3 event_id = {'press': 1, "cue": 2, "cued_press": 3} # Setup for reading the raw data picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads') # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, -3.5), reject=reject_params, preload=True) epochs.drop_bad(reject=reject_params) fig = epochs.plot_drop_log(subject=subject, show=False) fig.savefig(epochs_folder + "pics/%s_interupt_drop_log.png" % (subject)) # Save epochs epochs.save(epochs_folder + "%s_interupt-epo.fif" % (subject))
bsd-3-clause
kambysese/mne-python
mne/tests/test_label.py
8
41281
from itertools import product import glob import os import os.path as op import pickle import shutil import numpy as np from scipy import sparse from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_equal) import pytest from mne.datasets import testing from mne import (read_label, stc_to_label, read_source_estimate, read_source_spaces, grow_labels, read_labels_from_annot, write_labels_to_annot, split_label, spatial_tris_adjacency, read_surface, random_parcellation, morph_labels, labels_to_stc) from mne.label import (Label, _blend_colors, label_sign_flip, _load_vert_pos, select_sources) from mne.utils import (_TempDir, requires_sklearn, get_subjects_dir, run_tests_if_main, check_version) from mne.label import _n_colors, _read_annot, _read_annot_cands from mne.source_space import SourceSpaces from mne.source_estimate import mesh_edges data_path = testing.data_path(download=False) subjects_dir = op.join(data_path, 'subjects') src_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-oct-6-src.fif') stc_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-lh.stc') real_label_fname = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-lh.label') real_label_rh_fname = op.join(data_path, 'MEG', 'sample', 'labels', 'Aud-rh.label') v1_label_fname = op.join(subjects_dir, 'sample', 'label', 'lh.V1.label') fwd_fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif') src_bad_fname = op.join(data_path, 'subjects', 'fsaverage', 'bem', 'fsaverage-ico-5-src.fif') label_dir = op.join(subjects_dir, 'sample', 'label', 'aparc') test_path = op.join(op.split(__file__)[0], '..', 'io', 'tests', 'data') label_fname = op.join(test_path, 'test-lh.label') label_rh_fname = op.join(test_path, 'test-rh.label') # This code was used to generate the "fake" test labels: # for hemi in ['lh', 'rh']: # label = Label(np.unique((np.random.rand(100) * 10242).astype(int)), # hemi=hemi, comment='Test ' + hemi, subject='fsaverage') # label.save(op.join(test_path, 'test-%s.label' % hemi)) # XXX : this was added for backward compat and keep the old test_label_in_src def _stc_to_label(stc, src, smooth, subjects_dir=None): """Compute a label from the non-zero sources in an stc object. Parameters ---------- stc : SourceEstimate The source estimates. src : SourceSpaces | str | None The source space over which the source estimates are defined. If it's a string it should the subject name (e.g. fsaverage). Can be None if stc.subject is not None. smooth : int Number of smoothing iterations. subjects_dir : str | None Path to SUBJECTS_DIR if it is not set in the environment. Returns ------- labels : list of Labels | list of list of Labels The generated labels. If connected is False, it returns a list of Labels (one per hemisphere). If no Label is available in a hemisphere, None is returned. If connected is True, it returns for each hemisphere a list of connected labels ordered in decreasing order depending of the maximum value in the stc. If no Label is available in an hemisphere, an empty list is returned. """ src = stc.subject if src is None else src if isinstance(src, str): subject = src else: subject = stc.subject if isinstance(src, str): subjects_dir = get_subjects_dir(subjects_dir) surf_path_from = op.join(subjects_dir, src, 'surf') rr_lh, tris_lh = read_surface(op.join(surf_path_from, 'lh.white')) rr_rh, tris_rh = read_surface(op.join(surf_path_from, 'rh.white')) rr = [rr_lh, rr_rh] tris = [tris_lh, tris_rh] else: if not isinstance(src, SourceSpaces): raise TypeError('src must be a string or a set of source spaces') if len(src) != 2: raise ValueError('source space should contain the 2 hemispheres') rr = [1e3 * src[0]['rr'], 1e3 * src[1]['rr']] tris = [src[0]['tris'], src[1]['tris']] labels = [] cnt = 0 for hemi_idx, (hemi, this_vertno, this_tris, this_rr) in enumerate( zip(['lh', 'rh'], stc.vertices, tris, rr)): this_data = stc.data[cnt:cnt + len(this_vertno)] e = mesh_edges(this_tris) e.data[e.data == 2] = 1 n_vertices = e.shape[0] e = e + sparse.eye(n_vertices, n_vertices) clusters = [this_vertno[np.any(this_data, axis=1)]] cnt += len(this_vertno) clusters = [c for c in clusters if len(c) > 0] if len(clusters) == 0: this_labels = None else: this_labels = [] colors = _n_colors(len(clusters)) for c, color in zip(clusters, colors): idx_use = c for k in range(smooth): e_use = e[:, idx_use] data1 = e_use * np.ones(len(idx_use)) idx_use = np.where(data1)[0] label = Label(idx_use, this_rr[idx_use], None, hemi, 'Label from stc', subject=subject, color=color) this_labels.append(label) this_labels = this_labels[0] labels.append(this_labels) return labels def assert_labels_equal(l0, l1, decimal=5, comment=True, color=True): """Assert two labels are equal.""" if comment: assert_equal(l0.comment, l1.comment) if color: assert_equal(l0.color, l1.color) for attr in ['hemi', 'subject']: attr0 = getattr(l0, attr) attr1 = getattr(l1, attr) msg = "label.%s: %r != %r" % (attr, attr0, attr1) assert_equal(attr0, attr1, msg) for attr in ['vertices', 'pos', 'values']: a0 = getattr(l0, attr) a1 = getattr(l1, attr) assert_array_almost_equal(a0, a1, decimal) def test_copy(): """Test label copying.""" label = read_label(label_fname) label_2 = label.copy() label_2.pos += 1 assert_array_equal(label.pos, label_2.pos - 1) def test_label_subject(): """Test label subject name extraction.""" label = read_label(label_fname) assert label.subject is None assert ('unknown' in repr(label)) label = read_label(label_fname, subject='fsaverage') assert (label.subject == 'fsaverage') assert ('fsaverage' in repr(label)) def test_label_addition(): """Test label addition.""" pos = np.random.RandomState(0).rand(10, 3) values = np.arange(10.) / 10 idx0 = list(range(7)) idx1 = list(range(7, 10)) # non-overlapping idx2 = list(range(5, 10)) # overlapping l0 = Label(idx0, pos[idx0], values[idx0], 'lh', color='red') l1 = Label(idx1, pos[idx1], values[idx1], 'lh') l2 = Label(idx2, pos[idx2], values[idx2], 'lh', color=(0, 1, 0, .5)) assert_equal(len(l0), len(idx0)) l_good = l0.copy() l_good.subject = 'sample' l_bad = l1.copy() l_bad.subject = 'foo' pytest.raises(ValueError, l_good.__add__, l_bad) pytest.raises(TypeError, l_good.__add__, 'foo') pytest.raises(ValueError, l_good.__sub__, l_bad) pytest.raises(TypeError, l_good.__sub__, 'foo') # adding non-overlapping labels l01 = l0 + l1 assert_equal(len(l01), len(l0) + len(l1)) assert_array_equal(l01.values[:len(l0)], l0.values) assert_equal(l01.color, l0.color) # subtraction assert_labels_equal(l01 - l0, l1, comment=False, color=False) assert_labels_equal(l01 - l1, l0, comment=False, color=False) # adding overlapping labels l02 = l0 + l2 i0 = np.where(l0.vertices == 6)[0][0] i2 = np.where(l2.vertices == 6)[0][0] i = np.where(l02.vertices == 6)[0][0] assert_equal(l02.values[i], l0.values[i0] + l2.values[i2]) assert_equal(l02.values[0], l0.values[0]) assert_array_equal(np.unique(l02.vertices), np.unique(idx0 + idx2)) assert_equal(l02.color, _blend_colors(l0.color, l2.color)) # adding lh and rh l2.hemi = 'rh' bhl = l0 + l2 assert_equal(bhl.hemi, 'both') assert_equal(len(bhl), len(l0) + len(l2)) assert_equal(bhl.color, l02.color) assert ('BiHemiLabel' in repr(bhl)) # subtraction assert_labels_equal(bhl - l0, l2) assert_labels_equal(bhl - l2, l0) bhl2 = l1 + bhl assert_labels_equal(bhl2.lh, l01) assert_equal(bhl2.color, _blend_colors(l1.color, bhl.color)) assert_array_equal((l2 + bhl).rh.vertices, bhl.rh.vertices) # rh label assert_array_equal((bhl + bhl).lh.vertices, bhl.lh.vertices) pytest.raises(TypeError, bhl.__add__, 5) # subtraction bhl_ = bhl2 - l1 assert_labels_equal(bhl_.lh, bhl.lh, comment=False, color=False) assert_labels_equal(bhl_.rh, bhl.rh) assert_labels_equal(bhl2 - l2, l0 + l1) assert_labels_equal(bhl2 - l1 - l0, l2) bhl_ = bhl2 - bhl2 assert_array_equal(bhl_.vertices, []) @testing.requires_testing_data @pytest.mark.parametrize('fname', (real_label_fname, v1_label_fname)) def test_label_fill_restrict(fname): """Test label in fill and restrict.""" src = read_source_spaces(src_fname) label = read_label(fname) # construct label from source space vertices label_src = label.restrict(src) vert_in_src = label_src.vertices values_in_src = label_src.values if check_version('scipy', '1.3') and fname == real_label_fname: # Check that we can auto-fill patch info quickly for one condition for s in src: s['nearest'] = None with pytest.warns(None): label_src = label_src.fill(src) else: label_src = label_src.fill(src) assert src[0]['nearest'] is not None # check label vertices vertices_status = np.in1d(src[0]['nearest'], label.vertices) vertices_in = np.nonzero(vertices_status)[0] vertices_out = np.nonzero(np.logical_not(vertices_status))[0] assert_array_equal(label_src.vertices, vertices_in) assert_array_equal(np.in1d(vertices_out, label_src.vertices), False) # check values value_idx = np.digitize(src[0]['nearest'][vertices_in], vert_in_src, True) assert_array_equal(label_src.values, values_in_src[value_idx]) # test exception vertices = np.append([-1], vert_in_src) with pytest.raises(ValueError, match='does not contain all of the label'): Label(vertices, hemi='lh').fill(src) # test filling empty label label = Label([], hemi='lh') label.fill(src) assert_array_equal(label.vertices, np.array([], int)) @testing.requires_testing_data def test_label_io_and_time_course_estimates(): """Test IO for label + stc files.""" stc = read_source_estimate(stc_fname) label = read_label(real_label_fname) stc_label = stc.in_label(label) assert (len(stc_label.times) == stc_label.data.shape[1]) assert (len(stc_label.vertices[0]) == stc_label.data.shape[0]) @testing.requires_testing_data def test_label_io(): """Test IO of label files.""" tempdir = _TempDir() label = read_label(label_fname) # label attributes assert_equal(label.name, 'test-lh') assert label.subject is None assert label.color is None # save and reload label.save(op.join(tempdir, 'foo')) label2 = read_label(op.join(tempdir, 'foo-lh.label')) assert_labels_equal(label, label2) # pickling dest = op.join(tempdir, 'foo.pickled') with open(dest, 'wb') as fid: pickle.dump(label, fid, pickle.HIGHEST_PROTOCOL) with open(dest, 'rb') as fid: label2 = pickle.load(fid) assert_labels_equal(label, label2) def _assert_labels_equal(labels_a, labels_b, ignore_pos=False): """Ensure two sets of labels are equal.""" for label_a, label_b in zip(labels_a, labels_b): assert_array_equal(label_a.vertices, label_b.vertices) assert (label_a.name == label_b.name) assert (label_a.hemi == label_b.hemi) if not ignore_pos: assert_array_equal(label_a.pos, label_b.pos) @testing.requires_testing_data def test_annot_io(): """Test I/O from and to *.annot files.""" # copy necessary files from fsaverage to tempdir tempdir = _TempDir() subject = 'fsaverage' label_src = os.path.join(subjects_dir, 'fsaverage', 'label') surf_src = os.path.join(subjects_dir, 'fsaverage', 'surf') label_dir = os.path.join(tempdir, subject, 'label') surf_dir = os.path.join(tempdir, subject, 'surf') os.makedirs(label_dir) os.mkdir(surf_dir) shutil.copy(os.path.join(label_src, 'lh.PALS_B12_Lobes.annot'), label_dir) shutil.copy(os.path.join(label_src, 'rh.PALS_B12_Lobes.annot'), label_dir) shutil.copy(os.path.join(surf_src, 'lh.white'), surf_dir) shutil.copy(os.path.join(surf_src, 'rh.white'), surf_dir) # read original labels with pytest.raises(IOError, match='\nPALS_B12_Lobes$'): read_labels_from_annot(subject, 'PALS_B12_Lobesey', subjects_dir=tempdir) labels = read_labels_from_annot(subject, 'PALS_B12_Lobes', subjects_dir=tempdir) # test saving parcellation only covering one hemisphere parc = [label for label in labels if label.name == 'LOBE.TEMPORAL-lh'] write_labels_to_annot(parc, subject, 'myparc', subjects_dir=tempdir) parc1 = read_labels_from_annot(subject, 'myparc', subjects_dir=tempdir) parc1 = [label for label in parc1 if not label.name.startswith('unknown')] assert_equal(len(parc1), len(parc)) for lt, rt in zip(parc1, parc): assert_labels_equal(lt, rt) # test saving only one hemisphere parc = [label for label in labels if label.name.startswith('LOBE')] write_labels_to_annot(parc, subject, 'myparc2', hemi='lh', subjects_dir=tempdir) annot_fname = os.path.join(tempdir, subject, 'label', '%sh.myparc2.annot') assert os.path.isfile(annot_fname % 'l') assert not os.path.isfile(annot_fname % 'r') parc1 = read_labels_from_annot(subject, 'myparc2', annot_fname=annot_fname % 'l', subjects_dir=tempdir) parc_lh = [label for label in parc if label.name.endswith('lh')] for lt, rt in zip(parc1, parc_lh): assert_labels_equal(lt, rt) # test that the annotation is complete (test Label() support) rr = read_surface(op.join(surf_dir, 'lh.white'))[0] label = sum(labels, Label(hemi='lh', subject='fsaverage')).lh assert_array_equal(label.vertices, np.arange(len(rr))) @testing.requires_testing_data def test_morph_labels(): """Test morph_labels.""" # Just process the first 5 labels for speed parc_fsaverage = read_labels_from_annot( 'fsaverage', 'aparc', subjects_dir=subjects_dir)[:5] parc_sample = read_labels_from_annot( 'sample', 'aparc', subjects_dir=subjects_dir)[:5] parc_fssamp = morph_labels( parc_fsaverage, 'sample', subjects_dir=subjects_dir) for lf, ls, lfs in zip(parc_fsaverage, parc_sample, parc_fssamp): assert lf.hemi == ls.hemi == lfs.hemi assert lf.name == ls.name == lfs.name perc_1 = np.in1d(lfs.vertices, ls.vertices).mean() * 100 perc_2 = np.in1d(ls.vertices, lfs.vertices).mean() * 100 # Ideally this would be 100%, but we do not use the same algorithm # as FreeSurfer ... assert perc_1 > 92 assert perc_2 > 88 with pytest.raises(ValueError, match='wrong and fsaverage'): morph_labels(parc_fsaverage, 'sample', subjects_dir=subjects_dir, subject_from='wrong') with pytest.raises(RuntimeError, match='Number of surface vertices'): _load_vert_pos('sample', subjects_dir, 'white', 'lh', 1) for label in parc_fsaverage: label.subject = None with pytest.raises(ValueError, match='subject_from must be provided'): morph_labels(parc_fsaverage, 'sample', subjects_dir=subjects_dir) @testing.requires_testing_data def test_labels_to_stc(): """Test labels_to_stc.""" labels = read_labels_from_annot( 'sample', 'aparc', subjects_dir=subjects_dir) values = np.random.RandomState(0).randn(len(labels)) with pytest.raises(ValueError, match='1 or 2 dim'): labels_to_stc(labels, values[:, np.newaxis, np.newaxis]) with pytest.raises(ValueError, match=r'values\.shape'): labels_to_stc(labels, values[np.newaxis]) with pytest.raises(ValueError, match='multiple values of subject'): labels_to_stc(labels, values, subject='foo') stc = labels_to_stc(labels, values) assert stc.subject == 'sample' for value, label in zip(values, labels): stc_label = stc.in_label(label) assert (stc_label.data == value).all() stc = read_source_estimate(stc_fname, 'sample') @testing.requires_testing_data def test_read_labels_from_annot(tmpdir): """Test reading labels from FreeSurfer parcellation.""" # test some invalid inputs pytest.raises(ValueError, read_labels_from_annot, 'sample', hemi='bla', subjects_dir=subjects_dir) pytest.raises(ValueError, read_labels_from_annot, 'sample', annot_fname='bla.annot', subjects_dir=subjects_dir) with pytest.raises(IOError, match='does not exist'): _read_annot_cands('foo') with pytest.raises(IOError, match='no candidate'): _read_annot(str(tmpdir)) # read labels using hemi specification labels_lh = read_labels_from_annot('sample', hemi='lh', subjects_dir=subjects_dir) for label in labels_lh: assert label.name.endswith('-lh') assert label.hemi == 'lh' assert label.color is not None # read labels using annot_fname annot_fname = op.join(subjects_dir, 'sample', 'label', 'rh.aparc.annot') labels_rh = read_labels_from_annot('sample', annot_fname=annot_fname, subjects_dir=subjects_dir) for label in labels_rh: assert label.name.endswith('-rh') assert label.hemi == 'rh' assert label.color is not None # combine the lh, rh, labels and sort them labels_lhrh = list() labels_lhrh.extend(labels_lh) labels_lhrh.extend(labels_rh) names = [label.name for label in labels_lhrh] labels_lhrh = [label for (name, label) in sorted(zip(names, labels_lhrh))] # read all labels at once labels_both = read_labels_from_annot('sample', subjects_dir=subjects_dir) # we have the same result _assert_labels_equal(labels_lhrh, labels_both) # aparc has 68 cortical labels assert (len(labels_both) == 68) # test regexp label = read_labels_from_annot('sample', parc='aparc.a2009s', regexp='Angu', subjects_dir=subjects_dir)[0] assert (label.name == 'G_pariet_inf-Angular-lh') # silly, but real regexp: label = read_labels_from_annot('sample', 'aparc.a2009s', regexp='.*-.{4,}_.{3,3}-L', subjects_dir=subjects_dir)[0] assert (label.name == 'G_oc-temp_med-Lingual-lh') pytest.raises(RuntimeError, read_labels_from_annot, 'sample', parc='aparc', annot_fname=annot_fname, regexp='JackTheRipper', subjects_dir=subjects_dir) @testing.requires_testing_data def test_read_labels_from_annot_annot2labels(): """Test reading labels from parc. by comparing with mne_annot2labels.""" label_fnames = glob.glob(label_dir + '/*.label') label_fnames.sort() labels_mne = [read_label(fname) for fname in label_fnames] labels = read_labels_from_annot('sample', subjects_dir=subjects_dir) # we have the same result, mne does not fill pos, so ignore it _assert_labels_equal(labels, labels_mne, ignore_pos=True) @testing.requires_testing_data def test_write_labels_to_annot(): """Test writing FreeSurfer parcellation from labels.""" tempdir = _TempDir() labels = read_labels_from_annot('sample', subjects_dir=subjects_dir) # create temporary subjects-dir skeleton surf_dir = op.join(subjects_dir, 'sample', 'surf') temp_surf_dir = op.join(tempdir, 'sample', 'surf') os.makedirs(temp_surf_dir) shutil.copy(op.join(surf_dir, 'lh.white'), temp_surf_dir) shutil.copy(op.join(surf_dir, 'rh.white'), temp_surf_dir) os.makedirs(op.join(tempdir, 'sample', 'label')) # test automatic filenames dst = op.join(tempdir, 'sample', 'label', '%s.%s.annot') write_labels_to_annot(labels, 'sample', 'test1', subjects_dir=tempdir) assert (op.exists(dst % ('lh', 'test1'))) assert (op.exists(dst % ('rh', 'test1'))) # lh only for label in labels: if label.hemi == 'lh': break write_labels_to_annot([label], 'sample', 'test2', subjects_dir=tempdir) assert (op.exists(dst % ('lh', 'test2'))) assert (op.exists(dst % ('rh', 'test2'))) # rh only for label in labels: if label.hemi == 'rh': break write_labels_to_annot([label], 'sample', 'test3', subjects_dir=tempdir) assert (op.exists(dst % ('lh', 'test3'))) assert (op.exists(dst % ('rh', 'test3'))) # label alone pytest.raises(TypeError, write_labels_to_annot, labels[0], 'sample', 'test4', subjects_dir=tempdir) # write left and right hemi labels with filenames: fnames = [op.join(tempdir, hemi + '-myparc') for hemi in ['lh', 'rh']] for fname in fnames: with pytest.warns(RuntimeWarning, match='subjects_dir'): write_labels_to_annot(labels, annot_fname=fname) # read it back labels2 = read_labels_from_annot('sample', subjects_dir=subjects_dir, annot_fname=fnames[0]) labels22 = read_labels_from_annot('sample', subjects_dir=subjects_dir, annot_fname=fnames[1]) labels2.extend(labels22) names = [label.name for label in labels2] for label in labels: idx = names.index(label.name) assert_labels_equal(label, labels2[idx]) # same with label-internal colors for fname in fnames: write_labels_to_annot(labels, 'sample', annot_fname=fname, overwrite=True, subjects_dir=subjects_dir) labels3 = read_labels_from_annot('sample', subjects_dir=subjects_dir, annot_fname=fnames[0]) labels33 = read_labels_from_annot('sample', subjects_dir=subjects_dir, annot_fname=fnames[1]) labels3.extend(labels33) names3 = [label.name for label in labels3] for label in labels: idx = names3.index(label.name) assert_labels_equal(label, labels3[idx]) # make sure we can't overwrite things pytest.raises(ValueError, write_labels_to_annot, labels, 'sample', annot_fname=fnames[0], subjects_dir=subjects_dir) # however, this works write_labels_to_annot(labels, 'sample', annot_fname=fnames[0], overwrite=True, subjects_dir=subjects_dir) # label without color labels_ = labels[:] labels_[0] = labels_[0].copy() labels_[0].color = None write_labels_to_annot(labels_, 'sample', annot_fname=fnames[0], overwrite=True, subjects_dir=subjects_dir) # duplicate color labels_[0].color = labels_[2].color pytest.raises(ValueError, write_labels_to_annot, labels_, 'sample', annot_fname=fnames[0], overwrite=True, subjects_dir=subjects_dir) # invalid color inputs labels_[0].color = (1.1, 1., 1., 1.) pytest.raises(ValueError, write_labels_to_annot, labels_, 'sample', annot_fname=fnames[0], overwrite=True, subjects_dir=subjects_dir) # overlapping labels labels_ = labels[:] cuneus_lh = labels[6] precuneus_lh = labels[50] labels_.append(precuneus_lh + cuneus_lh) pytest.raises(ValueError, write_labels_to_annot, labels_, 'sample', annot_fname=fnames[0], overwrite=True, subjects_dir=subjects_dir) # unlabeled vertices labels_lh = [label for label in labels if label.name.endswith('lh')] write_labels_to_annot(labels_lh[1:], 'sample', annot_fname=fnames[0], overwrite=True, subjects_dir=subjects_dir) labels_reloaded = read_labels_from_annot('sample', annot_fname=fnames[0], subjects_dir=subjects_dir) assert_equal(len(labels_lh), len(labels_reloaded)) label0 = labels_lh[0] label1 = labels_reloaded[-1] assert_equal(label1.name, "unknown-lh") assert (np.all(np.in1d(label0.vertices, label1.vertices))) # unnamed labels labels4 = labels[:] labels4[0].name = None pytest.raises(ValueError, write_labels_to_annot, labels4, annot_fname=fnames[0]) @requires_sklearn @testing.requires_testing_data def test_split_label(): """Test splitting labels.""" aparc = read_labels_from_annot('fsaverage', 'aparc', 'lh', regexp='lingual', subjects_dir=subjects_dir) lingual = aparc[0] # Test input error pytest.raises(ValueError, lingual.split, 'bad_input_string') # split with names parts = ('lingual_post', 'lingual_ant') post, ant = split_label(lingual, parts, subjects_dir=subjects_dir) # check output names assert_equal(post.name, parts[0]) assert_equal(ant.name, parts[1]) # check vertices add up lingual_reconst = post + ant lingual_reconst.name = lingual.name lingual_reconst.comment = lingual.comment lingual_reconst.color = lingual.color assert_labels_equal(lingual_reconst, lingual) # compare output of Label.split() method post1, ant1 = lingual.split(parts, subjects_dir=subjects_dir) assert_labels_equal(post1, post) assert_labels_equal(ant1, ant) # compare fs_like split with freesurfer split antmost = split_label(lingual, 40, None, subjects_dir, True)[-1] fs_vert = [210, 4401, 7405, 12079, 16276, 18956, 26356, 32713, 32716, 32719, 36047, 36050, 42797, 42798, 42799, 59281, 59282, 59283, 71864, 71865, 71866, 71874, 71883, 79901, 79903, 79910, 103024, 107849, 107850, 122928, 139356, 139357, 139373, 139374, 139375, 139376, 139377, 139378, 139381, 149117, 149118, 149120, 149127] assert_array_equal(antmost.vertices, fs_vert) # check default label name assert_equal(antmost.name, "lingual_div40-lh") # Apply contiguous splitting to DMN label from parcellation in Yeo, 2011 label_default_mode = read_label(op.join(subjects_dir, 'fsaverage', 'label', 'lh.7Networks_7.label')) DMN_sublabels = label_default_mode.split(parts='contiguous', subject='fsaverage', subjects_dir=subjects_dir) assert_equal([len(label.vertices) for label in DMN_sublabels], [16181, 7022, 5965, 5300, 823] + [1] * 23) @pytest.mark.slowtest @testing.requires_testing_data @requires_sklearn def test_stc_to_label(): """Test stc_to_label.""" src = read_source_spaces(fwd_fname) src_bad = read_source_spaces(src_bad_fname) stc = read_source_estimate(stc_fname, 'sample') os.environ['SUBJECTS_DIR'] = op.join(data_path, 'subjects') labels1 = _stc_to_label(stc, src='sample', smooth=3) labels2 = _stc_to_label(stc, src=src, smooth=3) assert_equal(len(labels1), len(labels2)) for l1, l2 in zip(labels1, labels2): assert_labels_equal(l1, l2, decimal=4) with pytest.warns(RuntimeWarning, match='have holes'): labels_lh, labels_rh = stc_to_label(stc, src=src, smooth=True, connected=True) pytest.raises(ValueError, stc_to_label, stc, 'sample', smooth=True, connected=True) pytest.raises(RuntimeError, stc_to_label, stc, smooth=True, src=src_bad, connected=True) assert_equal(len(labels_lh), 1) assert_equal(len(labels_rh), 1) # test getting tris tris = labels_lh[0].get_tris(src[0]['use_tris'], vertices=stc.vertices[0]) pytest.raises(ValueError, spatial_tris_adjacency, tris, remap_vertices=False) adjacency = spatial_tris_adjacency(tris, remap_vertices=True) assert (adjacency.shape[0] == len(stc.vertices[0])) # "src" as a subject name pytest.raises(TypeError, stc_to_label, stc, src=1, smooth=False, connected=False, subjects_dir=subjects_dir) pytest.raises(ValueError, stc_to_label, stc, src=SourceSpaces([src[0]]), smooth=False, connected=False, subjects_dir=subjects_dir) pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=False, connected=True, subjects_dir=subjects_dir) pytest.raises(ValueError, stc_to_label, stc, src='sample', smooth=True, connected=False, subjects_dir=subjects_dir) labels_lh, labels_rh = stc_to_label(stc, src='sample', smooth=False, connected=False, subjects_dir=subjects_dir) assert (len(labels_lh) > 1) assert (len(labels_rh) > 1) # with smooth='patch' with pytest.warns(RuntimeWarning, match='have holes'): labels_patch = stc_to_label(stc, src=src, smooth=True) assert len(labels_patch) == len(labels1) for l1, l2 in zip(labels1, labels2): assert_labels_equal(l1, l2, decimal=4) @pytest.mark.slowtest @testing.requires_testing_data def test_morph(): """Test inter-subject label morphing.""" label_orig = read_label(real_label_fname) label_orig.subject = 'sample' # should work for specifying vertices for both hemis, or just the # hemi of the given label vals = list() for grade in [5, [np.arange(10242), np.arange(10242)], np.arange(10242)]: label = label_orig.copy() # this should throw an error because the label has all zero values pytest.raises(ValueError, label.morph, 'sample', 'fsaverage') label.values.fill(1) label = label.morph(None, 'fsaverage', 5, grade, subjects_dir, 1) label = label.morph('fsaverage', 'sample', 5, None, subjects_dir, 2) assert (np.in1d(label_orig.vertices, label.vertices).all()) assert (len(label.vertices) < 3 * len(label_orig.vertices)) vals.append(label.vertices) assert_array_equal(vals[0], vals[1]) # make sure label smoothing can run assert_equal(label.subject, 'sample') verts = [np.arange(10242), np.arange(10242)] for hemi in ['lh', 'rh']: label.hemi = hemi with pytest.warns(None): # morph map maybe missing label.morph(None, 'fsaverage', 5, verts, subjects_dir, 2) pytest.raises(TypeError, label.morph, None, 1, 5, verts, subjects_dir, 2) pytest.raises(TypeError, label.morph, None, 'fsaverage', 5.5, verts, subjects_dir, 2) with pytest.warns(None): # morph map maybe missing label.smooth(subjects_dir=subjects_dir) # make sure this runs @testing.requires_testing_data def test_grow_labels(): """Test generation of circular source labels.""" seeds = [0, 50000] # these were chosen manually in mne_analyze should_be_in = [[49, 227], [51207, 48794]] hemis = [0, 1] names = ['aneurism', 'tumor'] labels = grow_labels('sample', seeds, 3, hemis, subjects_dir, names=names) tgt_names = ['aneurism-lh', 'tumor-rh'] tgt_hemis = ['lh', 'rh'] for label, seed, hemi, sh, name in zip(labels, seeds, tgt_hemis, should_be_in, tgt_names): assert (np.any(label.vertices == seed)) assert (np.all(np.in1d(sh, label.vertices))) assert_equal(label.hemi, hemi) assert_equal(label.name, name) # grow labels with and without overlap seeds = [57532, [58887, 6304]] l01, l02 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir) seeds = [57532, [58887, 6304]] l11, l12 = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir, overlap=False) # test label naming assert_equal(l01.name, 'Label_0-lh') assert_equal(l02.name, 'Label_1-lh') assert_equal(l11.name, 'Label_0-lh') assert_equal(l12.name, 'Label_1-lh') # test color assignment l11_c, l12_c = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir, overlap=False, colors=None) assert_equal(l11_c.color, _n_colors(2)[0]) assert_equal(l12_c.color, _n_colors(2)[1]) lab_colors = np.array([[0, 0, 1, 1], [1, 0, 0, 1]]) l11_c, l12_c = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir, overlap=False, colors=lab_colors) assert_array_equal(l11_c.color, lab_colors[0, :]) assert_array_equal(l12_c.color, lab_colors[1, :]) lab_colors = np.array([.1, .2, .3, .9]) l11_c, l12_c = grow_labels('fsaverage', seeds, 20, [0, 0], subjects_dir, overlap=False, colors=lab_colors) assert_array_equal(l11_c.color, lab_colors) assert_array_equal(l12_c.color, lab_colors) # make sure set 1 does not overlap overlap = np.intersect1d(l11.vertices, l12.vertices, True) assert_array_equal(overlap, []) # make sure both sets cover the same vertices l0 = l01 + l02 l1 = l11 + l12 assert_array_equal(l1.vertices, l0.vertices) @testing.requires_testing_data def test_random_parcellation(): """Test generation of random cortical parcellation.""" hemi = 'both' n_parcel = 50 surface = 'sphere.reg' subject = 'sample_ds' rng = np.random.RandomState(0) # Parcellation labels = random_parcellation(subject, n_parcel, hemi, subjects_dir, surface=surface, random_state=rng) # test number of labels assert_equal(len(labels), n_parcel) if hemi == 'both': hemi = ['lh', 'rh'] hemis = np.atleast_1d(hemi) for hemi in set(hemis): vertices_total = [] for label in labels: if label.hemi == hemi: # test that labels are not empty assert (len(label.vertices) > 0) # vertices of hemi covered by labels vertices_total = np.append(vertices_total, label.vertices) # test that labels don't intersect assert_equal(len(np.unique(vertices_total)), len(vertices_total)) surf_fname = op.join(subjects_dir, subject, 'surf', hemi + '.' + surface) vert, _ = read_surface(surf_fname) # Test that labels cover whole surface assert_array_equal(np.sort(vertices_total), np.arange(len(vert))) @testing.requires_testing_data def test_label_sign_flip(): """Test label sign flip computation.""" src = read_source_spaces(src_fname) label = Label(vertices=src[0]['vertno'][:5], hemi='lh') src[0]['nn'][label.vertices] = np.array( [[1., 0., 0.], [0., 1., 0.], [0, 0, 1.], [1. / np.sqrt(2), 1. / np.sqrt(2), 0.], [1. / np.sqrt(2), 1. / np.sqrt(2), 0.]]) known_flips = np.array([1, 1, np.nan, 1, 1]) idx = [0, 1, 3, 4] # indices that are usable (third row is orthognoal) flip = label_sign_flip(label, src) assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx)) bi_label = label + Label(vertices=src[1]['vertno'][:5], hemi='rh') src[1]['nn'][src[1]['vertno'][:5]] = -src[0]['nn'][label.vertices] flip = label_sign_flip(bi_label, src) known_flips = np.array([1, 1, np.nan, 1, 1, 1, 1, np.nan, 1, 1]) idx = [0, 1, 3, 4, 5, 6, 8, 9] assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), 0.) src[1]['nn'][src[1]['vertno'][:5]] *= -1 flip = label_sign_flip(bi_label, src) assert_array_almost_equal(np.dot(flip[idx], known_flips[idx]), len(idx)) @testing.requires_testing_data def test_label_center_of_mass(): """Test computing the center of mass of a label.""" stc = read_source_estimate(stc_fname) stc.lh_data[:] = 0 vertex_stc = stc.center_of_mass('sample', subjects_dir=subjects_dir)[0] assert_equal(vertex_stc, 124791) label = Label(stc.vertices[1], pos=None, values=stc.rh_data.mean(axis=1), hemi='rh', subject='sample') vertex_label = label.center_of_mass(subjects_dir=subjects_dir) assert_equal(vertex_label, vertex_stc) labels = read_labels_from_annot('sample', parc='aparc.a2009s', subjects_dir=subjects_dir) src = read_source_spaces(src_fname) # Try a couple of random ones, one from left and one from right # Visually verified in about the right place using mne_analyze for label, expected in zip([labels[2], labels[3], labels[-5]], [141162, 145221, 55979]): label.values[:] = -1 pytest.raises(ValueError, label.center_of_mass, subjects_dir=subjects_dir) label.values[:] = 0 pytest.raises(ValueError, label.center_of_mass, subjects_dir=subjects_dir) label.values[:] = 1 assert_equal(label.center_of_mass(subjects_dir=subjects_dir), expected) assert_equal(label.center_of_mass(subjects_dir=subjects_dir, restrict_vertices=label.vertices), expected) # restrict to source space idx = 0 if label.hemi == 'lh' else 1 # this simple nearest version is not equivalent, but is probably # close enough for many labels (including the test ones): pos = label.pos[np.where(label.vertices == expected)[0][0]] pos = (src[idx]['rr'][src[idx]['vertno']] - pos) pos = np.argmin(np.sum(pos * pos, axis=1)) src_expected = src[idx]['vertno'][pos] # see if we actually get the same one src_restrict = np.intersect1d(label.vertices, src[idx]['vertno']) assert_equal(label.center_of_mass(subjects_dir=subjects_dir, restrict_vertices=src_restrict), src_expected) assert_equal(label.center_of_mass(subjects_dir=subjects_dir, restrict_vertices=src), src_expected) # degenerate cases pytest.raises(ValueError, label.center_of_mass, subjects_dir=subjects_dir, restrict_vertices='foo') pytest.raises(TypeError, label.center_of_mass, subjects_dir=subjects_dir, surf=1) pytest.raises(IOError, label.center_of_mass, subjects_dir=subjects_dir, surf='foo') run_tests_if_main() @testing.requires_testing_data def test_select_sources(): """Test the selection of sources for simulation.""" subject = 'sample' label_file = op.join(subjects_dir, subject, 'label', 'aparc', 'temporalpole-rh.label') # Regardless of other parameters, using extent 0 should always yield a # a single source. tp_label = read_label(label_file) tp_label.values[:] = 1 labels = ['lh', tp_label] locations = ['random', 'center'] for label, location in product(labels, locations): label = select_sources( subject, label, location, extent=0, subjects_dir=subjects_dir) assert (len(label.vertices) == 1) # As we increase the extent, the new region should contain the previous # one. label = select_sources(subject, 'lh', 0, extent=0, subjects_dir=subjects_dir) for extent in range(1, 3): new_label = select_sources(subject, 'lh', 0, extent=extent * 2, subjects_dir=subjects_dir) assert (set(new_label.vertices) > set(label.vertices)) assert (new_label.hemi == 'lh') label = new_label # With a large enough extent and not allowing growing outside the label, # every vertex of the label should be in the region. label = select_sources(subject, tp_label, 0, extent=30, grow_outside=False, subjects_dir=subjects_dir) assert (set(label.vertices) == set(tp_label.vertices)) # Without this restriction, we should get new vertices. label = select_sources(subject, tp_label, 0, extent=30, grow_outside=True, subjects_dir=subjects_dir) assert (set(label.vertices) > set(tp_label.vertices)) # Other parameters are taken into account. label = select_sources(subject, tp_label, 0, extent=10, grow_outside=False, subjects_dir=subjects_dir, name='mne') assert (label.name == 'mne') assert (label.hemi == 'rh')
bsd-3-clause
ywcui1990/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_cairo.py
69
16706
""" A Cairo backend for matplotlib Author: Steve Chaplin Cairo is a vector graphics library with cross-device output support. Features of Cairo: * anti-aliasing * alpha channel * saves image files as PNG, PostScript, PDF http://cairographics.org Requires (in order, all available from Cairo website): cairo, pycairo Naming Conventions * classes MixedUpperCase * varables lowerUpper * functions underscore_separated """ from __future__ import division import os, sys, warnings, gzip import numpy as npy def _fn_name(): return sys._getframe(1).f_code.co_name try: import cairo except ImportError: raise ImportError("Cairo backend requires that pycairo is installed.") _version_required = (1,2,0) if cairo.version_info < _version_required: raise ImportError ("Pycairo %d.%d.%d is installed\n" "Pycairo %d.%d.%d or later is required" % (cairo.version_info + _version_required)) backend_version = cairo.version del _version_required from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox, Affine2D from matplotlib.font_manager import ttfFontProperty from matplotlib import rcParams _debug = False #_debug = True # Image::color_conv(format) for draw_image() if sys.byteorder == 'little': BYTE_FORMAT = 0 # BGRA else: BYTE_FORMAT = 1 # ARGB class RendererCairo(RendererBase): fontweights = { 100 : cairo.FONT_WEIGHT_NORMAL, 200 : cairo.FONT_WEIGHT_NORMAL, 300 : cairo.FONT_WEIGHT_NORMAL, 400 : cairo.FONT_WEIGHT_NORMAL, 500 : cairo.FONT_WEIGHT_NORMAL, 600 : cairo.FONT_WEIGHT_BOLD, 700 : cairo.FONT_WEIGHT_BOLD, 800 : cairo.FONT_WEIGHT_BOLD, 900 : cairo.FONT_WEIGHT_BOLD, 'ultralight' : cairo.FONT_WEIGHT_NORMAL, 'light' : cairo.FONT_WEIGHT_NORMAL, 'normal' : cairo.FONT_WEIGHT_NORMAL, 'medium' : cairo.FONT_WEIGHT_NORMAL, 'semibold' : cairo.FONT_WEIGHT_BOLD, 'bold' : cairo.FONT_WEIGHT_BOLD, 'heavy' : cairo.FONT_WEIGHT_BOLD, 'ultrabold' : cairo.FONT_WEIGHT_BOLD, 'black' : cairo.FONT_WEIGHT_BOLD, } fontangles = { 'italic' : cairo.FONT_SLANT_ITALIC, 'normal' : cairo.FONT_SLANT_NORMAL, 'oblique' : cairo.FONT_SLANT_OBLIQUE, } def __init__(self, dpi): """ """ if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self.dpi = dpi self.text_ctx = cairo.Context ( cairo.ImageSurface (cairo.FORMAT_ARGB32,1,1)) self.mathtext_parser = MathTextParser('Cairo') def set_ctx_from_surface (self, surface): self.ctx = cairo.Context (surface) self.ctx.save() # restore, save - when call new_gc() def set_width_height(self, width, height): self.width = width self.height = height self.matrix_flipy = cairo.Matrix (yy=-1, y0=self.height) # use matrix_flipy for ALL rendering? # - problem with text? - will need to switch matrix_flipy off, or do a # font transform? def _fill_and_stroke (self, ctx, fill_c, alpha): if fill_c is not None: ctx.save() if len(fill_c) == 3: ctx.set_source_rgba (fill_c[0], fill_c[1], fill_c[2], alpha) else: ctx.set_source_rgba (fill_c[0], fill_c[1], fill_c[2], alpha*fill_c[3]) ctx.fill_preserve() ctx.restore() ctx.stroke() #@staticmethod def convert_path(ctx, tpath): for points, code in tpath.iter_segments(): if code == Path.MOVETO: ctx.move_to(*points) elif code == Path.LINETO: ctx.line_to(*points) elif code == Path.CURVE3: ctx.curve_to(points[0], points[1], points[0], points[1], points[2], points[3]) elif code == Path.CURVE4: ctx.curve_to(*points) elif code == Path.CLOSEPOLY: ctx.close_path() convert_path = staticmethod(convert_path) def draw_path(self, gc, path, transform, rgbFace=None): if len(path.vertices) > 18980: raise ValueError("The Cairo backend can not draw paths longer than 18980 points.") ctx = gc.ctx transform = transform + \ Affine2D().scale(1.0, -1.0).translate(0, self.height) tpath = transform.transform_path(path) ctx.new_path() self.convert_path(ctx, tpath) self._fill_and_stroke(ctx, rgbFace, gc.get_alpha()) def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): # bbox - not currently used if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) im.flipud_out() rows, cols, buf = im.color_conv (BYTE_FORMAT) surface = cairo.ImageSurface.create_for_data ( buf, cairo.FORMAT_ARGB32, cols, rows, cols*4) # function does not pass a 'gc' so use renderer.ctx ctx = self.ctx y = self.height - y - rows ctx.set_source_surface (surface, x, y) ctx.paint() im.flipud_out() def draw_text(self, gc, x, y, s, prop, angle, ismath=False): # Note: x,y are device/display coords, not user-coords, unlike other # draw_* methods if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: ctx = gc.ctx ctx.new_path() ctx.move_to (x, y) ctx.select_font_face (prop.get_name(), self.fontangles [prop.get_style()], self.fontweights[prop.get_weight()]) size = prop.get_size_in_points() * self.dpi / 72.0 ctx.save() if angle: ctx.rotate (-angle * npy.pi / 180) ctx.set_font_size (size) ctx.show_text (s.encode("utf-8")) ctx.restore() def _draw_mathtext(self, gc, x, y, s, prop, angle): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) ctx = gc.ctx width, height, descent, glyphs, rects = self.mathtext_parser.parse( s, self.dpi, prop) ctx.save() ctx.translate(x, y) if angle: ctx.rotate (-angle * npy.pi / 180) for font, fontsize, s, ox, oy in glyphs: ctx.new_path() ctx.move_to(ox, oy) fontProp = ttfFontProperty(font) ctx.save() ctx.select_font_face (fontProp.name, self.fontangles [fontProp.style], self.fontweights[fontProp.weight]) size = fontsize * self.dpi / 72.0 ctx.set_font_size(size) ctx.show_text(s.encode("utf-8")) ctx.restore() for ox, oy, w, h in rects: ctx.new_path() ctx.rectangle (ox, oy, w, h) ctx.set_source_rgb (0, 0, 0) ctx.fill_preserve() ctx.restore() def flipy(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return True #return False # tried - all draw objects ok except text (and images?) # which comes out mirrored! def get_canvas_width_height(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) if ismath: width, height, descent, fonts, used_characters = self.mathtext_parser.parse( s, self.dpi, prop) return width, height, descent ctx = self.text_ctx ctx.save() ctx.select_font_face (prop.get_name(), self.fontangles [prop.get_style()], self.fontweights[prop.get_weight()]) # Cairo (says it) uses 1/96 inch user space units, ref: cairo_gstate.c # but if /96.0 is used the font is too small size = prop.get_size_in_points() * self.dpi / 72.0 # problem - scale remembers last setting and font can become # enormous causing program to crash # save/restore prevents the problem ctx.set_font_size (size) y_bearing, w, h = ctx.text_extents (s)[1:4] ctx.restore() return w, h, h + y_bearing def new_gc(self): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self.ctx.restore() # matches save() in set_ctx_from_surface() self.ctx.save() return GraphicsContextCairo (renderer=self) def points_to_pixels(self, points): if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) return points/72.0 * self.dpi class GraphicsContextCairo(GraphicsContextBase): _joind = { 'bevel' : cairo.LINE_JOIN_BEVEL, 'miter' : cairo.LINE_JOIN_MITER, 'round' : cairo.LINE_JOIN_ROUND, } _capd = { 'butt' : cairo.LINE_CAP_BUTT, 'projecting' : cairo.LINE_CAP_SQUARE, 'round' : cairo.LINE_CAP_ROUND, } def __init__(self, renderer): GraphicsContextBase.__init__(self) self.renderer = renderer self.ctx = renderer.ctx def set_alpha(self, alpha): self._alpha = alpha rgb = self._rgb self.ctx.set_source_rgba (rgb[0], rgb[1], rgb[2], alpha) #def set_antialiased(self, b): # enable/disable anti-aliasing is not (yet) supported by Cairo def set_capstyle(self, cs): if cs in ('butt', 'round', 'projecting'): self._capstyle = cs self.ctx.set_line_cap (self._capd[cs]) else: raise ValueError('Unrecognized cap style. Found %s' % cs) def set_clip_rectangle(self, rectangle): self._cliprect = rectangle if rectangle is None: return x,y,w,h = rectangle.bounds # pixel-aligned clip-regions are faster x,y,w,h = round(x), round(y), round(w), round(h) ctx = self.ctx ctx.new_path() ctx.rectangle (x, self.renderer.height - h - y, w, h) ctx.clip () # Alternative: just set _cliprect here and actually set cairo clip rect # in fill_and_stroke() inside ctx.save() ... ctx.restore() def set_clip_path(self, path): if path is not None: tpath, affine = path.get_transformed_path_and_affine() ctx = self.ctx ctx.new_path() affine = affine + Affine2D().scale(1.0, -1.0).translate(0.0, self.renderer.height) tpath = affine.transform_path(tpath) RendererCairo.convert_path(ctx, tpath) ctx.clip() def set_dashes(self, offset, dashes): self._dashes = offset, dashes if dashes == None: self.ctx.set_dash([], 0) # switch dashes off else: self.ctx.set_dash ( self.renderer.points_to_pixels (npy.asarray(dashes)), offset) def set_foreground(self, fg, isRGB=None): GraphicsContextBase.set_foreground(self, fg, isRGB) if len(self._rgb) == 3: self.ctx.set_source_rgb(*self._rgb) else: self.ctx.set_source_rgba(*self._rgb) def set_graylevel(self, frac): GraphicsContextBase.set_graylevel(self, frac) if len(self._rgb) == 3: self.ctx.set_source_rgb(*self._rgb) else: self.ctx.set_source_rgba(*self._rgb) def set_joinstyle(self, js): if js in ('miter', 'round', 'bevel'): self._joinstyle = js self.ctx.set_line_join(self._joind[js]) else: raise ValueError('Unrecognized join style. Found %s' % js) def set_linewidth(self, w): self._linewidth = w self.ctx.set_line_width (self.renderer.points_to_pixels(w)) def new_figure_manager(num, *args, **kwargs): # called by backends/__init__.py """ Create a new figure manager instance """ if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasCairo(thisFig) manager = FigureManagerBase(canvas, num) return manager class FigureCanvasCairo (FigureCanvasBase): def print_png(self, fobj, *args, **kwargs): width, height = self.get_width_height() renderer = RendererCairo (self.figure.dpi) renderer.set_width_height (width, height) surface = cairo.ImageSurface (cairo.FORMAT_ARGB32, width, height) renderer.set_ctx_from_surface (surface) self.figure.draw (renderer) surface.write_to_png (fobj) def print_pdf(self, fobj, *args, **kwargs): return self._save(fobj, 'pdf', *args, **kwargs) def print_ps(self, fobj, *args, **kwargs): return self._save(fobj, 'ps', *args, **kwargs) def print_svg(self, fobj, *args, **kwargs): return self._save(fobj, 'svg', *args, **kwargs) def print_svgz(self, fobj, *args, **kwargs): return self._save(fobj, 'svgz', *args, **kwargs) def get_default_filetype(self): return rcParams['cairo.format'] def _save (self, fo, format, **kwargs): # save PDF/PS/SVG orientation = kwargs.get('orientation', 'portrait') dpi = 72 self.figure.dpi = dpi w_in, h_in = self.figure.get_size_inches() width_in_points, height_in_points = w_in * dpi, h_in * dpi if orientation == 'landscape': width_in_points, height_in_points = (height_in_points, width_in_points) if format == 'ps': if not cairo.HAS_PS_SURFACE: raise RuntimeError ('cairo has not been compiled with PS ' 'support enabled') surface = cairo.PSSurface (fo, width_in_points, height_in_points) elif format == 'pdf': if not cairo.HAS_PDF_SURFACE: raise RuntimeError ('cairo has not been compiled with PDF ' 'support enabled') surface = cairo.PDFSurface (fo, width_in_points, height_in_points) elif format in ('svg', 'svgz'): if not cairo.HAS_SVG_SURFACE: raise RuntimeError ('cairo has not been compiled with SVG ' 'support enabled') if format == 'svgz': filename = fo if is_string_like(fo): fo = open(fo, 'wb') fo = gzip.GzipFile(None, 'wb', fileobj=fo) surface = cairo.SVGSurface (fo, width_in_points, height_in_points) else: warnings.warn ("unknown format: %s" % format) return # surface.set_dpi() can be used renderer = RendererCairo (self.figure.dpi) renderer.set_width_height (width_in_points, height_in_points) renderer.set_ctx_from_surface (surface) ctx = renderer.ctx if orientation == 'landscape': ctx.rotate (npy.pi/2) ctx.translate (0, -height_in_points) # cairo/src/cairo_ps_surface.c # '%%Orientation: Portrait' is always written to the file header # '%%Orientation: Landscape' would possibly cause problems # since some printers would rotate again ? # TODO: # add portrait/landscape checkbox to FileChooser self.figure.draw (renderer) show_fig_border = False # for testing figure orientation and scaling if show_fig_border: ctx.new_path() ctx.rectangle(0, 0, width_in_points, height_in_points) ctx.set_line_width(4.0) ctx.set_source_rgb(1,0,0) ctx.stroke() ctx.move_to(30,30) ctx.select_font_face ('sans-serif') ctx.set_font_size(20) ctx.show_text('Origin corner') ctx.show_page() surface.finish()
agpl-3.0
hlin117/scikit-learn
sklearn/tests/test_dummy.py
186
17778
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
bsd-3-clause
xuwei401/cuda-convnet2
shownet.py
180
18206
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from tarfile import TarFile, TarInfo from matplotlib import pylab as pl import numpy as n import getopt as opt from python_util.util import * from math import sqrt, ceil, floor from python_util.gpumodel import IGPUModel import random as r import numpy.random as nr from convnet import ConvNet from python_util.options import * from PIL import Image from time import sleep class ShowNetError(Exception): pass class ShowConvNet(ConvNet): def __init__(self, op, load_dic): ConvNet.__init__(self, op, load_dic) def init_data_providers(self): self.need_gpu = self.op.get_value('show_preds') class Dummy: def advance_batch(self): pass if self.need_gpu: ConvNet.init_data_providers(self) else: self.train_data_provider = self.test_data_provider = Dummy() def import_model(self): if self.need_gpu: ConvNet.import_model(self) def init_model_state(self): if self.op.get_value('show_preds'): self.softmax_name = self.op.get_value('show_preds') def init_model_lib(self): if self.need_gpu: ConvNet.init_model_lib(self) def plot_cost(self): if self.show_cost not in self.train_outputs[0][0]: raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost) # print self.test_outputs train_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.train_outputs] test_errors = [eval(self.layers[self.show_cost]['outputFilter'])(o[0][self.show_cost], o[1])[self.cost_idx] for o in self.test_outputs] if self.smooth_test_errors: test_errors = [sum(test_errors[max(0,i-len(self.test_batch_range)):i])/(i-max(0,i-len(self.test_batch_range))) for i in xrange(1,len(test_errors)+1)] numbatches = len(self.train_batch_range) test_errors = n.row_stack(test_errors) test_errors = n.tile(test_errors, (1, self.testing_freq)) test_errors = list(test_errors.flatten()) test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors)) test_errors = test_errors[:len(train_errors)] numepochs = len(train_errors) / float(numbatches) pl.figure(1) x = range(0, len(train_errors)) pl.plot(x, train_errors, 'k-', label='Training set') pl.plot(x, test_errors, 'r-', label='Test set') pl.legend() ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches) epoch_label_gran = int(ceil(numepochs / 20.)) epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) if numepochs >= 10 else epoch_label_gran ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs)) pl.xticks(ticklocs, ticklabels) pl.xlabel('Epoch') # pl.ylabel(self.show_cost) pl.title('%s[%d]' % (self.show_cost, self.cost_idx)) # print "plotted cost" def make_filter_fig(self, filters, filter_start, fignum, _title, num_filters, combine_chans, FILTERS_PER_ROW=16): MAX_ROWS = 24 MAX_FILTERS = FILTERS_PER_ROW * MAX_ROWS num_colors = filters.shape[0] f_per_row = int(ceil(FILTERS_PER_ROW / float(1 if combine_chans else num_colors))) filter_end = min(filter_start+MAX_FILTERS, num_filters) filter_rows = int(ceil(float(filter_end - filter_start) / f_per_row)) filter_pixels = filters.shape[1] filter_size = int(sqrt(filters.shape[1])) fig = pl.figure(fignum) fig.text(.5, .95, '%s %dx%d filters %d-%d' % (_title, filter_size, filter_size, filter_start, filter_end-1), horizontalalignment='center') num_filters = filter_end - filter_start if not combine_chans: bigpic = n.zeros((filter_size * filter_rows + filter_rows + 1, filter_size*num_colors * f_per_row + f_per_row + 1), dtype=n.single) else: bigpic = n.zeros((3, filter_size * filter_rows + filter_rows + 1, filter_size * f_per_row + f_per_row + 1), dtype=n.single) for m in xrange(filter_start,filter_end ): filter = filters[:,:,m] y, x = (m - filter_start) / f_per_row, (m - filter_start) % f_per_row if not combine_chans: for c in xrange(num_colors): filter_pic = filter[c,:].reshape((filter_size,filter_size)) bigpic[1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size*num_colors) * x + filter_size*c:1 + (1 + filter_size*num_colors) * x + filter_size*(c+1)] = filter_pic else: filter_pic = filter.reshape((3, filter_size,filter_size)) bigpic[:, 1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size, 1 + (1 + filter_size) * x:1 + (1 + filter_size) * x + filter_size] = filter_pic pl.xticks([]) pl.yticks([]) if not combine_chans: pl.imshow(bigpic, cmap=pl.cm.gray, interpolation='nearest') else: bigpic = bigpic.swapaxes(0,2).swapaxes(0,1) pl.imshow(bigpic, interpolation='nearest') def plot_filters(self): FILTERS_PER_ROW = 16 filter_start = 0 # First filter to show if self.show_filters not in self.layers: raise ShowNetError("Layer with name '%s' not defined by given convnet." % self.show_filters) layer = self.layers[self.show_filters] filters = layer['weights'][self.input_idx] # filters = filters - filters.min() # filters = filters / filters.max() if layer['type'] == 'fc': # Fully-connected layer num_filters = layer['outputs'] channels = self.channels filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) elif layer['type'] in ('conv', 'local'): # Conv layer num_filters = layer['filters'] channels = layer['filterChannels'][self.input_idx] if layer['type'] == 'local': filters = filters.reshape((layer['modules'], channels, layer['filterPixels'][self.input_idx], num_filters)) filters = filters[:, :, :, self.local_plane] # first map for now (modules, channels, pixels) filters = filters.swapaxes(0,2).swapaxes(0,1) num_filters = layer['modules'] # filters = filters.swapaxes(0,1).reshape(channels * layer['filterPixels'][self.input_idx], num_filters * layer['modules']) # num_filters *= layer['modules'] FILTERS_PER_ROW = layer['modulesX'] else: filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1]) # Convert YUV filters to RGB if self.yuv_to_rgb and channels == 3: R = filters[0,:,:] + 1.28033 * filters[2,:,:] G = filters[0,:,:] + -0.21482 * filters[1,:,:] + -0.38059 * filters[2,:,:] B = filters[0,:,:] + 2.12798 * filters[1,:,:] filters[0,:,:], filters[1,:,:], filters[2,:,:] = R, G, B combine_chans = not self.no_rgb and channels == 3 # Make sure you don't modify the backing array itself here -- so no -= or /= if self.norm_filters: #print filters.shape filters = filters - n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).mean(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1)) filters = filters / n.sqrt(n.tile(filters.reshape((filters.shape[0] * filters.shape[1], filters.shape[2])).var(axis=0).reshape(1, 1, filters.shape[2]), (filters.shape[0], filters.shape[1], 1))) #filters = filters - n.tile(filters.min(axis=0).min(axis=0), (3, filters.shape[1], 1)) #filters = filters / n.tile(filters.max(axis=0).max(axis=0), (3, filters.shape[1], 1)) #else: filters = filters - filters.min() filters = filters / filters.max() self.make_filter_fig(filters, filter_start, 2, 'Layer %s' % self.show_filters, num_filters, combine_chans, FILTERS_PER_ROW=FILTERS_PER_ROW) def plot_predictions(self): epoch, batch, data = self.get_next_batch(train=False) # get a test batch num_classes = self.test_data_provider.get_num_classes() NUM_ROWS = 2 NUM_COLS = 4 NUM_IMGS = NUM_ROWS * NUM_COLS if not self.save_preds else data[0].shape[1] NUM_TOP_CLASSES = min(num_classes, 5) # show this many top labels NUM_OUTPUTS = self.model_state['layers'][self.softmax_name]['outputs'] PRED_IDX = 1 label_names = [lab.split(',')[0] for lab in self.test_data_provider.batch_meta['label_names']] if self.only_errors: preds = n.zeros((data[0].shape[1], NUM_OUTPUTS), dtype=n.single) else: preds = n.zeros((NUM_IMGS, NUM_OUTPUTS), dtype=n.single) #rand_idx = nr.permutation(n.r_[n.arange(1), n.where(data[1] == 552)[1], n.where(data[1] == 795)[1], n.where(data[1] == 449)[1], n.where(data[1] == 274)[1]])[:NUM_IMGS] rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS) if NUM_IMGS < data[0].shape[1]: data = [n.require(d[:,rand_idx], requirements='C') for d in data] # data += [preds] # Run the model print [d.shape for d in data], preds.shape self.libmodel.startFeatureWriter(data, [preds], [self.softmax_name]) IGPUModel.finish_batch(self) print preds data[0] = self.test_data_provider.get_plottable_data(data[0]) if self.save_preds: if not gfile.Exists(self.save_preds): gfile.MakeDirs(self.save_preds) preds_thresh = preds > 0.5 # Binarize predictions data[0] = data[0] * 255.0 data[0][data[0]<0] = 0 data[0][data[0]>255] = 255 data[0] = n.require(data[0], dtype=n.uint8) dir_name = '%s_predictions_batch_%d' % (os.path.basename(self.save_file), batch) tar_name = os.path.join(self.save_preds, '%s.tar' % dir_name) tfo = gfile.GFile(tar_name, "w") tf = TarFile(fileobj=tfo, mode='w') for img_idx in xrange(NUM_IMGS): img = data[0][img_idx,:,:,:] imsave = Image.fromarray(img) prefix = "CORRECT" if data[1][0,img_idx] == preds_thresh[img_idx,PRED_IDX] else "FALSE_POS" if preds_thresh[img_idx,PRED_IDX] == 1 else "FALSE_NEG" file_name = "%s_%.2f_%d_%05d_%d.png" % (prefix, preds[img_idx,PRED_IDX], batch, img_idx, data[1][0,img_idx]) # gf = gfile.GFile(file_name, "w") file_string = StringIO() imsave.save(file_string, "PNG") tarinf = TarInfo(os.path.join(dir_name, file_name)) tarinf.size = file_string.tell() file_string.seek(0) tf.addfile(tarinf, file_string) tf.close() tfo.close() # gf.close() print "Wrote %d prediction PNGs to %s" % (preds.shape[0], tar_name) else: fig = pl.figure(3, figsize=(12,9)) fig.text(.4, .95, '%s test samples' % ('Mistaken' if self.only_errors else 'Random')) if self.only_errors: # what the net got wrong if NUM_OUTPUTS > 1: err_idx = [i for i,p in enumerate(preds.argmax(axis=1)) if p not in n.where(data[2][:,i] > 0)[0]] else: err_idx = n.where(data[1][0,:] != preds[:,0].T)[0] print err_idx err_idx = r.sample(err_idx, min(len(err_idx), NUM_IMGS)) data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:] import matplotlib.gridspec as gridspec import matplotlib.colors as colors cconv = colors.ColorConverter() gs = gridspec.GridSpec(NUM_ROWS*2, NUM_COLS, width_ratios=[1]*NUM_COLS, height_ratios=[2,1]*NUM_ROWS ) #print data[1] for row in xrange(NUM_ROWS): for col in xrange(NUM_COLS): img_idx = row * NUM_COLS + col if data[0].shape[0] <= img_idx: break pl.subplot(gs[(row * 2) * NUM_COLS + col]) #pl.subplot(NUM_ROWS*2, NUM_COLS, row * 2 * NUM_COLS + col + 1) pl.xticks([]) pl.yticks([]) img = data[0][img_idx,:,:,:] pl.imshow(img, interpolation='lanczos') show_title = data[1].shape[0] == 1 true_label = [int(data[1][0,img_idx])] if show_title else n.where(data[1][:,img_idx]==1)[0] #print true_label #print preds[img_idx,:].shape #print preds[img_idx,:].max() true_label_names = [label_names[i] for i in true_label] img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:] #print img_labels axes = pl.subplot(gs[(row * 2 + 1) * NUM_COLS + col]) height = 0.5 ylocs = n.array(range(NUM_TOP_CLASSES))*height pl.barh(ylocs, [l[0] for l in img_labels], height=height, \ color=['#ffaaaa' if l[1] in true_label_names else '#aaaaff' for l in img_labels]) #pl.title(", ".join(true_labels)) if show_title: pl.title(", ".join(true_label_names), fontsize=15, fontweight='bold') else: print true_label_names pl.yticks(ylocs + height/2, [l[1] for l in img_labels], x=1, backgroundcolor=cconv.to_rgba('0.65', alpha=0.5), weight='bold') for line in enumerate(axes.get_yticklines()): line[1].set_visible(False) #pl.xticks([width], ['']) #pl.yticks([]) pl.xticks([]) pl.ylim(0, ylocs[-1] + height) pl.xlim(0, 1) def start(self): self.op.print_values() # print self.show_cost if self.show_cost: self.plot_cost() if self.show_filters: self.plot_filters() if self.show_preds: self.plot_predictions() if pl: pl.show() sys.exit(0) @classmethod def get_options_parser(cls): op = ConvNet.get_options_parser() for option in list(op.options): if option not in ('gpu', 'load_file', 'inner_size', 'train_batch_range', 'test_batch_range', 'multiview_test', 'data_path', 'pca_noise', 'scalar_mean'): op.delete_option(option) op.add_option("show-cost", "show_cost", StringOptionParser, "Show specified objective function", default="") op.add_option("show-filters", "show_filters", StringOptionParser, "Show learned filters in specified layer", default="") op.add_option("norm-filters", "norm_filters", BooleanOptionParser, "Individually normalize filters shown with --show-filters", default=0) op.add_option("input-idx", "input_idx", IntegerOptionParser, "Input index for layer given to --show-filters", default=0) op.add_option("cost-idx", "cost_idx", IntegerOptionParser, "Cost function return value index for --show-cost", default=0) op.add_option("no-rgb", "no_rgb", BooleanOptionParser, "Don't combine filter channels into RGB in layer given to --show-filters", default=False) op.add_option("yuv-to-rgb", "yuv_to_rgb", BooleanOptionParser, "Convert RGB filters to YUV in layer given to --show-filters", default=False) op.add_option("channels", "channels", IntegerOptionParser, "Number of channels in layer given to --show-filters (fully-connected layers only)", default=0) op.add_option("show-preds", "show_preds", StringOptionParser, "Show predictions made by given softmax on test set", default="") op.add_option("save-preds", "save_preds", StringOptionParser, "Save predictions to given path instead of showing them", default="") op.add_option("only-errors", "only_errors", BooleanOptionParser, "Show only mistaken predictions (to be used with --show-preds)", default=False, requires=['show_preds']) op.add_option("local-plane", "local_plane", IntegerOptionParser, "Local plane to show", default=0) op.add_option("smooth-test-errors", "smooth_test_errors", BooleanOptionParser, "Use running average for test error plot?", default=1) op.options['load_file'].default = None return op if __name__ == "__main__": #nr.seed(6) try: op = ShowConvNet.get_options_parser() op, load_dic = IGPUModel.parse_options(op) model = ShowConvNet(op, load_dic) model.start() except (UnpickleError, ShowNetError, opt.GetoptError), e: print "----------------" print "Error:" print e
apache-2.0
amarquand/nispat
nispat/utils.py
1
26418
from __future__ import print_function import os import numpy as np from scipy import stats from subprocess import call from scipy.stats import genextreme, norm from six import with_metaclass from abc import ABCMeta, abstractmethod import pickle import matplotlib.pyplot as plt import pandas as pd import bspline from bspline import splinelab from sklearn.datasets import make_regression import pymc3 as pm # ----------------- # Utility functions # ----------------- def create_poly_basis(X, dimpoly): """ compute a polynomial basis expansion of the specified order""" if len(X.shape) == 1: X = X[:, np.newaxis] D = X.shape[1] Phi = np.zeros((X.shape[0], D*dimpoly)) colid = np.arange(0, D) for d in range(1, dimpoly+1): Phi[:, colid] = X ** d colid += D return Phi def create_bspline_basis(xmin, xmax, p = 3, nknots = 5): """ compute a Bspline basis set where: :param p: order of spline (3 = cubic) :param nknots: number of knots (endpoints only counted once) """ knots = np.linspace(xmin, xmax, nknots) k = splinelab.augknt(knots, p) # pad the knot vector B = bspline.Bspline(k, p) return B def squared_dist(x, z=None): """ compute sum((x-z) ** 2) for all vectors in a 2d array""" # do some basic checks if z is None: z = x if len(x.shape) == 1: x = x[:, np.newaxis] if len(z.shape) == 1: z = z[:, np.newaxis] nx, dx = x.shape nz, dz = z.shape if dx != dz: raise ValueError(""" Cannot compute distance: vectors have different length""") # mean centre for numerical stability m = np.mean(np.vstack((np.mean(x, axis=0), np.mean(z, axis=0))), axis=0) x = x - m z = z - m xx = np.tile(np.sum((x*x), axis=1)[:, np.newaxis], (1, nz)) zz = np.tile(np.sum((z*z), axis=1), (nx, 1)) dist = (xx - 2*x.dot(z.T) + zz) return dist def compute_pearsonr(A, B): """ Manually computes the Pearson correlation between two matrices. Basic usage:: compute_pearsonr(A, B) where :param A: an N * M data array :param cov: an N * M array :returns Rho: N dimensional vector of correlation coefficients :returns ys2: N dimensional vector of p-values Notes:: This function is useful when M is large and only the diagonal entries of the resulting correlation matrix are of interest. This function does not compute the full correlation matrix as an intermediate step""" # N = A.shape[1] N = A.shape[0] # first mean centre Am = A - np.mean(A, axis=0) Bm = B - np.mean(B, axis=0) # then normalize An = Am / np.sqrt(np.sum(Am**2, axis=0)) Bn = Bm / np.sqrt(np.sum(Bm**2, axis=0)) del(Am, Bm) Rho = np.sum(An * Bn, axis=0) del(An, Bn) # Fisher r-to-z Zr = (np.arctanh(Rho) - np.arctanh(0)) * np.sqrt(N - 3) N = stats.norm() pRho = 2*N.cdf(-np.abs(Zr)) # pRho = 1-N.cdf(Zr) return Rho, pRho def explained_var(ytrue, ypred): """ Computes the explained variance of predicted values. Basic usage:: exp_var = explained_var(ytrue, ypred) where :ytrue: n*p matrix of true values where n is the number of samples and p is the number of features. :ypred: n*p matrix of predicted values where n is the number of samples and p is the number of features. :returns exp_var: p dimentional vector of explained variances for each feature. """ exp_var = 1 - (ytrue - ypred).var(axis = 0) / ytrue.var(axis = 0) return exp_var def compute_MSLL(ytrue, ypred, ypred_var, train_mean = None, train_var = None): """ Computes the MSLL or MLL (not standardized) if 'train_mean' and 'train_var' are None. Basic usage:: MSLL = compute_MSLL(ytrue, ypred, ytrue_sig, noise_variance, train_mean, train_var) where :ytrue : n*p matrix of true values where n is the number of samples and p is the number of features. :ypred : n*p matrix of predicted values where n is the number of samples and p is the number of features. :ypred_var : n*p matrix of summed noise variances and prediction variances where n is the number of samples and p is the number of features. :train_mean : p dimensional vector of mean values of the training data for each feature. :train_var : p dimensional vector of covariances of the training data for each feature. :returns loss : p dimensional vector of MSLL or MLL for each feature. """ if train_mean is not None and train_var is not None: # make sure y_train_mean and y_train_sig have right dimensions (subjects x voxels): Y_train_mean = np.repeat(train_mean, ytrue.shape[0], axis = 0) Y_train_sig = np.repeat(train_var, ytrue.shape[0], axis = 0) # compute MSLL: loss = np.mean(0.5 * np.log(2 * np.pi * ypred_var) + (ytrue - ypred)**2 / (2 * ypred_var) - 0.5 * np.log(2 * np.pi * Y_train_sig) - (ytrue - Y_train_mean)**2 / (2 * Y_train_sig), axis = 0) else: # compute MLL: loss = np.mean(0.5 * np.log(2 * np.pi * ypred_var) + (ytrue - ypred)**2 / (2 * ypred_var), axis = 0) return loss class WarpBase(with_metaclass(ABCMeta)): """ Base class for likelihood warping following: Rios and Torab (2019) Compositionally-warped Gaussian processes https://www.sciencedirect.com/science/article/pii/S0893608019301856 All Warps must define the following methods:: Warp.get_n_params() - return number of parameters Warp.f() - warping function (Non-Gaussian field -> Gaussian) Warp.invf() - inverse warp Warp.df() - derivatives Warp.warp_predictions() - compute predictive distribution """ def __init__(self): self.n_params = np.nan def get_n_params(self): """ Report the number of parameters required """ assert not np.isnan(self.n_params), \ "Warp function not initialised" return self.n_params def warp_predictions(self, mu, s2, param, percentiles=[0.025, 0.975]): """ Compute the warped predictions from a gaussian predictive distribution, specifed by a mean (mu) and variance (s2) :param mu: Gassian predictive mean :param s2: Predictive variance :param param: warping parameters :param percentiles: Desired percentiles of the warped likelihood :returns: * median - median of the predictive distribution * pred_interval - predictive interval(s) """ # Compute percentiles of a standard Gaussian N = norm Z = N.ppf(percentiles) # find the median (using mu = median) median = self.invf(mu, param) # compute the predictive intervals (non-stationary) pred_interval = np.zeros((len(mu), len(Z))) for i, z in enumerate(Z): pred_interval[:,i] = self.invf(mu + np.sqrt(s2)*z, param) return median, pred_interval @abstractmethod def f(self, x, param): """ Evaluate the warping function (mapping non-Gaussian respone variables to Gaussian variables)""" @abstractmethod def invf(self, y, param): """ Evaluate the warping function (mapping Gaussian latent variables to non-Gaussian response variables) """ @abstractmethod def df(self, x, param): """ Return the derivative of the warp, dw(x)/dx """ class WarpAffine(WarpBase): """ Affine warp y = a + b*x """ def __init__(self): self.n_params = 2 def _get_params(self, param): if len(param) != self.n_params: raise(ValueError, 'number of parameters must be ' + str(self.n_params)) return param[0], param[1] def f(self, x, params): a, b = self._get_params(params) y = a + b*x return y def invf(self, y, params): a, b = self._get_params(params) x = (y - a) / b return x def df(self, x, params): a, b = self._get_params(params) df = np.ones(x.shape)*b return df class WarpBoxCox(WarpBase): """ Box cox transform having a single parameter (lambda), i.e. y = (sign(x) * abs(x) ** lamda - 1) / lambda This follows the generalization in Bicken and Doksum (1981) JASA 76 and allows x to assume negative values. """ def __init__(self): self.n_params = 1 def _get_params(self, param): return np.exp(param) def f(self, x, params): lam = self._get_params(params) if lam == 0: y = np.log(x) else: y = (np.sign(x) * np.abs(x) ** lam - 1) / lam return y def invf(self, y, params): lam = self._get_params(params) if lam == 0: x = np.exp(y) else: x = np.sign(lam * y + 1) * np.abs(lam * y + 1) ** (1 / lam) return x def df(self, x, params): lam = self._get_params(params) dx = np.abs(x) ** (lam - 1) return dx class WarpSinArcsinh(WarpBase): """ Sin-hyperbolic arcsin warp having two parameters (a, b) and defined by y = sinh(b * arcsinh(x) - a) see Jones and Pewsey A (2009) Biometrika, 96 (4) (2009) """ def __init__(self): self.n_params = 2 def _get_params(self, param): if len(param) != self.n_params: raise(ValueError, 'number of parameters must be ' + str(self.n_params)) return param[0], param[1] def f(self, x, params): a, b = self._get_params(params) y = np.sinh(b * np.arcsinh(x) - a) return y def invf(self, y, params): a, b = self._get_params(params) x = np.sinh((np.arcsinh(y)+a)/b) return x def df(self, x, params): a, b = self._get_params(params) dx = (b *np.cosh(b * np.arcsinh(x) - a))/np.sqrt(1 + x ** 2) return dx class WarpCompose(WarpBase): """ Composition of warps. These are passed in as an array and intialised automatically. For example:: W = WarpCompose(('WarpBoxCox', 'WarpAffine')) where ell_i are lengthscale parameters and sf2 is the signal variance """ def __init__(self, warpnames=None): if warpnames is None: raise ValueError("A list of warp functions is required") self.warps = [] self.n_params = 0 for wname in warpnames: warp = eval(wname + '()') self.n_params += warp.get_n_params() self.warps.append(warp) def f(self, x, theta): theta_offset = 0 for ci, warp in enumerate(self.warps): n_params_c = warp.get_n_params() theta_c = [theta[c] for c in range(theta_offset, theta_offset + n_params_c)] theta_offset += n_params_c if ci == 0: fw = warp.f(x, theta_c) else: fw = warp.f(fw, theta_c) return fw def invf(self, x, theta): theta_offset = 0 for ci, warp in enumerate(self.warps): n_params_c = warp.get_n_params() theta_c = [theta[c] for c in range(theta_offset, theta_offset + n_params_c)] theta_offset += n_params_c if ci == 0: finvw = warp.invf(x, theta_c) else: finvw = warp.invf(finvw, theta_c) return finvw def df(self, x, theta): theta_offset = 0 for ci, warp in enumerate(self.warps): n_params_c = warp.get_n_params() theta_c = [theta[c] for c in range(theta_offset, theta_offset + n_params_c)] theta_offset += n_params_c if ci == 0: dfw = warp.df(x, theta_c) else: dfw = warp.df(dfw, theta_c) return dfw # ----------------------- # Functions for inference # ----------------------- class CustomCV: """ Custom cross-validation approach. This function does not do much, it merely provides a wrapper designed to be compatible with scikit-learn (e.g. sklearn.model_selection...) :param train: a list of indices of training splits (each itself a list) :param test: a list of indices of test splits (each itself a list) :returns tr: Indices for training set :returns te: Indices for test set """ def __init__(self, train, test, X=None, y=None): self.train = train self.test = test self.n_splits = len(train) if X is not None: self.N = X.shape[0] else: self.N = None def split(self, X, y=None): if self.N is None: self.N = X.shape[0] for i in range(0, self.n_splits): tr = self.train[i] te = self.test[i] yield tr, te # ----------------------- # Functions for inference # ----------------------- def bashwrap(processing_dir, python_path, script_command, job_name, bash_environment=None): """ This function wraps normative modelling into a bash script to run it on a torque cluster system. ** Input: * processing_dir -> Full path to the processing dir * python_path -> Full path to the python distribution * command to execute -> python command to execute * job_name -> Name for the bash script that is the output of this function * covfile_path -> Full path to a .txt file that contains all covariats (subjects x covariates) for the responsefile * respfile_path -> Full path to a .txt that contains all features (subjects x features) * cv_folds -> Number of cross validations * testcovfile_path -> Full path to a .txt file that contains all covariats (subjects x covariates) for the testresponse file * testrespfile_path -> Full path to a .txt file that contains all test features * bash_environment -> A file containing the necessary commands for your bash environment to work ** Output: * A bash.sh file containing the commands for normative modelling saved to the processing directory witten by Thomas Wolfers """ # change to processing dir os.chdir(processing_dir) output_changedir = ['cd ' + processing_dir + '\n'] # sets bash environment if necessary if bash_environment is not None: bash_environment = [bash_environment] print("""Your own environment requires in any case: #!/bin/bash\n export and optionally OMP_NUM_THREADS=1\n""") else: bash_lines = '#!/bin/bash\n\n' bash_cores = 'export OMP_NUM_THREADS=1\n' bash_environment = [bash_lines + bash_cores] command = [python_path + ' ' + script_command + '\n'] # writes bash file into processing dir bash_file_name = os.path.join(processing_dir, job_name + '.sh') with open(bash_file_name, 'w') as bash_file: bash_file.writelines(bash_environment + output_changedir + command) # changes permissoins for bash.sh file os.chmod(bash_file_name, 0o700) return bash_file_name def qsub(job_path, memory, duration, logdir=None): """ This function submits a job.sh scipt to the torque custer using the qsub command. ** Input: * job_path -> Full path to the job.sh file * memory -> Memory requirements written as string for example 4gb or 500mb * duration -> The approximate duration of the job, a string with HH:MM:SS for example 01:01:01 ** Output: * Submission of the job to the (torque) cluster witten by Thomas Wolfers """ if logdir is None: logdir = os.path.expanduser('~') # created qsub command qsub_call = ['echo ' + job_path + ' | qsub -N ' + job_path + ' -l ' + 'mem=' + memory + ',walltime=' + duration + ' -e ' + logdir + ' -o ' + logdir] # submits job to cluster call(qsub_call, shell=True) def extreme_value_prob_fit(NPM, perc): n = NPM.shape[0] t = NPM.shape[1] n_perc = int(round(t * perc)) m = np.zeros(n) for i in range(n): temp = np.abs(NPM[i, :]) temp = np.sort(temp) temp = temp[t - n_perc:] temp = temp[0:int(np.floor(0.90*temp.shape[0]))] m[i] = np.mean(temp) params = genextreme.fit(m) return params def extreme_value_prob(params, NPM, perc): n = NPM.shape[0] t = NPM.shape[1] n_perc = int(round(t * perc)) m = np.zeros(n) for i in range(n): temp = np.abs(NPM[i, :]) temp = np.sort(temp) temp = temp[t - n_perc:] temp = temp[0:int(np.floor(0.90*temp.shape[0]))] m[i] = np.mean(temp) probs = genextreme.cdf(m,*params) return probs def ravel_2D(a): s = a.shape return np.reshape(a,[s[0], np.prod(s[1:])]) def unravel_2D(a, s): return np.reshape(a,s) def threshold_NPM(NPMs, fdr_thr=0.05, npm_thr=0.1): """ Compute voxels with significant NPMs. """ p_values = stats.norm.cdf(-np.abs(NPMs)) results = np.zeros(NPMs.shape) masks = np.full(NPMs.shape, False, dtype=bool) for i in range(p_values.shape[0]): masks[i,:] = FDR(p_values[i,:], fdr_thr) results[i,] = NPMs[i,:] * masks[i,:].astype(np.int) m = np.sum(masks,axis=0)/masks.shape[0] > npm_thr #m = np.any(masks,axis=0) return results, masks, m def FDR(p_values, alpha): """ Compute the false discovery rate in all voxels for a subject. """ dim = np.shape(p_values) p_values = np.reshape(p_values,[np.prod(dim),]) sorted_p_values = np.sort(p_values) sorted_p_values_idx = np.argsort(p_values); testNum = len(p_values) thresh = ((np.array(range(testNum)) + 1)/np.float(testNum)) * alpha h = sorted_p_values <= thresh unsort = np.argsort(sorted_p_values_idx) h = h[unsort] h = np.reshape(h, dim) return h def calibration_error(Y,m,s,cal_levels): ce = 0 for cl in cal_levels: z = np.abs(norm.ppf((1-cl)/2)) ub = m + z * s lb = m - z * s ce = ce + np.abs(cl - np.sum(np.logical_and(Y>=lb,Y<=ub))/Y.shape[0]) return ce def simulate_data(method='linear', n_samples=100, n_features=1, n_grps=1, working_dir=None, plot=False, random_state=None, noise=None): """ This function simulates linear synthetic data for testing nispat methods. - Inputs: - method: simulate 'linear' or 'non-linear' function. - n_samples: number of samples in each group of the training and test sets. If it is an int then the same sample number will be used for all groups. It can be also a list of size of n_grps that decides the number of samples in each group (default=100). - n_features: A positive integer that decides the number of features (default=1). - n_grps: A positive integer that decides the number of groups in data (default=1). - working_dir: Directory to save data (default=None). - plot: Boolean to plot the simulated training data (default=False). - random_state: random state for generating random numbers (Default=None). - noise: Type of added noise to the data. The options are 'gaussian', 'exponential', and 'hetero_gaussian' (The defauls is None.). - Outputs: - X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef """ if isinstance(n_samples, int): n_samples = [n_samples for i in range(n_grps)] X_train, Y_train, X_test, Y_test = [], [], [], [] grp_id_train, grp_id_test = [], [] coef = [] for i in range(n_grps): bias = np.random.randint(-10, high=10) if method == 'linear': X_temp, Y_temp, coef_temp = make_regression(n_samples=n_samples[i]*2, n_features=n_features, n_targets=1, noise=10 * np.random.rand(), bias=bias, n_informative=1, coef=True, random_state=random_state) elif method == 'non-linear': X_temp = np.random.randint(-2,6,[2*n_samples[i], n_features]) \ + np.random.randn(2*n_samples[i], n_features) Y_temp = X_temp[:,0] * 20 * np.random.rand() + np.random.randint(10,100) \ * np.sin(2 * np.random.rand() + 2 * np.pi /5 * X_temp[:,0]) coef_temp = 0 elif method == 'combined': X_temp = np.random.randint(-2,6,[2*n_samples[i], n_features]) \ + np.random.randn(2*n_samples[i], n_features) Y_temp = (X_temp[:,0]**3) * np.random.uniform(0, 0.5) \ + X_temp[:,0] * 20 * np.random.rand() \ + np.random.randint(10, 100) coef_temp = 0 else: raise ValueError("Unknow method. Please specify valid method among \ 'linear' or 'non-linear'.") coef.append(coef_temp/100) X_train.append(X_temp[:X_temp.shape[0]//2]) Y_train.append(Y_temp[:X_temp.shape[0]//2]/100) X_test.append(X_temp[X_temp.shape[0]//2:]) Y_test.append(Y_temp[X_temp.shape[0]//2:]/100) grp_id = np.repeat(i, X_temp.shape[0]) grp_id_train.append(grp_id[:X_temp.shape[0]//2]) grp_id_test.append(grp_id[X_temp.shape[0]//2:]) if noise == 'hetero_gaussian': t = np.random.randint(5,10) Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0]) / t \ * np.log(1 + np.exp(X_train[i][:,0])) Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0]) / t \ * np.log(1 + np.exp(X_test[i][:,0])) elif noise == 'gaussian': t = np.random.randint(3,10) Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0])/t Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0])/t elif noise == 'exponential': t = np.random.randint(1,3) Y_train[i] = Y_train[i] + np.random.exponential(1, Y_train[i].shape[0]) / t Y_test[i] = Y_test[i] + np.random.exponential(1, Y_test[i].shape[0]) / t elif noise == 'hetero_gaussian_smaller': t = np.random.randint(5,10) Y_train[i] = Y_train[i] + np.random.randn(Y_train[i].shape[0]) / t \ * np.log(1 + np.exp(0.3 * X_train[i][:,0])) Y_test[i] = Y_test[i] + np.random.randn(Y_test[i].shape[0]) / t \ * np.log(1 + np.exp(0.3 * X_test[i][:,0])) X_train = np.vstack(X_train) X_test = np.vstack(X_test) Y_train = np.concatenate(Y_train) Y_test = np.concatenate(Y_test) grp_id_train = np.expand_dims(np.concatenate(grp_id_train), axis=1) grp_id_test = np.expand_dims(np.concatenate(grp_id_test), axis=1) for i in range(n_features): plt.figure() for j in range(n_grps): plt.scatter(X_train[grp_id_train[:,0]==j,i], Y_train[grp_id_train[:,0]==j,], label='Group ' + str(j)) plt.xlabel('X' + str(i)) plt.ylabel('Y') plt.legend() if working_dir is not None: if not os.path.isdir(working_dir): os.mkdir(working_dir) with open(os.path.join(working_dir ,'trbefile.pkl'), 'wb') as file: pickle.dump(pd.DataFrame(grp_id_train),file) with open(os.path.join(working_dir ,'tsbefile.pkl'), 'wb') as file: pickle.dump(pd.DataFrame(grp_id_test),file) with open(os.path.join(working_dir ,'X_train.pkl'), 'wb') as file: pickle.dump(pd.DataFrame(X_train),file) with open(os.path.join(working_dir ,'X_test.pkl'), 'wb') as file: pickle.dump(pd.DataFrame(X_test),file) with open(os.path.join(working_dir ,'Y_train.pkl'), 'wb') as file: pickle.dump(pd.DataFrame(Y_train),file) with open(os.path.join(working_dir ,'Y_test.pkl'), 'wb') as file: pickle.dump(pd.DataFrame(Y_test),file) return X_train, Y_train, grp_id_train, X_test, Y_test, grp_id_test, coef def divergence_plot(nm, ylim=None): if nm.hbr.configs['n_chains'] > 1 and nm.hbr.model_type != 'nn': a = pm.summary(nm.hbr.trace).round(2) plt.figure() plt.hist(a['r_hat'],10) plt.title('Gelman-Rubin diagnostic for divergence') divergent = nm.hbr.trace['diverging'] tracedf = pm.trace_to_dataframe(nm.hbr.trace) _, ax = plt.subplots(2, 1, figsize=(15, 4), sharex=True, sharey=True) ax[0].plot(tracedf.values[divergent == 0].T, color='k', alpha=.05) ax[0].set_title('No Divergences', fontsize=10) ax[1].plot(tracedf.values[divergent == 1].T, color='C2', lw=.5, alpha=.5) ax[1].set_title('Divergences', fontsize=10) plt.ylim(ylim) plt.xticks(range(tracedf.shape[1]), list(tracedf.columns)) plt.xticks(rotation=90, fontsize=7) plt.tight_layout() plt.show()
gpl-3.0
mlyundin/scikit-learn
sklearn/neighbors/tests/test_kde.py
208
5556
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.grid_search import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) def check_results(kernel, bandwidth, atol, rtol): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass #FIXME #np.random.seed(0) #X = np.random.random((n_samples, n_features)) #Y = np.random.random((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
bsd-3-clause
yyjiang/scikit-learn
examples/cluster/plot_mean_shift.py
351
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
waterponey/scikit-learn
sklearn/manifold/tests/test_mds.py
99
1873
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.manifold import mds from sklearn.utils.testing import assert_raises def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
wanggang3333/scikit-learn
sklearn/linear_model/tests/test_omp.py
272
7752
# Author: Vlad Niculae # Licence: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.linear_model import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, LinearRegression) from sklearn.utils import check_random_state from sklearn.datasets import make_sparse_coded_signal n_samples, n_features, n_nonzero_coefs, n_targets = 20, 30, 5, 3 y, X, gamma = make_sparse_coded_signal(n_targets, n_features, n_samples, n_nonzero_coefs, random_state=0) G, Xy = np.dot(X.T, X), np.dot(X.T, y) # this makes X (n_samples, n_features) # and y (n_samples, 3) def test_correct_shapes(): assert_equal(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp(X, y, n_nonzero_coefs=5).shape, (n_features, 3)) def test_correct_shapes_gram(): assert_equal(orthogonal_mp_gram(G, Xy[:, 0], n_nonzero_coefs=5).shape, (n_features,)) assert_equal(orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5).shape, (n_features, 3)) def test_n_nonzero_coefs(): assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5)) <= 5) assert_true(np.count_nonzero(orthogonal_mp(X, y[:, 0], n_nonzero_coefs=5, precompute=True)) <= 5) def test_tol(): tol = 0.5 gamma = orthogonal_mp(X, y[:, 0], tol=tol) gamma_gram = orthogonal_mp(X, y[:, 0], tol=tol, precompute=True) assert_true(np.sum((y[:, 0] - np.dot(X, gamma)) ** 2) <= tol) assert_true(np.sum((y[:, 0] - np.dot(X, gamma_gram)) ** 2) <= tol) def test_with_without_gram(): assert_array_almost_equal( orthogonal_mp(X, y, n_nonzero_coefs=5), orthogonal_mp(X, y, n_nonzero_coefs=5, precompute=True)) def test_with_without_gram_tol(): assert_array_almost_equal( orthogonal_mp(X, y, tol=1.), orthogonal_mp(X, y, tol=1., precompute=True)) def test_unreachable_accuracy(): assert_array_almost_equal( orthogonal_mp(X, y, tol=0), orthogonal_mp(X, y, n_nonzero_coefs=n_features)) assert_array_almost_equal( assert_warns(RuntimeWarning, orthogonal_mp, X, y, tol=0, precompute=True), orthogonal_mp(X, y, precompute=True, n_nonzero_coefs=n_features)) def test_bad_input(): assert_raises(ValueError, orthogonal_mp, X, y, tol=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp, X, y, n_nonzero_coefs=n_features + 1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, tol=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=-1) assert_raises(ValueError, orthogonal_mp_gram, G, Xy, n_nonzero_coefs=n_features + 1) def test_perfect_signal_recovery(): idx, = gamma[:, 0].nonzero() gamma_rec = orthogonal_mp(X, y[:, 0], 5) gamma_gram = orthogonal_mp_gram(G, Xy[:, 0], 5) assert_array_equal(idx, np.flatnonzero(gamma_rec)) assert_array_equal(idx, np.flatnonzero(gamma_gram)) assert_array_almost_equal(gamma[:, 0], gamma_rec, decimal=2) assert_array_almost_equal(gamma[:, 0], gamma_gram, decimal=2) def test_estimator(): omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_.shape, ()) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_.shape, (n_targets,)) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) omp.set_params(fit_intercept=False, normalize=False) omp.fit(X, y[:, 0]) assert_equal(omp.coef_.shape, (n_features,)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_nonzero_coefs) omp.fit(X, y) assert_equal(omp.coef_.shape, (n_targets, n_features)) assert_equal(omp.intercept_, 0) assert_true(np.count_nonzero(omp.coef_) <= n_targets * n_nonzero_coefs) def test_identical_regressors(): newX = X.copy() newX[:, 1] = newX[:, 0] gamma = np.zeros(n_features) gamma[0] = gamma[1] = 1. newy = np.dot(newX, gamma) assert_warns(RuntimeWarning, orthogonal_mp, newX, newy, 2) def test_swapped_regressors(): gamma = np.zeros(n_features) # X[:, 21] should be selected first, then X[:, 0] selected second, # which will take X[:, 21]'s place in case the algorithm does # column swapping for optimization (which is the case at the moment) gamma[21] = 1.0 gamma[0] = 0.5 new_y = np.dot(X, gamma) new_Xy = np.dot(X.T, new_y) gamma_hat = orthogonal_mp(X, new_y, 2) gamma_hat_gram = orthogonal_mp_gram(G, new_Xy, 2) assert_array_equal(np.flatnonzero(gamma_hat), [0, 21]) assert_array_equal(np.flatnonzero(gamma_hat_gram), [0, 21]) def test_no_atoms(): y_empty = np.zeros_like(y) Xy_empty = np.dot(X.T, y_empty) gamma_empty = ignore_warnings(orthogonal_mp)(X, y_empty, 1) gamma_empty_gram = ignore_warnings(orthogonal_mp)(G, Xy_empty, 1) assert_equal(np.all(gamma_empty == 0), True) assert_equal(np.all(gamma_empty_gram == 0), True) def test_omp_path(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) path = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=True) last = orthogonal_mp_gram(G, Xy, n_nonzero_coefs=5, return_path=False) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_return_path_prop_with_gram(): path = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=True, precompute=True) last = orthogonal_mp(X, y, n_nonzero_coefs=5, return_path=False, precompute=True) assert_equal(path.shape, (n_features, n_targets, 5)) assert_array_almost_equal(path[:, :, -1], last) def test_omp_cv(): y_ = y[:, 0] gamma_ = gamma[:, 0] ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False, max_iter=10, cv=5) ompcv.fit(X, y_) assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs) assert_array_almost_equal(ompcv.coef_, gamma_) omp = OrthogonalMatchingPursuit(normalize=True, fit_intercept=False, n_nonzero_coefs=ompcv.n_nonzero_coefs_) omp.fit(X, y_) assert_array_almost_equal(ompcv.coef_, omp.coef_) def test_omp_reaches_least_squares(): # Use small simple data; it's a sanity check but OMP can stop early rng = check_random_state(0) n_samples, n_features = (10, 8) n_targets = 3 X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_targets) omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features) lstsq = LinearRegression() omp.fit(X, Y) lstsq.fit(X, Y) assert_array_almost_equal(omp.coef_, lstsq.coef_)
bsd-3-clause
dhruv13J/scikit-learn
sklearn/metrics/tests/test_classification.py
42
52642
from __future__ import division, print_function import numpy as np from scipy import linalg from functools import partial from itertools import product import warnings from sklearn import datasets from sklearn import svm from sklearn.datasets import make_multilabel_classification from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer from sklearn.preprocessing import label_binarize from sklearn.utils.fixes import np_version from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import ignore_warnings from sklearn.metrics import accuracy_score from sklearn.metrics import average_precision_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import fbeta_score from sklearn.metrics import hamming_loss from sklearn.metrics import hinge_loss from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import log_loss from sklearn.metrics import matthews_corrcoef from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import zero_one_loss from sklearn.metrics import brier_score_loss from sklearn.metrics.classification import _check_targets from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def test_multilabel_accuracy_score_subset_accuracy(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(accuracy_score(y1, y2), 0.5) assert_equal(accuracy_score(y1, y1), 1) assert_equal(accuracy_score(y2, y2), 1) assert_equal(accuracy_score(y2, np.logical_not(y2)), 0) assert_equal(accuracy_score(y1, np.logical_not(y1)), 0) assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0) assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(accuracy_score(y1, y2), 0.5) assert_equal(accuracy_score(y1, y1), 1) assert_equal(accuracy_score(y2, y2), 1) assert_equal(accuracy_score(y2, [(), ()]), 0) assert_equal(accuracy_score(y1, y2, normalize=False), 1) assert_equal(accuracy_score(y1, y1, normalize=False), 2) assert_equal(accuracy_score(y2, y2, normalize=False), 2) assert_equal(accuracy_score(y2, [(), ()], normalize=False), 0) def test_precision_recall_f1_score_binary(): # Test Precision Recall and F1 Score for binary classification task y_true, y_pred, _ = make_prediction(binary=True) # detailed measures for each class p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.73, 0.85], 2) assert_array_almost_equal(r, [0.88, 0.68], 2) assert_array_almost_equal(f, [0.80, 0.76], 2) assert_array_equal(s, [25, 25]) # individual scoring function that can be used for grid search: in the # binary class case the score is the value of the measure for the positive # class (e.g. label == 1). This is deprecated for average != 'binary'. assert_dep_warning = partial(assert_warns, DeprecationWarning) for kwargs, my_assert in [({}, assert_no_warnings), ({'average': 'binary'}, assert_no_warnings), ({'average': 'micro'}, assert_dep_warning)]: ps = my_assert(precision_score, y_true, y_pred, **kwargs) assert_array_almost_equal(ps, 0.85, 2) rs = my_assert(recall_score, y_true, y_pred, **kwargs) assert_array_almost_equal(rs, 0.68, 2) fs = my_assert(f1_score, y_true, y_pred, **kwargs) assert_array_almost_equal(fs, 0.76, 2) assert_almost_equal(my_assert(fbeta_score, y_true, y_pred, beta=2, **kwargs), (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2) @ignore_warnings def test_precision_recall_f_binary_single_class(): # Test precision, recall and F1 score behave with a single positive or # negative class # Such a case may occur with non-stratified cross-validation assert_equal(1., precision_score([1, 1], [1, 1])) assert_equal(1., recall_score([1, 1], [1, 1])) assert_equal(1., f1_score([1, 1], [1, 1])) assert_equal(0., precision_score([-1, -1], [-1, -1])) assert_equal(0., recall_score([-1, -1], [-1, -1])) assert_equal(0., f1_score([-1, -1], [-1, -1])) @ignore_warnings def test_precision_recall_f_extra_labels(): """Test handling of explicit additional (not in input) labels to PRF """ y_true = [1, 3, 3, 2] y_pred = [1, 1, 3, 2] y_true_bin = label_binarize(y_true, classes=np.arange(5)) y_pred_bin = label_binarize(y_pred, classes=np.arange(5)) data = [(y_true, y_pred), (y_true_bin, y_pred_bin)] for i, (y_true, y_pred) in enumerate(data): # No average: zeros in array actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4], average=None) assert_array_almost_equal([0., 1., 1., .5, 0.], actual) # Macro average is changed actual = recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4], average='macro') assert_array_almost_equal(np.mean([0., 1., 1., .5, 0.]), actual) # No effect otheriwse for average in ['micro', 'weighted', 'samples']: if average == 'samples' and i == 0: continue assert_almost_equal(recall_score(y_true, y_pred, labels=[0, 1, 2, 3, 4], average=average), recall_score(y_true, y_pred, labels=None, average=average)) # Error when introducing invalid label in multilabel case # (although it would only affect performance if average='macro'/None) for average in [None, 'macro', 'micro', 'samples']: assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin, labels=np.arange(6), average=average) assert_raises(ValueError, recall_score, y_true_bin, y_pred_bin, labels=np.arange(-1, 4), average=average) @ignore_warnings def test_precision_recall_f_ignored_labels(): """Test a subset of labels may be requested for PRF""" y_true = [1, 1, 2, 3] y_pred = [1, 3, 3, 3] y_true_bin = label_binarize(y_true, classes=np.arange(5)) y_pred_bin = label_binarize(y_pred, classes=np.arange(5)) data = [(y_true, y_pred), (y_true_bin, y_pred_bin)] for i, (y_true, y_pred) in enumerate(data): recall_13 = partial(recall_score, y_true, y_pred, labels=[1, 3]) recall_all = partial(recall_score, y_true, y_pred, labels=None) assert_array_almost_equal([.5, 1.], recall_13(average=None)) assert_almost_equal((.5 + 1.) / 2, recall_13(average='macro')) assert_almost_equal((.5 * 2 + 1. * 1) / 3, recall_13(average='weighted')) assert_almost_equal(2. / 3, recall_13(average='micro')) # ensure the above were meaningful tests: for average in ['macro', 'weighted', 'micro']: assert_not_equal(recall_13(average=average), recall_all(average=average)) def test_average_precision_score_score_non_binary_class(): # Test that average_precision_score function returns an error when trying # to compute average_precision_score for multiclass task. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", average_precision_score, y_true, y_pred) def test_average_precision_score_duplicate_values(): # Duplicate values with precision-recall require a different # processing than when computing the AUC of a ROC, because the # precision-recall curve is a decreasing curve # The following situtation corresponds to a perfect # test statistic, the average_precision_score should be 1 y_true = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] y_score = [0, .1, .1, .4, .5, .6, .6, .9, .9, 1, 1] assert_equal(average_precision_score(y_true, y_score), 1) def test_average_precision_score_tied_values(): # Here if we go from left to right in y_true, the 0 values are # are separated from the 1 values, so it appears that we've # Correctly sorted our classifications. But in fact the first two # values have the same score (0.5) and so the first two values # could be swapped around, creating an imperfect sorting. This # imperfection should come through in the end score, making it less # than one. y_true = [0, 1, 1] y_score = [.5, .5, .6] assert_not_equal(average_precision_score(y_true, y_score), 1.) @ignore_warnings def test_precision_recall_fscore_support_errors(): y_true, y_pred, _ = make_prediction(binary=True) # Bad beta assert_raises(ValueError, precision_recall_fscore_support, y_true, y_pred, beta=0.0) # Bad pos_label assert_raises(ValueError, precision_recall_fscore_support, y_true, y_pred, pos_label=2, average='macro') # Bad average option assert_raises(ValueError, precision_recall_fscore_support, [0, 1, 2], [1, 2, 0], average='mega') def test_confusion_matrix_binary(): # Test confusion matrix - binary classification case y_true, y_pred, _ = make_prediction(binary=True) def test(y_true, y_pred): cm = confusion_matrix(y_true, y_pred) assert_array_equal(cm, [[22, 3], [8, 17]]) tp, fp, fn, tn = cm.flatten() num = (tp * tn - fp * fn) den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) true_mcc = 0 if den == 0 else num / den mcc = matthews_corrcoef(y_true, y_pred) assert_array_almost_equal(mcc, true_mcc, decimal=2) assert_array_almost_equal(mcc, 0.57, decimal=2) test(y_true, y_pred) test([str(y) for y in y_true], [str(y) for y in y_pred]) @ignore_warnings def test_matthews_corrcoef_nan(): assert_equal(matthews_corrcoef([0], [1]), 0.0) assert_equal(matthews_corrcoef([0, 0], [0, 1]), 0.0) def test_precision_recall_f1_score_multiclass(): # Test Precision Recall and F1 Score for multiclass classification task y_true, y_pred, _ = make_prediction(binary=False) # compute scores with default labels introspection p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.83, 0.33, 0.42], 2) assert_array_almost_equal(r, [0.79, 0.09, 0.90], 2) assert_array_almost_equal(f, [0.81, 0.15, 0.57], 2) assert_array_equal(s, [24, 31, 20]) # averaging tests ps = precision_score(y_true, y_pred, pos_label=1, average='micro') assert_array_almost_equal(ps, 0.53, 2) rs = recall_score(y_true, y_pred, average='micro') assert_array_almost_equal(rs, 0.53, 2) fs = f1_score(y_true, y_pred, average='micro') assert_array_almost_equal(fs, 0.53, 2) ps = precision_score(y_true, y_pred, average='macro') assert_array_almost_equal(ps, 0.53, 2) rs = recall_score(y_true, y_pred, average='macro') assert_array_almost_equal(rs, 0.60, 2) fs = f1_score(y_true, y_pred, average='macro') assert_array_almost_equal(fs, 0.51, 2) ps = precision_score(y_true, y_pred, average='weighted') assert_array_almost_equal(ps, 0.51, 2) rs = recall_score(y_true, y_pred, average='weighted') assert_array_almost_equal(rs, 0.53, 2) fs = f1_score(y_true, y_pred, average='weighted') assert_array_almost_equal(fs, 0.47, 2) assert_raises(ValueError, precision_score, y_true, y_pred, average="samples") assert_raises(ValueError, recall_score, y_true, y_pred, average="samples") assert_raises(ValueError, f1_score, y_true, y_pred, average="samples") assert_raises(ValueError, fbeta_score, y_true, y_pred, average="samples", beta=0.5) # same prediction but with and explicit label ordering p, r, f, s = precision_recall_fscore_support( y_true, y_pred, labels=[0, 2, 1], average=None) assert_array_almost_equal(p, [0.83, 0.41, 0.33], 2) assert_array_almost_equal(r, [0.79, 0.90, 0.10], 2) assert_array_almost_equal(f, [0.81, 0.57, 0.15], 2) assert_array_equal(s, [24, 20, 31]) def test_precision_refcall_f1_score_multilabel_unordered_labels(): # test that labels need not be sorted in the multilabel case y_true = np.array([[1, 1, 0, 0]]) y_pred = np.array([[0, 0, 1, 1]]) for average in ['samples', 'micro', 'macro', 'weighted', None]: p, r, f, s = precision_recall_fscore_support( y_true, y_pred, labels=[3, 0, 1, 2], warn_for=[], average=average) assert_array_equal(p, 0) assert_array_equal(r, 0) assert_array_equal(f, 0) if average is None: assert_array_equal(s, [0, 1, 1, 0]) def test_precision_recall_f1_score_multiclass_pos_label_none(): # Test Precision Recall and F1 Score for multiclass classification task # GH Issue #1296 # initialize data y_true = np.array([0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1]) y_pred = np.array([1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1]) # compute scores with default labels introspection p, r, f, s = precision_recall_fscore_support(y_true, y_pred, pos_label=None, average='weighted') def test_zero_precision_recall(): # Check that pathological cases do not bring NaNs old_error_settings = np.seterr(all='raise') try: y_true = np.array([0, 1, 2, 0, 1, 2]) y_pred = np.array([2, 0, 1, 1, 2, 0]) assert_almost_equal(precision_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(recall_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(f1_score(y_true, y_pred, average='weighted'), 0.0, 2) finally: np.seterr(**old_error_settings) def test_confusion_matrix_multiclass(): # Test confusion matrix - multi-class case y_true, y_pred, _ = make_prediction(binary=False) def test(y_true, y_pred, string_type=False): # compute confusion matrix with default labels introspection cm = confusion_matrix(y_true, y_pred) assert_array_equal(cm, [[19, 4, 1], [4, 3, 24], [0, 2, 18]]) # compute confusion matrix with explicit label ordering labels = ['0', '2', '1'] if string_type else [0, 2, 1] cm = confusion_matrix(y_true, y_pred, labels=labels) assert_array_equal(cm, [[19, 1, 4], [0, 18, 2], [4, 24, 3]]) test(y_true, y_pred) test(list(str(y) for y in y_true), list(str(y) for y in y_pred), string_type=True) def test_confusion_matrix_multiclass_subset_labels(): # Test confusion matrix - multi-class case with subset of labels y_true, y_pred, _ = make_prediction(binary=False) # compute confusion matrix with only first two labels considered cm = confusion_matrix(y_true, y_pred, labels=[0, 1]) assert_array_equal(cm, [[19, 4], [4, 3]]) # compute confusion matrix with explicit label ordering for only subset # of labels cm = confusion_matrix(y_true, y_pred, labels=[2, 1]) assert_array_equal(cm, [[18, 2], [24, 3]]) def test_classification_report_multiclass(): # Test performance report iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.83 0.79 0.81 24 versicolor 0.33 0.10 0.15 31 virginica 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_digits(): # Test performance report with added digits in floating point values iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.82609 0.79167 0.80851 24 versicolor 0.33333 0.09677 0.15000 31 virginica 0.41860 0.90000 0.57143 20 avg / total 0.51375 0.53333 0.47310 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names, digits=5) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_string_label(): y_true, y_pred, _ = make_prediction(binary=False) y_true = np.array(["blue", "green", "red"])[y_true] y_pred = np.array(["blue", "green", "red"])[y_pred] expected_report = """\ precision recall f1-score support blue 0.83 0.79 0.81 24 green 0.33 0.10 0.15 31 red 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) expected_report = """\ precision recall f1-score support a 0.83 0.79 0.81 24 b 0.33 0.10 0.15 31 c 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred, target_names=["a", "b", "c"]) assert_equal(report, expected_report) def test_classification_report_multiclass_with_unicode_label(): y_true, y_pred, _ = make_prediction(binary=False) labels = np.array([u"blue\xa2", u"green\xa2", u"red\xa2"]) y_true = labels[y_true] y_pred = labels[y_pred] expected_report = u"""\ precision recall f1-score support blue\xa2 0.83 0.79 0.81 24 green\xa2 0.33 0.10 0.15 31 red\xa2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ if np_version[:3] < (1, 7, 0): expected_message = ("NumPy < 1.7.0 does not implement" " searchsorted on unicode data correctly.") assert_raise_message(RuntimeError, expected_message, classification_report, y_true, y_pred) else: report = classification_report(y_true, y_pred) assert_equal(report, expected_report) @ignore_warnings # sequence of sequences is deprecated def test_multilabel_classification_report(): n_classes = 4 n_samples = 50 make_ml = make_multilabel_classification _, y_true_ll = make_ml(n_features=1, n_classes=n_classes, random_state=0, n_samples=n_samples) _, y_pred_ll = make_ml(n_features=1, n_classes=n_classes, random_state=1, n_samples=n_samples) expected_report = """\ precision recall f1-score support 0 0.50 0.67 0.57 24 1 0.51 0.74 0.61 27 2 0.29 0.08 0.12 26 3 0.52 0.56 0.54 27 avg / total 0.45 0.51 0.46 104 """ lb = MultiLabelBinarizer() lb.fit([range(4)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_multilabel_zero_one_loss_subset(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(zero_one_loss(y1, y2), 0.5) assert_equal(zero_one_loss(y1, y1), 0) assert_equal(zero_one_loss(y2, y2), 0) assert_equal(zero_one_loss(y2, np.logical_not(y2)), 1) assert_equal(zero_one_loss(y1, np.logical_not(y1)), 1) assert_equal(zero_one_loss(y1, np.zeros(y1.shape)), 1) assert_equal(zero_one_loss(y2, np.zeros(y1.shape)), 1) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(zero_one_loss(y1, y2), 0.5) assert_equal(zero_one_loss(y1, y1), 0) assert_equal(zero_one_loss(y2, y2), 0) assert_equal(zero_one_loss(y2, [(), ()]), 1) assert_equal(zero_one_loss(y2, [tuple(), (10, )]), 1) def test_multilabel_hamming_loss(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(hamming_loss(y1, y2), 1 / 6) assert_equal(hamming_loss(y1, y1), 0) assert_equal(hamming_loss(y2, y2), 0) assert_equal(hamming_loss(y2, np.logical_not(y2)), 1) assert_equal(hamming_loss(y1, np.logical_not(y1)), 1) assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6) assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(hamming_loss(y1, y2), 1 / 6) assert_equal(hamming_loss(y1, y1), 0) assert_equal(hamming_loss(y2, y2), 0) assert_equal(hamming_loss(y2, [(), ()]), 0.75) assert_equal(hamming_loss(y1, [tuple(), (10, )]), 0.625) assert_almost_equal(hamming_loss(y2, [tuple(), (10, )], classes=np.arange(11)), 0.1818, 2) def test_multilabel_jaccard_similarity_score(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) # size(y1 \inter y2) = [1, 2] # size(y1 \union y2) = [2, 2] assert_equal(jaccard_similarity_score(y1, y2), 0.75) assert_equal(jaccard_similarity_score(y1, y1), 1) assert_equal(jaccard_similarity_score(y2, y2), 1) assert_equal(jaccard_similarity_score(y2, np.logical_not(y2)), 0) assert_equal(jaccard_similarity_score(y1, np.logical_not(y1)), 0) assert_equal(jaccard_similarity_score(y1, np.zeros(y1.shape)), 0) assert_equal(jaccard_similarity_score(y2, np.zeros(y1.shape)), 0) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(jaccard_similarity_score(y1, y2), 0.75) assert_equal(jaccard_similarity_score(y1, y1), 1) assert_equal(jaccard_similarity_score(y2, y2), 1) assert_equal(jaccard_similarity_score(y2, [(), ()]), 0) # |y3 inter y4 | = [0, 1, 1] # |y3 union y4 | = [2, 1, 3] y3 = [(0,), (1,), (3,)] y4 = [(4,), (4,), (5, 6)] assert_almost_equal(jaccard_similarity_score(y3, y4), 0) # |y5 inter y6 | = [0, 1, 1] # |y5 union y6 | = [2, 1, 3] y5 = [(0,), (1,), (2, 3)] y6 = [(1,), (1,), (2, 0)] assert_almost_equal(jaccard_similarity_score(y5, y6), (1 + 1 / 3) / 3) @ignore_warnings def test_precision_recall_f1_score_multilabel_1(): # Test precision_recall_f1_score on a crafted multilabel example # First crafted example y_true_ll = [(0,), (1,), (2, 3)] y_pred_ll = [(1,), (1,), (2, 0)] lb = LabelBinarizer() lb.fit([range(4)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) #tp = [0, 1, 1, 0] #fn = [1, 0, 0, 1] #fp = [1, 1, 0, 0] # Check per class assert_array_almost_equal(p, [0.0, 0.5, 1.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 1.0, 1.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2) assert_array_almost_equal(s, [1, 1, 1, 1], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.83, 1, 0], 2) # Check macro p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 1.5 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2.5 / 1.5 * 0.25) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) # Check micro p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 0.5) assert_almost_equal(r, 0.5) assert_almost_equal(f, 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) # Check weigted p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 1.5 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2.5 / 1.5 * 0.25) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) # Check weigted # |h(x_i) inter y_i | = [0, 1, 1] # |y_i| = [1, 1, 2] # |h(x_i)| = [1, 1, 2] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") assert_almost_equal(p, 0.5) assert_almost_equal(r, 0.5) assert_almost_equal(f, 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.5) @ignore_warnings def test_precision_recall_f1_score_multilabel_2(): # Test precision_recall_f1_score on a crafted multilabel example 2 # Second crafted example y_true_ll = [(1,), (2,), (2, 3)] y_pred_ll = [(4,), (4,), (2, 1)] lb = LabelBinarizer() lb.fit([range(1, 5)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: # tp = [ 0. 1. 0. 0.] # fp = [ 1. 0. 0. 2.] # fn = [ 1. 1. 1. 0.] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.0, 1.0, 0.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 0.5, 0.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 0.66, 0.0, 0.0], 2) assert_array_almost_equal(s, [1, 2, 1, 0], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.55, 0, 0], 2) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 0.25) assert_almost_equal(r, 0.25) assert_almost_equal(f, 2 * 0.25 * 0.25 / 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 0.25) assert_almost_equal(r, 0.125) assert_almost_equal(f, 2 / 12) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 2 / 4) assert_almost_equal(r, 1 / 4) assert_almost_equal(f, 2 / 3 * 2 / 4) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") # Check weigted # |h(x_i) inter y_i | = [0, 0, 1] # |y_i| = [1, 1, 2] # |h(x_i)| = [1, 1, 2] assert_almost_equal(p, 1 / 6) assert_almost_equal(r, 1 / 6) assert_almost_equal(f, 2 / 4 * 1 / 3) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.1666, 2) @ignore_warnings def test_precision_recall_f1_score_with_an_empty_prediction(): y_true_ll = [(1,), (0,), (2, 1,)] y_pred_ll = [tuple(), (3,), (2, 1)] lb = LabelBinarizer() lb.fit([range(4)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: # true_pos = [ 0. 1. 1. 0.] # false_pos = [ 0. 0. 0. 1.] # false_neg = [ 1. 1. 0. 0.] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2) assert_array_almost_equal(s, [1, 2, 1, 0], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 0.5) assert_almost_equal(r, 1.5 / 4) assert_almost_equal(f, 2.5 / (4 * 1.5)) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 2 / 3) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5)) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 3 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, (2 / 1.5 + 1) / 4) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") # |h(x_i) inter y_i | = [0, 0, 2] # |y_i| = [1, 1, 2] # |h(x_i)| = [0, 1, 2] assert_almost_equal(p, 1 / 3) assert_almost_equal(r, 1 / 3) assert_almost_equal(f, 1 / 3) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.333, 2) def test_precision_recall_f1_no_labels(): y_true = np.zeros((20, 3)) y_pred = np.zeros_like(y_true) # tp = [0, 0, 0] # fn = [0, 0, 0] # fp = [0, 0, 0] # support = [0, 0, 0] # |y_hat_i inter y_i | = [0, 0, 0] # |y_i| = [0, 0, 0] # |y_hat_i| = [0, 0, 0] for beta in [1]: p, r, f, s = assert_warns(UndefinedMetricWarning, precision_recall_fscore_support, y_true, y_pred, average=None, beta=beta) assert_array_almost_equal(p, [0, 0, 0], 2) assert_array_almost_equal(r, [0, 0, 0], 2) assert_array_almost_equal(f, [0, 0, 0], 2) assert_array_almost_equal(s, [0, 0, 0], 2) fbeta = assert_warns(UndefinedMetricWarning, fbeta_score, y_true, y_pred, beta=beta, average=None) assert_array_almost_equal(fbeta, [0, 0, 0], 2) for average in ["macro", "micro", "weighted", "samples"]: p, r, f, s = assert_warns(UndefinedMetricWarning, precision_recall_fscore_support, y_true, y_pred, average=average, beta=beta) assert_almost_equal(p, 0) assert_almost_equal(r, 0) assert_almost_equal(f, 0) assert_equal(s, None) fbeta = assert_warns(UndefinedMetricWarning, fbeta_score, y_true, y_pred, beta=beta, average=average) assert_almost_equal(fbeta, 0) def test_prf_warnings(): # average of per-label scores f, w = precision_recall_fscore_support, UndefinedMetricWarning my_assert = assert_warns_message for average in [None, 'weighted', 'macro']: msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 in labels with no predicted samples.') my_assert(w, msg, f, [0, 1, 2], [1, 1, 2], average=average) msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 in labels with no true samples.') my_assert(w, msg, f, [1, 1, 2], [0, 1, 2], average=average) # average of per-sample scores msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 in samples with no predicted labels.') my_assert(w, msg, f, np.array([[1, 0], [1, 0]]), np.array([[1, 0], [0, 0]]), average='samples') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 in samples with no true labels.') my_assert(w, msg, f, np.array([[1, 0], [0, 0]]), np.array([[1, 0], [1, 0]]), average='samples') # single score: micro-average msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 due to no predicted samples.') my_assert(w, msg, f, np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 due to no true samples.') my_assert(w, msg, f, np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') # single postive label msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 due to no predicted samples.') my_assert(w, msg, f, [1, 1], [-1, -1], average='macro') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 due to no true samples.') my_assert(w, msg, f, [-1, -1], [1, 1], average='macro') def test_recall_warnings(): assert_no_warnings(recall_score, np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') recall_score(np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') assert_equal(str(record.pop().message), 'Recall is ill-defined and ' 'being set to 0.0 due to no true samples.') def test_precision_warnings(): clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') precision_score(np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') assert_equal(str(record.pop().message), 'Precision is ill-defined and ' 'being set to 0.0 due to no predicted samples.') assert_no_warnings(precision_score, np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') def test_fscore_warnings(): clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') for score in [f1_score, partial(fbeta_score, beta=2)]: score(np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') assert_equal(str(record.pop().message), 'F-score is ill-defined and ' 'being set to 0.0 due to no predicted samples.') score(np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') assert_equal(str(record.pop().message), 'F-score is ill-defined and ' 'being set to 0.0 due to no true samples.') def test_prf_average_compat(): # Ensure warning if f1_score et al.'s average is implicit for multiclass y_true = [1, 2, 3, 3] y_pred = [1, 2, 3, 1] y_true_bin = [0, 1, 1] y_pred_bin = [0, 1, 0] for metric in [precision_score, recall_score, f1_score, partial(fbeta_score, beta=2)]: score = assert_warns(DeprecationWarning, metric, y_true, y_pred) score_weighted = assert_no_warnings(metric, y_true, y_pred, average='weighted') assert_equal(score, score_weighted, 'average does not act like "weighted" by default') # check binary passes without warning assert_no_warnings(metric, y_true_bin, y_pred_bin) # but binary with pos_label=None should behave like multiclass score = assert_warns(DeprecationWarning, metric, y_true_bin, y_pred_bin, pos_label=None) score_weighted = assert_no_warnings(metric, y_true_bin, y_pred_bin, pos_label=None, average='weighted') assert_equal(score, score_weighted, 'average does not act like "weighted" by default with ' 'binary data and pos_label=None') @ignore_warnings # sequence of sequences is deprecated def test__check_targets(): # Check that _check_targets correctly merges target types, squeezes # output and fails if input lengths differ. IND = 'multilabel-indicator' SEQ = 'multilabel-sequences' MC = 'multiclass' BIN = 'binary' CNT = 'continuous' MMC = 'multiclass-multioutput' MCN = 'continuous-multioutput' # all of length 3 EXAMPLES = [ (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])), # must not be considered binary (IND, np.array([[0, 1], [1, 0], [1, 1]])), (SEQ, [[2, 3], [1], [3]]), (MC, [2, 3, 1]), (BIN, [0, 1, 1]), (CNT, [0., 1.5, 1.]), (MC, np.array([[2], [3], [1]])), (BIN, np.array([[0], [1], [1]])), (CNT, np.array([[0.], [1.5], [1.]])), (MMC, np.array([[0, 2], [1, 3], [2, 3]])), (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])), ] # expected type given input types, or None for error # (types will be tried in either order) EXPECTED = { (IND, IND): IND, (SEQ, SEQ): IND, (MC, MC): MC, (BIN, BIN): BIN, (IND, SEQ): None, (MC, SEQ): None, (BIN, SEQ): None, (MC, IND): None, (BIN, IND): None, (BIN, MC): MC, # Disallowed types (CNT, CNT): None, (MMC, MMC): None, (MCN, MCN): None, (IND, CNT): None, (SEQ, CNT): None, (MC, CNT): None, (BIN, CNT): None, (MMC, CNT): None, (MCN, CNT): None, (IND, MMC): None, (SEQ, MMC): None, (MC, MMC): None, (BIN, MMC): None, (MCN, MMC): None, (IND, MCN): None, (SEQ, MCN): None, (MC, MCN): None, (BIN, MCN): None, } for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2): try: expected = EXPECTED[type1, type2] except KeyError: expected = EXPECTED[type2, type1] if expected is None: assert_raises(ValueError, _check_targets, y1, y2) if type1 != type2: assert_raise_message( ValueError, "Can't handle mix of {0} and {1}".format(type1, type2), _check_targets, y1, y2) else: if type1 not in (BIN, MC, SEQ, IND): assert_raise_message(ValueError, "{0} is not supported".format(type1), _check_targets, y1, y2) else: merged_type, y1out, y2out = _check_targets(y1, y2) assert_equal(merged_type, expected) if merged_type.startswith('multilabel'): assert_equal(y1out.format, 'csr') assert_equal(y2out.format, 'csr') else: assert_array_equal(y1out, np.squeeze(y1)) assert_array_equal(y2out, np.squeeze(y2)) assert_raises(ValueError, _check_targets, y1[:-1], y2) def test_hinge_loss_binary(): y_true = np.array([-1, 1, 1, -1]) pred_decision = np.array([-8.5, 0.5, 1.5, -0.3]) assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4) y_true = np.array([0, 2, 2, 0]) pred_decision = np.array([-8.5, 0.5, 1.5, -0.3]) assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4) def test_hinge_loss_multiclass(): pred_decision = np.array([ [0.36, -0.17, -0.58, -0.99], [-0.54, -0.37, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.54, -0.38, -0.48, -0.58], [-2.36, -0.79, -0.27, 0.24], [-1.45, -0.58, -0.38, -0.17] ]) y_true = np.array([0, 1, 2, 1, 3, 2]) dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][3] + pred_decision[4][2], 1 - pred_decision[5][2] + pred_decision[5][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision), dummy_hinge_loss) def test_hinge_loss_multiclass_missing_labels_with_labels_none(): y_true = np.array([0, 1, 2, 2]) pred_decision = np.array([ [1.27, 0.034, -0.68, -1.40], [-1.45, -0.58, -0.38, -0.17], [-2.36, -0.79, -0.27, 0.24], [-2.36, -0.79, -0.27, 0.24] ]) error_message = ("Please include all labels in y_true " "or pass labels as third argument") assert_raise_message(ValueError, error_message, hinge_loss, y_true, pred_decision) def test_hinge_loss_multiclass_with_missing_labels(): pred_decision = np.array([ [0.36, -0.17, -0.58, -0.99], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17] ]) y_true = np.array([0, 1, 2, 1, 2]) labels = np.array([0, 1, 2, 3]) dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][2] + pred_decision[4][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision, labels=labels), dummy_hinge_loss) def test_hinge_loss_multiclass_invariance_lists(): # Currently, invariance of string and integer labels cannot be tested # in common invariance tests because invariance tests for multiclass # decision functions is not implemented yet. y_true = ['blue', 'green', 'red', 'green', 'white', 'red'] pred_decision = [ [0.36, -0.17, -0.58, -0.99], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.55, -0.38, -0.48, -0.58], [-2.36, -0.79, -0.27, 0.24], [-1.45, -0.58, -0.38, -0.17]] dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][3] + pred_decision[4][2], 1 - pred_decision[5][2] + pred_decision[5][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision), dummy_hinge_loss) def test_log_loss(): # binary case with symbolic labels ("no" < "yes") y_true = ["no", "no", "no", "yes", "yes", "yes"] y_pred = np.array([[0.5, 0.5], [0.1, 0.9], [0.01, 0.99], [0.9, 0.1], [0.75, 0.25], [0.001, 0.999]]) loss = log_loss(y_true, y_pred) assert_almost_equal(loss, 1.8817971) # multiclass case; adapted from http://bit.ly/RJJHWA y_true = [1, 0, 2] y_pred = [[0.2, 0.7, 0.1], [0.6, 0.2, 0.2], [0.6, 0.1, 0.3]] loss = log_loss(y_true, y_pred, normalize=True) assert_almost_equal(loss, 0.6904911) # check that we got all the shapes and axes right # by doubling the length of y_true and y_pred y_true *= 2 y_pred *= 2 loss = log_loss(y_true, y_pred, normalize=False) assert_almost_equal(loss, 0.6904911 * 6, decimal=6) # check eps and handling of absolute zero and one probabilities y_pred = np.asarray(y_pred) > .5 loss = log_loss(y_true, y_pred, normalize=True, eps=.1) assert_almost_equal(loss, log_loss(y_true, np.clip(y_pred, .1, .9))) # raise error if number of classes are not equal. y_true = [1, 0, 2] y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1]] assert_raises(ValueError, log_loss, y_true, y_pred) # case when y_true is a string array object y_true = ["ham", "spam", "spam", "ham"] y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]] loss = log_loss(y_true, y_pred) assert_almost_equal(loss, 1.0383217, decimal=6) def test_brier_score_loss(): # Check brier_score_loss function y_true = np.array([0, 1, 1, 0, 1, 1]) y_pred = np.array([0.1, 0.8, 0.9, 0.3, 1., 0.95]) true_score = linalg.norm(y_true - y_pred) ** 2 / len(y_true) assert_almost_equal(brier_score_loss(y_true, y_true), 0.0) assert_almost_equal(brier_score_loss(y_true, y_pred), true_score) assert_almost_equal(brier_score_loss(1. + y_true, y_pred), true_score) assert_almost_equal(brier_score_loss(2 * y_true - 1, y_pred), true_score) assert_raises(ValueError, brier_score_loss, y_true, y_pred[1:]) assert_raises(ValueError, brier_score_loss, y_true, y_pred + 1.) assert_raises(ValueError, brier_score_loss, y_true, y_pred - 1.)
bsd-3-clause
feranick/GES_AT
Other/Cursors/cursors.py
1
1136
import sys from PyQt5 import QtWidgets from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.pyplot as plt from matplotlib.widgets import Cursor class Window(QtWidgets.QDialog): def __init__(self, parent=None): super(Window, self).__init__(parent) self.figure = plt.figure(facecolor='white') self.canvas = FigureCanvas(self.figure) layout = QtWidgets.QVBoxLayout() layout.addWidget(self.canvas) self.setLayout(layout) ''' plot some random stuff ''' ax = self.figure.add_subplot(111) self.ax = ax ax.plot([1,2]) # Set cursor cursor = Cursor(self.ax, useblit=False, color='red', linewidth=1) ############## The added part: ############# def onclick(event): cursor.onmove(event) self.canvas.mpl_connect('button_press_event', onclick) ############################################ self.canvas.draw() if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) main = Window() main.show() sys.exit(app.exec_())
gpl-3.0
jayflo/scikit-learn
sklearn/datasets/tests/test_rcv1.py
322
2414
"""Test the rcv1 loader. Skipped if rcv1 is not already downloaded to data_home. """ import errno import scipy.sparse as sp import numpy as np from sklearn.datasets import fetch_rcv1 from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest def test_fetch_rcv1(): try: data1 = fetch_rcv1(shuffle=False, download_if_missing=False) except IOError as e: if e.errno == errno.ENOENT: raise SkipTest("Download RCV1 dataset to run this test.") X1, Y1 = data1.data, data1.target cat_list, s1 = data1.target_names.tolist(), data1.sample_id # test sparsity assert_true(sp.issparse(X1)) assert_true(sp.issparse(Y1)) assert_equal(60915113, X1.data.size) assert_equal(2606875, Y1.data.size) # test shapes assert_equal((804414, 47236), X1.shape) assert_equal((804414, 103), Y1.shape) assert_equal((804414,), s1.shape) assert_equal(103, len(cat_list)) # test ordering of categories first_categories = [u'C11', u'C12', u'C13', u'C14', u'C15', u'C151'] assert_array_equal(first_categories, cat_list[:6]) # test number of sample for some categories some_categories = ('GMIL', 'E143', 'CCAT') number_non_zero_in_cat = (5, 1206, 381327) for num, cat in zip(number_non_zero_in_cat, some_categories): j = cat_list.index(cat) assert_equal(num, Y1[:, j].data.size) # test shuffling and subset data2 = fetch_rcv1(shuffle=True, subset='train', random_state=77, download_if_missing=False) X2, Y2 = data2.data, data2.target s2 = data2.sample_id # The first 23149 samples are the training samples assert_array_equal(np.sort(s1[:23149]), np.sort(s2)) # test some precise values some_sample_ids = (2286, 3274, 14042) for sample_id in some_sample_ids: idx1 = s1.tolist().index(sample_id) idx2 = s2.tolist().index(sample_id) feature_values_1 = X1[idx1, :].toarray() feature_values_2 = X2[idx2, :].toarray() assert_almost_equal(feature_values_1, feature_values_2) target_values_1 = Y1[idx1, :].toarray() target_values_2 = Y2[idx2, :].toarray() assert_almost_equal(target_values_1, target_values_2)
bsd-3-clause
priyankadeswal/network-address-translator
src/core/examples/sample-rng-plot.py
188
1246
# -*- Mode:Python; -*- # /* # * This program is free software; you can redistribute it and/or modify # * it under the terms of the GNU General Public License version 2 as # * published by the Free Software Foundation # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # */ # Demonstrate use of ns-3 as a random number generator integrated with # plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial import numpy as np import matplotlib.pyplot as plt import ns.core # mu, var = 100, 225 rng = ns.core.NormalVariable(100.0, 225.0) x = [rng.GetValue() for t in range(10000)] # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.title('ns-3 histogram') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
gpl-2.0
cwhanse/pvlib-python
benchmarks/benchmarks/irradiance.py
3
2710
""" ASV benchmarks for irradiance.py """ import pandas as pd from pvlib import irradiance, location class Irradiance: def setup(self): self.times = pd.date_range(start='20180601', freq='1min', periods=14400) self.days = pd.date_range(start='20180601', freq='d', periods=30) self.location = location.Location(40, -80) self.solar_position = self.location.get_solarposition(self.times) self.clearsky_irradiance = self.location.get_clearsky(self.times) self.tilt = 20 self.azimuth = 180 self.aoi = irradiance.aoi(self.tilt, self.azimuth, self.solar_position.apparent_zenith, self.solar_position.azimuth) def time_get_extra_radiation(self): irradiance.get_extra_radiation(self.days) def time_aoi(self): irradiance.aoi(self.tilt, self.azimuth, self.solar_position.apparent_zenith, self.solar_position.azimuth) def time_aoi_projection(self): irradiance.aoi_projection(self.tilt, self.azimuth, self.solar_position.apparent_zenith, self.solar_position.azimuth) def time_get_ground_diffuse(self): irradiance.get_ground_diffuse(self.tilt, self.clearsky_irradiance.ghi) def time_get_total_irradiance(self): irradiance.get_total_irradiance(self.tilt, self.azimuth, self.solar_position.apparent_zenith, self.solar_position.azimuth, self.clearsky_irradiance.dni, self.clearsky_irradiance.ghi, self.clearsky_irradiance.dhi) def time_disc(self): irradiance.disc(self.clearsky_irradiance.ghi, self.solar_position.apparent_zenith, self.times) def time_dirint(self): irradiance.dirint(self.clearsky_irradiance.ghi, self.solar_position.apparent_zenith, self.times) def time_dirindex(self): irradiance.dirindex(self.clearsky_irradiance.ghi, self.clearsky_irradiance.ghi, self.clearsky_irradiance.dni, self.solar_position.apparent_zenith, self.times) def time_erbs(self): irradiance.erbs(self.clearsky_irradiance.ghi, self.solar_position.apparent_zenith, self.times)
bsd-3-clause
bigfootproject/OSMEF
data_processing/graphs/cpu_histogram.py
1
3477
#!/usr/bin/python import numpy as np import matplotlib.pyplot as plt import json data = json.load(open("../../osmef/data.json")) N = 10 rxMeans = [] rxMeans.append(data["localhost"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["vm_localhost"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["vm_host"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["host_vm"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["host_to_host"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["host_to_host_gre"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["vm_to_vm_1"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["vm_to_vm_2"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["vm_to_vm_3"]["c=1"]["rx.cpu"]["avg"]) rxMeans.append(data["vm_to_vm_4"]["c=1"]["rx.cpu"]["avg"]) rxStd = [] rxStd.append(data["localhost"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["vm_localhost"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["vm_host"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["host_vm"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["host_to_host"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["host_to_host_gre"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["vm_to_vm_1"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["vm_to_vm_2"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["vm_to_vm_3"]["c=1"]["rx.cpu"]["std"]) rxStd.append(data["vm_to_vm_4"]["c=1"]["rx.cpu"]["std"]) ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars fig = plt.figure() ax = fig.add_subplot(111) rects1 = ax.bar(ind, rxMeans, width, color='r', yerr=rxStd) txMeans = [] txMeans.append(data["localhost"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["vm_localhost"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["vm_host"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["host_vm"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["host_to_host"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["host_to_host_gre"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["vm_to_vm_1"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["vm_to_vm_2"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["vm_to_vm_3"]["c=1"]["tx.cpu"]["avg"]) txMeans.append(data["vm_to_vm_4"]["c=1"]["tx.cpu"]["avg"]) txStd = [] txStd.append(data["localhost"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["vm_localhost"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["vm_host"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["host_vm"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["host_to_host"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["host_to_host_gre"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["vm_to_vm_1"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["vm_to_vm_2"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["vm_to_vm_3"]["c=1"]["tx.cpu"]["std"]) txStd.append(data["vm_to_vm_4"]["c=1"]["tx.cpu"]["std"]) rects2 = ax.bar(ind+width, txMeans, width, color='y', yerr=txStd) # add some ax.set_ylabel('CPU usage %') ax.set_title('CPU usage with 1 connection') ax.set_xticks(ind+width) ax.set_xticklabels( ('localhost', 'VM localhost', 'VM to host', 'host to VM', 'host to host', 'host to host GRE', 'VM to VM 1', 'VM to VM 2', 'VM to VM 3', 'VM to VM 4') ) ax.legend( (rects1[0], rects2[0]), ('Receiver', 'Transmitter') ) #def autolabel(rects): # # attach some text labels # for rect in rects: # height = rect.get_height() # ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height), # ha='center', va='bottom') # #autolabel(rects1) #autolabel(rects2) fig.autofmt_xdate() plt.savefig("cpu_histogram.pdf")
apache-2.0
yunfeilu/scikit-learn
sklearn/neighbors/nearest_centroid.py
199
7249
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause
RedhawkSDR/integration-gnuhawk
gnuradio/gr-filter/examples/synth_to_chan.py
13
3633
#!/usr/bin/env python # # Copyright 2010,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, blks2 from gnuradio import filter import sys try: import scipy except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) def main(): N = 1000000 fs = 8000 freqs = [100, 200, 300, 400, 500] nchans = 7 sigs = list() fmtx = list() for fi in freqs: s = gr.sig_source_f(fs, gr.GR_SIN_WAVE, fi, 1) fm = blks2.nbfm_tx (fs, 4*fs, max_dev=10000, tau=75e-6) sigs.append(s) fmtx.append(fm) syntaps = filter.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print "Synthesis Num. Taps = %d (taps per filter = %d)" % (len(syntaps), len(syntaps)/nchans) chtaps = filter.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print "Channelizer Num. Taps = %d (taps per filter = %d)" % (len(chtaps), len(chtaps)/nchans) filtbank = filter.pfb_synthesizer_ccf(nchans, syntaps) channelizer = filter.pfb.channelizer_ccf(nchans, chtaps) noise_level = 0.01 head = gr.head(gr.sizeof_gr_complex, N) noise = gr.noise_source_c(gr.GR_GAUSSIAN, noise_level) addnoise = gr.add_cc() snk_synth = gr.vector_sink_c() tb = gr.top_block() tb.connect(noise, (addnoise,0)) tb.connect(filtbank, head, (addnoise, 1)) tb.connect(addnoise, channelizer) tb.connect(addnoise, snk_synth) snk = list() for i,si in enumerate(sigs): tb.connect(si, fmtx[i], (filtbank, i)) for i in xrange(nchans): snk.append(gr.vector_sink_c()) tb.connect((channelizer, i), snk[i]) tb.run() if 1: channel = 1 data = snk[channel].data()[1000:] f1 = pylab.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(data[10000:10200] ) s1.set_title(("Output Signal from Channel %d" % channel)) fftlen = 2048 winfunc = scipy.blackman #winfunc = scipy.hamming f2 = pylab.figure(2) s2 = f2.add_subplot(1,1,1) s2.psd(data, NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen/4, window = lambda d: d*winfunc(fftlen)) s2.set_title(("Output PSD from Channel %d" % channel)) f3 = pylab.figure(3) s3 = f3.add_subplot(1,1,1) s3.psd(snk_synth.data()[1000:], NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen/4, window = lambda d: d*winfunc(fftlen)) s3.set_title("Output of Synthesis Filter") pylab.show() if __name__ == "__main__": main()
gpl-3.0
Barmaley-exe/scikit-learn
doc/conf.py
16
8442
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2014, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_use_modindex = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_use_modindex = True trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
jhonatanoliveira/pgmpy
pgmpy/tests/test_estimators/test_BaseEstimator.py
2
2903
import unittest import pandas as pd import numpy as np from pgmpy.estimators import BaseEstimator class TestBaseEstimator(unittest.TestCase): def setUp(self): self.d1 = pd.DataFrame(data={'A': [0, 0, 1], 'B': [0, 1, 0], 'C': [1, 1, 0], 'D': ['X', 'Y', 'Z']}) self.d2 = pd.DataFrame(data={'A': [0, np.NaN, 1], 'B': [0, 1, 0], 'C': [1, 1, np.NaN], 'D': [np.NaN, 'Y', np.NaN]}) self.titanic_data = pd.read_csv('pgmpy/tests/test_estimators/testdata/titanic_train.csv') def test_state_count(self): e = BaseEstimator(self.d1) self.assertEqual(e.state_counts('A').values.tolist(), [[2], [1]]) self.assertEqual(e.state_counts('C', ['A', 'B']).values.tolist(), [[0., 0., 1., 0.], [1., 1., 0., 0.]]) def test_missing_data(self): e = BaseEstimator(self.d2, state_names={'C': [0, 1]}, complete_samples_only=False) self.assertEqual(e.state_counts('A', complete_samples_only=True).values.tolist(), [[0], [0]]) self.assertEqual(e.state_counts('A').values.tolist(), [[1], [1]]) self.assertEqual(e.state_counts('C', parents=['A', 'B'], complete_samples_only=True).values.tolist(), [[0, 0, 0, 0], [0, 0, 0, 0]]) self.assertEqual(e.state_counts('C', parents=['A', 'B']).values.tolist(), [[0, 0, 0, 0], [1, 0, 0, 0]]) def test_test_conditional_independence(self): data = pd.DataFrame(np.random.randint(0, 2, size=(1000, 4)), columns=list('ABCD')) data['E'] = data['A'] + data['B'] + data['C'] est = BaseEstimator(data) self.assertGreater(est.test_conditional_independence('A', 'C')[1], 0.01) # independent self.assertGreater(est.test_conditional_independence('A', 'B', 'D')[1], 0.01) # independent self.assertLess(est.test_conditional_independence('A', 'B', ['D', 'E'])[1], 0.01) # dependent def test_test_conditional_independence_titanic(self): est = BaseEstimator(self.titanic_data) np.testing.assert_almost_equal(est.test_conditional_independence('Embarked', 'Sex'), (13.355630515001746, 0.020264556044311655, True)) np.testing.assert_almost_equal(est.test_conditional_independence('Pclass', 'Survived', ['Embarked']), (96.403283942888635, 4.1082315854166553e-13, True)) np.testing.assert_almost_equal(est.test_conditional_independence('Embarked', 'Survived', ["Sex", "Pclass"]), (21.537481934494085, 0.96380273702382602, True)) # insufficient data test commented out, because generates warning # self.assertEqual(est.test_conditional_independence('Sex', 'Survived', ["Age", "Embarked"]), # (235.51133052530713, 0.99999999683394869, False)) def tearDown(self): del self.d1
mit
mehdidc/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
421
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
ebressert/ScipyNumpy_book_examples
python_examples/scikits_411_ex1.py
2
1604
import numpy as np import matplotlib.pyplot as plt import scipy.ndimage as ndimage import skimage.filter as skif # Generating data points with a non-uniform background x = np.random.uniform(low=0, high=100, size=20).astype(int) y = np.random.uniform(low=0, high=100, size=20).astype(int) # Creating image with non-uniform background func = lambda x, y: x ** 2 + y ** 2 grid_x, grid_y = np.mgrid[-1:1:100j, -2:2:100j] bkg = func(grid_x, grid_y) bkg = bkg / np.max(bkg) # Creating points clean = np.zeros((100, 100)) clean[(x, y)] += 5 clean = ndimage.gaussian_filter(clean, 3) clean = clean / np.max(clean) # Combining both the non-uniform background # and points fimg = bkg + clean fimg = fimg / np.max(fimg) # Defining minimum neighboring size of objects block_size = 3 # Adaptive threshold function which returns image # map of structures that are different relative to # background adaptive_cut = skif.threshold_adaptive(fimg, block_size, offset=0) # Global threshold global_thresh = skif.threshold_otsu(fimg) global_cut = fimg > global_thresh # Creating figure to highlight difference between # adaptive and global threshold methods fig = plt.figure(figsize=(8, 4)) fig.subplots_adjust(hspace=0.05, wspace=0.05) ax1 = fig.add_subplot(131) ax1.imshow(fimg) ax1.xaxis.set_visible(False) ax1.yaxis.set_visible(False) ax2 = fig.add_subplot(132) ax2.imshow(global_cut) ax2.xaxis.set_visible(False) ax2.yaxis.set_visible(False) ax3 = fig.add_subplot(133) ax3.imshow(adaptive_cut) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) fig.savefig('scikits_411_ex1.pdf', bbox_inches='tight')
mit
ldirer/scikit-learn
sklearn/feature_selection/tests/test_base.py
98
3681
import numpy as np from scipy import sparse as sp from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array from sklearn.utils.testing import assert_raises, assert_equal class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform([feature_names]) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform([feature_names_t]) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
rothnic/bokeh
bokeh/charts/builder/tests/test_timeseries_builder.py
33
2825
""" This is the Bokeh charts testing interface. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from collections import OrderedDict import datetime import unittest import numpy as np from numpy.testing import assert_array_equal import pandas as pd from bokeh.charts import TimeSeries from bokeh.charts.builder.tests._utils import create_chart #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class TestTimeSeries(unittest.TestCase): def test_supported_input(self): now = datetime.datetime.now() delta = datetime.timedelta(minutes=1) dts = [now + delta*i for i in range(5)] xyvalues = OrderedDict({'Date': dts}) y_python = xyvalues['python'] = [2, 3, 7, 5, 26] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26] xyvaluesdf = pd.DataFrame(xyvalues) groups = ['python', 'pypy', 'jython'] for i, _xy in enumerate([xyvalues, xyvaluesdf]): ts = create_chart(TimeSeries, _xy, index='Date') builder = ts._builders[0] self.assertEqual(builder._groups, groups) assert_array_equal(builder._data['x_python'], dts) assert_array_equal(builder._data['x_pypy'], dts) assert_array_equal(builder._data['x_jython'], dts) assert_array_equal(builder._data['y_python'], y_python) assert_array_equal(builder._data['y_pypy'], y_pypy) assert_array_equal(builder._data['y_jython'], y_jython) lvalues = [[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]] for _xy in [lvalues, np.array(lvalues)]: hm = create_chart(TimeSeries, _xy, index=dts) builder = hm._builders[0] self.assertEqual(builder._groups, ['0', '1', '2']) assert_array_equal(builder._data['x_0'], dts) assert_array_equal(builder._data['x_1'], dts) assert_array_equal(builder._data['x_2'], dts) assert_array_equal(builder._data['y_0'], y_python) assert_array_equal(builder._data['y_1'], y_pypy) assert_array_equal(builder._data['y_2'], y_jython)
bsd-3-clause
jottenlips/aima-python
submissions/Miles/myNN.py
13
3799
from sklearn import datasets from sklearn.neural_network import MLPClassifier import traceback ''' My bayes into Neural Networks ''' from submissions.Miles import food class DataFrame: data = [] # grid of floating point numbers feature_names = [] # column names target = [] # list of the target value target_names = [] # target labels foodFF = DataFrame() # what I pass on to examples foodFF.data = [] targetData = [] ''' Extract data from the CORGIS food. ''' food = food.get_reports() for info in food: try: # item = str(info["Category"]) item = float(info["Data"]["Fat"]["Saturated Fat"]) targetData.append(item) fiber = float(info["Data"]["Fiber"]) carbohydrate = float(info["Data"]["Carboydrate"]) # they misspelled carbohydrates LOL water = float(info["Data"]["Water"]) vitamin = float(info["Data"]["Vitamins"]["Vitamin C"]) foodFF.data.append([fiber, carbohydrate, water, vitamin]) except: traceback.print_exc() foodFF.feature_names = [ 'Fiber', 'Carbohydrates', 'Water', 'Vitamin C', ] ''' Build the target list, one entry for each row in the input frame. The Naive Bayesian network is a classifier, i.e. it sorts data points into bins. The best it can do to estimate a continuous variable is to break the domain into segments, and predict the segment into which the variable's value will fall. In this example, I'm breaking Trump's % into two arbitrary segments. ''' foodFF.target = [] def foodTarget(percentage): if percentage > 10: return 1 return 0 for item2 in targetData: # choose the target target_t = foodTarget(item2) foodFF.target.append(target_t) # comparing the fat contents of a food to other contents of same food foodFF.target_names = [ 'Saturated Fat is <= 10%', 'Saturated Fat is > 10%', # 'Butter', # 'Milk', # 'Cheese' ] Examples = { 'Food': foodFF, } # start the new info for neural networks ''' Make a custom classifier, ''' mlpc = MLPClassifier( hidden_layer_sizes = (100,), activation = 'identity', solver='lbfgs', # 'adam', # alpha = 0.0001, batch_size='auto', learning_rate = 'adaptive', # 'constant', # power_t = 0.5, max_iter = 1000, # 200, # shuffle = True, # random_state = None, # tol = 1e-4, # verbose = False, # warm_start = False, # momentum = 0.9, # nesterovs_momentum = True, # early_stopping = False, # validation_fraction = 0.1, # beta_1 = 0.9, # beta_2 = 0.999, # epsilon = 1e-8, ) ''' Try scaling the data. ''' foodScaled = DataFrame() def setupScales(grid): global min, max min = list(grid[0]) max = list(grid[0]) for row in range(1, len(grid)): for col in range(len(grid[row])): cell = grid[row][col] if cell < min[col]: min[col] = cell if cell > max[col]: max[col] = cell def scaleGrid(grid): newGrid = [] for row in range(len(grid)): newRow = [] for col in range(len(grid[row])): try: cell = grid[row][col] scaled = (cell - min[col]) \ / (max[col] - min[col]) newRow.append(scaled) except: pass newGrid.append(newRow) return newGrid setupScales(foodFF.data) foodScaled.data = scaleGrid(foodFF.data) foodScaled.feature_names = foodFF.feature_names foodScaled.target = foodFF.target foodScaled.target_names = foodFF.target_names Examples = { 'FoodDefault': { 'frame': foodFF, }, 'FoodSGD': { 'frame': foodFF, 'mlpc': mlpc }, 'FoodScaled': { 'frame': foodScaled, }, }
mit
scarrazza/smpdf
extrascripts/smallthing.py
1
1171
import shelve from smpdflib.initialization import init_app if __name__ == '__main__': init_app() import matplotlib.pyplot as plt from smpdflib.core import make_observable, PDF, produce_results, results_table from smpdflib.plots import plot_bindist #Db folder should exist... db = shelve.open('db/db') to_plot = {make_observable('data/applgrid/CMSWCHARM-WpCb-eta4.root', order=1) : 4, make_observable('data/applgrid/APPLgrid-LHCb-Z0-ee_arXiv1212.4260-eta34.root', order=1) : 8, } pdfs = [PDF('MC900_nnlo', label="legendtext"), PDF('CMC100_nnlo', label="other"), PDF('MCH_nnlo_100', label="another") ] if __name__ == '__main__': for obs, bin in to_plot.items(): results = produce_results(pdfs, [obs], db=db) obs_table = results_table(results) for (obs,b), fig in plot_bindist(obs_table, bin, base_pdf = pdfs[0]): ax = fig.axes[0] ax.set_xlabel("My X label") ax.set_ylabel("MY Y label") ax.set_title("My title") path = "%s_bin_%s.pdf" % (obs, b+1) fig.savefig(path) plt.close(fig)
gpl-2.0
nomadcube/scikit-learn
sklearn/tests/test_qda.py
155
3481
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn import qda # Data is just 6 separable points in the plane X = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y3 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X1 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8,3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = qda.QDA() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) # Assure that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y) # Test probas estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X, y3).predict(X) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X, y4) def test_qda_priors(): clf = qda.QDA() y_pred = clf.fit(X, y).predict(X) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = qda.QDA(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X, y).predict(X) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = qda.QDA().fit(X, y) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = qda.QDA().fit(X, y, store_covariances=True) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = qda.QDA() with ignore_warnings(): y_pred = clf.fit(X2, y).predict(X2) assert_true(np.any(y_pred != y)) # adding a little regularization fixes the problem clf = qda.QDA(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y) y_pred = clf.predict(X2) assert_array_equal(y_pred, y) # Case n_samples_in_a_class < n_features clf = qda.QDA(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5)
bsd-3-clause
hammerlab/pyensembl
test/test_memory_cache.py
1
3401
from __future__ import absolute_import import tempfile from pyensembl import MemoryCache import pandas as pd from nose.tools import raises memory_cache = MemoryCache() class Counter(object): """ Use this class to count how many times a function gets called by cached_object and cached_dataframe. """ def __init__(self): self.count = 0 def increment(self): self.count += 1 return self.count def increment_dataframe(self): value = self.increment() return pd.DataFrame({'x': [value]}) def test_cached_object_with_tempfile(): """ test_cached_object_with_tempfile : A temporary file exists before calling into compute_cache.cached_object but is empty, should be treated as if result has never been computed before (rather than trying to load the empty file). """ counter = Counter() with tempfile.NamedTemporaryFile() as f: # call repeatedly to test the hot and cold cache logic result = memory_cache.cached_object( f.name, compute_fn=counter.increment) assert result == 1, "Expected result=1, got %s" % (result,) assert counter.count == 1, \ "Expected compute_fn to be called once, got %s" % (counter.count,) def test_cached_dataframe_with_tempfile(): """ test_cached_dataframe_with_tempfile : A temporary file exists before calling into compute_cache.cached_dataframe but is empty, should be treated as if result has never been computed before (rather than trying to load the empty file). """ counter = Counter() with tempfile.NamedTemporaryFile(suffix='.csv') as f: # call repeatedly to test hot and cold cache logic for _ in range(2): df = memory_cache.cached_dataframe( f.name, compute_fn=counter.increment_dataframe) # get counter value from inside of dataframe result = df['x'].ix[0] assert result == 1, \ "Expected result=1, got %s" % (result,) assert counter.count == 1, \ "Expected compute_fn to be called once, got %s" % ( counter.count,) def test_cached_dataframe_returns_correct_type(): def make_a_dataframe(): return pd.DataFrame({'x': [0, 1, 2]}) with tempfile.NamedTemporaryFile(suffix='.csv') as f: # call repeatedly to test the cold and hot cache logic for _ in range(2): df = memory_cache.cached_dataframe( f.name, compute_fn=make_a_dataframe) assert isinstance(df, pd.DataFrame), \ "Expected DataFrame, got %s : %s" % (df, type(df)) def test_cached_object_with_list_returns_correct_type(): def make_a_list(): return [1, 2, 3] with tempfile.NamedTemporaryFile() as f: # call repeatedly to test the cold and hot cache logic for _ in range(2): df = memory_cache.cached_object( f.name, compute_fn=make_a_list) assert isinstance(df, list), \ "Expected list, got %s : %s" % (df, type(df)) @raises(Exception) def test_dataframe_path_must_be_csv(): # compute_cache should raise an exception when filename doesn't # end with .csv extension memory_cache.cached_dataframe( csv_path="tempfile_not_csv", compute_fn=lambda _: pd.DataFrame({'x': []}))
apache-2.0
bloyl/mne-python
tutorials/time-freq/50_ssvep.py
10
27044
""" .. _tut-ssvep: ========================================================== Frequency-tagging: Basic analysis of an SSVEP/vSSR dataset ========================================================== In this tutorial we compute the frequency spectrum and quantify signal-to-noise ratio (SNR) at a target frequency in EEG data recorded during fast periodic visual stimulation (FPVS) at 12 Hz and 15 Hz in different trials. Extracting SNR at stimulation frequency is a simple way to quantify frequency tagged responses in MEEG (a.k.a. steady state visually evoked potentials, SSVEP, or visual steady-state responses, vSSR in the visual domain, or auditory steady-state responses, ASSR in the auditory domain). For a general introduction to the method see `Norcia et al. (2015) <https://doi.org/10.1167/15.6.4>`_ for the visual domain, and `Picton et al. (2003) <https://doi.org/10.3109/14992020309101316>`_ for the auditory domain. **Data and outline:** We use a simple example dataset with frequency tagged visual stimulation: N=2 participants observed checkerboard patterns inverting with a constant frequency of either 12.0 Hz of 15.0 Hz. 32 channels wet EEG was recorded. (see :ref:`ssvep-dataset` for more information). We will visualize both the power-spectral density (PSD) and the SNR spectrum of the epoched data, extract SNR at stimulation frequency, plot the topography of the response, and statistically separate 12 Hz and 15 Hz responses in the different trials. Since the evoked response is mainly generated in early visual areas of the brain the statistical analysis will be carried out on an occipital ROI. .. contents:: Outline :depth: 2 """ # noqa: E501 # Authors: Dominik Welke <[email protected]> # Evgenii Kalenkovich <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne import numpy as np from scipy.stats import ttest_rel ############################################################################### # Data preprocessing # ------------------ # Due to a generally high SNR in SSVEP/vSSR, typical preprocessing steps # are considered optional. This doesn't mean, that a proper cleaning would not # increase your signal quality! # # * Raw data have FCz reference, so we will apply common-average rereferencing. # # * We will apply a 0.1 highpass filter. # # * Lastly, we will cut the data in 20 s epochs corresponding to the trials. # # # Load raw data data_path = mne.datasets.ssvep.data_path() bids_fname = data_path + '/sub-02/ses-01/eeg/sub-02_ses-01_task-ssvep_eeg.vhdr' raw = mne.io.read_raw_brainvision(bids_fname, preload=True, verbose=False) raw.info['line_freq'] = 50. # Set montage montage = mne.channels.make_standard_montage('easycap-M1') raw.set_montage(montage, verbose=False) # Set common average reference raw.set_eeg_reference('average', projection=False, verbose=False) # Apply bandpass filter raw.filter(l_freq=0.1, h_freq=None, fir_design='firwin', verbose=False) # Construct epochs event_id = { '12hz': 255, '15hz': 155 } events, _ = mne.events_from_annotations(raw, verbose=False) raw.info["events"] = events tmin, tmax = -1., 20. # in s baseline = None epochs = mne.Epochs( raw, events=events, event_id=[event_id['12hz'], event_id['15hz']], tmin=tmin, tmax=tmax, baseline=baseline, verbose=False) ############################################################################### # Frequency analysis # ------------------ # Now we compute the frequency spectrum of the EEG data. # You will already see the peaks at the stimulation frequencies and some of # their harmonics, without any further processing. # # The 'classical' PSD plot will be compared to a plot of the SNR spectrum. # SNR will be computed as a ratio of the power in a given frequency bin # to the average power in its neighboring bins. # This procedure has two advantages over using the raw PSD: # # * it normalizes the spectrum and accounts for 1/f power decay. # # * power modulations which are not very narrow band will disappear. # # Calculate power spectral density (PSD) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # The frequency spectrum will be computed using Fast Fourier transform (FFT). # This seems to be common practice in the steady-state literature and is # based on the exact knowledge of the stimulus and the assumed response - # especially in terms of it's stability over time. # For a discussion see e.g. # `Bach & Meigen (1999) <https://doi.org/10.1023/A:1002648202420>`_ # # We will exclude the first second of each trial from the analysis: # # * steady-state response often take a while to stabilize, and the # transient phase in the beginning can distort the signal estimate. # # * this section of data is expected to be dominated by responses related to # the stimulus onset, and we are not interested in this. # # In MNE we call plain FFT as a special case of Welch's method, with only a # single Welch window spanning the entire trial and no specific windowing # function (i.e. applying a boxcar window). # tmin = 1. tmax = 20. fmin = 1. fmax = 90. sfreq = epochs.info['sfreq'] psds, freqs = mne.time_frequency.psd_welch( epochs, n_fft=int(sfreq * (tmax - tmin)), n_overlap=0, n_per_seg=None, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax, window='boxcar', verbose=False) ############################################################################### # Calculate signal to noise ratio (SNR) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # SNR - as we define it here - is a measure of relative power: # it's the ratio of power in a given frequency bin - the 'signal' - # to a 'noise' baseline - the average power in the surrounding frequency bins. # This approach was initially proposed by # `Meigen & Bach (1999) <https://doi.org/10.1023/A:1002097208337>`_ # # Hence, we need to set some parameters for this baseline - how many # neighboring bins should be taken for this computation, and do we want to skip # the direct neighbors (this can make sense if the stimulation frequency is not # super constant, or frequency bands are very narrow). # # The function below does what we want. # def snr_spectrum(psd, noise_n_neighbor_freqs=1, noise_skip_neighbor_freqs=1): """Compute SNR spectrum from PSD spectrum using convolution. Parameters ---------- psd : ndarray, shape ([n_trials, n_channels,] n_frequency_bins) Data object containing PSD values. Works with arrays as produced by MNE's PSD functions or channel/trial subsets. noise_n_neighbor_freqs : int Number of neighboring frequencies used to compute noise level. increment by one to add one frequency bin ON BOTH SIDES noise_skip_neighbor_freqs : int set this >=1 if you want to exclude the immediately neighboring frequency bins in noise level calculation Returns ------- snr : ndarray, shape ([n_trials, n_channels,] n_frequency_bins) Array containing SNR for all epochs, channels, frequency bins. NaN for frequencies on the edges, that do not have enough neighbors on one side to calculate SNR. """ # Construct a kernel that calculates the mean of the neighboring # frequencies averaging_kernel = np.concatenate(( np.ones(noise_n_neighbor_freqs), np.zeros(2 * noise_skip_neighbor_freqs + 1), np.ones(noise_n_neighbor_freqs))) averaging_kernel /= averaging_kernel.sum() # Calculate the mean of the neighboring frequencies by convolving with the # averaging kernel. mean_noise = np.apply_along_axis( lambda psd_: np.convolve(psd_, averaging_kernel, mode='valid'), axis=-1, arr=psd ) # The mean is not defined on the edges so we will pad it with nas. The # padding needs to be done for the last dimension only so we set it to # (0, 0) for the other ones. edge_width = noise_n_neighbor_freqs + noise_skip_neighbor_freqs pad_width = [(0, 0)] * (mean_noise.ndim - 1) + [(edge_width, edge_width)] mean_noise = np.pad( mean_noise, pad_width=pad_width, constant_values=np.nan ) return psd / mean_noise ############################################################################### # Now we call the function to compute our SNR spectrum. # # As described above, we have to define two parameters. # # * how many noise bins do we want? # # * do we want to skip the n bins directly next to the target bin? # # # Tweaking these parameters *can* drastically impact the resulting spectrum, # but mainly if you choose extremes. # E.g. if you'd skip very many neighboring bins, broad band power modulations # (such as the alpha peak) should reappear in the SNR spectrum. # On the other hand, if you skip none you might miss or smear peaks if the # induced power is distributed over two or more frequency bins (e.g. if the # stimulation frequency isn't perfectly constant, or you have very narrow # bins). # # Here, we want to compare power at each bin with average power of the # **three neighboring bins** (on each side) and **skip one bin** directly next # to it. # snrs = snr_spectrum(psds, noise_n_neighbor_freqs=3, noise_skip_neighbor_freqs=1) ############################################################################## # Plot PSD and SNR spectra # ^^^^^^^^^^^^^^^^^^^^^^^^ # Now we will plot grand average PSD (in blue) and SNR (in red) ± sd # for every frequency bin. # PSD is plotted on a log scale. # fig, axes = plt.subplots(2, 1, sharex='all', sharey='none', figsize=(8, 5)) freq_range = range(np.where(np.floor(freqs) == 1.)[0][0], np.where(np.ceil(freqs) == fmax - 1)[0][0]) psds_plot = 10 * np.log10(psds) psds_mean = psds_plot.mean(axis=(0, 1))[freq_range] psds_std = psds_plot.std(axis=(0, 1))[freq_range] axes[0].plot(freqs[freq_range], psds_mean, color='b') axes[0].fill_between( freqs[freq_range], psds_mean - psds_std, psds_mean + psds_std, color='b', alpha=.2) axes[0].set(title="PSD spectrum", ylabel='Power Spectral Density [dB]') # SNR spectrum snr_mean = snrs.mean(axis=(0, 1))[freq_range] snr_std = snrs.std(axis=(0, 1))[freq_range] axes[1].plot(freqs[freq_range], snr_mean, color='r') axes[1].fill_between( freqs[freq_range], snr_mean - snr_std, snr_mean + snr_std, color='r', alpha=.2) axes[1].set( title="SNR spectrum", xlabel='Frequency [Hz]', ylabel='SNR', ylim=[-2, 30], xlim=[fmin, fmax]) fig.show() ############################################################################### # You can see that the peaks at the stimulation frequencies (12 Hz, 15 Hz) # and their harmonics are visible in both plots (just as the line noise at # 50 Hz). # Yet, the SNR spectrum shows them more prominently as peaks from a # noisy but more or less constant baseline of SNR = 1. # You can further see that the SNR processing removes any broad-band power # differences (such as the increased power in alpha band around 10 Hz), # and also removes the 1/f decay in the PSD. # # Note, that while the SNR plot implies the possibility of values below 0 # (mean minus sd) such values do not make sense. # Each SNR value is a ratio of positive PSD values, and the lowest possible PSD # value is 0 (negative Y-axis values in the upper panel only result from # plotting PSD on a log scale). # Hence SNR values must be positive and can minimally go towards 0. # # Extract SNR values at the stimulation frequency # ----------------------------------------------- # # Our processing yielded a large array of many SNR values for each trial x # channel x frequency-bin of the PSD array. # # For statistical analysis we obviously need to define specific subsets of this # array. First of all, we are only interested in SNR at the stimulation # frequency, but we also want to restrict the analysis to a spatial ROI. # Lastly, answering your interesting research questions will probably rely on # comparing SNR in different trials. # # Therefore we will have to find the indices of trials, channels, etc. # Alternatively, one could subselect the trials already at the epoching step, # using MNE's event information, and process different epoch structures # separately. # # Let's only have a look at the trials with 12 Hz stimulation, for now. # # define stimulation frequency stim_freq = 12. ############################################################################### # Get index for the stimulation frequency (12 Hz) # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Ideally, there would be a bin with the stimulation frequency exactly in its # center. However, depending on your Spectral decomposition this is not # always the case. We will find the bin closest to it - this one should contain # our frequency tagged response. # # find index of frequency bin closest to stimulation frequency i_bin_12hz = np.argmin(abs(freqs - stim_freq)) # could be updated to support multiple frequencies # for later, we will already find the 15 Hz bin and the 1st and 2nd harmonic # for both. i_bin_24hz = np.argmin(abs(freqs - 24)) i_bin_36hz = np.argmin(abs(freqs - 36)) i_bin_15hz = np.argmin(abs(freqs - 15)) i_bin_30hz = np.argmin(abs(freqs - 30)) i_bin_45hz = np.argmin(abs(freqs - 45)) ############################################################################### # Get indices for the different trial types # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ i_trial_12hz = np.where(epochs.events[:, 2] == event_id['12hz'])[0] i_trial_15hz = np.where(epochs.events[:, 2] == event_id['15hz'])[0] ############################################################################### # Get indices of EEG channels forming the ROI # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Define different ROIs roi_vis = ['POz', 'Oz', 'O1', 'O2', 'PO3', 'PO4', 'PO7', 'PO8', 'PO9', 'PO10', 'O9', 'O10'] # visual roi # Find corresponding indices using mne.pick_types() picks_roi_vis = mne.pick_types(epochs.info, eeg=True, stim=False, exclude='bads', selection=roi_vis) ############################################################################### # Apply the subset, and check the result # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # Now we simply need to apply our selection and yield a result. Therefore, # we typically report grand average SNR over the subselection. # # In this tutorial we don't verify the presence of a neural response. # This is commonly done in the ASSR literature where SNR is # often lower. An F-test or Hotelling T² would be # appropriate for this purpose. snrs_target = snrs[i_trial_12hz, :, i_bin_12hz][:, picks_roi_vis] print("sub 2, 12 Hz trials, SNR at 12 Hz") print(f'average SNR (occipital ROI): {snrs_target.mean()}') ############################################################################## # Topography of the vSSR # ---------------------- # But wait... # As described in the intro, we have decided *a priori* to work with average # SNR over a subset of occipital channels - a visual region of interest (ROI) # - because we expect SNR to be higher on these channels than in other # channels. # # Let's check out, whether this was a good decision! # # Here we will plot average SNR for each channel location as a topoplot. # Then we will do a simple paired T-test to check, whether average SNRs over # the two sets of channels are significantly different. # # get average SNR at 12 Hz for ALL channels snrs_12hz = snrs[i_trial_12hz, :, i_bin_12hz] snrs_12hz_chaverage = snrs_12hz.mean(axis=0) # plot SNR topography fig, ax = plt.subplots(1) mne.viz.plot_topomap(snrs_12hz_chaverage, epochs.info, vmin=1., axes=ax) print("sub 2, 12 Hz trials, SNR at 12 Hz") print("average SNR (all channels): %f" % snrs_12hz_chaverage.mean()) print("average SNR (occipital ROI): %f" % snrs_target.mean()) tstat_roi_vs_scalp = \ ttest_rel(snrs_target.mean(axis=1), snrs_12hz.mean(axis=1)) print("12 Hz SNR in occipital ROI is significantly larger than 12 Hz SNR over " "all channels: t = %.3f, p = %f" % tstat_roi_vs_scalp) ############################################################################## # We can see, that 1) this participant indeed exhibits a cluster of channels # with high SNR in the occipital region and 2) that the average SNR over all # channels is smaller than the average of the visual ROI computed above. # The difference is statistically significant. Great! # # Such a topography plot can be a nice tool to explore and play with your data # - e.g. you could try how changing the reference will affect the spatial # distribution of SNR values. # # However, we also wanted to show this plot to point at a potential # problem with frequency-tagged (or any other brain imaging) data: # there are many channels and somewhere you will likely find some # statistically significant effect. # It is very easy - even unintended - to end up double-dipping or p-hacking. # So if you want to work with an ROI or individual channels, ideally select # them *a priori* - before collecting or looking at the data - and preregister # this decision so people will believe you. # If you end up selecting an ROI or individual channel for reporting *because # this channel or ROI shows an effect*, e.g. in an explorative analysis, this # is also fine but make it transparently and correct for multiple comparison. # # Statistical separation of 12 Hz and 15 Hz vSSR # ---------------------------------------------- # After this little detour into open science, let's move on and # do the analyses we actually wanted to do: # # We will show that we can easily detect and discriminate the brains responses # in the trials with different stimulation frequencies. # # In the frequency and SNR spectrum plot above, we had all trials mixed up. # Now we will extract 12 and 15 Hz SNR in both types of trials individually, # and compare the values with a simple t-test. # We will also extract SNR of the 1st and 2nd harmonic for both stimulation # frequencies. These are often reported as well and can show interesting # interactions. # snrs_roi = snrs[:, picks_roi_vis, :].mean(axis=1) freq_plot = [12, 15, 24, 30, 36, 45] color_plot = [ 'darkblue', 'darkgreen', 'mediumblue', 'green', 'blue', 'seagreen' ] xpos_plot = [-5. / 12, -3. / 12, -1. / 12, 1. / 12, 3. / 12, 5. / 12] fig, ax = plt.subplots() labels = ['12 Hz trials', '15 Hz trials'] x = np.arange(len(labels)) # the label locations width = 0.6 # the width of the bars res = dict() # loop to plot SNRs at stimulation frequencies and harmonics for i, f in enumerate(freq_plot): # extract snrs stim_12hz_tmp = \ snrs_roi[i_trial_12hz, np.argmin(abs(freqs - f))] stim_15hz_tmp = \ snrs_roi[i_trial_15hz, np.argmin(abs(freqs - f))] SNR_tmp = [stim_12hz_tmp.mean(), stim_15hz_tmp.mean()] # plot (with std) ax.bar( x + width * xpos_plot[i], SNR_tmp, width / len(freq_plot), yerr=np.std(SNR_tmp), label='%i Hz SNR' % f, color=color_plot[i]) # store results for statistical comparison res['stim_12hz_snrs_%ihz' % f] = stim_12hz_tmp res['stim_15hz_snrs_%ihz' % f] = stim_15hz_tmp # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('SNR') ax.set_title('Average SNR at target frequencies') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(['%i Hz' % f for f in freq_plot], title='SNR at:') ax.set_ylim([0, 70]) ax.axhline(1, ls='--', c='r') fig.show() ############################################################################### # As you can easily see there are striking differences between the trials. # Let's verify this using a series of two-tailed paired T-Tests. # # Compare 12 Hz and 15 Hz SNR in trials after averaging over channels tstat_12hz_trial_stim = \ ttest_rel(res['stim_12hz_snrs_12hz'], res['stim_12hz_snrs_15hz']) print("12 Hz Trials: 12 Hz SNR is significantly higher than 15 Hz SNR" ": t = %.3f, p = %f" % tstat_12hz_trial_stim) tstat_12hz_trial_1st_harmonic = \ ttest_rel(res['stim_12hz_snrs_24hz'], res['stim_12hz_snrs_30hz']) print("12 Hz Trials: 24 Hz SNR is significantly higher than 30 Hz SNR" ": t = %.3f, p = %f" % tstat_12hz_trial_1st_harmonic) tstat_12hz_trial_2nd_harmonic = \ ttest_rel(res['stim_12hz_snrs_36hz'], res['stim_12hz_snrs_45hz']) print("12 Hz Trials: 36 Hz SNR is significantly higher than 45 Hz SNR" ": t = %.3f, p = %f" % tstat_12hz_trial_2nd_harmonic) print() tstat_15hz_trial_stim = \ ttest_rel(res['stim_15hz_snrs_12hz'], res['stim_15hz_snrs_15hz']) print("15 Hz trials: 12 Hz SNR is significantly lower than 15 Hz SNR" ": t = %.3f, p = %f" % tstat_15hz_trial_stim) tstat_15hz_trial_1st_harmonic = \ ttest_rel(res['stim_15hz_snrs_24hz'], res['stim_15hz_snrs_30hz']) print("15 Hz trials: 24 Hz SNR is significantly lower than 30 Hz SNR" ": t = %.3f, p = %f" % tstat_15hz_trial_1st_harmonic) tstat_15hz_trial_2nd_harmonic = \ ttest_rel(res['stim_15hz_snrs_36hz'], res['stim_15hz_snrs_45hz']) print("15 Hz trials: 36 Hz SNR is significantly lower than 45 Hz SNR" ": t = %.3f, p = %f" % tstat_15hz_trial_2nd_harmonic) ############################################################################## # Debriefing # ---------- # So that's it, we hope you enjoyed our little tour through this example # dataset. # # As you could see, frequency-tagging is a very powerful tool that can yield # very high signal to noise ratios and effect sizes that enable you to detect # brain responses even within a single participant and single trials of only # a few seconds duration. # # Bonus exercises # --------------- # For the overly motivated amongst you, let's see what else we can show with # these data. # # Using the PSD function as implemented in MNE makes it very easy to change # the amount of data that is actually used in the spectrum # estimation. # # Here we employ this to show you some features of frequency # tagging data that you might or might not have already intuitively expected: # # Effect of trial duration on SNR # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # First we will simulate shorter trials by taking only the first x s of our 20s # trials (2, 4, 6, 8, ..., 20 s), and compute the SNR using a FFT window # that covers the entire epoch: # stim_bandwidth = .5 # shorten data and welch window window_lengths = [i for i in range(2, 21, 2)] window_snrs = [[]] * len(window_lengths) for i_win, win in enumerate(window_lengths): # compute spectrogram windowed_psd, windowed_freqs = mne.time_frequency.psd_welch( epochs[str(event_id['12hz'])], n_fft=int(sfreq * win), n_overlap=0, n_per_seg=None, tmin=0, tmax=win, window='boxcar', fmin=fmin, fmax=fmax, verbose=False) # define a bandwidth of 1 Hz around stimfreq for SNR computation bin_width = windowed_freqs[1] - windowed_freqs[0] skip_neighbor_freqs = \ round((stim_bandwidth / 2) / bin_width - bin_width / 2. - .5) if ( bin_width < stim_bandwidth) else 0 n_neighbor_freqs = \ int((sum((windowed_freqs <= 13) & (windowed_freqs >= 11) ) - 1 - 2 * skip_neighbor_freqs) / 2) # compute snr windowed_snrs = \ snr_spectrum( windowed_psd, noise_n_neighbor_freqs=n_neighbor_freqs if ( n_neighbor_freqs > 0 ) else 1, noise_skip_neighbor_freqs=skip_neighbor_freqs) window_snrs[i_win] = \ windowed_snrs[ :, picks_roi_vis, np.argmin( abs(windowed_freqs - 12.))].mean(axis=1) fig, ax = plt.subplots(1) ax.boxplot(window_snrs, labels=window_lengths, vert=True) ax.set(title='Effect of trial duration on 12 Hz SNR', ylabel='Average SNR', xlabel='Trial duration [s]') ax.axhline(1, ls='--', c='r') fig.show() ############################################################################## # You can see that the signal estimate / our SNR measure increases with the # trial duration. # # This should be easy to understand: in longer recordings there is simply # more signal (one second of additional stimulation adds, in our case, 12 # cycles of signal) while the noise is (hopefully) stochastic and not locked # to the stimulation frequency. # In other words: with more data the signal term grows faster than the noise # term. # # We can further see that the very short trials with FFT windows < 2-3s are not # great - here we've either hit the noise floor and/or the transient response # at the trial onset covers too much of the trial. # # Again, this tutorial doesn't statistically test for the presence of a neural # response, but an F-test or Hotelling T² would be appropriate for this # purpose. # # Time resolved SNR # ^^^^^^^^^^^^^^^^^ # ..and finally we can trick MNE's PSD implementation to make it a # sliding window analysis and come up with a time resolved SNR measure. # This will reveal whether a participant blinked or scratched their head.. # # Each of the ten trials is coded with a different color in the plot below. # # 3s sliding window window_length = 4 window_starts = [i for i in range(20 - window_length)] window_snrs = [[]] * len(window_starts) for i_win, win in enumerate(window_starts): # compute spectrogram windowed_psd, windowed_freqs = mne.time_frequency.psd_welch( epochs[str(event_id['12hz'])], n_fft=int(sfreq * window_length) - 1, n_overlap=0, n_per_seg=None, window='boxcar', tmin=win, tmax=win + window_length, fmin=fmin, fmax=fmax, verbose=False) # define a bandwidth of 1 Hz around stimfreq for SNR computation bin_width = windowed_freqs[1] - windowed_freqs[0] skip_neighbor_freqs = \ round((stim_bandwidth / 2) / bin_width - bin_width / 2. - .5) if ( bin_width < stim_bandwidth) else 0 n_neighbor_freqs = \ int((sum((windowed_freqs <= 13) & (windowed_freqs >= 11) ) - 1 - 2 * skip_neighbor_freqs) / 2) # compute snr windowed_snrs = snr_spectrum( windowed_psd, noise_n_neighbor_freqs=n_neighbor_freqs if ( n_neighbor_freqs > 0) else 1, noise_skip_neighbor_freqs=skip_neighbor_freqs) window_snrs[i_win] = \ windowed_snrs[:, picks_roi_vis, np.argmin( abs(windowed_freqs - 12.))].mean(axis=1) fig, ax = plt.subplots(1) colors = plt.get_cmap('Greys')(np.linspace(0, 1, 10)) for i in range(10): ax.plot(window_starts, np.array(window_snrs)[:, i], color=colors[i]) ax.set(title='Time resolved 12 Hz SNR - %is sliding window' % window_length, ylabel='Average SNR', xlabel='t0 of analysis window [s]') ax.axhline(1, ls='--', c='r') ax.legend(['individual trials in greyscale']) fig.show() ############################################################################## # Well.. turns out this was a bit too optimistic ;) # # But seriously: this was a nice idea, but we've reached the limit of # what's possible with this single-subject example dataset. # However, there might be data, applications, or research questions # where such an analysis makes sense. #
bsd-3-clause
tum-ens/urbs
doc/conf.py
2
2044
# -*- coding: utf-8 -*- import sys, os sys.path.append(os.path.abspath('..')) import sphinx_rtd_theme html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] extensions = [ 'sphinx.ext.intersphinx', 'sphinx.ext.mathjax', 'sphinx.ext.autodoc', ] #templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' project = u'urbs' copyright = u'2014-2019, tum-ens' version = '1.0.0' release = '1.0.0' exclude_patterns = ['_build'] #pygments_style = 'sphinx' # HTML output htmlhelp_basename = 'urbsdoc' # LaTeX output LATEX_PREAMBLE = """ \setcounter{tocdepth}{2} """ latex_elements = { 'papersize': 'a4paper', 'pointsize': '11pt', 'preamble': LATEX_PREAMBLE } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'urbs.tex', u'urbs Documentation', u'tum-ens', 'manual'), ] # Manual page output # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'urbs', u'urbs Documentation', [u'tum-ens'], 1) ] # Texinfo output # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'urbs', u'urbs Documentation', u'tum-ens', 'urbs', 'A linear optimisation model for distributed energy systems', 'Miscellaneous'), ] # Epub output # Bibliographic Dublin Core info. epub_title = u'urbs' epub_author = u'tum-ens' epub_publisher = u'tum-ens' epub_copyright = u'2014-2019, tum-ens' epub_exclude_files = ['search.html'] # Intersphinx # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'http://docs.python.org/': None, 'pandas': ('http://pandas.pydata.org/pandas-docs/stable/', None), 'matplotlib': ('http://matplotlib.org/', None)}
gpl-3.0
xuewei4d/scikit-learn
sklearn/utils/_mocking.py
11
10359
import numpy as np from ..base import BaseEstimator, ClassifierMixin from .validation import _num_samples, check_array, check_is_fitted class ArraySlicingWrapper: """ Parameters ---------- array """ def __init__(self, array): self.array = array def __getitem__(self, aslice): return MockDataFrame(self.array[aslice]) class MockDataFrame: """ Parameters ---------- array """ # have shape and length but don't support indexing. def __init__(self, array): self.array = array self.values = array self.shape = array.shape self.ndim = array.ndim # ugly hack to make iloc work. self.iloc = ArraySlicingWrapper(array) def __len__(self): return len(self.array) def __array__(self, dtype=None): # Pandas data frames also are array-like: we want to make sure that # input validation in cross-validation does not try to call that # method. return self.array def __eq__(self, other): return MockDataFrame(self.array == other.array) def __ne__(self, other): return not self == other class CheckingClassifier(ClassifierMixin, BaseEstimator): """Dummy classifier to test pipelining and meta-estimators. Checks some property of `X` and `y`in fit / predict. This allows testing whether pipelines / cross-validation or metaestimators changed the input. Can also be used to check if `fit_params` are passed correctly, and to force a certain score to be returned. Parameters ---------- check_y, check_X : callable, default=None The callable used to validate `X` and `y`. These callable should return a bool where `False` will trigger an `AssertionError`. check_y_params, check_X_params : dict, default=None The optional parameters to pass to `check_X` and `check_y`. methods_to_check : "all" or list of str, default="all" The methods in which the checks should be applied. By default, all checks will be done on all methods (`fit`, `predict`, `predict_proba`, `decision_function` and `score`). foo_param : int, default=0 A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1 otherwise it is 0. expected_fit_params : list of str, default=None A list of the expected parameters given when calling `fit`. Attributes ---------- classes_ : int The classes seen during `fit`. n_features_in_ : int The number of features seen during `fit`. Examples -------- >>> from sklearn.utils._mocking import CheckingClassifier This helper allow to assert to specificities regarding `X` or `y`. In this case we expect `check_X` or `check_y` to return a boolean. >>> from sklearn.datasets import load_iris >>> X, y = load_iris(return_X_y=True) >>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4)) >>> clf.fit(X, y) CheckingClassifier(...) We can also provide a check which might raise an error. In this case, we expect `check_X` to return `X` and `check_y` to return `y`. >>> from sklearn.utils import check_array >>> clf = CheckingClassifier(check_X=check_array) >>> clf.fit(X, y) CheckingClassifier(...) """ def __init__(self, *, check_y=None, check_y_params=None, check_X=None, check_X_params=None, methods_to_check="all", foo_param=0, expected_fit_params=None): self.check_y = check_y self.check_y_params = check_y_params self.check_X = check_X self.check_X_params = check_X_params self.methods_to_check = methods_to_check self.foo_param = foo_param self.expected_fit_params = expected_fit_params def _check_X_y(self, X, y=None, should_be_fitted=True): """Validate X and y and make extra check. Parameters ---------- X : array-like of shape (n_samples, n_features) The data set. y : array-like of shape (n_samples), default=None The corresponding target, by default None. should_be_fitted : bool, default=True Whether or not the classifier should be already fitted. By default True. Returns ------- X, y """ if should_be_fitted: check_is_fitted(self) if self.check_X is not None: params = {} if self.check_X_params is None else self.check_X_params checked_X = self.check_X(X, **params) if isinstance(checked_X, (bool, np.bool_)): assert checked_X else: X = checked_X if y is not None and self.check_y is not None: params = {} if self.check_y_params is None else self.check_y_params checked_y = self.check_y(y, **params) if isinstance(checked_y, (bool, np.bool_)): assert checked_y else: y = checked_y return X, y def fit(self, X, y, **fit_params): """Fit classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like of shape (n_samples, n_outputs) or (n_samples,), \ default=None Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator Returns ------- self """ assert _num_samples(X) == _num_samples(y) if self.methods_to_check == "all" or "fit" in self.methods_to_check: X, y = self._check_X_y(X, y, should_be_fitted=False) self.n_features_in_ = np.shape(X)[1] self.classes_ = np.unique( check_array(y, ensure_2d=False, allow_nd=True) ) if self.expected_fit_params: missing = set(self.expected_fit_params) - set(fit_params) if missing: raise AssertionError( f'Expected fit parameter(s) {list(missing)} not seen.' ) for key, value in fit_params.items(): if _num_samples(value) != _num_samples(X): raise AssertionError( f'Fit parameter {key} has length {_num_samples(value)}' f'; expected {_num_samples(X)}.' ) return self def predict(self, X): """Predict the first class seen in `classes_`. Parameters ---------- X : array-like of shape (n_samples, n_features) The input data. Returns ------- preds : ndarray of shape (n_samples,) Predictions of the first class seens in `classes_`. """ if (self.methods_to_check == "all" or "predict" in self.methods_to_check): X, y = self._check_X_y(X) return self.classes_[np.zeros(_num_samples(X), dtype=int)] def predict_proba(self, X): """Predict probabilities for each class. Here, the dummy classifier will provide a probability of 1 for the first class of `classes_` and 0 otherwise. Parameters ---------- X : array-like of shape (n_samples, n_features) The input data. Returns ------- proba : ndarray of shape (n_samples, n_classes) The probabilities for each sample and class. """ if (self.methods_to_check == "all" or "predict_proba" in self.methods_to_check): X, y = self._check_X_y(X) proba = np.zeros((_num_samples(X), len(self.classes_))) proba[:, 0] = 1 return proba def decision_function(self, X): """Confidence score. Parameters ---------- X : array-like of shape (n_samples, n_features) The input data. Returns ------- decision : ndarray of shape (n_samples,) if n_classes == 2\ else (n_samples, n_classes) Confidence score. """ if (self.methods_to_check == "all" or "decision_function" in self.methods_to_check): X, y = self._check_X_y(X) if len(self.classes_) == 2: # for binary classifier, the confidence score is related to # classes_[1] and therefore should be null. return np.zeros(_num_samples(X)) else: decision = np.zeros((_num_samples(X), len(self.classes_))) decision[:, 0] = 1 return decision def score(self, X=None, Y=None): """Fake score. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data, where n_samples is the number of samples and n_features is the number of features. Y : array-like of shape (n_samples, n_output) or (n_samples,) Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 => score=1` otherwise `score=0`). """ if self.methods_to_check == "all" or "score" in self.methods_to_check: self._check_X_y(X, Y) if self.foo_param > 1: score = 1. else: score = 0. return score def _more_tags(self): return {'_skip_test': True, 'X_types': ['1dlabel']} class NoSampleWeightWrapper(BaseEstimator): """Wrap estimator which will not expose `sample_weight`. Parameters ---------- est : estimator, default=None The estimator to wrap. """ def __init__(self, est=None): self.est = est def fit(self, X, y): return self.est.fit(X, y) def predict(self, X): return self.est.predict(X) def predict_proba(self, X): return self.est.predict_proba(X) def _more_tags(self): return {'_skip_test': True}
bsd-3-clause
CharLLCH/Word2Vec
pycode/Word2Vec_BagOfCentroids.py
1
5355
#!/usr/bin/env python # Author: Angela Chapman # Date: 8/6/2014 # # This file contains code to accompany the Kaggle tutorial # "Deep learning goes to the movies". The code in this file # is for Part 2 of the tutorial and covers Bag of Centroids # for a Word2Vec model. This code assumes that you have already # run Word2Vec and saved a model called "300features_40minwords_10context" # # *************************************** # # Load a pre-trained model from gensim.models import Word2Vec from sklearn.cluster import KMeans import time import pandas as pd from sklearn.ensemble import RandomForestClassifier from bs4 import BeautifulSoup import re from nltk.corpus import stopwords import numpy as np import os from KaggleWord2VecUtility import KaggleWord2VecUtility # Define a function to create bags of centroids # def create_bag_of_centroids( wordlist, word_centroid_map ): # # The number of clusters is equal to the highest cluster index # in the word / centroid map num_centroids = max( word_centroid_map.values() ) + 1 # # Pre-allocate the bag of centroids vector (for speed) bag_of_centroids = np.zeros( num_centroids, dtype="float32" ) # # Loop over the words in the review. If the word is in the vocabulary, # find which cluster it belongs to, and increment that cluster count # by one for word in wordlist: if word in word_centroid_map: index = word_centroid_map[word] bag_of_centroids[index] += 1 # # Return the "bag of centroids" return bag_of_centroids if __name__ == '__main__': model = Word2Vec.load("../result/300features_40minwords_10context") # ****** Run k-means on the word vectors and print a few clusters # start = time.time() # Start time # Set "k" (num_clusters) to be 1/5th of the vocabulary size, or an # average of 5 words per cluster word_vectors = model.syn0 num_clusters = word_vectors.shape[0] / 5 # Initalize a k-means object and use it to extract centroids print "Running K means" kmeans_clustering = KMeans( n_clusters = num_clusters ) idx = kmeans_clustering.fit_predict( word_vectors ) # Get the end time and print how long the process took end = time.time() elapsed = end - start print "Time taken for K Means clustering: ", elapsed, "seconds." # Create a Word / Index dictionary, mapping each vocabulary word to # a cluster number word_centroid_map = dict(zip( model.index2word, idx )) # Print the first ten clusters for cluster in xrange(0,10): # # Print the cluster number print "\nCluster %d" % cluster # # Find all of the words for that cluster number, and print them out words = [] for i in xrange(0,len(word_centroid_map.values())): if( word_centroid_map.values()[i] == cluster ): words.append(word_centroid_map.keys()[i]) print words # Create clean_train_reviews and clean_test_reviews as we did before # # Read data from files #train = pd.read_csv( os.path.join(os.path.dirname(__file__), 'data', 'labeledTrainData.tsv'), header=0, delimiter="\t", quoting=3 ) #test = pd.read_csv(os.path.join(os.path.dirname(__file__), 'data', 'testData.tsv'), header=0, delimiter="\t", quoting=3 ) train = pd.read_csv("/home/charch/gitwork/Word2Vec/data/labeledTrainData.tsv", header=0, delimiter="\t", quoting=3 ) test = pd.read_csv("/home/charch/gitwork/Word2Vec/data/testData.tsv", header=0, delimiter="\t", quoting=3) print "Cleaning training reviews" clean_train_reviews = [] for review in train["review"]: clean_train_reviews.append( KaggleWord2VecUtility.review_to_wordlist( review, \ remove_stopwords=True )) print "Cleaning test reviews" clean_test_reviews = [] for review in test["review"]: clean_test_reviews.append( KaggleWord2VecUtility.review_to_wordlist( review, \ remove_stopwords=True )) # ****** Create bags of centroids # # Pre-allocate an array for the training set bags of centroids (for speed) train_centroids = np.zeros( (train["review"].size, num_clusters), \ dtype="float32" ) # Transform the training set reviews into bags of centroids counter = 0 for review in clean_train_reviews: train_centroids[counter] = create_bag_of_centroids( review, \ word_centroid_map ) counter += 1 # Repeat for test reviews test_centroids = np.zeros(( test["review"].size, num_clusters), \ dtype="float32" ) counter = 0 for review in clean_test_reviews: test_centroids[counter] = create_bag_of_centroids( review, \ word_centroid_map ) counter += 1 # ****** Fit a random forest and extract predictions # forest = RandomForestClassifier(n_estimators = 100) # Fitting the forest may take a few minutes print "Fitting a random forest to labeled training data..." forest = forest.fit(train_centroids,train["sentiment"]) result = forest.predict(test_centroids) # Write the test results output = pd.DataFrame(data={"id":test["id"], "sentiment":result}) output.to_csv("../result/BagOfCentroids.csv", index=False, quoting=3) print "Wrote BagOfCentroids.csv"
gpl-2.0
loli/semisupervisedforests
sklearn/tests/test_hmm.py
31
28118
from __future__ import print_function import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from unittest import TestCase from sklearn.datasets.samples_generator import make_spd_matrix from sklearn import hmm from sklearn import mixture from sklearn.utils.extmath import logsumexp from sklearn.utils import check_random_state from nose import SkipTest rng = np.random.RandomState(0) np.seterr(all='warn') class TestBaseHMM(TestCase): def setUp(self): self.prng = np.random.RandomState(9) class StubHMM(hmm._BaseHMM): def _compute_log_likelihood(self, X): return self.framelogprob def _generate_sample_from_state(self): pass def _init(self): pass def setup_example_hmm(self): # Example from http://en.wikipedia.org/wiki/Forward-backward_algorithm h = self.StubHMM(2) h.transmat_ = [[0.7, 0.3], [0.3, 0.7]] h.startprob_ = [0.5, 0.5] framelogprob = np.log([[0.9, 0.2], [0.9, 0.2], [0.1, 0.8], [0.9, 0.2], [0.9, 0.2]]) # Add dummy observations to stub. h.framelogprob = framelogprob return h, framelogprob def test_init(self): h, framelogprob = self.setup_example_hmm() for params in [('transmat_',), ('startprob_', 'transmat_')]: d = dict((x[:-1], getattr(h, x)) for x in params) h2 = self.StubHMM(h.n_components, **d) self.assertEqual(h.n_components, h2.n_components) for p in params: assert_array_almost_equal(getattr(h, p), getattr(h2, p)) def test_set_startprob(self): h, framelogprob = self.setup_example_hmm() startprob = np.array([0.0, 1.0]) h.startprob_ = startprob assert np.allclose(startprob, h.startprob_) def test_set_transmat(self): h, framelogprob = self.setup_example_hmm() transmat = np.array([[0.8, 0.2], [0.0, 1.0]]) h.transmat_ = transmat assert np.allclose(transmat, h.transmat_) def test_do_forward_pass(self): h, framelogprob = self.setup_example_hmm() logprob, fwdlattice = h._do_forward_pass(framelogprob) reflogprob = -3.3725 self.assertAlmostEqual(logprob, reflogprob, places=4) reffwdlattice = np.array([[0.4500, 0.1000], [0.3105, 0.0410], [0.0230, 0.0975], [0.0408, 0.0150], [0.0298, 0.0046]]) assert_array_almost_equal(np.exp(fwdlattice), reffwdlattice, 4) def test_do_backward_pass(self): h, framelogprob = self.setup_example_hmm() bwdlattice = h._do_backward_pass(framelogprob) refbwdlattice = np.array([[0.0661, 0.0455], [0.0906, 0.1503], [0.4593, 0.2437], [0.6900, 0.4100], [1.0000, 1.0000]]) assert_array_almost_equal(np.exp(bwdlattice), refbwdlattice, 4) def test_do_viterbi_pass(self): h, framelogprob = self.setup_example_hmm() logprob, state_sequence = h._do_viterbi_pass(framelogprob) refstate_sequence = [0, 0, 1, 0, 0] assert_array_equal(state_sequence, refstate_sequence) reflogprob = -4.4590 self.assertAlmostEqual(logprob, reflogprob, places=4) def test_score_samples(self): h, framelogprob = self.setup_example_hmm() nobs = len(framelogprob) logprob, posteriors = h.score_samples([]) assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs)) reflogprob = -3.3725 self.assertAlmostEqual(logprob, reflogprob, places=4) refposteriors = np.array([[0.8673, 0.1327], [0.8204, 0.1796], [0.3075, 0.6925], [0.8204, 0.1796], [0.8673, 0.1327]]) assert_array_almost_equal(posteriors, refposteriors, decimal=4) def test_hmm_score_samples_consistent_with_gmm(self): n_components = 8 nobs = 10 h = self.StubHMM(n_components) # Add dummy observations to stub. framelogprob = np.log(self.prng.rand(nobs, n_components)) h.framelogprob = framelogprob # If startprob and transmat are uniform across all states (the # default), the transitions are uninformative - the model # reduces to a GMM with uniform mixing weights (in terms of # posteriors, not likelihoods). logprob, hmmposteriors = h.score_samples([]) assert_array_almost_equal(hmmposteriors.sum(axis=1), np.ones(nobs)) norm = logsumexp(framelogprob, axis=1)[:, np.newaxis] gmmposteriors = np.exp(framelogprob - np.tile(norm, (1, n_components))) assert_array_almost_equal(hmmposteriors, gmmposteriors) def test_hmm_decode_consistent_with_gmm(self): n_components = 8 nobs = 10 h = self.StubHMM(n_components) # Add dummy observations to stub. framelogprob = np.log(self.prng.rand(nobs, n_components)) h.framelogprob = framelogprob # If startprob and transmat are uniform across all states (the # default), the transitions are uninformative - the model # reduces to a GMM with uniform mixing weights (in terms of # posteriors, not likelihoods). viterbi_ll, state_sequence = h.decode([]) norm = logsumexp(framelogprob, axis=1)[:, np.newaxis] gmmposteriors = np.exp(framelogprob - np.tile(norm, (1, n_components))) gmmstate_sequence = gmmposteriors.argmax(axis=1) assert_array_equal(state_sequence, gmmstate_sequence) def test_base_hmm_attributes(self): n_components = 20 startprob = self.prng.rand(n_components) startprob = startprob / startprob.sum() transmat = self.prng.rand(n_components, n_components) transmat /= np.tile(transmat.sum(axis=1) [:, np.newaxis], (1, n_components)) h = self.StubHMM(n_components) self.assertEqual(h.n_components, n_components) h.startprob_ = startprob assert_array_almost_equal(h.startprob_, startprob) self.assertRaises(ValueError, h.__setattr__, 'startprob_', 2 * startprob) self.assertRaises(ValueError, h.__setattr__, 'startprob_', []) self.assertRaises(ValueError, h.__setattr__, 'startprob_', np.zeros((n_components - 2, 2))) h.transmat_ = transmat assert_array_almost_equal(h.transmat_, transmat) self.assertRaises(ValueError, h.__setattr__, 'transmat_', 2 * transmat) self.assertRaises(ValueError, h.__setattr__, 'transmat_', []) self.assertRaises(ValueError, h.__setattr__, 'transmat_', np.zeros((n_components - 2, n_components))) def train_hmm_and_keep_track_of_log_likelihood(hmm, obs, n_iter=1, **kwargs): hmm.n_iter = 1 hmm.fit(obs) loglikelihoods = [] for n in range(n_iter): hmm.n_iter = 1 hmm.init_params = '' hmm.fit(obs) loglikelihoods.append(sum(hmm.score(x) for x in obs)) return loglikelihoods class GaussianHMMBaseTester(object): def setUp(self): self.prng = prng = np.random.RandomState(10) self.n_components = n_components = 3 self.n_features = n_features = 3 self.startprob = prng.rand(n_components) self.startprob = self.startprob / self.startprob.sum() self.transmat = prng.rand(n_components, n_components) self.transmat /= np.tile(self.transmat.sum(axis=1)[:, np.newaxis], (1, n_components)) self.means = prng.randint(-20, 20, (n_components, n_features)) self.covars = { 'spherical': (1.0 + 2 * np.dot(prng.rand(n_components, 1), np.ones((1, n_features)))) ** 2, 'tied': (make_spd_matrix(n_features, random_state=0) + np.eye(n_features)), 'diag': (1.0 + 2 * prng.rand(n_components, n_features)) ** 2, 'full': np.array([make_spd_matrix(n_features, random_state=0) + np.eye(n_features) for x in range(n_components)]), } self.expanded_covars = { 'spherical': [np.eye(n_features) * cov for cov in self.covars['spherical']], 'diag': [np.diag(cov) for cov in self.covars['diag']], 'tied': [self.covars['tied']] * n_components, 'full': self.covars['full'], } def test_bad_covariance_type(self): hmm.GaussianHMM(20, self.covariance_type) self.assertRaises(ValueError, hmm.GaussianHMM, 20, 'badcovariance_type') def test_score_samples_and_decode(self): h = hmm.GaussianHMM(self.n_components, self.covariance_type) h.means_ = self.means h.covars_ = self.covars[self.covariance_type] # Make sure the means are far apart so posteriors.argmax() # picks the actual component used to generate the observations. h.means_ = 20 * h.means_ gaussidx = np.repeat(np.arange(self.n_components), 5) nobs = len(gaussidx) obs = self.prng.randn(nobs, self.n_features) + h.means_[gaussidx] ll, posteriors = h.score_samples(obs) self.assertEqual(posteriors.shape, (nobs, self.n_components)) assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs)) viterbi_ll, stateseq = h.decode(obs) assert_array_equal(stateseq, gaussidx) def test_sample(self, n=1000): h = hmm.GaussianHMM(self.n_components, self.covariance_type) # Make sure the means are far apart so posteriors.argmax() # picks the actual component used to generate the observations. h.means_ = 20 * self.means h.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) h.startprob_ = self.startprob samples = h.sample(n)[0] self.assertEqual(samples.shape, (n, self.n_features)) def test_fit(self, params='stmc', n_iter=5, verbose=False, **kwargs): h = hmm.GaussianHMM(self.n_components, self.covariance_type) h.startprob_ = self.startprob h.transmat_ = hmm.normalize( self.transmat + np.diag(self.prng.rand(self.n_components)), 1) h.means_ = 20 * self.means h.covars_ = self.covars[self.covariance_type] # Create training data by sampling from the HMM. train_obs = [h.sample(n=10)[0] for x in range(10)] # Mess up the parameters and see if we can re-learn them. h.n_iter = 0 h.fit(train_obs) trainll = train_hmm_and_keep_track_of_log_likelihood( h, train_obs, n_iter=n_iter, params=params, **kwargs)[1:] # Check that the loglik is always increasing during training if not np.all(np.diff(trainll) > 0) and verbose: print('Test train: %s (%s)\n %s\n %s' % (self.covariance_type, params, trainll, np.diff(trainll))) delta_min = np.diff(trainll).min() self.assertTrue( delta_min > -0.8, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, -0.8, self.covariance_type, trainll)) def test_fit_works_on_sequences_of_different_length(self): obs = [self.prng.rand(3, self.n_features), self.prng.rand(4, self.n_features), self.prng.rand(5, self.n_features)] h = hmm.GaussianHMM(self.n_components, self.covariance_type) # This shouldn't raise # ValueError: setting an array element with a sequence. h.fit(obs) def test_fit_with_length_one_signal(self): obs = [self.prng.rand(10, self.n_features), self.prng.rand(8, self.n_features), self.prng.rand(1, self.n_features)] h = hmm.GaussianHMM(self.n_components, self.covariance_type) # This shouldn't raise # ValueError: zero-size array to reduction operation maximum which has no identity h.fit(obs) def test_fit_with_priors(self, params='stmc', n_iter=5, verbose=False): startprob_prior = 10 * self.startprob + 2.0 transmat_prior = 10 * self.transmat + 2.0 means_prior = self.means means_weight = 2.0 covars_weight = 2.0 if self.covariance_type in ('full', 'tied'): covars_weight += self.n_features covars_prior = self.covars[self.covariance_type] h = hmm.GaussianHMM(self.n_components, self.covariance_type) h.startprob_ = self.startprob h.startprob_prior = startprob_prior h.transmat_ = hmm.normalize( self.transmat + np.diag(self.prng.rand(self.n_components)), 1) h.transmat_prior = transmat_prior h.means_ = 20 * self.means h.means_prior = means_prior h.means_weight = means_weight h.covars_ = self.covars[self.covariance_type] h.covars_prior = covars_prior h.covars_weight = covars_weight # Create training data by sampling from the HMM. train_obs = [h.sample(n=10)[0] for x in range(10)] # Mess up the parameters and see if we can re-learn them. h.n_iter = 0 h.fit(train_obs[:1]) trainll = train_hmm_and_keep_track_of_log_likelihood( h, train_obs, n_iter=n_iter, params=params)[1:] # Check that the loglik is always increasing during training if not np.all(np.diff(trainll) > 0) and verbose: print('Test MAP train: %s (%s)\n %s\n %s' % (self.covariance_type, params, trainll, np.diff(trainll))) # XXX: Why such a large tolerance? self.assertTrue(np.all(np.diff(trainll) > -0.5)) def test_fit_non_ergodic_transmat(self): startprob = np.array([1, 0, 0, 0, 0]) transmat = np.array([[0.9, 0.1, 0, 0, 0], [0, 0.9, 0.1, 0, 0], [0, 0, 0.9, 0.1, 0], [0, 0, 0, 0.9, 0.1], [0, 0, 0, 0, 1.0]]) h = hmm.GaussianHMM(n_components=5, covariance_type='full', startprob=startprob, transmat=transmat, n_iter=100, init_params='st') h.means_ = np.zeros((5, 10)) h.covars_ = np.tile(np.identity(10), (5, 1, 1)) obs = [h.sample(10)[0] for _ in range(10)] h.fit(obs=obs) class TestGaussianHMMWithSphericalCovars(GaussianHMMBaseTester, TestCase): covariance_type = 'spherical' def test_fit_startprob_and_transmat(self): self.test_fit('st') class TestGaussianHMMWithDiagonalCovars(GaussianHMMBaseTester, TestCase): covariance_type = 'diag' class TestGaussianHMMWithTiedCovars(GaussianHMMBaseTester, TestCase): covariance_type = 'tied' class TestGaussianHMMWithFullCovars(GaussianHMMBaseTester, TestCase): covariance_type = 'full' class MultinomialHMMTestCase(TestCase): """Using examples from Wikipedia - http://en.wikipedia.org/wiki/Hidden_Markov_model - http://en.wikipedia.org/wiki/Viterbi_algorithm """ def setUp(self): self.prng = np.random.RandomState(9) self.n_components = 2 # ('Rainy', 'Sunny') self.n_symbols = 3 # ('walk', 'shop', 'clean') self.emissionprob = [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]] self.startprob = [0.6, 0.4] self.transmat = [[0.7, 0.3], [0.4, 0.6]] self.h = hmm.MultinomialHMM(self.n_components, startprob=self.startprob, transmat=self.transmat) self.h.emissionprob_ = self.emissionprob def test_set_emissionprob(self): h = hmm.MultinomialHMM(self.n_components) emissionprob = np.array([[0.8, 0.2, 0.0], [0.7, 0.2, 1.0]]) h.emissionprob = emissionprob assert np.allclose(emissionprob, h.emissionprob) def test_wikipedia_viterbi_example(self): # From http://en.wikipedia.org/wiki/Viterbi_algorithm: # "This reveals that the observations ['walk', 'shop', 'clean'] # were most likely generated by states ['Sunny', 'Rainy', # 'Rainy'], with probability 0.01344." observations = [0, 1, 2] logprob, state_sequence = self.h.decode(observations) self.assertAlmostEqual(np.exp(logprob), 0.01344) assert_array_equal(state_sequence, [1, 0, 0]) def test_decode_map_algorithm(self): observations = [0, 1, 2] h = hmm.MultinomialHMM(self.n_components, startprob=self.startprob, transmat=self.transmat, algorithm="map",) h.emissionprob_ = self.emissionprob logprob, state_sequence = h.decode(observations) assert_array_equal(state_sequence, [1, 0, 0]) def test_predict(self): observations = [0, 1, 2] state_sequence = self.h.predict(observations) posteriors = self.h.predict_proba(observations) assert_array_equal(state_sequence, [1, 0, 0]) assert_array_almost_equal(posteriors, [ [0.23170303, 0.76829697], [0.62406281, 0.37593719], [0.86397706, 0.13602294], ]) def test_attributes(self): h = hmm.MultinomialHMM(self.n_components) self.assertEqual(h.n_components, self.n_components) h.startprob_ = self.startprob assert_array_almost_equal(h.startprob_, self.startprob) self.assertRaises(ValueError, h.__setattr__, 'startprob_', 2 * self.startprob) self.assertRaises(ValueError, h.__setattr__, 'startprob_', []) self.assertRaises(ValueError, h.__setattr__, 'startprob_', np.zeros((self.n_components - 2, self.n_symbols))) h.transmat_ = self.transmat assert_array_almost_equal(h.transmat_, self.transmat) self.assertRaises(ValueError, h.__setattr__, 'transmat_', 2 * self.transmat) self.assertRaises(ValueError, h.__setattr__, 'transmat_', []) self.assertRaises(ValueError, h.__setattr__, 'transmat_', np.zeros((self.n_components - 2, self.n_components))) h.emissionprob_ = self.emissionprob assert_array_almost_equal(h.emissionprob_, self.emissionprob) self.assertRaises(ValueError, h.__setattr__, 'emissionprob_', []) self.assertRaises(ValueError, h.__setattr__, 'emissionprob_', np.zeros((self.n_components - 2, self.n_symbols))) self.assertEqual(h.n_symbols, self.n_symbols) def test_score_samples(self): idx = np.repeat(np.arange(self.n_components), 10) nobs = len(idx) obs = [int(x) for x in np.floor(self.prng.rand(nobs) * self.n_symbols)] ll, posteriors = self.h.score_samples(obs) self.assertEqual(posteriors.shape, (nobs, self.n_components)) assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs)) def test_sample(self, n=1000): samples = self.h.sample(n)[0] self.assertEqual(len(samples), n) self.assertEqual(len(np.unique(samples)), self.n_symbols) def test_fit(self, params='ste', n_iter=5, verbose=False, **kwargs): h = self.h # Create training data by sampling from the HMM. train_obs = [h.sample(n=10)[0] for x in range(10)] # Mess up the parameters and see if we can re-learn them. h.startprob_ = hmm.normalize(self.prng.rand(self.n_components)) h.transmat_ = hmm.normalize(self.prng.rand(self.n_components, self.n_components), axis=1) h.emissionprob_ = hmm.normalize( self.prng.rand(self.n_components, self.n_symbols), axis=1) trainll = train_hmm_and_keep_track_of_log_likelihood( h, train_obs, n_iter=n_iter, params=params, **kwargs)[1:] # Check that the loglik is always increasing during training if not np.all(np.diff(trainll) > 0) and verbose: print('Test train: (%s)\n %s\n %s' % (params, trainll, np.diff(trainll))) self.assertTrue(np.all(np.diff(trainll) > -1.e-3)) def test_fit_emissionprob(self): self.test_fit('e') def test_fit_with_init(self, params='ste', n_iter=5, verbose=False, **kwargs): h = self.h learner = hmm.MultinomialHMM(self.n_components) # Create training data by sampling from the HMM. train_obs = [h.sample(n=10)[0] for x in range(10)] # use init_function to initialize paramerters learner._init(train_obs, params) trainll = train_hmm_and_keep_track_of_log_likelihood( learner, train_obs, n_iter=n_iter, params=params, **kwargs)[1:] # Check that the loglik is always increasing during training if not np.all(np.diff(trainll) > 0) and verbose: print() print('Test train: (%s)\n %s\n %s' % (params, trainll, np.diff(trainll))) self.assertTrue(np.all(np.diff(trainll) > -1.e-3)) def create_random_gmm(n_mix, n_features, covariance_type, prng=0): prng = check_random_state(prng) g = mixture.GMM(n_mix, covariance_type=covariance_type) g.means_ = prng.randint(-20, 20, (n_mix, n_features)) mincv = 0.1 g.covars_ = { 'spherical': (mincv + mincv * np.dot(prng.rand(n_mix, 1), np.ones((1, n_features)))) ** 2, 'tied': (make_spd_matrix(n_features, random_state=prng) + mincv * np.eye(n_features)), 'diag': (mincv + mincv * prng.rand(n_mix, n_features)) ** 2, 'full': np.array( [make_spd_matrix(n_features, random_state=prng) + mincv * np.eye(n_features) for x in range(n_mix)]) }[covariance_type] g.weights_ = hmm.normalize(prng.rand(n_mix)) return g class GMMHMMBaseTester(object): def setUp(self): self.prng = np.random.RandomState(9) self.n_components = 3 self.n_mix = 2 self.n_features = 2 self.covariance_type = 'diag' self.startprob = self.prng.rand(self.n_components) self.startprob = self.startprob / self.startprob.sum() self.transmat = self.prng.rand(self.n_components, self.n_components) self.transmat /= np.tile(self.transmat.sum(axis=1)[:, np.newaxis], (1, self.n_components)) self.gmms_ = [] for state in range(self.n_components): self.gmms_.append(create_random_gmm( self.n_mix, self.n_features, self.covariance_type, prng=self.prng)) def test_attributes(self): h = hmm.GMMHMM(self.n_components, covariance_type=self.covariance_type) self.assertEqual(h.n_components, self.n_components) h.startprob_ = self.startprob assert_array_almost_equal(h.startprob_, self.startprob) self.assertRaises(ValueError, h.__setattr__, 'startprob_', 2 * self.startprob) self.assertRaises(ValueError, h.__setattr__, 'startprob_', []) self.assertRaises(ValueError, h.__setattr__, 'startprob_', np.zeros((self.n_components - 2, self.n_features))) h.transmat_ = self.transmat assert_array_almost_equal(h.transmat_, self.transmat) self.assertRaises(ValueError, h.__setattr__, 'transmat_', 2 * self.transmat) self.assertRaises(ValueError, h.__setattr__, 'transmat_', []) self.assertRaises(ValueError, h.__setattr__, 'transmat_', np.zeros((self.n_components - 2, self.n_components))) def test_score_samples_and_decode(self): h = hmm.GMMHMM(self.n_components, gmms=self.gmms_) # Make sure the means are far apart so posteriors.argmax() # picks the actual component used to generate the observations. for g in h.gmms_: g.means_ *= 20 refstateseq = np.repeat(np.arange(self.n_components), 5) nobs = len(refstateseq) obs = [h.gmms_[x].sample(1).flatten() for x in refstateseq] ll, posteriors = h.score_samples(obs) self.assertEqual(posteriors.shape, (nobs, self.n_components)) assert_array_almost_equal(posteriors.sum(axis=1), np.ones(nobs)) viterbi_ll, stateseq = h.decode(obs) assert_array_equal(stateseq, refstateseq) def test_sample(self, n=1000): h = hmm.GMMHMM(self.n_components, self.covariance_type, startprob=self.startprob, transmat=self.transmat, gmms=self.gmms_) samples = h.sample(n)[0] self.assertEqual(samples.shape, (n, self.n_features)) def test_fit(self, params='stmwc', n_iter=5, verbose=False, **kwargs): h = hmm.GMMHMM(self.n_components, covars_prior=1.0) h.startprob_ = self.startprob h.transmat_ = hmm.normalize( self.transmat + np.diag(self.prng.rand(self.n_components)), 1) h.gmms_ = self.gmms_ # Create training data by sampling from the HMM. train_obs = [h.sample(n=10, random_state=self.prng)[0] for x in range(10)] # Mess up the parameters and see if we can re-learn them. h.n_iter = 0 h.fit(train_obs) h.transmat_ = hmm.normalize(self.prng.rand(self.n_components, self.n_components), axis=1) h.startprob_ = hmm.normalize(self.prng.rand(self.n_components)) trainll = train_hmm_and_keep_track_of_log_likelihood( h, train_obs, n_iter=n_iter, params=params)[1:] if not np.all(np.diff(trainll) > 0) and verbose: print('Test train: (%s)\n %s\n %s' % (params, trainll, np.diff(trainll))) # XXX: this test appears to check that training log likelihood should # never be decreasing (up to a tolerance of 0.5, why?) but this is not # the case when the seed changes. raise SkipTest("Unstable test: trainll is not always increasing " "depending on seed") self.assertTrue(np.all(np.diff(trainll) > -0.5)) def test_fit_works_on_sequences_of_different_length(self): obs = [self.prng.rand(3, self.n_features), self.prng.rand(4, self.n_features), self.prng.rand(5, self.n_features)] h = hmm.GMMHMM(self.n_components, covariance_type=self.covariance_type) # This shouldn't raise # ValueError: setting an array element with a sequence. h.fit(obs) class TestGMMHMMWithDiagCovars(GMMHMMBaseTester, TestCase): covariance_type = 'diag' def test_fit_startprob_and_transmat(self): self.test_fit('st') def test_fit_means(self): self.test_fit('m') class TestGMMHMMWithTiedCovars(GMMHMMBaseTester, TestCase): covariance_type = 'tied' class TestGMMHMMWithFullCovars(GMMHMMBaseTester, TestCase): covariance_type = 'full' def test_normalize_1D(): A = rng.rand(2) + 1.0 for axis in range(1): Anorm = hmm.normalize(A, axis) assert np.all(np.allclose(Anorm.sum(axis), 1.0)) def test_normalize_3D(): A = rng.rand(2, 2, 2) + 1.0 for axis in range(3): Anorm = hmm.normalize(A, axis) assert np.all(np.allclose(Anorm.sum(axis), 1.0))
bsd-3-clause
AlexRobson/scikit-learn
examples/neighbors/plot_nearest_centroid.py
264
1804
""" =============================== Nearest Centroid Classification =============================== Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import datasets from sklearn.neighbors import NearestCentroid n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for shrinkage in [None, 0.1]: # we create an instance of Neighbours Classifier and fit the data. clf = NearestCentroid(shrink_threshold=shrinkage) clf.fit(X, y) y_pred = clf.predict(X) print(shrinkage, np.mean(y == y_pred)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.title("3-Class classification (shrink_threshold=%r)" % shrinkage) plt.axis('tight') plt.show()
bsd-3-clause
fy2462/apollo
modules/tools/mapshow/map.py
1
7337
#!/usr/bin/env python ############################################################################### # Copyright 2017 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import random import matplotlib.pyplot as plt from matplotlib import cm as cmx from matplotlib import colors as mcolors import common.proto_utils as proto_utils from modules.map.proto import map_pb2 class Map: def __init__(self): self.map_pb = map_pb2.Map() self.colors = [] self.init_colors() def init_colors(self): color_num = 6 self.colors = [] values = range(color_num) jet = plt.get_cmap('brg') color_norm = mcolors.Normalize(vmin=0, vmax=values[-1]) scalar_map = cmx.ScalarMappable(norm=color_norm, cmap=jet) for val in values: color_val = scalar_map.to_rgba(val) self.colors.append(color_val) def load(self, map_file_name): res = proto_utils.get_pb_from_file(map_file_name, self.map_pb) return res != None def draw_roads(self, ax): cnt = 1 for road in self.map_pb.road: color_val = self.colors[cnt % len(self.colors)] self.draw_road(ax, road, color_val) cnt += 1 def draw_road(self, ax, road, color_val): for section in road.section: for edge in section.boundary.outer_polygon.edge: for segment in edge.curve.segment: if segment.HasField('line_segment'): px = [] py = [] for p in segment.line_segment.point: px.append(float(p.x)) py.append(float(p.y)) ax.plot(px, py, ls='-', c=color_val, alpha = 0.5) def draw_lanes(self, ax, is_show_lane_ids, laneids): cnt = 1 for lane in self.map_pb.lane: color_val = self.colors[cnt % len(self.colors)] if len(laneids) == 0: self._draw_lane_boundary(lane, ax, color_val) self._draw_lane_central(lane, ax, color_val) else: if lane.id.id in laneids: self._draw_lane_boundary(lane, ax, color_val) self._draw_lane_central(lane, ax, color_val) if is_show_lane_ids: self._draw_lane_id(lane, ax, color_val) elif lane.id.id in laneids: self._draw_lane_id(lane, ax, color_val) cnt += 1 def _draw_lane_id(self, lane, ax, color_val): """draw lane id""" labelxys = [] labelxys.append((40, -40)) labelxys.append((-40, -40)) labelxys.append((40, 40)) labelxys.append((-40, 40)) has = ['right', 'left', 'right', 'left'] vas = ['bottom', 'bottom', 'top', 'top'] idx = random.randint(0, 3) lxy = labelxys[idx] x, y = self._find_lane_central_point(lane) plt.annotate( lane.id.id, xy=(x, y), xytext=lxy, textcoords='offset points', ha=has[idx], va=vas[idx], bbox= dict(boxstyle = 'round,pad=0.5', fc=color_val, alpha=0.5), arrowprops = dict(arrowstyle = '-|>', connectionstyle = 'arc3,rad=-0.2', fc=color_val, ec=color_val, alpha=0.5)) @staticmethod def _find_lane_central_point(lane): segment_idx = len(lane.left_boundary.curve.segment) / 2 median_segment = lane.left_boundary.curve.segment[segment_idx] left_point_idx = len(median_segment.line_segment.point) / 2 left_median_point = median_segment.line_segment.point[left_point_idx] segment_idx = len(lane.right_boundary.curve.segment) / 2 median_segment = lane.right_boundary.curve.segment[segment_idx] right_point_idx = len(median_segment.line_segment.point) / 2 right_median_point = median_segment.line_segment.point[right_point_idx] x = (left_median_point.x + right_median_point.x) / 2 y = (left_median_point.y + right_median_point.y) / 2 return x, y @staticmethod def _get_median_point(points): """get_median_point""" if len(points) % 2 == 1: point = points[len(points) / 2] return point.x, point.y else: point1 = points[len(points) / 2 - 1] point2 = points[len(points) / 2] return (point1.x + point2.x) / 2.0, (point1.y + point2.y) / 2.0 @staticmethod def _draw_lane_boundary(lane, ax, color_val): """draw boundary""" for curve in lane.left_boundary.curve.segment: if curve.HasField('line_segment'): px = [] py = [] for p in curve.line_segment.point: px.append(float(p.x)) py.append(float(p.y)) ax.plot(px, py, ls='-', c=color_val, alpha = 0.5) for curve in lane.right_boundary.curve.segment: if curve.HasField('line_segment'): px = [] py = [] for p in curve.line_segment.point: px.append(float(p.x)) py.append(float(p.y)) ax.plot(px, py, ls='-', c=color_val, alpha = 0.5) @staticmethod def _draw_lane_central(lane, ax, color_val): """draw boundary""" for curve in lane.central_curve.segment: if curve.HasField('line_segment'): px = [] py = [] for p in curve.line_segment.point: px.append(float(p.x)) py.append(float(p.y)) ax.plot(px, py, ls=':', c=color_val, alpha = 0.5) def draw_signal_lights(self, ax): """draw_signal_lights""" for signal in self.map_pb.signal: for stop_line in signal.stop_line: for curve in stop_line.segment: self._draw_signal(curve.line_segment, signal.id.id, ax) @staticmethod def _draw_signal(line_segment, label, ax): """draw a signal""" px = [] py = [] for p in line_segment.point: px.append(float(p.x)) py.append(float(p.y)) ax.plot(px, py, 'o-') lxy = [random.randint(20, 80) * random.sample([-1, 1], 1)[0], random.randint(20, 80) * random.sample([-1, 1], 1)[0]] xy = (sum(px)/len(px), sum(py)/len(py)) plt.annotate( label, xy = xy, xytext = lxy, textcoords = 'offset points', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5), arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
apache-2.0
czhengsci/veidt
veidt/model/tests/test_models.py
2
5371
# coding: utf-8 from __future__ import division, print_function, unicode_literals, \ absolute_import import unittest import os import json import numpy as np import pandas as pd from pymatgen import Structure from veidt.abstract import Describer from veidt.describer.structural_describer import DistinctSiteProperty from veidt.model.neural_network import MultiLayerPerceptron from veidt.model.linear_model import LinearModel from veidt.model.gaussian_process import GaussianProcessRegressionModel import shutil import tempfile class NeuralNetTest(unittest.TestCase): def setUp(self): self.nn = MultiLayerPerceptron( [25, 5], describer=DistinctSiteProperty(['8c'], ["Z"])) self.nn2 = MultiLayerPerceptron( [25, 5], describer=DistinctSiteProperty(['8c'], ["Z"])) self.li2o = Structure.from_file(os.path.join(os.path.dirname(__file__), "../../tests/Li2O.cif")) self.na2o = Structure.from_file(os.path.join(os.path.dirname(__file__), "../../tests/Na2O.cif")) self.structures = [self.li2o] * 100 + [self.na2o] * 100 self.energies = np.array([3] * 100 + [4] * 100) self.test_dir = tempfile.mkdtemp() def tearDown(self): # Remove the directory after the test shutil.rmtree(self.test_dir) def test_fit_evaluate(self): self.nn.fit(inputs=self.structures, outputs=self.energies, epochs=100) # Given this is a fairly simple model, we should get close to exact. #self.assertEqual(round(self.nn.predict([self.na2o])[0][0]), 4, 3) self.assertTrue(3 <= round(self.nn.predict([self.na2o])[0][0]) <= 4) def test_model_save_load(self): model_fname = os.path.join(self.test_dir, 'test_nnmodel.h5') scaler_fname = os.path.join(self.test_dir, 'test_nnscaler.save') self.nn.fit(inputs=self.structures, outputs=self.energies, epochs=100) self.nn.save(model_fname=model_fname, scaler_fname=scaler_fname) self.nn2.load(model_fname=model_fname, scaler_fname=scaler_fname) self.assertEqual(self.nn.predict([self.na2o])[0][0], self.nn2.predict([self.na2o])[0][0]) class LinearModelTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.x_train = np.random.rand(10, 2) cls.coef = np.random.rand(2) cls.intercept = np.random.rand() cls.y_train = cls.x_train.dot(cls.coef) + cls.intercept def setUp(self): class DummyDescriber(Describer): def describe(self, obj): pass def describe_all(self, n): return pd.DataFrame(n) self.lm = LinearModel(DummyDescriber()) self.test_dir = tempfile.mkdtemp() def tearDown(self): # Remove the directory after the test shutil.rmtree(self.test_dir) def test_fit_predict(self): self.lm.fit(inputs=self.x_train, outputs=self.y_train) x_test = np.random.rand(10, 2) y_test = x_test.dot(self.coef) + self.intercept y_pred = self.lm.predict(x_test) np.testing.assert_array_almost_equal(y_test, y_pred) np.testing.assert_array_almost_equal(self.coef, self.lm.coef) self.assertAlmostEqual(self.intercept, self.lm.intercept) def test_evaluate_fit(self): self.lm.fit(inputs=self.x_train, outputs=self.y_train) y_pred = self.lm.evaluate_fit() np.testing.assert_array_almost_equal(y_pred, self.y_train) def test_serialize(self): json_str = json.dumps(self.lm.as_dict()) recover = LinearModel.from_dict(json.loads(json_str)) self.assertIsNotNone(recover) def model_save_load(self): self.lm.save(os.path.join(self.test_dir, 'test_lm.save')) ori = self.lm.model.coef_ self.lm.load(os.path.join(self.test_dir, 'test_lm.save')) loaded = self.lm.model.coef_ self.assertAlmostEqual(ori, loaded) class GaussianProcessTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.this_dir = os.path.dirname(os.path.abspath(__file__)) cls.test_dir = tempfile.mkdtemp() def setUp(self): self.x_train = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T self.y_train = (self.x_train * np.sin(self.x_train)).ravel() class DummyDescriber(Describer): def describe(self, obj): pass def describe_all(self, n): return pd.DataFrame(n) self.gpr = GaussianProcessRegressionModel(describer=DummyDescriber(), \ kernel_category='RBF') @classmethod def tearDownClass(cls): os.chdir(cls.this_dir) shutil.rmtree(cls.test_dir) def test_fit_predict(self): self.gpr.fit(inputs=self.x_train, outputs=self.y_train) x_test = np.atleast_2d(np.linspace(0, 9, 1000)).T y_test = x_test * np.sin(x_test) y_pred, sigma = self.gpr.predict(x_test, return_std=True) upper_bound = y_pred + 1.96 * sigma lower_bound = y_pred - 1.96 * sigma self.assertTrue(np.all([l < y and y < u for u, y, l in\ zip(upper_bound, y_test, lower_bound)])) if __name__ == "__main__": unittest.main()
bsd-3-clause
bhargav/scikit-learn
sklearn/utils/tests/test_multiclass.py
34
13405
from __future__ import division import numpy as np import scipy.sparse as sp from itertools import product from sklearn.externals.six.moves import xrange from sklearn.externals.six import iteritems from scipy.sparse import issparse from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.multiclass import unique_labels from sklearn.utils.multiclass import is_multilabel from sklearn.utils.multiclass import type_of_target from sklearn.utils.multiclass import class_distribution from sklearn.utils.multiclass import check_classification_targets class NotAnArray(object): """An object that is convertable to an array. This is useful to simulate a Pandas timeseries.""" def __init__(self, data): self.data = data def __array__(self): return self.data EXAMPLES = { 'multilabel-indicator': [ # valid when the data is formatted as sparse or dense, identified # by CSR format when the testing takes place csr_matrix(np.random.RandomState(42).randint(2, size=(10, 10))), csr_matrix(np.array([[0, 1], [1, 0]])), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.bool)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.int8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.uint8)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float)), csr_matrix(np.array([[0, 1], [1, 0]], dtype=np.float32)), csr_matrix(np.array([[0, 0], [0, 0]])), csr_matrix(np.array([[0, 1]])), # Only valid when data is dense np.array([[-1, 1], [1, -1]]), np.array([[-3, 3], [3, -3]]), NotAnArray(np.array([[-3, 3], [3, -3]])), ], 'multiclass': [ [1, 0, 2, 2, 1, 4, 2, 4, 4, 4], np.array([1, 0, 2]), np.array([1, 0, 2], dtype=np.int8), np.array([1, 0, 2], dtype=np.uint8), np.array([1, 0, 2], dtype=np.float), np.array([1, 0, 2], dtype=np.float32), np.array([[1], [0], [2]]), NotAnArray(np.array([1, 0, 2])), [0, 1, 2], ['a', 'b', 'c'], np.array([u'a', u'b', u'c']), np.array([u'a', u'b', u'c'], dtype=object), np.array(['a', 'b', 'c'], dtype=object), ], 'multiclass-multioutput': [ np.array([[1, 0, 2, 2], [1, 4, 2, 4]]), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.int8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.uint8), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float), np.array([[1, 0, 2, 2], [1, 4, 2, 4]], dtype=np.float32), np.array([['a', 'b'], ['c', 'd']]), np.array([[u'a', u'b'], [u'c', u'd']]), np.array([[u'a', u'b'], [u'c', u'd']], dtype=object), np.array([[1, 0, 2]]), NotAnArray(np.array([[1, 0, 2]])), ], 'binary': [ [0, 1], [1, 1], [], [0], np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1]), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.bool), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.int8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.uint8), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float), np.array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1], dtype=np.float32), np.array([[0], [1]]), NotAnArray(np.array([[0], [1]])), [1, -1], [3, 5], ['a'], ['a', 'b'], ['abc', 'def'], np.array(['abc', 'def']), [u'a', u'b'], np.array(['abc', 'def'], dtype=object), ], 'continuous': [ [1e-5], [0, .5], np.array([[0], [.5]]), np.array([[0], [.5]], dtype=np.float32), ], 'continuous-multioutput': [ np.array([[0, .5], [.5, 0]]), np.array([[0, .5], [.5, 0]], dtype=np.float32), np.array([[0, .5]]), ], 'unknown': [ [[]], [()], # sequence of sequences that weren't supported even before deprecation np.array([np.array([]), np.array([1, 2, 3])], dtype=object), [np.array([]), np.array([1, 2, 3])], [set([1, 2, 3]), set([1, 2])], [frozenset([1, 2, 3]), frozenset([1, 2])], # and also confusable as sequences of sequences [{0: 'a', 1: 'b'}, {0: 'a'}], # empty second dimension np.array([[], []]), # 3d np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ] } NON_ARRAY_LIKE_EXAMPLES = [ set([1, 2, 3]), {0: 'a', 1: 'b'}, {0: [5], 1: [5]}, 'abc', frozenset([1, 2, 3]), None, ] MULTILABEL_SEQUENCES = [ [[1], [2], [0, 1]], [(), (2), (0, 1)], np.array([[], [1, 2]], dtype='object'), NotAnArray(np.array([[], [1, 2]], dtype='object')) ] def test_unique_labels(): # Empty iterable assert_raises(ValueError, unique_labels) # Multiclass problem assert_array_equal(unique_labels(xrange(10)), np.arange(10)) assert_array_equal(unique_labels(np.arange(10)), np.arange(10)) assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4])) # Multilabel indicator assert_array_equal(unique_labels(np.array([[0, 0, 1], [1, 0, 1], [0, 0, 0]])), np.arange(3)) assert_array_equal(unique_labels(np.array([[0, 0, 1], [0, 0, 0]])), np.arange(3)) # Several arrays passed assert_array_equal(unique_labels([4, 0, 2], xrange(5)), np.arange(5)) assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)), np.arange(3)) # Border line case with binary indicator matrix assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5))) assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5))) assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))), np.arange(5)) def test_unique_labels_non_specific(): # Test unique_labels with a variety of collected examples # Smoke test for all supported format for format in ["binary", "multiclass", "multilabel-indicator"]: for y in EXAMPLES[format]: unique_labels(y) # We don't support those format at the moment for example in NON_ARRAY_LIKE_EXAMPLES: assert_raises(ValueError, unique_labels, example) for y_type in ["unknown", "continuous", 'continuous-multioutput', 'multiclass-multioutput']: for example in EXAMPLES[y_type]: assert_raises(ValueError, unique_labels, example) def test_unique_labels_mixed_types(): # Mix with binary or multiclass and multilabel mix_clf_format = product(EXAMPLES["multilabel-indicator"], EXAMPLES["multiclass"] + EXAMPLES["binary"]) for y_multilabel, y_multiclass in mix_clf_format: assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel) assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass) assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]]) assert_raises(ValueError, unique_labels, ["1", 2]) assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]]) assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) def test_is_multilabel(): for group, group_examples in iteritems(EXAMPLES): if group in ['multilabel-indicator']: dense_assert_, dense_exp = assert_true, 'True' else: dense_assert_, dense_exp = assert_false, 'False' for example in group_examples: # Only mark explicitly defined sparse examples as valid sparse # multilabel-indicators if group == 'multilabel-indicator' and issparse(example): sparse_assert_, sparse_exp = assert_true, 'True' else: sparse_assert_, sparse_exp = assert_false, 'False' if (issparse(example) or (hasattr(example, '__array__') and np.asarray(example).ndim == 2 and np.asarray(example).dtype.kind in 'biuf' and np.asarray(example).shape[1] > 0)): examples_sparse = [sparse_matrix(example) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for exmpl_sparse in examples_sparse: sparse_assert_(is_multilabel(exmpl_sparse), msg=('is_multilabel(%r)' ' should be %s') % (exmpl_sparse, sparse_exp)) # Densify sparse examples before testing if issparse(example): example = example.toarray() dense_assert_(is_multilabel(example), msg='is_multilabel(%r) should be %s' % (example, dense_exp)) def test_check_classification_targets(): for y_type in EXAMPLES.keys(): if y_type in ["unknown", "continuous", 'continuous-multioutput']: for example in EXAMPLES[y_type]: msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, check_classification_targets, example) else: for example in EXAMPLES[y_type]: check_classification_targets(example) # @ignore_warnings def test_type_of_target(): for group, group_examples in iteritems(EXAMPLES): for example in group_examples: assert_equal(type_of_target(example), group, msg=('type_of_target(%r) should be %r, got %r' % (example, group, type_of_target(example)))) for example in NON_ARRAY_LIKE_EXAMPLES: msg_regex = 'Expected array-like \(array or non-string sequence\).*' assert_raises_regex(ValueError, msg_regex, type_of_target, example) for example in MULTILABEL_SEQUENCES: msg = ('You appear to be using a legacy multi-label data ' 'representation. Sequence of sequences are no longer supported;' ' use a binary array or sparse matrix instead.') assert_raises_regex(ValueError, msg, type_of_target, example) def test_class_distribution(): y = np.array([[1, 0, 0, 1], [2, 2, 0, 1], [1, 3, 0, 1], [4, 2, 0, 1], [2, 0, 0, 1], [1, 3, 0, 1]]) # Define the sparse matrix with a mix of implicit and explicit zeros data = np.array([1, 2, 1, 4, 2, 1, 0, 2, 3, 2, 3, 1, 1, 1, 1, 1, 1]) indices = np.array([0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5]) indptr = np.array([0, 6, 11, 11, 17]) y_sp = sp.csc_matrix((data, indices, indptr), shape=(6, 4)) classes, n_classes, class_prior = class_distribution(y) classes_sp, n_classes_sp, class_prior_sp = class_distribution(y_sp) classes_expected = [[1, 2, 4], [0, 2, 3], [0], [1]] n_classes_expected = [3, 3, 1, 1] class_prior_expected = [[3/6, 2/6, 1/6], [1/3, 1/3, 1/3], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k]) # Test again with explicit sample weights (classes, n_classes, class_prior) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) (classes_sp, n_classes_sp, class_prior_sp) = class_distribution(y, [1.0, 2.0, 1.0, 2.0, 1.0, 2.0]) class_prior_expected = [[4/9, 3/9, 2/9], [2/9, 4/9, 3/9], [1.0], [1.0]] for k in range(y.shape[1]): assert_array_almost_equal(classes[k], classes_expected[k]) assert_array_almost_equal(n_classes[k], n_classes_expected[k]) assert_array_almost_equal(class_prior[k], class_prior_expected[k]) assert_array_almost_equal(classes_sp[k], classes_expected[k]) assert_array_almost_equal(n_classes_sp[k], n_classes_expected[k]) assert_array_almost_equal(class_prior_sp[k], class_prior_expected[k])
bsd-3-clause
jinglining/flink
flink-python/pyflink/table/tests/test_table_environment_api.py
1
30955
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. ################################################################################ import glob import os import pathlib import sys from py4j.protocol import Py4JJavaError from pyflink.dataset import ExecutionEnvironment from pyflink.datastream import StreamExecutionEnvironment from pyflink.find_flink_home import _find_flink_source_root from pyflink.java_gateway import get_gateway from pyflink.table import DataTypes, CsvTableSink, StreamTableEnvironment, EnvironmentSettings, \ Module, ResultKind from pyflink.table.descriptors import FileSystem, OldCsv, Schema from pyflink.table.explain_detail import ExplainDetail from pyflink.table.table_config import TableConfig from pyflink.table.table_environment import BatchTableEnvironment from pyflink.table.types import RowType from pyflink.testing import source_sink_utils from pyflink.testing.test_case_utils import PyFlinkStreamTableTestCase, PyFlinkBatchTableTestCase, \ PyFlinkBlinkBatchTableTestCase from pyflink.util.utils import get_j_env_configuration class TableEnvironmentTest(object): def test_set_sys_executable_for_local_mode(self): jvm = get_gateway().jvm actual_executable = get_j_env_configuration(self.t_env) \ .getString(jvm.PythonOptions.PYTHON_EXECUTABLE.key(), None) self.assertEqual(sys.executable, actual_executable) def test_explain(self): schema = RowType()\ .add('a', DataTypes.INT())\ .add('b', DataTypes.STRING())\ .add('c', DataTypes.STRING()) t_env = self.t_env t = t_env.from_elements([], schema) result = t.select("1 + a, b, c") actual = result.explain() assert isinstance(actual, str) def test_explain_with_extended(self): schema = RowType() \ .add('a', DataTypes.INT()) \ .add('b', DataTypes.STRING()) \ .add('c', DataTypes.STRING()) t_env = self.t_env t = t_env.from_elements([], schema) result = t.select("1 + a, b, c") actual = result.explain(ExplainDetail.ESTIMATED_COST, ExplainDetail.CHANGELOG_MODE) assert isinstance(actual, str) def test_register_java_function(self): t_env = self.t_env t_env.register_java_function("scalar_func", "org.apache.flink.table.expressions.utils.RichFunc0") t_env.register_java_function( "agg_func", "org.apache.flink.table.functions.aggfunctions.ByteMaxAggFunction") t_env.register_java_function("table_func", "org.apache.flink.table.utils.TableFunc1") actual = t_env.list_user_defined_functions() expected = ['scalar_func', 'agg_func', 'table_func'] self.assert_equals(actual, expected) def test_unload_and_load_module(self): t_env = self.t_env t_env.unload_module('core') t_env.load_module('core', Module( get_gateway().jvm.org.apache.flink.table.module.CoreModule.INSTANCE)) table_result = t_env.execute_sql("select concat('unload', 'load') as test_module") self.assertEqual(table_result.get_result_kind(), ResultKind.SUCCESS_WITH_CONTENT) self.assert_equals(table_result.get_table_schema().get_field_names(), ['test_module']) def test_create_and_drop_java_function(self): t_env = self.t_env t_env.create_java_temporary_system_function( "scalar_func", "org.apache.flink.table.expressions.utils.RichFunc0") t_env.create_java_function( "agg_func", "org.apache.flink.table.functions.aggfunctions.ByteMaxAggFunction") t_env.create_java_temporary_function( "table_func", "org.apache.flink.table.utils.TableFunc1") self.assert_equals(t_env.list_user_defined_functions(), ['scalar_func', 'agg_func', 'table_func']) t_env.drop_temporary_system_function("scalar_func") t_env.drop_function("agg_func") t_env.drop_temporary_function("table_func") self.assert_equals(t_env.list_user_defined_functions(), []) class StreamTableEnvironmentTests(TableEnvironmentTest, PyFlinkStreamTableTestCase): def test_register_table_source_scan(self): t_env = self.t_env field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] source_path = os.path.join(self.tempdir + '/streaming.csv') csv_source = self.prepare_csv_source(source_path, [], field_types, field_names) t_env.register_table_source("Source", csv_source) result = t_env.scan("Source") self.assertEqual( 'CatalogTable: (identifier: [`default_catalog`.`default_database`.`Source`]' ', fields: [a, b, c])', result._j_table.getQueryOperation().asSummaryString()) def test_register_table_sink(self): t_env = self.t_env field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "Sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.from_elements([(1, "Hi", "Hello")], ["a", "b", "c"]).insert_into("Sinks") self.t_env.execute("test") actual = source_sink_utils.results() expected = ['1,Hi,Hello'] self.assert_equals(actual, expected) def test_from_table_source(self): field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] source_path = os.path.join(self.tempdir + '/streaming.csv') csv_source = self.prepare_csv_source(source_path, [], field_types, field_names) result = self.t_env.from_table_source(csv_source) self.assertEqual( 'TableSource: (fields: [a, b, c])', result._j_table.getQueryOperation().asSummaryString()) def test_list_tables(self): source_path = os.path.join(self.tempdir + '/streaming.csv') field_names = ["a", "b", "c"] field_types = [DataTypes.INT(), DataTypes.STRING(), DataTypes.STRING()] data = [] csv_source = self.prepare_csv_source(source_path, data, field_types, field_names) t_env = self.t_env t_env.register_table_source("Orders", csv_source) t_env.register_table_sink( "Sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.register_table_sink( "Results", source_sink_utils.TestAppendSink(field_names, field_types)) actual = t_env.list_tables() expected = ['Orders', 'Results', 'Sinks'] self.assert_equals(actual, expected) def test_temporary_tables(self): t_env = self.t_env t_env.connect(FileSystem().path(os.path.join(self.tempdir + '/temp_1.csv'))) \ .with_format(OldCsv() .field_delimiter(',') .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .with_schema(Schema() .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .create_temporary_table("temporary_table_1") t_env.connect(FileSystem().path(os.path.join(self.tempdir + '/temp_2.csv'))) \ .with_format(OldCsv() .field_delimiter(',') .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .with_schema(Schema() .field("a", DataTypes.INT()) .field("b", DataTypes.STRING())) \ .create_temporary_table("temporary_table_2") actual = t_env.list_temporary_tables() expected = ['temporary_table_1', 'temporary_table_2'] self.assert_equals(actual, expected) t_env.drop_temporary_table("temporary_table_1") actual = t_env.list_temporary_tables() expected = ['temporary_table_2'] self.assert_equals(actual, expected) def test_temporary_views(self): t_env = self.t_env t_env.create_temporary_view( "temporary_view_1", t_env.from_elements([(1, 'Hi', 'Hello')], ['a', 'b', 'c'])) t_env.create_temporary_view( "temporary_view_2", t_env.from_elements([(1, 'Hi')], ['a', 'b'])) actual = t_env.list_temporary_views() expected = ['temporary_view_1', 'temporary_view_2'] self.assert_equals(actual, expected) t_env.drop_temporary_view("temporary_view_1") actual = t_env.list_temporary_views() expected = ['temporary_view_2'] self.assert_equals(actual, expected) def test_from_path(self): t_env = self.t_env t_env.create_temporary_view( "temporary_view_1", t_env.from_elements([(1, 'Hi', 'Hello')], ['a', 'b', 'c'])) result = t_env.from_path("temporary_view_1") self.assertEqual( 'CatalogTable: (identifier: [`default_catalog`.`default_database`.`temporary_view_1`]' ', fields: [a, b, c])', result._j_table.getQueryOperation().asSummaryString()) def test_insert_into(self): t_env = self.t_env field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "Sinks", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.insert_into("Sinks", t_env.from_elements([(1, "Hi", "Hello")], ["a", "b", "c"])) self.t_env.execute("test") actual = source_sink_utils.results() expected = ['1,Hi,Hello'] self.assert_equals(actual, expected) def test_statement_set(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.register_table_sink( "sink2", source_sink_utils.TestAppendSink(field_names, field_types)) stmt_set = t_env.create_statement_set() stmt_set.add_insert_sql("insert into sink1 select * from %s where a > 100" % source)\ .add_insert("sink2", source.filter("a < 100"), False) actual = stmt_set.explain(ExplainDetail.CHANGELOG_MODE) assert isinstance(actual, str) def test_explain_with_multi_sinks(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", source_sink_utils.TestAppendSink(field_names, field_types)) t_env.register_table_sink( "sink2", source_sink_utils.TestAppendSink(field_names, field_types)) stmt_set = t_env.create_statement_set() stmt_set.add_insert_sql("insert into sink1 select * from %s where a > 100" % source) stmt_set.add_insert_sql("insert into sink2 select * from %s where a < 100" % source) actual = stmt_set.explain(ExplainDetail.ESTIMATED_COST, ExplainDetail.CHANGELOG_MODE) assert isinstance(actual, str) def test_explain_sql_without_explain_detail(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sinks", source_sink_utils.TestAppendSink(field_names, field_types)) result = t_env.explain_sql("select a + 1, b, c from %s" % source) assert isinstance(result, str) def test_explain_sql_with_explain_detail(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sinks", source_sink_utils.TestAppendSink(field_names, field_types)) result = t_env.explain_sql( "select a + 1, b, c from %s" % source, ExplainDetail.CHANGELOG_MODE) assert isinstance(result, str) def test_create_table_environment(self): table_config = TableConfig() table_config.set_max_generated_code_length(32000) table_config.set_null_check(False) table_config.set_local_timezone("Asia/Shanghai") env = StreamExecutionEnvironment.get_execution_environment() t_env = StreamTableEnvironment.create(env, table_config) readed_table_config = t_env.get_config() self.assertFalse(readed_table_config.get_null_check()) self.assertEqual(readed_table_config.get_max_generated_code_length(), 32000) self.assertEqual(readed_table_config.get_local_timezone(), "Asia/Shanghai") def test_create_table_environment_with_blink_planner(self): t_env = StreamTableEnvironment.create( self.env, environment_settings=EnvironmentSettings.new_instance().use_blink_planner().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.delegation.StreamPlanner") t_env = StreamTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.delegation.StreamPlanner") t_env = StreamTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().use_old_planner().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.StreamPlanner") def test_table_environment_with_blink_planner(self): self.env.set_parallelism(1) t_env = StreamTableEnvironment.create( self.env, environment_settings=EnvironmentSettings.new_instance().use_blink_planner().build()) source_path = os.path.join(self.tempdir + '/streaming.csv') sink_path = os.path.join(self.tempdir + '/result.csv') field_names = ["a", "b", "c"] field_types = [DataTypes.INT(), DataTypes.STRING(), DataTypes.STRING()] data = [(1, 'hi', 'hello'), (2, 'hello', 'hello')] csv_source = self.prepare_csv_source(source_path, data, field_types, field_names) t_env.register_table_source("source", csv_source) t_env.register_table_sink( "sink", CsvTableSink(field_names, field_types, sink_path)) source = t_env.scan("source") result = source.alias("a, b, c").select("1 + a, b, c") result.insert_into("sink") t_env.execute("blink_test") results = [] with open(sink_path, 'r') as f: results.append(f.readline()) results.append(f.readline()) self.assert_equals(results, ['2,hi,hello\n', '3,hello,hello\n']) def test_set_jars(self): self.verify_set_java_dependencies("pipeline.jars", self.execute_with_t_env) def test_set_jars_with_execute_sql(self): self.verify_set_java_dependencies("pipeline.jars", self.execute_with_execute_sql) def test_set_jars_with_statement_set(self): self.verify_set_java_dependencies("pipeline.jars", self.execute_with_statement_set) def test_set_jars_with_table(self): self.verify_set_java_dependencies("pipeline.jars", self.execute_with_table) def test_set_jars_with_table_execute_insert(self): self.verify_set_java_dependencies("pipeline.jars", self.execute_with_table_execute_insert) def test_set_jars_with_table_to_pandas(self): self.verify_set_java_dependencies("pipeline.jars", self.execute_with_table_to_pandas) def test_set_classpaths(self): self.verify_set_java_dependencies("pipeline.classpaths", self.execute_with_t_env) def test_set_classpaths_with_execute_sql(self): self.verify_set_java_dependencies("pipeline.classpaths", self.execute_with_execute_sql) def test_set_classpaths_with_statement_set(self): self.verify_set_java_dependencies("pipeline.classpaths", self.execute_with_statement_set) def test_set_classpaths_with_table(self): self.verify_set_java_dependencies("pipeline.classpaths", self.execute_with_table) def test_set_classpaths_with_table_execute_insert(self): self.verify_set_java_dependencies( "pipeline.classpaths", self.execute_with_table_execute_insert) def test_set_classpaths_with_table_to_pandas(self): self.verify_set_java_dependencies("pipeline.classpaths", self.execute_with_table_to_pandas) def execute_with_t_env(self, t_env): source = t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) source.select("func1(a, b), func2(a, b)").insert_into("sink") t_env.execute("test") actual = source_sink_utils.results() expected = ['1 and Hi,1 or Hi', '2 and Hello,2 or Hello'] self.assert_equals(actual, expected) @staticmethod def execute_with_execute_sql(t_env): source = t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) t_env.create_temporary_view("source", source) t_env.execute_sql("select func1(a, b), func2(a, b) from source") \ .get_job_client() \ .get_job_execution_result() \ .result() def execute_with_statement_set(self, t_env): source = t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) result = source.select("func1(a, b), func2(a, b)") t_env.create_statement_set().add_insert("sink", result).execute() \ .get_job_client() \ .get_job_execution_result() \ .result() actual = source_sink_utils.results() expected = ['1 and Hi,1 or Hi', '2 and Hello,2 or Hello'] self.assert_equals(actual, expected) @staticmethod def execute_with_table(t_env): source = t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) result = source.select("func1(a, b), func2(a, b)") result.execute() \ .get_job_client() \ .get_job_execution_result() \ .result() def execute_with_table_execute_insert(self, t_env): source = t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) result = source.select("func1(a, b), func2(a, b)") result.execute_insert("sink") \ .get_job_client() \ .get_job_execution_result() \ .result() actual = source_sink_utils.results() expected = ['1 and Hi,1 or Hi', '2 and Hello,2 or Hello'] self.assert_equals(actual, expected) @staticmethod def execute_with_table_to_pandas(t_env): source = t_env.from_elements([(1, "Hi"), (2, "Hello")], ["a", "b"]) result = source.select("func1(a, b), func2(a, b)") result.to_pandas() def verify_set_java_dependencies(self, config_key, executor): original_class_loader = \ get_gateway().jvm.Thread.currentThread().getContextClassLoader() try: jar_urls = [] func1_class_name = "org.apache.flink.python.util.TestScalarFunction1" func2_class_name = "org.apache.flink.python.util.TestScalarFunction2" func1_jar_pattern = "flink-python/target/func1/flink-python*-tests.jar" func2_jar_pattern = "flink-python/target/func2/flink-python*-tests.jar" self.ensure_jar_not_loaded(func1_class_name, func1_jar_pattern) self.ensure_jar_not_loaded(func2_class_name, func2_jar_pattern) jar_urls.extend(self.get_jar_url(func1_jar_pattern)) jar_urls.extend(self.get_jar_url(func2_jar_pattern)) # test set the "pipeline.jars" multiple times self.t_env.get_config().get_configuration().set_string(config_key, ";".join(jar_urls)) first_class_loader = get_gateway().jvm.Thread.currentThread().getContextClassLoader() self.t_env.get_config().get_configuration().set_string(config_key, jar_urls[0]) self.t_env.get_config().get_configuration().set_string(config_key, ";".join(jar_urls)) second_class_loader = get_gateway().jvm.Thread.currentThread().getContextClassLoader() self.assertEqual(first_class_loader, second_class_loader) self.t_env.register_java_function("func1", func1_class_name) self.t_env.register_java_function("func2", func2_class_name) table_sink = source_sink_utils.TestAppendSink( ["a", "b"], [DataTypes.STRING(), DataTypes.STRING()]) self.t_env.register_table_sink("sink", table_sink) executor(self.t_env) finally: get_gateway().jvm.Thread.currentThread().setContextClassLoader(original_class_loader) def ensure_jar_not_loaded(self, func_class_name, jar_filename_pattern): test_jars = glob.glob(os.path.join(_find_flink_source_root(), jar_filename_pattern)) if not test_jars: self.fail("'%s' is not available. Please compile the test jars first." % jar_filename_pattern) try: self.t_env.register_java_function("func", func_class_name) except Py4JJavaError: pass else: self.fail("The scalar function '%s' should not be able to be loaded. Please remove " "the '%s' from the classpath of the PythonGatewayServer process." % (func_class_name, jar_filename_pattern)) @staticmethod def get_jar_url(jar_filename_pattern): test_jars = glob.glob(os.path.join(_find_flink_source_root(), jar_filename_pattern)) return [pathlib.Path(jar_path).as_uri() for jar_path in test_jars] class BatchTableEnvironmentTests(TableEnvironmentTest, PyFlinkBatchTableTestCase): def test_explain_with_multi_sinks(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", CsvTableSink(field_names, field_types, "path1")) t_env.register_table_sink( "sink2", CsvTableSink(field_names, field_types, "path2")) stmt_set = t_env.create_statement_set() stmt_set.add_insert_sql("insert into sink1 select * from %s where a > 100" % source) stmt_set.add_insert_sql("insert into sink2 select * from %s where a < 100" % source) actual = stmt_set.explain(ExplainDetail.ESTIMATED_COST, ExplainDetail.CHANGELOG_MODE) assert isinstance(actual, str) def test_statement_set(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", CsvTableSink(field_names, field_types, "path1")) t_env.register_table_sink( "sink2", CsvTableSink(field_names, field_types, "path2")) stmt_set = t_env.create_statement_set() stmt_set.add_insert_sql("insert into sink1 select * from %s where a > 100" % source)\ .add_insert("sink2", source.filter("a < 100")) actual = stmt_set.explain() assert isinstance(actual, str) def test_create_table_environment(self): table_config = TableConfig() table_config.set_max_generated_code_length(32000) table_config.set_null_check(False) table_config.set_local_timezone("Asia/Shanghai") env = ExecutionEnvironment.get_execution_environment() t_env = BatchTableEnvironment.create(env, table_config) readed_table_config = t_env.get_config() self.assertFalse(readed_table_config.get_null_check()) self.assertEqual(readed_table_config.get_max_generated_code_length(), 32000) self.assertEqual(readed_table_config.get_local_timezone(), "Asia/Shanghai") def test_create_table_environment_with_old_planner(self): t_env = BatchTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().in_batch_mode() .use_old_planner().build()) self.assertEqual( t_env._j_tenv.getClass().getName(), "org.apache.flink.table.api.bridge.java.internal.BatchTableEnvironmentImpl") def test_create_table_environment_with_blink_planner(self): t_env = BatchTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().in_batch_mode() .use_blink_planner().build()) planner = t_env._j_tenv.getPlanner() self.assertEqual( planner.getClass().getName(), "org.apache.flink.table.planner.delegation.BatchPlanner") def test_table_environment_with_blink_planner(self): t_env = BatchTableEnvironment.create( environment_settings=EnvironmentSettings.new_instance().in_batch_mode() .use_blink_planner().build()) source_path = os.path.join(self.tempdir + '/streaming.csv') sink_path = os.path.join(self.tempdir + '/results') field_names = ["a", "b", "c"] field_types = [DataTypes.INT(), DataTypes.STRING(), DataTypes.STRING()] data = [(1, 'hi', 'hello'), (2, 'hello', 'hello')] csv_source = self.prepare_csv_source(source_path, data, field_types, field_names) t_env.register_table_source("source", csv_source) t_env.register_table_sink( "sink", CsvTableSink(field_names, field_types, sink_path)) source = t_env.scan("source") result = source.alias("a, b, c").select("1 + a, b, c") result.insert_into("sink") t_env.execute("blink_test") results = [] for root, dirs, files in os.walk(sink_path): for sub_file in files: with open(os.path.join(root, sub_file), 'r') as f: line = f.readline() while line is not None and line != '': results.append(line) line = f.readline() self.assert_equals(results, ['2,hi,hello\n', '3,hello,hello\n']) class BlinkBatchTableEnvironmentTests(PyFlinkBlinkBatchTableTestCase): def test_explain_with_multi_sinks(self): t_env = self.t_env source = t_env.from_elements([(1, "Hi", "Hello"), (2, "Hello", "Hello")], ["a", "b", "c"]) field_names = ["a", "b", "c"] field_types = [DataTypes.BIGINT(), DataTypes.STRING(), DataTypes.STRING()] t_env.register_table_sink( "sink1", CsvTableSink(field_names, field_types, "path1")) t_env.register_table_sink( "sink2", CsvTableSink(field_names, field_types, "path2")) stmt_set = t_env.create_statement_set() stmt_set.add_insert_sql("insert into sink1 select * from %s where a > 100" % source) stmt_set.add_insert_sql("insert into sink2 select * from %s where a < 100" % source) actual = stmt_set.explain(ExplainDetail.ESTIMATED_COST, ExplainDetail.CHANGELOG_MODE) self.assertIsInstance(actual, str) def test_register_java_function(self): t_env = self.t_env t_env.register_java_function( "scalar_func", "org.apache.flink.table.expressions.utils.RichFunc0") t_env.register_java_function( "agg_func", "org.apache.flink.table.functions.aggfunctions.ByteMaxAggFunction") t_env.register_java_function( "table_func", "org.apache.flink.table.utils.TableFunc2") actual = t_env.list_user_defined_functions() expected = ['scalar_func', 'agg_func', 'table_func'] self.assert_equals(actual, expected) def test_unload_and_load_module(self): t_env = self.t_env t_env.unload_module('core') t_env.load_module('core', Module( get_gateway().jvm.org.apache.flink.table.module.CoreModule.INSTANCE)) table_result = t_env.execute_sql("select concat('unload', 'load') as test_module") self.assertEqual(table_result.get_result_kind(), ResultKind.SUCCESS_WITH_CONTENT) self.assert_equals(table_result.get_table_schema().get_field_names(), ['test_module']) def test_create_and_drop_java_function(self): t_env = self.t_env t_env.create_java_temporary_system_function( "scalar_func", "org.apache.flink.table.expressions.utils.RichFunc0") t_env.create_java_function( "agg_func", "org.apache.flink.table.functions.aggfunctions.ByteMaxAggFunction") t_env.create_java_temporary_function( "table_func", "org.apache.flink.table.utils.TableFunc1") self.assert_equals(t_env.list_user_defined_functions(), ['scalar_func', 'agg_func', 'table_func']) t_env.drop_temporary_system_function("scalar_func") t_env.drop_function("agg_func") t_env.drop_temporary_function("table_func") self.assert_equals(t_env.list_user_defined_functions(), [])
apache-2.0
Kongsea/tensorflow
tensorflow/contrib/distributions/python/ops/mixture.py
9
18785
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Mixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util as distribution_utils from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import categorical from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util class Mixture(distribution.Distribution): """Mixture distribution. The `Mixture` object implements batched mixture distributions. The mixture model is defined by a `Categorical` distribution (the mixture) and a python list of `Distribution` objects. Methods supported include `log_prob`, `prob`, `mean`, `sample`, and `entropy_lower_bound`. #### Examples ```python # Create a mixture of two Gaussians: tfd = tf.contrib.distributions mix = 0.3 bimix_gauss = tfd.Mixture( cat=tfd.Categorical(probs=[mix, 1.-mix]), components=[ tfd.Normal(loc=-1., scale=0.1), tfd.Normal(loc=+1., scale=0.5), ]) # Plot the PDF. import matplotlib.pyplot as plt x = tf.linspace(-2., 3., int(1e4)).eval() plt.plot(x, bimix_gauss.prob(x).eval()); ``` """ def __init__(self, cat, components, validate_args=False, allow_nan_stats=True, name="Mixture"): """Initialize a Mixture distribution. A `Mixture` is defined by a `Categorical` (`cat`, representing the mixture probabilities) and a list of `Distribution` objects all having matching dtype, batch shape, event shape, and continuity properties (the components). The `num_classes` of `cat` must be possible to infer at graph construction time and match `len(components)`. Args: cat: A `Categorical` distribution instance, representing the probabilities of `distributions`. components: A list or tuple of `Distribution` instances. Each instance must have the same type, be defined on the same domain, and have matching `event_shape` and `batch_shape`. validate_args: Python `bool`, default `False`. If `True`, raise a runtime error if batch or event ranks are inconsistent between cat and any of the distributions. This is only checked if the ranks cannot be determined statically at graph construction time. allow_nan_stats: Boolean, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: A name for this distribution (optional). Raises: TypeError: If cat is not a `Categorical`, or `components` is not a list or tuple, or the elements of `components` are not instances of `Distribution`, or do not have matching `dtype`. ValueError: If `components` is an empty list or tuple, or its elements do not have a statically known event rank. If `cat.num_classes` cannot be inferred at graph creation time, or the constant value of `cat.num_classes` is not equal to `len(components)`, or all `components` and `cat` do not have matching static batch shapes, or all components do not have matching static event shapes. """ parameters = locals() if not isinstance(cat, categorical.Categorical): raise TypeError("cat must be a Categorical distribution, but saw: %s" % cat) if not components: raise ValueError("components must be a non-empty list or tuple") if not isinstance(components, (list, tuple)): raise TypeError("components must be a list or tuple, but saw: %s" % components) if not all(isinstance(c, distribution.Distribution) for c in components): raise TypeError( "all entries in components must be Distribution instances" " but saw: %s" % components) dtype = components[0].dtype if not all(d.dtype == dtype for d in components): raise TypeError("All components must have the same dtype, but saw " "dtypes: %s" % [(d.name, d.dtype) for d in components]) static_event_shape = components[0].event_shape static_batch_shape = cat.batch_shape for d in components: static_event_shape = static_event_shape.merge_with(d.event_shape) static_batch_shape = static_batch_shape.merge_with(d.batch_shape) if static_event_shape.ndims is None: raise ValueError( "Expected to know rank(event_shape) from components, but " "none of the components provide a static number of ndims") # Ensure that all batch and event ndims are consistent. with ops.name_scope(name, values=[cat.logits]): num_components = cat.event_size static_num_components = tensor_util.constant_value(num_components) if static_num_components is None: raise ValueError( "Could not infer number of classes from cat and unable " "to compare this value to the number of components passed in.") # Possibly convert from numpy 0-D array. static_num_components = int(static_num_components) if static_num_components != len(components): raise ValueError("cat.num_classes != len(components): %d vs. %d" % (static_num_components, len(components))) cat_batch_shape = cat.batch_shape_tensor() cat_batch_rank = array_ops.size(cat_batch_shape) if validate_args: batch_shapes = [d.batch_shape_tensor() for d in components] batch_ranks = [array_ops.size(bs) for bs in batch_shapes] check_message = ("components[%d] batch shape must match cat " "batch shape") self._assertions = [ check_ops.assert_equal( cat_batch_rank, batch_ranks[di], message=check_message % di) for di in range(len(components)) ] self._assertions += [ check_ops.assert_equal( cat_batch_shape, batch_shapes[di], message=check_message % di) for di in range(len(components)) ] else: self._assertions = [] self._cat = cat self._components = list(components) self._num_components = static_num_components self._static_event_shape = static_event_shape self._static_batch_shape = static_batch_shape # We let the Mixture distribution access _graph_parents since its arguably # more like a baseclass. graph_parents = self._cat._graph_parents # pylint: disable=protected-access for c in self._components: graph_parents += c._graph_parents # pylint: disable=protected-access super(Mixture, self).__init__( dtype=dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=graph_parents, name=name) @property def cat(self): return self._cat @property def components(self): return self._components @property def num_components(self): return self._num_components def _batch_shape_tensor(self): return self._cat.batch_shape_tensor() def _batch_shape(self): return self._static_batch_shape def _event_shape_tensor(self): return self._components[0].event_shape_tensor() def _event_shape(self): return self._static_event_shape def _expand_to_event_rank(self, x): """Expand the rank of x up to static_event_rank times for broadcasting. The static event rank was checked to not be None at construction time. Args: x: A tensor to expand. Returns: The expanded tensor. """ expanded_x = x for _ in range(self.event_shape.ndims): expanded_x = array_ops.expand_dims(expanded_x, -1) return expanded_x def _mean(self): with ops.control_dependencies(self._assertions): distribution_means = [d.mean() for d in self.components] cat_probs = self._cat_probs(log_probs=False) cat_probs = [self._expand_to_event_rank(c_p) for c_p in cat_probs] partial_means = [ c_p * m for (c_p, m) in zip(cat_probs, distribution_means) ] # These should all be the same shape by virtue of matching # batch_shape and event_shape. return math_ops.add_n(partial_means) def _stddev(self): with ops.control_dependencies(self._assertions): distribution_means = [d.mean() for d in self.components] distribution_devs = [d.stddev() for d in self.components] cat_probs = self._cat_probs(log_probs=False) stacked_means = array_ops.stack(distribution_means, axis=-1) stacked_devs = array_ops.stack(distribution_devs, axis=-1) cat_probs = [self._expand_to_event_rank(c_p) for c_p in cat_probs] broadcasted_cat_probs = (array_ops.stack(cat_probs, axis=-1) * array_ops.ones_like(stacked_means)) batched_dev = distribution_utils.mixture_stddev( array_ops.reshape(broadcasted_cat_probs, [-1, len(self.components)]), array_ops.reshape(stacked_means, [-1, len(self.components)]), array_ops.reshape(stacked_devs, [-1, len(self.components)])) # I.e. re-shape to list(batch_shape) + list(event_shape). return array_ops.reshape(batched_dev, array_ops.shape(broadcasted_cat_probs)[:-1]) def _log_prob(self, x): with ops.control_dependencies(self._assertions): x = ops.convert_to_tensor(x, name="x") distribution_log_probs = [d.log_prob(x) for d in self.components] cat_log_probs = self._cat_probs(log_probs=True) final_log_probs = [ cat_lp + d_lp for (cat_lp, d_lp) in zip(cat_log_probs, distribution_log_probs) ] concat_log_probs = array_ops.stack(final_log_probs, 0) log_sum_exp = math_ops.reduce_logsumexp(concat_log_probs, [0]) return log_sum_exp def _log_cdf(self, x): with ops.control_dependencies(self._assertions): x = ops.convert_to_tensor(x, name="x") distribution_log_cdfs = [d.log_cdf(x) for d in self.components] cat_log_probs = self._cat_probs(log_probs=True) final_log_cdfs = [ cat_lp + d_lcdf for (cat_lp, d_lcdf) in zip(cat_log_probs, distribution_log_cdfs) ] concatted_log_cdfs = array_ops.stack(final_log_cdfs, axis=0) mixture_log_cdf = math_ops.reduce_logsumexp(concatted_log_cdfs, [0]) return mixture_log_cdf def _sample_n(self, n, seed=None): with ops.control_dependencies(self._assertions): n = ops.convert_to_tensor(n, name="n") static_n = tensor_util.constant_value(n) n = int(static_n) if static_n is not None else n cat_samples = self.cat.sample(n, seed=seed) static_samples_shape = cat_samples.get_shape() if static_samples_shape.is_fully_defined(): samples_shape = static_samples_shape.as_list() samples_size = static_samples_shape.num_elements() else: samples_shape = array_ops.shape(cat_samples) samples_size = array_ops.size(cat_samples) static_batch_shape = self.batch_shape if static_batch_shape.is_fully_defined(): batch_shape = static_batch_shape.as_list() batch_size = static_batch_shape.num_elements() else: batch_shape = self.batch_shape_tensor() batch_size = math_ops.reduce_prod(batch_shape) static_event_shape = self.event_shape if static_event_shape.is_fully_defined(): event_shape = np.array(static_event_shape.as_list(), dtype=np.int32) else: event_shape = self.event_shape_tensor() # Get indices into the raw cat sampling tensor. We will # need these to stitch sample values back out after sampling # within the component partitions. samples_raw_indices = array_ops.reshape( math_ops.range(0, samples_size), samples_shape) # Partition the raw indices so that we can use # dynamic_stitch later to reconstruct the samples from the # known partitions. partitioned_samples_indices = data_flow_ops.dynamic_partition( data=samples_raw_indices, partitions=cat_samples, num_partitions=self.num_components) # Copy the batch indices n times, as we will need to know # these to pull out the appropriate rows within the # component partitions. batch_raw_indices = array_ops.reshape( array_ops.tile(math_ops.range(0, batch_size), [n]), samples_shape) # Explanation of the dynamic partitioning below: # batch indices are i.e., [0, 1, 0, 1, 0, 1] # Suppose partitions are: # [1 1 0 0 1 1] # After partitioning, batch indices are cut as: # [batch_indices[x] for x in 2, 3] # [batch_indices[x] for x in 0, 1, 4, 5] # i.e. # [1 1] and [0 0 0 0] # Now we sample n=2 from part 0 and n=4 from part 1. # For part 0 we want samples from batch entries 1, 1 (samples 0, 1), # and for part 1 we want samples from batch entries 0, 0, 0, 0 # (samples 0, 1, 2, 3). partitioned_batch_indices = data_flow_ops.dynamic_partition( data=batch_raw_indices, partitions=cat_samples, num_partitions=self.num_components) samples_class = [None for _ in range(self.num_components)] for c in range(self.num_components): n_class = array_ops.size(partitioned_samples_indices[c]) seed = distribution_util.gen_new_seed(seed, "mixture") samples_class_c = self.components[c].sample(n_class, seed=seed) # Pull out the correct batch entries from each index. # To do this, we may have to flatten the batch shape. # For sample s, batch element b of component c, we get the # partitioned batch indices from # partitioned_batch_indices[c]; and shift each element by # the sample index. The final lookup can be thought of as # a matrix gather along locations (s, b) in # samples_class_c where the n_class rows correspond to # samples within this component and the batch_size columns # correspond to batch elements within the component. # # Thus the lookup index is # lookup[c, i] = batch_size * s[i] + b[c, i] # for i = 0 ... n_class[c] - 1. lookup_partitioned_batch_indices = ( batch_size * math_ops.range(n_class) + partitioned_batch_indices[c]) samples_class_c = array_ops.reshape( samples_class_c, array_ops.concat([[n_class * batch_size], event_shape], 0)) samples_class_c = array_ops.gather( samples_class_c, lookup_partitioned_batch_indices, name="samples_class_c_gather") samples_class[c] = samples_class_c # Stitch back together the samples across the components. lhs_flat_ret = data_flow_ops.dynamic_stitch( indices=partitioned_samples_indices, data=samples_class) # Reshape back to proper sample, batch, and event shape. ret = array_ops.reshape(lhs_flat_ret, array_ops.concat([samples_shape, self.event_shape_tensor()], 0)) ret.set_shape( tensor_shape.TensorShape(static_samples_shape).concatenate( self.event_shape)) return ret def entropy_lower_bound(self, name="entropy_lower_bound"): r"""A lower bound on the entropy of this mixture model. The bound below is not always very tight, and its usefulness depends on the mixture probabilities and the components in use. A lower bound is useful for ELBO when the `Mixture` is the variational distribution: \\( \log p(x) >= ELBO = \int q(z) \log p(x, z) dz + H[q] \\) where \\( p \\) is the prior distribution, \\( q \\) is the variational, and \\( H[q] \\) is the entropy of \\( q \\). If there is a lower bound \\( G[q] \\) such that \\( H[q] \geq G[q] \\) then it can be used in place of \\( H[q] \\). For a mixture of distributions \\( q(Z) = \sum_i c_i q_i(Z) \\) with \\( \sum_i c_i = 1 \\), by the concavity of \\( f(x) = -x \log x \\), a simple lower bound is: \\( \begin{align} H[q] & = - \int q(z) \log q(z) dz \\\ & = - \int (\sum_i c_i q_i(z)) \log(\sum_i c_i q_i(z)) dz \\\ & \geq - \sum_i c_i \int q_i(z) \log q_i(z) dz \\\ & = \sum_i c_i H[q_i] \end{align} \\) This is the term we calculate below for \\( G[q] \\). Args: name: A name for this operation (optional). Returns: A lower bound on the Mixture's entropy. """ with self._name_scope(name, values=[self.cat.logits]): with ops.control_dependencies(self._assertions): distribution_entropies = [d.entropy() for d in self.components] cat_probs = self._cat_probs(log_probs=False) partial_entropies = [ c_p * m for (c_p, m) in zip(cat_probs, distribution_entropies) ] # These are all the same shape by virtue of matching batch_shape return math_ops.add_n(partial_entropies) def _cat_probs(self, log_probs): """Get a list of num_components batchwise probabilities.""" which_softmax = nn_ops.log_softmax if log_probs else nn_ops.softmax cat_probs = which_softmax(self.cat.logits) cat_probs = array_ops.unstack(cat_probs, num=self.num_components, axis=-1) return cat_probs
apache-2.0
loli/semisupervisedforests
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
madmouser1/aubio
python/demos/demo_mel-energy.py
9
2203
#! /usr/bin/env python import sys from aubio import fvec, source, pvoc, filterbank from numpy import vstack, zeros win_s = 512 # fft size hop_s = win_s / 4 # hop size if len(sys.argv) < 2: print "Usage: %s <filename> [samplerate]" % sys.argv[0] sys.exit(1) filename = sys.argv[1] samplerate = 0 if len( sys.argv ) > 2: samplerate = int(sys.argv[2]) s = source(filename, samplerate, hop_s) samplerate = s.samplerate pv = pvoc(win_s, hop_s) f = filterbank(40, win_s) f.set_mel_coeffs_slaney(samplerate) energies = zeros((40,)) o = {} total_frames = 0 downsample = 2 while True: samples, read = s() fftgrain = pv(samples) new_energies = f(fftgrain) print '%f' % (total_frames / float(samplerate) ), print ' '.join(['%f' % b for b in new_energies]) energies = vstack( [energies, new_energies] ) total_frames += read if read < hop_s: break if 1: print "done computing, now plotting" import matplotlib.pyplot as plt from demo_waveform_plot import get_waveform_plot from demo_waveform_plot import set_xlabels_sample2time fig = plt.figure() plt.rc('lines',linewidth='.8') wave = plt.axes([0.1, 0.75, 0.8, 0.19]) get_waveform_plot(filename, samplerate, block_size = hop_s, ax = wave ) wave.yaxis.set_visible(False) wave.xaxis.set_visible(False) n_plots = len(energies.T) all_desc_times = [ x * hop_s for x in range(len(energies)) ] for i, band in enumerate(energies.T): ax = plt.axes ( [0.1, 0.75 - ((i+1) * 0.65 / n_plots), 0.8, 0.65 / n_plots], sharex = wave ) ax.plot(all_desc_times, band, '-', label = 'band %d' % i) #ax.set_ylabel(method, rotation = 0) ax.xaxis.set_visible(False) ax.yaxis.set_visible(False) ax.axis(xmax = all_desc_times[-1], xmin = all_desc_times[0]) ax.annotate('band %d' % i, xy=(-10, 0), xycoords='axes points', horizontalalignment='right', verticalalignment='bottom', size = 'xx-small', ) set_xlabels_sample2time( ax, all_desc_times[-1], samplerate) #plt.ylabel('spectral descriptor value') ax.xaxis.set_visible(True) plt.show()
gpl-3.0
erichseamon/sklearn_pycon2015
notebooks/fig_code/figures.py
34
8633
import numpy as np import matplotlib.pyplot as plt import warnings def plot_venn_diagram(): fig, ax = plt.subplots(subplot_kw=dict(frameon=False, xticks=[], yticks=[])) ax.add_patch(plt.Circle((0.3, 0.3), 0.3, fc='red', alpha=0.5)) ax.add_patch(plt.Circle((0.6, 0.3), 0.3, fc='blue', alpha=0.5)) ax.add_patch(plt.Rectangle((-0.1, -0.1), 1.1, 0.8, fc='none', ec='black')) ax.text(0.2, 0.3, '$x$', size=30, ha='center', va='center') ax.text(0.7, 0.3, '$y$', size=30, ha='center', va='center') ax.text(0.0, 0.6, '$I$', size=30) ax.axis('equal') def plot_example_decision_tree(): fig = plt.figure(figsize=(10, 4)) ax = fig.add_axes([0, 0, 0.8, 1], frameon=False, xticks=[], yticks=[]) ax.set_title('Example Decision Tree: Animal Classification', size=24) def text(ax, x, y, t, size=20, **kwargs): ax.text(x, y, t, ha='center', va='center', size=size, bbox=dict(boxstyle='round', ec='k', fc='w'), **kwargs) text(ax, 0.5, 0.9, "How big is\nthe animal?", 20) text(ax, 0.3, 0.6, "Does the animal\nhave horns?", 18) text(ax, 0.7, 0.6, "Does the animal\nhave two legs?", 18) text(ax, 0.12, 0.3, "Are the horns\nlonger than 10cm?", 14) text(ax, 0.38, 0.3, "Is the animal\nwearing a collar?", 14) text(ax, 0.62, 0.3, "Does the animal\nhave wings?", 14) text(ax, 0.88, 0.3, "Does the animal\nhave a tail?", 14) text(ax, 0.4, 0.75, "> 1m", 12, alpha=0.4) text(ax, 0.6, 0.75, "< 1m", 12, alpha=0.4) text(ax, 0.21, 0.45, "yes", 12, alpha=0.4) text(ax, 0.34, 0.45, "no", 12, alpha=0.4) text(ax, 0.66, 0.45, "yes", 12, alpha=0.4) text(ax, 0.79, 0.45, "no", 12, alpha=0.4) ax.plot([0.3, 0.5, 0.7], [0.6, 0.9, 0.6], '-k') ax.plot([0.12, 0.3, 0.38], [0.3, 0.6, 0.3], '-k') ax.plot([0.62, 0.7, 0.88], [0.3, 0.6, 0.3], '-k') ax.plot([0.0, 0.12, 0.20], [0.0, 0.3, 0.0], '--k') ax.plot([0.28, 0.38, 0.48], [0.0, 0.3, 0.0], '--k') ax.plot([0.52, 0.62, 0.72], [0.0, 0.3, 0.0], '--k') ax.plot([0.8, 0.88, 1.0], [0.0, 0.3, 0.0], '--k') ax.axis([0, 1, 0, 1]) def visualize_tree(estimator, X, y, boundaries=True, xlim=None, ylim=None): estimator.fit(X, y) if xlim is None: xlim = (X[:, 0].min() - 0.1, X[:, 0].max() + 0.1) if ylim is None: ylim = (X[:, 1].min() - 0.1, X[:, 1].max() + 0.1) x_min, x_max = xlim y_min, y_max = ylim xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, alpha=0.2, cmap='rainbow') plt.clim(y.min(), y.max()) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow') plt.axis('off') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.clim(y.min(), y.max()) # Plot the decision boundaries def plot_boundaries(i, xlim, ylim): if i < 0: return tree = estimator.tree_ if tree.feature[i] == 0: plt.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k') plot_boundaries(tree.children_left[i], [xlim[0], tree.threshold[i]], ylim) plot_boundaries(tree.children_right[i], [tree.threshold[i], xlim[1]], ylim) elif tree.feature[i] == 1: plt.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k') plot_boundaries(tree.children_left[i], xlim, [ylim[0], tree.threshold[i]]) plot_boundaries(tree.children_right[i], xlim, [tree.threshold[i], ylim[1]]) if boundaries: plot_boundaries(0, plt.xlim(), plt.ylim()) def plot_tree_interactive(X, y): from sklearn.tree import DecisionTreeClassifier def interactive_tree(depth=1): clf = DecisionTreeClassifier(max_depth=depth, random_state=0) visualize_tree(clf, X, y) from IPython.html.widgets import interact return interact(interactive_tree, depth=[1, 5]) def plot_kmeans_interactive(min_clusters=1, max_clusters=6): from IPython.html.widgets import interact from sklearn.metrics.pairwise import euclidean_distances from sklearn.datasets.samples_generator import make_blobs with warnings.catch_warnings(): warnings.filterwarnings('ignore') X, y = make_blobs(n_samples=300, centers=4, random_state=0, cluster_std=0.60) def _kmeans_step(frame=0, n_clusters=4): rng = np.random.RandomState(2) labels = np.zeros(X.shape[0]) centers = rng.randn(n_clusters, 2) nsteps = frame // 3 for i in range(nsteps + 1): old_centers = centers if i < nsteps or frame % 3 > 0: dist = euclidean_distances(X, centers) labels = dist.argmin(1) if i < nsteps or frame % 3 > 1: centers = np.array([X[labels == j].mean(0) for j in range(n_clusters)]) nans = np.isnan(centers) centers[nans] = old_centers[nans] # plot the data and cluster centers plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='rainbow', vmin=0, vmax=n_clusters - 1); plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o', c=np.arange(n_clusters), s=200, cmap='rainbow') plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o', c='black', s=50) # plot new centers if third frame if frame % 3 == 2: for i in range(n_clusters): plt.annotate('', centers[i], old_centers[i], arrowprops=dict(arrowstyle='->', linewidth=1)) plt.scatter(centers[:, 0], centers[:, 1], marker='o', c=np.arange(n_clusters), s=200, cmap='rainbow') plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='black', s=50) plt.xlim(-4, 4) plt.ylim(-2, 10) if frame % 3 == 1: plt.text(3.8, 9.5, "1. Reassign points to nearest centroid", ha='right', va='top', size=14) elif frame % 3 == 2: plt.text(3.8, 9.5, "2. Update centroids to cluster means", ha='right', va='top', size=14) return interact(_kmeans_step, frame=[0, 50], n_clusters=[min_clusters, max_clusters]) def plot_image_components(x, coefficients=None, mean=0, components=None, imshape=(8, 8), n_components=6, fontsize=12): if coefficients is None: coefficients = x if components is None: components = np.eye(len(coefficients), len(x)) mean = np.zeros_like(x) + mean fig = plt.figure(figsize=(1.2 * (5 + n_components), 1.2 * 2)) g = plt.GridSpec(2, 5 + n_components, hspace=0.3) def show(i, j, x, title=None): ax = fig.add_subplot(g[i, j], xticks=[], yticks=[]) ax.imshow(x.reshape(imshape), interpolation='nearest') if title: ax.set_title(title, fontsize=fontsize) show(slice(2), slice(2), x, "True") approx = mean.copy() show(0, 2, np.zeros_like(x) + mean, r'$\mu$') show(1, 2, approx, r'$1 \cdot \mu$') for i in range(0, n_components): approx = approx + coefficients[i] * components[i] show(0, i + 3, components[i], r'$c_{0}$'.format(i + 1)) show(1, i + 3, approx, r"${0:.2f} \cdot c_{1}$".format(coefficients[i], i + 1)) plt.gca().text(0, 1.05, '$+$', ha='right', va='bottom', transform=plt.gca().transAxes, fontsize=fontsize) show(slice(2), slice(-2, None), approx, "Approx") def plot_pca_interactive(data, n_components=6): from sklearn.decomposition import PCA from IPython.html.widgets import interact pca = PCA(n_components=n_components) Xproj = pca.fit_transform(data) def show_decomp(i=0): plot_image_components(data[i], Xproj[i], pca.mean_, pca.components_) interact(show_decomp, i=(0, data.shape[0] - 1));
bsd-3-clause
Rosuav/shed
probability.py
1
3924
import math import random import statistics import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats def parse_roll_test(test): # Parse the result of 'roll test' from Minstrel Hall dist = {} total = 0 for line in test.split("\n"): if ":" in line: val, prob = line.split(":") dist[val] = int(prob) total += int(prob) # Parsing complete. We now have a mapping of result to number of instances, # and a total result count. So dist[X]/total == probability of X occurring, # for any X. return dist, total def chisq(dist, total): expected = total / len(dist) error = 0 for result, count in dist.items(): error += (count - expected) ** 2 / expected print("χ² =", error) if 0: chisq(*parse_roll_test(""" 1: 10135 2: 9971 3: 9774 4: 9849 5: 10059 6: 9936 7: 9990 8: 10027 9: 9917 10: 10054 11: 10202 12: 10008 13: 10136 14: 10060 15: 10012 16: 9941 17: 10007 18: 9956 19: 10096 20: 9870 """)) def roll_dice(n): # Roll an N-sided dice. Mess with this to create unfair distributions. roll = random.randrange(n) + 1 if roll in {1, n} and not random.randrange(40): roll = random.randrange(n) + 1 return roll def test_dice_roller(n, tries): dist = {} # Initialize to all zeroes to ensure that we have entries for everything for i in range(n): dist[i + 1] = 0 # Roll a bunch of dice and see what comes up for _ in range(tries): dist[roll_dice(n)] += 1 chisq(dist, tries) # for _ in range(15): test_dice_roller(20, 200000) #(x ** 500_000_000) * ((1-x) ** 500_000_000) #fac(1_000_000_000) / (fac(500_000_000) * fac(500_000_000)) def choose(n, k): # Actually calculate n choose k # n! / (k!(n-k)!) num = denom = 1 for i in range(1, k + 1): num *= i + n - k denom *= i return num // denom def approxchoose(n, k): # Approximate n choose k for large n and k # Returns values a smidge too high, and has to be special-cased for N choose 0 and N choose N if k == 0 or k == n: return 1 return (n / (2 * math.pi * k * (n-k))) ** 0.5 * (n ** n) / (k ** k * (n - k) ** (n - k)) def choosehalf(n): # Approximate 2n choose n return 2 ** (2*n) / (math.pi * n)**0.5 print(choose(20, 10)) print(approxchoose(20, 10)) print(choosehalf(10)) # print(approxchoose(1_000_000, 500_000)) # print(choosehalf(500_000)) # Binomial distribution for N coin tosses # What is the standard deviation of [0]*N + [1]*N ? N = 1_000_000_000 half = 5_000_000_000 def stdev(N): ss = 0 for n in range(N): ss += approxchoose(N, n) * (n - N/2) ** 2 return (ss / (2**N-1)) ** 0.5 def pascal(n): if n == 0: return [1] p = [0] + pascal(n - 1) + [0] return [p[i] + p[i + 1] for i in range(len(p) - 1)] if 0: # Calculate the error in the approxchoose function by comparing against # the corresponding row in Pascal's Triangle N = 20 for n, count in enumerate(pascal(N)): print(f"%{len(str(N))}d %.5f" % (n, approxchoose(N, n) / count), count) import sys; sys.exit(0) # statistics.NormalDist(0.5, stdev(N)) # for N in (4, 10, 20, 100, 1_000_000, 1_000_000_000, 1_000_000_000_000): for N in (5, 10, 15, 20, 50, 75, 100): sigmaN = stdev(N) / N print(N, sigmaN) x = np.linspace(0, 1.0, N + 2) if N < 50: p = [p * n / 2**N * 2 for n, p in enumerate(pascal(N) + [0])] plt.plot(x, p, label=f"Actual [{N}]") if 0: # Slow calculation of the same figure stdev gives samples = [] for n, count in enumerate(pascal(N)): samples.extend(count * [n]) # mu / N, sigma / N muN, sigmaN = 0.5, statistics.stdev(samples)/N print(N, sigmaN) plt.plot(x, stats.norm.pdf(x, 0.5, sigmaN), label=str(N)) # What is the first derivative of the PDF of (1e9 choose 5e8) at 0.5? # f''(x) = 1/sqrt(2*pi)*e**(-1/2x^2) * (x^2-1) # 499_000_000 <= x <= 501_000_000 ?? What probability? # CDF: What is the probability that x < 499e6 ? # CDF: What is the probability that x < 501e6 ? # What is the spread around the mean such that CDF(x+spread) - CDF(x-spread) == 0.99? plt.legend() plt.show()
mit
msmbuilder/msmbuilder
msmbuilder/cluster/kcenters.py
9
6846
# Author: Robert McGibbon <[email protected]> # Contributors: Brooke Husic <[email protected]> # Copyright (c) 2016, Stanford University # All rights reserved. #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import, print_function, division import numpy as np from sklearn.utils import check_random_state from sklearn.base import ClusterMixin, TransformerMixin from .. import libdistance from . import MultiSequenceClusterMixin from ..base import BaseEstimator __all__ = ['KCenters'] #----------------------------------------------------------------------------- # Code #----------------------------------------------------------------------------- class _KCenters(ClusterMixin, TransformerMixin): """K-Centers clustering Cluster a vector or Trajectory dataset using a simple heuristic to minimize the maximum distance from any data point to its assigned cluster center. The runtime of this algorithm is O(kN), where k is the number of clusters and N is the size of the dataset, making it one of the least expensive clustering algorithms available. Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. metric : {"euclidean", "sqeuclidean", "cityblock", "chebyshev", "canberra", "braycurtis", "hamming", "jaccard", "cityblock", "rmsd"} The distance metric to use. metric = "rmsd" requires that sequences passed to ``fit()`` be ```md.Trajectory```; other distance metrics require ``np.ndarray``s. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. References ---------- .. [1] Gonzalez, Teofilo F. "Clustering to minimize the maximum intercluster distance." Theor. Comput. Sci. 38 (1985): 293-306. .. [2] Beauchamp, Kyle A., et al. "MSMBuilder2: modeling conformational dynamics on the picosecond to millisecond scale." J. Chem. Theory. Comput. 7.10 (2011): 3412-3419. Attributes ---------- cluster_ids_ : array, [n_clusters] Index of the data point that each cluster label corresponds to. cluster_centers_ : array, [n_clusters, n_features] or md.Trajectory Coordinates of cluster centers labels_ : array, [n_samples,] The label of each point is an integer in [0, n_clusters). distances_ : array, [n_samples,] Distance from each sample to the cluster center it is assigned to. inertia_ : float Sum of distances of samples to their closest cluster center. """ def __init__(self, n_clusters=8, metric='euclidean', random_state=None): self.n_clusters = n_clusters self.metric = metric self.random_state = random_state def fit(self, X, y=None): if isinstance(X, np.ndarray): if not (X.dtype == 'float32' or X.dtype == 'float64'): X = X.astype('float64') n_samples = len(X) new_center_index = check_random_state(self.random_state).randint(0, n_samples) self.labels_ = np.zeros(n_samples, dtype=int) self.distances_ = np.empty(n_samples, dtype=float) self.distances_.fill(np.inf) cluster_ids_ = [] for i in range(self.n_clusters): d = libdistance.dist(X, X[new_center_index], metric=self.metric) mask = (d < self.distances_) self.distances_[mask] = d[mask] self.labels_[mask] = i cluster_ids_.append(new_center_index) new_center_index = np.argmax(self.distances_) self.cluster_ids_ = cluster_ids_ self.cluster_centers_ = X[cluster_ids_] self.inertia_ = np.sum(self.distances_) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. In the vector quantization literature, `cluster_centers_` is called the code book and each value returned by `predict` is the index of the closest code in the code book. Parameters ---------- X : array-like, shape = [n_samples, n_features] New data to predict. Returns ------- Y : array, shape [n_samples,] Index of the closest center each sample belongs to. """ if isinstance(X, np.ndarray): if not (X.dtype == 'float32' or X.dtype == 'float64'): X = X.astype('float64') labels, inertia = libdistance.assign_nearest( X, self.cluster_centers_, metric=self.metric) return labels def fit_predict(self, X, y=None): return self.fit(X, y).labels_ class KCenters(MultiSequenceClusterMixin, _KCenters, BaseEstimator): _allow_trajectory = True __doc__ = _KCenters.__doc__[: _KCenters.__doc__.find('Attributes')] + \ ''' Attributes ---------- `cluster_centers_` : array, [n_clusters, n_features] Coordinates of cluster centers `labels_` : list of arrays, each of shape [sequence_length, ] `labels_[i]` is an array of the labels of each point in sequence `i`. The label of each point is an integer in [0, n_clusters). `distances_` : list of arrays, each of shape [sequence_length, ] `distances_[i]` is an array of the labels of each point in sequence `i`. Distance from each sample to the cluster center it is assigned to. ''' def fit(self, sequences, y=None): """Fit the kcenters clustering on the data Parameters ---------- sequences : list of array-like, each of shape [sequence_length, n_features] A list of multivariate timeseries, or ``md.Trajectory``. Each sequence may have a different length, but they all must have the same number of features, or the same number of atoms if they are ``md.Trajectory``s. Returns ------- self """ MultiSequenceClusterMixin.fit(self, sequences) self.distances_ = self._split(self.distances_) return self def summarize(self): return """KCenters clustering -------------------- n_clusters : {n_clusters} metric : {metric} Inertia : {inertia} Mean distance : {mean_distance} Max distance : {max_distance} """.format(n_clusters=self.n_clusters, metric=self.metric, inertia=self.inertia_, mean_distance=np.mean(np.concatenate(self.distances_)), max_distance=np.max(np.concatenate(self.distances_)))
lgpl-2.1
crichardson17/starburst_atlas
SFH_comparison/data/Geneva_cont_Rot/Geneva_cont_Rot_6/fullgrid/peaks_reader.py
1
5057
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # --------------------------------------------------- headerloc = "/Users/helen/Documents/Elon/Thesis_Research/github_repo/starburst_atlas/headers_dir/headers.txt" # ------------------------------------------------------------------------------------------------------ #data files' names from source directory constructed here. default source directory is working directory numFiles = 3 #change this if you have more/less files gridFiles = [None]*numFiles emissionFiles = [None]*numFiles for i in range(numFiles): for file in os.listdir('.'): if file.endswith("{:d}.grd".format(i+1)): gridFiles[i] = file #keep track of all the files you'll be importing by printing #print file if file.endswith("{:d}.txt".format(i+1)): emissionFiles[i] = file #keep track of all the files you'll be importing by printing #print file print ("Files names constructed") # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. print("Beginning file import") for i in range(numFiles): gridI = []; with open(gridFiles[i], 'rb') as f: csvReader = csv.reader(f, delimiter='\t') for row in csvReader: gridI.append(row) gridI = asarray(gridI) gridI = gridI[1:,6:8] if ( i == 0 ): grid = gridI else : grid = concatenate((grid,gridI)) for i in range(numFiles): emissionLineI = []; with open(emissionFiles[i], 'rb') as f: csvReader = csv.reader(f, delimiter='\t') headers = csvReader.next() for row in csvReader: emissionLineI.append(row) emissionLineI = asarray(emissionLineI) emissionLineI = emissionLineI[:,1:] if ( i == 0 ): Emissionlines = emissionLineI else : Emissionlines = concatenate((Emissionlines,emissionLineI)) hdens_values = grid[:,1] phi_values = grid[:,0] print("Import files complete") #To fix when hdens > 10 #many of my grids were run off with hdens up to 12 so we needed to cut off part of the data #first create temorary arrays print("modifications begun") hdens_values_2 = empty(shape=[0, 1]) phi_values_2 = empty(shape=[0, 1]) Emissionlines_2 = empty(shape=[0, len(Emissionlines[0,:])]) #save data in range desired to temp arrays for i in range(len(hdens_values)): if (float(hdens_values[i]) < 6.100) & (float(phi_values[i]) < 17.100) : hdens_values_2 = append(hdens_values_2, hdens_values[i]) phi_values_2 = append(phi_values_2, phi_values[i]) Emissionlines_2 = vstack([Emissionlines_2, Emissionlines[i,:]]) #overwrite old arrays hdens_values = hdens_values_2 phi_values = phi_values_2 Emissionlines = Emissionlines_2 print("modifications complete") # --------------------------------------------------- # --------------------------------------------------- #there are the emission line names properly formatted print("Importing headers from header file") headersFile = open(headerloc,'r') headers = headersFile.read().splitlines() headersFile.close() # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- savetxt('peaks_Geneva_cont_6', max_values, delimiter='\t')
gpl-2.0
svebk/memex-weapons
deepmodels/test_model.py
1
5520
import numpy as np import matplotlib.pyplot as plt import json import cv2 import scipy import pickle import os,sys import copy # Make sure that caffe is on the python path: #caffe_root = '../' # this file is expected to be in {caffe_root}/examples #import sys #sys.path.insert(0, caffe_root + 'python') import caffe class CaffeExtractorConf(): MODEL_FILE = './deepmodels/CNN_20K_deploy.prototxt' PRETRAINED = './deepmodels/CNN_20K.caffemodel' MEAN_FILE = './deepmodels/imagenet_mean.npy' CAT_FILE = './deepmodels/cat_20K.txt' WEAPONS_CAT_FILE = './deepmodels/weapon_classes.npy' WEAPONS_MAPPING_FILE = './deepmodels/imagenet_memex_mapping.json' WITH_FLIP = True WITH_CROP = False OUTPUT_LAYERS=['prob'] CAFFE_MODE = "CPU" class CaffeExtractor(): conf = None net = None mean_img = None def __init__(self, in_conf=CaffeExtractorConf()): self.conf = in_conf self.initialize() def initialize(self): self.np_cat = self.loadCatList(self.conf.CAT_FILE) #self.wf=np.where(np.load(self.conf.WEAPONS_CAT_FILE)==1)[0] #self.mapCatList() # Caffe net init if self.conf.CAFFE_MODE == "GPU": caffe.set_mode_gpu() else: caffe.set_mode_cpu() self.mean_img = np.load(self.conf.MEAN_FILE) self.net = caffe.Net(self.conf.MODEL_FILE, self.conf.PRETRAINED, caffe.TEST) self.conf.batch_size = self.net.blobs['data'].data.shape[0] self.conf.IN_DIM = (self.net.blobs['data'].data.shape[2],self.net.blobs['data'].data.shape[3]) def formatInput(self,IMAGE_FILE): start=(256-224)/2 end=start+224 input_image = cv2.imread(IMAGE_FILE) if input_image is None: return None input_image_t=np.transpose(input_image,(2,0,1)) if self.conf.WITH_FLIP: input_image_fl = np.fliplr(input_image) input_image_fl_t=np.transpose(input_image,(2,0,1)) if self.conf.WITH_CROP: input_data = np.asarray([(input_image_t[:,start:end,start:end]-self.mean_img[:,start:end,start:end]),(input_image_fl_t[:,start:end,start:end]-self.mean_img[:,start:end,start:end])]) else: input_image_tr=scipy.misc.imresize(input_image_t.transpose(1,2,0),self.conf.IN_DIM).transpose(2,0,1) input_image_fl_tr=scipy.misc.imresize(input_image_fl_t.transpose(1,2,0),self.conf.IN_DIM).transpose(2,0,1) input_data = np.asarray([(input_image_tr-self.mean_img[:,start:end,start:end]),(input_image_fl_tr-self.mean_img[:,start:end,start:end])]) else: if self.conf.WITH_CROP: input_data = np.asarray([(input_image_t[:,start:end,start:end]-self.mean_img[:,start:end,start:end])]) else: input_image_t=scipy.misc.imresize(input_image_t.transpose(1,2,0),self.conf.IN_DIM).transpose(2,0,1) input_data = np.asarray([(input_image_t-self.mean_img[:,start:end,start:end])]) return input_data def getOutput(self,IMAGE_FILE): self.input_data = None self.input_data = self.formatInput(IMAGE_FILE) if self.input_data is None: return None self.net.forward(data=self.input_data) self.out = {} for layer in self.conf.OUTPUT_LAYERS: self.out[layer]=self.net.blobs[layer].data return self.out @staticmethod def loadCatList(CAT_FILE): cat_lists=[] with open(CAT_FILE,"rt") as fcat: for line in fcat: cat_lists.append(line.strip()) print "We have",str(len(cat_lists)),"classes in total." return np.asarray(cat_lists) def mapCatList(self): with open(self.conf.WEAPONS_MAPPING_FILE,"r") as f: json_map=json.load(f) self.map_cat_lists=json_map.keys() self.all_mapped_cat=[] self.map_cat_pos={} for key in self.map_cat_lists: self.map_cat_pos[key]=[] for cat in json_map[key]: self.map_cat_pos[key].extend(list(np.where(self.np_cat==cat)[0])) self.all_mapped_cat.extend(list(np.where(self.np_cat==cat)[0])) self.map_cat_pos[key]=np.asarray(self.map_cat_pos[key]).squeeze() self.nonweapons_pos=[i for i in range(self.np_cat.shape[0]) if i not in self.all_mapped_cat] def show_res_batch(self): batch_in = self.input_data.shape[0] prediction = self.out['prob'] for i in range(batch_in): print "Input #"+str(i)+" classified as:",self.np_cat[prediction[i].argmax()] ind=np.argsort(prediction[i])[::-1] print "Top 10 classes are:",self.np_cat[ind[0:10]] if __name__=="__main__": if len(sys.argv)<2: print "Usage: python test_model.py model_folder" dir_model=sys.argv[1].strip('/') test_imgs_dir='./result_test_images' cec = CaffeExtractorConf() cec.MODEL_FILE = dir_model+"/"+dir_model+'_deploy.prototxt' cec.PRETRAINED = dir_model+"/"+dir_model+'.caffemodel' cec.CAT_FILE = dir_model+"/cat_list.txt" cec.MEAN_FILE = 'imagenet_mean.npy' cec.WITH_FLIP = False cec.WITH_CROP = False cec.OUTPUT_LAYERS=['prob'] cec.CAFFE_MODE = "CPU" ce = CaffeExtractor(cec) out_dict={} for img in os.listdir(test_imgs_dir): #print img if img.endswith('.jpg'): IMAGE_FILE = os.path.join(test_imgs_dir,img) out = ce.getOutput(IMAGE_FILE) out_dict[img]=copy.deepcopy(out) print img,out ce.show_res_batch() pickle.dump(out_dict,open(os.path.join(dir_model,"result_test_images.pickle"),"wb")) np.save(os.path.join(dir_model,"result_test_images.npy"),out_dict)
bsd-2-clause
bhargav/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
snario/geopandas
tests/test_geodataframe.py
7
19172
from __future__ import absolute_import import json import os import tempfile import shutil import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal from shapely.geometry import Point, Polygon import fiona from geopandas import GeoDataFrame, read_file, GeoSeries from .util import unittest, download_nybb, assert_geoseries_equal, connect, \ create_db, validate_boro_df, PANDAS_NEW_SQL_API class TestDataFrame(unittest.TestCase): def setUp(self): N = 10 nybb_filename = download_nybb() self.df = read_file('/nybb_14a_av/nybb.shp', vfs='zip://' + nybb_filename) with fiona.open('/nybb_14a_av/nybb.shp', vfs='zip://' + nybb_filename) as f: self.schema = f.schema self.tempdir = tempfile.mkdtemp() self.boros = self.df['BoroName'] self.crs = {'init': 'epsg:4326'} self.df2 = GeoDataFrame([ {'geometry': Point(x, y), 'value1': x + y, 'value2': x * y} for x, y in zip(range(N), range(N))], crs=self.crs) self.df3 = read_file('examples/null_geom.geojson') self.line_paths = self.df3['Name'] def tearDown(self): shutil.rmtree(self.tempdir) def test_df_init(self): self.assertTrue(type(self.df2) is GeoDataFrame) self.assertTrue(self.df2.crs == self.crs) def test_different_geo_colname(self): data = {"A": range(5), "B": range(-5, 0), "location": [Point(x, y) for x, y in zip(range(5), range(5))]} df = GeoDataFrame(data, crs=self.crs, geometry='location') locs = GeoSeries(data['location'], crs=self.crs) assert_geoseries_equal(df.geometry, locs) self.assert_('geometry' not in df) self.assertEqual(df.geometry.name, 'location') # internal implementation detail self.assertEqual(df._geometry_column_name, 'location') geom2 = [Point(x, y) for x, y in zip(range(5, 10), range(5))] df2 = df.set_geometry(geom2, crs='dummy_crs') self.assert_('geometry' in df2) self.assert_('location' in df2) self.assertEqual(df2.crs, 'dummy_crs') self.assertEqual(df2.geometry.crs, 'dummy_crs') # reset so it outputs okay df2.crs = df.crs assert_geoseries_equal(df2.geometry, GeoSeries(geom2, crs=df2.crs)) # for right now, non-geometry comes back as series assert_geoseries_equal(df2['location'], df['location'], check_series_type=False, check_dtype=False) def test_geo_getitem(self): data = {"A": range(5), "B": range(-5, 0), "location": [Point(x, y) for x, y in zip(range(5), range(5))]} df = GeoDataFrame(data, crs=self.crs, geometry='location') self.assert_(isinstance(df.geometry, GeoSeries)) df['geometry'] = df["A"] self.assert_(isinstance(df.geometry, GeoSeries)) self.assertEqual(df.geometry[0], data['location'][0]) # good if this changed in the future self.assert_(not isinstance(df['geometry'], GeoSeries)) self.assert_(isinstance(df['location'], GeoSeries)) data["geometry"] = [Point(x + 1, y - 1) for x, y in zip(range(5), range(5))] df = GeoDataFrame(data, crs=self.crs) self.assert_(isinstance(df.geometry, GeoSeries)) self.assert_(isinstance(df['geometry'], GeoSeries)) # good if this changed in the future self.assert_(not isinstance(df['location'], GeoSeries)) def test_geometry_property(self): assert_geoseries_equal(self.df.geometry, self.df['geometry'], check_dtype=True, check_index_type=True) df = self.df.copy() new_geom = [Point(x, y) for x, y in zip(range(len(self.df)), range(len(self.df)))] df.geometry = new_geom new_geom = GeoSeries(new_geom, index=df.index, crs=df.crs) assert_geoseries_equal(df.geometry, new_geom) assert_geoseries_equal(df['geometry'], new_geom) # new crs gs = GeoSeries(new_geom, crs="epsg:26018") df.geometry = gs self.assertEqual(df.crs, "epsg:26018") def test_geometry_property_errors(self): with self.assertRaises(AttributeError): df = self.df.copy() del df['geometry'] df.geometry # list-like error with self.assertRaises(ValueError): df = self.df2.copy() df.geometry = 'value1' # list-like error with self.assertRaises(ValueError): df = self.df.copy() df.geometry = 'apple' # non-geometry error with self.assertRaises(TypeError): df = self.df.copy() df.geometry = list(range(df.shape[0])) with self.assertRaises(KeyError): df = self.df.copy() del df['geometry'] df['geometry'] # ndim error with self.assertRaises(ValueError): df = self.df.copy() df.geometry = df def test_set_geometry(self): geom = GeoSeries([Point(x, y) for x, y in zip(range(5), range(5))]) original_geom = self.df.geometry df2 = self.df.set_geometry(geom) self.assert_(self.df is not df2) assert_geoseries_equal(df2.geometry, geom) assert_geoseries_equal(self.df.geometry, original_geom) assert_geoseries_equal(self.df['geometry'], self.df.geometry) # unknown column with self.assertRaises(ValueError): self.df.set_geometry('nonexistent-column') # ndim error with self.assertRaises(ValueError): self.df.set_geometry(self.df) # new crs - setting should default to GeoSeries' crs gs = GeoSeries(geom, crs="epsg:26018") new_df = self.df.set_geometry(gs) self.assertEqual(new_df.crs, "epsg:26018") # explicit crs overrides self and dataframe new_df = self.df.set_geometry(gs, crs="epsg:27159") self.assertEqual(new_df.crs, "epsg:27159") self.assertEqual(new_df.geometry.crs, "epsg:27159") # Series should use dataframe's new_df = self.df.set_geometry(geom.values) self.assertEqual(new_df.crs, self.df.crs) self.assertEqual(new_df.geometry.crs, self.df.crs) def test_set_geometry_col(self): g = self.df.geometry g_simplified = g.simplify(100) self.df['simplified_geometry'] = g_simplified df2 = self.df.set_geometry('simplified_geometry') # Drop is false by default self.assert_('simplified_geometry' in df2) assert_geoseries_equal(df2.geometry, g_simplified) # If True, drops column and renames to geometry df3 = self.df.set_geometry('simplified_geometry', drop=True) self.assert_('simplified_geometry' not in df3) assert_geoseries_equal(df3.geometry, g_simplified) def test_set_geometry_inplace(self): geom = [Point(x, y) for x, y in zip(range(5), range(5))] ret = self.df.set_geometry(geom, inplace=True) self.assert_(ret is None) geom = GeoSeries(geom, index=self.df.index, crs=self.df.crs) assert_geoseries_equal(self.df.geometry, geom) def test_set_geometry_series(self): # Test when setting geometry with a Series that # alignment will occur # # Reverse the index order # Set the Series to be Point(i,i) where i is the index self.df.index = range(len(self.df)-1, -1, -1) d = {} for i in range(len(self.df)): d[i] = Point(i, i) g = GeoSeries(d) # At this point, the DataFrame index is [4,3,2,1,0] and the # GeoSeries index is [0,1,2,3,4]. Make sure set_geometry aligns # them to match indexes df = self.df.set_geometry(g) for i, r in df.iterrows(): self.assertAlmostEqual(i, r['geometry'].x) self.assertAlmostEqual(i, r['geometry'].y) def test_to_json(self): text = self.df.to_json() data = json.loads(text) self.assertTrue(data['type'] == 'FeatureCollection') self.assertTrue(len(data['features']) == 5) def test_to_json_geom_col(self): df = self.df.copy() df['geom'] = df['geometry'] df['geometry'] = np.arange(len(df)) df.set_geometry('geom', inplace=True) text = df.to_json() data = json.loads(text) self.assertTrue(data['type'] == 'FeatureCollection') self.assertTrue(len(data['features']) == 5) def test_to_json_na(self): # Set a value as nan and make sure it's written self.df.loc[self.df['BoroName']=='Queens', 'Shape_Area'] = np.nan text = self.df.to_json() data = json.loads(text) self.assertTrue(len(data['features']) == 5) for f in data['features']: props = f['properties'] self.assertEqual(len(props), 4) if props['BoroName'] == 'Queens': self.assertTrue(props['Shape_Area'] is None) def test_to_json_bad_na(self): # Check that a bad na argument raises error with self.assertRaises(ValueError): text = self.df.to_json(na='garbage') def test_to_json_dropna(self): self.df.loc[self.df['BoroName']=='Queens', 'Shape_Area'] = np.nan self.df.loc[self.df['BoroName']=='Bronx', 'Shape_Leng'] = np.nan text = self.df.to_json(na='drop') data = json.loads(text) self.assertEqual(len(data['features']), 5) for f in data['features']: props = f['properties'] if props['BoroName'] == 'Queens': self.assertEqual(len(props), 3) self.assertTrue('Shape_Area' not in props) # Just make sure setting it to nan in a different row # doesn't affect this one self.assertTrue('Shape_Leng' in props) elif props['BoroName'] == 'Bronx': self.assertEqual(len(props), 3) self.assertTrue('Shape_Leng' not in props) self.assertTrue('Shape_Area' in props) else: self.assertEqual(len(props), 4) def test_to_json_keepna(self): self.df.loc[self.df['BoroName']=='Queens', 'Shape_Area'] = np.nan self.df.loc[self.df['BoroName']=='Bronx', 'Shape_Leng'] = np.nan text = self.df.to_json(na='keep') data = json.loads(text) self.assertEqual(len(data['features']), 5) for f in data['features']: props = f['properties'] self.assertEqual(len(props), 4) if props['BoroName'] == 'Queens': self.assertTrue(np.isnan(props['Shape_Area'])) # Just make sure setting it to nan in a different row # doesn't affect this one self.assertTrue('Shape_Leng' in props) elif props['BoroName'] == 'Bronx': self.assertTrue(np.isnan(props['Shape_Leng'])) self.assertTrue('Shape_Area' in props) def test_copy(self): df2 = self.df.copy() self.assertTrue(type(df2) is GeoDataFrame) self.assertEqual(self.df.crs, df2.crs) def test_to_file(self): """ Test to_file and from_file """ tempfilename = os.path.join(self.tempdir, 'boros.shp') self.df.to_file(tempfilename) # Read layer back in df = GeoDataFrame.from_file(tempfilename) self.assertTrue('geometry' in df) self.assertTrue(len(df) == 5) self.assertTrue(np.alltrue(df['BoroName'].values == self.boros)) # Write layer with null geometry out to file tempfilename = os.path.join(self.tempdir, 'null_geom.shp') self.df3.to_file(tempfilename) # Read layer back in df3 = GeoDataFrame.from_file(tempfilename) self.assertTrue('geometry' in df3) self.assertTrue(len(df3) == 2) self.assertTrue(np.alltrue(df3['Name'].values == self.line_paths)) def test_to_file_types(self): """ Test various integer type columns (GH#93) """ tempfilename = os.path.join(self.tempdir, 'int.shp') int_types = [np.int, np.int8, np.int16, np.int32, np.int64, np.intp, np.uint8, np.uint16, np.uint32, np.uint64, np.long] geometry = self.df2.geometry data = dict((str(i), np.arange(len(geometry), dtype=dtype)) for i, dtype in enumerate(int_types)) df = GeoDataFrame(data, geometry=geometry) df.to_file(tempfilename) def test_mixed_types_to_file(self): """ Test that mixed geometry types raise error when writing to file """ tempfilename = os.path.join(self.tempdir, 'test.shp') s = GeoDataFrame({'geometry': [Point(0, 0), Polygon([(0, 0), (1, 0), (1, 1)])]}) with self.assertRaises(ValueError): s.to_file(tempfilename) def test_to_file_schema(self): """ Ensure that the file is written according to the schema if it is specified """ try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict tempfilename = os.path.join(self.tempdir, 'test.shp') properties = OrderedDict([ ('Shape_Leng', 'float:19.11'), ('BoroName', 'str:40'), ('BoroCode', 'int:10'), ('Shape_Area', 'float:19.11'), ]) schema = {'geometry': 'Polygon', 'properties': properties} # Take the first 2 features to speed things up a bit self.df.iloc[:2].to_file(tempfilename, schema=schema) with fiona.open(tempfilename) as f: result_schema = f.schema self.assertEqual(result_schema, schema) def test_bool_index(self): # Find boros with 'B' in their name df = self.df[self.df['BoroName'].str.contains('B')] self.assertTrue(len(df) == 2) boros = df['BoroName'].values self.assertTrue('Brooklyn' in boros) self.assertTrue('Bronx' in boros) self.assertTrue(type(df) is GeoDataFrame) def test_transform(self): df2 = self.df2.copy() df2.crs = {'init': 'epsg:26918', 'no_defs': True} lonlat = df2.to_crs(epsg=4326) utm = lonlat.to_crs(epsg=26918) self.assertTrue(all(df2['geometry'].geom_almost_equals(utm['geometry'], decimal=2))) def test_from_features(self): nybb_filename = download_nybb() with fiona.open('/nybb_14a_av/nybb.shp', vfs='zip://' + nybb_filename) as f: features = list(f) crs = f.crs df = GeoDataFrame.from_features(features, crs=crs) df.rename(columns=lambda x: x.lower(), inplace=True) validate_boro_df(self, df) self.assert_(df.crs == crs) def test_from_features_unaligned_properties(self): p1 = Point(1, 1) f1 = {'type': 'Feature', 'properties': {'a': 0}, 'geometry': p1.__geo_interface__} p2 = Point(2, 2) f2 = {'type': 'Feature', 'properties': {'b': 1}, 'geometry': p2.__geo_interface__} p3 = Point(3, 3) f3 = {'type': 'Feature', 'properties': {'a': 2}, 'geometry': p3.__geo_interface__} df = GeoDataFrame.from_features([f1, f2, f3]) result = df[['a', 'b']] expected = pd.DataFrame.from_dict([{'a': 0, 'b': np.nan}, {'a': np.nan, 'b': 1}, {'a': 2, 'b': np.nan}]) assert_frame_equal(expected, result) def test_from_postgis_default(self): con = connect('test_geopandas') if con is None or not create_db(self.df): raise unittest.case.SkipTest() try: sql = "SELECT * FROM nybb;" df = GeoDataFrame.from_postgis(sql, con) finally: if PANDAS_NEW_SQL_API: # It's not really a connection, it's an engine con = con.connect() con.close() validate_boro_df(self, df) def test_from_postgis_custom_geom_col(self): con = connect('test_geopandas') if con is None or not create_db(self.df): raise unittest.case.SkipTest() try: sql = """SELECT borocode, boroname, shape_leng, shape_area, geom AS __geometry__ FROM nybb;""" df = GeoDataFrame.from_postgis(sql, con, geom_col='__geometry__') finally: if PANDAS_NEW_SQL_API: # It's not really a connection, it's an engine con = con.connect() con.close() validate_boro_df(self, df) def test_dataframe_to_geodataframe(self): df = pd.DataFrame({"A": range(len(self.df)), "location": list(self.df.geometry)}, index=self.df.index) gf = df.set_geometry('location', crs=self.df.crs) self.assertIsInstance(df, pd.DataFrame) self.assertIsInstance(gf, GeoDataFrame) assert_geoseries_equal(gf.geometry, self.df.geometry) self.assertEqual(gf.geometry.name, 'location') self.assert_('geometry' not in gf) gf2 = df.set_geometry('location', crs=self.df.crs, drop=True) self.assertIsInstance(df, pd.DataFrame) self.assertIsInstance(gf2, GeoDataFrame) self.assertEqual(gf2.geometry.name, 'geometry') self.assert_('geometry' in gf2) self.assert_('location' not in gf2) self.assert_('location' in df) # should be a copy df.ix[0, "A"] = 100 self.assertEqual(gf.ix[0, "A"], 0) self.assertEqual(gf2.ix[0, "A"], 0) with self.assertRaises(ValueError): df.set_geometry('location', inplace=True) def test_geodataframe_geointerface(self): self.assertEqual(self.df.__geo_interface__['type'], 'FeatureCollection') self.assertEqual(len(self.df.__geo_interface__['features']), self.df.shape[0]) def test_geodataframe_geojson_no_bbox(self): geo = self.df._to_geo(na="null", show_bbox=False) self.assertFalse('bbox' in geo.keys()) for feature in geo['features']: self.assertFalse('bbox' in feature.keys()) def test_geodataframe_geojson_bbox(self): geo = self.df._to_geo(na="null", show_bbox=True) self.assertTrue('bbox' in geo.keys()) self.assertEqual(len(geo['bbox']), 4) self.assertTrue(isinstance(geo['bbox'], tuple)) for feature in geo['features']: self.assertTrue('bbox' in feature.keys()) def test_pickle(self): filename = os.path.join(self.tempdir, 'df.pkl') self.df.to_pickle(filename) unpickled = pd.read_pickle(filename) assert_frame_equal(self.df, unpickled) self.assertEqual(self.df.crs, unpickled.crs)
bsd-3-clause
cpcloud/bokeh
bokeh/properties.py
1
39861
""" A set of descriptors that document intended types for attributes on classes and implement convenience behaviors like default values, etc. """ from __future__ import print_function import re import datetime import dateutil.parser from importlib import import_module from copy import copy import inspect import logging logger = logging.getLogger(__name__) from six import integer_types, string_types, add_metaclass, iteritems import numpy as np from . import enums def nice_join(seq, sep=", "): seq = [str(x) for x in seq] if len(seq) <= 1: return sep.join(seq) else: return "%s or %s" % (sep.join(seq[:-1]), seq[-1]) class Property(object): def __init__(self, default=None): """ This is how the descriptor is created in the class declaration """ self.validate(default) self.default = default # This gets set by the class decorator at class creation time self.name = "unnamed" def __str__(self): return self.__class__.__name__ @property def _name(self): return "_" + self.name @classmethod def autocreate(cls, name=None): """ Called by the metaclass to create a new instance of this descriptor if the user just assigned it to a property without trailing parentheses. """ return cls() def matches(self, new, old): # XXX: originally this code warned about not being able to compare values, but that # doesn't make sense, because most comparisons involving numpy arrays will fail with # ValueError exception, thus warning about inevitable. try: return new == old except (KeyboardInterrupt, SystemExit): raise except Exception as e: logger.debug("could not compare %s and %s for property %s (Reason: %s)", new, old, self.name, e) return False def transform(self, value): return value def validate(self, value): pass def is_valid(self, value): try: self.validate(value) except ValueError: return False else: return True def __get__(self, obj, type=None): return getattr(obj, self._name, self.default) def __set__(self, obj, value): self.validate(value) value = self.transform(value) old = self.__get__(obj) obj._changed_vars.add(self.name) if self._name in obj.__dict__ and self.matches(value, old): return setattr(obj, self._name, value) obj._dirty = True if hasattr(obj, '_trigger'): if hasattr(obj, '_block_callbacks') and obj._block_callbacks: obj._callback_queue.append((self.name, old, value)) else: obj._trigger(self.name, old, value) def __delete__(self, obj): if hasattr(obj, self._name): delattr(obj, self._name) @property def has_ref(self): return False class Include(Property): def __init__(self, delegate, prefix=None): self._delegate = delegate self._prefix = prefix super(Include, self).__init__() class DataSpec(Property): """ Because the BokehJS glyphs support a fixed value or a named field for most data fields, we capture that in this descriptor. Fields can have a fixed value, or be a name that is looked up on the datasource (usually as a column or record array field). A default value can also be provided for when a particular row in the datasource has a missing value. Numerical data can also have units of screen or data space. We mirror the JS convention in this Python descriptor. For details, see renderers/properties.coffee in BokehJS, and specifically the select() function. There are multiple ways to set a DataSpec, illustrated below with comments and example code. Setting DataSpecs Simple example:: class Foo(HasProps): x = DataSpec("x", units="data") f = Foo() f.x = "fieldname" # Use the datasource field named "fieldname" f.x = 12 # A fixed value of 12 f.x = ("foo", 16) # a field name, and a default value Can provide a dict with the fields explicitly named:: f.width = {"name": "foo", "default": 16} f.size = {"name": "foo", "units": "screen", "default": 16} Reading DataSpecs In the cases when the dataspec is set to just a field name or a fixed value, then those are returned. If the user has overridden the default value in the DataSpec with a new default value, or if no values have been set, then the value of to_dict() is returned. In all cases, to determine the full dict that will be used to represent this dataspec, use the to_dict() method. Implementation The DataSpec instance is stored in the class dict, and acts as a descriptor. Thus, it is shared between all instances of the class. Instance-specific data is stored in the instance dict, in a private variable named _[attrname]. This stores the actual value that the user last set (and does not exist if the user has not yet set the value). """ def __init__(self, field=None, units="data", default=None, min_value=None): """ Parameters ========== **field** is the string name of a data column to look up. **units** is either "data" or "screen" **default** is the default value to use if a datapoint is missing the field specified in **name** """ # Don't use .name because the HasProps metaclass uses that to # store the attribute name on this descriptor. self.field = field self.units = units self.default = default self.min_value = min_value @classmethod def autocreate(cls, name=None): # In this case, use the name the user assigned this DataSpec to # as the default field name. d = cls(field=name) return d def __get__(self, obj, cls=None): """ Try to implement a "natural" interface: if the user just set simple values or field names, the getter just returns those. However, if the user has also overridden the "units" or "default" settings, then a dictionary is returned. """ if hasattr(obj, self._name): setval = getattr(obj, self._name) if isinstance(setval, string_types) and self.default is None: # A string representing the field return setval elif not isinstance(setval, dict): # Typically a number presenting the fixed value return setval else: return self.to_dict(obj) else: # If the user hasn't set anything, just return the field name # if there are not defaults, or a dict with the field name # and the default value. if self.default is not None: return {"field": self.field, "default": self.default} else: return self.field def __set__(self, obj, arg): if isinstance(arg, tuple): # Note: tuples of length 2 are assumed to be (field, default) # other (longer) tuples might be color, e.g. if len(arg) == 2: field, default = arg if not isinstance(field, string_types): raise RuntimeError("String is required for field name when assigning tuple to a DataSpec") arg = {"field": field, "default": default} super(DataSpec, self).__set__(obj, arg) def to_dict(self, obj): # Build the complete dict setval = getattr(obj, self._name, None) if isinstance(setval, string_types): d = {"field": setval, "units": self.units} if self.default is not None: d["default"] = self.default elif isinstance(setval, dict): d = {"units": self.units, "default": self.default} d.update(setval) if d["default"] is None: del d["default"] if "value" in d and "default" in d: del d["default"] elif setval is not None: # a fixed value of some sort; no need to store the default value d = {"value": setval, "units": self.units} else: # If the user never set a value d = {"field": self.field, "units": self.units} if self.default is not None: d["default"] = self.default if "value" in d and self.min_value is not None: if d["value"] < self.min_value: raise ValueError("value must be greater than %s" % str(self.min_value)) return d def __repr__(self): return "DataSpec(field=%r, units=%r, default=%r)" % ( self.field, self.units, self.default) class ColorSpec(DataSpec): """ Subclass of DataSpec for specifying colors. Although this serves the same role as a DataSpec, its usage is somewhat different because: * Specifying a fixed value is much more common * Strings can be both field identifiers or refer to one of the SVG Named Colors (or be a hex value starting with "#") * There are no units For colors, because we support named colors and hex values prefaced with a "#", when we are handed a string value, there is a little interpretation: if the value is one of the 147 SVG named colors or it starts with a "#", then it is interpreted as a value. Otherwise, it is treated as a field name. If a 3-tuple is provided, then it is treated as an RGB (0..255). If a 4-tuple is provided, then it is treated as an RGBa (0..255), with alpha as a float between 0 and 1. (This follows the HTML5 Canvas API.) If a 2-tuple is provided, then it is treated as (value/fieldname, default). This is the same as the behavior in the base class DataSpec. Unlike DataSpec, ColorSpecs do not have a "units" property. When reading out a ColorSpec, it returns a tuple, hex value, field name, or a dict of (field, default). There are two common use cases for ColorSpec: setting a constant value, and indicating a field name to look for on the datasource: >>> class Bar(HasProps): ... col = ColorSpec("green") ... col2 = ColorSpec("colorfield") ... col3 = ColorSpec("colorfield", default="aqua") >>> b = Bar() >>> b.col = "red" # sets a fixed value of red >>> b.col "red" >>> b.col = "myfield" # Use the datasource field named "myfield" >>> b.col "myfield" >>> b.col = {"name": "mycolor", "default": "#FF126D"} For more examples, see tests/test_glyphs.py """ NAMEDCOLORS = set(enums.NamedColor._values) def __init__(self, field_or_value=None, field=None, default=None, value=None): """ ColorSpec(field_or_value=None, field=None, default=None, value=None) """ # The fancy footwork below is so we auto-interpret the first positional # parameter as either a field or a fixed value. If either "field" or # "value" are then supplied as keyword arguments, then those will # override the inferred value from the positional argument. self.field = field self.default = default self.value = value if field_or_value is not None: if self.isconst(field_or_value): self.value = field_or_value else: self.field = field_or_value # We need to distinguish if the user ever explicitly sets the attribute; if # they explicitly set it to None, we should pass on None in the dict. Otherwise, # look up a default or value self._isset = False @classmethod def isconst(cls, arg): """ Returns True if the argument is a literal color. Check for a well-formed hexadecimal color value. """ return isinstance(arg, string_types) and \ ((len(arg) == 7 and arg[0] == "#") or arg in cls.NAMEDCOLORS) def _formattuple(self, colortuple): if isinstance(colortuple, tuple): if len(colortuple) == 3: return "rgb%r" % (colortuple,) else: return "rgba%r" % (colortuple,) else: return colortuple def __get__(self, obj, cls=None): # One key difference in ColorSpec.__get__ from the base class is # that we do not call self.to_dict() in any circumstance, because # this could lead to formatting color tuples as "rgb(R,G,B)" instead # of keeping them as tuples. if hasattr(obj, self._name): setval = getattr(obj, self._name) if self.isconst(setval) or isinstance(setval, tuple): # Fixed color value return setval elif isinstance(setval, string_types): if self.default is None: # Field name return setval else: return {"field": setval, "default": self.default} elif setval is None: return None return {"value": None} else: # setval should be a dict at this point assert(isinstance(setval, dict)) return setval else: if self.value is not None: return self.value elif self.default is not None: return {"field": self.field, "default": self.default} else: return self.field def __set__(self, obj, arg): self._isset = True if isinstance(arg, tuple): if len(arg) == 2: if not isinstance(arg[0], string_types): raise RuntimeError("String is required for field name when assigning 2-tuple to ColorSpec") arg = {"field": arg[0], "default": arg[1]} elif len(arg) in (3, 4): # RGB or RGBa pass else: raise RuntimeError("Invalid tuple being assigned to ColorSpec; must be length 2, 3, or 4.") elif hasattr(arg, "toCSS"): arg = arg.toCSS() super(ColorSpec, self).__set__(obj, arg) def to_dict(self, obj): setval = getattr(obj, self._name, None) if setval is not None: if self.isconst(setval): # Hexadecimal or named color return {"value": setval} elif isinstance(setval, tuple): # RGB or RGBa # TODO: Should we validate that alpha is between 0..1? return {"value": self._formattuple(setval)} elif isinstance(setval, string_types): d = {"field": setval} if self.default is not None: d["default"] = self._formattuple(self.default) return d elif isinstance(setval, dict): # this is considerably simpler than the DataSpec case because # there are no units involved, and we've handled all of the # value cases above. d = setval.copy() if isinstance(d.get("default", None), tuple): d["default"] = self._formattuple(d["default"]) return d else: if self._isset: return {"value": None} # If the user never set a value if self.value is not None: return {"value": self.value} else: d = {"field": self.field} if self.default is not None: d["default"] = self._formattuple(self.default) return d def __repr__(self): return "ColorSpec(field=%r, default=%r)" % (self.field, self.default) class MetaHasProps(type): def __new__(cls, class_name, bases, class_dict): names = set() names_with_refs = set() container_names = set() # First pre-process to handle all the Includes includes = {} removes = set() for name, prop in class_dict.items(): if not isinstance(prop, Include): continue delegate = prop._delegate if not (isinstance(delegate,type) and issubclass(delegate,HasProps)): continue if prop._prefix is None: prefix = name + "_" else: prefix = prop._prefix + "_" for subpropname in delegate.class_properties(withbases=False): fullpropname = prefix + subpropname subprop = lookup_descriptor(delegate, subpropname) if isinstance(subprop, Property): # If it's an actual instance, then we need to make a copy # so two properties don't write to the same hidden variable # inside the instance. subprop = copy(subprop) includes[fullpropname] = subprop # Remove the name of the Include attribute itself removes.add(name) # Update the class dictionary, taking care not to overwrite values # from the delegates that the subclass may have explicitly defined for key, val in includes.items(): if key not in class_dict: class_dict[key] = val for tmp in removes: del class_dict[tmp] dataspecs = {} for name, prop in class_dict.items(): if isinstance(prop, Property): prop.name = name if prop.has_ref: names_with_refs.add(name) elif isinstance(prop, ContainerProperty): container_names.add(name) names.add(name) if isinstance(prop, DataSpec): dataspecs[name] = prop elif isinstance(prop, type) and issubclass(prop, Property): # Support the user adding a property without using parens, # i.e. using just the Property subclass instead of an # instance of the subclass newprop = prop.autocreate(name=name) class_dict[name] = newprop newprop.name = name names.add(name) # Process dataspecs if issubclass(prop, DataSpec): dataspecs[name] = newprop class_dict["__properties__"] = names class_dict["__properties_with_refs__"] = names_with_refs class_dict["__container_props__"] = container_names if dataspecs: class_dict["_dataspecs"] = dataspecs return type.__new__(cls, class_name, bases, class_dict) def accumulate_from_subclasses(cls, propname): s = set() for c in inspect.getmro(cls): if issubclass(c, HasProps): s.update(getattr(c, propname)) return s def lookup_descriptor(cls, propname): for c in inspect.getmro(cls): if issubclass(c, HasProps) and propname in c.__dict__: return c.__dict__[propname] raise KeyError("Property '%s' not found on class '%s'" % (propname, cls)) @add_metaclass(MetaHasProps) class HasProps(object): def __init__(self, **kwargs): """ Set up a default initializer handler which assigns all kwargs that have the same names as Properties on the class """ # Initialize the mutated property handling self._changed_vars = set() props = self.properties() for key, value in kwargs.items(): if key in props: setattr(self, key, value) else: raise AttributeError("unexpected attribute '%s' to %s, possible attributes are %s" % (key, self.__class__.__name__, nice_join(props))) super(HasProps, self).__init__() def to_dict(self): return dict((prop, getattr(self, prop)) for prop in self.properties()) def clone(self): """ Returns a duplicate of this object with all its properties set appropriately. Values which are containers are shallow-copied. """ return self.__class__(**self.to_dict()) @classmethod def properties_with_refs(cls): """ Returns a set of the names of this object's properties that have references. We traverse the class hierarchy and pull together the full list of properties. """ if not hasattr(cls, "__cached_allprops_with_refs"): s = accumulate_from_subclasses(cls, "__properties_with_refs__") cls.__cached_allprops_with_refs = s return cls.__cached_allprops_with_refs @classmethod def properties_containers(cls): """ Returns a list of properties that are containers """ if not hasattr(cls, "__cached_allprops_containers"): s = accumulate_from_subclasses(cls, "__container_props__") cls.__cached_allprops_containers = s return cls.__cached_allprops_containers @classmethod def properties(cls): """ Returns a set of the names of this object's properties. We traverse the class hierarchy and pull together the full list of properties. """ if not hasattr(cls, "__cached_allprops"): s = cls.class_properties() cls.__cached_allprops = s return cls.__cached_allprops @classmethod def dataspecs(cls): """ Returns a set of the names of this object's dataspecs (and dataspec subclasses). Traverses the class hierarchy. """ if not hasattr(cls, "__cached_dataspecs"): dataspecs = set() for c in reversed(inspect.getmro(cls)): if hasattr(c, "_dataspecs"): dataspecs.update(c._dataspecs.keys()) cls.__cached_dataspecs = dataspecs return cls.__cached_dataspecs @classmethod def dataspecs_with_refs(cls): dataspecs = {} for c in reversed(inspect.getmro(cls)): if hasattr(c, "_dataspecs"): dataspecs.update(c._dataspecs) return dataspecs def changed_vars(self): """ Returns which variables changed since the creation of the object, or the last called to reset_changed_vars(). """ return set.union(self._changed_vars, self.properties_with_refs(), self.properties_containers()) def reset_changed_vars(self): self._changed_vars = set() def properties_with_values(self): return dict([ (attr, getattr(self, attr)) for attr in self.properties() ]) def changed_properties_with_values(self): return dict([ (attr, getattr(self, attr)) for attr in self.changed_vars() ]) @classmethod def class_properties(cls, withbases=True): if withbases: return accumulate_from_subclasses(cls, "__properties__") else: return set(cls.__properties__) def set(self, **kwargs): """ Sets a number of properties at once """ for kw in kwargs: setattr(self, kw, kwargs[kw]) def pprint_props(self, indent=0): """ Prints the properties of this object, nicely formatted """ for key, value in self.properties_with_values().items(): print("%s%s: %r" % (" "*indent, key, value)) class PrimitiveProperty(Property): _underlying_type = None def validate(self, value): super(PrimitiveProperty, self).validate(value) if not (value is None or isinstance(value, self._underlying_type)): raise ValueError("expected a value of type %s, got %s of type %s" % (nice_join([ cls.__name__ for cls in self._underlying_type ]), value, type(value).__name__)) class Bool(PrimitiveProperty): _underlying_type = (bool,) class Int(PrimitiveProperty): _underlying_type = integer_types class Float(PrimitiveProperty): _underlying_type = (float,) + integer_types class Complex(PrimitiveProperty): _underlying_type = (complex, float) + integer_types class String(PrimitiveProperty): _underlying_type = string_types class Regex(String): def __init__(self, regex, default=None): self.regex = re.compile(regex) super(Regex, self).__init__(default=default) def validate(self, value): super(Regex, self).validate(value) if not (value is None or self.regex.match(value) is not None): raise ValueError("expected a string matching %r pattern, got %r" % (self.regex.pattern, value)) def __str__(self): return "%s(%r)" % (self.__class__.__name__, self.regex.pattern) class ParameterizedProperty(Property): """Property that has type parameters, e.g. `List(String)`. """ def _validate_type_param(self, type_param): if isinstance(type_param, type): if issubclass(type_param, Property): return type_param() else: type_param = type_param.__name__ elif isinstance(type_param, Property): return type_param raise ValueError("expected a property as type parameter, got %s" % type_param) @property def type_params(self): raise NotImplementedError("abstract method") @property def has_ref(self): return any(type_param.has_ref for type_param in self.type_params) class ContainerProperty(ParameterizedProperty): # Base class for container-like things; this helps the auto-serialization # and attribute change detection code pass class List(ContainerProperty): """ If a default value is passed in, then a shallow copy of it will be used for each new use of this property. People will also frequently pass in some other kind of property or a class (to indicate a list of instances). In those cases, we want to just create an empty list """ def __init__(self, item_type, default=None): self.item_type = self._validate_type_param(item_type) super(List, self).__init__(default=default) @property def type_params(self): return [self.item_type] def validate(self, value): super(List, self).validate(value) if value is not None: if not (isinstance(value, list) and \ all(self.item_type.is_valid(item) for item in value)): raise ValueError("expected an element of %s, got %r" % (self, value)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, self.item_type) def __get__(self, obj, type=None): if hasattr(obj, self._name): return getattr(obj, self._name) if self.default is None: val = [] elif isinstance(self.default, list): val = copy(self.default) else: val = self.default setattr(obj, self._name, val) return val class Dict(ContainerProperty): """ If a default value is passed in, then a shallow copy of it will be used for each new use of this property. """ def __init__(self, keys_type, values_type, default={}): self.keys_type = self._validate_type_param(keys_type) self.values_type = self._validate_type_param(values_type) super(Dict, self).__init__(default=default) @property def type_params(self): return [self.keys_type, self.values_type] def __get__(self, obj, type=None): if not hasattr(obj, self._name) and isinstance(self.default, dict): setattr(obj, self._name, copy(self.default)) return getattr(obj, self._name) else: return getattr(obj, self._name, self.default) def validate(self, value): super(Dict, self).validate(value) if value is not None: if not (isinstance(value, dict) and \ all(self.keys_type.is_valid(key) and self.values_type.is_valid(val) for key, val in iteritems(value))): raise ValueError("expected an element of %s, got %r" % (self, value)) def __str__(self): return "%s(%s, %s)" % (self.__class__.__name__, self.keys_type, self.values_type) class Tuple(ContainerProperty): def __init__(self, tp1, tp2, *type_params, **kwargs): self._type_params = list(map(self._validate_type_param, (tp1, tp2) + type_params)) super(Tuple, self).__init__(default=kwargs.get("default", None)) @property def type_params(self): return self._type_params def validate(self, value): super(Tuple, self).validate(value) if value is not None: if not (isinstance(value, (tuple, list)) and len(self.type_params) == len(value) and \ all(type_param.is_valid(item) for type_param, item in zip(self.type_params, value))): raise ValueError("expected an element of %s, got %r" % (self, value)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(str, self.type_params))) class Array(ContainerProperty): """ Whatever object is passed in as a default value, np.asarray() is called on it to create a copy for the default value for each use of this property. """ def __init__(self, item_type, default=None): self.item_type = self._validate_type_param(item_type) super(Array, self).__init__(default=default) @property def type_params(self): return [self.item_type] def __get__(self, obj, type=None): if not hasattr(obj, self._name) and self.default is not None: setattr(obj, self._name, np.asarray(self.default)) return getattr(obj, self._name) else: return getattr(obj, self._name, self.default) class Instance(Property): def __init__(self, instance_type, default=None): if not isinstance(instance_type, (type,) + string_types): raise ValueError("expected a type or string, got %s" % instance_type) if isinstance(instance_type, type) and not issubclass(instance_type, HasProps): raise ValueError("expected a subclass of HasProps, got %s" % instance_type) self._instance_type = instance_type super(Instance, self).__init__(default=default) @property def instance_type(self): if isinstance(self._instance_type, str): module, name = self._instance_type.rsplit(".", 1) self._instance_type = getattr(import_module(module, "bokeh"), name) return self._instance_type @property def has_ref(self): return True def __get__(self, obj, type=None): # If the constructor for Instance() supplied a class name, we should # instantiate that class here, instead of returning the class as the # default object if not hasattr(obj, self._name): if type and self.default and isinstance(self.default, type): setattr(obj, self._name, self.default()) return getattr(obj, self._name, None) def validate(self, value): super(Instance, self).validate(value) if value is not None: if not isinstance(value, self.instance_type): raise ValueError("expected an instance of type %s, got %s of type %s" % (self.instance_type.__name__, value, type(value).__name__)) def __str__(self): return "%s(%s)" % (self.__class__.__name__, self.instance_type.__name__) class This(Property): """ A reference to an instance of the class being defined. """ pass # Fake types, ABCs class Any(Property): pass class Function(Property): pass class Event(Property): pass class Range(ParameterizedProperty): def __init__(self, range_type, start, end, default=None): self.range_type = self._validate_type_param(range_type) self.range_type.validate(start) self.range_type.validate(end) self.start = start self.end = end super(Range, self).__init__(default=default) @property def type_params(self): return [self.range_type] def validate(self, value): super(Range, self).validate(value) if not (value is None or self.range_type.is_valid(value) and value >= self.start and value <= self.end): raise ValueError("expected a value of type %s in range [%s, %s], got %r" % (self.range_type, self.start, self.end, value)) def __str__(self): return "%s(%s, %r, %r)" % (self.__class__.__name__, self.range_type, self.start, self.end) class Byte(Range): def __init__(self, default=0): super(Byte, self).__init__(Int, 0, 255, default=default) class Either(ParameterizedProperty): """ Takes a list of valid properties and validates against them in succession. """ def __init__(self, tp1, tp2, *type_params, **kwargs): self._type_params = list(map(self._validate_type_param, (tp1, tp2) + type_params)) default = kwargs.get("default", self._type_params[0].default) super(Either, self).__init__(default=default) @property def type_params(self): return self._type_params def validate(self, value): super(Either, self).validate(value) if not (value is None or any(param.is_valid(value) for param in self.type_params)): raise ValueError("expected an element of either %s, got %r" % (nice_join(self.type_params), value)) def transform(self, value): for param in self.type_params: try: return param.transform(value) except ValueError: pass raise ValueError("Could not transform %r" % value) def __str__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(str, self.type_params))) class Enum(Property): """ An Enum with a list of allowed values. The first value in the list is the default value, unless a default is provided with the "default" keyword argument. """ def __init__(self, enum, *values, **kwargs): if not (not values and isinstance(enum, enums.Enumeration)): enum = enums.enumeration(enum, *values) self.allowed_values = enum._values default = kwargs.get("default", enum._default) super(Enum, self).__init__(default=default) def validate(self, value): super(Enum, self).validate(value) if not (value is None or value in self.allowed_values): raise ValueError("invalid value %r, allowed values are %s" % (value, nice_join(self.allowed_values))) def __str__(self): return "%s(%s)" % (self.__class__.__name__, ", ".join(map(repr, self.allowed_values))) # Properties useful for defining visual attributes class Color(Either): """ Accepts color definition in a variety of ways, and produces an appropriate serialization of its value for whatever backend. For colors, because we support named colors and hex values prefaced with a "#", when we are handed a string value, there is a little interpretation: if the value is one of the 147 SVG named colors or it starts with a "#", then it is interpreted as a value. If a 3-tuple is provided, then it is treated as an RGB (0..255). If a 4-tuple is provided, then it is treated as an RGBa (0..255), with alpha as a float between 0 and 1. (This follows the HTML5 Canvas API.) """ def __init__(self, default=None): types = (Enum(enums.NamedColor), Regex("^#[0-9a-fA-F]{6}$"), Tuple(Byte, Byte, Byte), Tuple(Byte, Byte, Byte, Percent)) super(Color, self).__init__(*types, default=default) def __str__(self): return self.__class__.__name__ class Align(Property): pass class DashPattern(Either): """ This is a property that expresses line dashes. It can be specified in a variety of forms: * "solid", "dashed", "dotted", "dotdash", "dashdot" * A tuple or list of integers in the HTML5 Canvas dash specification style: http://www.w3.org/html/wg/drafts/2dcontext/html5_canvas/#dash-list Note that if the list of integers has an odd number of elements, then it is duplicated, and that duplicated list becomes the new dash list. If dash is turned off, then the dash pattern is the empty list []. """ _dash_patterns = { "solid": [], "dashed": [6], "dotted": [2,4], "dotdash": [2,4,6,4], "dashdot": [6,4,2,4], } def __init__(self, default=[]): types = Enum(enums.DashPattern), Regex(r"^(\d+(\s+\d+)*)?$"), List(Int) super(DashPattern, self).__init__(*types, default=default) def transform(self, value): value = super(DashPattern, self).transform(value) if isinstance(value, string_types): try: return self._dash_patterns[value] except KeyError: return [int(x) for x in value.split()] else: return value def __str__(self): return self.__class__.__name__ class Size(Float): """ Equivalent to an unsigned int """ def validate(self, value): super(Size, self).validate(value) if not (value is None or 0.0 <= value): raise ValueError("expected a non-negative number, got %r" % value) class Percent(Float): """ Percent is useful for alphas and coverage and extents; more semantically meaningful than Float(0..1) """ def validate(self, value): super(Percent, self).validate(value) if not (value is None or 0.0 <= value <= 1.0): raise ValueError("expected a value in range [0, 1], got %r" % value) class Angle(Float): pass class Date(Property): def __init__(self, default=datetime.date.today()): super(Date, self).__init__(default=default) def validate(self, value): super(Date, self).validate(value) if not (value is None or isinstance(value, (datetime.date,) + string_types + (float,) + integer_types)): raise ValueError("expected a date, string or timestamp, got %r" % value) def transform(self, value): value = super(Date, self).transform(value) if isinstance(value, (float,) + integer_types): try: value = datetime.date.fromtimestamp(value) except ValueError: value = datetime.date.fromtimestamp(value/1000) elif isinstance(value, string_types): value = dateutil.parser.parse(value).date() return value class Datetime(Property): def __init__(self, default=datetime.date.today()): super(Datetime, self).__init__(default=default) def validate(self, value): super(Datetime, self).validate(value) if (isinstance(value, (datetime.datetime, datetime.date, np.datetime64))): return try: import pandas if isinstance(value, (pandas.Timestamp)): return except ImportError: pass raise ValueError("Expected a datetime instance, got %r" % value) def transform(self, value): value = super(Datetime, self).transform(value) return value # Handled by serialization in protocol.py for now class RelativeDelta(Dict): def __init__(self, default={}): keys = Enum("years", "months", "days", "hours", "minutes", "seconds", "microseconds") values = Int super(RelativeDelta, self).__init__(keys, values, default=default) def __str__(self): return self.__class__.__name__
bsd-3-clause
timothydmorton/bokeh
bokeh/compat/mplexporter/renderers/vincent_renderer.py
64
1922
import warnings from .base import Renderer from ..exporter import Exporter class VincentRenderer(Renderer): def open_figure(self, fig, props): self.chart = None self.figwidth = int(props['figwidth'] * props['dpi']) self.figheight = int(props['figheight'] * props['dpi']) def draw_line(self, data, coordinates, style, label, mplobj=None): import vincent # only import if VincentRenderer is used if coordinates != 'data': warnings.warn("Only data coordinates supported. Skipping this") linedata = {'x': data[:, 0], 'y': data[:, 1]} line = vincent.Line(linedata, iter_idx='x', width=self.figwidth, height=self.figheight) # TODO: respect the other style settings line.scales['color'].range = [style['color']] if self.chart is None: self.chart = line else: warnings.warn("Multiple plot elements not yet supported") def draw_markers(self, data, coordinates, style, label, mplobj=None): import vincent # only import if VincentRenderer is used if coordinates != 'data': warnings.warn("Only data coordinates supported. Skipping this") markerdata = {'x': data[:, 0], 'y': data[:, 1]} markers = vincent.Scatter(markerdata, iter_idx='x', width=self.figwidth, height=self.figheight) # TODO: respect the other style settings markers.scales['color'].range = [style['facecolor']] if self.chart is None: self.chart = markers else: warnings.warn("Multiple plot elements not yet supported") def fig_to_vincent(fig): """Convert a matplotlib figure to a vincent object""" renderer = VincentRenderer() exporter = Exporter(renderer) exporter.run(fig) return renderer.chart
bsd-3-clause
orlox/massive_bins_2015
2016_ULX/scripts/NSBH/kick_dist.py
1
2053
#!/usr/bin/env python import matplotlib.pyplot as plt import matplotlib as mpl from pylab import * import numpy as np import sys sys.path.insert(0, '../') import kicks from scipy.stats import maxwell params = {'backend': 'pdf', 'figure.figsize': [4.3, 2.2], 'font.family':'serif', 'font.size':10, 'font.serif': 'Times Roman', 'axes.titlesize': 'medium', 'axes.labelsize': 'medium', 'legend.fontsize': 8, 'legend.frameon' : False, 'text.usetex': True, 'figure.dpi': 600, 'lines.markersize': 4, 'lines.linewidth': 3, 'lines.antialiased': False, 'path.simplify': False, 'legend.handlelength':3, 'figure.subplot.bottom':0.2, 'figure.subplot.top':0.95, 'figure.subplot.left':0.15, 'figure.subplot.right':0.92} hexcols = ['#332288', '#88CCEE', '#44AA99', '#117733', '#999933', '#DDCC77',\ '#CC6677', '#882255', '#AA4499', '#661100', '#6699CC', '#AA4466','#4477AA'] mpl.rcParams.update(params) A=np.array([np.append([vkick],kicks.sample_kick_distribution_P(23,5.5,55,1.4,vdist=lambda x:[float(vkick)], num_v=5, num_theta=400,num_phi=100)) for vkick in range(0,701,5)]) print(A) print(A[:,0]) print(A[:,1]) print(A[:,2]) fig, axes= plt.subplots(1) maxw = axes.fill_between(A[:,0],0,maxwell.pdf(A[:,0], scale=265.)/max(maxwell.pdf(A[:,0],scale=265.)),color="b", alpha=0.2, label="Maxwellian, $\\sigma=265~\\rm km~s^{-1}$") merge, = axes.plot(A[:,0],10*A[:,1], color=hexcols[2],label="GW merge fraction $\\times$ 10") disrupt, = axes.plot(A[:,0],A[:,2], color=hexcols[8],ls="--", label="Disrupt fraction") axes.set_xlabel("$v_{\\rm kick}~\\rm[km~s^{-1}]$") axes.set_ylabel("fraction") #axes.set_xlim([0,50]) axes.set_ylim([0,1.19]) axes.legend([maxw,merge,disrupt],["Maxwellian, $\\sigma=265~\\rm km~s^{-1}$", "GW merge fraction $\\times$ 10", "Disrupt fraction"], loc="upper left", fontsize=7) plt.savefig("kick_dist.pdf") #plt.clf() #plt.close(plt.gcf())
gpl-3.0
PrashntS/scikit-learn
examples/svm/plot_rbf_parameters.py
132
8096
''' ================== RBF SVM parameters ================== This example illustrates the effect of the parameters ``gamma`` and ``C`` of the Radial Basis Function (RBF) kernel SVM. Intuitively, the ``gamma`` parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The ``gamma`` parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The ``C`` parameter trades off misclassification of training examples against simplicity of the decision surface. A low ``C`` makes the decision surface smooth, while a high ``C`` aims at classifying all training examples correctly by giving the model freedom to select more samples as support vectors. The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot is not possible to do for problems with more features or target classes. The second plot is a heatmap of the classifier's cross-validation accuracy as a function of ``C`` and ``gamma``. For this example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from :math:`10^{-3}` to :math:`10^3` is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a subsequent search. Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing models so as to make it easy to tell them appart in the blink of an eye. The behavior of the model is very sensitive to the ``gamma`` parameter. If ``gamma`` is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with ``C`` will be able to prevent overfitting. When ``gamma`` is very small, the model is too constrained and cannot capture the complexity or "shape" of the data. The region of influence of any selected support vector would include the whole training set. The resulting model will behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two classes. For intermediate values, we can see on the second plot that good models can be found on a diagonal of ``C`` and ``gamma``. Smooth models (lower ``gamma`` values) can be made more complex by selecting a larger number of support vectors (larger ``C`` values) hence the diagonal of good performing models. Finally one can also observe that for some intermediate values of ``gamma`` we get equally performing models when ``C`` becomes very large: it is not necessary to regularize by limiting the number of support vectors. The radius of the RBF kernel alone acts as a good structural regularizer. In practice though it might still be interesting to limit the number of support vectors with a lower value of ``C`` so as to favor models that use less memory and that are faster to predict. We should also note that small differences in scores results from the random splits of the cross-validation procedure. Those spurious variations can be smoothed out by increasing the number of CV iterations ``n_iter`` at the expense of compute time. Increasing the value number of ``C_range`` and ``gamma_range`` steps will increase the resolution of the hyper-parameter heat map. ''' print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load and prepare data set # # dataset for grid search iris = load_iris() X = iris.data y = iris.target # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 classes and # make it a binary classification problem. X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1 # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. scaler = StandardScaler() X = scaler.fit_transform(X) X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-2, 10, 13) gamma_range = np.logspace(-9, 3, 13) param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=5, test_size=0.2, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # Now we need to fit a classifier for all parameters in the 2d version # (we use a smaller set of parameters here because it takes a while to train) C_2d_range = [1e-2, 1, 1e2] gamma_2d_range = [1e-1, 1, 1e1] classifiers = [] for C in C_2d_range: for gamma in gamma_2d_range: clf = SVC(C=C, gamma=gamma) clf.fit(X_2d, y_2d) classifiers.append((C, gamma, clf)) ############################################################################## # visualization # # draw visualization of parameter effects plt.figure(figsize=(8, 6)) xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200)) for (k, (C, gamma, clf)) in enumerate(classifiers): # evaluate decision function in a grid Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # visualize decision function for these parameters plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1) plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)), size='medium') # visualize parameter's effect on decision function plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu) plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r) plt.xticks(()) plt.yticks(()) plt.axis('tight') # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [x[1] for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot, norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45) plt.yticks(np.arange(len(C_range)), C_range) plt.title('Validation accuracy') plt.show()
bsd-3-clause
Srisai85/scikit-learn
sklearn/utils/tests/test_class_weight.py
140
11909
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # cuplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
google-research/google-research
dp_multiq/experiment.py
1
17930
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Methods for running multiquantiles experiments and plotting the results.""" import enum import functools import time import matplotlib.pyplot as plt import numpy as np import pandas as pd from dp_multiq import base from dp_multiq import csmooth from dp_multiq import ind_exp from dp_multiq import joint_exp from dp_multiq import smooth from dp_multiq import tree class ErrorMetric(enum.Enum): MISCLASSIFIED_POINTS = 1 DISTANCE = 2 _ERROR_FUNCS = { ErrorMetric.MISCLASSIFIED_POINTS: base.misclassified_points_error, ErrorMetric.DISTANCE: lambda _, true_qs, est_qs: base.distance_error(true_qs, est_qs) } _ERROR_LABELS = { ErrorMetric.MISCLASSIFIED_POINTS: "avg # misclassified points", ErrorMetric.DISTANCE: "avg distance" } class QuantilesEstimationMethod(enum.Enum): JOINT_EXP = 1 IND_EXP = 2 APP_IND_EXP = 3 SMOOTH = 4 CSMOOTH = 5 LAP_TREE = 6 GAUSS_TREE = 7 _PARTIAL_METHODS = { QuantilesEstimationMethod.JOINT_EXP: joint_exp.joint_exp, QuantilesEstimationMethod.IND_EXP: ind_exp.ind_exp, QuantilesEstimationMethod.APP_IND_EXP: ind_exp.ind_exp, QuantilesEstimationMethod.SMOOTH: smooth.smooth, QuantilesEstimationMethod.CSMOOTH: csmooth.csmooth, QuantilesEstimationMethod.LAP_TREE: tree.tree, QuantilesEstimationMethod.GAUSS_TREE: tree.tree } _PLOT_LABELS = { QuantilesEstimationMethod.JOINT_EXP: "JointExp", QuantilesEstimationMethod.IND_EXP: "IndExp", QuantilesEstimationMethod.APP_IND_EXP: "AppIndExp", QuantilesEstimationMethod.SMOOTH: "Smooth", QuantilesEstimationMethod.CSMOOTH: "CSmooth", QuantilesEstimationMethod.LAP_TREE: "LapTree", QuantilesEstimationMethod.GAUSS_TREE: "GaussTree" } _PLOT_LINESTYLES = { QuantilesEstimationMethod.JOINT_EXP: "-", QuantilesEstimationMethod.IND_EXP: "--", QuantilesEstimationMethod.APP_IND_EXP: "--", QuantilesEstimationMethod.SMOOTH: "-.", QuantilesEstimationMethod.CSMOOTH: "-.", QuantilesEstimationMethod.LAP_TREE: ":", QuantilesEstimationMethod.GAUSS_TREE: ":" } _PLOT_COLORS = { QuantilesEstimationMethod.JOINT_EXP: "lightseagreen", QuantilesEstimationMethod.IND_EXP: "mediumpurple", QuantilesEstimationMethod.APP_IND_EXP: "darkorange", QuantilesEstimationMethod.SMOOTH: "cornflowerblue", QuantilesEstimationMethod.CSMOOTH: "violet", QuantilesEstimationMethod.LAP_TREE: "firebrick", QuantilesEstimationMethod.GAUSS_TREE: "peru" } def synthetic_comparison(methods, error_func, data_type, num_samples, data_low, data_high, num_trials, num_quantiles_range, eps, delta, swap, ts_matrix): """Returns errors and times from running experients on synthetic data. Args: methods: Array of private quantiles algorithms to test. error_func: Function for computing quantile estimation error. data_type: Type of synthetic data to use, either uniform or gaussian. num_samples: Number of samples to use in each trial. data_low: Lower bound for data, used by private quantiles algorithms. data_high: Upper bound for data, used by private quantiles algorithms. num_trials: Number of trials to average over. num_quantiles_range: Array of numbers of quantiles to estimate. eps: Privacy parameter epsilon. delta: Privacy parameter delta, used only by smooth. swap: If true, uses swap privacy definition. Otherwise uses add-remove. ts_matrix: Matrix of smooth sensitivity parameters passed to CSmooth, where ts_matrix[i,j] corresponds to quantile j+1 of num_quantiles_range[i] quantiles. Returns: Arrays errors and times storing, respectively, average number of misclassified points and time in seconds for each of the five methods and each num_quantiles in num_quantiles_range, for the specified synthetic data. """ max_num_quantiles = len(num_quantiles_range) num_methods = len(methods) errors = np.zeros((num_methods, max_num_quantiles)) times = np.zeros((num_methods, max_num_quantiles)) for num_quantiles_idx in range(max_num_quantiles): num_quantiles = num_quantiles_range[num_quantiles_idx] qs = np.linspace(0, 1, num_quantiles + 2)[1:-1] ts = ts_matrix[num_quantiles_idx] errors[:, num_quantiles_idx], times[:, num_quantiles_idx] = comparison( methods, error_func, np.empty(0), data_type, num_samples, data_low, data_high, num_trials, qs, eps, delta, swap, ts) print("Finished num_quantiles = " + str(num_quantiles)) return errors, times def real_comparison(methods, error_func, data_type, num_samples, data_low, data_high, num_trials, num_quantiles_range, eps, delta, swap, ts_matrix): """Returns errors and times from running experiments on real data. Args: methods: Array of private quantiles algorithms to test. error_func: Function for computing quantile estimation error. data_type: Type of real data to use, either ratings or pages. num_samples: Number of samples to use in each trial. data_low: Lower bound for data, used by private quantiles algorithms. data_high: Upper bound for data, used by private quantiles algorithms. num_trials: Number of trials to average over. num_quantiles_range: Array of number of quantiles to estimate. eps: Privacy parameter epsilon. delta: Privacy parameter delta, used only by Smooth. swap: If true, uses swap privacy definition. Otherwise uses add-remove. ts_matrix: Matrix of smooth sensitivity parameters passed to CSmooth, where ts_matrix[i,j] corresponds to quantile j+1 of num_quantiles_range[i] quantiles. Returns: Arrays errors and times storing, respectively, average number of misclassified points and time in seconds for each of the five methods and each num_quantiles in num_quantiles_range, for the specified real data. """ max_num_quantiles = len(num_quantiles_range) num_methods = len(methods) errors = np.zeros((num_methods, max_num_quantiles)) times = np.zeros((num_methods, max_num_quantiles)) if data_type == "ratings": data = pd.read_csv("books.csv", usecols=["average_rating"]) data = pd.to_numeric(data["average_rating"], errors="coerce").to_numpy() data = data[~np.isnan(data)] else: data = pd.read_csv("books.csv", usecols=[" num_pages"]) data = pd.to_numeric(data[" num_pages"], errors="coerce").to_numpy() data = data[~np.isnan(data)] data = data / 100 for num_quantiles_idx in range(max_num_quantiles): num_quantiles = num_quantiles_range[num_quantiles_idx] qs = np.linspace(0, 1, num_quantiles + 2)[1:-1] ts = ts_matrix[num_quantiles_idx] errors[:, num_quantiles_idx], times[:, num_quantiles_idx] = comparison( methods, error_func, data, "", num_samples, data_low, data_high, num_trials, qs, eps, delta, swap, ts) print("Finished num_quantiles = " + str(num_quantiles)) return errors, times def comparison(methods, error_func, fixed_data, distribution, num_samples, data_low, data_high, num_trials, qs, eps, delta, swap, ts): """Helper function to run the trials set up by synthetic/real_comparison. Args: methods: Array of private quantiles algorithms to test. error_func: Function for computing quantile estimation error. fixed_data: In the case of real data, an array of data to subsample in each trial. In the case of synthetic data, an empty array. distribution: In the case of real data, an empty string. In the case of synthetic data, either "gaussian" or "uniform". num_samples: Number of samples to use in each trial. data_low: Lower bound for data, used by private quantiles algorithms. data_high: Upper bound for data, used by private quantiles algorithms. num_trials: Number of trials to average over. qs: Array of quantiles to estimate. eps: Privacy parameter epsilon. delta: Privacy parameter delta, used only by Smooth. swap: If true, uses swap privacy definition. Otherwise uses add-remove. ts: Matrix of smooth sensitivity parameters passed to CSmooth. Returns: Arrays errors and times storing, respectively, average number of misclassified points and time in seconds for each of the methods. Throws: ValueError if the Smooth or CSmooth method is used in conjunction with swap=False, or if one of the specified methods is unrecognized. """ # Create an array of DP quantile functions from the array of method names. quant_funcs = [] for method in methods: quant_func = functools.partial( _PARTIAL_METHODS[method], data_low=data_low, data_high=data_high, qs=qs) if method == QuantilesEstimationMethod.JOINT_EXP: quant_func = functools.partial(quant_func, eps=eps, swap=swap) elif method == QuantilesEstimationMethod.IND_EXP: quant_func = functools.partial( quant_func, divided_eps=eps / len(qs), swap=swap) elif method == QuantilesEstimationMethod.APP_IND_EXP: quant_func = functools.partial( quant_func, divided_eps=ind_exp.opt_comp_calculator(eps, delta, len(qs)), swap=swap) elif method == QuantilesEstimationMethod.SMOOTH: if not swap: raise ValueError("Smooth method is only implemented for swap DP.") quant_func = functools.partial( quant_func, divided_eps=eps / len(qs), divided_delta=delta / len(qs)) elif method == QuantilesEstimationMethod.CSMOOTH: if not swap: raise ValueError("CSmooth method is only implemented for swap DP.") quant_func = functools.partial( quant_func, divided_eps=eps / np.sqrt(len(qs)), ts=ts) elif method == QuantilesEstimationMethod.LAP_TREE: quant_func = functools.partial(quant_func, eps=eps, delta=0, swap=swap) elif method == QuantilesEstimationMethod.GAUSS_TREE: quant_func = functools.partial( quant_func, eps=eps, delta=delta, swap=swap) else: raise ValueError("Unrecognized method name: {}".format(method)) quant_funcs.append(quant_func) num_methods = len(methods) if len(quant_funcs) != num_methods: raise ValueError( "Quantile functions array length does not match methods array length.") errors = np.zeros(num_methods) times = np.zeros(num_methods) for _ in range(num_trials): # Sample a dataset. if fixed_data.size > 0: sampled_data = np.sort( np.random.choice(fixed_data, num_samples, replace=False)) elif distribution == "gaussian": sampled_data = base.gen_gaussian(num_samples, 0, 5) elif distribution == "uniform": sampled_data = base.gen_uniform(num_samples, -5, 5) true_quantiles = base.quantiles(sampled_data, qs) for method_num in range(num_methods): quant_func = quant_funcs[method_num] begin = time.time() estimates = quant_func(sampled_data) end = time.time() times[method_num] = (end - begin) / num_trials errors[method_num] += error_func(sampled_data, true_quantiles, estimates) / num_trials return errors, times def tune_ts_plot(eps, avg_ts, num_quantiles_range, file_name): """Shows the specified plot of tuned t parameters for CSmooth. Args: eps: Privacy parameter epsilon. avg_ts: Array of arrays of selected ts, one array for each number of number of quantiles. num_quantiles_range: Array of number of quantiles used to tune. file_name: File name for saving plot. Returns: Saves the specified plot as file_name.png. """ for num_quantiles_idx in range(len(num_quantiles_range)): num_quantiles = num_quantiles_range[num_quantiles_idx] plt.scatter( np.linspace(0, 1, num_quantiles + 2)[1:-1], avg_ts[num_quantiles_idx], label=str(num_quantiles)) plt.title("tuned t per quantile range, eps = " + str(eps)) plt.ylabel("tuned t") plt.xlabel("quantile") plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") plt.savefig(file_name + ".png") plt.close() def plot(methods, y_label, title, x_array, y_arrays, log_scale, legend, plot_name): """Constructs and saves the specified plot as plot_name.png. Args: methods: Array of private quantiles algorithms to test. y_label: Label for plot's y-axis. title: Title to display at the top of the plot. x_array: Array of quantiles to use for the x-axis. y_arrays: len(methods) x len(x_array) array of points to plot. log_scale: If true, scales y-axis logarithmically. legend: If true, displays legend. plot_name: File name to use for saving plot. Throws: ValueError if methods and y_arrays size does not match methods and x_array. """ num_methods = len(methods) if num_methods != y_arrays.shape[0]: raise ValueError( "Length of methods does not match first dimension of y_arrays.") if len(x_array) != y_arrays.shape[1]: raise ValueError( "Length of x_array does not match second dimension of y_arrays.") for index in range(num_methods): y_array = y_arrays[index] method = methods[index] plt.plot( x_array, y_array, linestyle=_PLOT_LINESTYLES[method], label=_PLOT_LABELS[method], color=_PLOT_COLORS[method], linewidth=3) plt.title(title, fontsize=18) plt.ylabel(y_label, fontsize=18) if log_scale: plt.yscale("log") plt.xlabel("# quantiles", fontsize=18) if legend: legend = plt.legend( loc="lower center", bbox_to_anchor=(0.5, -0.5), ncol=3, frameon=False, fontsize=16) plt.savefig( plot_name + ".png", bbox_extra_artists=(legend,), bbox_inches="tight") else: plt.savefig(plot_name + ".png", bbox_inches="tight") plt.close() def experiment(methods, error_metric=ErrorMetric.MISCLASSIFIED_POINTS, data_low=-100, data_high=100, num_samples=1000, eps=1, delta=1e-6, swap=True, num_quantiles_range=range(1, 30), est_num_trials=10, ts_num_trials=2, ts_plot_name="eps_1_ts", error_plot_prefix="eps_1_error", time_plot_prefix="eps_1_time"): """Runs trials and saves relevant plots for the specified experiment. Args: methods: Array of private quantiles algorithms to test. Available methods are defined in the QuantilesEstimationMethod enum. error_metric: Available metrics are defined in the ErrorMetric enum. data_low: Lower bound for data, used by private quantiles algorithms. data_high: Upper bound for data, used by private quantiles algorithms. num_samples: Number of samples for each trial. eps: Privacy parameter epsilon. delta: Privacy parameter delta. swap: If true, uses swap privacy definition. Otherwise uses add-remove. num_quantiles_range: Array of numbers of quantiles to estimate. est_num_trials: Number of trials to average for error and time experiments. ts_num_trials: Number of trials to average for tuning ts experiments. ts_plot_name: Name for saving the tuning ts plot. error_plot_prefix: File prefix for the error plots. For example, the Gaussian error plot will have name error_plot_prefix_gaussian. time_plot_prefix: File prefix for the time plots. Returns: Saves the generated ts/error/time plots. """ if QuantilesEstimationMethod.CSMOOTH in methods: tuned_ts = csmooth.csmooth_tune_t_experiment(eps, num_samples, ts_num_trials, num_quantiles_range, data_low, data_high, -2, 0, 50) tune_ts_plot(eps, tuned_ts, num_quantiles_range, ts_plot_name) print("Finished tuning t for CSmooth.") else: tuned_ts = [ np.empty(num_quantiles) for num_quantiles in num_quantiles_range ] error_func = _ERROR_FUNCS[error_metric] error_label = _ERROR_LABELS[error_metric] for data in ["gaussian", "uniform"]: errors, times = synthetic_comparison(methods, error_func, data, num_samples, data_low, data_high, est_num_trials, num_quantiles_range, eps, delta, swap, tuned_ts) plot(methods, error_label, data + " error", num_quantiles_range, errors, True, True, error_plot_prefix + data) plot(methods, "time (secs)", data + " time", num_quantiles_range, times, True, True, time_plot_prefix + data) print("Finished " + data + " trials.") for data in ["ratings", "pages"]: errors, times = real_comparison(methods, error_func, data, num_samples, data_low, data_high, est_num_trials, num_quantiles_range, eps, delta, swap, tuned_ts) plot(methods, error_label, data + " error", num_quantiles_range, errors, True, True, error_plot_prefix + data) plot(methods, "time (secs)", data + " time", num_quantiles_range, times, True, True, time_plot_prefix + data) print("Finished " + data + " trials.")
apache-2.0
shaunwbell/FOCI_Analysis
ReanalysisRetreival_orig/UnimakPass/UP_HRV2OISST_model_prep.py
1
8998
#!/usr/bin/env """ UP_HRV2OISST_model_prep.py DataSource: ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/ NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/ """ #System Stack import datetime import sys #Science Stack import numpy as np from netCDF4 import Dataset from netCDF4 import date2num # User Stack import utilities.haversine as sphered from utilities import ncutilities as ncutil # Visual Stack import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, shiftgrid __author__ = 'Shaun Bell' __email__ = '[email protected]' __created__ = datetime.datetime(2014, 01, 13) __modified__ = datetime.datetime(2014, 01, 13) __version__ = "0.1.0" __status__ = "Development" __keywords__ = 'NARR','Unimak', 'Shumagin','3hr filtered', 'U,V','Winds', 'Gulf of Alaska' """------------------------General Modules-------------------------------------------""" def from_netcdf(infile): """ Uses ncreadfile_dic which returns a dictionary of all data from netcdf""" ###nc readin/out nchandle = ncutil.ncopen(infile) params = ncutil.get_vars(nchandle) #gets all of them ncdata = ncutil.ncreadfile_dic(nchandle, params) ncutil.ncclose(nchandle) return (ncdata, params) def from_netcdf_1dsplice(infile, height_ind, lat_ind, lon_ind): """ Uses ncreadfile_dic which returns a dictionary of all data from netcdf""" ###nc readin/out nchandle = ncutil.ncopen(infile) params = ncutil.get_vars(nchandle) #gets all of them print "Parameters available: " print params ncdata = ncutil.ncreadfile_dic_slice(nchandle, params, height_ind=height_ind, lat_ind=lat_ind, lon_ind=lon_ind) ncutil.ncclose(nchandle) return ncdata def latlon_grid(infile): nchandle = ncutil.ncopen(infile) lat_lon = ncutil.get_geocoords(nchandle) ncutil.ncclose(nchandle) return (lat_lon) def write2epic( file_name, stationid, time, lat_lon, data ): ncinstance = ncutil.EPIC_NC_SST(savefile=file_name) ncinstance.file_create() ncinstance.sbeglobal_atts() ncinstance.PMELglobal_atts(Station_Name=stationid, file_name=( __file__.split('/')[-1]) ) ncinstance.dimension_init(len_time=len(time[0])) ncinstance.variable_init() ncinstance.add_coord_data(time1=time[0], time2=time[1], latitude=lat_lon[0], longitude=-1 * lat_lon[1], \ depth_level=0. ) ncinstance.add_data('T_25', data[0]) ncinstance.close() def date2pydate(file_time, file_time2=None, file_flag='EPIC'): """ Ingest EPIC date or NCEP Date and provide python serial date""" if file_flag == 'EPIC': ref_time_py = datetime.datetime.toordinal(datetime.datetime(1968, 5, 23)) ref_time_epic = 2440000 offset = ref_time_epic - ref_time_py try: #if input is an array python_time = [None] * len(file_time) for i, val in enumerate(file_time): pyday = file_time[i] - offset pyfrac = file_time2[i] / (1000. * 60. * 60.* 24.) #milliseconds in a day python_time[i] = (pyday + pyfrac) except: pyday = file_time - offset pyfrac = file_time2 / (1000. * 60. * 60.* 24.) #milliseconds in a day python_time = (pyday + pyfrac) elif file_flag == 'NARR': """ days since 1800-1-1""" base_date=datetime.datetime.strptime('1800-01-01','%Y-%m-%d').toordinal() python_time = file_time + base_date elif file_flag == 'NCEP': """ Hours since 1800-1-1""" base_date=datetime.datetime.strptime('1800-01-01','%Y-%m-%d').toordinal() python_time = file_time / 24. + base_date else: print "time flag not recognized" sys.exit() return np.array(python_time) def pydate2EPIC(file_time): ref_time_py = datetime.datetime.toordinal(datetime.datetime(1968, 5, 23)) ref_time_epic = 2440000 offset = ref_time_epic - ref_time_py time1 = np.floor(file_time) + offset #truncate to get day and add 2440000 for true julian day time2 = ( file_time - np.floor(file_time) ) * (1000. * 60. * 60.* 24.) #milliseconds since 0000GMT return(time1, time2) def pythondate2str(pdate): (year,month,day) = datetime.datetime.fromordinal(int(pdate)).strftime('%Y-%b-%d').split('-') delta_t = pdate - int(pdate) dhour = str(int(np.floor(24 * (delta_t)))) dmin = str(int(np.floor(60 * ((24 * (delta_t)) - np.floor(24 * (delta_t)))))) dsec = str(int(np.floor(60 * ((60 * ((24 * (delta_t)) - np.floor(24 * (delta_t)))) - \ np.floor(60 * ((24 * (delta_t)) - np.floor(24 * (delta_t)))))))) #add zeros to time if len(dhour) == 1: dhour = '0' + dhour if len(dmin) == 1: dmin = '0' + dmin if len(dsec) == 1: dsec = '0' + dsec return year + '-' + month + '-' + day + ' ' + dhour+':'+dmin+':'+dsec """------------------------- Topo Modules -------------------------------------------""" def etopo5_data(): """ read in etopo5 topography/bathymetry. """ file = '../data/etopo5.nc' etopodata = Dataset(file) topoin = etopodata.variables['bath'][:] lons = etopodata.variables['X'][:] lats = etopodata.variables['Y'][:] etopodata.close() topoin,lons = shiftgrid(0.,topoin,lons,start=False) # -360 -> 0 lons, lats = np.meshgrid(lons, lats) return(topoin, lats, lons) """------------------------- Main Modules -------------------------------------------""" ### list of files NARR = '/Users/bell/in_and_outbox/data_sets/reanalyis_data/OISSTV2/' infile = [NARR + 'sst.day.anom.2019.v2.nc'] ### Grab grid points for future slicing - assume grid is same in all model output lat_lon = latlon_grid(infile[0]) #stn ['1','2'] station_name = ['ShumaginDown'] sta_lat = [54.5] sta_long = [161] #Find NCEP nearest point to moorings - haversine formula # NCEP data is 0->360 (positive east), Moorings are usually expressed +W for FOCI stn1_pt = sphered.nearest_point([sta_lat[0],-1 * sta_long[0]],lat_lon['lat'],lat_lon['lon'], '1d') stn1_modelpt = [lat_lon['lat'][stn1_pt[3]],lat_lon['lon'][stn1_pt[4]]] print "stn1 nearest point to %s, %s which is lat:%s , lon:%s" \ % (sta_lat[0], sta_long[0], stn1_modelpt[0], stn1_modelpt[1]) stn1_modelpt[1] = -1.*((180 - stn1_modelpt[1]) + 180) print "thus converting lon to degrees W positive {0}".format(stn1_modelpt[1]) #loop over all requested data years = range(2016,2019) for yy in years: # retrieve only these location's data # uwnd infile = NARR + 'sst.day.anom.'+ str(yy) + '.v2.nc' print "Working on file " + infile stn1_data = from_netcdf_1dsplice(infile, None, stn1_pt[3], stn1_pt[4]) stn1_sst = stn1_data['anom'] #convert to EPIC time pydate = date2pydate(stn1_data['time'], file_flag='NARR') epic_time, epic_time1 = pydate2EPIC(pydate) # output u,v wind components from model grid points save_to_nc = True if save_to_nc: # write to NetCDF outfile = 'data/NOAA_OI_SST_V2_anom_stn1_' + str(yy) + '.nc' print "Writing to Epic NetCDF " + outfile write2epic( outfile, station_name[0], [epic_time, epic_time1], stn1_modelpt, [stn1_sst,]) plot_geoloc = True if plot_geoloc: (topoin, elats, elons) = etopo5_data() fig = plt.figure() ax = plt.subplot(111) m = Basemap(resolution='i',projection='merc', llcrnrlat=52, \ urcrnrlat=58,llcrnrlon=-165,urcrnrlon=-155, lat_ts=45) # Mooring Data x_moor, y_moor = m(-1. * sta_long[0],sta_lat[0]) x_close, y_close = m(stn1_modelpt[1], stn1_modelpt[0]) #ETOPO 5 contour data ex, ey = m(elons, elats) CS = m.contourf(ex,ey,topoin, levels=range(250,5000,250), cmap='gray_r', alpha=.75) #colors='black' CS = m.contour(ex,ey,topoin, levels=range(250,5000,250), linewidths=0.2, colors='black', alpha=.75) # CS = m.contour(ex,ey,topoin, levels=[-1000, -200, -100], linestyle='--', linewidths=0.2, colors='black', alpha=.75) # #plot points m.scatter(x_close,y_close,20,marker='+',color='b') m.scatter(x_moor,y_moor,20,marker='o',color='g') m.drawcountries(linewidth=0.5) m.drawcoastlines(linewidth=0.5) m.drawparallels(np.arange(50,62,2.),labels=[1,0,0,0],color='black',dashes=[1,1],labelstyle='+/-',linewidth=0.2) # draw parallels m.drawmeridians(np.arange(-165,-145,2.),labels=[0,0,0,1],color='black',dashes=[1,1],labelstyle='+/-',linewidth=0.2) # draw meridians #m.fillcontinents(color='black') DefaultSize = fig.get_size_inches() fig.set_size_inches( (DefaultSize[0], DefaultSize[1]) ) plt.savefig('images/shumigans_region.png', bbox_inches='tight', dpi = (100)) plt.close()
mit