repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
fducau/infoVAE
vae_1.py
1
14008
import numpy as np import tensorflow as tf import input_data from tensorflow.contrib.distributions import Normal import copy np.random.seed(0) tf.set_random_seed(0) network_architecture = dict(n_hidden_recog_1=500, # 1st layer encoder neurons n_hidden_recog_2=500, # 2nd layer encoder neurons n_hidden_gener_1=500, # 1st layer decoder neurons n_hidden_gener_2=500, # 2nd layer decoder neurons n_input=784, # MNIST data input (img shape: 28*28) n_z=20, # dimensionality of latent space info=False) # Load MNIST data in a format suited for tensorflow. # The script input_data is available under this URL: # https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/g3doc/tutorials/mnist/input_data.py mnist = input_data.read_data_sets('MNIST_data', one_hot=True) n_samples = mnist.train.num_examples def xavier_init(fan_in, fan_out, constant=1): """ Xavier initialization of network weights""" # https://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow low = - constant * np.sqrt(6.0 / (fan_in + fan_out)) high = constant * np.sqrt(6.0 / (fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high, dtype=tf.float32) class VariationalAutoencoder(object): """ Variation Autoencoder (VAE) with an sklearn-like interface implemented using TensorFlow. This implementation uses probabilistic encoders and decoders using Gaussian distributions and realized by multi-layer perceptrons. The VAE can be learned end-to-end. See "Auto-Encoding Variational Bayes" by Kingma and Welling for more details. """ def __init__(self, network_architecture, transfer_fct=tf.nn.softplus, learning_rate=0.001, batch_size=100): self.network_architecture = network_architecture self.transfer_fct = transfer_fct self.learning_rate = learning_rate self.batch_size = batch_size self.step = 0 self.summary_dir = './summary/' self.info = network_architecture['info'] self.sess = tf.InteractiveSession() # tf Graph input self.x = tf.placeholder(tf.float32, [None, network_architecture["n_input"]]) # Create autoencoder network self._create_network() # Define loss function based variational upper-bound and # corresponding optimizer self._create_loss_optimizer() self.train_summary_writer = tf.train.SummaryWriter(self.summary_dir, self.sess.graph) self.saver = tf.train.Saver(tf.all_variables()) # Initializing the tensor flow variables init = tf.initialize_all_variables() # Launch the session self.sess.run(init) def _create_network(self): # Initialize autoencode network weights and biases network_weights = self._initialize_weights(**self.network_architecture) # Use recognition network to determine mean and # (log) variance of Gaussian distribution in latent # space self.z_mean, self.z_log_sigma_sq = \ self._recognition_network(network_weights["weights_recog"], network_weights["biases_recog"], self.x) # Draw one sample z from Gaussian distribution n_z = self.network_architecture["n_z"] eps = tf.random_normal((self.batch_size, n_z), 0, 1, dtype=tf.float32) # z = mu + sigma*epsilon self.z = tf.add(self.z_mean, tf.mul(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps), name='z') # Use generator to determine mean of # Bernoulli distribution of reconstructed input self.x_reconstr_mean = \ self._generator_network(network_weights["weights_gener"], network_weights["biases_gener"], z=self.z) #### #### #### eps = tf.random_normal((self.batch_size, n_z), 0, 1, dtype=tf.float32) self.z_theta = tf.add(0.0, tf.mul(1.0, eps), name='z_theta') self.x_prime = self._generator_network(network_weights["weights_gener"], network_weights["biases_gener"], z=self.z_theta) self.z_prime_mean, self.z_prime_log_sigma_sq = self._recognition_network( network_weights["weights_recog"], network_weights["biases_recog"], self.x_prime) dist = Normal(mu=self.z_prime_mean, sigma=tf.sqrt(tf.exp(self.z_prime_log_sigma_sq))) logli = tf.reduce_sum(dist.log_pdf(self.z_theta, name='x_entropy'), reduction_indices=1) self.cross_entropy = tf.reduce_mean(- logli) #self.cross_entropy = tf.reduce_mean(- dist.log_pdf(self.z_theta, name='x_entropy')) self.entropy = tf.constant(28.37) def _initialize_weights(self, n_hidden_recog_1, n_hidden_recog_2, n_hidden_gener_1, n_hidden_gener_2, n_input, n_z, info): all_weights = dict() all_weights['weights_recog'] = { 'h1': tf.Variable(xavier_init(n_input, n_hidden_recog_1)), 'h2': tf.Variable(xavier_init(n_hidden_recog_1, n_hidden_recog_2)), 'out_mean': tf.Variable(xavier_init(n_hidden_recog_2, n_z)), 'out_log_sigma': tf.Variable(xavier_init(n_hidden_recog_2, n_z))} all_weights['biases_recog'] = { 'b1': tf.Variable(tf.zeros([n_hidden_recog_1], dtype=tf.float32)), 'b2': tf.Variable(tf.zeros([n_hidden_recog_2], dtype=tf.float32)), 'out_mean': tf.Variable(tf.zeros([n_z], dtype=tf.float32)), 'out_log_sigma': tf.Variable(tf.zeros([n_z], dtype=tf.float32))} all_weights['weights_gener'] = { 'h1': tf.Variable(xavier_init(n_z, n_hidden_gener_1)), 'h2': tf.Variable(xavier_init(n_hidden_gener_1, n_hidden_gener_2)), 'out_mean': tf.Variable(xavier_init(n_hidden_gener_2, n_input)), 'out_log_sigma': tf.Variable(xavier_init(n_hidden_gener_2, n_input))} all_weights['biases_gener'] = { 'b1': tf.Variable(tf.zeros([n_hidden_gener_1], dtype=tf.float32)), 'b2': tf.Variable(tf.zeros([n_hidden_gener_2], dtype=tf.float32)), 'out_mean': tf.Variable(tf.zeros([n_input], dtype=tf.float32)), 'out_log_sigma': tf.Variable(tf.zeros([n_input], dtype=tf.float32))} return all_weights def _recognition_network(self, weights, biases, x): # Generate probabilistic encoder (recognition network), which # maps inputs onto a normal distribution in latent space. # The transformation is parametrized and can be learned. layer_1 = self.transfer_fct(tf.add(tf.matmul(x, weights['h1']), biases['b1'])) layer_2 = self.transfer_fct(tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])) z_mean = tf.add(tf.matmul(layer_2, weights['out_mean']), biases['out_mean']) z_log_sigma_sq = \ tf.add(tf.matmul(layer_2, weights['out_log_sigma']), biases['out_log_sigma']) return (z_mean, z_log_sigma_sq) def _generator_network(self, weights, biases, z): # Generate probabilistic decoder (decoder network), which # maps points in latent space onto a Bernoulli distribution in data space. # The transformation is parametrized and can be learned. layer_1 = self.transfer_fct(tf.add(tf.matmul(z, weights['h1']), biases['b1'])) layer_2 = self.transfer_fct(tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])) x_reconstr_mean = \ tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['out_mean']), biases['out_mean'])) return x_reconstr_mean def _create_loss_optimizer(self): # The loss is composed of two terms: # 1.) The reconstruction loss (the negative log probability # of the input under the reconstructed Bernoulli distribution # induced by the decoder in the data space). # This can be interpreted as the number of "nats" required # for reconstructing the input when the activation in latent # is given. # Adding 1e-10 to avoid evaluatio of log(0.0) reconstr_loss = -\ tf.reduce_sum(self.x * tf.log(1e-10 + self.x_reconstr_mean) + (1 - self.x) * tf.log(1e-10 + 1 - self.x_reconstr_mean), 1, name='reconstruction_loss') # 2.) The latent loss, which is defined as the Kullback Leibler divergence # between the distribution in latent space induced by the encoder on # the data and some prior. This acts as a kind of regularizer. # This can be interpreted as the number of "nats" required # for transmitting the the latent space distribution given # the prior. latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq - tf.square(self.z_mean) - tf.exp(self.z_log_sigma_sq), 1, name='latent_loss') # 3.) Mutual Information loss self.lmbda = tf.constant(1.0) self.MI = tf.add(self.entropy, - self.cross_entropy, name='MI_loss') if self.info: self.cost = tf.reduce_mean(reconstr_loss + latent_loss - self.MI) else: self.cost = tf.reduce_mean(reconstr_loss - latent_loss) # Use ADAM optimizer self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.cost) rec_summary = tf.scalar_summary('reconstruction loss', tf.reduce_mean(reconstr_loss)) latent_summary = tf.scalar_summary('KLD q(z|x) || p(z)', tf.reduce_mean(latent_loss)) cost_summary = tf.scalar_summary('Cost', self.cost) sigma_summary = tf.scalar_summary('Sigma', tf.reduce_mean(tf.sqrt(tf.exp(self.z_log_sigma_sq)))) mu_summary = tf.scalar_summary('mu', tf.reduce_mean(self.z_mean)) # q_MI_summary = tf.scalar_summary('q_theta(z|x)', tf.reduce_mean(self.q_z_theta_given_x_prime)) x_entropy_summary = tf.scalar_summary('H(z|x)', self.cross_entropy) MI_summary = tf.scalar_summary('MI', self.MI) summaries = [rec_summary, latent_summary, cost_summary, x_entropy_summary, MI_summary, sigma_summary, mu_summary] self.merged = tf.merge_summary(summaries) def partial_fit(self, X, last=False): """Train model based on mini-batch of input data. Return cost of mini-batch. """ opt, cost, cross_entropy, MI, summary = \ self.sess.run((self.optimizer, self.cost, self.cross_entropy, self.MI, self.merged), feed_dict={self.x: X}) self.train_summary_writer.add_summary(summary, self.step) if last: self.saver.save(self.sess, 'model') self.step += 1 return cost def transform(self, X): """Transform data by mapping it into the latent space.""" # Note: This maps to mean of distribution, we could alternatively # sample from Gaussian distribution return self.sess.run(self.z_mean, feed_dict={self.x: X}) def generate(self, z_mu=None): """ Generate data by sampling from latent space. If z_mu is not None, data for this point in latent space is generated. Otherwise, z_mu is drawn from prior in latent space. """ if z_mu is None: z_mu = np.random.normal(size=self.network_architecture["n_z"]) # Note: This maps to mean of distribution, we could alternatively # sample from Gaussian distribution return self.sess.run(self.x_reconstr_mean, feed_dict={self.z: z_mu}) def reconstruct(self, X): """ Use VAE to reconstruct given data. """ return self.sess.run(self.x_reconstr_mean, feed_dict={self.x: X}) def train(network_architecture, learning_rate=0.001, batch_size=100, training_epochs=10, display_step=5, info=False): network_arch = copy.deepcopy(network_architecture) network_arch['info'] = info vae = VariationalAutoencoder(network_arch, learning_rate=learning_rate, batch_size=batch_size) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) # Loop over all batches for i in range(total_batch): batch_xs, _ = mnist.train.next_batch(batch_size) # Fit training using batch data if i == total_batch: cost = vae.partial_fit(batch_xs, last=True) else: cost = vae.partial_fit(batch_xs) # Compute average loss avg_cost += cost / n_samples * batch_size # Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost) return vae def main(): vae = train(network_architecture, training_epochs=25) if __name__ == '__main__': main()
gpl-3.0
sthyme/ZFSchizophrenia
BehaviorAnalysis/HSMovieAnalysis/imageMode.py
1
6047
#!/usr/bin/python -tt """ This script collects pixel differences between video frames and saves these differences to a file or files with the extension '.npy' USAGE: python deltaPix.py [videoFile] If no video file is specified, live video is processed If a video file is specified, this script runs through the video frame by frame STUFF THAT CAN BE ADJUSTED: pixel threshold = how many pixels is a real movement? experiment length: this is only relevant for live video: see expDuration below experiment length can also be manually set by hitting 'q' during the video feed frameRate = this is used to set the timestamps of each video frame estimated at 30 fps, but user may adjust This script will report how many frames were analyzed To set actual fps, run script to calculate # frames, and divide by running length of the video Enter this number into 'frameRate' below, and rerun this script NEED: 1) the two output files automatically created by roiSelect.py: image.png and mask.png 2) the imageTools.py set of tools NOTE: Before this script runs, it will ask you if you want to (a)append new data to the .npy file(s) already in the directory (n)ew experiment: clear out old .npy files before running the analysis """ def keepOrAppend(clearData): # check to see if clear existing data # or append this data to existing data if clearData == 'n': print "Actually not clearing data, but need to make a new file anyway" #imageTools.deleteData('*.npy') else: print "Keeping existing data ..." # IMPORT NECESSARY MODULES import matplotlib.image as mpimg import numpy as np import cv2 from datetime import datetime, timedelta import sys import imageTools import motionTools #from collections import dequeue from scipy.stats import mode import glob,os def calc_mode(deq, nump_arr): for j,k in enumerate(nump_arr[:,0]): #so k are the values, j are the indicies. all cols will be 1504. so j will reach 1504 nump_arr[j,:] = mode(np.array([x[j,:] for x in deq]))[0] return nump_arr def main(pixThreshold,frameRate,videoStream): expDuration = 600000 # duration of experiment, in seconds; only relevant for live feed saveFreq = 4500 # how often to save data, in frames i,m = imageTools.loadImageAndMask() # convert mask to integer values for bincount weights m,w = imageTools.convertMaskToWeights(m) #print m,w moviedeq = [] i2=0 for file in glob.glob("*_4*avi"): if i2 == 15: break #for x in range(0,5): # start camera or open video videoType, displayDiffs = imageTools.getVideoType(videoStream) # print "testing: ", file #print "testing: ", videoStream.split('-')[x] cap = cv2.VideoCapture(file) #cap = cv2.VideoCapture(videoStream.split('-')[x]) # adjust video resolution if necessary (sized to mask) # print 'Camera resolution is %s x %s' % (str(m.shape[1]),str(m.shape[0])) # cap.set(3,m.shape[1]) # cap.set(4,m.shape[0]) # Set Pixel Threshold ret,frame = cap.read() storedFrame = imageTools.grayBlur(frame) #pixThreshold = int(np.floor( pixThreshold * storedFrame.shape[0] )) #print('PixelThreshold is %i') % pixThreshold # Acquire data if saveFreq / frameRate > expDuration: # do shorter of expDuration vs. saveFreq saveFreq = expDuration * frameRate pixData = np.zeros([ saveFreq, len(np.unique(w)) + 1]) #i = 0 # a counter for saving chunks of data totalFrames = 0 startTime = datetime.now() oldTime = startTime elapsed = 0 print('Analyzing motion data...') #moviedeq = [] while(cap.isOpened()): ret,frame = cap.read() if ret == False: print 'End of Video' break currentFrame = imageTools.grayBlur(frame) moviedeq.append(currentFrame) # stop experiment if user presses 'q' or if experiment duration is up if ( cv2.waitKey(1) & 0xFF == ord('q') or len(sys.argv) == 1 and datetime.now() > startTime + timedelta(seconds = expDuration) ): break # record pixel differences in all of the ROIs #diff = imageTools.diffImage(storedFrame,currentFrame,pixThreshold,0) timeDiff = 1. / frameRate elapsed = elapsed + timeDiff # print elapsed # calculate and record pixel differences #counts = np.bincount(w, weights=diff.ravel()) # print counts # output #pixData[i,:] = np.hstack((elapsed,counts)) totalFrames += 1 storedFrame = currentFrame # comment out if nothing is in first frame #oldTime = newTime i2 += 1 # done recording. Remove empty rows (those bigger than i) from PixData #pixData = pixData[:i,:] #print pixData testing = calc_mode(moviedeq, np.zeros([660,1088])) print "saving mode.png" cv2.imwrite('mode.png', testing) # Save info (elapsed time and framerate) for later use vidInfo = {} # analysisTime = timeStamp - startTime # vidInfo['analysisTime'] = float(str(analysisTime.seconds) + '.' + str(analysisTime.microseconds)) # vidInfo['TotalFrames'] = totalFrames # vidInfo['fps'] = int(totalFrames/vidInfo['analysisTime']) # #vidInfo['pixThreshold']=pixThreshold # vidInfo['CameraResolution']='%s x %s' % (str(m.shape[1]),str(m.shape[0])) #vidInfo['NamePrefix'] = videoStream.split('-')[x] #vidInfo['NamePrefix'] = videoStream.split('.')[0] # print ('Analyzed %i frames in %f seconds') % (vidInfo['TotalFrames'],vidInfo['analysisTime']) # print('FrameRate is about %i fps') % vidInfo['fps'] # print 'Motion threshold is %i pixels' % int(pixThreshold) # print 'Camera resolution is %s' % vidInfo['CameraResolution'] # release camera cap.release() cv2.destroyAllWindows() return vidInfo def cmdLine(pixThreshold,frameRate,videoStream): #keepOrAppend('n') #keepOrAppend(raw_input("(a)ppend this new data, or (n)ew experiment? >:")) vidInfo = main(pixThreshold,frameRate,videoStream) return vidInfo if __name__ == '__main__': pixThreshold = imageTools.getPixThreshold(0.032) frameRate = imageTools.getFrameRate() # default is 30 videoStream = imageTools.getVideoStreamMode(sys.argv) #videoStream = imageTools.getVideoStream(sys.argv) vidInfo = cmdLine(pixThreshold,frameRate,videoStream)
mit
mikeireland/veloce
veloce/simulator.py
1
11214
##Simulator code import numpy as np import matplotlib.pyplot as plt #Define matrices #Gah gah1 = 1 gah2 = 1 gah3 = 1 gah4 = 1 gah5 = 1 gah6 = 1 #ghp ghp1 = 1 ghp2 = 1 ghp3 = 1 ghp4 = 1 ghp5 = 1 ghp6 = 1 #Gpb gpb1 = 1 gpb2 = 1 gpb3 = 1 gpb4 = 1 gpb5 = 1 gpb6 = 1 gpb7 = 1 #gpa gpa1 = 1 gpa2 = 1 gpa3 = 1 gpa4 = 1 gpa5 = 1 gpa6 = 1 gpa7 = 1 #Gps gps1 = 1 gps2 = 1 gps3 = 1 gps4 = 1 gps5 = 1 gps6 = 1 gps7 = 1 #Gsb gsb1 = 1 gsb2 = 1 gsb3 = 1 gsb4 = 1 gsb5 = 1 gsb6 = 1 gsb7 = 1 #Gih gih1 = 1 gih2 = 1 gih3 = 1 gih4 = 1 gih5 = 1 gih6 = 1 #gnm g12 = 1 g13 = 1 g14 = 1 g15 = 1 g16 = 1 g17 = 1 g23 = 1 g24 = 1 g25 = 1 g26 = 1 g27 = 1 g34 = 1 g35 = 1 g36 = 1 g37 = 1 g45 = 1 g46 = 1 g47 = 1 g56 = 1 g57 = 1 g67 = 1 #ch ch1 = 1 ch2 = 1 ch3 = 1 ch4 = 1 ch5 = 1 ch6 = 1 #cp cp1 = 1 cp2 = 1 cp3 = 1 cp4 = 1 cp5 = 1 cp6 = 1 cp7 = 1 #cb cb = 1 #dt_damp dt_damp = 1 A_sim= np.array([ [-1/dt_damp, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,], [0, (-gpb1 - gpb2 - gpb3 - gpb4 - gpb5 - gpb6 - gpb7 - gsb2 + gsb2**2/(gps2 + gsb2) - gsb4 + gsb4**2/(gps4 + gsb4) - gsb7 + gsb7**2/(gps7 + gsb7))/cb, gpb1/cb, (gpb2 + (gps2*gsb2)/(gps2 + gsb2))/cb, gpb3/cb, (gpb4 + (gps4*gsb4)/(gps4 + gsb4))/cb, gpb5/cb, gpb6/cb, (gpb7 + (gps7*gsb7)/(gps7 + gsb7))/cb,0,0,0,0,0,0], [(((gah1*ghp1)/(gah1 + ghp1 + gih1) + gpa1))/cp1, (gpb1)/cp1, (-g12 - g14 - g15 - g16 - g17 - ghp1 + ghp1**2/(gah1 + ghp1 + gih1) - gpa1 - gpb1)/cp1, g12/cp1, 0, g14/cp1, g15/cp1, g16/cp1, g17/cp1, (ghp1*gih1)/(cp1*(gah1 + ghp1 + gih1)), 0, 0, 0, 0, 0], [((gah2*ghp2)/(gah2 + ghp2 + gih2) + gpa2)/cp2, (gpb2 + (gps2*gsb2)/(gps2 + gsb2))/cp2, g12/cp2, (-g12 - g23 - g25 - g26 - ghp2 + ghp2**2/(gah2 + ghp2 + gih2) - gpa2 - gpb2 - gps2 + gps2**2/(gps2 + gsb2))/cp2, g23/cp2, 0, g25/cp2, g26/cp2, 0, 0, (ghp2*gih2)/(cp2*(gah2 + ghp2 + gih2)), 0, 0, 0, 0], [((gah3*ghp3)/(gah3 + ghp3 + gih3) + gpa3)/cp3, gpb3/cp3, 0, g23/cp3, (-g23 - g34 - g35 - g36 - g37 - ghp3 + ghp3**2/(gah3 + ghp3 + gih3) - gpa3 - gpb3)/cp3, g34/cp3, g35/cp3, g36/cp3, g37/cp3, 0, 0, (ghp3*gih3)/(cp3*(gah3 + ghp3 + gih3)), 0, 0, 0], [((gah4*ghp4)/(gah4 + ghp4 + gih4) + gpa4)/cp4, (gpb4 + (gps4*gsb4)/(gps4 + gsb4))/cp4, g14/cp4, 0, g34/cp4, (-g14 - g34 - g45 - g46 - g47 - ghp4 + ghp4**2/(gah4 + ghp4 + gih4) - gpa4 - gpb4 - gps4 + gps4**2/(gps4 + gsb4))/cp4, g45/cp4, g46/cp4, g47/cp4, 0, 0, 0, (ghp4*gih4)/(cp4*(gah4 + ghp4 + gih4)),0,0], [((gah5*ghp5)/(gah5 + ghp5 + gih5) + gpa5)/cp5, gpb5/cp5, g15/cp5, g25/cp5, g35/cp5, g45/cp5, (-g15 - g25 - g35 - g45 - g57 - ghp5 + ghp5**2/(gah5 + ghp5 + gih5) - gpa5 - gpb5)/cp5, 0, g57/cp5, 0, 0, 0, 0, (ghp5*gih5)/(cp5*(gah5 + ghp5 + gih5)), 0], [((gah6*ghp6)/(gah6 + ghp6 + gih6) + gpa6)/cp6, gpb6/cp6, g16/cp6, g26/cp6, g36/cp6, g46/cp6, 0, (-g16 - g26 - g36 - g46 - g67 - ghp6 + ghp6**2/(gah6 + ghp6 + gih6) - gpa6 - gpb6)/cp6, g67/cp6, 0, 0, 0, 0, 0, (ghp6*gih6)/(cp6*(gah6 + ghp6 + gih6))], [0, (gpb7 + (gps7*gsb7)/(gps7 + gsb7))/cp7, g17/cp7, 0, g37/cp7, g47/cp7, g57/cp7, g67/cp7, (-g17 - g37 - g47 - g57 - g67 - gpb7 - gps7 + gps7**2/(gps7 + gsb7))/cp7, 0, 0, 0, 0, 0, 0], [(gah1*gih1)/(ch1*(gah1 + ghp1 + gih1)), 0, (ghp1*gih1)/(ch1*(gah1 + ghp1 + gih1)), 0, 0, 0, 0, 0, 0, (-gih1 + gih1**2/(gah1 + ghp1 + gih1))/ch1, 0, 0, 0, 0, 0], [(gah2*gih2)/(ch2*(gah2 + ghp2 + gih2)),0, 0, (ghp2*gih2)/(ch2*(gah2 + ghp2 + gih2)), 0, 0, 0, 0, 0, 0, (-gih2 + gih2**2/(gah2 + ghp2 + gih2))/ch2, 0, 0, 0, 0], [(gah3*gih3)/(ch3*(gah3 + ghp3 + gih3)), 0, 0, 0, (ghp3*gih3)/(ch3*(gah3 + ghp3 + gih3)), 0, 0, 0, 0, 0, 0, (-gih3 + gih3**2/(gah3 + ghp3 + gih3))/ch3, 0, 0, 0], [(gah4*gih4)/(ch4*(gah4 + ghp4 + gih4)), 0, 0, 0, 0, (ghp4*gih4)/(ch4*(gah4 + ghp4 + gih4)), 0, 0, 0, 0, 0, 0, (-gih4 + gih4**2/(gah4 + ghp4 + gih4))/ch4, 0, 0], [(gah5*gih5)/(ch5*(gah5 + ghp5 + gih5)), 0, 0, 0, 0, 0, (ghp5*gih5)/(ch5*(gah5 + ghp5 + gih5)), 0, 0, 0, 0, 0, 0, (-gih5 + gih5**2/(gah5 + ghp5 + gih5))/ch5, 0], [(gah6*gih6)/(ch6*(gah6 + ghp6 + gih6)), 0, 0, 0, 0, 0, 0, (ghp6*gih6)/(ch6*(gah6 + ghp6 + gih6)), 0, 0, 0, 0, 0, 0, (-gih6 + gih6**2/(gah6 + ghp6 + gih6))/ch6] ]) B_sim = np.array([ [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [1/ch1,0,0,0,0,0], [0, 1/ch2,0,0,0,0], [0,0, 1/ch3,0,0,0], [0,0,0, 1/ch4,0,0], [0,0,0,0, 1/ch5,0], [0,0,0,0,0, 1/ch6] ]) C_sim = np.array([ [0, gsb2/(gps2 + gsb2), 0, gps2/(gps2 + gsb2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, gsb4/(gps4 + gsb4), 0, 0, 0, gps4/(gps4 + gsb4), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, gsb7/(gps7 + gsb7), 0, 0, 0, 0, 0, 0, gps7/(gps7 + gsb7), 0, 0, 0, 0, 0, 0] ]) #simulation variables t_end = 1000 dt = 0.001 timesteps = round(t_end/dt) xvalues = np.zeros( (15, timesteps) ) times = np.arange(0, timesteps*dt, dt) #set the initial conditions xvalues[:,0:1] = np.array([ [15],[25],[25],[25],[25],[25],[25],[25],[25],[25],[25],[25],[25],[25],[25] ]) yvalues = np.zeros( (3, timesteps) ) yvalues[:,0:1] = np.dot(C_sim, xvalues[:,0:1]) #calculate output at t=0 u = np.zeros( (6,1) ) ambient = 15 + 2*np.sin((2*np.pi*times)/120) #Define control loop matrices #Gah gah1 = 1 gah2 = 1 gah3 = 1 gah4 = 1 gah5 = 1 gah6 = 1 #ghp ghp1 = 1 ghp2 = 1 ghp3 = 1 ghp4 = 1 ghp5 = 1 ghp6 = 1 #Gpb gpb1 = 1 gpb2 = 1 gpb3 = 1 gpb4 = 1 gpb5 = 1 gpb6 = 1 gpb7 = 1 #gpa gpa1 = 1 gpa2 = 1 gpa3 = 1 gpa4 = 1 gpa5 = 1 gpa6 = 1 gpa7 = 1 #Gps gps1 = 1 gps2 = 1 gps3 = 1 gps4 = 1 gps5 = 1 gps6 = 1 gps7 = 1 #Gsb gsb1 = 1 gsb2 = 1 gsb3 = 1 gsb4 = 1 gsb5 = 1 gsb6 = 1 gsb7 = 1 #Gih gih1 = 1 gih2 = 1 gih3 = 1 gih4 = 1 gih5 = 1 gih6 = 1 #gnm g12 = 1 g13 = 1 g14 = 1 g15 = 1 g16 = 1 g17 = 1 g23 = 1 g24 = 1 g25 = 1 g26 = 1 g27 = 1 g34 = 1 g35 = 1 g36 = 1 g37 = 1 g45 = 1 g46 = 1 g47 = 1 g56 = 1 g57 = 1 g67 = 1 #ch ch1 = 1 ch2 = 1 ch3 = 1 ch4 = 1 ch5 = 1 ch6 = 1 #cp cp1 = 1 cp2 = 1 cp3 = 1 cp4 = 1 cp5 = 1 cp6 = 1 cp7 = 1 #cb cb = 1 #dt_damp dt_damp = 1000 A_con= np.array([ [-1/dt_damp, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,], [0, (-gpb1 - gpb2 - gpb3 - gpb4 - gpb5 - gpb6 - gpb7 - gsb2 + gsb2**2/(gps2 + gsb2) - gsb4 + gsb4**2/(gps4 + gsb4) - gsb7 + gsb7**2/(gps7 + gsb7))/cb, gpb1/cb, (gpb2 + (gps2*gsb2)/(gps2 + gsb2))/cb, gpb3/cb, (gpb4 + (gps4*gsb4)/(gps4 + gsb4))/cb, gpb5/cb, gpb6/cb, (gpb7 + (gps7*gsb7)/(gps7 + gsb7))/cb,0,0,0,0,0,0], [(((gah1*ghp1)/(gah1 + ghp1 + gih1) + gpa1))/cp1, (gpb1)/cp1, (-g12 - g14 - g15 - g16 - g17 - ghp1 + ghp1**2/(gah1 + ghp1 + gih1) - gpa1 - gpb1)/cp1, g12/cp1, 0, g14/cp1, g15/cp1, g16/cp1, g17/cp1, (ghp1*gih1)/(cp1*(gah1 + ghp1 + gih1)), 0, 0, 0, 0, 0], [((gah2*ghp2)/(gah2 + ghp2 + gih2) + gpa2)/cp2, (gpb2 + (gps2*gsb2)/(gps2 + gsb2))/cp2, g12/cp2, (-g12 - g23 - g25 - g26 - ghp2 + ghp2**2/(gah2 + ghp2 + gih2) - gpa2 - gpb2 - gps2 + gps2**2/(gps2 + gsb2))/cp2, g23/cp2, 0, g25/cp2, g26/cp2, 0, 0, (ghp2*gih2)/(cp2*(gah2 + ghp2 + gih2)), 0, 0, 0, 0], [((gah3*ghp3)/(gah3 + ghp3 + gih3) + gpa3)/cp3, gpb3/cp3, 0, g23/cp3, (-g23 - g34 - g35 - g36 - g37 - ghp3 + ghp3**2/(gah3 + ghp3 + gih3) - gpa3 - gpb3)/cp3, g34/cp3, g35/cp3, g36/cp3, g37/cp3, 0, 0, (ghp3*gih3)/(cp3*(gah3 + ghp3 + gih3)), 0, 0, 0], [((gah4*ghp4)/(gah4 + ghp4 + gih4) + gpa4)/cp4, (gpb4 + (gps4*gsb4)/(gps4 + gsb4))/cp4, g14/cp4, 0, g34/cp4, (-g14 - g34 - g45 - g46 - g47 - ghp4 + ghp4**2/(gah4 + ghp4 + gih4) - gpa4 - gpb4 - gps4 + gps4**2/(gps4 + gsb4))/cp4, g45/cp4, g46/cp4, g47/cp4, 0, 0, 0, (ghp4*gih4)/(cp4*(gah4 + ghp4 + gih4)),0,0], [((gah5*ghp5)/(gah5 + ghp5 + gih5) + gpa5)/cp5, gpb5/cp5, g15/cp5, g25/cp5, g35/cp5, g45/cp5, (-g15 - g25 - g35 - g45 - g57 - ghp5 + ghp5**2/(gah5 + ghp5 + gih5) - gpa5 - gpb5)/cp5, 0, g57/cp5, 0, 0, 0, 0, (ghp5*gih5)/(cp5*(gah5 + ghp5 + gih5)), 0], [((gah6*ghp6)/(gah6 + ghp6 + gih6) + gpa6)/cp6, gpb6/cp6, g16/cp6, g26/cp6, g36/cp6, g46/cp6, 0, (-g16 - g26 - g36 - g46 - g67 - ghp6 + ghp6**2/(gah6 + ghp6 + gih6) - gpa6 - gpb6)/cp6, g67/cp6, 0, 0, 0, 0, 0, (ghp6*gih6)/(cp6*(gah6 + ghp6 + gih6))], [0, (gpb7 + (gps7*gsb7)/(gps7 + gsb7))/cp7, g17/cp7, 0, g37/cp7, g47/cp7, g57/cp7, g67/cp7, (-g17 - g37 - g47 - g57 - g67 - gpb7 - gps7 + gps7**2/(gps7 + gsb7))/cp7, 0, 0, 0, 0, 0, 0], [(gah1*gih1)/(ch1*(gah1 + ghp1 + gih1)), 0, (ghp1*gih1)/(ch1*(gah1 + ghp1 + gih1)), 0, 0, 0, 0, 0, 0, (-gih1 + gih1**2/(gah1 + ghp1 + gih1))/ch1, 0, 0, 0, 0, 0], [(gah2*gih2)/(ch2*(gah2 + ghp2 + gih2)), 0, 0, (ghp2*gih2)/(ch2*(gah2 + ghp2 + gih2)), 0, 0, 0, 0, 0, 0, (-gih2 + gih2**2/(gah2 + ghp2 + gih2))/ch2, 0, 0, 0, 0], [(gah3*gih3)/(ch3*(gah3 + ghp3 + gih3)), 0, 0, 0, (ghp3*gih3)/(ch3*(gah3 + ghp3 + gih3)), 0, 0, 0, 0, 0, 0, (-gih3 + gih3**2/(gah3 + ghp3 + gih3))/ch3, 0, 0, 0], [(gah4*gih4)/(ch4*(gah4 + ghp4 + gih4)), 0, 0, 0, 0, (ghp4*gih4)/(ch4*(gah4 + ghp4 + gih4)), 0, 0, 0, 0, 0, 0, (-gih4 + gih4**2/(gah4 + ghp4 + gih4))/ch4, 0, 0], [(gah5*gih5)/(ch5*(gah5 + ghp5 + gih5)), 0, 0, 0, 0, 0, (ghp5*gih5)/(ch5*(gah5 + ghp5 + gih5)), 0, 0, 0, 0, 0, 0, (-gih5 + gih5**2/(gah5 + ghp5 + gih5))/ch5, 0], [(gah6*gih6)/(ch6*(gah6 + ghp6 + gih6)), 0, 0, 0, 0, 0, 0, (ghp6*gih6)/(ch6*(gah6 + ghp6 + gih6)), 0, 0, 0, 0, 0, 0, (-gih6 + gih6**2/(gah6 + ghp6 + gih6))/ch6] ]) B_con = np.array([ [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [0,0,0,0,0,0], [1/ch1,0,0,0,0,0], [0, 1/ch2,0,0,0,0], [0,0, 1/ch3,0,0,0], [0,0,0, 1/ch4,0,0], [0,0,0,0, 1/ch5,0], [0,0,0,0,0, 1/ch6] ]) C_con = np.array([ [0, gsb2/(gps2 + gsb2), 0, gps2/(gps2 + gsb2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, gsb4/(gps4 + gsb4), 0, 0, 0, gps4/(gps4 + gsb4), 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, gsb7/(gps7 + gsb7), 0, 0, 0, 0, 0, 0, gps7/(gps7 + gsb7), 0, 0, 0, 0, 0, 0] ]) #lqg math def main(): for step in range(1, timesteps): xdot = np.dot(A_sim, xvalues[:, (step -1):step]) + np.dot(B_sim,u) xvalues[:,step:(step + 1)] = xvalues[:, (step - 1):step] + xdot*dt yvalues[:,step:(step + 1)] = np.dot(C_sim, xvalues[:, (step -1):step]) #set ambient fluctuation xvalues[0,step] = ambient[step] plt.plot(times, yvalues[1,:]) plt.show()
gpl-3.0
mrzl/ECO
src/python/nlp/original_2d_export.py
2
3090
import argparse import pprint import glob import sys import gensim import util import numpy import json import os from sklearn.manifold import TSNE def process_arguments(args): parser = argparse.ArgumentParser(description='configure Word2Vec model building') parser.add_argument('--model_path', action='store', help='the path to the model') parser.add_argument('--txt_path', action='store', help='path containing text files which are all loaded') parser.add_argument('--output_file', action='store', help='the text file to store all vectors in') params = vars(parser.parse_args(args)) return params class LineVectorCombination(object): vector = 0 sentence = 0 if __name__ == '__main__': params = process_arguments(sys.argv[1:]) input_path = params['model_path'] util.enable_verbose_training(sys.argv[0]) try: model = gensim.models.Word2Vec.load_word2vec_format(input_path, binary=True) # this raises an exception if the model type is different.. except Exception: # just use the other mothod of loading.. model = gensim.models.Word2Vec.load(input_path) txt_path = params['txt_path'] data_300d = [] originals = [] original_vectors = [] original_sentences = [] text_files = glob.glob(txt_path + '/*.txt') for file in text_files: line = 'loading file ' + str(text_files.index(file)) + '/' + str(len(text_files)) print(line) index = 0 for line in open(file, 'r'): vector_words = [] word_count = 0 for word in line.split(): try: vector_words.append(model[word]) word_count += 1 except: pass # skip vocab unknown word if word_count > 5: vector = gensim.matutils.unitvec(numpy.array(vector_words).mean(axis=0)) combined = LineVectorCombination() combined.sentence = line combined.vector = vector originals.append(combined) original_vectors.append(vector) original_sentences.append(line) vlist = vector.tolist() intlist = [] for number in vlist: intnumber = int(number*10000) intlist.append(intnumber) data_300d.append({"sentence": line, "point": intlist}) index += 1 output_file = params['output_file'] # X = numpy.array(original_vectors) # tsne = TSNE(n_components=2, learning_rate=200, perplexity=20, verbose=2).fit_transform(X) # # data_2d = [] # for i, f in enumerate(original_sentences): # point = [(tsne[i, k] - numpy.min(tsne[:, k]))/(numpy.max(tsne[:, k]) - numpy.min(tsne[:, k])) for k in range(2)] # data_2d.append({"sentence": os.path.abspath(original_sentences[i]), "point": point}) with open(output_file, 'w') as outfile: #json.dump(data_2d, outfile) json.dump(data_300d, outfile)
apache-2.0
ctn-waterloo/nengo_theano
nengo_theano/templates/basalganglia.py
1
4482
def make(net, name='Basal Ganglia', dimensions=1, neurons=100, tau_ampa=0.002, tau_gaba=0.008, output_weight=1, radius=1.5): """This function creates a subnetwork with a model of the basal ganglia based off the paper (Gurney, Prescott, & Redgrave, 2001) NOTE: To match the basal ganglia template from Java Nengo, set pstc=.01 on connection to input ensemble. :param NetWork net: :param string name: :param int dimensions: :param int neurons: :param float tau_ampa: :param float tau_gaba: :param float output_weight: :param float radius: :returns SubNetwork: """ netbg = net.make_subnetwork(name) netbg.make('input', neurons=1, dimensions=dimensions, mode='direct') netbg.make('output', neurons=1, dimensions=dimensions, mode='direct') # connection weights from (Gurney, Prescott, & Redgrave, 2001) mm=1; mp=1; me=1; mg=1 ws=1; wt=1; wm=1; wg=1; wp=0.9; we=0.3 e=0.2; ep=-0.25; ee=-0.2; eg=-0.2 le=0.2; lg=0.2 # create the necessary neural ensembles #TODO: implement decoder_sign and set=1 for this population netbg.make('StrD1', neurons=neurons, array_size=dimensions, dimensions=1, intercept=(e,1), encoders=[[1]], radius=radius) #TODO: implement decoder_sign and set=1 for this population netbg.make('StrD2', neurons=neurons, array_size=dimensions, dimensions=1, intercept=(e,1), encoders=[[1]], radius=radius) #TODO: implement decoder_sign and set=1 for this population netbg.make('STN', neurons=neurons, array_size=dimensions, dimensions=1, intercept=(ep,1), encoders=[[1]], radius=radius) #TODO: implement decoder_sign and set=1 for this population netbg.make('GPi', neurons=neurons, array_size=dimensions, dimensions=1, intercept=(eg,1), encoders=[[1]], radius=radius) #TODO: implement decoder_sign and set=1 for this population netbg.make('GPe', neurons=neurons, array_size=dimensions, dimensions=1, intercept=(ee,1), encoders=[[1]], radius=radius) # connect the input to the striatum and STN (excitatory) netbg.connect('input', 'StrD1', weight=ws*(1+lg), pstc=tau_ampa) netbg.connect('input', 'StrD2', weight=ws*(1-le), pstc=tau_ampa) netbg.connect('input', 'STN', weight=wt, pstc=tau_ampa) # connect the striatum to the GPi and GPe (inhibitory) def func_str(x): if x[0] < e: return 0 return mm * (x[0] - e) netbg.connect('StrD1', 'GPi', func=func_str, weight=-wm, pstc=tau_gaba) netbg.connect('StrD2', 'GPe', func=func_str, weight=-wm, pstc=tau_gaba) # connect the STN to GPi and GPe (broad and excitatory) def func_stn(x): if x[0] < ep: return 0 return mp * (x[0] - ep) tr = [[wp] * dimensions for i in range(dimensions)] netbg.connect('STN', 'GPi', func=func_stn, transform=tr, pstc=tau_ampa) netbg.connect('STN', 'GPe', func=func_stn, transform=tr, pstc=tau_ampa) # connect the GPe to GPi and STN (inhibitory) def func_gpe(x): if x[0] < ee: return 0 return me * (x[0] - ee) netbg.connect('GPe', 'GPi', func=func_gpe, weight=-we, pstc=tau_gaba) netbg.connect('GPe', 'STN', func=func_gpe, weight=-wg, pstc=tau_gaba) #connect GPi to output (inhibitory) def func_gpi(x): if x[0]<eg: return 0 return mg*(x[0]-eg) netbg.connect('GPi', 'output', func=func_gpi, pstc=tau_gaba, weight=output_weight) def test_basalganglia(): import numpy as np import matplotlib.pyplot as plt import math import nengo_theano as nef from .. import templates net = nef.Network('BG Test') def func(x): return [math.sin(x), .5,.2] net.make_input('in', value=func) templates.basalganglia.make(net=net, name='BG', neurons=300, dimensions=3) net.connect('in', 'BG.input', pstc=.01) timesteps = 1000 dt_step = 0.01 t = np.linspace(dt_step, timesteps*dt_step, timesteps) pstc = 0.01 Ip = net.make_probe('in', dt_sample=dt_step, pstc=pstc) BGp = net.make_probe('BG.output', dt_sample=dt_step, pstc=pstc) print "starting simulation" net.run(timesteps*dt_step) # plot the results plt.ioff(); plt.close(); plt.subplot(2,1,1) plt.plot(t, Ip.get_data(), 'x'); plt.title('Input') plt.subplot(2,1,2) plt.plot(BGp.get_data()); plt.title('BG.output') plt.tight_layout() plt.show()
mit
PytLab/catplot
catplot/grid_components/grid_canvas.py
1
14808
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module for grid plotting canvas. """ from collections import namedtuple import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from catplot.canvas import Canvas from catplot.grid_components import extract_plane from catplot.grid_components.nodes import Node2D, Node3D from catplot.grid_components.edges import Edge2D, Arrow2D, Edge3D from catplot.grid_components.supercell import SuperCell2D, SuperCell3D from catplot.grid_components.planes import Plane3D class Grid2DCanvas(Canvas): """ Canvas for 2D grid plotting. """ def __init__(self, **kwargs): super(Grid2DCanvas, self).__init__(**kwargs) self._set_axes() # Equalize the scale of x and y axis. self.axes.set_aspect("equal") # Attributes for 2D grid canvas. self.nodes = [] self.edges = [] self.arrows = [] self.supercells = [] def add_supercell(self, supercell): """ Add a supercell to 2D grid canvas. """ if not isinstance(supercell, SuperCell2D): raise ValueError("supercell must be a SuperCell2D object") self.supercells.append(supercell) self.nodes.extend(supercell.nodes) self.edges.extend(supercell.edges) self.arrows.extend(supercell.arrows) def add_supercells(self, supercells): """ Add multiple supercells to 2D grid canvas. """ for sc in supercells: self.add_supercell(sc) def add_node(self, node): """ Add a node to grid canvas. """ # Check node. if not isinstance(node, Node2D): raise ValueError("node must be a Node2D object") self.nodes.append(node) def add_nodes(self, nodes): """ Add multiple nodes to canvas. """ for node in nodes: self.add_node(node) def add_edge(self, edge): """ Add a edge to grid canvas. """ if not isinstance(edge, Edge2D): raise ValueError("edge must be an Edge2D object") if isinstance(edge, Arrow2D): self.arrows.append(edge) else: self.edges.append(edge) def add_edges(self, edges): """ Add multiple edges to canvas. """ for edge in edges: self.add_edge(edge) @property def node_coordinates(self): """ Coordinates for all nodes. """ return np.array([node.coordinate.tolist() for node in self.nodes]) @property def node_edgecolors(self): """ Color codes for node edges. """ return [node.edgecolor for node in self.nodes] @property def node_colors(self): """ Colors for all nodes. """ return [node.color for node in self.nodes] @property def edge_coordinates(self): """ Coordiantes for all edges. """ if not self.edges: return [] else: x = np.concatenate([edge.x for edge in self.edges]) y = np.concatenate([edge.y for edge in self.edges]) return np.array(list(zip(x, y))) @property def arrow_colors(self): """ Colors for all arrows. """ return [arrow.color for arrow in self.arrows] @property def arrow_coordinates(self): """ Coordinates for all arrows. """ if not self.arrows: return [] else: x = np.concatenate([arrow.x for arrow in self.arrows]) y = np.concatenate([arrow.y for arrow in self.arrows]) return np.array(list(zip(x, y))) def _get_data_limits(self): """ Private helper function to get the limits of data. """ node_x = self.node_coordinates[:, 0] if self.nodes else [] edge_x = self.edge_coordinates[:, 0] if self.edges else [] arrow_x = self.arrow_coordinates[:, 0] if self.arrows else [] x = np.concatenate([node_x, edge_x, arrow_x]) max_x, min_x = np.max(x), np.min(x) node_y = self.node_coordinates[:, 1] if self.nodes else [] edge_y = self.edge_coordinates[:, 1] if self.edges else [] arrow_y = self.arrow_coordinates[:, 1] if self.arrows else [] y = np.concatenate([node_y, edge_y, arrow_y]) max_y, min_y = np.max(y), np.min(y) return self._limits(max_x, min_x, max_y, min_y) def draw(self): """ Draw all nodes, edges and arrows on canvas. """ if not any([self.nodes, self.edges, self.arrows]): self._logger.warning("Attempted to draw in an empty canvas") return # Add edges to canvas. for edge in self.edges: self.axes.add_line(edge.line2d()) for arrow in self.arrows: self.axes.arrow(*arrow.start, dx=arrow.dx, dy=arrow.dy, length_includes_head=True, head_width=arrow.head_width, head_length=arrow.head_length, shape=arrow.shape, alpha=arrow.alpha, linewidth=arrow.width, color=arrow.color, linestyle=arrow.style, zorder=arrow.zorder) # Add nodes to canvas one by one. for node in self.nodes: self.axes.scatter(*node.coordinate, color=node.color, edgecolors=node.edgecolor, marker=node.style, alpha=node.alpha, s=node.size, linewidth=node.line_width, linestyle=node.line_style, zorder=node.zorder) # Set axes limits. limits = self._get_data_limits() self.axes.set_xlim(limits.min_x, limits.max_x) self.axes.set_ylim(limits.min_y, limits.max_y) def redraw(self): """ Clear the canvas and draw all components again. """ self.clear() self.draw() def clear(self): """ Clear components drawned in canvas. """ self.axes.clear() def deep_clear(self): """ Clear all components in canvas. """ self.clear() self.nodes = [] self.edges = [] self.arrows = [] self.supercells = [] @extract_plane def to3d(self, canvas3d, **kwargs): """ Convert the 2D canvas to a 3D canvas. Parameters: ----------- plane: str, which plane components in 2D canvas will be mapped to. The value could be "xy", "xz" or "yz". Others in kwargs is the same with `Grid2DCanvas()`. """ plane = kwargs.pop("plane") # Map all components. nodes = [n.to3d(plane=plane) for n in self.nodes] edges = [e.to3d(plane=plane) for e in self.edges] supercells = [s.to3d(plane=plane) for s in self.supercells] if not isinstance(canvas3d, Grid3DCanvas): raise ValueError("canvas3d must be a Grid3DCanvas object") canvas3d.add_nodes(nodes) canvas3d.add_edges(edges) # NOTE: don't use add_supercells here !!! canvas3d.supercells.extend(supercells) return canvas3d class Grid3DCanvas(Grid2DCanvas): """ Canvas for 3D grid plotting. """ def __init__(self, **kwargs): # NOTE: here we call the method in Canvas NOT Grid2DCanvas. super(Grid2DCanvas, self).__init__(**kwargs) self.z_ticks = kwargs.pop("z_ticks", None) # Figure has been created in base class constructor. # Add an axes to figure. self.axes = self.figure.add_subplot(111, projection="3d", facecolor=self.facecolor) # Change the spine color of axes. if self.edgecolor: for child in self.axes.get_children(): if isinstance(child, Spine): child.set_color(self.edgecolor) # Set axes ticks. if self.x_ticks is not None: self.axes.set_xticks(self.x_ticks) if self.y_ticks is not None: self.axes.set_yticks(self.y_ticks) if self.z_ticks is not None: self.axes.set_zticks(self.z_ticks) self.axes.set_aspect("equal") # Attributes for 3D canvas. self.nodes = [] self.edges = [] self.supercells = [] self.arrows = [] # Just a placeholder here. self.planes = [] def _limits(self, max_x, min_x, max_y, min_y, max_z, min_z): """ Override parent's function to get 3D data limits. Parameters: ----------- max_x: float, the maximum of x values. min_x: float, the minimum of x values. max_y: float, the maximum of y values. min_y: float, the minimum of y values. max_z: float, the maximum of z values. min_z: float, the minimum of z values. """ scale_x = max_x - min_x scale_y = max_y - min_y scale_z = max_z - min_z # Define a namedtuple to be returned. Limits = namedtuple("Limits", ["max_x", "min_x", "max_y", "min_y", "max_z", "min_z"]) limits = [max_x + self.margin_ratio*scale_x, min_x - self.margin_ratio*scale_x, max_y + self.margin_ratio*scale_y, min_y - self.margin_ratio*scale_y, max_z + self.margin_ratio*scale_z, min_z - self.margin_ratio*scale_z] return Limits._make(limits) def _get_data_limits(self): """ Get limits for all data in canvas. """ node_x = self.node_coordinates[:, 0] if self.nodes else [] edge_x = self.edge_coordinates[:, 0] if self.edges else [] plane_x = (np.concatenate([np.concatenate(plane.x) for plane in self.planes]) if self.planes else []) x = np.concatenate([node_x, edge_x, plane_x]) max_x, min_x = np.max(x), np.min(x) node_y = self.node_coordinates[:, 1] if self.nodes else [] edge_y = self.edge_coordinates[:, 1] if self.edges else [] plane_y = (np.concatenate([np.concatenate(plane.y) for plane in self.planes]) if self.planes else []) y = np.concatenate([node_y, edge_y, plane_y]) max_y, min_y = np.max(y), np.min(y) node_z = self.node_coordinates[:, 2] if self.nodes else [] edge_z = self.edge_coordinates[:, 2] if self.edges else [] plane_z = (np.concatenate([np.concatenate(plane.z) for plane in self.planes]) if self.planes else []) z = np.concatenate([node_z, edge_z, plane_z]) max_z, min_z = np.max(z), np.min(z) return self._limits(max_x, min_x, max_y, min_y, max_z, min_z) def add_node(self, node): """ Add a 3D node to 3D grid canvas. """ if not isinstance(node, Node3D): raise ValueError("node must be a Node3D object") self.nodes.append(node) def add_edge(self, edge): """ Add a 3D edge to canvas. """ if not isinstance(edge, Edge3D): raise ValueError("edge must be an Edge3D object") self.edges.append(edge) def add_supercell(self, supercell): """ Add a supercell to 3D grid canvas. """ if not isinstance(supercell, SuperCell3D): raise ValueError("supercell must be a SuperCell3D object") self.supercells.append(supercell) self.nodes.extend(supercell.nodes) self.edges.extend(supercell.edges) def add_plane(self, plane): """ Add a 3D plane to canvas. """ if not isinstance(plane, Plane3D): raise ValueError("plane must be an Plane3D object") self.planes.append(plane) def add_planes(self, planes): """ Add multiple planes to canvas. """ for plane in planes: self.add_plane(plane) @property def edge_coordinates(self): """ Coordinates for all edges in 3D grid canvas. """ if not self.edges: return [] else: x = np.concatenate([edge.x for edge in self.edges]) y = np.concatenate([edge.y for edge in self.edges]) z = np.concatenate([edge.z for edge in self.edges]) return np.array(list(zip(x, y, z))) def draw(self): """ Draw all nodes and edges on 3D canvas. """ if not any([self.nodes, self.edges, self.planes]): self._logger.warning("Attempted to draw in an empty canvas") return # Add nodes to canvas one by one. for node in self.nodes: self.axes.scatter(*node.coordinate, zdir=node.zdir, s=node.size, c=node.color, depthshade=node.depthshade, edgecolor=node.edgecolor, marker=node.style, alpha=node.alpha, linewidth=node.line_width, zorder=node.zorder) # Add edges to canvas. for edge in self.edges: self.axes.plot(edge.x, edge.y, edge.z, zdir=edge.zdir, linewidth=edge.width, color=edge.color, linestyle=edge.style, alpha=edge.alpha, zorder=edge.zorder) # Add plane to canvas. for plane in self.planes: self.axes.plot_surface(plane.x, plane.y, plane.z, facecolor=plane.color, edgecolor=plane.edgecolor, alpha=plane.alpha, shade=plane.shade) # Set axes limits. limits = self._get_data_limits() self.axes.set_xlim(limits.min_x, limits.max_x) self.axes.set_ylim(limits.min_y, limits.max_y) self.axes.set_zlim(limits.min_z, limits.max_z) def clear(self): """ Clear 3D axes. """ self.axes.clear() def deep_clear(self): """ Clear all components in canvas. """ self.clear() self.nodes = [] self.edges = [] self.arrows = [] self.supercells = [] self.planes = [] def redraw(self): """ Clear the canvas and draw all components agian. """ self.clear() self.draw()
mit
stonebig/bokeh
bokeh/core/tests/test_json_encoder.py
2
10746
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2019, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports from collections import deque import datetime as dt import decimal # External imports import dateutil.relativedelta as rd import numpy as np from six import string_types # Bokeh imports from bokeh.colors import RGB from bokeh.core.has_props import HasProps from bokeh.core.properties import Int, String from bokeh.models import Range1d # Module under test #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class HP(HasProps): foo = Int(default=10) bar = String() class TestBokehJSONEncoder(object): def setup_method(self, test_method): from bokeh.core.json_encoder import BokehJSONEncoder self.encoder = BokehJSONEncoder() def test_fail(self): with pytest.raises(TypeError): self.encoder.default({'testing': 1}) def test_panda_series(self, pd): s = pd.Series([1, 3, 5, 6, 8]) assert self.encoder.default(s) == [1, 3, 5, 6, 8] def test_numpyarray(self): a = np.arange(5) assert self.encoder.default(a) == [0, 1, 2, 3, 4] def test_numpyint(self): npint = np.asscalar(np.int64(1)) assert self.encoder.default(npint) == 1 assert isinstance(self.encoder.default(npint), int) def test_numpyfloat(self): npfloat = np.float64(1.33) assert self.encoder.default(npfloat) == 1.33 assert isinstance(self.encoder.default(npfloat), float) def test_numpybool_(self): nptrue = np.bool_(True) assert self.encoder.default(nptrue) == True assert isinstance(self.encoder.default(nptrue), bool) def test_numpydatetime64(self): npdt64 = np.datetime64('2017-01-01') assert self.encoder.default(npdt64) == 1483228800000.0 assert isinstance(self.encoder.default(npdt64), float) def test_time(self): dttime = dt.time(12, 32, 15) assert self.encoder.default(dttime) == 45135000.0 assert isinstance(self.encoder.default(dttime), float) def test_relativedelta(self): rdelt = rd.relativedelta() assert isinstance(self.encoder.default(rdelt), dict) def test_decimal(self): dec = decimal.Decimal(20.3) assert self.encoder.default(dec) == 20.3 assert isinstance(self.encoder.default(dec), float) def test_model(self): m = Range1d(start=10, end=20) assert self.encoder.default(m) == m.ref assert isinstance(self.encoder.default(m), dict) def test_hasprops(self): hp = HP() assert self.encoder.default(hp) == {} assert isinstance(self.encoder.default(hp), dict) hp.foo = 15 assert self.encoder.default(hp) == {'foo': 15} assert isinstance(self.encoder.default(hp), dict) hp.bar = "test" assert self.encoder.default(hp) == {'foo': 15, 'bar': 'test'} assert isinstance(self.encoder.default(hp), dict) def test_color(self): c = RGB(16, 32, 64) assert self.encoder.default(c) == "rgb(16, 32, 64)" assert isinstance(self.encoder.default(c), string_types) c = RGB(16, 32, 64, 0.1) assert self.encoder.default(c) == "rgba(16, 32, 64, 0.1)" assert isinstance(self.encoder.default(c), string_types) def test_slice(self): c = slice(2) assert self.encoder.default(c) == dict(start=None, stop=2, step=None) assert isinstance(self.encoder.default(c), dict) c = slice(0,2) assert self.encoder.default(c) == dict(start=0, stop=2, step=None) assert isinstance(self.encoder.default(c), dict) c = slice(0, 10, 2) assert self.encoder.default(c) == dict(start=0, stop=10, step=2) assert isinstance(self.encoder.default(c), dict) c = slice(0, None, 2) assert self.encoder.default(c) == dict(start=0, stop=None, step=2) assert isinstance(self.encoder.default(c), dict) c = slice(None, None, None) assert self.encoder.default(c) == dict(start=None, stop=None, step=None) assert isinstance(self.encoder.default(c), dict) def test_pd_timestamp(self, pd): ts = pd.Timestamp('April 28, 1948') assert self.encoder.default(ts) == -684115200000 class TestSerializeJson(object): def setup_method(self, test_method): from bokeh.core.json_encoder import serialize_json from json import loads self.serialize = serialize_json self.deserialize = loads def test_with_basic(self): assert self.serialize({'test': [1, 2, 3]}) == '{"test":[1,2,3]}' def test_pretty(self): assert self.serialize({'test': [1, 2, 3]}, pretty=True) == '{\n "test": [\n 1,\n 2,\n 3\n ]\n}' def test_with_np_array(self): a = np.arange(5) assert self.serialize(a) == '[0,1,2,3,4]' def test_with_pd_series(self, pd): s = pd.Series([0, 1, 2, 3, 4]) assert self.serialize(s) == '[0,1,2,3,4]' def test_nans_and_infs(self): arr = np.array([np.nan, np.inf, -np.inf, 0]) serialized = self.serialize(arr) deserialized = self.deserialize(serialized) assert deserialized[0] == 'NaN' assert deserialized[1] == 'Infinity' assert deserialized[2] == '-Infinity' assert deserialized[3] == 0 def test_nans_and_infs_pandas(self, pd): arr = pd.Series(np.array([np.nan, np.inf, -np.inf, 0])) serialized = self.serialize(arr) deserialized = self.deserialize(serialized) assert deserialized[0] == 'NaN' assert deserialized[1] == 'Infinity' assert deserialized[2] == '-Infinity' assert deserialized[3] == 0 def test_pandas_datetime_types(self, pd): """ should convert to millis """ idx = pd.date_range('2001-1-1', '2001-1-5') df = pd.DataFrame({'vals' :idx}, index=idx) serialized = self.serialize({'vals' : df.vals, 'idx' : df.index}) deserialized = self.deserialize(serialized) baseline = {u'vals': [978307200000, 978393600000, 978480000000, 978566400000, 978652800000], u'idx': [978307200000, 978393600000, 978480000000, 978566400000, 978652800000] } assert deserialized == baseline def test_builtin_datetime_types(self): """ should convert to millis as-is """ DT_EPOCH = dt.datetime.utcfromtimestamp(0) a = dt.date(2016, 4, 28) b = dt.datetime(2016, 4, 28, 2, 20, 50) serialized = self.serialize({'a' : [a], 'b' : [b]}) deserialized = self.deserialize(serialized) baseline = {u'a': [(dt.datetime(*a.timetuple()[:6]) - DT_EPOCH).total_seconds() * 1000], u'b': [(b - DT_EPOCH).total_seconds() * 1000. + b.microsecond / 1000.], } assert deserialized == baseline # test pre-computed values too assert deserialized == { u'a': [1461801600000.0], u'b': [1461810050000.0] } def test_builtin_timedelta_types(self): """ should convert time delta to a dictionary """ delta = dt.timedelta(days=42, seconds=1138, microseconds=1337) serialized = self.serialize(delta) deserialized = self.deserialize(serialized) assert deserialized == delta.total_seconds() * 1000 def test_numpy_timedelta_types(self): delta = np.timedelta64(3000, 'ms') serialized = self.serialize(delta) deserialized = self.deserialize(serialized) assert deserialized == 3000 delta = np.timedelta64(3000, 's') serialized = self.serialize(delta) deserialized = self.deserialize(serialized) assert deserialized == 3000000 def test_pandas_timedelta_types(self, pd): delta = pd.Timedelta("3000ms") serialized = self.serialize(delta) deserialized = self.deserialize(serialized) assert deserialized == 3000 def test_deque(self): """Test that a deque is deserialized as a list.""" assert self.serialize(deque([0, 1, 2])) == '[0,1,2]' def test_slice(self): """Test that a slice is deserialized as a list.""" assert self.serialize(slice(2)) == '{"start":null,"step":null,"stop":2}' assert self.serialize(slice(0, 2)) == '{"start":0,"step":null,"stop":2}' assert self.serialize(slice(0, 10, 2)) == '{"start":0,"step":2,"stop":10}' assert self.serialize(slice(0, None, 2)) == '{"start":0,"step":2,"stop":null}' assert self.serialize(slice(None, None, None)) == '{"start":null,"step":null,"stop":null}' def test_bad_kwargs(self): with pytest.raises(ValueError): self.serialize([1], allow_nan=True) with pytest.raises(ValueError): self.serialize([1], separators=("a", "b")) with pytest.raises(ValueError): self.serialize([1], sort_keys=False) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
bsd-3-clause
rohit21122012/DCASE2013
runs/2016/dnn2016med_traps/traps26/task1_scene_classification.py
40
38423
#!/usr/bin/env python # -*- coding: utf-8 -*- # # DCASE 2016::Acoustic Scene Classification / Baseline System import argparse import textwrap import timeit import skflow from sklearn import mixture from sklearn import preprocessing as pp from sklearn.externals import joblib from sklearn.metrics import confusion_matrix from src.dataset import * from src.evaluation import * from src.features import * __version_info__ = ('1', '0', '0') __version__ = '.'.join(__version_info__) final_result = {} train_start = 0.0 train_end = 0.0 test_start = 0.0 test_end = 0.0 def main(argv): numpy.random.seed(123456) # let's make randomization predictable tot_start = timeit.default_timer() parser = argparse.ArgumentParser( prefix_chars='-+', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ DCASE 2016 Task 1: Acoustic Scene Classification Baseline system --------------------------------------------- Tampere University of Technology / Audio Research Group Author: Toni Heittola ( [email protected] ) System description This is an baseline implementation for D-CASE 2016 challenge acoustic scene classification task. Features: MFCC (static+delta+acceleration) Classifier: GMM ''')) # Setup argument handling parser.add_argument("-development", help="Use the system in the development mode", action='store_true', default=False, dest='development') parser.add_argument("-challenge", help="Use the system in the challenge mode", action='store_true', default=False, dest='challenge') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + __version__) args = parser.parse_args() # Load parameters from config file parameter_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), os.path.splitext(os.path.basename(__file__))[0] + '.yaml') params = load_parameters(parameter_file) params = process_parameters(params) make_folders(params) title("DCASE 2016::Acoustic Scene Classification / Baseline System") # Check if mode is defined if not (args.development or args.challenge): args.development = True args.challenge = False dataset_evaluation_mode = 'folds' if args.development and not args.challenge: print "Running system in development mode" dataset_evaluation_mode = 'folds' elif not args.development and args.challenge: print "Running system in challenge mode" dataset_evaluation_mode = 'full' # Get dataset container class dataset = eval(params['general']['development_dataset'])(data_path=params['path']['data']) # Fetch data over internet and setup the data # ================================================== if params['flow']['initialize']: dataset.fetch() # Extract features for all audio files in the dataset # ================================================== if params['flow']['extract_features']: section_header('Feature extraction') # Collect files in train sets files = [] for fold in dataset.folds(mode=dataset_evaluation_mode): for item_id, item in enumerate(dataset.train(fold)): if item['file'] not in files: files.append(item['file']) for item_id, item in enumerate(dataset.test(fold)): if item['file'] not in files: files.append(item['file']) files = sorted(files) # Go through files and make sure all features are extracted do_feature_extraction(files=files, dataset=dataset, feature_path=params['path']['features'], params=params['features'], overwrite=params['general']['overwrite']) foot() # Prepare feature normalizers # ================================================== if params['flow']['feature_normalizer']: section_header('Feature normalizer') do_feature_normalization(dataset=dataset, feature_normalizer_path=params['path']['feature_normalizers'], feature_path=params['path']['features'], dataset_evaluation_mode=dataset_evaluation_mode, overwrite=params['general']['overwrite']) foot() # System training # ================================================== if params['flow']['train_system']: section_header('System training') train_start = timeit.default_timer() do_system_training(dataset=dataset, model_path=params['path']['models'], feature_normalizer_path=params['path']['feature_normalizers'], feature_path=params['path']['features'], classifier_params=params['classifier']['parameters'], classifier_method=params['classifier']['method'], dataset_evaluation_mode=dataset_evaluation_mode, overwrite=params['general']['overwrite'] ) train_end = timeit.default_timer() foot() # System evaluation in development mode if args.development and not args.challenge: # System testing # ================================================== if params['flow']['test_system']: section_header('System testing') test_start = timeit.default_timer() do_system_testing(dataset=dataset, feature_path=params['path']['features'], result_path=params['path']['results'], model_path=params['path']['models'], feature_params=params['features'], dataset_evaluation_mode=dataset_evaluation_mode, classifier_method=params['classifier']['method'], overwrite=params['general']['overwrite'] ) test_end = timeit.default_timer() foot() # System evaluation # ================================================== if params['flow']['evaluate_system']: section_header('System evaluation') do_system_evaluation(dataset=dataset, dataset_evaluation_mode=dataset_evaluation_mode, result_path=params['path']['results']) foot() # System evaluation with challenge data elif not args.development and args.challenge: # Fetch data over internet and setup the data challenge_dataset = eval(params['general']['challenge_dataset'])() if params['flow']['initialize']: challenge_dataset.fetch() # System testing if params['flow']['test_system']: section_header('System testing with challenge data') do_system_testing(dataset=challenge_dataset, feature_path=params['path']['features'], result_path=params['path']['challenge_results'], model_path=params['path']['models'], feature_params=params['features'], dataset_evaluation_mode=dataset_evaluation_mode, classifier_method=params['classifier']['method'], overwrite=True ) foot() print " " print "Your results for the challenge data are stored at [" + params['path']['challenge_results'] + "]" print " " tot_end = timeit.default_timer() print " " print "Train Time : " + str(train_end - train_start) print " " print " " print "Test Time : " + str(test_end - test_start) print " " print " " print "Total Time : " + str(tot_end - tot_start) print " " final_result['train_time'] = train_end - train_start final_result['test_time'] = test_end - test_start final_result['tot_time'] = tot_end - tot_start joblib.dump(final_result, 'result.pkl') return 0 def process_parameters(params): """Parameter post-processing. Parameters ---------- params : dict parameters in dict Returns ------- params : dict processed parameters """ # Convert feature extraction window and hop sizes seconds to samples params['features']['mfcc']['win_length'] = int(params['features']['win_length_seconds'] * params['features']['fs']) params['features']['mfcc']['hop_length'] = int(params['features']['hop_length_seconds'] * params['features']['fs']) # Copy parameters for current classifier method params['classifier']['parameters'] = params['classifier_parameters'][params['classifier']['method']] # Hash params['features']['hash'] = get_parameter_hash(params['features']) params['classifier']['hash'] = get_parameter_hash(params['classifier']) # Paths params['path']['data'] = os.path.join(os.path.dirname(os.path.realpath(__file__)), params['path']['data']) params['path']['base'] = os.path.join(os.path.dirname(os.path.realpath(__file__)), params['path']['base']) # Features params['path']['features_'] = params['path']['features'] params['path']['features'] = os.path.join(params['path']['base'], params['path']['features'], params['features']['hash']) # Feature normalizers params['path']['feature_normalizers_'] = params['path']['feature_normalizers'] params['path']['feature_normalizers'] = os.path.join(params['path']['base'], params['path']['feature_normalizers'], params['features']['hash']) # Models params['path']['models_'] = params['path']['models'] params['path']['models'] = os.path.join(params['path']['base'], params['path']['models'], params['features']['hash'], params['classifier']['hash']) # Results params['path']['results_'] = params['path']['results'] params['path']['results'] = os.path.join(params['path']['base'], params['path']['results'], params['features']['hash'], params['classifier']['hash']) return params def make_folders(params, parameter_filename='parameters.yaml'): """Create all needed folders, and saves parameters in yaml-file for easier manual browsing of data. Parameters ---------- params : dict parameters in dict parameter_filename : str filename to save parameters used to generate the folder name Returns ------- nothing """ # Check that target path exists, create if not check_path(params['path']['features']) check_path(params['path']['feature_normalizers']) check_path(params['path']['models']) check_path(params['path']['results']) # Save parameters into folders to help manual browsing of files. # Features feature_parameter_filename = os.path.join(params['path']['features'], parameter_filename) if not os.path.isfile(feature_parameter_filename): save_parameters(feature_parameter_filename, params['features']) # Feature normalizers feature_normalizer_parameter_filename = os.path.join(params['path']['feature_normalizers'], parameter_filename) if not os.path.isfile(feature_normalizer_parameter_filename): save_parameters(feature_normalizer_parameter_filename, params['features']) # Models model_features_parameter_filename = os.path.join(params['path']['base'], params['path']['models_'], params['features']['hash'], parameter_filename) if not os.path.isfile(model_features_parameter_filename): save_parameters(model_features_parameter_filename, params['features']) model_models_parameter_filename = os.path.join(params['path']['base'], params['path']['models_'], params['features']['hash'], params['classifier']['hash'], parameter_filename) if not os.path.isfile(model_models_parameter_filename): save_parameters(model_models_parameter_filename, params['classifier']) # Results # Save parameters into folders to help manual browsing of files. result_features_parameter_filename = os.path.join(params['path']['base'], params['path']['results_'], params['features']['hash'], parameter_filename) if not os.path.isfile(result_features_parameter_filename): save_parameters(result_features_parameter_filename, params['features']) result_models_parameter_filename = os.path.join(params['path']['base'], params['path']['results_'], params['features']['hash'], params['classifier']['hash'], parameter_filename) if not os.path.isfile(result_models_parameter_filename): save_parameters(result_models_parameter_filename, params['classifier']) def get_feature_filename(audio_file, path, extension='cpickle'): """Get feature filename Parameters ---------- audio_file : str audio file name from which the features are extracted path : str feature path extension : str file extension (Default value='cpickle') Returns ------- feature_filename : str full feature filename """ audio_filename = os.path.split(audio_file)[1] return os.path.join(path, os.path.splitext(audio_filename)[0] + '.' + extension) def get_feature_normalizer_filename(fold, path, extension='cpickle'): """Get normalizer filename Parameters ---------- fold : int >= 0 evaluation fold number path : str normalizer path extension : str file extension (Default value='cpickle') Returns ------- normalizer_filename : str full normalizer filename """ return os.path.join(path, 'scale_fold' + str(fold) + '.' + extension) def get_model_filename(fold, path, extension='cpickle'): """Get model filename Parameters ---------- fold : int >= 0 evaluation fold number path : str model path extension : str file extension (Default value='cpickle') Returns ------- model_filename : str full model filename """ return os.path.join(path, 'model_fold' + str(fold) + '.' + extension) def get_result_filename(fold, path, extension='txt'): """Get result filename Parameters ---------- fold : int >= 0 evaluation fold number path : str result path extension : str file extension (Default value='cpickle') Returns ------- result_filename : str full result filename """ if fold == 0: return os.path.join(path, 'results.' + extension) else: return os.path.join(path, 'results_fold' + str(fold) + '.' + extension) def do_feature_extraction(files, dataset, feature_path, params, overwrite=False): """Feature extraction Parameters ---------- files : list file list dataset : class dataset class feature_path : str path where the features are saved params : dict parameter dict overwrite : bool overwrite existing feature files (Default value=False) Returns ------- nothing Raises ------- IOError Audio file not found. """ # Check that target path exists, create if not check_path(feature_path) for file_id, audio_filename in enumerate(files): # Get feature filename current_feature_file = get_feature_filename(audio_file=os.path.split(audio_filename)[1], path=feature_path) progress(title_text='Extracting', percentage=(float(file_id) / len(files)), note=os.path.split(audio_filename)[1]) if not os.path.isfile(current_feature_file) or overwrite: # Load audio data if os.path.isfile(dataset.relative_to_absolute_path(audio_filename)): y, fs = load_audio(filename=dataset.relative_to_absolute_path(audio_filename), mono=True, fs=params['fs']) else: raise IOError("Audio file not found [%s]" % audio_filename) # Extract features if params['method'] == 'lfcc': feature_file_txt = get_feature_filename(audio_file=os.path.split(audio_filename)[1], path=feature_path, extension='txt') feature_data = feature_extraction_lfcc(feature_file_txt) elif params['method'] == 'traps': feature_data = feature_extraction_traps(y=y, fs=fs, traps_params=params['traps'], mfcc_params=params['mfcc']) else: # feature_data['feat'].shape is (1501, 60) feature_data = feature_extraction(y=y, fs=fs, include_mfcc0=params['include_mfcc0'], include_delta=params['include_delta'], include_acceleration=params['include_acceleration'], mfcc_params=params['mfcc'], delta_params=params['mfcc_delta'], acceleration_params=params['mfcc_acceleration']) # Save save_data(current_feature_file, feature_data) def do_feature_normalization(dataset, feature_normalizer_path, feature_path, dataset_evaluation_mode='folds', overwrite=False): """Feature normalization Calculated normalization factors for each evaluation fold based on the training material available. Parameters ---------- dataset : class dataset class feature_normalizer_path : str path where the feature normalizers are saved. feature_path : str path where the features are saved. dataset_evaluation_mode : str ['folds', 'full'] evaluation mode, 'full' all material available is considered to belong to one fold. (Default value='folds') overwrite : bool overwrite existing normalizers (Default value=False) Returns ------- nothing Raises ------- IOError Feature file not found. """ # Check that target path exists, create if not check_path(feature_normalizer_path) for fold in dataset.folds(mode=dataset_evaluation_mode): current_normalizer_file = get_feature_normalizer_filename(fold=fold, path=feature_normalizer_path) if not os.path.isfile(current_normalizer_file) or overwrite: # Initialize statistics file_count = len(dataset.train(fold)) normalizer = FeatureNormalizer() for item_id, item in enumerate(dataset.train(fold)): progress(title_text='Collecting data', fold=fold, percentage=(float(item_id) / file_count), note=os.path.split(item['file'])[1]) # Load features if os.path.isfile(get_feature_filename(audio_file=item['file'], path=feature_path)): feature_data = load_data(get_feature_filename(audio_file=item['file'], path=feature_path))['stat'] else: raise IOError("Feature file not found [%s]" % (item['file'])) # Accumulate statistics normalizer.accumulate(feature_data) # Calculate normalization factors normalizer.finalize() # Save save_data(current_normalizer_file, normalizer) def do_system_training(dataset, model_path, feature_normalizer_path, feature_path, classifier_params, dataset_evaluation_mode='folds', classifier_method='gmm', overwrite=False): """System training model container format: { 'normalizer': normalizer class 'models' : { 'office' : mixture.GMM class 'home' : mixture.GMM class ... } } Parameters ---------- dataset : class dataset class model_path : str path where the models are saved. feature_normalizer_path : str path where the feature normalizers are saved. feature_path : str path where the features are saved. classifier_params : dict parameter dict dataset_evaluation_mode : str ['folds', 'full'] evaluation mode, 'full' all material available is considered to belong to one fold. (Default value='folds') classifier_method : str ['gmm'] classifier method, currently only GMM supported (Default value='gmm') overwrite : bool overwrite existing models (Default value=False) Returns ------- nothing Raises ------- ValueError classifier_method is unknown. IOError Feature normalizer not found. Feature file not found. """ if classifier_method != 'gmm' and classifier_method != 'dnn': raise ValueError("Unknown classifier method [" + classifier_method + "]") # Check that target path exists, create if not check_path(model_path) for fold in dataset.folds(mode=dataset_evaluation_mode): current_model_file = get_model_filename(fold=fold, path=model_path) if not os.path.isfile(current_model_file) or overwrite: # Load normalizer feature_normalizer_filename = get_feature_normalizer_filename(fold=fold, path=feature_normalizer_path) if os.path.isfile(feature_normalizer_filename): normalizer = load_data(feature_normalizer_filename) else: raise IOError("Feature normalizer not found [%s]" % feature_normalizer_filename) # Initialize model container model_container = {'normalizer': normalizer, 'models': {}} # Collect training examples file_count = len(dataset.train(fold)) data = {} for item_id, item in enumerate(dataset.train(fold)): progress(title_text='Collecting data', fold=fold, percentage=(float(item_id) / file_count), note=os.path.split(item['file'])[1]) # Load features feature_filename = get_feature_filename(audio_file=item['file'], path=feature_path) if os.path.isfile(feature_filename): feature_data = load_data(feature_filename)['feat'] else: raise IOError("Features not found [%s]" % (item['file'])) # Scale features feature_data = model_container['normalizer'].normalize(feature_data) # Store features per class label if item['scene_label'] not in data: data[item['scene_label']] = feature_data else: data[item['scene_label']] = numpy.vstack((data[item['scene_label']], feature_data)) le = pp.LabelEncoder() tot_data = {} # Train models for each class for label in data: progress(title_text='Train models', fold=fold, note=label) if classifier_method == 'gmm': model_container['models'][label] = mixture.GMM(**classifier_params).fit(data[label]) elif classifier_method == 'dnn': if 'x' not in tot_data: tot_data['x'] = data[label] tot_data['y'] = numpy.repeat(label, len(data[label]), axis=0) else: tot_data['x'] = numpy.vstack((tot_data['x'], data[label])) tot_data['y'] = numpy.hstack((tot_data['y'], numpy.repeat(label, len(data[label]), axis=0))) else: raise ValueError("Unknown classifier method [" + classifier_method + "]") clf = skflow.TensorFlowDNNClassifier(**classifier_params) if classifier_method == 'dnn': tot_data['y'] = le.fit_transform(tot_data['y']) clf.fit(tot_data['x'], tot_data['y']) clf.save('dnn/dnnmodel1') # Save models save_data(current_model_file, model_container) def do_system_testing(dataset, result_path, feature_path, model_path, feature_params, dataset_evaluation_mode='folds', classifier_method='gmm', overwrite=False): """System testing. If extracted features are not found from disk, they are extracted but not saved. Parameters ---------- dataset : class dataset class result_path : str path where the results are saved. feature_path : str path where the features are saved. model_path : str path where the models are saved. feature_params : dict parameter dict dataset_evaluation_mode : str ['folds', 'full'] evaluation mode, 'full' all material available is considered to belong to one fold. (Default value='folds') classifier_method : str ['gmm'] classifier method, currently only GMM supported (Default value='gmm') overwrite : bool overwrite existing models (Default value=False) Returns ------- nothing Raises ------- ValueError classifier_method is unknown. IOError Model file not found. Audio file not found. """ if classifier_method != 'gmm' and classifier_method != 'dnn': raise ValueError("Unknown classifier method [" + classifier_method + "]") # Check that target path exists, create if not check_path(result_path) for fold in dataset.folds(mode=dataset_evaluation_mode): current_result_file = get_result_filename(fold=fold, path=result_path) if not os.path.isfile(current_result_file) or overwrite: results = [] # Load class model container model_filename = get_model_filename(fold=fold, path=model_path) if os.path.isfile(model_filename): model_container = load_data(model_filename) else: raise IOError("Model file not found [%s]" % model_filename) file_count = len(dataset.test(fold)) for file_id, item in enumerate(dataset.test(fold)): progress(title_text='Testing', fold=fold, percentage=(float(file_id) / file_count), note=os.path.split(item['file'])[1]) # Load features feature_filename = get_feature_filename(audio_file=item['file'], path=feature_path) if os.path.isfile(feature_filename): feature_data = load_data(feature_filename)['feat'] else: # Load audio if os.path.isfile(dataset.relative_to_absolute_path(item['file'])): y, fs = load_audio(filename=dataset.relative_to_absolute_path(item['file']), mono=True, fs=feature_params['fs']) else: raise IOError("Audio file not found [%s]" % (item['file'])) if feature_params['method'] == 'lfcc': feature_file_txt = get_feature_filename(audio_file=os.path.split(item['file'])[1], path=feature_path, extension='txt') feature_data = feature_extraction_lfcc(feature_file_txt) elif feature_params['method'] == 'traps': feature_data = feature_extraction_traps(y=y, fs=fs, traps_params=params['traps'], mfcc_params=feature_params['mfcc'], statistics=False)['feat'] else: feature_data = feature_extraction(y=y, fs=fs, include_mfcc0=feature_params['include_mfcc0'], include_delta=feature_params['include_delta'], include_acceleration=feature_params['include_acceleration'], mfcc_params=feature_params['mfcc'], delta_params=feature_params['mfcc_delta'], acceleration_params=feature_params['mfcc_acceleration'], statistics=False)['feat'] # Normalize features feature_data = model_container['normalizer'].normalize(feature_data) # Do classification for the block if classifier_method == 'gmm': current_result = do_classification_gmm(feature_data, model_container) current_class = current_result['class'] elif classifier_method == 'dnn': current_result = do_classification_dnn(feature_data, model_container) current_class = dataset.scene_labels[current_result['class_id']] else: raise ValueError("Unknown classifier method [" + classifier_method + "]") # Store the result if classifier_method == 'gmm': results.append((dataset.absolute_to_relative(item['file']), current_class)) elif classifier_method == 'dnn': logs_in_tuple = tuple(lo for lo in current_result['logls']) results.append((dataset.absolute_to_relative(item['file']), current_class) + logs_in_tuple) else: raise ValueError("Unknown classifier method [" + classifier_method + "]") # Save testing results with open(current_result_file, 'wt') as f: writer = csv.writer(f, delimiter='\t') for result_item in results: writer.writerow(result_item) def do_classification_dnn(feature_data, model_container): # Initialize log-likelihood matrix to -inf logls = numpy.empty(15) logls.fill(-numpy.inf) model_clf = skflow.TensorFlowEstimator.restore('dnn/dnnmodel1') logls = numpy.sum(numpy.log(model_clf.predict_proba(feature_data)), 0) classification_result_id = numpy.argmax(logls) return {'class_id': classification_result_id, 'logls': logls} def do_classification_gmm(feature_data, model_container): """GMM classification for give feature matrix model container format: { 'normalizer': normalizer class 'models' : { 'office' : mixture.GMM class 'home' : mixture.GMM class ... } } Parameters ---------- feature_data : numpy.ndarray [shape=(t, feature vector length)] feature matrix model_container : dict model container Returns ------- result : str classification result as scene label """ # Initialize log-likelihood matrix to -inf logls = numpy.empty(len(model_container['models'])) logls.fill(-numpy.inf) for label_id, label in enumerate(model_container['models']): logls[label_id] = numpy.sum(model_container['models'][label].score(feature_data)) classification_result_id = numpy.argmax(logls) return {'class': model_container['models'].keys()[classification_result_id], 'logls': logls} def do_system_evaluation(dataset, result_path, dataset_evaluation_mode='folds'): """System evaluation. Testing outputs are collected and evaluated. Evaluation results are printed. Parameters ---------- dataset : class dataset class result_path : str path where the results are saved. dataset_evaluation_mode : str ['folds', 'full'] evaluation mode, 'full' all material available is considered to belong to one fold. (Default value='folds') Returns ------- nothing Raises ------- IOError Result file not found """ dcase2016_scene_metric = DCASE2016_SceneClassification_Metrics(class_list=dataset.scene_labels) results_fold = [] tot_cm = numpy.zeros((dataset.scene_label_count, dataset.scene_label_count)) for fold in dataset.folds(mode=dataset_evaluation_mode): dcase2016_scene_metric_fold = DCASE2016_SceneClassification_Metrics(class_list=dataset.scene_labels) results = [] result_filename = get_result_filename(fold=fold, path=result_path) if os.path.isfile(result_filename): with open(result_filename, 'rt') as f: for row in csv.reader(f, delimiter='\t'): results.append(row) else: raise IOError("Result file not found [%s]" % result_filename) # Rewrite the result file if os.path.isfile(result_filename): with open(result_filename+'2', 'wt') as f: writer = csv.writer(f, delimiter='\t') for result_item in results: y_true = (dataset.file_meta(result_item[0])[0]['scene_label'],) #print type(y_true) #print type(result_item) writer.writerow(y_true + tuple(result_item)) y_true = [] y_pred = [] for result in results: y_true.append(dataset.file_meta(result[0])[0]['scene_label']) y_pred.append(result[1]) dcase2016_scene_metric.evaluate(system_output=y_pred, annotated_ground_truth=y_true) dcase2016_scene_metric_fold.evaluate(system_output=y_pred, annotated_ground_truth=y_true) results_fold.append(dcase2016_scene_metric_fold.results()) tot_cm += confusion_matrix(y_true, y_pred) final_result['tot_cm'] = tot_cm final_result['tot_cm_acc'] = numpy.sum(numpy.diag(tot_cm)) / numpy.sum(tot_cm) results = dcase2016_scene_metric.results() final_result['result'] = results print " File-wise evaluation, over %d folds" % dataset.fold_count fold_labels = '' separator = ' =====================+======+======+==========+ +' if dataset.fold_count > 1: for fold in dataset.folds(mode=dataset_evaluation_mode): fold_labels += " {:8s} |".format('Fold' + str(fold)) separator += "==========+" print " {:20s} | {:4s} : {:4s} | {:8s} | |".format('Scene label', 'Nref', 'Nsys', 'Accuracy') + fold_labels print separator for label_id, label in enumerate(sorted(results['class_wise_accuracy'])): fold_values = '' if dataset.fold_count > 1: for fold in dataset.folds(mode=dataset_evaluation_mode): fold_values += " {:5.1f} % |".format(results_fold[fold - 1]['class_wise_accuracy'][label] * 100) print " {:20s} | {:4d} : {:4d} | {:5.1f} % | |".format(label, results['class_wise_data'][label]['Nref'], results['class_wise_data'][label]['Nsys'], results['class_wise_accuracy'][ label] * 100) + fold_values print separator fold_values = '' if dataset.fold_count > 1: for fold in dataset.folds(mode=dataset_evaluation_mode): fold_values += " {:5.1f} % |".format(results_fold[fold - 1]['overall_accuracy'] * 100) print " {:20s} | {:4d} : {:4d} | {:5.1f} % | |".format('Overall accuracy', results['Nref'], results['Nsys'], results['overall_accuracy'] * 100) + fold_values if __name__ == "__main__": try: sys.exit(main(sys.argv)) except (ValueError, IOError) as e: sys.exit(e)
mit
yl565/statsmodels
statsmodels/graphics/tests/test_mosaicplot.py
3
19198
from __future__ import division from statsmodels.compat.python import iterkeys, zip, lrange, iteritems, range from numpy.testing import assert_, assert_raises, dec from numpy.testing import run_module_suite # utilities for the tests from statsmodels.compat.pandas import sort_values from statsmodels.compat.collections import OrderedDict from statsmodels.api import datasets import numpy as np from itertools import product try: import matplotlib.pyplot as pylab have_matplotlib = True except: have_matplotlib = False from statsmodels.compat.pandas import version as pandas_version pandas_old = pandas_version < '0.9' # the main drawing function from statsmodels.graphics.mosaicplot import mosaic # other functions to be tested for accuracy from statsmodels.graphics.mosaicplot import _hierarchical_split from statsmodels.graphics.mosaicplot import _reduce_dict from statsmodels.graphics.mosaicplot import _key_splitting from statsmodels.graphics.mosaicplot import _normalize_split from statsmodels.graphics.mosaicplot import _split_rect @dec.skipif(not have_matplotlib or pandas_old) def test_data_conversion(): # It will not reorder the elements # so the dictionary will look odd # as it key order has the c and b # keys swapped import pandas fig, ax = pylab.subplots(4, 4) data = {'ax': 1, 'bx': 2, 'cx': 3} mosaic(data, ax=ax[0, 0], title='basic dict', axes_label=False) data = pandas.Series(data) mosaic(data, ax=ax[0, 1], title='basic series', axes_label=False) data = [1, 2, 3] mosaic(data, ax=ax[0, 2], title='basic list', axes_label=False) data = np.asarray(data) mosaic(data, ax=ax[0, 3], title='basic array', axes_label=False) data = {('ax', 'cx'): 1, ('bx', 'cx'): 2, ('ax', 'dx'): 3, ('bx', 'dx'): 4} mosaic(data, ax=ax[1, 0], title='compound dict', axes_label=False) mosaic(data, ax=ax[2, 0], title='inverted keys dict', index=[1, 0], axes_label=False) data = pandas.Series(data) mosaic(data, ax=ax[1, 1], title='compound series', axes_label=False) mosaic(data, ax=ax[2, 1], title='inverted keys series', index=[1, 0]) data = [[1, 2], [3, 4]] mosaic(data, ax=ax[1, 2], title='compound list', axes_label=False) mosaic(data, ax=ax[2, 2], title='inverted keys list', index=[1, 0]) data = np.array([[1, 2], [3, 4]]) mosaic(data, ax=ax[1, 3], title='compound array', axes_label=False) mosaic(data, ax=ax[2, 3], title='inverted keys array', index=[1, 0], axes_label=False) gender = ['male', 'male', 'male', 'female', 'female', 'female'] pet = ['cat', 'dog', 'dog', 'cat', 'dog', 'cat'] data = pandas.DataFrame({'gender': gender, 'pet': pet}) mosaic(data, ['gender'], ax=ax[3, 0], title='dataframe by key 1', axes_label=False) mosaic(data, ['pet'], ax=ax[3, 1], title='dataframe by key 2', axes_label=False) mosaic(data, ['gender', 'pet'], ax=ax[3, 2], title='both keys', axes_label=False) mosaic(data, ['pet', 'gender'], ax=ax[3, 3], title='keys inverted', axes_label=False) pylab.suptitle('testing data conversion (plot 1 of 4)') #pylab.show() pylab.close('all') @dec.skipif(not have_matplotlib) def test_mosaic_simple(): # display a simple plot of 4 categories of data, splitted in four # levels with increasing size for each group # creation of the levels key_set = (['male', 'female'], ['old', 'adult', 'young'], ['worker', 'unemployed'], ['healty', 'ill']) # the cartesian product of all the categories is # the complete set of categories keys = list(product(*key_set)) data = OrderedDict(zip(keys, range(1, 1 + len(keys)))) # which colours should I use for the various categories? # put it into a dict props = {} #males and females in blue and red props[('male',)] = {'color': 'b'} props[('female',)] = {'color': 'r'} # all the groups corresponding to ill groups have a different color for key in keys: if 'ill' in key: if 'male' in key: props[key] = {'color': 'BlueViolet' , 'hatch': '+'} else: props[key] = {'color': 'Crimson' , 'hatch': '+'} # mosaic of the data, with given gaps and colors mosaic(data, gap=0.05, properties=props, axes_label=False) pylab.suptitle('syntetic data, 4 categories (plot 2 of 4)') #pylab.show() pylab.close('all') @dec.skipif(not have_matplotlib or pandas_old) def test_mosaic(): # make the same analysis on a known dataset # load the data and clean it a bit affairs = datasets.fair.load_pandas() datas = affairs.exog # any time greater than 0 is cheating datas['cheated'] = affairs.endog > 0 # sort by the marriage quality and give meaningful name # [rate_marriage, age, yrs_married, children, # religious, educ, occupation, occupation_husb] datas = sort_values(datas, ['rate_marriage', 'religious']) num_to_desc = {1: 'awful', 2: 'bad', 3: 'intermediate', 4: 'good', 5: 'wonderful'} datas['rate_marriage'] = datas['rate_marriage'].map(num_to_desc) num_to_faith = {1: 'non religious', 2: 'poorly religious', 3: 'religious', 4: 'very religious'} datas['religious'] = datas['religious'].map(num_to_faith) num_to_cheat = {False: 'faithful', True: 'cheated'} datas['cheated'] = datas['cheated'].map(num_to_cheat) # finished cleaning fig, ax = pylab.subplots(2, 2) mosaic(datas, ['rate_marriage', 'cheated'], ax=ax[0, 0], title='by marriage happiness') mosaic(datas, ['religious', 'cheated'], ax=ax[0, 1], title='by religiosity') mosaic(datas, ['rate_marriage', 'religious', 'cheated'], ax=ax[1, 0], title='by both', labelizer=lambda k:'') ax[1, 0].set_xlabel('marriage rating') ax[1, 0].set_ylabel('religion status') mosaic(datas, ['religious', 'rate_marriage'], ax=ax[1, 1], title='inter-dependence', axes_label=False) pylab.suptitle("extramarital affairs (plot 3 of 4)") #pylab.show() pylab.close('all') @dec.skipif(not have_matplotlib) def test_mosaic_very_complex(): # make a scattermatrix of mosaic plots to show the correlations between # each pair of variable in a dataset. Could be easily converted into a # new function that does this automatically based on the type of data key_name = ['gender', 'age', 'health', 'work'] key_base = (['male', 'female'], ['old', 'young'], ['healty', 'ill'], ['work', 'unemployed']) keys = list(product(*key_base)) data = OrderedDict(zip(keys, range(1, 1 + len(keys)))) props = {} props[('male', 'old')] = {'color': 'r'} props[('female',)] = {'color': 'pink'} L = len(key_base) fig, axes = pylab.subplots(L, L) for i in range(L): for j in range(L): m = set(range(L)).difference(set((i, j))) if i == j: axes[i, i].text(0.5, 0.5, key_name[i], ha='center', va='center') axes[i, i].set_xticks([]) axes[i, i].set_xticklabels([]) axes[i, i].set_yticks([]) axes[i, i].set_yticklabels([]) else: ji = max(i, j) ij = min(i, j) temp_data = OrderedDict([((k[ij], k[ji]) + tuple(k[r] for r in m), v) for k, v in iteritems(data)]) keys = list(iterkeys(temp_data)) for k in keys: value = _reduce_dict(temp_data, k[:2]) temp_data[k[:2]] = value del temp_data[k] mosaic(temp_data, ax=axes[i, j], axes_label=False, properties=props, gap=0.05, horizontal=i > j) pylab.suptitle('old males should look bright red, (plot 4 of 4)') #pylab.show() pylab.close('all') @dec.skipif(not have_matplotlib) def test_axes_labeling(): from numpy.random import rand key_set = (['male', 'female'], ['old', 'adult', 'young'], ['worker', 'unemployed'], ['yes', 'no']) # the cartesian product of all the categories is # the complete set of categories keys = list(product(*key_set)) data = OrderedDict(zip(keys, rand(len(keys)))) lab = lambda k: ''.join(s[0] for s in k) fig, (ax1, ax2) = pylab.subplots(1, 2, figsize=(16, 8)) mosaic(data, ax=ax1, labelizer=lab, horizontal=True, label_rotation=45) mosaic(data, ax=ax2, labelizer=lab, horizontal=False, label_rotation=[0, 45, 90, 0]) #fig.tight_layout() fig.suptitle("correct alignment of the axes labels") #pylab.show() pylab.close('all') @dec.skipif(not have_matplotlib or pandas_old) def test_mosaic_empty_cells(): # SMOKE test see #2286 import pandas as pd mydata = pd.DataFrame({'id2': {64: 'Angelica', 65: 'DXW_UID', 66: 'casuid01', 67: 'casuid01', 68: 'EC93_uid', 69: 'EC93_uid', 70: 'EC93_uid', 60: 'DXW_UID', 61: 'AtmosFox', 62: 'DXW_UID', 63: 'DXW_UID'}, 'id1': {64: 'TGP', 65: 'Retention01', 66: 'default', 67: 'default', 68: 'Musa_EC_9_3', 69: 'Musa_EC_9_3', 70: 'Musa_EC_9_3', 60: 'default', 61: 'default', 62: 'default', 63: 'default'}}) ct = pd.crosstab(mydata.id1, mydata.id2) fig, vals = mosaic(ct.T.unstack()) pylab.close('all') fig, vals = mosaic(mydata, ['id1','id2']) pylab.close('all') eq = lambda x, y: assert_(np.allclose(x, y)) def test_recursive_split(): keys = list(product('mf')) data = OrderedDict(zip(keys, [1] * len(keys))) res = _hierarchical_split(data, gap=0) assert_(list(iterkeys(res)) == keys) res[('m',)] = (0.0, 0.0, 0.5, 1.0) res[('f',)] = (0.5, 0.0, 0.5, 1.0) keys = list(product('mf', 'yao')) data = OrderedDict(zip(keys, [1] * len(keys))) res = _hierarchical_split(data, gap=0) assert_(list(iterkeys(res)) == keys) res[('m', 'y')] = (0.0, 0.0, 0.5, 1 / 3) res[('m', 'a')] = (0.0, 1 / 3, 0.5, 1 / 3) res[('m', 'o')] = (0.0, 2 / 3, 0.5, 1 / 3) res[('f', 'y')] = (0.5, 0.0, 0.5, 1 / 3) res[('f', 'a')] = (0.5, 1 / 3, 0.5, 1 / 3) res[('f', 'o')] = (0.5, 2 / 3, 0.5, 1 / 3) def test__reduce_dict(): data = OrderedDict(zip(list(product('mf', 'oy', 'wn')), [1] * 8)) eq(_reduce_dict(data, ('m',)), 4) eq(_reduce_dict(data, ('m', 'o')), 2) eq(_reduce_dict(data, ('m', 'o', 'w')), 1) data = OrderedDict(zip(list(product('mf', 'oy', 'wn')), lrange(8))) eq(_reduce_dict(data, ('m',)), 6) eq(_reduce_dict(data, ('m', 'o')), 1) eq(_reduce_dict(data, ('m', 'o', 'w')), 0) def test__key_splitting(): # subdivide starting with an empty tuple base_rect = {tuple(): (0, 0, 1, 1)} res = _key_splitting(base_rect, ['a', 'b'], [1, 1], tuple(), True, 0) assert_(list(iterkeys(res)) == [('a',), ('b',)]) eq(res[('a',)], (0, 0, 0.5, 1)) eq(res[('b',)], (0.5, 0, 0.5, 1)) # subdivide a in two sublevel res_bis = _key_splitting(res, ['c', 'd'], [1, 1], ('a',), False, 0) assert_(list(iterkeys(res_bis)) == [('a', 'c'), ('a', 'd'), ('b',)]) eq(res_bis[('a', 'c')], (0.0, 0.0, 0.5, 0.5)) eq(res_bis[('a', 'd')], (0.0, 0.5, 0.5, 0.5)) eq(res_bis[('b',)], (0.5, 0, 0.5, 1)) # starting with a non empty tuple and uneven distribution base_rect = {('total',): (0, 0, 1, 1)} res = _key_splitting(base_rect, ['a', 'b'], [1, 2], ('total',), True, 0) assert_(list(iterkeys(res)) == [('total',) + (e,) for e in ['a', 'b']]) eq(res[('total', 'a')], (0, 0, 1 / 3, 1)) eq(res[('total', 'b')], (1 / 3, 0, 2 / 3, 1)) def test_proportion_normalization(): # extremes should give the whole set, as well # as if 0 is inserted eq(_normalize_split(0.), [0.0, 0.0, 1.0]) eq(_normalize_split(1.), [0.0, 1.0, 1.0]) eq(_normalize_split(2.), [0.0, 1.0, 1.0]) # negative values should raise ValueError assert_raises(ValueError, _normalize_split, -1) assert_raises(ValueError, _normalize_split, [1., -1]) assert_raises(ValueError, _normalize_split, [1., -1, 0.]) # if everything is zero it will complain assert_raises(ValueError, _normalize_split, [0.]) assert_raises(ValueError, _normalize_split, [0., 0.]) # one-element array should return the whole interval eq(_normalize_split([0.5]), [0.0, 1.0]) eq(_normalize_split([1.]), [0.0, 1.0]) eq(_normalize_split([2.]), [0.0, 1.0]) # simple division should give two pieces for x in [0.3, 0.5, 0.9]: eq(_normalize_split(x), [0., x, 1.0]) # multiple division should split as the sum of the components for x, y in [(0.25, 0.5), (0.1, 0.8), (10., 30.)]: eq(_normalize_split([x, y]), [0., x / (x + y), 1.0]) for x, y, z in [(1., 1., 1.), (0.1, 0.5, 0.7), (10., 30., 40)]: eq(_normalize_split( [x, y, z]), [0., x / (x + y + z), (x + y) / (x + y + z), 1.0]) def test_false_split(): # if you ask it to be divided in only one piece, just return the original # one pure_square = [0., 0., 1., 1.] conf_h = dict(proportion=[1], gap=0.0, horizontal=True) conf_v = dict(proportion=[1], gap=0.0, horizontal=False) eq(_split_rect(*pure_square, **conf_h), pure_square) eq(_split_rect(*pure_square, **conf_v), pure_square) conf_h = dict(proportion=[1], gap=0.5, horizontal=True) conf_v = dict(proportion=[1], gap=0.5, horizontal=False) eq(_split_rect(*pure_square, **conf_h), pure_square) eq(_split_rect(*pure_square, **conf_v), pure_square) # identity on a void rectangle should not give anything strange null_square = [0., 0., 0., 0.] conf = dict(proportion=[1], gap=0.0, horizontal=True) eq(_split_rect(*null_square, **conf), null_square) conf = dict(proportion=[1], gap=1.0, horizontal=True) eq(_split_rect(*null_square, **conf), null_square) # splitting a negative rectangle should raise error neg_square = [0., 0., -1., 0.] conf = dict(proportion=[1], gap=0.0, horizontal=True) assert_raises(ValueError, _split_rect, *neg_square, **conf) conf = dict(proportion=[1, 1], gap=0.0, horizontal=True) assert_raises(ValueError, _split_rect, *neg_square, **conf) conf = dict(proportion=[1], gap=0.5, horizontal=True) assert_raises(ValueError, _split_rect, *neg_square, **conf) conf = dict(proportion=[1, 1], gap=0.5, horizontal=True) assert_raises(ValueError, _split_rect, *neg_square, **conf) def test_rect_pure_split(): pure_square = [0., 0., 1., 1.] # division in two equal pieces from the perfect square h_2split = [(0.0, 0.0, 0.5, 1.0), (0.5, 0.0, 0.5, 1.0)] conf_h = dict(proportion=[1, 1], gap=0.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), h_2split) v_2split = [(0.0, 0.0, 1.0, 0.5), (0.0, 0.5, 1.0, 0.5)] conf_v = dict(proportion=[1, 1], gap=0.0, horizontal=False) eq(_split_rect(*pure_square, **conf_v), v_2split) # division in two non-equal pieces from the perfect square h_2split = [(0.0, 0.0, 1 / 3, 1.0), (1 / 3, 0.0, 2 / 3, 1.0)] conf_h = dict(proportion=[1, 2], gap=0.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), h_2split) v_2split = [(0.0, 0.0, 1.0, 1 / 3), (0.0, 1 / 3, 1.0, 2 / 3)] conf_v = dict(proportion=[1, 2], gap=0.0, horizontal=False) eq(_split_rect(*pure_square, **conf_v), v_2split) # division in three equal pieces from the perfect square h_2split = [(0.0, 0.0, 1 / 3, 1.0), (1 / 3, 0.0, 1 / 3, 1.0), (2 / 3, 0.0, 1 / 3, 1.0)] conf_h = dict(proportion=[1, 1, 1], gap=0.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), h_2split) v_2split = [(0.0, 0.0, 1.0, 1 / 3), (0.0, 1 / 3, 1.0, 1 / 3), (0.0, 2 / 3, 1.0, 1 / 3)] conf_v = dict(proportion=[1, 1, 1], gap=0.0, horizontal=False) eq(_split_rect(*pure_square, **conf_v), v_2split) # division in three non-equal pieces from the perfect square h_2split = [(0.0, 0.0, 1 / 4, 1.0), (1 / 4, 0.0, 1 / 2, 1.0), (3 / 4, 0.0, 1 / 4, 1.0)] conf_h = dict(proportion=[1, 2, 1], gap=0.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), h_2split) v_2split = [(0.0, 0.0, 1.0, 1 / 4), (0.0, 1 / 4, 1.0, 1 / 2), (0.0, 3 / 4, 1.0, 1 / 4)] conf_v = dict(proportion=[1, 2, 1], gap=0.0, horizontal=False) eq(_split_rect(*pure_square, **conf_v), v_2split) # splitting on a void rectangle should give multiple void null_square = [0., 0., 0., 0.] conf = dict(proportion=[1, 1], gap=0.0, horizontal=True) eq(_split_rect(*null_square, **conf), [null_square, null_square]) conf = dict(proportion=[1, 2], gap=1.0, horizontal=True) eq(_split_rect(*null_square, **conf), [null_square, null_square]) def test_rect_deformed_split(): non_pure_square = [1., -1., 1., 0.5] # division in two equal pieces from the perfect square h_2split = [(1.0, -1.0, 0.5, 0.5), (1.5, -1.0, 0.5, 0.5)] conf_h = dict(proportion=[1, 1], gap=0.0, horizontal=True) eq(_split_rect(*non_pure_square, **conf_h), h_2split) v_2split = [(1.0, -1.0, 1.0, 0.25), (1.0, -0.75, 1.0, 0.25)] conf_v = dict(proportion=[1, 1], gap=0.0, horizontal=False) eq(_split_rect(*non_pure_square, **conf_v), v_2split) # division in two non-equal pieces from the perfect square h_2split = [(1.0, -1.0, 1 / 3, 0.5), (1 + 1 / 3, -1.0, 2 / 3, 0.5)] conf_h = dict(proportion=[1, 2], gap=0.0, horizontal=True) eq(_split_rect(*non_pure_square, **conf_h), h_2split) v_2split = [(1.0, -1.0, 1.0, 1 / 6), (1.0, 1 / 6 - 1, 1.0, 2 / 6)] conf_v = dict(proportion=[1, 2], gap=0.0, horizontal=False) eq(_split_rect(*non_pure_square, **conf_v), v_2split) def test_gap_split(): pure_square = [0., 0., 1., 1.] # null split conf_h = dict(proportion=[1], gap=1.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), pure_square) # equal split h_2split = [(0.0, 0.0, 0.25, 1.0), (0.75, 0.0, 0.25, 1.0)] conf_h = dict(proportion=[1, 1], gap=1.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), h_2split) # disequal split h_2split = [(0.0, 0.0, 1 / 6, 1.0), (0.5 + 1 / 6, 0.0, 1 / 3, 1.0)] conf_h = dict(proportion=[1, 2], gap=1.0, horizontal=True) eq(_split_rect(*pure_square, **conf_h), h_2split) @dec.skipif(not have_matplotlib or pandas_old) def test_default_arg_index(): # 2116 import pandas as pd df = pd.DataFrame({'size' : ['small', 'large', 'large', 'small', 'large', 'small'], 'length' : ['long', 'short', 'short', 'long', 'long', 'short']}) assert_raises(ValueError, mosaic, data=df, title='foobar') pylab.close('all') if __name__ == '__main__': run_module_suite()
bsd-3-clause
wubr2000/zipline
zipline/finance/performance/tracker.py
14
23349
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Performance Tracking ==================== +-----------------+----------------------------------------------------+ | key | value | +=================+====================================================+ | period_start | The beginning of the period to be tracked. datetime| | | in pytz.utc timezone. Will always be 0:00 on the | | | date in UTC. The fact that the time may be on the | | | prior day in the exchange's local time is ignored | +-----------------+----------------------------------------------------+ | period_end | The end of the period to be tracked. datetime | | | in pytz.utc timezone. Will always be 23:59 on the | | | date in UTC. The fact that the time may be on the | | | next day in the exchange's local time is ignored | +-----------------+----------------------------------------------------+ | progress | percentage of test completed | +-----------------+----------------------------------------------------+ | capital_base | The initial capital assumed for this tracker. | +-----------------+----------------------------------------------------+ | cumulative_perf | A dictionary representing the cumulative | | | performance through all the events delivered to | | | this tracker. For details see the comments on | | | :py:meth:`PerformancePeriod.to_dict` | +-----------------+----------------------------------------------------+ | todays_perf | A dictionary representing the cumulative | | | performance through all the events delivered to | | | this tracker with datetime stamps between last_open| | | and last_close. For details see the comments on | | | :py:meth:`PerformancePeriod.to_dict` | | | TODO: adding this because we calculate it. May be | | | overkill. | +-----------------+----------------------------------------------------+ | cumulative_risk | A dictionary representing the risk metrics | | _metrics | calculated based on the positions aggregated | | | through all the events delivered to this tracker. | | | For details look at the comments for | | | :py:meth:`zipline.finance.risk.RiskMetrics.to_dict`| +-----------------+----------------------------------------------------+ """ from __future__ import division import logbook import pickle from six import iteritems from datetime import datetime import numpy as np import pandas as pd from pandas.tseries.tools import normalize_date import zipline.finance.risk as risk from zipline.finance.trading import TradingEnvironment from . period import PerformancePeriod from zipline.utils.serialization_utils import ( VERSION_LABEL ) from . position_tracker import PositionTracker log = logbook.Logger('Performance') class PerformanceTracker(object): """ Tracks the performance of the algorithm. """ def __init__(self, sim_params): self.sim_params = sim_params env = TradingEnvironment.instance() self.period_start = self.sim_params.period_start self.period_end = self.sim_params.period_end self.last_close = self.sim_params.last_close first_open = self.sim_params.first_open.tz_convert(env.exchange_tz) self.day = pd.Timestamp(datetime(first_open.year, first_open.month, first_open.day), tz='UTC') self.market_open, self.market_close = env.get_open_and_close(self.day) self.total_days = self.sim_params.days_in_period self.capital_base = self.sim_params.capital_base self.emission_rate = sim_params.emission_rate all_trading_days = env.trading_days mask = ((all_trading_days >= normalize_date(self.period_start)) & (all_trading_days <= normalize_date(self.period_end))) self.trading_days = all_trading_days[mask] self.dividend_frame = pd.DataFrame() self._dividend_count = 0 self.position_tracker = PositionTracker() self.perf_periods = [] if self.emission_rate == 'daily': self.all_benchmark_returns = pd.Series( index=self.trading_days) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative(self.sim_params) elif self.emission_rate == 'minute': self.all_benchmark_returns = pd.Series(index=pd.date_range( self.sim_params.first_open, self.sim_params.last_close, freq='Min')) self.cumulative_risk_metrics = \ risk.RiskMetricsCumulative(self.sim_params, create_first_day_stats=True) self.minute_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the cumulative period will be calculated over the # entire test. self.period_start, self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumualtive period serialize_positions=False ) self.minute_performance.position_tracker = self.position_tracker self.perf_periods.append(self.minute_performance) # this performance period will span the entire simulation from # inception. self.cumulative_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the cumulative period will be calculated over the entire test. self.period_start, self.period_end, # don't save the transactions for the cumulative # period keep_transactions=False, keep_orders=False, # don't serialize positions for cumualtive period serialize_positions=False, ) self.cumulative_performance.position_tracker = self.position_tracker self.perf_periods.append(self.cumulative_performance) # this performance period will span just the current market day self.todays_performance = PerformancePeriod( # initial cash is your capital base. self.capital_base, # the daily period will be calculated for the market day self.market_open, self.market_close, keep_transactions=True, keep_orders=True, serialize_positions=True, ) self.todays_performance.position_tracker = self.position_tracker self.perf_periods.append(self.todays_performance) self.saved_dt = self.period_start # one indexed so that we reach 100% self.day_count = 0.0 self.txn_count = 0 self.account_needs_update = True self._account = None def __repr__(self): return "%s(%r)" % ( self.__class__.__name__, {'simulation parameters': self.sim_params}) @property def progress(self): if self.emission_rate == 'minute': # Fake a value return 1.0 elif self.emission_rate == 'daily': return self.day_count / self.total_days def set_date(self, date): if self.emission_rate == 'minute': self.saved_dt = date self.todays_performance.period_close = self.saved_dt def update_dividends(self, new_dividends): """ Update our dividend frame with new dividends. @new_dividends should be a DataFrame with columns containing at least the entries in zipline.protocol.DIVIDEND_FIELDS. """ # Mark each new dividend with a unique integer id. This ensures that # we can differentiate dividends whose date/sid fields are otherwise # identical. new_dividends['id'] = np.arange( self._dividend_count, self._dividend_count + len(new_dividends), ) self._dividend_count += len(new_dividends) self.dividend_frame = pd.concat( [self.dividend_frame, new_dividends] ).sort(['pay_date', 'ex_date']).set_index('id', drop=False) def initialize_dividends_from_other(self, other): """ Helper for copying dividends to a new PerformanceTracker while preserving dividend count. Useful if a simulation needs to create a new PerformanceTracker mid-stream and wants to preserve stored dividend info. Note that this does not copy unpaid dividends. """ self.dividend_frame = other.dividend_frame self._dividend_count = other._dividend_count def handle_sid_removed_from_universe(self, sid): """ This method handles any behaviors that must occur when a SID leaves the universe of the TradingAlgorithm. Parameters __________ sid : int The sid of the Asset being removed from the universe. """ # Drop any dividends for the sid from the dividends frame self.dividend_frame = self.dividend_frame[ self.dividend_frame.sid != sid ] def update_performance(self): # calculate performance as of last trade for perf_period in self.perf_periods: perf_period.calculate_performance() def get_portfolio(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True return self.cumulative_performance.as_portfolio() def get_account(self, performance_needs_update): if performance_needs_update: self.update_performance() self.account_needs_update = True if self.account_needs_update: self._update_account() return self._account def _update_account(self): self._account = self.cumulative_performance.as_account() self.account_needs_update = False def to_dict(self, emission_type=None): """ Creates a dictionary representing the state of this tracker. Returns a dict object of the form described in header comments. """ # Default to the emission rate of this tracker if no type is provided if emission_type is None: emission_type = self.emission_rate _dict = { 'period_start': self.period_start, 'period_end': self.period_end, 'capital_base': self.capital_base, 'cumulative_perf': self.cumulative_performance.to_dict(), 'progress': self.progress, 'cumulative_risk_metrics': self.cumulative_risk_metrics.to_dict() } if emission_type == 'daily': _dict['daily_perf'] = self.todays_performance.to_dict() elif emission_type == 'minute': _dict['minute_perf'] = self.todays_performance.to_dict( self.saved_dt) else: raise ValueError("Invalid emission type: %s" % emission_type) return _dict def process_trade(self, event): # update last sale, and pay out a cash adjustment cash_adjustment = self.position_tracker.update_last_sale(event) if cash_adjustment != 0: for perf_period in self.perf_periods: perf_period.handle_cash_payment(cash_adjustment) def process_transaction(self, event): self.txn_count += 1 self.position_tracker.execute_transaction(event) for perf_period in self.perf_periods: perf_period.handle_execution(event) def process_dividend(self, dividend): log.info("Ignoring DIVIDEND event.") def process_split(self, event): leftover_cash = self.position_tracker.handle_split(event) if leftover_cash > 0: for perf_period in self.perf_periods: perf_period.handle_cash_payment(leftover_cash) def process_order(self, event): for perf_period in self.perf_periods: perf_period.record_order(event) def process_commission(self, event): self.position_tracker.handle_commission(event) for perf_period in self.perf_periods: perf_period.handle_commission(event) def process_benchmark(self, event): if self.sim_params.data_frequency == 'minute' and \ self.sim_params.emission_rate == 'daily': # Minute data benchmarks should have a timestamp of market # close, so that calculations are triggered at the right time. # However, risk module uses midnight as the 'day' # marker for returns, so adjust back to midnight. midnight = pd.tseries.tools.normalize_date(event.dt) else: midnight = event.dt if midnight not in self.all_benchmark_returns.index: raise AssertionError( ("Date %s not allocated in all_benchmark_returns. " "Calendar seems to mismatch with benchmark. " "Benchmark container is=%s" % (midnight, self.all_benchmark_returns.index))) self.all_benchmark_returns[midnight] = event.returns def process_close_position(self, event): # CLOSE_POSITION events that contain prices that must be handled as # a final trade event if 'price' in event: self.process_trade(event) txn = self.position_tracker.\ maybe_create_close_position_transaction(event) if txn: self.process_transaction(txn) def check_upcoming_dividends(self, next_trading_day): """ Check if we currently own any stocks with dividends whose ex_date is the next trading day. Track how much we should be payed on those dividends' pay dates. Then check if we are owed cash/stock for any dividends whose pay date is the next trading day. Apply all such benefits, then recalculate performance. """ if len(self.dividend_frame) == 0: # We don't currently know about any dividends for this simulation # period, so bail. return # Dividends whose ex_date is the next trading day. We need to check if # we own any of these stocks so we know to pay them out when the pay # date comes. ex_date_mask = (self.dividend_frame['ex_date'] == next_trading_day) dividends_earnable = self.dividend_frame[ex_date_mask] # Dividends whose pay date is the next trading day. If we held any of # these stocks on midnight before the ex_date, we need to pay these out # now. pay_date_mask = (self.dividend_frame['pay_date'] == next_trading_day) dividends_payable = self.dividend_frame[pay_date_mask] position_tracker = self.position_tracker if len(dividends_earnable): position_tracker.earn_dividends(dividends_earnable) if not len(dividends_payable): return net_cash_payment = position_tracker.pay_dividends(dividends_payable) for period in self.perf_periods: # notify periods to update their stats period.handle_dividends_paid(net_cash_payment) def check_asset_auto_closes(self, next_trading_day): """ Check if the position tracker currently owns any Assets with an auto-close date that is the next trading day. Close those positions. Parameters ---------- next_trading_day : pandas.Timestamp The next trading day of the simulation """ auto_close_events = self.position_tracker.auto_close_position_events( next_trading_day=next_trading_day ) for event in auto_close_events: self.process_close_position(event) def handle_minute_close(self, dt): """ Handles the close of the given minute. This includes handling market-close functions if the given minute is the end of the market day. Parameters __________ dt : Timestamp The minute that is ending Returns _______ (dict, dict/None) A tuple of the minute perf packet and daily perf packet. If the market day has not ended, the daily perf packet is None. """ self.update_performance() todays_date = normalize_date(dt) account = self.get_account(False) self.minute_performance.rollover() bench_returns = self.all_benchmark_returns.loc[todays_date:dt] # cumulative returns bench_since_open = (1. + bench_returns).prod() - 1 self.cumulative_risk_metrics.update(todays_date, self.todays_performance.returns, bench_since_open, account) minute_packet = self.to_dict(emission_type='minute') # if this is the close, update dividends for the next day. # Return the performance tuple if dt == self.market_close: return (minute_packet, self._handle_market_close(todays_date)) else: return (minute_packet, None) def handle_market_close_daily(self): """ Function called after handle_data when running with daily emission rate. """ self.update_performance() completed_date = self.day account = self.get_account(False) # update risk metrics for cumulative performance self.cumulative_risk_metrics.update( completed_date, self.todays_performance.returns, self.all_benchmark_returns[completed_date], account) return self._handle_market_close(completed_date) def _handle_market_close(self, completed_date): # increment the day counter before we move markers forward. self.day_count += 1.0 # Get the next trading day and, if it is past the bounds of this # simulation, return the daily perf packet next_trading_day = TradingEnvironment.instance().\ next_trading_day(completed_date) # Check if any assets need to be auto-closed before generating today's # perf period if next_trading_day: self.check_asset_auto_closes(next_trading_day=next_trading_day) # Take a snapshot of our current performance to return to the # browser. daily_update = self.to_dict(emission_type='daily') # On the last day of the test, don't create tomorrow's performance # period. We may not be able to find the next trading day if we're at # the end of our historical data if self.market_close >= self.last_close: return daily_update # move the market day markers forward env = TradingEnvironment.instance() self.market_open, self.market_close = \ env.next_open_and_close(self.day) self.day = env.next_trading_day(self.day) # Roll over positions to current day. self.todays_performance.rollover() self.todays_performance.period_open = self.market_open self.todays_performance.period_close = self.market_close # If the next trading day is irrelevant, then return the daily packet if (next_trading_day is None) or (next_trading_day >= self.last_close): return daily_update # Check for any dividends and auto-closes, then return the daily perf # packet self.check_upcoming_dividends(next_trading_day=next_trading_day) return daily_update def handle_simulation_end(self): """ When the simulation is complete, run the full period risk report and send it out on the results socket. """ log_msg = "Simulated {n} trading days out of {m}." log.info(log_msg.format(n=int(self.day_count), m=self.total_days)) log.info("first open: {d}".format( d=self.sim_params.first_open)) log.info("last close: {d}".format( d=self.sim_params.last_close)) bms = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.benchmark_returns_cont) ars = pd.Series( index=self.cumulative_risk_metrics.cont_index, data=self.cumulative_risk_metrics.algorithm_returns_cont) acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages self.risk_report = risk.RiskReport( ars, self.sim_params, benchmark_returns=bms, algorithm_leverages=acl) risk_dict = self.risk_report.to_dict() return risk_dict def __getstate__(self): state_dict = \ {k: v for k, v in iteritems(self.__dict__) if not k.startswith('_')} state_dict['dividend_frame'] = pickle.dumps(self.dividend_frame) state_dict['_dividend_count'] = self._dividend_count # we already store perf periods as attributes del state_dict['perf_periods'] STATE_VERSION = 3 state_dict[VERSION_LABEL] = STATE_VERSION return state_dict def __setstate__(self, state): OLDEST_SUPPORTED_STATE = 3 version = state.pop(VERSION_LABEL) if version < OLDEST_SUPPORTED_STATE: raise BaseException("PerformanceTracker saved state is too old.") self.__dict__.update(state) # Handle the dividend frame specially self.dividend_frame = pickle.loads(state['dividend_frame']) # properly setup the perf periods self.perf_periods = [] p_types = ['cumulative', 'todays', 'minute'] for p_type in p_types: name = p_type + '_performance' period = getattr(self, name, None) if period is None: continue period._position_tracker = self.position_tracker self.perf_periods.append(period)
apache-2.0
AnasGhrab/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
aolindahl/streaking
time_to_energy_conversion.py
1
24533
# -*- coding: utf-8 -*- """ Created on Thu Jun 11 15:49:41 2015 @author: antlin """ import matplotlib.pyplot as plt import numpy as np import lmfit import h5py import process_hdf5 as process from aolPyModules import tof as tof_module from aolPyModules.aolUtil import struct Ne1s = 870.2 def e_energy_prediction_model(params, l3_energy, bc2_energy=None, fee=None, e_energy=None): """Modeling of the electorn energy based on a few parameters.""" K = params['K'].value IP = params['IP'].value BC2_nominal = params['BC2_nominal'].value BC2_factor = params['BC2_factor'].value fee_factor = params['fee_factor'].value fee_nominal = params['fee_nominal'].value if bc2_energy is None: e_beam_energy = l3_energy else: e_beam_energy = l3_energy - BC2_factor * (bc2_energy - BC2_nominal) if fee is not None: e_beam_energy -= fee_factor * (fee - fee_nominal) mod = K * e_beam_energy**2 - IP if e_energy is None: return mod return mod - e_energy # mod = params['e_0'].value # mod += params['l3_1'].value * (l3_energy - params['l3_m'].value) # # if bc2_energy is not None: # mod += params['bc2_1'].value * (bc2_energy - params['bc2_m'].value) ## # if fee is not None: # mod += params['fee_1'].value * (fee - params['fee_m'].value) # # if e_energy is None: # return mod # return mod - e_energy def e_energy_prediction_model_start_params(l3_energy, e_energy, bc2_energy=[], fee=[]): params = lmfit.Parameters() params.add('K', 4.57e-5, min=4.3e-5, max=1e-4) use_bc2 = len(bc2_energy) > 0 params.add('BC2_nominal', 5e3, min=4.9e3, max=5.1e3, vary=use_bc2) params.add('BC2_factor', 1, min=0, max=2, vary=use_bc2) use_fee = len(fee) > 0 params.add('fee_factor', 108 if use_fee else 0, vary=use_fee) params.add('fee_nominal', np.nanmean(fee) if use_fee else 0, vary=use_fee) params.add('IP', value=Ne1s, vary=False) # params.add('e_0', np.mean(e_energy), vary=False) # params.add('l3_1', 0) # params.add('l3_m', np.mean(l3_energy), vary=False) # # use_bc2 = len(bc2_energy) > 0 # params.add('bc2_1', 0, vary=use_bc2) # params.add('bc2_m', np.mean(bc2_energy) if use_bc2 else 0, vary=False) # # use_fee = len(fee) > 0 # params.add('fee_1', 0, vary=use_fee) # params.add('fee_m', np.mean(fee) if use_fee else 0, vary=False) return params def tof_prediction_model(params, l3_energy, bc2_energy=None, fee=None, tof=None): d_eff = params['d_eff_prediction'].value t_0 = params['t_0_prediction'].value E_0 = params['E_0_prediction'].value K = params['K'].value IP = params['IP'].value BC2_nominal = params['BC2_nominal'].value BC2_factor = params['BC2_factor'].value fee_factor = params['fee_factor'].value if bc2_energy is None: e_beam_energy = l3_energy else: e_beam_energy = l3_energy - BC2_factor * (bc2_energy - BC2_nominal) if fee is not None: e_beam_energy -= fee * fee_factor mod = t_0 + d_eff / np.sqrt(K * e_beam_energy**2 - IP - E_0) if tof is None: return mod return mod-tof def tof_prediction_params(l3_energy=[], bc2_energy=[], fee=[], tof=[]): params = photon_energy_params(postfix='_prediction') params.add('K', 4.57e-5, min=4.5e-5, max=1e-4) use_bc2 = len(bc2_energy) > 0 params.add('BC2_nominal', 5e3, min=4.9e3, max=5.1e3, vary=use_bc2) params.add('BC2_factor', 1, min=0, max=2, vary=use_bc2) use_fee = len(fee) > 0 params.add('fee_factor', 108 if use_fee else 0, vary=use_fee) return params def photoelectron_energy_model(params, tof, e_pe=None, postfix=''): t_0 = params['t_0' + postfix].value E_0 = params['E_0' + postfix].value d_eff = params['d_eff' + postfix].value mod = E_0 + (d_eff / (tof - t_0))**2 if e_pe is None: return mod return mod - e_pe def photon_energy_model(params, tof, e_p=None, postfix=''): e_ip = params['IP'].value mod = photoelectron_energy_model(params, tof, postfix=postfix) + e_ip if e_p is None: return mod return mod - e_p def photon_energy_params(postfix=''): params = lmfit.Parameters() params.add('d_eff' + postfix, 1.23, min=1, max=2) params.add('t_0' + postfix, 1.49, min=1.47, max=1.51) params.add('E_0' + postfix, 0, vary=False) params.add('IP', Ne1s, vary=False) return params def photoelectron_energy_prediction_model(params, l3_energy, bc2_energy=None, fee=None, tof=None): return photoelectron_energy_model(params, tof_prediction_model( params, l3_energy=l3_energy, bc2_energy=bc2_energy, fee=fee)) def fel_params(): params = lmfit.Parameters() params.add('K', 1) return params def fel_model(params, e_energy, p_energy=None): K = params['K'].value mod = K * e_energy**2 if p_energy is None: return mod return mod - p_energy def fel_model_inverted(params, p_energy, e_energy=None): K = params['K'].value mod = np.sqrt(p_energy / K) if e_energy is None: return mod return mod - e_energy def tof_e_energy_params(d_exp_list=[2]): params = lmfit.Parameters() params.add('E_0', 0) params.add('t_0', 1.5, min=1.0, max=2.0) for d_exp in d_exp_list: params.add('d_{}'.format(d_exp), 1 if d_exp == 2 else 0) return params def tof_e_energy_model(params, tof, energy=None): E_0 = params['E_0'].value t_0 = params['t_0'].value d = {} for d_exp in range(1, 11): name = 'd_{}'.format(d_exp) if name in params.keys(): d[d_exp] = params[name].value mod = E_0 * np.ones_like(tof) for d_exp, d_val in d.iteritems(): mod += d_val / (tof - t_0)**d_exp if energy is None: return mod return mod - energy def tof_photon_energy_params(d_exp_list=[2]): params = tof_e_energy_params(d_exp_list=d_exp_list) params.add('IP', Ne1s, vary=False) return params def tof_photon_energy_model(params, tof, photon_energy=None): IP = params['IP'].value mod = IP + tof_e_energy_model(params, tof) if photon_energy is None: return mod return mod - photon_energy def tof_e_beam_energy_params(d_exp_list=[2]): params = tof_photon_energy_params(d_exp_list=d_exp_list) params.add('K', 2.5) return params def tof_e_beam_energy_model(params, tof, e_beam_energy=None): K = params['K'].value mod = K * tof_photon_energy_model(params, tof)**2 if e_beam_energy is None: return mod return mod - e_beam_energy def slicing_plot(x, y, z, n_z=6, fig_num=None): n_rows = int(np.floor(np.sqrt(n_z))) n_cols = int(np.ceil(float(n_z) / n_rows)) valid = np.isfinite(x) * np.isfinite(y) * np.isfinite(z) x_limits = np.linspace(x[valid].min(), x[valid].max(), 2**6) y_limits = np.linspace(y[valid].min(), y[valid].max(), 2**6) z_limits = np.linspace(z[valid].min(), z[valid].max(), n_z+1) fig = plt.figure(fig_num) fig.clf() ax = None for i in range(n_z): I = (z_limits[i] < z) & (z < z_limits[i+1]) img, _, _ = np.histogram2d(x[I], y[I], (x_limits, y_limits)) ax = fig.add_subplot(n_rows, n_cols, i+1, sharex=ax, sharey=ax) ax.imshow(img.T, aspect='auto', interpolation='none', extent=(x_limits[0], x_limits[-1], y_limits[0], y_limits[-1]), origin='lower') # ax.plot(x[I], y[I], '.') def load_tof_to_energy_data(verbose=0): # if verbose > 0: # print 'In "load_tof_to_energy_data()".' calib_runs = [24, 26, 28, 31, 38] calib_energies = [930, 950, 970, 1000, 1030] calib_energy_map = dict(zip(calib_runs, calib_energies)) h5_dict = {} for run in calib_runs: name = process.h5_file_name_template.format(run) process.update_with_noise_and_response(name, verbose=verbose) h5_dict[run] = h5py.File(name, 'r+') return calib_runs, h5_dict, calib_energy_map def get_calib_data(plot=False, verbose=0): # Load the data calib_runs, h5_dict, calib_energy_map = load_tof_to_energy_data( verbose=verbose) # Make the calib data struct calib_data = struct() # Make some empty lists calib_data.e_energy = [] calib_data.p_energy_calib = [] calib_data.p_energy_calib_mean = [] calib_data.tof = [] calib_data.integral = [] calib_data.pulse_energy = [] calib_data.l3_energy = [] calib_data.bc2_energy = [] calib_data.charge = [] calib_data.current_bc2 = [] # pct = [] if plot: # Make the fee figure fee_fig = plt.figure('fee hist') fee_fig.clf() # Make the energy figure energy_fig = plt.figure('energy') energy_fig.clf() energy_ax_list = [] # All data should be plotted in the last subplot common_ax = energy_fig.add_subplot(2, 3, 6) plt.xlabel('L3 energy (MeV)') i_plot = 0 # For each of the runs for run, h5 in h5_dict.iteritems(): # Get the fee values fee = h5['fee_mean'].value # Check which fee values are actually real fee_valid = np.isfinite(fee) # Implement a range selection of the valid fee values # fee_selection = fee_valid & (0.03 < fee) & (fee < 0.08) # fee_selection = fee_valid & (0 < fee) & (fee < 10) fee_selection = fee_valid & (0.04 < fee) & (fee < 0.06) # Fill the fee plot if plot: # Increment the plot number... i_plot += 1 # ...and make the axis ax = fee_fig.add_subplot(2, 3, i_plot) # Make fee histograms _, bins, _ = ax.hist(fee[fee_valid], bins=100) # and plot the result ax.hist(fee[fee_selection], bins=bins) ax.set_title('run {}'.format(run)) # Get the peak center of the fee filtered peaks streak_center = h5['streak_peak_center'][fee_selection] # Create a selection on the peak center based on the distribution sc_mean = streak_center.mean() sc_std = streak_center.std() streak_selection = ( (sc_mean - 3*sc_std < h5['streak_peak_center'][:]) & (h5['streak_peak_center'][:] < sc_mean + 3*sc_std)) # Get the corrected l3 energy corrected_energy_l3 = h5['energy_L3_corrected_MeV'][fee_selection] # and make a similar selection as above cor_l3_mean = corrected_energy_l3.mean() cor_l3_std = corrected_energy_l3.std() cor_l3_selection = ( (cor_l3_mean - 3*cor_l3_std < h5['energy_L3_corrected_MeV'][:]) & (h5['energy_L3_corrected_MeV'][:] < cor_l3_mean + 3*cor_l3_std)) # The total shot selection taked all the three above created selections # into account selection = fee_selection * streak_selection * cor_l3_selection # Append the data in the lists calib_data.e_energy.append(h5['energy_L3_corrected_MeV'][selection]) calib_data.l3_energy.append(h5['raw/energy_L3_MeV'][selection]) calib_data.bc2_energy.append(h5['energy_BC2_MeV'][selection]) calib_data.p_energy_calib.append( [calib_energy_map[run]]*selection.sum()) calib_data.p_energy_calib_mean.append([calib_energy_map[run]]) calib_data.tof.append(h5['streak_peak_center'][selection]) calib_data.integral.append(h5['streak_peak_integral'][selection]) calib_data.pulse_energy.append(fee[selection]) calib_data.charge.append(h5['raw/charge_nC'][selection]) calib_data.current_bc2.append(h5['raw/current_BC2_A'][selection]) # pct.append(h5['raw/phase_cavity_times'][selection, 1]) # pct[-1] -= pct[-1][np.isfinite(pct[-1])].mean() # Populate the energy plot if plot: # Make the axis ax = energy_fig.add_subplot(2, 3, i_plot) energy_ax_list.append(ax) # plt.plot(energy_l3, streak_center, '.') plt.scatter(calib_data.l3_energy[-1], calib_data.tof[-1], s=1, c=calib_data.pulse_energy[-1], linewidths=(0,), alpha=1) if i_plot % 3 == 1: plt.ylabel('Photoline center (us)') if i_plot > 3: plt.xlabel('L3 energy (MeV)') ax.set_title('run {}'.format(run)) common_ax.plot(calib_data.l3_energy[-1], calib_data.tof[-1], '.') calib_data.tof_mean = [[np.mean(tof_vals)] for tof_vals in calib_data.tof] # Convert the data lists to arrays if verbose: print 'Making data arrays.' for k, v in calib_data.toDict().iteritems(): setattr(calib_data, k, np.concatenate(v)) return calib_data def make_tof_to_energy_matrix(energy_scale_eV, plot=False, verbose=0): # Get time to energy conversion parameters time_to_energy_params, tof_prediction_params = \ fit_tof_prediction(plot=plot, verbose=verbose) # Get the calib data calib_data = get_calib_data(plot=plot, verbose=verbose) # and unpack the needed parameters integral = calib_data.integral pulse_energy = calib_data.pulse_energy tof = calib_data.tof # e_energy = calib_data.e_energy # Load the data files _, h5_dict, _ = load_tof_to_energy_data() # and get the time scale time_scale = h5_dict.values()[0]['raw/time_scale'].value # e_energy = np.concatenate(e_energy) # p_energy_axis = np.linspace(p_energy_calib.min() * 0.99, # p_energy_calib.max() * 1.01, # 2**10) # tof = np.concatenate(tof) # integral = np.concatenate(integral) # pulse_energy = np.concatenate(pulse_energy) # e_e_axis = np.linspace(4500, 4800, 2**10) tof_lims = np.linspace(1.58, 1.66, 2**10 + 1) tof_axis = (tof_lims[:-1] + tof_lims[1:]) / 2 # Convert the effective length to real units (mm) D_mm = (time_to_energy_params['d_eff'].value * tof_module.c_0_mps * 1e-3 / np.sqrt(tof_module.m_e_eV / 2)) trans_mat, _ = tof_module.get_time_to_energy_conversion( time_scale, energy_scale_eV, verbose=(verbose > 1), D_mm=D_mm, prompt_us=time_to_energy_params['t_0'].value, t_offset_us=0, E_offset_eV=time_to_energy_params['E_0'].value) trans_mat = trans_mat.toarray() if plot: plt.figure('trans mat raw') plt.clf() plt.imshow(trans_mat, interpolation='none', origin='low', aspect='auto', extent=(time_scale.min(), time_scale.max(), energy_scale_eV.min(), energy_scale_eV.max())) norm_integral = integral/pulse_energy binned_norm_int = np.empty_like(tof_axis) for i_bin in range(len(binned_norm_int)): I = ((tof_lims[i_bin] < tof) & (tof < tof_lims[i_bin + 1]) & np.isfinite(norm_integral)) binned_norm_int[i_bin] = norm_integral[I].mean() I = np.isfinite(binned_norm_int) binned_norm_int = binned_norm_int[I] tof_binned_norm_int = tof_axis[I] trans_p = np.polyfit(tof, norm_integral, 4) trans_model = lmfit.models.SkewedGaussianModel() trans_model.set_param_hint('center', value=1.62, min=1.58, max=1.65) trans_model.set_param_hint('sigma', value=0.1, min=0, max=1) trans_model.set_param_hint('amplitude', value=1, min=0) trans_model.set_param_hint('gamma', value=1, min=0) trans_params = trans_model.make_params() trans_result = trans_model.fit(norm_integral, x=tof, params=trans_params) binned_result = trans_model.fit(binned_norm_int, x=tof_binned_norm_int, params=trans_params) if verbose: print '\nBinned fit result:' print binned_result.fit_report() print '\nRaw data fit result:' print trans_result.fit_report() if plot: plt.figure('intensity') plt.clf() ax1 = plt.subplot(131) plt.plot(tof, integral, '.', label='direct integral') plt.xlabel('tof') plt.ylabel('peak integral') plt.legend(fontsize='medium') ax2 = plt.subplot(132, sharex=ax1) plt.plot(tof, integral/pulse_energy, '.', label='raw (integral / fee)') plt.plot(tof_axis, np.polyval(trans_p, tof_axis), '-c', label='polynomial fit') plt.plot(tof_axis, trans_model.eval(x=tof_axis, **trans_result.best_values), label='fit to raw') plt.xlabel('tof') plt.ylabel('fee normalized peak integral') plt.legend(fontsize='medium') plt.subplot(133, sharex=ax2, sharey=ax2) plt.plot(tof_binned_norm_int, binned_norm_int, '.', label='binned data') plt.plot(tof_axis, trans_model.eval(x=tof_axis, **trans_result.best_values), label='fitt to raw') plt.plot(tof_axis, trans_model.eval(x=tof_axis, **binned_result.best_values), label='fit to binned') plt.xlabel('tof') plt.ylabel('fee normalized peak integral') plt.legend(fontsize='medium') plt.ylim(0, 0.11) plt.savefig('figures/timeToEnergyIntensity.png') transmission_factors = 1. / trans_model.eval(x=time_scale, **binned_result.best_values) transmission_factors[(time_scale < tof_lims.min()) | (tof_lims.max() < time_scale)] = 0.0 transmission_factors[~np.isfinite(transmission_factors)] = 0.0 transmission_factors /= transmission_factors[ transmission_factors > 0].min() return (trans_mat * transmission_factors, time_scale, energy_scale_eV, time_to_energy_params, tof_prediction_params) def fit_tof_prediction(plot=False, verbose=0): if verbose > 0: print 'In "fit_tof_prediction()".' # Get the calibration data calib_data = get_calib_data(plot=plot, verbose=verbose) # Unpack calib data tof_mean = calib_data.tof_mean p_energy_calib_mean = calib_data.p_energy_calib_mean l3_energy = calib_data.l3_energy bc2_energy = calib_data.bc2_energy pulse_energy = calib_data.pulse_energy tof = calib_data.tof p_energy_calib = calib_data.p_energy_calib # Fit the time to energuy conversion using the values given by the # operators time_to_energy_params = photon_energy_params() res = lmfit.minimize(photon_energy_model, time_to_energy_params, args=(tof_mean, p_energy_calib_mean)) if verbose: print 'Time to energy conversion fit results:' lmfit.report_fit(res) # Select the parameters to be used in the tof time prediction calculation var_dict = {'l3_energy': l3_energy, 'bc2_energy': bc2_energy, 'fee': pulse_energy, 'tof': tof } # Create the parameters for the tof prediction prediction_params = tof_prediction_params(**var_dict) # Update the parameters from the time to energy conversion for k, v in time_to_energy_params.iteritems(): k_pred = k if k != 'IP': k_pred += '_prediction' prediction_params[k_pred].value = v.value # prediction_params[k_pred].vary = False # Perform the fit res = lmfit.minimize(tof_prediction_model, prediction_params, kws=var_dict) # Present the results if verbose: print 'Tof prediction fit report:' lmfit.report_fit(res) # Plot the differences between the measured tof and the predicted tof if plot: time_eps_fig = plt.figure('time eps') time_eps_fig.clf() plt.scatter(tof, tof_prediction_model(prediction_params, **var_dict), s=1, c=pulse_energy, linewidths=(0,)) plt.xlabel('TOF (us)') plt.ylabel('TOF prediction error (us)') cbar = plt.colorbar() cbar.set_label('fee (mJ)') plt.savefig('figures/tof_prediction.png') # Look at the time to energy conversion if plot: time_axis = np.linspace(min(tof), max(tof), 2**8) plt.figure('time to energy') plt.clf() combined_params = lmfit.Parameters() for pars in [time_to_energy_params, prediction_params]: for k, v in pars.iteritems(): combined_params.add(k, v.value) # plt.plot( # tof, # photoelectron_energy_prediction_model(combined_params, **var_dict), # '.', label='prediction + calibration') plt.plot(tof, p_energy_calib - Ne1s, '.', label='Set $E_p - E_{Ne\,1s} = E_e$ vs. TOF') plt.plot(tof_mean, p_energy_calib_mean - Ne1s, 'o', label='$E_e$v s. mean TOF') # plt.plot(time_axis, # photoelectron_energy_model(prediction_params, # time_axis, # postfix='_prediction'), # label='t -> E tof prediction') plt.plot(time_axis, photoelectron_energy_model(time_to_energy_params, time_axis), label='t -> E calibration') plt.xlabel('time (us)') plt.ylabel('photo electron energy (eV)') plt.legend(fontsize='medium') plt.grid(True) plt.savefig('figures/timeToEnergy.png') return time_to_energy_params, prediction_params if __name__ == '__main__': verbose = 2 # calib_data = get_calib_data(plot=False) energy_scale = np.linspace(40, 160, 2**8) (M, time_scale, energy_scale, params_time_to_energy, params_tof_prediction) = make_tof_to_energy_matrix( energy_scale_eV=energy_scale, plot=True, verbose=2) h5 = process.load_file('h5_files/run118_all.h5', verbose=1) process.list_hdf5_content(h5) raw = h5['raw'] time_scale = raw['time_scale'][:] time_signal_dset = h5['filtered_time_signal'] center_dset = h5['streak_peak_center'] n_events = len(raw['fiducial']) energy_scale = h5['energy_scale_eV'][:] energy_signal_dset = h5['energy_signal'] predicted_energy_dset = h5['photoelectron_energy_prediction_eV'] selected_shots = list(np.linspace(0, n_events, 10, endpoint=False)) plt.figure('time_traces') plt.clf() ax1 = plt.subplot(221) ax2 = plt.subplot(222) ax3 = plt.subplot(223) ax4 = plt.subplot(224) ax1.plot(time_scale, time_signal_dset[selected_shots, :].T) ax2.plot(np.tile(time_scale, (len(selected_shots), 1)).T - center_dset[selected_shots], time_signal_dset[selected_shots, :].T) ax3.plot(energy_scale, energy_signal_dset[selected_shots, :].T) ax4.plot(np.tile(energy_scale, (len(selected_shots), 1)).T - predicted_energy_dset[selected_shots], energy_signal_dset[selected_shots, :].T) # params_time_to_energy, params_tof_prediction = \ # fit_tof_prediction(plot=True, verbose=verbose) # h5 = process.load_file('h5_files/run108_all.h5', verbose=1) # # n_evnts = len(h5['raw/fiducial']) # time_scale = h5['raw/time_scale'].value # time_signal_dset = h5['filtered_time_signal'] # time_signal_raw_dset = h5['raw/time_signal'] # i_evt = np.random.randint(n_evnts) # t_trace = time_signal_dset[i_evt, :] # t_trace_raw = time_signal_raw_dset[i_evt, :] # e_trace = M.dot(t_trace) # # plt.figure('tof to energy conversion test') # plt.clf() # plt.subplot(121) # plt.plot(time_scale, t_trace, label='wiener deconv.') # plt.plot(time_scale, t_trace_raw, label='raw') # plt.xlabel('tof (us)') # plt.legend(loc='best', fontsize='small') # plt.subplot(122) # plt.plot(energy_scale, M.dot(t_trace)) # plt.xlabel('Energy (eV)')
gpl-2.0
enigmampc/catalyst
catalyst/exchange/live_graph_clock.py
1
3284
from time import sleep import pandas as pd from catalyst.constants import LOG_LEVEL from catalyst.exchange.utils.stats_utils import prepare_stats from catalyst.gens.sim_engine import ( BAR, SESSION_START, SESSION_END, ) from logbook import Logger log = Logger('LiveGraphClock', level=LOG_LEVEL) class LiveGraphClock(object): """Realtime clock for live trading. This class is a drop-in replacement for :class:`zipline.gens.sim_engine.MinuteSimulationClock`. This mixes the clock with a live graph. Notes ----- This seemingly awkward approach allows us to run the program using a single thread. This is important because Matplotlib does not play nice with multi-threaded environments. Zipline probably does not either. Matplotlib has a pause() method which is a wrapper around time.sleep() used in the SimpleClock. The key difference is that users can still interact with the chart during the pause cycles. This is what enables us to keep a single thread. This is also why we are not using the 'animate' callback of Matplotlib. We need to direct access to the __iter__ method in order to yield events to Zipline. The :param:`time_skew` parameter represents the time difference between the exchange and the live trading machine's clock. It's not used currently. """ def __init__(self, sessions, context, callback=None, time_skew=pd.Timedelta('0s'), start=None, end=None): self.sessions = sessions self.time_skew = time_skew self._last_emit = None self._before_trading_start_bar_yielded = True self.context = context self.callback = callback self.start = start self.end = end def __iter__(self): from matplotlib import pyplot as plt self.handle_late_start() yield pd.Timestamp.utcnow(), SESSION_START while True: current_time = pd.Timestamp.utcnow() current_minute = current_time.floor('1T') if self.end is not None and current_minute >= self.end: break if self._last_emit is None or current_minute > self._last_emit: log.debug('emitting minutely bar: {}'.format(current_minute)) self._last_emit = current_minute yield current_minute, BAR recorded_cols = list(self.context.recorded_vars.keys()) df, _ = prepare_stats( self.context.frame_stats, recorded_cols=recorded_cols ) self.callback(self.context, df) else: # I can't use the "animate" reactive approach here because # I need to yield from the main loop. # Workaround: https://stackoverflow.com/a/33050617/814633 plt.pause(1) yield current_minute, SESSION_END def handle_late_start(self): if self.start: time_diff = (self.start - pd.Timestamp.utcnow()) log.info( 'The algorithm is waiting for the specified ' 'start date: {}'.format(self.start)) sleep(time_diff.seconds) while pd.Timestamp.utcnow() < self.start: pass
apache-2.0
i-sultan/Smart-Trader
src/st_helpers.py
1
8647
""" File for helper functions used by more than one class in ST system. """ #.-------------------. #| imports | #'-------------------' import pandas as pd import numpy as np import pandas_datareader.data as web import matplotlib.pyplot as plt from cycler import cycler from pandas.tools.plotting import table #.---------------------. #| exception classes | #'---------------------' class Error(Exception): """Base class for exceptions.""" pass class ValidationError(Error): """Exception raised for errors in the input. Attributes: - message (str): explanation of the error. """ def __init__(self, message): self.message = message #.---------------. #| classes | #'---------------' class PlotTypes: Plot, Hist, Scatter, Table = range(4) class PlotInfo(object): """Class that contains all info needed for plotting""" def __init__(self, df, title, xlabel, ylabel, type, line_styles = None): self.df = df self.title = title self.xlabel = xlabel self.ylabel = ylabel self.type = type self.line_styles = line_styles class TableInfo(object): """Class that contains all info needed for table printing""" def __init__(self, df, title): self.df = df self.title = title self.type = PlotTypes.Table class StColors(object): orange = '#f5be2e' bright_green = '#b7f731' dark_grey = '#191919' mid_grey = '#323232' light_grey = '#c8c8c8' #.-------------------------. #| helper functions | #'-------------------------' def get_data_web(symbols, dates, force_spy = True) : """Read stock data (adjusted close) for given symbols from web """ df = pd.DataFrame(index=dates) if force_spy and 'SPY' not in symbols: # add SPY for reference, if absent symbols.insert(0, 'SPY') for symbol in symbols: append_days = 21 #add enough days to cover first na's of the moving window df_temp = web.DataReader(symbol, data_source='yahoo', start=dates[0]-append_days, end=dates[-1]) df_temp = df_temp.rename(columns={'Adj Close': symbol}) if len(symbols) == 1: #indicators: Daily, SMA(%), EMA(%), SMA Momentum, Volatility, Volume df = df_temp[[symbol, 'Volume', 'Open', 'Close', 'Low', 'High']] pd.options.mode.chained_assignment = None #removes unnecessary warning df['Volume'] = df['Volume'].pct_change(periods=1) df['Open'] = (df['Open']-df['Close'])/df['Close'] df['High'] = (df['High']-df['Close'])/df['Close'] df['Low'] = (df['Low' ]-df['Close'])/df['Close'] df['SMA'] = df[symbol].pct_change(periods=1).rolling(window = 10).mean() df['EWMA']= df[symbol].pct_change(periods=1).ewm(span = 10).mean() df['MOM'] = df[symbol].pct_change(periods=10).rolling(window = 10).mean() df['STD'] = df[symbol].pct_change(periods=1).rolling(window = 10).std() else: df = df.join(df_temp[[symbol]]) df = df.ix[append_days:,:] if force_spy and symbol == 'SPY': # drop dates SPY did not trade df = df.dropna(subset=['SPY']) if not force_spy: df = df.dropna(subset=[df.columns[0]]) return df def get_tableau_colors(): tableau20 = [(31, 119, 180) , (174, 199, 232), (255, 127, 14) , (255, 187, 120), (44 , 160, 44 ), (152, 223, 138), (214, 39, 40) , (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75) , (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34) , (219, 219, 141), (23, 190, 207) , (158, 218, 229)] return [(r/255., g/255., b/255.) for (r,g,b) in tableau20] def plot_data(fig, plot_info): """Plot with specified title and axis labels.""" ax = fig.add_subplot(111) #configure surrounding area (edges, ticks, colors) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.set_prop_cycle(cycler('color', get_tableau_colors())) #plot data df = plot_info.df if plot_info.type == PlotTypes.Plot: if plot_info.line_styles: df.plot(ax=ax, fontsize=12, lw=2.5, style = plot_info.line_styles) else: df.plot(ax=ax, fontsize=12, lw=2.5) elif plot_info.type == PlotTypes.Hist: df.plot.hist(ax=ax, fontsize=12, bins = 25, alpha = .8, lw=1) elif plot_info.type == PlotTypes.Scatter: df.plot.scatter(x = df.columns[0], y = df.columns[1], ax=ax, fontsize=12, lw=.5) #plot linear fit on top of scatter plot, and display alpha\beta beta, alpha = np.polyfit(df.ix[:,0], df.ix[:,1], 1) ax.plot(df.ix[:,0], beta * df.ix[:,0] + alpha, '-', lw = 3, c = (1, 0.5, 0.17)) text = r'$\alpha = $' + '%.2f\n'%alpha + r'$\beta = $' + '%.2f'%beta props = dict(boxstyle='round', facecolor=(1,0.5,0.17), alpha=.7) ax.text(0.05, 0.95, text, transform=ax.transAxes, fontsize=14, verticalalignment='top', bbox=props) #configure interior (legend, grid) if plot_info.type != PlotTypes.Scatter: ax.legend(bbox_to_anchor=(0, 1), loc='upper left', ncol=1) ax.xaxis.grid(True, linestyle='--', alpha =.1, lw=1) ax.yaxis.grid(True, linestyle='--', alpha =.2, lw=1) #set title and x,y labels fig.suptitle(plot_info.title, fontsize=20, fontweight='bold') ax.set_xlabel(plot_info.xlabel, fontsize=16, fontweight='bold') ax.set_ylabel(plot_info.ylabel, fontsize=16, fontweight='bold') #setup padding fig.tight_layout() fig.subplots_adjust(top=0.9) #set axes area percentage of the figure def tabulate_data(fig, table_info): """Prepare a matplotlib table using provided table info and adding result to figure.""" fig.suptitle(table_info.title, fontsize=20, fontweight='bold') ax = fig.add_subplot(111) #configure table colors tableau20 = get_tableau_colors() color_1 = tableau20[0] color_2 = tableau20[1] #setup table at the middle of the figure df = table_info.df df.index = ' ' + df.index + ' ' #adding spaces to index(label) column since label column is fixed width nrows, ncols = df.shape colwidth = 0.16 rowheight = 0.1 tab = table(ax, np.round(df, 2), loc='upper center', bbox=[.5-ncols*colwidth/2,.5-nrows*rowheight/2,ncols*colwidth,nrows*rowheight]) for key, cell in tab.get_celld().items(): #set cell properties cell._text.set_size(14) cell.set_edgecolor('w') cell.set_linestyle('-') cell.set_facecolor('w') cell.set_linewidth(1) #change color of even rows vs. odd rows row, col = key if row%2 == 0: cell.set_facecolor(color_1) cell._text.set_color('w') else: cell.set_facecolor(color_2) cell._text.set_color([i*0.65 for i in color_1]) #set color for header and index column if row == 0 or col == -1: cell._text.set_color('w') cell._text.set_weight('bold') cell.set_facecolor([i*0.65 for i in color_1]) if row == 0: cell.set_height(cell.get_height()*1.4) #makes first row a bit taller ax.axis('off') def daily_percent_returns(df): daily_percent_returns = df.pct_change(periods=1)*100 daily_percent_returns.ix[0,:] = 0 return daily_percent_returns def daily_returns(df): daily_returns = df-df.shift(1) daily_returns.ix[0,:] = 0 return daily_returns def cumulative_percent_returns(df): cumulative_returns = (df/df.ix[0]-1)*100 return cumulative_returns def calc_sharpe(df, risk_free_rate = 0): #annual risk_free_rate of 5% should be given as 0.05 df = df.pct_change() - risk_free_rate/252 sharpe_ratio = np.sqrt(252) * df.mean() / df.std() sharpe_ratio.name = 'Sharpe ratio' return sharpe_ratio def calc_errors(error_list, relative_error_list, hit_list): """ Calculate different types of errors (MSE, RMSE, MAE, MAPE, hit_rate) based on lists of error and relative errors """ absolute_error_list = np.abs(error_list) MSE = np.mean(absolute_error_list**2) RMSE= np.sqrt(MSE) MAE = np.mean(absolute_error_list) MAPE= np.mean(np.abs(relative_error_list)) hit_rate = float(sum(hit_list))/len(hit_list) return (MSE, RMSE, MAE, MAPE, hit_rate)
gpl-3.0
lmartinet/ISTEX_MentalRotation
LDA.py
2
7670
# -*- coding: utf-8 -*- # # This file is part of Istex_Mental_Rotation. # Copyright (C) 2016 3ST ERIC Laboratory. # # This is a free software; you can redistribute it and/or modify it # under the terms of the Revised BSD License; see LICENSE file for # more details. # Load the SVD representation of documents done for the whole corpus of ISTEX and UCBL. # Classify the documents by clusters using the LatentDirichletAllocation method. Try with different number of clusters. # Extract the key words representing each cluster. # co-author : Lucie Martinet <[email protected]> # co-author : Hussein AL-NATSHEH <[email protected].> # Affiliation: University of Lyon, ERIC Laboratory, Lyon2 # Thanks to ISTEX project for the foundings import os, argparse, pickle, json from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.decomposition import TruncatedSVD import IPython from sklearn.decomposition import LatentDirichletAllocation import numpy as np import sys reload(sys) sys.setdefaultencoding('utf8') def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): print("Topic #%d:" % topic_idx) print(" | ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) print() def write_top_words(model, feature_names, n_top_words, outfile): for topic_idx, topic in enumerate(model.components_): outfile.write("Topic #%d:" % topic_idx) outfile.write("\n") outfile.write(" | ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) outfile.write("\n") outfile.write("\n") def KeysValuesInit(nb_articles) : keys = np.array(range(nb_articles),dtype=np.object) values = np.array(range(nb_articles),dtype=np.object) for i, (key,value) in enumerate(input_dict.items()) : keys[i] = key values[i] = value return keys, values def statisticsClusterSelection(cluster, document_id, docs_topic, selection, stat_selection, outfile_pointer): if selection in document_id and outfile_pointer != None : # keys[t] is a string, the name of the document max_index = np.argmax(docs_topic[cluster], axis=0) #docs_topic[t]: dictionary of the clusters with the likelihood to belong to this cluster outfile_pointer.write(str(document_id) + " best cluster : " + str(max_index) + " likelihood: " + str(docs_topic[cluster][max_index])) # find the index of one list, with a numpy array format if max_index not in stat_selection : stat_selection[max_index] = 0 stat_selection[max_index] += 1 outfile_pointer.write("\n") return stat_selection # Compute the clusters of document and write the results in output files. # Need the def statiticsClusters(nb_cluster, tf_idf_bow, tf_feature_names, ucbl_output=None, istex_output = None ,max_iter=5, learning_method='online', learning_offset=50., random_state=0): lda = LatentDirichletAllocation(n_topics=nb_cluster, max_iter=max_iter, learning_method=learning_method, learning_offset=learning_offset, random_state=random_state) lda.fit(tf_idf_bow) docs_topic = lda.transform(tf_idf_bow) list_ucbl = dict() list_mristex = dict() for t in range(len(docs_topic)) : list_ucbl = statisticsClusterSelection(t, keys[t], docs_topic, "UCBL", list_ucbl, ucbl_output) list_mristex = statisticsClusterSelection(t, keys[t], docs_topic, "MRISTEX", list_mristex, istex_output) generic.write("Total number of topics: "+str(nb_cluster)) generic.write("\nNumber of topics for ucbl: "+str(len(list_ucbl))) generic.write("\nNumber of topics for istex: "+str(len(list_mristex))) ucbl_out.write("\nNumber of topics: "+str(len(list_ucbl))+"\n") ucbl_out.write("Total number of topics: "+str(i)+"\n\n") istex_out.write("Number of topics: "+str(len(list_mristex))+"\n\n") generic.write("\nTop words\n") write_top_words(lda, tf_feature_names, 15, generic) generic.write("End top words") vocab = tf_idf_vectorizer.get_feature_names() generic.write('size of the vocabulary:'+str(len(vocab))) generic.write("\nUCBL in topics :\n") for t in list_ucbl : generic.write("Cluster " + str(t) + " UCBL Nb : " + str(list_ucbl[t]) + "\n") generic.write("\nMR ISTEX in topics :\n") for t in list_mristex : generic.write("Cluster " + str(t) + " MR ISTEX Nb : " + str(list_mristex[t]) + "\n") generic.write("\n\n") print "Nb clusters ", i, " Nb ucbl clusters " , len(list_ucbl.values()) , min(list_ucbl.values()), " Nb istex cluster ",len(list_mristex), min(list_mristex.values()) # how many documents in the cluster containing less ucbl documents if __name__ == "__main__" : parser = argparse.ArgumentParser() parser.add_argument("--input_file", default='results.pickle', type=str) # is a .json file parser.add_argument("--output_file", default='results/results_lda.txt', type=str) # is a .json file parser.add_argument("--lemmatizer", default=0, type=int) # for using lemmatization_tokenizer parser.add_argument("--mx_ngram", default=2, type=int) # the upper bound of the ngram range parser.add_argument("--mn_ngram", default=1, type=int) # the lower bound of the ngram range parser.add_argument("--stop_words", default=1, type=int) # filtering out English stop-words parser.add_argument("--vec_size", default=100, type=int) # the size of the vector in the semantics space parser.add_argument("--min_count", default=1, type=int) # minimum frequency of the token to be included in the vocabulary parser.add_argument("--max_df", default=0.95, type=float) # how much vocabulary percent to keep at max based on frequency parser.add_argument("--debug", default=0, type=int) # embed IPython to use the decomposed matrix while running parser.add_argument("--compress", default="json", type=str) # for dumping resulted files parser.add_argument("--out_dir", default="results", type=str) # name of the output directory parser.add_argument("--min_nb_clusters", default=2, type=int) # minimum number of cluster we try parser.add_argument("--max_nb_clusters", default=10, type=int) # maximum number of cluster we try args = parser.parse_args() input_file = args.input_file output_file = args.output_file out_dir = args.out_dir lemmatizer = args.lemmatizer min_nb_clusters = args.min_nb_clusters max_nb_clusters = args.max_nb_clusters if lemmatizer: lemmatizer = Lemmatizer() else: lemmatizer = None mx_ngram = args.mx_ngram mn_ngram = args.mn_ngram stop_words = args.stop_words if stop_words: stop_words = 'english' else: stop_words = None n_components = args.vec_size min_count = args.min_count max_df = args.max_df debug = args.debug compress = args.compress out_dir = args.out_dir # instead of recomputing the vectors, we should use the one of the complete experiment, so use pickle load f = open(input_file, "r") input_dict = pickle.load(f) nb_articles = len(input_dict) f.close() keys, values = KeysValuesInit(nb_articles) tf_idf_vectorizer = TfidfVectorizer(input='content', analyzer='word', stop_words=stop_words, tokenizer=lemmatizer, min_df=min_count, ngram_range=(mn_ngram, mx_ngram), max_df=max_df) tf_idf_bow = tf_idf_vectorizer.fit_transform(values) tf_feature_names = tf_idf_vectorizer.get_feature_names() generic = open(output_file, "w") ucbl_out = open(os.path.join(out_dir, "lda_ucbl_cluster.txt"), "w") istex_out = open(os.path.join(out_dir, "lda_mristex_cluster.txt"), "w") for i in range(min_nb_clusters, max_nb_clusters) : statiticsClusters(i, tf_idf_bow, tf_feature_names, ucbl_out, istex_out ,max_iter=5, learning_method='online', learning_offset=50., random_state=0) generic.close() ucbl_out.close() istex_out.close()
bsd-3-clause
kevin-intel/scikit-learn
sklearn/experimental/enable_halving_search_cv.py
11
1226
"""Enables Successive Halving search-estimators The API and results of these estimators might change without any deprecation cycle. Importing this file dynamically sets the :class:`~sklearn.model_selection.HalvingRandomSearchCV` and :class:`~sklearn.model_selection.HalvingGridSearchCV` as attributes of the `model_selection` module:: >>> # explicitly require this experimental feature >>> from sklearn.experimental import enable_halving_search_cv # noqa >>> # now you can import normally from model_selection >>> from sklearn.model_selection import HalvingRandomSearchCV >>> from sklearn.model_selection import HalvingGridSearchCV The ``# noqa`` comment comment can be removed: it just tells linters like flake8 to ignore the import, which appears as unused. """ from ..model_selection._search_successive_halving import ( HalvingRandomSearchCV, HalvingGridSearchCV ) from .. import model_selection # use settattr to avoid mypy errors when monkeypatching setattr(model_selection, "HalvingRandomSearchCV", HalvingRandomSearchCV) setattr(model_selection, "HalvingGridSearchCV", HalvingGridSearchCV) model_selection.__all__ += ['HalvingRandomSearchCV', 'HalvingGridSearchCV']
bsd-3-clause
more1/ThinkStats2
code/survival.py
65
17881
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import numpy as np import pandas import nsfg import thinkstats2 import thinkplot """ Outcome codes from http://www.icpsr.umich.edu/nsfg6/Controller? displayPage=labelDetails&fileCode=PREG&section=&subSec=8016&srtLabel=611932 1 LIVE BIRTH 9148 2 INDUCED ABORTION 1862 3 STILLBIRTH 120 4 MISCARRIAGE 1921 5 ECTOPIC PREGNANCY 190 6 CURRENT PREGNANCY 352 """ FORMATS = ['pdf', 'eps', 'png'] class SurvivalFunction(object): """Represents a survival function.""" def __init__(self, cdf, label=''): self.cdf = cdf self.label = label or cdf.label @property def ts(self): return self.cdf.xs @property def ss(self): return 1 - self.cdf.ps def __getitem__(self, t): return self.Prob(t) def Prob(self, t): """Returns S(t), the probability that corresponds to value t. t: time returns: float probability """ return 1 - self.cdf.Prob(t) def Probs(self, xs): """Gets probabilities for a sequence of values.""" return [self.Prob(x) for x in xs] def Mean(self): """Mean survival time.""" return self.cdf.Mean() def Items(self): """Sorted list of (t, s) pairs.""" return zip(self.ts, self.ss) def Render(self): """Generates a sequence of points suitable for plotting. returns: tuple of (sorted times, survival function) """ return self.ts, self.ss def MakeHazard(self, label=''): """Computes the hazard function. sf: survival function returns: Pmf that maps times to hazard rates """ ss = self.ss lams = {} for i, t in enumerate(self.ts[:-1]): hazard = (ss[i] - ss[i+1]) / ss[i] lams[t] = hazard return HazardFunction(lams, label=label) def MakePmf(self, filler=None): """Makes a PMF of lifetimes. filler: value to replace missing values returns: Pmf """ pmf = thinkstats2.Pmf() for val, prob in self.cdf.Items(): pmf.Set(val, prob) cutoff = self.cdf.ps[-1] if filler is not None: pmf[filler] = 1-cutoff return pmf def RemainingLifetime(self, filler=None, func=thinkstats2.Pmf.Mean): """Computes remaining lifetime as a function of age. func: function from conditional Pmf to expected liftime returns: Series that maps from age to remaining lifetime """ pmf = self.MakePmf(filler=filler) d = {} for t in sorted(pmf.Values())[:-1]: pmf[t] = 0 pmf.Normalize() d[t] = func(pmf) - t #print(t, d[t]) return pandas.Series(d) class HazardFunction(object): """Represents a hazard function.""" def __init__(self, d, label=''): """Initialize the hazard function. d: dictionary (or anything that can initialize a series) label: string """ self.series = pandas.Series(d) self.label = label def __getitem__(self, t): return self.series[t] def Render(self): """Generates a sequence of points suitable for plotting. returns: tuple of (sorted times, hazard function) """ return self.series.index, self.series.values def MakeSurvival(self, label=''): """Makes the survival function. returns: SurvivalFunction """ ts = self.series.index ss = (1 - self.series).cumprod() cdf = thinkstats2.Cdf(ts, 1-ss) sf = SurvivalFunction(cdf, label=label) return sf def Extend(self, other): """Extends this hazard function by copying the tail from another. other: HazardFunction """ last = self.series.index[-1] more = other.series[other.series.index > last] self.series = pandas.concat([self.series, more]) def ConditionalSurvival(pmf, t0): """Computes conditional survival function. Probability that duration exceeds t0+t, given that duration >= t0. pmf: Pmf of durations t0: minimum time returns: tuple of (ts, conditional survivals) """ cond = thinkstats2.Pmf() for t, p in pmf.Items(): if t >= t0: cond.Set(t-t0, p) return SurvivalFunction(thinkstats2.Cdf(cond)) def PlotConditionalSurvival(durations): """Plots conditional survival curves for a range of t0. durations: list of durations """ pmf = thinkstats2.Pmf(durations) times = [8, 16, 24, 32] thinkplot.PrePlot(len(times)) for t0 in times: sf = ConditionalSurvival(pmf, t0) label = 't0=%d' % t0 thinkplot.Plot(sf, label=label) thinkplot.Show() def PlotSurvival(complete): """Plots survival and hazard curves. complete: list of complete lifetimes """ thinkplot.PrePlot(3, rows=2) cdf = thinkstats2.Cdf(complete, label='cdf') sf = SurvivalFunction(cdf, label='survival') print(cdf[13]) print(sf[13]) thinkplot.Plot(sf) thinkplot.Cdf(cdf, alpha=0.2) thinkplot.Config() thinkplot.SubPlot(2) hf = sf.MakeHazard(label='hazard') print(hf[39]) thinkplot.Plot(hf) thinkplot.Config(ylim=[0, 0.75]) def PlotHazard(complete, ongoing): """Plots the hazard function and survival function. complete: list of complete lifetimes ongoing: list of ongoing lifetimes """ # plot S(t) based on only complete pregnancies cdf = thinkstats2.Cdf(complete) sf = SurvivalFunction(cdf) thinkplot.Plot(sf, label='old S(t)', alpha=0.1) thinkplot.PrePlot(2) # plot the hazard function hf = EstimateHazardFunction(complete, ongoing) thinkplot.Plot(hf, label='lams(t)', alpha=0.5) # plot the survival function sf = hf.MakeSurvival() thinkplot.Plot(sf, label='S(t)') thinkplot.Show(xlabel='t (weeks)') def EstimateHazardFunction(complete, ongoing, label='', shift=1e-7): """Estimates the hazard function by Kaplan-Meier. http://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator complete: list of complete lifetimes ongoing: list of ongoing lifetimes label: string shift: presumed additional survival of ongoing """ # pmf and sf of complete lifetimes n = len(complete) hist_complete = thinkstats2.Hist(complete) sf_complete = SurvivalFunction(thinkstats2.Cdf(complete)) # sf for ongoing lifetimes # The shift is a regrettable hack needed to deal with simultaneity. # If a case is complete at some t and another case is ongoing # at t, we presume that the ongoing case exceeds t+shift. m = len(ongoing) cdf = thinkstats2.Cdf(ongoing).Shift(shift) sf_ongoing = SurvivalFunction(cdf) lams = {} for t, ended in sorted(hist_complete.Items()): at_risk = ended + n * sf_complete[t] + m * sf_ongoing[t] lams[t] = ended / at_risk #print(t, ended, n * sf_complete[t], m * sf_ongoing[t], at_risk) return HazardFunction(lams, label=label) def CleanData(resp): """Cleans a respondent DataFrame. resp: DataFrame of respondents """ resp.cmmarrhx.replace([9997, 9998, 9999], np.nan, inplace=True) resp['agemarry'] = (resp.cmmarrhx - resp.cmbirth) / 12.0 resp['age'] = (resp.cmintvw - resp.cmbirth) / 12.0 month0 = pandas.to_datetime('1899-12-15') dates = [month0 + pandas.DateOffset(months=cm) for cm in resp.cmbirth] resp['decade'] = (pandas.DatetimeIndex(dates).year - 1900) // 10 def AddLabelsByDecade(groups, **options): """Draws fake points in order to add labels to the legend. groups: GroupBy object """ thinkplot.PrePlot(len(groups)) for name, _ in groups: label = '%d0s' % name thinkplot.Plot([15], [1], label=label, **options) def EstimateSurvivalByDecade(groups, **options): """Groups respondents by decade and plots survival curves. groups: GroupBy object """ thinkplot.PrePlot(len(groups)) for _, group in groups: _, sf = EstimateSurvival(group) thinkplot.Plot(sf, **options) def PlotPredictionsByDecade(groups, **options): """Groups respondents by decade and plots survival curves. groups: GroupBy object """ hfs = [] for _, group in groups: hf, sf = EstimateSurvival(group) hfs.append(hf) thinkplot.PrePlot(len(hfs)) for i, hf in enumerate(hfs): if i > 0: hf.Extend(hfs[i-1]) sf = hf.MakeSurvival() thinkplot.Plot(sf, **options) def ResampleSurvival(resp, iters=101): """Resamples respondents and estimates the survival function. resp: DataFrame of respondents iters: number of resamples """ _, sf = EstimateSurvival(resp) thinkplot.Plot(sf) low, high = resp.agemarry.min(), resp.agemarry.max() ts = np.arange(low, high, 1/12.0) ss_seq = [] for _ in range(iters): sample = thinkstats2.ResampleRowsWeighted(resp) _, sf = EstimateSurvival(sample) ss_seq.append(sf.Probs(ts)) low, high = thinkstats2.PercentileRows(ss_seq, [5, 95]) thinkplot.FillBetween(ts, low, high, color='gray', label='90% CI') thinkplot.Save(root='survival3', xlabel='age (years)', ylabel='prob unmarried', xlim=[12, 46], ylim=[0, 1], formats=FORMATS) def EstimateSurvival(resp): """Estimates the survival curve. resp: DataFrame of respondents returns: pair of HazardFunction, SurvivalFunction """ complete = resp[resp.evrmarry == 1].agemarry ongoing = resp[resp.evrmarry == 0].age hf = EstimateHazardFunction(complete, ongoing) sf = hf.MakeSurvival() return hf, sf def PlotMarriageData(resp): """Plots hazard and survival functions. resp: DataFrame of respondents """ hf, sf = EstimateSurvival(resp) thinkplot.PrePlot(rows=2) thinkplot.Plot(hf) thinkplot.Config(legend=False) thinkplot.SubPlot(2) thinkplot.Plot(sf) thinkplot.Save(root='survival2', xlabel='age (years)', ylabel='prob unmarried', ylim=[0, 1], legend=False, formats=FORMATS) return sf def PlotPregnancyData(preg): """Plots survival and hazard curves based on pregnancy lengths. preg: """ complete = preg.query('outcome in [1, 3, 4]').prglngth print('Number of complete pregnancies', len(complete)) ongoing = preg[preg.outcome == 6].prglngth print('Number of ongoing pregnancies', len(ongoing)) PlotSurvival(complete) thinkplot.Save(root='survival1', xlabel='t (weeks)', formats=FORMATS) hf = EstimateHazardFunction(complete, ongoing) sf = hf.MakeSurvival() return sf def PlotRemainingLifetime(sf1, sf2): """Plots remaining lifetimes for pregnancy and age at first marriage. sf1: SurvivalFunction for pregnancy length sf2: SurvivalFunction for age at first marriage """ thinkplot.PrePlot(cols=2) rem_life1 = sf1.RemainingLifetime() thinkplot.Plot(rem_life1) thinkplot.Config(title='pregnancy length', xlabel='weeks', ylabel='mean remaining weeks') thinkplot.SubPlot(2) func = lambda pmf: pmf.Percentile(50) rem_life2 = sf2.RemainingLifetime(filler=np.inf, func=func) thinkplot.Plot(rem_life2) thinkplot.Config(title='age at first marriage', ylim=[0, 15], xlim=[11, 31], xlabel='age (years)', ylabel='median remaining years') thinkplot.Save(root='survival6', formats=FORMATS) def ReadFemResp(dct_file='2002FemResp.dct', dat_file='2002FemResp.dat.gz', **options): """Reads the NSFG respondent data. dct_file: string file name dat_file: string file name returns: DataFrame """ dct = thinkstats2.ReadStataDct(dct_file, encoding='iso-8859-1') df = dct.ReadFixedWidth(dat_file, compression='gzip', **options) CleanData(df) return df def ReadFemResp2002(): """Reads respondent data from NSFG Cycle 6. returns: DataFrame """ usecols = ['cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'finalwgt'] resp = ReadFemResp(usecols=usecols) CleanData(resp) return resp def ReadFemResp2010(): """Reads respondent data from NSFG Cycle 7. returns: DataFrame """ usecols = ['cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'wgtq1q16'] resp = ReadFemResp('2006_2010_FemRespSetup.dct', '2006_2010_FemResp.dat.gz', usecols=usecols) resp['finalwgt'] = resp.wgtq1q16 CleanData(resp) return resp def ReadFemResp2013(): """Reads respondent data from NSFG Cycle 8. returns: DataFrame """ usecols = ['cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'wgt2011_2013'] resp = ReadFemResp('2011_2013_FemRespSetup.dct', '2011_2013_FemRespData.dat.gz', usecols=usecols) resp['finalwgt'] = resp.wgt2011_2013 CleanData(resp) return resp def ReadFemResp1995(): """Reads respondent data from NSFG Cycle 5. returns: DataFrame """ dat_file = '1995FemRespData.dat.gz' names = ['a_doi', 'timesmar', 'mardat01', 'bdaycenm', 'post_wt'] colspecs = [(12359, 12363), (3538, 3540), (11758, 11762), (13, 16), (12349, 12359)] df = pandas.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) df['cmmarrhx'] = df.mardat01 df['cmbirth'] = df.bdaycenm df['cmintvw'] = df.a_doi df['finalwgt'] = df.post_wt df.timesmar.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.timesmar > 0).astype(int) CleanData(df) return df def ReadFemResp1982(): """Reads respondent data from NSFG Cycle 4. returns: DataFrame """ dat_file = '1982NSFGData.dat.gz' names = ['cmmarrhx', 'MARNO', 'cmintvw', 'cmbirth', 'finalwgt'] #actual = ['MARIMO', 'MARNO', 'TL', 'TL', 'W5'] colspecs = [(1028, 1031), (1258, 1259), (841, 844), (12, 15), (976, 982)] df = pandas.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) df.MARNO.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.MARNO > 0).astype(int) CleanData(df) return df[:7969] def ReadFemResp1988(): """Reads respondent data from NSFG Cycle 4. returns: DataFrame """ dat_file = '1988FemRespData.dat.gz' names = ['F_13'] #['CMOIMO', 'F_13', 'F19M1MO', 'A_3'] # colspecs = [(799, 803)], colspecs = [(20, 22)]#, # (1538, 1542), # (26, 30), # (2568, 2574)] df = pandas.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) # df['cmmarrhx'] = df.F19M1MO # df['cmbirth'] = df.A_3 # df['cmintvw'] = df.CMOIMO # df['finalwgt'] = df.W5 df.F_13.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.F_13 > 0).astype(int) # CleanData(df) return df def PlotResampledByDecade(resps, iters=11, predict_flag=False, omit=None): """Plots survival curves for resampled data. resps: list of DataFrames iters: number of resamples to plot predict_flag: whether to also plot predictions """ for i in range(iters): samples = [thinkstats2.ResampleRowsWeighted(resp) for resp in resps] sample = pandas.concat(samples, ignore_index=True) groups = sample.groupby('decade') if omit: groups = [(name, group) for name, group in groups if name not in omit] # TODO: refactor this to collect resampled estimates and # plot shaded areas if i == 0: AddLabelsByDecade(groups, alpha=0.7) if predict_flag: PlotPredictionsByDecade(groups, alpha=0.1) EstimateSurvivalByDecade(groups, alpha=0.1) else: EstimateSurvivalByDecade(groups, alpha=0.2) def main(): thinkstats2.RandomSeed(17) preg = nsfg.ReadFemPreg() sf1 = PlotPregnancyData(preg) # make the plots based on Cycle 6 resp6 = ReadFemResp2002() sf2 = PlotMarriageData(resp6) ResampleSurvival(resp6) PlotRemainingLifetime(sf1, sf2) # read Cycles 5 and 7 resp5 = ReadFemResp1995() resp7 = ReadFemResp2010() # plot resampled survival functions by decade resps = [resp5, resp6, resp7] PlotResampledByDecade(resps) thinkplot.Save(root='survival4', xlabel='age (years)', ylabel='prob unmarried', xlim=[13, 45], ylim=[0, 1], formats=FORMATS) # plot resampled survival functions by decade, with predictions PlotResampledByDecade(resps, predict_flag=True, omit=[5]) thinkplot.Save(root='survival5', xlabel='age (years)', ylabel='prob unmarried', xlim=[13, 45], ylim=[0, 1], formats=FORMATS) if __name__ == '__main__': main()
gpl-3.0
SpatialMetabolomics/SM_distributed
sm/engine/mol_db.py
2
4349
from collections import OrderedDict import pandas as pd import logging import requests from sm.engine.db import DB from sm.engine.util import SMConfig logger = logging.getLogger('engine') SF_INS = 'INSERT INTO sum_formula (db_id, sf) values (%s, %s)' SF_COUNT = 'SELECT count(*) FROM sum_formula WHERE db_id = %s' SF_SELECT = 'SELECT sf FROM sum_formula WHERE db_id = %s' class MolDBServiceWrapper(object): def __init__(self, service_url): self._service_url = service_url self._session = requests.Session() def _fetch(self, url): r = self._session.get(url) r.raise_for_status() return r.json()['data'] def fetch_all_dbs(self): url = '{}/databases'.format(self._service_url) return self._fetch(url) def find_db_by_id(self, id): url = '{}/databases/{}'.format(self._service_url, id) return self._fetch(url) def find_db_by_name_version(self, name, version=None): url = '{}/databases?name={}'.format(self._service_url, name) if version: url += '&version={}'.format(version) return self._fetch(url) def fetch_db_sfs(self, db_id): return self._fetch('{}/databases/{}/sfs'.format(self._service_url, db_id)) def fetch_molecules(self, db_id, sf=None): if sf: url = '{}/databases/{}/molecules?sf={}&fields=mol_id,mol_name' return self._fetch(url.format(self._service_url, db_id, sf)) else: # TODO: replace one large request with several smaller ones url = '{}/databases/{}/molecules?fields=sf,mol_id,mol_name&limit=10000000' return self._fetch(url.format(self._service_url, db_id)) class MolecularDB(object): """ A class representing a molecule database to search through. Provides several data structures used in the engine to speed up computation Args ---------- name: str version: str If None the latest version will be used iso_gen_config : dict Isotope generator configuration mol_db_service : sm.engine.MolDBServiceWrapper Molecular database ID/name resolver db : DB Database connector """ def __init__(self, id=None, name=None, version=None, iso_gen_config=None, mol_db_service=None, db=None): self._iso_gen_config = iso_gen_config sm_config = SMConfig.get_conf() self._mol_db_service = mol_db_service or MolDBServiceWrapper(sm_config['services']['mol_db']) self._db = db if id is not None: data = self._mol_db_service.find_db_by_id(id) elif name is not None: data = self._mol_db_service.find_db_by_name_version(name, version)[0] else: raise Exception('MolDB id or name should be provided') self._id, self._name, self._version = data['id'], data['name'], data['version'] self._sf_df = None self._job_id = None self._sfs = None self._ion_centroids = None def __str__(self): return '{} {}'.format(self.name, self.version) @property def id(self): return self._id @property def name(self): return self._name @property def version(self): return self._version @property def ion_centroids(self): return self._ion_centroids def set_ion_centroids(self, ion_centroids): self._ion_centroids = ion_centroids def set_job_id(self, job_id): self._job_id = job_id def get_molecules(self, sf=None): """ Returns a dataframe with (mol_id, mol_name) or (sf, mol_id, mol_name) rows Args ---------- sf: str Returns ---------- pd.DataFrame """ return pd.DataFrame(self._mol_db_service.fetch_molecules(self.id, sf=sf)) @property def sfs(self): """ Total list of formulas """ if not self._sfs: if self._db.select_one(SF_COUNT, params=(self._id,))[0] == 0: sfs = self._mol_db_service.fetch_db_sfs(self.id) rows = [(self._id, sf) for sf in sfs] self._db.insert(SF_INS, rows) self._sfs = [row[0] for row in self._db.select(SF_SELECT, params=(self._id,))] return self._sfs
apache-2.0
pythonvietnam/scikit-learn
sklearn/linear_model/tests/test_logistic.py
23
27579
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification from sklearn.metrics import log_loss X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial')]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg and" " lbfgs solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for method in ('lbfgs', 'newton-cg', 'liblinear'): coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-16, solver=method) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-16) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4) # test for fit_intercept=True for method in ('lbfgs', 'newton-cg', 'liblinear'): Cs = [1e3] coefs, Cs = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-4, solver=method) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=3) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=3) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) clf_n = LogisticRegression(solver='newton-cg', fit_intercept=False) clf_n.fit(X, y) clf_lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) clf_lbf.fit(X, y) clf_lib = LogisticRegression(fit_intercept=False) clf_lib.fit(X, y) assert_array_almost_equal(clf_n.coef_, clf_lib.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_n.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_)) def test_logreg_predict_proba_multinomial(): X, y = make_classification( n_samples=10, n_features=20, random_state=0, n_classes=3, n_informative=10) # Predicted probabilites using the true-entropy loss should give a smaller loss # than those using the ovr method. clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs") clf_multi.fit(X, y) clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs") clf_ovr.fit(X, y) clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X)) assert_greater(clf_ovr_loss, clf_multi_loss) # Predicted probabilites using the soft-max function should give a smaller loss # than those using the logistic function. clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X)) assert_greater(clf_wrong_loss, clf_multi_loss)
bsd-3-clause
samuelstjean/dipy
dipy/viz/projections.py
11
3883
""" Visualization tools for 2D projections of 3D functions on the sphere, such as ODFs. """ import numpy as np import scipy.interpolate as interp from ..utils.optpkg import optional_package matplotlib, has_mpl, setup_module = optional_package("matplotlib") plt, _, _ = optional_package("matplotlib.pyplot") tri, _, _ = optional_package("matplotlib.tri") bm, has_basemap, _ = optional_package("mpl_toolkits.basemap") import dipy.core.geometry as geo from dipy.testing import doctest_skip_parser @doctest_skip_parser def sph_project(vertices, val, ax=None, vmin=None, vmax=None, cmap=None, cbar=True, tri=False, boundary=False, **basemap_args): """Draw a signal on a 2D projection of the sphere. Parameters ---------- vertices : (N,3) ndarray unit vector points of the sphere val: (N) ndarray Function values. ax : mpl axis, optional If specified, draw onto this existing axis instead. vmin, vmax : floats Values to cut the z cmap : mpl colormap cbar: Whether to add the color-bar to the figure triang : Whether to display the plot triangulated as a pseudo-color plot. boundary : Whether to draw the boundary around the projection in a black line Returns ------- ax : axis Matplotlib figure axis Examples -------- >>> from dipy.data import get_sphere >>> verts = get_sphere('symmetric724').vertices >>> ax = sph_project(verts.T, np.random.rand(len(verts.T))) # skip if not has_basemap """ if ax is None: fig, ax = plt.subplots(1) if cmap is None: cmap = matplotlib.cm.hot basemap_args.setdefault('projection', 'ortho') basemap_args.setdefault('lat_0', 0) basemap_args.setdefault('lon_0', 0) basemap_args.setdefault('resolution', 'c') from mpl_toolkits.basemap import Basemap m = Basemap(**basemap_args) if boundary: m.drawmapboundary() # Rotate the coordinate system so that you are looking from the north pole: verts_rot = np.array(np.dot(np.matrix([[0,0,-1],[0,1,0],[1,0,0]]), vertices)) # To get the orthographic projection, when the first coordinate is positive: neg_idx = np.where(verts_rot[0]>0) # rotate the entire bvector around to point in the other direction: verts_rot[:, neg_idx] *= -1 _, theta, phi = geo.cart2sphere(verts_rot[0], verts_rot[1], verts_rot[2]) lat, lon = geo.sph2latlon(theta, phi) x, y = m(lon, lat) my_min = np.nanmin(val) if vmin is not None: my_min = vmin my_max = np.nanmax(val) if vmax is not None: my_max = vmax if tri: m.pcolor(x, y, val, vmin=my_min, vmax=my_max, tri=True, cmap=cmap) else: cmap_data = cmap._segmentdata red_interp, blue_interp, green_interp = ( interp.interp1d(np.array(cmap_data[gun])[:,0], np.array(cmap_data[gun])[:,1]) for gun in ['red', 'blue','green']) r = (val - my_min)/float(my_max-my_min) # Enforce the maximum and minumum boundaries, if there are values # outside those boundaries: r[r<0]=0 r[r>1]=1 for this_x, this_y, this_r in zip(x,y,r): red = red_interp(this_r) blue = blue_interp(this_r) green = green_interp(this_r) m.plot(this_x, this_y, 'o', c=[red.item(), green.item(), blue.item()]) if cbar: mappable = matplotlib.cm.ScalarMappable(cmap=cmap) mappable.set_array([my_min, my_max]) # setup colorbar axes instance. pos = ax.get_position() l, b, w, h = pos.bounds # setup colorbar axes cax = fig.add_axes([l+w+0.075, b, 0.05, h], frameon=False) fig.colorbar(mappable, cax=cax) # draw colorbar return ax
bsd-3-clause
procoder317/scikit-learn
benchmarks/bench_covertype.py
120
7381
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <[email protected]> # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3), 'SAG': LogisticRegression(solver='sag', max_iter=2, C=1000) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
abhishekgahlot/scikit-learn
examples/svm/plot_separating_hyperplane.py
62
1274
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machines classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
mjgrav2001/scikit-learn
examples/cluster/plot_kmeans_silhouette_analysis.py
242
5885
""" =============================================================================== Selecting the number of clusters with silhouette analysis on KMeans clustering =============================================================================== Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1]. Silhoette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster. In this example the silhouette analysis is used to choose an optimal value for ``n_clusters``. The silhouette plot shows that the ``n_clusters`` value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is more ambivalent in deciding between 2 and 4. Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when ``n_clusters`` is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However when the ``n_clusters`` is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes as can be also verified from the labelled scatter plot on the right. """ from __future__ import print_function from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np print(__doc__) # Generating the sample data from make_blobs # This particular setting has one distict cluster and 3 clusters placed close # together. X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1) # For reproducibility range_n_clusters = [2, 3, 4, 5, 6] for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10]) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = KMeans(n_clusters=n_clusters, random_state=10) cluster_labels = clusterer.fit_predict(X) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(cluster_labels.astype(float) / n_clusters) ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show()
bsd-3-clause
tjcunliffe/mirage
stubo/ext/parse_date.py
4
6447
""" :copyright: (c) 2015 by OpenCredo. :license: GPLv3, see LICENSE for more details. """ # adapted from https://github.com/pydata/pandas/blob/master/pandas/tseries/tools.py from datetime import datetime, timedelta import re import sys from StringIO import StringIO import logging import dateutil from dateutil.parser import parse, DEFAULTPARSER log = logging.getLogger(__name__) # raise exception if dateutil 2.0 install on 2.x platform if (sys.version_info[0] == 2 and dateutil.__version__ == '2.0'): # pragma: no cover raise Exception('dateutil 2.0 incompatible with Python 2.x, you must ' 'install version 1.5 or 2.1+!') # otherwise a 2nd import won't show the message _DATEUTIL_LEXER_SPLIT = None try: # Since these are private methods from dateutil, it is safely imported # here so in case this interface changes, pandas will just fallback # to not using the functionality from dateutil.parser import _timelex if hasattr(_timelex, 'split'): def _lexer_split_from_str(dt_str): # The StringIO(str(_)) is for dateutil 2.2 compatibility return _timelex.split(StringIO(str(dt_str))) _DATEUTIL_LEXER_SPLIT = _lexer_split_from_str except (ImportError, AttributeError): pass def _guess_datetime_format(dt_str, parsed_datetime, dayfirst, dt_str_split=_DATEUTIL_LEXER_SPLIT): """ Guess the datetime format of a given datetime string. Parameters ---------- dt_str : string, datetime string to guess the format of parsed_datetime : result of dateutil.parser.parse dayfirst : boolean, default True If True parses dates with the day first, eg 20/01/2005 Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug). dt_str_split : function, defaults to `_DATEUTIL_LEXER_SPLIT` (dateutil) This function should take in a datetime string and return a list of strings, the guess of the various specific parts e.g. '2011/12/30' -> ['2011', '/', '12', '/', '30'] Returns ------- ret : datetime format string (for `strftime` or `strptime`) """ log.debug('_guess_datetime_format, dt_str={0}'.format(dt_str)) if dt_str_split is None: return None if not isinstance(dt_str, basestring): return None day_attribute_and_format = (('day',), '%d') datetime_attrs_to_format = [ (('year', 'month', 'day'), '%Y%m%d'), (('year',), '%Y'), (('month',), '%B'), (('month',), '%b'), (('month',), '%m'), day_attribute_and_format, (('hour',), '%H'), (('minute',), '%M'), (('second',), '%S'), (('microsecond',), '%f'), (('second', 'microsecond'), '%S.%f'), ] if dayfirst: datetime_attrs_to_format.remove(day_attribute_and_format) datetime_attrs_to_format.insert(0, day_attribute_and_format) if parsed_datetime is None: return None try: log.debug('dt_str_split(dt_str)') tokens = dt_str_split(dt_str) except: # In case the datetime string can't be split, its format cannot # be guessed return None log.debug('split tokens={0}'.format(tokens)) format_guess = [None] * len(tokens) found_attrs = set() for attrs, attr_format in datetime_attrs_to_format: # If a given attribute has been placed in the format string, skip # over other formats for that same underlying attribute (IE, month # can be represented in multiple different ways) if set(attrs) & found_attrs: continue if all(getattr(parsed_datetime, attr) is not None for attr in attrs): for i, token_format in enumerate(format_guess): if (token_format is None and tokens[i] == parsed_datetime.strftime(attr_format)): format_guess[i] = attr_format found_attrs.update(attrs) break log.debug('found_attrs={0}'.format(found_attrs)) log.debug('format_guess={0}'.format(format_guess)) # Only consider it a valid guess if we have a year, month and day if len(set(['year', 'month', 'day']) & found_attrs) != 3: return None output_format = [] for i, guess in enumerate(format_guess): if guess is not None: # Either fill in the format placeholder (like %Y) output_format.append(guess) else: # Or just the token separate (IE, the dashes in "01-01-2013") try: # If the token is numeric, then we likely didn't parse it # properly, so our guess is wrong if float(tokens[i]) != 0.0: return None except ValueError: pass output_format.append(tokens[i]) guessed_format = ''.join(output_format) if parsed_datetime.strftime(guessed_format) == dt_str: return guessed_format has_time = re.compile('(.+)([\s]|T)+(.+)') def parse_date_string(date_str, dayfirst=False, yearfirst=True): """ Try hard to parse datetime string, leveraging dateutil plus some extras Parameters ---------- arg : date string dayfirst : bool, yearfirst : bool Returns ------- datetime, datetime format string (for `strftime` or `strptime`) or None if unable parse date str """ if not isinstance(date_str, basestring): return None arg = date_str.upper() parse_info = DEFAULTPARSER.info if len(arg) in (7, 8): mresult = _attempt_monthly(arg) log.debug('mresult={0}'.format(mresult)) if mresult: return mresult parsed_datetime = DEFAULTPARSER.parse(StringIO(str(arg)), dayfirst=dayfirst, yearfirst=yearfirst, fuzzy=True) log.debug('parsed_datetime={0}'.format(parsed_datetime)) if parsed_datetime: date_format = _guess_datetime_format(date_str, parsed_datetime, dayfirst=dayfirst) return parsed_datetime, date_format def _attempt_monthly(val): pats = ['%Y-%m', '%m-%Y', '%b %Y', '%b-%Y'] for pat in pats: try: ret = datetime.strptime(val, pat) return ret, pat except Exception: pass
gpl-3.0
google/syzygy
third_party/numpy/files/numpy/lib/npyio.py
16
61927
__all__ = ['savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource'] import numpy as np import format import sys import os import sys import itertools import warnings from operator import itemgetter from cPickle import load as _cload, loads from _datasource import DataSource from _compiled_base import packbits, unpackbits from _iotools import LineSplitter, NameValidator, StringConverter, \ ConverterError, ConverterLockError, ConversionWarning, \ _is_string_like, has_nested_fields, flatten_dtype, \ easy_dtype, _bytes_to_name from numpy.compat import asbytes, asstr, asbytes_nested, bytes if sys.version_info[0] >= 3: from io import BytesIO else: from cStringIO import StringIO as BytesIO _string_like = _is_string_like def seek_gzip_factory(f): """Use this factory to produce the class so that we can do a lazy import on gzip. """ import gzip class GzipFile(gzip.GzipFile): def seek(self, offset, whence=0): # figure out new position (we can only seek forwards) if whence == 1: offset = self.offset + offset if whence not in [0, 1]: raise IOError, "Illegal argument" if offset < self.offset: # for negative seek, rewind and do positive seek self.rewind() count = offset - self.offset for i in range(count // 1024): self.read(1024) self.read(count % 1024) def tell(self): return self.offset if isinstance(f, str): f = GzipFile(f) elif isinstance(f, gzip.GzipFile): # cast to our GzipFile if its already a gzip.GzipFile try: name = f.name except AttributeError: # Backward compatibility for <= 2.5 name = f.filename mode = f.mode f = GzipFile(fileobj=f.fileobj, filename=name) f.mode = mode return f class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): self._obj = obj def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError, key def zipfile_factory(*args, **kwargs): import zipfile if sys.version_info >= (2, 5): kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ".npy" extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ".npy" extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ".npy" extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.read(key) if bytes.startswith(format.MAGIC_PREFIX): value = BytesIO(bytes) return format.read_array(value) else: return bytes else: raise KeyError, "%s is not a file in the archive" % key def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ".npy" extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None): """ Load a pickled, ``.npy``, or ``.npz`` binary file. Parameters ---------- file : file-like object or string The file to read. It must support ``seek()`` and ``read()`` methods. If the filename extension is ``.gz``, the file is first decompressed. mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap`). The mode has no effect for pickled or zipped files. A memory-mapped array is stored on disk, and not directly loaded into memory. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. Returns ------- result : array, tuple, dict, etc. Data stored in the file. Raises ------ IOError If the input file does not exist or cannot be read. See Also -------- save, savez, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever is stored in the pickle is returned. - If the file is a ``.npy`` file, then an array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif isinstance(file, gzip.GzipFile): fid = seek_gzip_factory(file) own_fid = True else: fid = file try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) own_fid = False return NpzFile(fid, own_fid=True) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid) else: # Try a pickle try: return _cload(fid) except: raise IOError, \ "Failed to interpret file %s as a pickle" % repr(file) finally: if own_fid: fid.close() def save(file, arr): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see `format`. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file try: arr = np.asanyarray(arr) format.write_array(fid, arr) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the .npz file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. *args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. **kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `format`. When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with *args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with **kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) See Also -------- numpy.savez_compressed : Save several arrays into a compressed .npz file format """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of .npz file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed .npz file format """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError, "Cannot use un-named variables and keyword %s" % key namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zip = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.iteritems(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val)) fid.close() fid = None zip.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zip.close() # Adapted from matplotlib def _getconv(dtype): typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return float elif issubclass(typ, np.complex): return complex elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a record data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str, optional The character used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a record data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. Examples -------- >>> from StringIO import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience comments = asbytes(comments) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): fh = iter(seek_gzip_factory(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) else: fh = iter(open(fname, 'U')) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], tuple)] if len(shape) > 1: for dim in dt.shape[-2:0:-1]: packing = [(dim*packing[0][0],packing*dim)] packing = packing*shape[0] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) packing.append((len(flat_dt),flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing == None: return items[0] elif packing is tuple: return tuple(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter.""" line = asbytes(line).split(comments)[0].strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in xrange(skiprows): fh.next() # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = fh.next() first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in xrange(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).iteritems(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if not ndmin in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n'): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. delimiter : str Character separating columns. newline : str .. versionadded:: 1.5.0 Character separating lines. See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into a ``.npz`` compressed archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to preceed result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif type(fmt) is str: if fmt.count('%') == 1: fmt = [fmt, ]*ncol format = delimiter.join(fmt) elif fmt.count('%') != ncol: raise AttributeError('fmt has wrong number of %% formats. %s' % fmt) else: format = fmt for row in X: fh.write(asbytes(format % tuple(row) + newline)) finally: if own_fh: fh.close() import re def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skiprows=0, skip_header=0, skip_footer=0, converters=None, missing='', missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skip_header : int, optional The numbers of lines to skip at the beginning of the file. skip_footer : int, optional The numbers of lines to skip at the end of the file converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. Examples --------- >>> from StringIO import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ # Py3 data conversions to bytes, for convenience comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing, unicode): missing = asbytes(missing) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): errmsg = "The input argument 'converter' should be a valid dictionary "\ "(got '%s' instead)" raise TypeError(errmsg % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): fhd = iter(np.lib._datasource.open(fname, 'rbU')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError("fname mustbe a string, filehandle, or generator. "\ "(got %s instead)" % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Get the first valid lines after the first skiprows ones .. if skiprows: warnings.warn(\ "The use of `skiprows` is deprecated, it will be removed in numpy 2.0.\n" \ "Please use `skip_header` instead.", DeprecationWarning) skip_header = skiprows # Skip the first `skip_header` rows for i in xrange(skip_header): fhd.next() # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = fhd.next() if names is True: if comments in first_line: first_line = asbytes('').join(first_line.split(comments)[1:]) first_values = split_line(first_line) except StopIteration: # might want to return empty array instead of raising error. raise IOError('End-of-file reached before encountering data.') # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the deprecated `missing` if missing != asbytes(''): warnings.warn(\ "The use of `missing` is deprecated, it will be removed in Numpy 2.0.\n" \ "Please use `missing_values` instead.", DeprecationWarning) values = [str(_) for _ in missing.split(asbytes(","))] for entry in missing_values: entry.extend(values) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values or [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, then continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (i, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(i): try: i = names.index(i) except ValueError: continue elif usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue # Find the value to test: if len(first_line): testing_value = first_values[i] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue # Select only the columns we need if usecols: try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = map(itemgetter(i), rows) try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = itertools.imap(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... # if loose: # conversionfuncs = [conv._loose_call for conv in converters] # else: # conversionfuncs = [conv._strict_call for conv in converters] # for (i, vals) in enumerate(rows): # rows[i] = tuple([convert(val) # for (convert, val) in zip(conversionfuncs, vals)]) if loose: rows = zip(*[map(converter._loose_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) else: rows = zip(*[map(converter._strict_call, map(itemgetter(i), rows)) for (i, converter) in enumerate(converters)]) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = zip(names, column_types) mdtype = zip(names, [np.bool] * len(column_types)) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): errmsg = "Nested fields involving objects "\ "are not supported..." raise NotImplementedError(errmsg) else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array(masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for (i, ttype) in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Complete description of all the optional input parameters is available in the docstring of the `genfromtxt` function. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.update(dtype=kwargs.get('dtype', None)) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). For a complete description of all the input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ case_sensitive = kwargs.get('case_sensitive', "lower") or "lower" names = kwargs.get('names', True) if names is None: names = True kwargs.update(dtype=kwargs.get('update', None), delimiter=kwargs.get('delimiter', ",") or ",", names=names, case_sensitive=case_sensitive) usemask = kwargs.get("usemask", False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
apache-2.0
legacysurvey/pipeline
py/legacyanalysis/check-psf.py
2
26103
import matplotlib matplotlib.use('Agg') import pylab as plt import numpy as np import sys import os import fitsio from astrometry.util.fits import fits_table from astrometry.util.plotutils import PlotSequence, dimshow from astrometry.libkd.spherematch import match_radec from astrometry.util.util import Tan from tractor import * from legacypipe.survey import * def subplot_grid(ny, nx, i): y = i/nx x = i%nx plt.subplot(ny, nx, 1 + ((ny-1)-y)*nx + x) if __name__ == '__main__': survey = LegacySurveyData() ps = PlotSequence('psf') #B = survey.get_bricks() T = survey.get_ccds() T.cut(T.extname == 'S1') print 'Cut to', len(T) #print 'Expnums:', T[:10] T.cut(T.expnum == 348233) print 'Cut to', len(T) T.about() band = T.filter[0] print 'Band:', band im = DecamImage(survey, T[0]) print 'Reading', im.imgfn # Get approximate image center for astrometry hdr = im.read_image_header() wcs = Tan(hdr['CRVAL1'], hdr['CRVAL2'], hdr['CRPIX1'], hdr['CRPIX2'], hdr['CD1_1'], hdr['CD1_2'], hdr['CD2_1'], hdr['CD2_2'], hdr['NAXIS1'], hdr['NAXIS2']) print 'WCS:', wcs r,d = wcs.pixelxy2radec(wcs.imagew/2, wcs.imageh/2) pixscale = wcs.pixel_scale() run_calibs(im, r, d, pixscale, astrom=True, morph=False, se2=False) iminfo = im.get_image_info() print 'img:', iminfo H,W = iminfo['dims'] #psfex = PsfEx(im.psffn, W, H, nx=6) #psfex = PsfEx(im.psffn, W, H, ny=13, nx=7) #psfex = PsfEx(im.psffn, W, H, ny=9, nx=5) #psfex = PsfEx(im.psffn, W, H, ny=17, nx=9, # psfClass=GaussianMixtureEllipsePSF) psfex = PsfEx(im.psffn, W, H, ny=13, nx=7, psfClass=GaussianMixtureEllipsePSF) fn = 'psfex-ellipses.fits' if os.path.exists(fn): plt.figure(figsize=(5,10)) plt.subplots_adjust(left=0.01, bottom=0.01, top=0.95, right=0.99, wspace=0.05, hspace=0.025) pp = fitsio.read(fn) print 'Read parameters:', pp.shape ny,nx,nparams = pp.shape print 'nx,ny', nx,ny print 'nparams', nparams psfex.ny = ny psfex.nx = nx YY = np.linspace(0, psfex.H, psfex.ny) XX = np.linspace(0, psfex.W, psfex.nx) #psfex.splinedata = (pp, XX, YY) # Convert to GaussianMixturePSF ppvar = np.zeros_like(pp) for iy in range(ny): for ix in range(nx): psf = GaussianMixtureEllipsePSF(*pp[iy, ix, :]) mog = psf.toMog() ppvar[iy,ix,:] = mog.getParams() psfexvar = PsfEx(im.psffn, W, H, ny=psfex.ny, nx=psfex.nx, psfClass=GaussianMixturePSF) psfexvar.splinedata = (ppvar, XX, YY) #psfexvar.fitSavedData(ppvar, XX, YY) #fitsio.write('psfex-variances.fits', ppvar, clobber=True) psfexvar.toFits('psfex-var-2.fits') psfexvar2 = PsfEx.fromFits('psfex-var-2.fits') sys.exit(0) psfex.fitSavedData(pp, XX, YY) subpp = pp[::2, ::2, :] subXX, subYY = XX[::2], YY[::2] print 'subpp:', subpp.shape subpsfex = PsfEx(im.psffn, W, H, ny=len(subYY), nx=len(subXX), psfClass=GaussianMixtureEllipsePSF) subpsfex.fitSavedData(subpp, subXX, subYY) ppvar = np.zeros_like(pp) for iy in range(ny): for ix in range(nx): psf = GaussianMixtureEllipsePSF(*pp[iy, ix, :]) #print 'PSF:', psf mog = psf.toMog() #print 'MoG:', mog #print 'Params:', mog.getParams() ppvar[iy,ix,:] = mog.getParams() psfexvar = PsfEx(im.psffn, W, H, ny=17, nx=9, psfClass=GaussianMixturePSF) #psfexvar = VaryingGaussianPSF(W, H, ny=17, nx=9) psfexvar.fitSavedData(ppvar, XX, YY) subvar = ppvar[::2, ::2, :] subpsfexvar = PsfEx(im.psffn, W, H, ny=len(subYY), nx=len(subXX), psfClass=GaussianMixturePSF) subpsfexvar.fitSavedData(subvar, subXX, subYY) psfgrid = [] psfcropgrid = [] crop = 10 for y in YY: for x in XX: psfimg = psfex.instantiateAt(x, y) psfgrid.append(psfimg) h,w = psfimg.shape img = psfimg[h/2-crop:h/2+crop+1, w/2-crop:w/2+crop+1] psfcropgrid.append(img) mx = np.max([psfimg.max() for psfimg in psfgrid]) logmx = np.log10(mx) plt.clf() for i,psfimg in enumerate(psfcropgrid): #plt.subplot(len(YY), len(XX), i+1) subplot_grid(len(YY), len(XX), i) dimshow(np.log10(np.maximum(psfimg, mx*1e-16)), vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') plt.suptitle('PsfEx models') ps.savefig() modnames = ['Dense-grid MoG', 'Coarse-grid MoG', 'Dense-grid MoG (variance)', 'Coarse-grid MoG (variance)'] models = [ psfex, subpsfex, psfexvar, subpsfexvar ] modgrids = [[] for m in models] for iy,y in enumerate(YY): for ix,x in enumerate(XX): for model,grid in zip(models, modgrids): psf = model.psfAt(x, y) mod = psf.getPointSourcePatch(0., 0., radius=crop) assert(mod.shape == psfcropgrid[0].shape) grid.append(mod.patch) for name,modgrid in zip(modnames, modgrids): plt.clf() for i,psfimg in enumerate(modgrid): subplot_grid(len(YY), len(XX), i) dimshow(np.log10(np.maximum(psfimg, mx*1e-16)), vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') plt.suptitle(name) ps.savefig() for name,modgrid in zip(modnames, modgrids): plt.clf() for i,(psfimg,modimg) in enumerate(zip(psfcropgrid,modgrid)): subplot_grid(len(YY), len(XX), i) diff = psfimg - modimg #print 'Max diff:', np.abs(diff).max() dimshow(psfimg - modimg, vmin=-0.001, vmax=0.001, ticks=False, cmap='RdBu') plt.suptitle('PsfEx - %s' % name) ps.savefig() sys.exit(0) # for ibase,basis in enumerate(psfex.psfbases): # plt.clf() # plt.subplot(2,1,1) # mx = np.percentile(np.abs(basis), 99.5) # if ibase == 0: # dimshow(basis, ticks=False) # else: # dimshow(basis, ticks=False, vmin=-mx, vmax=mx) # #plt.colorbar(fraction=0.2) # plt.suptitle('PsfEx eigen-PSF %i' % ibase) # plt.subplot(2,1,2) # # xx,yy = np.meshgrid(np.linspace(0, W, 50), np.linspace(0, H, 50)) # print 'xx,yy', xx.shape, yy.shape # amp = np.zeros_like(xx) # print 'amp', amp.shape # # dx = (xx - psfex.x0) / psfex.xscale # dy = (yy - psfex.y0) / psfex.yscale # for d in range(psfex.degree + 1): # print 'degree', d # for j in range(d+1): # k = d - j # print 'j', j, 'k', k # # PSFEx manual pg. 111 ? # ii = j + (psfex.degree+1) * k - (k * (k-1))/ 2 # print 'ii', ii # if ii != ibase: # continue # amp += dx**j * dy**k # dimshow(amp, extent=[xx[0,0],xx[0,-1],yy[0,0],yy[-1,0]]) # plt.colorbar(fraction=0.25) # ps.savefig() plt.subplots_adjust(left=0.02, right=0.98, bottom=0.02, top=0.92, wspace=0.1, hspace=0.2) nbases = len(psfex.psfbases) cols = int(np.ceil(np.sqrt(nbases) * 1.3)) rows = int(np.ceil(nbases / float(cols))) plt.clf() for ibase,basis in enumerate(psfex.psfbases): plt.subplot(rows, cols, ibase+1) mx = np.percentile(np.abs(basis), 99.5) if ibase == 0: dimshow(basis, ticks=False) else: dimshow(basis, ticks=False, vmin=-mx, vmax=mx) for d in range(psfex.degree + 1): print 'degree', d for j in range(d+1): k = d - j print 'j', j, 'k', k # PSFEx manual pg. 111 ? ii = j + (psfex.degree+1) * k - (k * (k-1))/ 2 print 'ii', ii if ii == ibase: xoyo = (j,k) plt.title('$x^%i y^%i$' % xoyo, fontdict=dict(fontsize=10)) plt.suptitle('PsfEx eigen-PSFs') ps.savefig() plt.figure(figsize=(5,10)) plt.subplots_adjust(left=0.01, bottom=0.01, top=0.95, right=0.99, wspace=0.05, hspace=0.025) S = im.read_sdss() print len(S), 'SDSS sources' S.cut(S.objc_type == 6) print len(S), 'SDSS stars' S.flux = S.get('%s_psfflux' % band) wcs = im.read_wcs() img = im.read_image() sky = np.median(img) img -= sky invvar = im.read_invvar(clip=True) sig1 = 1./np.sqrt(np.median(invvar[invvar > 0])) sigoff = 3 img += sig1 * sigoff # convert to sigmas img /= sig1 invvar *= sig1**2 H,W = img.shape sz = 22 # Read sources detected in DECam image too T = fits_table(im.sefn, hdu=2) print 'Got', len(T), 'DECam sources' T.about() T.ra,T.dec = wcs.pixelxy2radec(T.x_image, T.y_image) I,J,d = match_radec(S.ra, S.dec, T.ra, T.dec, 1./3600., nearest=True) print 'Matched', len(I) # Replace SDSS RA,Dec by DECam RA,Dec S.cut(I) S.ra = T.ra [J] S.dec = T.dec[J] ok,S.x,S.y = wcs.radec2pixelxy(S.ra, S.dec) S.x -= 1 S.y -= 1 S.ix, S.iy = np.round(S.x).astype(int), np.round(S.y).astype(int) S.cut((S.ix >= sz) * (S.iy >= sz) * (S.ix < W-sz) * (S.iy < H-sz)) print len(S), 'SDSS stars in bounds' S.cut(invvar[S.iy, S.ix] > 0) print len(S), 'SDSS stars not in masked regions' S.cut(np.argsort(-S.flux)) rows,cols = 4,5 #rows,cols = 2,2 subimgs = [] for i in range(rows*cols): s = S[i] subimg = img[s.iy - sz : s.iy + sz+1, s.ix - sz : s.ix + sz+1] subimgs.append(subimg) # plt.clf() # for i,subimg in enumerate(subimgs): # plt.subplot(rows, cols, 1+i) # dimshow(subimg, ticks=False) # #plt.colorbar() # ps.savefig() maxes = [] # plt.clf() for i,subimg in enumerate(subimgs): # plt.subplot(rows, cols, 1+i) mx = subimg.max() maxes.append(mx) # logmx = np.log10(mx) # dimshow(np.log10(np.maximum(subimg, mx*1e-16)), vmin=0, vmax=logmx, # ticks=False) # ps.savefig() origpsfimgs = [] unitpsfimgs = [] psfimgs = [] YY = np.linspace(0, psfex.H, psfex.ny) XX = np.linspace(0, psfex.W, psfex.nx) psfgrid = [] psfcropgrid = [] crop = 10 for y in YY: for x in XX: psfimg = psfex.instantiateAt(x, y) psfgrid.append(psfimg) h,w = psfimg.shape img = psfimg[h/2-crop:h/2+crop+1, w/2-crop:w/2+crop+1] psfcropgrid.append(img) mx = np.max([psfimg.max() for psfimg in psfgrid]) logmx = np.log10(mx) plt.clf() for i,psfimg in enumerate(psfcropgrid): #plt.subplot(len(YY), len(XX), i+1) subplot_grid(len(YY), len(XX), i) dimshow(np.log10(np.maximum(psfimg, mx*1e-16)), vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') plt.suptitle('PsfEx models') ps.savefig() psfex.savesplinedata = True # psfex.ensureFit() psfex._fitParamGrid(damp=1) pp,XX,YY = psfex.splinedata # Convert to GaussianMixturePSF ppvar = np.zeros_like(pp) for iy in range(ny): for ix in range(nx): psf = GaussianMixtureEllipsePSF(*pp[iy, ix, :]) mog = psf.toMog() ppvar[iy,ix,:] = mog.getParams() psfexvar = PsfEx(im.psffn, W, H, ny=psfex.ny, nx=psfex.nx, psfClass=GaussianMixturePSF) #psfexvar.fitSavedData(ppvar, XX, YY) fitsio.write('psfex-variances.fits', ppvar, clobber=True) modgrid = [] for iy,y in enumerate(YY): for ix,x in enumerate(XX): psf = psfex.psfAt(x,y) psf.radius = crop modimg = psf.getPointSourcePatch(0., 0.) modgrid.append(modimg.patch) # pp = [] # px0 = None # for iy,y in enumerate(YY): # pprow = [] # p0 = px0 # for ix,x in enumerate(XX): # psfimg = psfex.instantiateAt(x, y) # h,w = psfimg.shape # cropped = psfimg[h/2-crop:h/2+crop+1, w/2-crop:w/2+crop+1] # # epsf = GaussianMixtureEllipsePSF.fromStamp(psfimg, P0=p0, damp=1.) # p0 = epsf.getParams() # if ix == 0: # px0 = p0 # # epsf.radius = crop # modimg = epsf.getPointSourcePatch(0., 0.) # modgrid.append(modimg.patch) # # if iy == 0 and False: # plt.clf() # plt.subplot(3,1,1) # dimshow(np.log10(np.maximum(cropped, mx*1e-16)), # vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') # plt.subplot(3,1,2) # dimshow(np.log10(np.maximum(modimg.patch, mx*1e-16)), # vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') # ax = plt.axis() # angle = np.linspace(0., 2.*np.pi, 20) # xx,yy = np.sin(angle), np.cos(angle) # xy = np.vstack((xx,yy)) # for i,ell in enumerate(epsf.ellipses): # mx,my = epsf.mog.mean[i,:] # T = ell.getRaDecBasis() # T *= 3600. # txy = np.dot(T, xy) # plt.plot(crop + mx + txy[0,:], # crop + my + txy[1,:], 'k-', lw=1.5) # plt.axis(ax) # plt.subplot(3,1,3) # dimshow(cropped - modimg.patch, # vmin=-0.001, vmax=0.001, ticks=False, cmap='RdBu') # ps.savefig() # # print 'Fit PSF:', epsf # #print 'Params:', epsf.getAllParams() # #repsf = GaussianMixtureEllipsePSF(*epsf.getAllParams()) # #print 'Reconstructed:', repsf # # params = np.array(epsf.getAllParams()) # pprow.append(params) # pp.append(pprow) # pp = np.array(pp) # print 'pp', pp.shape fitsio.write('psfex-ellipses.fits', pp, clobber=True) plt.clf() for i,modimg in enumerate(modgrid): subplot_grid(len(YY), len(XX), i) #plt.subplot(len(YY), len(XX), i+1) dimshow(np.log10(np.maximum(modimg, mx*1e-16)), vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') plt.suptitle('PsfEx: Mixture-of-Gaussian fits') ps.savefig() plt.clf() for i,(psfimg,modimg) in enumerate(zip(psfcropgrid,modgrid)): subplot_grid(len(YY), len(XX), i) #plt.subplot(len(YY), len(XX), i+1) diff = psfimg - modimg print 'Max diff:', np.abs(diff).max() dimshow(psfimg - modimg, vmin=-0.001, vmax=0.001, ticks=False, cmap='RdBu') plt.suptitle('PsfEx: Pixelized - Mixture-of-Gaussian') ps.savefig() ny,nx,nparams = pp.shape names = psf.getParamNames() plt.figure(figsize=(10,10)) #iii = [ [i + j for j in [0,3,4,9,10,11]] for i in [0,1,2] ] iii = [ [0, 3,4, 9,10,11], [1, 5,6, 12,13,14], [2, 7,8, 15,16,17] ] for ii in iii: plt.clf() for j,ip in enumerate(ii): plt.subplot(2,3, j+1) print 'Param', names[ip] print pp[:,:,ip] # param values from other components kpp = np.hstack([pp[:,:,kii[j]].ravel() for kii in iii]) mn,mx = kpp.min(), kpp.max() dimshow(pp[:,:,ip], cmap='jet', ticks=False, vmin=mn, vmax=mx) plt.colorbar() plt.title(names[ip]) plt.suptitle('Mixture of Gaussian models: spatial variation of parameters') ps.savefig() # for ip in range(nparams): # plt.clf() # dimshow(pp[:,:,ip], ticks=False) # plt.colorbar() # plt.title(names[ip]) # ps.savefig() sys.exit(0) psfex.savesplinedata = True print 'Fitting PsfEx model...' psfex.ensureFit() modgrid = [] for y in YY: for x in XX: mog = psfex.psfAt(x, y) mog.radius = crop modimg = mog.getPointSourcePatch(0., 0.) print 'Patch shape', modimg.shape modgrid.append(modimg.patch) plt.clf() for i,modimg in enumerate(modgrid): plt.subplot(len(YY), len(XX), i+1) #h,w = psfimg.shape #img = psfimg[h/2-crop:h/2+crop, w/2-crop:w/2+crop] dimshow(np.log10(np.maximum(modimg, mx*1e-16)), vmax=logmx, vmin=logmx-4, ticks=False, cmap='jet') plt.suptitle('PsfEx: Mixture-of-Gaussian fits') ps.savefig() plt.clf() for i,(psfimg,modimg) in enumerate(zip(psfcropgrid,modgrid)): plt.subplot(len(YY), len(XX), i+1) diff = psfimg - modimg print 'Max diff:', np.abs(diff).max() dimshow(psfimg - modimg, vmin=-0.01, vmax=0.01, ticks=False, cmap='jet') plt.suptitle('PsfEx: Pixelized - Mixture-of-Gaussian') ps.savefig() sys.exit(0) plt.clf() for i,subimg in enumerate(subimgs): s = S[i] plt.subplot(rows, cols, 1+i) # Sum the flux near the core... ss = 5 flux = np.sum(img[s.iy-ss:s.iy+ss+1, s.ix-ss:s.ix+ss+1]) # subtract off the 3*sig we added flux -= (2*ss+1)**2 * sigoff psfimg = psfex.instantiateAt(s.x, s.y) origpsfimgs.append(psfimg) if True: from astrometry.util.util import lanczos3_interpolate dx,dy = s.x - s.ix, s.y - s.iy #print 'dx,dy', dx,dy ph,pw = psfimg.shape ix,iy = np.meshgrid(np.arange(pw), np.arange(ph)) ix = ix.ravel().astype(np.int32) iy = iy.ravel().astype(np.int32) nn = len(ix) laccs = [np.zeros(nn, np.float32)] rtn = lanczos3_interpolate(ix, iy, -dx+np.zeros(len(ix),np.float32), -dy+np.zeros(len(ix),np.float32), laccs, [psfimg.astype(np.float32)]) psfimg = laccs[0].reshape(psfimg.shape) unitpsfimgs.append(psfimg) psfimg = psfimg * flux + sigoff psfimgs.append(psfimg) mx = maxes[i] #mx = psfimg.max() logmx = np.log10(mx) dimshow(np.log10(np.maximum(psfimg, mx*1e-16)), vmin=0, vmax=logmx, ticks=False) ps.savefig() # plt.clf() # for i,(subimg,psfimg) in enumerate(zip(subimgs, psfimgs)): # plt.subplot(rows, cols, 1+i) # dimshow(subimg - psfimg, ticks=False) # ps.savefig() plt.clf() for i,(subimg,psfimg) in enumerate(zip(subimgs, psfimgs)): # Re-scale psfimgs h,w = subimg.shape A = np.zeros((h*w, 2)) A[:,0] = 1. A[:,1] = psfimg.ravel() b = subimg.ravel() x,resid,rank,s = np.linalg.lstsq(A, b) #print 'x', x #psfimg = x[0] + psfimg * x[1] psfimg *= x[1] psfimg += x[0] res = subimg-psfimg #print 'range', res.min(), res.max() plt.subplot(rows, cols, 1+i) dimshow(subimg - psfimg, ticks=False, vmin=-5, vmax=5) plt.suptitle('Image - PixPSF') ps.savefig() # Re-fit the centers srcs = [] tims = [] plt.clf() for i,(subimg,upsfimg,opsfimg) in enumerate(zip( subimgs, unitpsfimgs, origpsfimgs)): s = S[i] print print A = np.zeros((h*w, 2)) A[:,0] = 1. A[:,1] = upsfimg.ravel() b = subimg.ravel() x,resid,rank,nil = np.linalg.lstsq(A, b) sky = x[0] flux = x[1] print 'Flux', flux print 'Sky', sky tim = Image(data=subimg, invvar=np.ones_like(subimg), psf=PixelizedPSF(opsfimg), sky=ConstantSky(sky)) tim.modelMinval = 1e-8 tim.getWcs().pixscale = 3600. h,w = tim.shape src = PointSource(PixPos(w/2 + (s.x-s.ix), h/2 + (s.y-s.iy)), Flux(flux)) tr = Tractor([tim],[src]) tr.freezeParam('images') print 'src', src for step in range(20): dlnp,X,alpha = tr.optimize(shared_params=False) print 'dlnp', dlnp, 'src', src if dlnp < 1e-6: break srcs.append(src) tims.append(tim) plt.subplot(rows, cols, 1+i) dimshow(subimg - tr.getModelImage(0), ticks=False, vmin=-5, vmax=5) plt.suptitle('Image - PixPSF model') ps.savefig() # Fit MoG model to each one mogs = [] plt.clf() for i,(subimg,psfimg,tim,src) in enumerate(zip( subimgs, origpsfimgs, tims, srcs)): s = S[i] print 'PSF image sum', psfimg.sum() #mog = psfex.psfAt(s.x, s.y) mog = GaussianMixturePSF.fromStamp(psfimg) mogs.append(mog) tim.opsf = tim.psf tim.psf = mog tr = Tractor([tim],[src]) plt.subplot(rows, cols, 1+i) dimshow(subimg - tr.getModelImage(0), ticks=False, vmin=-5, vmax=5) plt.suptitle('Image - MoG model') ps.savefig() plt.clf() for i,(mog,psfimg) in enumerate(zip(mogs, origpsfimgs)): ph,pw = psfimg.shape sz = pw/2 #mog.radius = sz mogimg = mog.getPointSourcePatch(0., 0., radius=sz) #, extent=[-sz,sz,-sz,sz]) mogimg = mogimg.patch mx = 0.002 plt.subplot(rows, cols, 1+i) dimshow(psfimg - mogimg, ticks=False, vmin=-mx, vmax=mx) #plt.colorbar() plt.suptitle('PixPSF - MoG') ps.savefig() orig_mogs = [mog.copy() for mog in mogs] # Re-fit the MoG PSF to the pixelized postage stamp plt.clf() for i,(mog,psfimg) in enumerate(zip(mogs, origpsfimgs)): print print tim = Image(data=psfimg, invvar=1e6*np.ones_like(psfimg), psf=mog) h,w = psfimg.shape src = PointSource(PixPos(w/2,h/2), Flux(1.)) tr = Tractor([tim], [src]) tr.freezeParam('catalog') tim.freezeAllBut('psf') print 'MoG', mog for step in range(20): dlnp,X,alpha = tr.optimize(shared_params=False) print 'dlnp', dlnp, 'mog', mog if dlnp < 1e-6: break sz = w/2 mogimg = mog.getPointSourcePatch(0., 0., radius=sz) mogimg = mogimg.patch mx = 0.002 plt.subplot(rows, cols, 1+i) dimshow(psfimg - mogimg, ticks=False, vmin=-mx, vmax=mx) plt.suptitle('PixPSF - MoG') ps.savefig() # Image - MoG model plt.clf() for i,(subimg,tim,src) in enumerate(zip( subimgs, tims, srcs)): tr = Tractor([tim],[src]) plt.subplot(rows, cols, 1+i) dimshow(subimg - tr.getModelImage(0), ticks=False, vmin=-5, vmax=5) plt.suptitle('Image - MoG model') ps.savefig() ############## # Re-fit the MoGs using EllipseESoft basis. epsfs = [] plt.clf() for i,(mog,psfimg) in enumerate(zip(orig_mogs, origpsfimgs)): print print ells = [EllipseESoft.fromCovariance(cov) for cov in mog.mog.var] psf = GaussianMixtureEllipsePSF(mog.mog.amp, mog.mog.mean, ells) tim = Image(data=psfimg, invvar=1e6*np.ones_like(psfimg), psf=psf) epsfs.append(psf) h,w = psfimg.shape src = PointSource(PixPos(w/2,h/2), Flux(1.)) tr = Tractor([tim], [src]) tr.freezeParam('catalog') tim.freezeAllBut('psf') print 'PSF', psf for step in range(20): dlnp,X,alpha = tr.optimize(shared_params=False) print 'dlnp', dlnp, 'psf', psf if dlnp < 1e-6: break sz = w/2 mogimg = psf.getPointSourcePatch(0., 0., radius=sz) mogimg = mogimg.patch mx = 0.002 plt.subplot(rows, cols, 1+i) dimshow(psfimg - mogimg, ticks=False, vmin=-mx, vmax=mx) plt.suptitle('PixPSF - MoG (ellipse)') ps.savefig() # Update the 'tims' with these newly-found PSFs for psf,tim in zip(epsfs, tims): tim.mogpsf = tim.psf tim.psf = psf # Image - MoG model # plt.clf() # for i,(subimg,tim,src) in enumerate(zip( # subimgs, tims, srcs)): # tr = Tractor([tim],[src]) # plt.subplot(rows, cols, 1+i) # mod = tr.getModelImage(0) # dimshow(mod, ticks=False) # #plt.colorbar() # plt.suptitle('MoG (ellipse) model') # ps.savefig() plt.clf() for i,(subimg,tim,src,psf) in enumerate(zip( subimgs, tims, srcs,epsfs)): print 'Source:', src print 'PSF:', tim.getPsf() print 'subimage sum:', subimg.sum() tr = Tractor([tim],[src]) plt.subplot(rows, cols, 1+i) mod = tr.getModelImage(0) print 'mod sum:', mod.sum() dimshow(subimg - mod, ticks=False, vmin=-5, vmax=5) plt.suptitle('Image - MoG (ellipse) model') ps.savefig()
gpl-2.0
prodromou87/gem5
util/stats/output.py
90
7981
# Copyright (c) 2005-2006 The Regents of The University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Nathan Binkert from chart import ChartOptions class StatOutput(ChartOptions): def __init__(self, jobfile, info, stat=None): super(StatOutput, self).__init__() self.jobfile = jobfile self.stat = stat self.invert = False self.info = info def display(self, name, printmode = 'G'): import info if printmode == 'G': valformat = '%g' elif printmode != 'F' and value > 1e6: valformat = '%0.5e' else: valformat = '%f' for job in self.jobfile.jobs(): value = self.info.get(job, self.stat) if value is None: return if not isinstance(value, list): value = [ value ] if self.invert: for i,val in enumerate(value): if val != 0.0: value[i] = 1 / val valstring = ', '.join([ valformat % val for val in value ]) print '%-50s %s' % (job.name + ':', valstring) def graph(self, name, graphdir, proxy=None): from os.path import expanduser, isdir, join as joinpath from barchart import BarChart from matplotlib.numerix import Float, array, zeros import os, re, urllib from jobfile import crossproduct confgroups = self.jobfile.groups() ngroups = len(confgroups) skiplist = [ False ] * ngroups groupopts = [] baropts = [] groups = [] for i,group in enumerate(confgroups): if group.flags.graph_group: groupopts.append(group.subopts()) skiplist[i] = True elif group.flags.graph_bars: baropts.append(group.subopts()) skiplist[i] = True else: groups.append(group) has_group = bool(groupopts) if has_group: groupopts = [ group for group in crossproduct(groupopts) ] else: groupopts = [ None ] if baropts: baropts = [ bar for bar in crossproduct(baropts) ] else: raise AttributeError, 'No group selected for graph bars' directory = expanduser(graphdir) if not isdir(directory): os.mkdir(directory) html = file(joinpath(directory, '%s.html' % name), 'w') print >>html, '<html>' print >>html, '<title>Graphs for %s</title>' % name print >>html, '<body>' html.flush() for options in self.jobfile.options(groups): chart = BarChart(self) data = [ [ None ] * len(baropts) for i in xrange(len(groupopts)) ] enabled = False stacked = 0 for g,gopt in enumerate(groupopts): for b,bopt in enumerate(baropts): if gopt is None: gopt = [] job = self.jobfile.job(options + gopt + bopt) if not job: continue if proxy: import db proxy.dict['system'] = self.info[job.system] val = self.info.get(job, self.stat) if val is None: print 'stat "%s" for job "%s" not found' % \ (self.stat, job) if isinstance(val, (list, tuple)): if len(val) == 1: val = val[0] else: stacked = len(val) data[g][b] = val if stacked == 0: for i in xrange(len(groupopts)): for j in xrange(len(baropts)): if data[i][j] is None: data[i][j] = 0.0 else: for i in xrange(len(groupopts)): for j in xrange(len(baropts)): val = data[i][j] if val is None: data[i][j] = [ 0.0 ] * stacked elif len(val) != stacked: raise ValueError, "some stats stacked, some not" data = array(data) if data.sum() == 0: continue dim = len(data.shape) x = data.shape[0] xkeep = [ i for i in xrange(x) if data[i].sum() != 0 ] y = data.shape[1] ykeep = [ i for i in xrange(y) if data[:,i].sum() != 0 ] data = data.take(xkeep, axis=0) data = data.take(ykeep, axis=1) if not has_group: data = data.take([ 0 ], axis=0) chart.data = data bopts = [ baropts[i] for i in ykeep ] bdescs = [ ' '.join([o.desc for o in opt]) for opt in bopts] if has_group: gopts = [ groupopts[i] for i in xkeep ] gdescs = [ ' '.join([o.desc for o in opt]) for opt in gopts] if chart.legend is None: if stacked: try: chart.legend = self.info.rcategories except: chart.legend = [ str(i) for i in xrange(stacked) ] else: chart.legend = bdescs if chart.xticks is None: if has_group: chart.xticks = gdescs else: chart.xticks = [] chart.graph() names = [ opt.name for opt in options ] descs = [ opt.desc for opt in options ] if names[0] == 'run': names = names[1:] descs = descs[1:] basename = '%s-%s' % (name, ':'.join(names)) desc = ' '.join(descs) pngname = '%s.png' % basename psname = '%s.eps' % re.sub(':', '-', basename) epsname = '%s.ps' % re.sub(':', '-', basename) chart.savefig(joinpath(directory, pngname)) chart.savefig(joinpath(directory, epsname)) chart.savefig(joinpath(directory, psname)) html_name = urllib.quote(pngname) print >>html, '''%s<br><img src="%s"><br>''' % (desc, html_name) html.flush() print >>html, '</body>' print >>html, '</html>' html.close()
bsd-3-clause
toobaz/pandas
pandas/tests/groupby/test_counting.py
2
7697
from itertools import product import numpy as np import pytest from pandas import DataFrame, MultiIndex, Period, Series, Timedelta, Timestamp from pandas.util.testing import assert_frame_equal, assert_series_equal class TestCounting: def test_cumcount(self): df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"]) g = df.groupby("A") sg = g.A expected = Series([0, 1, 2, 0, 3]) assert_series_equal(expected, g.cumcount()) assert_series_equal(expected, sg.cumcount()) def test_cumcount_empty(self): ge = DataFrame().groupby(level=0) se = Series().groupby(level=0) # edge case, as this is usually considered float e = Series(dtype="int64") assert_series_equal(e, ge.cumcount()) assert_series_equal(e, se.cumcount()) def test_cumcount_dupe_index(self): df = DataFrame( [["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5 ) g = df.groupby("A") sg = g.A expected = Series([0, 1, 2, 0, 3], index=[0] * 5) assert_series_equal(expected, g.cumcount()) assert_series_equal(expected, sg.cumcount()) def test_cumcount_mi(self): mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=mi) g = df.groupby("A") sg = g.A expected = Series([0, 1, 2, 0, 3], index=mi) assert_series_equal(expected, g.cumcount()) assert_series_equal(expected, sg.cumcount()) def test_cumcount_groupby_not_col(self): df = DataFrame( [["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5 ) g = df.groupby([0, 0, 0, 1, 0]) sg = g.A expected = Series([0, 1, 2, 0, 3], index=[0] * 5) assert_series_equal(expected, g.cumcount()) assert_series_equal(expected, sg.cumcount()) def test_ngroup(self): df = DataFrame({"A": list("aaaba")}) g = df.groupby("A") sg = g.A expected = Series([0, 0, 0, 1, 0]) assert_series_equal(expected, g.ngroup()) assert_series_equal(expected, sg.ngroup()) def test_ngroup_distinct(self): df = DataFrame({"A": list("abcde")}) g = df.groupby("A") sg = g.A expected = Series(range(5), dtype="int64") assert_series_equal(expected, g.ngroup()) assert_series_equal(expected, sg.ngroup()) def test_ngroup_one_group(self): df = DataFrame({"A": [0] * 5}) g = df.groupby("A") sg = g.A expected = Series([0] * 5) assert_series_equal(expected, g.ngroup()) assert_series_equal(expected, sg.ngroup()) def test_ngroup_empty(self): ge = DataFrame().groupby(level=0) se = Series().groupby(level=0) # edge case, as this is usually considered float e = Series(dtype="int64") assert_series_equal(e, ge.ngroup()) assert_series_equal(e, se.ngroup()) def test_ngroup_series_matches_frame(self): df = DataFrame({"A": list("aaaba")}) s = Series(list("aaaba")) assert_series_equal(df.groupby(s).ngroup(), s.groupby(s).ngroup()) def test_ngroup_dupe_index(self): df = DataFrame({"A": list("aaaba")}, index=[0] * 5) g = df.groupby("A") sg = g.A expected = Series([0, 0, 0, 1, 0], index=[0] * 5) assert_series_equal(expected, g.ngroup()) assert_series_equal(expected, sg.ngroup()) def test_ngroup_mi(self): mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) df = DataFrame({"A": list("aaaba")}, index=mi) g = df.groupby("A") sg = g.A expected = Series([0, 0, 0, 1, 0], index=mi) assert_series_equal(expected, g.ngroup()) assert_series_equal(expected, sg.ngroup()) def test_ngroup_groupby_not_col(self): df = DataFrame({"A": list("aaaba")}, index=[0] * 5) g = df.groupby([0, 0, 0, 1, 0]) sg = g.A expected = Series([0, 0, 0, 1, 0], index=[0] * 5) assert_series_equal(expected, g.ngroup()) assert_series_equal(expected, sg.ngroup()) def test_ngroup_descending(self): df = DataFrame(["a", "a", "b", "a", "b"], columns=["A"]) g = df.groupby(["A"]) ascending = Series([0, 0, 1, 0, 1]) descending = Series([1, 1, 0, 1, 0]) assert_series_equal(descending, (g.ngroups - 1) - ascending) assert_series_equal(ascending, g.ngroup(ascending=True)) assert_series_equal(descending, g.ngroup(ascending=False)) def test_ngroup_matches_cumcount(self): # verify one manually-worked out case works df = DataFrame( [["a", "x"], ["a", "y"], ["b", "x"], ["a", "x"], ["b", "y"]], columns=["A", "X"], ) g = df.groupby(["A", "X"]) g_ngroup = g.ngroup() g_cumcount = g.cumcount() expected_ngroup = Series([0, 1, 2, 0, 3]) expected_cumcount = Series([0, 0, 0, 1, 0]) assert_series_equal(g_ngroup, expected_ngroup) assert_series_equal(g_cumcount, expected_cumcount) def test_ngroup_cumcount_pair(self): # brute force comparison for all small series for p in product(range(3), repeat=4): df = DataFrame({"a": p}) g = df.groupby(["a"]) order = sorted(set(p)) ngroupd = [order.index(val) for val in p] cumcounted = [p[:i].count(val) for i, val in enumerate(p)] assert_series_equal(g.ngroup(), Series(ngroupd)) assert_series_equal(g.cumcount(), Series(cumcounted)) def test_ngroup_respects_groupby_order(self): np.random.seed(0) df = DataFrame({"a": np.random.choice(list("abcdef"), 100)}) for sort_flag in (False, True): g = df.groupby(["a"], sort=sort_flag) df["group_id"] = -1 df["group_index"] = -1 for i, (_, group) in enumerate(g): df.loc[group.index, "group_id"] = i for j, ind in enumerate(group.index): df.loc[ind, "group_index"] = j assert_series_equal(Series(df["group_id"].values), g.ngroup()) assert_series_equal(Series(df["group_index"].values), g.cumcount()) @pytest.mark.parametrize( "datetimelike", [ [ Timestamp("2016-05-{i:02d} 20:09:25+00:00".format(i=i)) for i in range(1, 4) ], [Timestamp("2016-05-{i:02d} 20:09:25".format(i=i)) for i in range(1, 4)], [Timedelta(x, unit="h") for x in range(1, 4)], [Period(freq="2W", year=2017, month=x) for x in range(1, 4)], ], ) def test_count_with_datetimelike(self, datetimelike): # test for #13393, where DataframeGroupBy.count() fails # when counting a datetimelike column. df = DataFrame({"x": ["a", "a", "b"], "y": datetimelike}) res = df.groupby("x").count() expected = DataFrame({"y": [2, 1]}, index=["a", "b"]) expected.index.name = "x" assert_frame_equal(expected, res) def test_count_with_only_nans_in_first_group(self): # GH21956 df = DataFrame({"A": [np.nan, np.nan], "B": ["a", "b"], "C": [1, 2]}) result = df.groupby(["A", "B"]).C.count() mi = MultiIndex(levels=[[], ["a", "b"]], codes=[[], []], names=["A", "B"]) expected = Series([], index=mi, dtype=np.int64, name="C") assert_series_equal(result, expected, check_index_type=False)
bsd-3-clause
ashhher3/scikit-learn
sklearn/linear_model/ransac.py
22
14007
# coding: utf-8 # Author: Johannes Schönberger # # License: BSD 3 clause import numpy as np from ..base import BaseEstimator, MetaEstimatorMixin, RegressorMixin, clone from ..utils import check_random_state, check_array, check_consistent_length from ..utils.random import sample_without_replacement from ..utils.validation import check_is_fitted from .base import LinearRegression _EPSILON = np.spacing(1) def _dynamic_max_trials(n_inliers, n_samples, min_samples, probability): """Determine number trials such that at least one outlier-free subset is sampled for the given inlier/outlier ratio. Parameters ---------- n_inliers : int Number of inliers in the data. n_samples : int Total number of samples in the data. min_samples : int Minimum number of samples chosen randomly from original data. probability : float Probability (confidence) that one outlier-free sample is generated. Returns ------- trials : int Number of trials. """ inlier_ratio = n_inliers / float(n_samples) nom = max(_EPSILON, 1 - probability) denom = max(_EPSILON, 1 - inlier_ratio ** min_samples) if nom == 1: return 0 if denom == 1: return float('inf') return abs(float(np.ceil(np.log(nom) / np.log(denom)))) class RANSACRegressor(BaseEstimator, MetaEstimatorMixin, RegressorMixin): """RANSAC (RANdom SAmple Consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. More information can be found in the general documentation of linear models. A detailed description of the algorithm can be found in the documentation of the ``linear_model`` sub-package. Parameters ---------- base_estimator : object, optional Base estimator object which implements the following methods: * `fit(X, y)`: Fit model to given training data and target values. * `score(X, y)`: Returns the mean accuracy on the given test data, which is used for the stop criterion defined by `stop_score`. Additionally, the score is used to decide which of two equally large consensus sets is chosen as the better one. If `base_estimator` is None, then ``base_estimator=sklearn.linear_model.LinearRegression()`` is used for target values of dtype float. Note that the current implementation only supports regression estimators. min_samples : int (>= 1) or float ([0, 1]), optional Minimum number of samples chosen randomly from original data. Treated as an absolute number of samples for `min_samples >= 1`, treated as a relative number `ceil(min_samples * X.shape[0]`) for `min_samples < 1`. This is typically chosen as the minimal number of samples necessary to estimate the given `base_estimator`. By default a ``sklearn.linear_model.LinearRegression()`` estimator is assumed and `min_samples` is chosen as ``X.shape[1] + 1``. residual_threshold : float, optional Maximum residual for a data sample to be classified as an inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the target values `y`. is_data_valid : callable, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. is_model_valid : callable, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, X, y)`. If its return value is False the current randomly chosen sub-sample is skipped. Rejecting samples with this function is computationally costlier than with `is_data_valid`. `is_model_valid` should therefore only be used if the estimated model is needed for making the rejection decision. max_trials : int, optional Maximum number of iterations for random sample selection. stop_n_inliers : int, optional Stop iteration if at least this number of inliers are found. stop_score : float, optional Stop iteration if score is greater equal than this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled in RANSAC. This requires to generate at least N samples (iterations):: N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to high value such as 0.99 (the default) and e is the current fraction of inliers w.r.t. the total number of samples. residual_metric : callable, optional Metric to reduce the dimensionality of the residuals to 1 for multi-dimensional target values ``y.shape[1] > 1``. By default the sum of absolute differences is used:: lambda dy: np.sum(np.abs(dy), axis=1) random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- estimator_ : object Best fitted model (copy of the `base_estimator` object). n_trials_ : int Number of random selection trials until one of the stop criteria is met. It is always ``<= max_trials``. inlier_mask_ : bool array of shape [n_samples] Boolean mask of inliers classified as ``True``. References ---------- .. [1] http://en.wikipedia.org/wiki/RANSAC .. [2] http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf .. [3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf """ def __init__(self, base_estimator=None, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, stop_n_inliers=np.inf, stop_score=np.inf, stop_probability=0.99, residual_metric=None, random_state=None): self.base_estimator = base_estimator self.min_samples = min_samples self.residual_threshold = residual_threshold self.is_data_valid = is_data_valid self.is_model_valid = is_model_valid self.max_trials = max_trials self.stop_n_inliers = stop_n_inliers self.stop_score = stop_score self.stop_probability = stop_probability self.residual_metric = residual_metric self.random_state = random_state def fit(self, X, y): """Fit estimator using RANSAC algorithm. Parameters ---------- X : array-like or sparse matrix, shape [n_samples, n_features] Training data. y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values. Raises ------ ValueError If no valid consensus set could be found. This occurs if `is_data_valid` and `is_model_valid` return False for all `max_trials` randomly chosen sub-samples. """ X = check_array(X, accept_sparse='csr') y = check_array(y, ensure_2d=False) if y.ndim == 1: y = y.reshape(-1, 1) check_consistent_length(X, y) if self.base_estimator is not None: base_estimator = clone(self.base_estimator) else: base_estimator = LinearRegression() if self.min_samples is None: # assume linear model by default min_samples = X.shape[1] + 1 elif 0 < self.min_samples < 1: min_samples = np.ceil(self.min_samples * X.shape[0]) elif self.min_samples >= 1: if self.min_samples % 1 != 0: raise ValueError("Absolute number of samples must be an " "integer value.") min_samples = self.min_samples else: raise ValueError("Value for `min_samples` must be scalar and " "positive.") if min_samples > X.shape[0]: raise ValueError("`min_samples` may not be larger than number " "of samples ``X.shape[0]``.") if self.stop_probability < 0 or self.stop_probability > 1: raise ValueError("`stop_probability` must be in range [0, 1].") if self.residual_threshold is None: # MAD (median absolute deviation) residual_threshold = np.median(np.abs(y - np.median(y))) else: residual_threshold = self.residual_threshold if self.residual_metric is None: residual_metric = lambda dy: np.sum(np.abs(dy), axis=1) else: residual_metric = self.residual_metric random_state = check_random_state(self.random_state) try: # Not all estimator accept a random_state base_estimator.set_params(random_state=random_state) except ValueError: pass n_inliers_best = 0 score_best = np.inf inlier_mask_best = None X_inlier_best = None y_inlier_best = None # number of data samples n_samples = X.shape[0] sample_idxs = np.arange(n_samples) n_samples, _ = X.shape for self.n_trials_ in range(1, self.max_trials + 1): # choose random sample set subset_idxs = sample_without_replacement(n_samples, min_samples, random_state=random_state) X_subset = X[subset_idxs] y_subset = y[subset_idxs] # check if random sample set is valid if (self.is_data_valid is not None and not self.is_data_valid(X_subset, y_subset)): continue # fit model for current random sample set base_estimator.fit(X_subset, y_subset) # check if estimated model is valid if (self.is_model_valid is not None and not self.is_model_valid(base_estimator, X_subset, y_subset)): continue # residuals of all data for current random sample model y_pred = base_estimator.predict(X) if y_pred.ndim == 1: y_pred = y_pred[:, None] residuals_subset = residual_metric(y_pred - y) # classify data into inliers and outliers inlier_mask_subset = residuals_subset < residual_threshold n_inliers_subset = np.sum(inlier_mask_subset) # less inliers -> skip current random sample if n_inliers_subset < n_inliers_best: continue # extract inlier data set inlier_idxs_subset = sample_idxs[inlier_mask_subset] X_inlier_subset = X[inlier_idxs_subset] y_inlier_subset = y[inlier_idxs_subset] # score of inlier data set score_subset = base_estimator.score(X_inlier_subset, y_inlier_subset) # same number of inliers but worse score -> skip current random # sample if (n_inliers_subset == n_inliers_best and score_subset < score_best): continue # save current random sample as best sample n_inliers_best = n_inliers_subset score_best = score_subset inlier_mask_best = inlier_mask_subset X_inlier_best = X_inlier_subset y_inlier_best = y_inlier_subset # break if sufficient number of inliers or score is reached if (n_inliers_best >= self.stop_n_inliers or score_best >= self.stop_score or self.n_trials_ >= _dynamic_max_trials(n_inliers_best, n_samples, min_samples, self.stop_probability)): break # if none of the iterations met the required criteria if inlier_mask_best is None: raise ValueError( "RANSAC could not find valid consensus set, because" " either the `residual_threshold` rejected all the samples or" " `is_data_valid` and `is_model_valid` returned False for all" " `max_trials` randomly ""chosen sub-samples. Consider " "relaxing the ""constraints.") # estimate final model using all inliers base_estimator.fit(X_inlier_best, y_inlier_best) self.estimator_ = base_estimator self.inlier_mask_ = inlier_mask_best return self def predict(self, X): """Predict using the estimated model. This is a wrapper for `estimator_.predict(X)`. Parameters ---------- X : numpy array of shape [n_samples, n_features] Returns ------- y : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, 'estimator_') return self.estimator_.predict(X) def score(self, X, y): """Returns the score of the prediction. This is a wrapper for `estimator_.score(X, y)`. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples, n_features] Training data. y : array, shape = [n_samples] or [n_samples, n_targets] Target values. Returns ------- z : float Score of the prediction. """ check_is_fitted(self, 'estimator_') return self.estimator_.score(X, y)
bsd-3-clause
carrillo/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
louispotok/pandas
pandas/tests/io/parser/index_col.py
20
5352
# -*- coding: utf-8 -*- """ Tests that the specified index column (a.k.a 'index_col') is properly handled or inferred during parsing for all of the parsers defined in parsers.py """ import pytest import pandas.util.testing as tm from pandas import DataFrame, Index, MultiIndex from pandas.compat import StringIO class IndexColTests(object): def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" # noqa data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) pytest.raises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) assert xp.index.name == rs.index.name rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) assert xp.index.name == rs.index.name def test_index_col_is_true(self): # see gh-9798 pytest.raises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) assert data.index.equals(Index(['foo', 'bar', 'baz'])) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame( [], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO( data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO( data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # see gh-10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected)
bsd-3-clause
AlexCatarino/Lean
Algorithm.Python/WarmupHistoryAlgorithm.py
3
2886
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from AlgorithmImports import * ### <summary> ### This algorithm demonstrates using the history provider to retrieve data ### to warm up indicators before data is received. ### </summary> ### <meta name="tag" content="indicators" /> ### <meta name="tag" content="history" /> ### <meta name="tag" content="history and warm up" /> ### <meta name="tag" content="using data" /> class WarmupHistoryAlgorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014,5,2) #Set Start Date self.SetEndDate(2014,5,2) #Set End Date self.SetCash(100000) #Set Strategy Cash # Find more symbols here: http://quantconnect.com/data forex = self.AddForex("EURUSD", Resolution.Second) forex = self.AddForex("NZDUSD", Resolution.Second) fast_period = 60 slow_period = 3600 self.fast = self.EMA("EURUSD", fast_period) self.slow = self.EMA("EURUSD", slow_period) # "slow_period + 1" because rolling window waits for one to fall off the back to be considered ready # History method returns a dict with a pandas.DataFrame history = self.History(["EURUSD", "NZDUSD"], slow_period + 1) # prints out the tail of the dataframe self.Log(str(history.loc["EURUSD"].tail())) self.Log(str(history.loc["NZDUSD"].tail())) for index, row in history.loc["EURUSD"].iterrows(): self.fast.Update(index, row["close"]) self.slow.Update(index, row["close"]) self.Log("FAST {0} READY. Samples: {1}".format("IS" if self.fast.IsReady else "IS NOT", self.fast.Samples)) self.Log("SLOW {0} READY. Samples: {1}".format("IS" if self.slow.IsReady else "IS NOT", self.slow.Samples)) def OnData(self, data): '''OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.''' if self.fast.Current.Value > self.slow.Current.Value: self.SetHoldings("EURUSD", 1) else: self.SetHoldings("EURUSD", -1)
apache-2.0
e-q/scipy
scipy/spatial/kdtree.py
3
24169
# Copyright Anne M. Archibald 2008 # Released under the scipy license import numpy as np import warnings from .ckdtree import cKDTree, cKDTreeNode __all__ = ['minkowski_distance_p', 'minkowski_distance', 'distance_matrix', 'Rectangle', 'KDTree'] def minkowski_distance_p(x, y, p=2): """ Compute the pth power of the L**p distance between two arrays. For efficiency, this function computes the L**p distance but does not extract the pth root. If `p` is 1 or infinity, this is equal to the actual L**p distance. Parameters ---------- x : (M, K) array_like Input array. y : (N, K) array_like Input array. p : float, 1 <= p <= infinity Which Minkowski p-norm to use. Examples -------- >>> from scipy.spatial import minkowski_distance_p >>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]]) array([2, 1]) """ x = np.asarray(x) y = np.asarray(y) # Find smallest common datatype with float64 (return type of this function) - addresses #10262. # Don't just cast to float64 for complex input case. common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype), 'float64') # Make sure x and y are NumPy arrays of correct datatype. x = x.astype(common_datatype) y = y.astype(common_datatype) if p == np.inf: return np.amax(np.abs(y-x), axis=-1) elif p == 1: return np.sum(np.abs(y-x), axis=-1) else: return np.sum(np.abs(y-x)**p, axis=-1) def minkowski_distance(x, y, p=2): """ Compute the L**p distance between two arrays. Parameters ---------- x : (M, K) array_like Input array. y : (N, K) array_like Input array. p : float, 1 <= p <= infinity Which Minkowski p-norm to use. Examples -------- >>> from scipy.spatial import minkowski_distance >>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]]) array([ 1.41421356, 1. ]) """ x = np.asarray(x) y = np.asarray(y) if p == np.inf or p == 1: return minkowski_distance_p(x, y, p) else: return minkowski_distance_p(x, y, p)**(1./p) class Rectangle(object): """Hyperrectangle class. Represents a Cartesian product of intervals. """ def __init__(self, maxes, mins): """Construct a hyperrectangle.""" self.maxes = np.maximum(maxes,mins).astype(float) self.mins = np.minimum(maxes,mins).astype(float) self.m, = self.maxes.shape def __repr__(self): return "<Rectangle %s>" % list(zip(self.mins, self.maxes)) def volume(self): """Total volume.""" return np.prod(self.maxes-self.mins) def split(self, d, split): """ Produce two hyperrectangles by splitting. In general, if you need to compute maximum and minimum distances to the children, it can be done more efficiently by updating the maximum and minimum distances to the parent. Parameters ---------- d : int Axis to split hyperrectangle along. split : float Position along axis `d` to split at. """ mid = np.copy(self.maxes) mid[d] = split less = Rectangle(self.mins, mid) mid = np.copy(self.mins) mid[d] = split greater = Rectangle(mid, self.maxes) return less, greater def min_distance_point(self, x, p=2.): """ Return the minimum distance between input and points in the hyperrectangle. Parameters ---------- x : array_like Input. p : float, optional Input. """ return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p) def max_distance_point(self, x, p=2.): """ Return the maximum distance between input and points in the hyperrectangle. Parameters ---------- x : array_like Input array. p : float, optional Input. """ return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p) def min_distance_rectangle(self, other, p=2.): """ Compute the minimum distance between points in the two hyperrectangles. Parameters ---------- other : hyperrectangle Input. p : float Input. """ return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p) def max_distance_rectangle(self, other, p=2.): """ Compute the maximum distance between points in the two hyperrectangles. Parameters ---------- other : hyperrectangle Input. p : float, optional Input. """ return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p) class KDTree(cKDTree): """ kd-tree for quick nearest-neighbor lookup This class provides an index into a set of k-D points which can be used to rapidly look up the nearest neighbors of any point. Parameters ---------- data : (N,K) array_like The data points to be indexed. This array is not copied, and so modifying this data will result in bogus results. leafsize : int, optional The number of points at which the algorithm switches over to brute-force. Has to be positive. Notes ----- The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value. During construction, the axis and splitting point are chosen by the "sliding midpoint" rule, which ensures that the cells do not all become long and thin. The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r approximate closest neighbors. For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-dimensional nearest-neighbor queries are a substantial open problem in computer science. The tree also supports all-neighbors queries, both with arrays of points and with other kd-trees. These do use a reasonably efficient algorithm, but the kd-tree is not necessarily the best data structure for this sort of calculation. """ class node: @staticmethod def _create(ckdtree_node=None): """Create either an inner or leaf node, wrapping a cKDTreeNode instance""" if ckdtree_node is None: return KDTree.node(ckdtree_node) elif ckdtree_node.split_dim == -1: return KDTree.leafnode(ckdtree_node) else: return KDTree.innernode(ckdtree_node) def __init__(self, ckdtree_node=None): if ckdtree_node is None: ckdtree_node = cKDTreeNode() self._node = ckdtree_node def __lt__(self, other): return id(self) < id(other) def __gt__(self, other): return id(self) > id(other) def __le__(self, other): return id(self) <= id(other) def __ge__(self, other): return id(self) >= id(other) def __eq__(self, other): return id(self) == id(other) class leafnode(node): @property def idx(self): return self._node.indices @property def children(self): return self._node.children class innernode(node): def __init__(self, ckdtreenode): assert isinstance(ckdtreenode, cKDTreeNode) super().__init__(ckdtreenode) self.less = KDTree.node._create(ckdtreenode.lesser) self.greater = KDTree.node._create(ckdtreenode.greater) @property def split_dim(self): return self._node.split_dim @property def split(self): return self._node.split @property def children(self): return self._node.children @property def tree(self): if not hasattr(self, "_tree"): self._tree = KDTree.node._create(super().tree) return self._tree def __init__(self, data, leafsize=10): data = np.asarray(data) if data.dtype.kind == 'c': raise TypeError("KDTree does not work with complex data") # Note KDTree has different default leafsize from cKDTree super().__init__(data, leafsize) def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf): """ Query the kd-tree for nearest neighbors Parameters ---------- x : array_like, last dimension self.m An array of points to query. k : int, optional The number of nearest neighbors to return. eps : nonnegative float, optional Return approximate nearest neighbors; the kth returned value is guaranteed to be no further than (1+eps) times the distance to the real kth nearest neighbor. p : float, 1<=p<=infinity, optional Which Minkowski p-norm to use. 1 is the sum-of-absolute-values "Manhattan" distance 2 is the usual Euclidean distance infinity is the maximum-coordinate-difference distance distance_upper_bound : nonnegative float, optional Return only neighbors within this distance. This is used to prune tree searches, so if you are doing a series of nearest-neighbor queries, it may help to supply the distance to the nearest neighbor of the most recent point. Returns ------- d : float or array of floats The distances to the nearest neighbors. If x has shape tuple+(self.m,), then d has shape tuple if k is one, or tuple+(k,) if k is larger than one. Missing neighbors (e.g. when k > n or distance_upper_bound is given) are indicated with infinite distances. If k is None, then d is an object array of shape tuple, containing lists of distances. In either case the hits are sorted by distance (nearest first). i : integer or array of integers The locations of the neighbors in self.data. i is the same shape as d. Examples -------- >>> from scipy import spatial >>> x, y = np.mgrid[0:5, 2:8] >>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel()))) >>> tree.data array([[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7]]) >>> pts = np.array([[0, 0], [2.1, 2.9]]) >>> tree.query(pts) (array([ 2. , 0.14142136]), array([ 0, 13])) >>> tree.query(pts[0]) (2.0, 0) """ x = np.asarray(x) if x.dtype.kind == 'c': raise TypeError("KDTree does not work with complex data") if k is None: # k=None, return all neighbors warnings.warn( "KDTree.query with k=None is deprecated and will be removed " "in SciPy 1.8.0. Use KDTree.query_ball_point instead.", DeprecationWarning) # Convert index query to a lists of distance and index, # sorted by distance def inds_to_hits(point, neighbors): dist = minkowski_distance(point, self.data[neighbors], p) hits = sorted([(d, i) for d, i in zip(dist, neighbors)]) return [d for d, i in hits], [i for d, i in hits] x = np.asarray(x, dtype=np.float64) inds = super().query_ball_point(x, distance_upper_bound, p, eps) if isinstance(inds, list): return inds_to_hits(x, inds) dists = np.empty_like(inds) for idx in np.ndindex(inds.shape): dists[idx], inds[idx] = inds_to_hits(x[idx], inds[idx]) return dists, inds d, i = super().query(x, k, eps, p, distance_upper_bound) if isinstance(i, int): i = np.intp(i) return d, i def query_ball_point(self, x, r, p=2., eps=0): """Find all points within distance r of point(s) x. Parameters ---------- x : array_like, shape tuple + (self.m,) The point or points to search for neighbors of. r : positive float The radius of points to return. p : float, optional Which Minkowski p-norm to use. Should be in the range [1, inf]. eps : nonnegative float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r / (1 + eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1 + eps)``. Returns ------- results : list or array of lists If `x` is a single point, returns a list of the indices of the neighbors of `x`. If `x` is an array of points, returns an object array of shape tuple containing lists of neighbors. Notes ----- If you have many points whose neighbors you want to find, you may save substantial amounts of time by putting them in a KDTree and using query_ball_tree. Examples -------- >>> from scipy import spatial >>> x, y = np.mgrid[0:5, 0:5] >>> points = np.c_[x.ravel(), y.ravel()] >>> tree = spatial.KDTree(points) >>> sorted(tree.query_ball_point([2, 0], 1)) [5, 10, 11, 15] Query multiple points and plot the results: >>> import matplotlib.pyplot as plt >>> points = np.asarray(points) >>> plt.plot(points[:,0], points[:,1], '.') >>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1): ... nearby_points = points[results] ... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o') >>> plt.margins(0.1, 0.1) >>> plt.show() """ x = np.asarray(x) if x.dtype.kind == 'c': raise TypeError("KDTree does not work with complex data") return super().query_ball_point(x, r, p, eps) def query_ball_tree(self, other, r, p=2., eps=0): """ Find all pairs of points between `self` and `other` whose distance is at most r Parameters ---------- other : KDTree instance The tree containing points to search against. r : float The maximum distance, has to be positive. p : float, optional Which Minkowski norm to use. `p` has to meet the condition ``1 <= p <= infinity``. eps : float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r/(1+eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1+eps)``. `eps` has to be non-negative. Returns ------- results : list of lists For each element ``self.data[i]`` of this tree, ``results[i]`` is a list of the indices of its neighbors in ``other.data``. Examples -------- You can search all pairs of points between two kd-trees within a distance: >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from scipy.spatial import KDTree >>> np.random.seed(21701) >>> points1 = np.random.random((15, 2)) >>> points2 = np.random.random((15, 2)) >>> plt.figure(figsize=(6, 6)) >>> plt.plot(points1[:, 0], points1[:, 1], "xk", markersize=14) >>> plt.plot(points2[:, 0], points2[:, 1], "og", markersize=14) >>> kd_tree1 = KDTree(points1) >>> kd_tree2 = KDTree(points2) >>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2) >>> for i in range(len(indexes)): ... for j in indexes[i]: ... plt.plot([points1[i, 0], points2[j, 0]], ... [points1[i, 1], points2[j, 1]], "-r") >>> plt.show() """ return super().query_ball_tree(other, r, p, eps) def query_pairs(self, r, p=2., eps=0): """ Find all pairs of points in `self` whose distance is at most r. Parameters ---------- r : positive float The maximum distance. p : float, optional Which Minkowski norm to use. `p` has to meet the condition ``1 <= p <= infinity``. eps : float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r/(1+eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1+eps)``. `eps` has to be non-negative. Returns ------- results : set Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding positions are close. Examples -------- You can search all pairs of points in a kd-tree within a distance: >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from scipy.spatial import KDTree >>> np.random.seed(21701) >>> points = np.random.random((20, 2)) >>> plt.figure(figsize=(6, 6)) >>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14) >>> kd_tree = KDTree(points) >>> pairs = kd_tree.query_pairs(r=0.2) >>> for (i, j) in pairs: ... plt.plot([points[i, 0], points[j, 0]], ... [points[i, 1], points[j, 1]], "-r") >>> plt.show() """ return super().query_pairs(r, p, eps) def count_neighbors(self, other, r, p=2.): """ Count how many nearby pairs can be formed. Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from ``other``, and where ``distance(x1, x2, p) <= r``. This is the "two-point correlation" described in Gray and Moore 2000, "N-body problems in statistical learning", and the code here is based on their algorithm. Parameters ---------- other : KDTree instance The other tree to draw points from. r : float or one-dimensional array of floats The radius to produce a count for. Multiple radii are searched with a single tree traversal. p : float, 1<=p<=infinity, optional Which Minkowski p-norm to use Returns ------- result : int or 1-D array of ints The number of pairs. Examples -------- You can count neighbors number between two kd-trees within a distance: >>> import numpy as np >>> from scipy.spatial import KDTree >>> np.random.seed(21701) >>> points1 = np.random.random((5, 2)) >>> points2 = np.random.random((5, 2)) >>> kd_tree1 = KDTree(points1) >>> kd_tree2 = KDTree(points2) >>> kd_tree1.count_neighbors(kd_tree2, 0.2) 9 This number is same as the total pair number calculated by `query_ball_tree`: >>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2) >>> sum([len(i) for i in indexes]) 9 """ return super().count_neighbors(other, r, p) def sparse_distance_matrix(self, other, max_distance, p=2.): """ Compute a sparse distance matrix Computes a distance matrix between two KDTrees, leaving as zero any distance greater than max_distance. Parameters ---------- other : KDTree max_distance : positive float p : float, optional Returns ------- result : dok_matrix Sparse matrix representing the results in "dictionary of keys" format. Examples -------- You can compute a sparse distance matrix between two kd-trees: >>> import numpy as np >>> from scipy.spatial import KDTree >>> np.random.seed(21701) >>> points1 = np.random.random((5, 2)) >>> points2 = np.random.random((5, 2)) >>> kd_tree1 = KDTree(points1) >>> kd_tree2 = KDTree(points2) >>> sdm = kd_tree1.sparse_distance_matrix(kd_tree2, 0.3) >>> sdm.toarray() array([[0.20220215, 0.14538496, 0., 0.10257199, 0. ], [0.13491385, 0.27251306, 0., 0.18793787, 0. ], [0.19262396, 0., 0., 0.25795122, 0. ], [0.14859639, 0.07076002, 0., 0.04065851, 0. ], [0.17308768, 0., 0., 0.24823138, 0. ]]) You can check distances above the `max_distance` are zeros: >>> from scipy.spatial import distance_matrix >>> distance_matrix(points1, points2) array([[0.20220215, 0.14538496, 0.43588092, 0.10257199, 0.4555495 ], [0.13491385, 0.27251306, 0.65944131, 0.18793787, 0.68184154], [0.19262396, 0.34121593, 0.72176889, 0.25795122, 0.74538858], [0.14859639, 0.07076002, 0.48505773, 0.04065851, 0.50043591], [0.17308768, 0.32837991, 0.72760803, 0.24823138, 0.75017239]]) """ return super().sparse_distance_matrix(other, max_distance, p) def distance_matrix(x, y, p=2, threshold=1000000): """ Compute the distance matrix. Returns the matrix of all pair-wise distances. Parameters ---------- x : (M, K) array_like Matrix of M vectors in K dimensions. y : (N, K) array_like Matrix of N vectors in K dimensions. p : float, 1 <= p <= infinity Which Minkowski p-norm to use. threshold : positive int If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead of large temporary arrays. Returns ------- result : (M, N) ndarray Matrix containing the distance from every vector in `x` to every vector in `y`. Examples -------- >>> from scipy.spatial import distance_matrix >>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]]) array([[ 1. , 1.41421356], [ 1.41421356, 1. ]]) """ x = np.asarray(x) m, k = x.shape y = np.asarray(y) n, kk = y.shape if k != kk: raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk)) if m*n*k <= threshold: return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p) else: result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype if m < n: for i in range(m): result[i,:] = minkowski_distance(x[i],y,p) else: for j in range(n): result[:,j] = minkowski_distance(x,y[j],p) return result
bsd-3-clause
rknLA/sms-tools
lectures/09-Sound-description/plots-code/hpcp.py
25
1194
import numpy as np import matplotlib.pyplot as plt import essentia.standard as ess M = 1024 N = 1024 H = 512 fs = 44100 spectrum = ess.Spectrum(size=N) window = ess.Windowing(size=M, type='hann') spectralPeaks = ess.SpectralPeaks() hpcp = ess.HPCP() x = ess.MonoLoader(filename = '../../../sounds/cello-double.wav', sampleRate = fs)() hpcps = [] for frame in ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True): mX = spectrum(window(frame)) spectralPeaks_freqs, spectralPeaks_mags = spectralPeaks(mX) hpcp_vals = hpcp(spectralPeaks_freqs, spectralPeaks_mags) hpcps.append(hpcp_vals) hpcps = np.array(hpcps) plt.figure(1, figsize=(9.5, 7)) plt.subplot(2,1,1) plt.plot(np.arange(x.size)/float(fs), x, 'b') plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.title('x (cello-double.wav)') plt.subplot(2,1,2) numFrames = int(hpcps[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.pcolormesh(frmTime, np.arange(12), np.transpose(hpcps)) plt.ylabel('spectral bins') plt.title('HPCP') plt.autoscale(tight=True) plt.tight_layout() plt.savefig('hpcp.png') plt.show()
agpl-3.0
wogsland/QSTK
QSTK/qstkutil/qsdateutil.py
5
9008
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on Jan 1, 2011 @author:Drew Bratcher @contact: [email protected] @summary: Contains tutorial for backtester and report. ''' import datetime as dt from datetime import timedelta import time as t import numpy as np import os import pandas as pd def _cache_dates(): ''' Caches dates ''' try: # filename = os.environ['QS'] + "/qstkutil/NYSE_dates.txt" filename = os.path.join(os.path.dirname(__file__), 'NYSE_dates.txt') except KeyError: print "Please be sure you have NYSE_dates.txt in the qstkutil directory" datestxt = np.loadtxt(filename, dtype=str) dates = [] for i in datestxt: dates.append(dt.datetime.strptime(i, "%m/%d/%Y")) return pd.TimeSeries(index=dates, data=dates) GTS_DATES = _cache_dates() def getMonthNames(): return(['JAN','FEB','MAR','APR','MAY','JUN','JUL','AUG','SEP','OCT','NOV','DEC']) def getYears(funds): years=[] for date in funds.index: if(not(date.year in years)): years.append(date.year) return(years) def getMonths(funds,year): months=[] for date in funds.index: if((date.year==year) and not(date.month in months)): months.append(date.month) return(months) def getDays(funds,year,month): days=[] for date in funds.index: if((date.year==year) and (date.month==month)): days.append(date) return(days) def getDaysBetween(ts_start, ts_end): days=[] for i in range(0,(ts_end-ts_start).days): days.append(ts_start+timedelta(days=1)*i) return(days) def getFirstDay(funds,year,month): for date in funds.index: if((date.year==year) and (date.month==month)): return(date) return('ERROR') def getLastDay(funds,year,month): return_date = 'ERROR' for date in funds.index: if((date.year==year) and (date.month==month)): return_date = date return(return_date) def getNextOptionClose(day, trade_days, offset=0): #get third friday in month of day #get first of month year_off=0 if day.month+offset > 12: year_off = 1 offset = offset - 12 first = dt.datetime(day.year+year_off, day.month+offset, 1, hour=16) #get weekday day_num = first.weekday() #get first friday (friday - weekday) add 7 if less than 1 dif = 5 - day_num if dif < 1: dif = dif+7 #move to third friday dif = dif + 14 friday = first+dt.timedelta(days=(dif-1)) #if friday is a holiday, options expire then if friday in trade_days: month_close = first + dt.timedelta(days=dif) else: month_close = friday #if day is past the day after that if month_close < day: return_date = getNextOptionClose(day, trade_days, offset=1) else: return_date = month_close return(return_date) def getLastOptionClose(day, trade_days): start = day while getNextOptionClose(day, trade_days)>=start: day= day - dt.timedelta(days=1) return(getNextOptionClose(day, trade_days)) def getNYSEoffset(mark, offset): ''' Returns NYSE date offset by number of days ''' mark = mark.replace(hour=0, minute=0, second=0, microsecond=0) i = GTS_DATES.index.searchsorted(mark, side='right') # If there is no exact match, take first date in past if GTS_DATES[i] != mark: i -= 1 ret = GTS_DATES[i + offset] ret = ret.replace(hour=16) return ret def getNYSEdays(startday = dt.datetime(1964,7,5), endday = dt.datetime(2020,12,31), timeofday = dt.timedelta(0)): """ @summary: Create a list of timestamps between startday and endday (inclusive) that correspond to the days there was trading at the NYSE. This function depends on a separately created a file that lists all days since July 4, 1962 that the NYSE has been open, going forward to 2020 (based on the holidays that NYSE recognizes). @param startday: First timestamp to consider (inclusive) @param endday: Last day to consider (inclusive) @return list: of timestamps between startday and endday on which NYSE traded @rtype datetime """ start = startday - timeofday end = endday - timeofday dates = GTS_DATES[start:end] ret = [x + timeofday for x in dates] return(ret) def getNextNNYSEdays(startday, days, timeofday): """ @summary: Create a list of timestamps from startday that is days days long that correspond to the days there was trading at NYSE. This function depends on the file used in getNYSEdays and assumes the dates within are in order. @param startday: First timestamp to consider (inclusive) @param days: Number of timestamps to return @return list: List of timestamps starting at startday on which NYSE traded @rtype datetime """ try: # filename = os.environ['QS'] + "/qstkutil/NYSE_dates.txt" filename = os.path.join(os.path.dirname(__file__), 'NYSE_dates.txt') except KeyError: print "Please be sure to set the value for QS in config.sh or\n" print "in local.sh and then \'source local.sh\'.\n" datestxt = np.loadtxt(filename,dtype=str) dates=[] for i in datestxt: if(len(dates)<days): if((dt.datetime.strptime(i,"%m/%d/%Y")+timeofday)>=startday): dates.append(dt.datetime.strptime(i,"%m/%d/%Y")+timeofday) return(dates) def getPrevNNYSEday(startday, timeofday): """ @summary: This function returns the last valid trading day before the start day, or returns the start day if it is a valid trading day. This function depends on the file used in getNYSEdays and assumes the dates within are in order. @param startday: First timestamp to consider (inclusive) @param days: Number of timestamps to return @return list: List of timestamps starting at startday on which NYSE traded @rtype datetime """ try: # filename = os.environ['QS'] + "/qstkutil/NYSE_dates.txt" filename = os.path.join(os.path.dirname(__file__), 'NYSE_dates.txt') except KeyError: print "Please be sure to set the value for QS in config.sh or\n" print "in local.sh and then \'source local.sh\'.\n" datestxt = np.loadtxt(filename,dtype=str) #''' Set return to first day ''' dtReturn = dt.datetime.strptime( datestxt[0],"%m/%d/%Y")+timeofday #''' Loop through all but first ''' for i in datestxt[1:]: dtNext = dt.datetime.strptime(i,"%m/%d/%Y") #''' If we are > startday, then use previous valid day ''' if( dtNext > startday ): break dtReturn = dtNext + timeofday return(dtReturn) def ymd2epoch(year, month, day): """ @summary: Convert YMD info into a unix epoch value. @param year: The year @param month: The month @param day: The day @return epoch: number of seconds since epoch """ return(t.mktime(dt.date(year,month,day).timetuple())) def epoch2date(ts): """ @summary Convert seconds since epoch into date @param ts: Seconds since epoch @return thedate: A date object """ tm = t.gmtime(ts) return(dt.date(tm.tm_year,tm.tm_mon,tm.tm_mday)) def _trade_dates(dt_start, dt_end, s_period): ''' @summary: Generate dates on which we need to trade @param c_strat: Strategy config class @param dt_start: Start date @param dt_end: End date ''' ldt_timestamps = getNYSEdays(dt_start, dt_end, dt.timedelta(hours=16) ) # Use pandas reindex method instead # Note, dates are index as well as values, we select based on index # but return values since it is a numpy array of datetimes instead of # pandas specific. ts_dates = pd.TimeSeries(index=ldt_timestamps, data=ldt_timestamps) # These are the dates we want if s_period[:2] == 'BW': # special case for biweekly dr_range = pd.DateRange(dt_start, dt_end, timeRule=s_period[1:]) dr_range = np.asarray(dr_range) li_even = np.array(range(len(dr_range))) dr_range = dr_range[li_even[li_even % 2 == 0]] else: dr_range = pd.DateRange(dt_start, dt_end, timeRule=s_period) dr_range = np.asarray(dr_range) # Warning, we MUST copy the date range, if we modify it it will be returned # in it's modified form the next time we use it. dr_range = np.copy(dr_range) dr_range += pd.DateOffset(hours=16) ts_dates = ts_dates.reindex( dr_range, method='bfill' ) ldt_dates = ts_dates[ts_dates.notnull()].values #Make unique sdt_unique = set() ldt_dates = [x for x in ldt_dates if x not in sdt_unique and not sdt_unique.add(x)] return ldt_dates
bsd-3-clause
nesterione/scikit-learn
sklearn/__init__.py
154
3014
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.17.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'lda', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'multiclass', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'qda', 'random_projection', 'semi_supervised', 'svm', 'tree', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
mmottahedi/neuralnilm_prototype
scripts/e278.py
2
51343
from __future__ import print_function, division import matplotlib import logging from sys import stdout matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import (Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer, BidirectionalRecurrentLayer) from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment, init_experiment from neuralnilm.net import TrainingError from neuralnilm.objectives import scaled_cost from lasagne.nonlinearities import sigmoid, rectify, tanh from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import (LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer, RecurrentLayer) from lasagne.updates import nesterov_momentum from functools import partial import os import __main__ from copy import deepcopy from math import sqrt import numpy as np import theano.tensor as T NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 500 GRADIENT_STEPS = 100 source_dict = dict( filename='/data/dk3810/ukdale.h5', appliances=[ ['fridge freezer', 'fridge', 'freezer'], 'hair straighteners', 'television', 'dish washer', ['washer dryer', 'washing machine'] ], max_appliance_powers=[300, 500, 200, 2500, 2400], on_power_thresholds=[5] * 5, max_input_power=5900, min_on_durations=[60, 60, 60, 1800, 1800], min_off_durations=[12, 12, 12, 1800, 600], window=("2013-06-01", "2014-07-01"), seq_length=1500, output_one_appliance=False, boolean_targets=False, train_buildings=[1], validation_buildings=[1], skip_probability=0.7, n_seq_per_batch=10, subsample_target=3, include_diff=False, clip_appliance_power=True, target_is_prediction=False, standardise_input=True, standardise_targets=True, input_padding=0, lag=0, input_stats={'mean': np.array([ 0.05526326], dtype=np.float32), 'std': np.array([ 0.12636775], dtype=np.float32)}, target_stats={ 'mean': np.array([ 0.04066789, 0.01881946, 0.24639061, 0.17608672, 0.10273963], dtype=np.float32), 'std': np.array([ 0.11449792, 0.07338708, 0.26608968, 0.33463112, 0.21250485], dtype=np.float32)} ) def change_learning_rate(net, epoch): net.updates = partial(nesterov_momentum, learning_rate=0.001) net.compile() def change_subsample(net, epoch): net.source.subsample_target = 3 net.generate_validation_data_and_set_shapes() net_dict = dict( save_plot_interval=SAVE_PLOT_INTERVAL, loss_function=scaled_cost, updates=partial(nesterov_momentum, learning_rate=0.01), do_save_activations=True, epoch_callbacks={501: change_learning_rate} ) def exp_a(name): # avg valid cost = 0.5296852589 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_b(name): # 1 layer, pool after RNN # avg valid cost = 0.8358715773 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_c(name): # 2 layers, pool in between # avg valid cost = 0.5183933973 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=(1/sqrt(N))), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_d(name): # 3 layers, pool after first layer # avg valid cost = 0.5396855474 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=(1/sqrt(N))), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=(1/sqrt(N))), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_e(name): # layerwise pre-training # avg valid cost = 0.6081719398 source_dict_copy = deepcopy(source_dict) source_dict_copy['subsample_target'] = 1 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net_dict_copy['layer_changes'] = { 501: { 'remove_from': -3, 'new_layers': [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] }, 1001: { 'remove_from': -3, 'callback': change_subsample, 'new_layers': [ { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] } } net = Net(**net_dict_copy) return net def exp_f(name): # layerwise pre-training (pre-train with pool) # need to re-run source_dict_copy = deepcopy(source_dict) source_dict_copy['subsample_target'] = 1 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net_dict_copy['layer_changes'] = { 501: { 'remove_from': -3, 'callback': change_subsample, 'new_layers': [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max } ] }, 1001: { 'remove_from': -3, 'new_layers': [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] } } net = Net(**net_dict_copy) return net def exp_g(name): # sigmoid # avg valid cost = 1.5114594698 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': sigmoid }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': sigmoid }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': sigmoid }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_h(name): # ReLU # doesn't train: training error is 0 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': rectify }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': rectify }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': rectify }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_i(name): # 2 x dense layers at end (both with 5 units) # avg valid cost = 0.5794851780 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(source.n_outputs))) } ] net = Net(**net_dict_copy) return net def exp_j(name): # 2 x dense layers at end (penultiate with 50 units) # avg valid cost = 0.5457109213 source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': N, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_k(name): # RNN output # doesn't train (0 error) source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': source.n_outputs, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': None } ] net = Net(**net_dict_copy) return net def exp_l(name): # RNN output, 2 layers # NaNs source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': source.n_outputs, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': None }, { 'type': BidirectionalRecurrentLayer, 'num_units': source.n_outputs, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(source.n_outputs)), 'nonlinearity': None } ] net = Net(**net_dict_copy) return net def exp_m(name): # Conv AND pool, with 50 filters, filter_length=10 # avg valid cost = 0.4936202168 source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=9 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 50, 'filter_length': 10, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_n(name): # Conv AND pool, with 10 filters # avg valid cost = 0.4842122793 (run on 277) # avg valid cost = 0.5845696926 (run on 278) # need to re-run with correct initialisations source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=2 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 10, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_o(name): # 2 lots of conv, then pool # need to re-run with correct initialisations source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=4 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 32, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 16, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_p(name): # 2 lots of conv, then pool # a re-run of O but with correct initialisations source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=4 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 32, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(32)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 16, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(50)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(16)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_q(name): # Conv AND pool, with 10 filters # avg valid cost = 0.4842122793 (run on 277) # avg valid cost = 0.5845696926 (run on 278) # re-run of P but with correct initialisations source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=2 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': 10, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(10)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) net.load_params(iteration=1139) return net def exp_r(name): # 2 lots of conv, then pool # a re-run of O but with 50 filters and correct init source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=4 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': N, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': N, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_s(name): # Conv AND pool, with 50 filters # avg valid cost = 0.4842122793 (run on 277) # avg valid cost = 0.5845696926 (run on 278) # re-run of P but with correct initialisations and 50 filters source_dict_copy = deepcopy(source_dict) source_dict_copy.update(dict( subsample_target=3, input_padding=2 )) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # (batch, features, time) }, { 'type': Conv1DLayer, # convolve over the time axis 'num_filters': N, 'filter_length': 3, 'stride': 1, 'nonlinearity': tanh, 'W': Normal(std=1/sqrt(N)) }, { 'type': DimshuffleLayer, 'pattern': (0, 2, 1) # back to (batch, time, features) }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_t(name): # a but with no random seed source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source, seed=None )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_u(name): # a but with no random seed source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source, seed=None )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_v(name): # a source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_w(name): # 2x2x pool source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source, downsample_target=4 )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 2, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 2, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_x(name): # 3x2x pool source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source, downsample_target=6 )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 2, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net = Net(**net_dict_copy) return net def exp_y(name): # 5-way RNN as penultimate layer source_dict_copy = deepcopy(source_dict) source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': BidirectionalRecurrentLayer, 'num_units': 5, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(5))) } ] net = Net(**net_dict_copy) return net def exp_z(name): # layerwise pre-training # avg valid cost = 0.6081719398 source_dict_copy = deepcopy(source_dict) source_dict_copy['subsample_target'] = 1 source = RealApplianceSource(**source_dict_copy) net_dict_copy = deepcopy(net_dict) net_dict_copy.update(dict( experiment_name=name, source=source, epoch_callbacks={4501: change_learning_rate} )) N = 50 net_dict_copy['layers_config'] = [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1.), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] net_dict_copy['layer_changes'] = { 2001: { 'remove_from': -3, 'new_layers': [ { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] }, 4001: { 'remove_from': -3, 'callback': change_subsample, 'new_layers': [ { 'type': FeaturePoolLayer, 'ds': 3, # number of feature maps to be pooled together 'axis': 1, # pool over the time axis 'pool_function': T.max }, { 'type': BidirectionalRecurrentLayer, 'num_units': N, 'gradient_steps': GRADIENT_STEPS, 'W_in_to_hid': Normal(std=1/sqrt(N)), 'nonlinearity': tanh }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Normal(std=(1/sqrt(N))) } ] } } net = Net(**net_dict_copy) return net def main(): # EXPERIMENTS = list('abcdefghijklmnopqrstuvwxyz') EXPERIMENTS = list('qrstuvwxyz') for experiment in EXPERIMENTS: full_exp_name = NAME + experiment func_call = init_experiment(PATH, experiment, full_exp_name) logger = logging.getLogger(full_exp_name) try: net = eval(func_call) run_experiment(net, epochs=6000 if experiment == 'z' else 2000) except KeyboardInterrupt: logger.info("KeyboardInterrupt") break except Exception as exception: logger.exception("Exception") if __name__ == "__main__": main()
mit
vanpact/scipy
scipy/interpolate/fitpack.py
21
46139
#!/usr/bin/env python """ fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx). FITPACK is a collection of FORTRAN programs for curve and surface fitting with splines and tensor product splines. See http://www.cs.kuleuven.ac.be/cwis/research/nalag/research/topics/fitpack.html or http://www.netlib.org/dierckx/index.html Copyright 2002 Pearu Peterson all rights reserved, Pearu Peterson <[email protected]> Permission to use, modify, and distribute this software is given under the terms of the SciPy (BSD style) license. See LICENSE.txt that came with this distribution for specifics. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. TODO: Make interfaces to the following fitpack functions: For univariate splines: cocosp, concon, fourco, insert For bivariate splines: profil, regrid, parsur, surev """ from __future__ import division, print_function, absolute_import __all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde', 'bisplrep', 'bisplev', 'insert', 'splder', 'splantider'] import warnings import numpy as np from . import _fitpack from numpy import (atleast_1d, array, ones, zeros, sqrt, ravel, transpose, empty, iinfo, intc, asarray) # Try to replace _fitpack interface with # f2py-generated version from . import dfitpack def _intc_overflow(x, msg=None): """Cast the value to an intc and raise an OverflowError if the value cannot fit. """ if x > iinfo(intc).max: if msg is None: msg = '%r cannot fit into an intc' % x raise OverflowError(msg) return intc(x) _iermess = { 0: ["The spline has a residual sum of squares fp such that " "abs(fp-s)/s<=0.001", None], -1: ["The spline is an interpolating spline (fp=0)", None], -2: ["The spline is weighted least-squares polynomial of degree k.\n" "fp gives the upper bound fp0 for the smoothing factor s", None], 1: ["The required storage space exceeds the available storage space.\n" "Probable causes: data (x,y) size is too small or smoothing parameter" "\ns is too small (fp>s).", ValueError], 2: ["A theoretically impossible result when finding a smoothing spline\n" "with fp = s. Probable cause: s too small. (abs(fp-s)/s>0.001)", ValueError], 3: ["The maximal number of iterations (20) allowed for finding smoothing\n" "spline with fp=s has been reached. Probable cause: s too small.\n" "(abs(fp-s)/s>0.001)", ValueError], 10: ["Error on input data", ValueError], 'unknown': ["An error occurred", TypeError] } _iermess2 = { 0: ["The spline has a residual sum of squares fp such that " "abs(fp-s)/s<=0.001", None], -1: ["The spline is an interpolating spline (fp=0)", None], -2: ["The spline is weighted least-squares polynomial of degree kx and ky." "\nfp gives the upper bound fp0 for the smoothing factor s", None], -3: ["Warning. The coefficients of the spline have been computed as the\n" "minimal norm least-squares solution of a rank deficient system.", None], 1: ["The required storage space exceeds the available storage space.\n" "Probable causes: nxest or nyest too small or s is too small. (fp>s)", ValueError], 2: ["A theoretically impossible result when finding a smoothing spline\n" "with fp = s. Probable causes: s too small or badly chosen eps.\n" "(abs(fp-s)/s>0.001)", ValueError], 3: ["The maximal number of iterations (20) allowed for finding smoothing\n" "spline with fp=s has been reached. Probable cause: s too small.\n" "(abs(fp-s)/s>0.001)", ValueError], 4: ["No more knots can be added because the number of B-spline\n" "coefficients already exceeds the number of data points m.\n" "Probable causes: either s or m too small. (fp>s)", ValueError], 5: ["No more knots can be added because the additional knot would\n" "coincide with an old one. Probable cause: s too small or too large\n" "a weight to an inaccurate data point. (fp>s)", ValueError], 10: ["Error on input data", ValueError], 11: ["rwrk2 too small, i.e. there is not enough workspace for computing\n" "the minimal least-squares solution of a rank deficient system of\n" "linear equations.", ValueError], 'unknown': ["An error occurred", TypeError] } _parcur_cache = {'t': array([], float), 'wrk': array([], float), 'iwrk': array([], intc), 'u': array([], float), 'ub': 0, 'ue': 1} def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None, full_output=0, nest=None, per=0, quiet=1): """ Find the B-spline representation of an N-dimensional curve. Given a list of N rank-1 arrays, `x`, which represent a curve in N-dimensional space parametrized by `u`, find a smooth approximating spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK. Parameters ---------- x : array_like A list of sample vector arrays representing the curve. w : array_like, optional Strictly positive rank-1 array of weights the same length as `x[0]`. The weights are used in computing the weighted least-squares spline fit. If the errors in the `x` values have standard-deviation given by the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``. u : array_like, optional An array of parameter values. If not given, these values are calculated automatically as ``M = len(x[0])``, where v[0] = 0 v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`) u[i] = v[i] / v[M-1] ub, ue : int, optional The end-points of the parameters interval. Defaults to u[0] and u[-1]. k : int, optional Degree of the spline. Cubic splines are recommended. Even values of `k` should be avoided especially with a small s-value. ``1 <= k <= 5``, default is 3. task : int, optional If task==0 (default), find t and c for a given smoothing factor, s. If task==1, find t and c for another value of the smoothing factor, s. There must have been a previous call with task=0 or task=1 for the same set of data. If task=-1 find the weighted least square spline for a given set of knots, t. s : float, optional A smoothing condition. The amount of smoothness is determined by satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``, where g(x) is the smoothed interpolation of (x,y). The user can use `s` to control the trade-off between closeness and smoothness of fit. Larger `s` means more smoothing while smaller values of `s` indicate less smoothing. Recommended values of `s` depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a good `s` value should be found in the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of data points in x, y, and w. t : int, optional The knots needed for task=-1. full_output : int, optional If non-zero, then return optional outputs. nest : int, optional An over-estimate of the total number of knots of the spline to help in determining the storage space. By default nest=m/2. Always large enough is nest=m+k+1. per : int, optional If non-zero, data points are considered periodic with period ``x[m-1] - x[0]`` and a smooth periodic spline approximation is returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used. quiet : int, optional Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead. Returns ------- tck : tuple A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline. u : array An array of the values of the parameter. fp : float The weighted sum of squared residuals of the spline approximation. ier : int An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised. msg : str A message corresponding to the integer flag, ier. See Also -------- splrep, splev, sproot, spalde, splint, bisplrep, bisplev UnivariateSpline, BivariateSpline Notes ----- See `splev` for evaluation of the spline and its derivatives. The number of dimensions N must be smaller than 11. References ---------- .. [1] P. Dierckx, "Algorithms for smoothing data with periodic and parametric splines, Computer Graphics and Image Processing", 20 (1982) 171-184. .. [2] P. Dierckx, "Algorithms for smoothing data with periodic and parametric splines", report tw55, Dept. Computer Science, K.U.Leuven, 1981. .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. """ if task <= 0: _parcur_cache = {'t': array([], float), 'wrk': array([], float), 'iwrk': array([], intc), 'u': array([], float), 'ub': 0, 'ue': 1} x = atleast_1d(x) idim, m = x.shape if per: for i in range(idim): if x[i][0] != x[i][-1]: if quiet < 2: warnings.warn(RuntimeWarning('Setting x[%d][%d]=x[%d][0]' % (i, m, i))) x[i][-1] = x[i][0] if not 0 < idim < 11: raise TypeError('0 < idim < 11 must hold') if w is None: w = ones(m, float) else: w = atleast_1d(w) ipar = (u is not None) if ipar: _parcur_cache['u'] = u if ub is None: _parcur_cache['ub'] = u[0] else: _parcur_cache['ub'] = ub if ue is None: _parcur_cache['ue'] = u[-1] else: _parcur_cache['ue'] = ue else: _parcur_cache['u'] = zeros(m, float) if not (1 <= k <= 5): raise TypeError('1 <= k= %d <=5 must hold' % k) if not (-1 <= task <= 1): raise TypeError('task must be -1, 0 or 1') if (not len(w) == m) or (ipar == 1 and (not len(u) == m)): raise TypeError('Mismatch of input dimensions') if s is None: s = m - sqrt(2*m) if t is None and task == -1: raise TypeError('Knots must be given for task=-1') if t is not None: _parcur_cache['t'] = atleast_1d(t) n = len(_parcur_cache['t']) if task == -1 and n < 2*k + 2: raise TypeError('There must be at least 2*k+2 knots for task=-1') if m <= k: raise TypeError('m > k must hold') if nest is None: nest = m + 2*k if (task >= 0 and s == 0) or (nest < 0): if per: nest = m + 2*k else: nest = m + k + 1 nest = max(nest, 2*k + 3) u = _parcur_cache['u'] ub = _parcur_cache['ub'] ue = _parcur_cache['ue'] t = _parcur_cache['t'] wrk = _parcur_cache['wrk'] iwrk = _parcur_cache['iwrk'] t, c, o = _fitpack._parcur(ravel(transpose(x)), w, u, ub, ue, k, task, ipar, s, t, nest, wrk, iwrk, per) _parcur_cache['u'] = o['u'] _parcur_cache['ub'] = o['ub'] _parcur_cache['ue'] = o['ue'] _parcur_cache['t'] = t _parcur_cache['wrk'] = o['wrk'] _parcur_cache['iwrk'] = o['iwrk'] ier = o['ier'] fp = o['fp'] n = len(t) u = o['u'] c.shape = idim, n - k - 1 tcku = [t, list(c), k], u if ier <= 0 and not quiet: warnings.warn(RuntimeWarning(_iermess[ier][0] + "\tk=%d n=%d m=%d fp=%f s=%f" % (k, len(t), m, fp, s))) if ier > 0 and not full_output: if ier in [1, 2, 3]: warnings.warn(RuntimeWarning(_iermess[ier][0])) else: try: raise _iermess[ier][1](_iermess[ier][0]) except KeyError: raise _iermess['unknown'][1](_iermess['unknown'][0]) if full_output: try: return tcku, fp, ier, _iermess[ier][0] except KeyError: return tcku, fp, ier, _iermess['unknown'][0] else: return tcku _curfit_cache = {'t': array([], float), 'wrk': array([], float), 'iwrk': array([], intc)} def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, full_output=0, per=0, quiet=1): """ Find the B-spline representation of 1-D curve. Given the set of data points ``(x[i], y[i])`` determine a smooth spline approximation of degree k on the interval ``xb <= x <= xe``. Parameters ---------- x, y : array_like The data points defining a curve y = f(x). w : array_like, optional Strictly positive rank-1 array of weights the same length as x and y. The weights are used in computing the weighted least-squares spline fit. If the errors in the y values have standard-deviation given by the vector d, then w should be 1/d. Default is ones(len(x)). xb, xe : float, optional The interval to fit. If None, these default to x[0] and x[-1] respectively. k : int, optional The order of the spline fit. It is recommended to use cubic splines. Even order splines should be avoided especially with small s values. 1 <= k <= 5 task : {1, 0, -1}, optional If task==0 find t and c for a given smoothing factor, s. If task==1 find t and c for another value of the smoothing factor, s. There must have been a previous call with task=0 or task=1 for the same set of data (t will be stored an used internally) If task=-1 find the weighted least square spline for a given set of knots, t. These should be interior knots as knots on the ends will be added automatically. s : float, optional A smoothing condition. The amount of smoothness is determined by satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x) is the smoothed interpolation of (x,y). The user can use s to control the tradeoff between closeness and smoothness of fit. Larger s means more smoothing while smaller values of s indicate less smoothing. Recommended values of s depend on the weights, w. If the weights represent the inverse of the standard-deviation of y, then a good s value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if weights are supplied. s = 0.0 (interpolating) if no weights are supplied. t : array_like, optional The knots needed for task=-1. If given then task is automatically set to -1. full_output : bool, optional If non-zero, then return optional outputs. per : bool, optional If non-zero, data points are considered periodic with period x[m-1] - x[0] and a smooth periodic spline approximation is returned. Values of y[m-1] and w[m-1] are not used. quiet : bool, optional Non-zero to suppress messages. This parameter is deprecated; use standard Python warning filters instead. Returns ------- tck : tuple (t,c,k) a tuple containing the vector of knots, the B-spline coefficients, and the degree of the spline. fp : array, optional The weighted sum of squared residuals of the spline approximation. ier : int, optional An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised. msg : str, optional A message corresponding to the integer flag, ier. Notes ----- See splev for evaluation of the spline and its derivatives. The user is responsible for assuring that the values of *x* are unique. Otherwise, *splrep* will not return sensible results. See Also -------- UnivariateSpline, BivariateSpline splprep, splev, sproot, spalde, splint bisplrep, bisplev Notes ----- See splev for evaluation of the spline and its derivatives. Uses the FORTRAN routine curfit from FITPACK. If provided, knots `t` must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points ``x[j]`` such that ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``. References ---------- Based on algorithms described in [1]_, [2]_, [3]_, and [4]_: .. [1] P. Dierckx, "An algorithm for smoothing, differentiation and integration of experimental data using spline functions", J.Comp.Appl.Maths 1 (1975) 165-184. .. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular grid while using spline functions", SIAM J.Numer.Anal. 19 (1982) 1286-1304. .. [3] P. Dierckx, "An improved algorithm for curve fitting with spline functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981. .. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.interpolate import splev, splrep >>> x = np.linspace(0, 10, 10) >>> y = np.sin(x) >>> tck = splrep(x, y) >>> x2 = np.linspace(0, 10, 200) >>> y2 = splev(x2, tck) >>> plt.plot(x, y, 'o', x2, y2) >>> plt.show() """ if task <= 0: _curfit_cache = {} x, y = map(atleast_1d, [x, y]) m = len(x) if w is None: w = ones(m, float) if s is None: s = 0.0 else: w = atleast_1d(w) if s is None: s = m - sqrt(2*m) if not len(w) == m: raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m)) if (m != len(y)) or (m != len(w)): raise TypeError('Lengths of the first three arguments (x,y,w) must ' 'be equal') if not (1 <= k <= 5): raise TypeError('Given degree of the spline (k=%d) is not supported. ' '(1<=k<=5)' % k) if m <= k: raise TypeError('m > k must hold') if xb is None: xb = x[0] if xe is None: xe = x[-1] if not (-1 <= task <= 1): raise TypeError('task must be -1, 0 or 1') if t is not None: task = -1 if task == -1: if t is None: raise TypeError('Knots must be given for task=-1') numknots = len(t) _curfit_cache['t'] = empty((numknots + 2*k + 2,), float) _curfit_cache['t'][k+1:-k-1] = t nest = len(_curfit_cache['t']) elif task == 0: if per: nest = max(m + 2*k, 2*k + 3) else: nest = max(m + k + 1, 2*k + 3) t = empty((nest,), float) _curfit_cache['t'] = t if task <= 0: if per: _curfit_cache['wrk'] = empty((m*(k + 1) + nest*(8 + 5*k),), float) else: _curfit_cache['wrk'] = empty((m*(k + 1) + nest*(7 + 3*k),), float) _curfit_cache['iwrk'] = empty((nest,), intc) try: t = _curfit_cache['t'] wrk = _curfit_cache['wrk'] iwrk = _curfit_cache['iwrk'] except KeyError: raise TypeError("must call with task=1 only after" " call with task=0,-1") if not per: n, c, fp, ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk, xb, xe, k, s) else: n, c, fp, ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s) tck = (t[:n], c[:n], k) if ier <= 0 and not quiet: _mess = (_iermess[ier][0] + "\tk=%d n=%d m=%d fp=%f s=%f" % (k, len(t), m, fp, s)) warnings.warn(RuntimeWarning(_mess)) if ier > 0 and not full_output: if ier in [1, 2, 3]: warnings.warn(RuntimeWarning(+_iermess[ier][0])) else: try: raise _iermess[ier][1](_iermess[ier][0]) except KeyError: raise _iermess['unknown'][1](_iermess['unknown'][0]) if full_output: try: return tck, fp, ier, _iermess[ier][0] except KeyError: return tck, fp, ier, _iermess['unknown'][0] else: return tck def splev(x, tck, der=0, ext=0): """ Evaluate a B-spline or its derivatives. Given the knots and coefficients of a B-spline representation, evaluate the value of the smoothing polynomial and its derivatives. This is a wrapper around the FORTRAN routines splev and splder of FITPACK. Parameters ---------- x : array_like An array of points at which to return the value of the smoothed spline or its derivatives. If `tck` was returned from `splprep`, then the parameter values, u should be given. tck : tuple A sequence of length 3 returned by `splrep` or `splprep` containing the knots, coefficients, and degree of the spline. der : int, optional The order of derivative of the spline to compute (must be less than or equal to k). ext : int, optional Controls the value returned for elements of ``x`` not in the interval defined by the knot sequence. * if ext=0, return the extrapolated value. * if ext=1, return 0 * if ext=2, raise a ValueError * if ext=3, return the boundary value. The default value is 0. Returns ------- y : ndarray or list of ndarrays An array of values representing the spline function evaluated at the points in ``x``. If `tck` was returned from `splprep`, then this is a list of arrays representing the curve in N-dimensional space. See Also -------- splprep, splrep, sproot, spalde, splint bisplrep, bisplev References ---------- .. [1] C. de Boor, "On calculating with b-splines", J. Approximation Theory, 6, p.50-62, 1972. .. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths Applics, 10, p.134-149, 1972. .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. """ t, c, k = tck try: c[0][0] parametric = True except: parametric = False if parametric: return list(map(lambda c, x=x, t=t, k=k, der=der: splev(x, [t, c, k], der, ext), c)) else: if not (0 <= der <= k): raise ValueError("0<=der=%d<=k=%d must hold" % (der, k)) if ext not in (0, 1, 2, 3): raise ValueError("ext = %s not in (0, 1, 2, 3) " % ext) x = asarray(x) shape = x.shape x = atleast_1d(x).ravel() y, ier = _fitpack._spl_(x, der, t, c, k, ext) if ier == 10: raise ValueError("Invalid input data") if ier == 1: raise ValueError("Found x value not in the domain") if ier: raise TypeError("An error occurred") return y.reshape(shape) def splint(a, b, tck, full_output=0): """ Evaluate the definite integral of a B-spline. Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points. Parameters ---------- a, b : float The end-points of the integration interval. tck : tuple A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline (see `splev`). full_output : int, optional Non-zero to return optional output. Returns ------- integral : float The resulting integral. wrk : ndarray An array containing the integrals of the normalized B-splines defined on the set of knots. Notes ----- splint silently assumes that the spline function is zero outside the data interval (a, b). See Also -------- splprep, splrep, sproot, spalde, splev bisplrep, bisplev UnivariateSpline, BivariateSpline References ---------- .. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines", J. Inst. Maths Applics, 17, p.37-41, 1976. .. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. """ t, c, k = tck try: c[0][0] parametric = True except: parametric = False if parametric: return list(map(lambda c, a=a, b=b, t=t, k=k: splint(a, b, [t, c, k]), c)) else: aint, wrk = _fitpack._splint(t, c, k, a, b) if full_output: return aint, wrk else: return aint def sproot(tck, mest=10): """ Find the roots of a cubic B-spline. Given the knots (>=8) and coefficients of a cubic B-spline return the roots of the spline. Parameters ---------- tck : tuple A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline. The number of knots must be >= 8, and the degree must be 3. The knots must be a montonically increasing sequence. mest : int, optional An estimate of the number of zeros (Default is 10). Returns ------- zeros : ndarray An array giving the roots of the spline. See also -------- splprep, splrep, splint, spalde, splev bisplrep, bisplev UnivariateSpline, BivariateSpline References ---------- .. [1] C. de Boor, "On calculating with b-splines", J. Approximation Theory, 6, p.50-62, 1972. .. [2] M.G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths Applics, 10, p.134-149, 1972. .. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on Numerical Analysis, Oxford University Press, 1993. """ t, c, k = tck if k != 3: raise ValueError("sproot works only for cubic (k=3) splines") try: c[0][0] parametric = True except: parametric = False if parametric: return list(map(lambda c, t=t, k=k, mest=mest: sproot([t, c, k], mest), c)) else: if len(t) < 8: raise TypeError("The number of knots %d>=8" % len(t)) z, ier = _fitpack._sproot(t, c, k, mest) if ier == 10: raise TypeError("Invalid input data. " "t1<=..<=t4<t5<..<tn-3<=..<=tn must hold.") if ier == 0: return z if ier == 1: warnings.warn(RuntimeWarning("The number of zeros exceeds mest")) return z raise TypeError("Unknown error") def spalde(x, tck): """ Evaluate all derivatives of a B-spline. Given the knots and coefficients of a cubic B-spline compute all derivatives up to order k at a point (or set of points). Parameters ---------- x : array_like A point or a set of points at which to evaluate the derivatives. Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`. tck : tuple A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline. Returns ------- results : {ndarray, list of ndarrays} An array (or a list of arrays) containing all derivatives up to order k inclusive for each point `x`. See Also -------- splprep, splrep, splint, sproot, splev, bisplrep, bisplev, UnivariateSpline, BivariateSpline References ---------- .. [1] de Boor C : On calculating with b-splines, J. Approximation Theory 6 (1972) 50-62. .. [2] Cox M.G. : The numerical evaluation of b-splines, J. Inst. Maths applics 10 (1972) 134-149. .. [3] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993. """ t, c, k = tck try: c[0][0] parametric = True except: parametric = False if parametric: return list(map(lambda c, x=x, t=t, k=k: spalde(x, [t, c, k]), c)) else: x = atleast_1d(x) if len(x) > 1: return list(map(lambda x, tck=tck: spalde(x, tck), x)) d, ier = _fitpack._spalde(t, c, k, x[0]) if ier == 0: return d if ier == 10: raise TypeError("Invalid input data. t(k)<=x<=t(n-k+1) must hold.") raise TypeError("Unknown error") # def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None, # full_output=0,nest=None,per=0,quiet=1): _surfit_cache = {'tx': array([], float), 'ty': array([], float), 'wrk': array([], float), 'iwrk': array([], intc)} def bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None, kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None, full_output=0, nxest=None, nyest=None, quiet=1): """ Find a bivariate B-spline representation of a surface. Given a set of data points (x[i], y[i], z[i]) representing a surface z=f(x,y), compute a B-spline representation of the surface. Based on the routine SURFIT from FITPACK. Parameters ---------- x, y, z : ndarray Rank-1 arrays of data points. w : ndarray, optional Rank-1 array of weights. By default ``w=np.ones(len(x))``. xb, xe : float, optional End points of approximation interval in `x`. By default ``xb = x.min(), xe=x.max()``. yb, ye : float, optional End points of approximation interval in `y`. By default ``yb=y.min(), ye = y.max()``. kx, ky : int, optional The degrees of the spline (1 <= kx, ky <= 5). Third order (kx=ky=3) is recommended. task : int, optional If task=0, find knots in x and y and coefficients for a given smoothing factor, s. If task=1, find knots and coefficients for another value of the smoothing factor, s. bisplrep must have been previously called with task=0 or task=1. If task=-1, find coefficients for a given set of knots tx, ty. s : float, optional A non-negative smoothing factor. If weights correspond to the inverse of the standard-deviation of the errors in z, then a good s-value should be found in the range ``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x). eps : float, optional A threshold for determining the effective rank of an over-determined linear system of equations (0 < eps < 1). `eps` is not likely to need changing. tx, ty : ndarray, optional Rank-1 arrays of the knots of the spline for task=-1 full_output : int, optional Non-zero to return optional outputs. nxest, nyest : int, optional Over-estimates of the total number of knots. If None then ``nxest = max(kx+sqrt(m/2),2*kx+3)``, ``nyest = max(ky+sqrt(m/2),2*ky+3)``. quiet : int, optional Non-zero to suppress printing of messages. This parameter is deprecated; use standard Python warning filters instead. Returns ------- tck : array_like A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and coefficients (c) of the bivariate B-spline representation of the surface along with the degree of the spline. fp : ndarray The weighted sum of squared residuals of the spline approximation. ier : int An integer flag about splrep success. Success is indicated if ier<=0. If ier in [1,2,3] an error occurred but was not raised. Otherwise an error is raised. msg : str A message corresponding to the integer flag, ier. See Also -------- splprep, splrep, splint, sproot, splev UnivariateSpline, BivariateSpline Notes ----- See `bisplev` to evaluate the value of the B-spline given its tck representation. References ---------- .. [1] Dierckx P.:An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283. .. [2] Dierckx P.:An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980. .. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993. """ x, y, z = map(ravel, [x, y, z]) # ensure 1-d arrays. m = len(x) if not (m == len(y) == len(z)): raise TypeError('len(x)==len(y)==len(z) must hold.') if w is None: w = ones(m, float) else: w = atleast_1d(w) if not len(w) == m: raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m)) if xb is None: xb = x.min() if xe is None: xe = x.max() if yb is None: yb = y.min() if ye is None: ye = y.max() if not (-1 <= task <= 1): raise TypeError('task must be -1, 0 or 1') if s is None: s = m - sqrt(2*m) if tx is None and task == -1: raise TypeError('Knots_x must be given for task=-1') if tx is not None: _surfit_cache['tx'] = atleast_1d(tx) nx = len(_surfit_cache['tx']) if ty is None and task == -1: raise TypeError('K nots_y must be given for task=-1') if ty is not None: _surfit_cache['ty'] = atleast_1d(ty) ny = len(_surfit_cache['ty']) if task == -1 and nx < 2*kx+2: raise TypeError('There must be at least 2*kx+2 knots_x for task=-1') if task == -1 and ny < 2*ky+2: raise TypeError('There must be at least 2*ky+2 knots_x for task=-1') if not ((1 <= kx <= 5) and (1 <= ky <= 5)): raise TypeError('Given degree of the spline (kx,ky=%d,%d) is not ' 'supported. (1<=k<=5)' % (kx, ky)) if m < (kx + 1)*(ky + 1): raise TypeError('m >= (kx+1)(ky+1) must hold') if nxest is None: nxest = int(kx + sqrt(m/2)) if nyest is None: nyest = int(ky + sqrt(m/2)) nxest, nyest = max(nxest, 2*kx + 3), max(nyest, 2*ky + 3) if task >= 0 and s == 0: nxest = int(kx + sqrt(3*m)) nyest = int(ky + sqrt(3*m)) if task == -1: _surfit_cache['tx'] = atleast_1d(tx) _surfit_cache['ty'] = atleast_1d(ty) tx, ty = _surfit_cache['tx'], _surfit_cache['ty'] wrk = _surfit_cache['wrk'] u = nxest - kx - 1 v = nyest - ky - 1 km = max(kx, ky) + 1 ne = max(nxest, nyest) bx, by = kx*v + ky + 1, ky*u + kx + 1 b1, b2 = bx, bx + v - ky if bx > by: b1, b2 = by, by + u - kx msg = "Too many data points to interpolate" lwrk1 = _intc_overflow(u*v*(2 + b1 + b2) + 2*(u + v + km*(m + ne) + ne - kx - ky) + b2 + 1, msg=msg) lwrk2 = _intc_overflow(u*v*(b2 + 1) + b2, msg=msg) tx, ty, c, o = _fitpack._surfit(x, y, z, w, xb, xe, yb, ye, kx, ky, task, s, eps, tx, ty, nxest, nyest, wrk, lwrk1, lwrk2) _curfit_cache['tx'] = tx _curfit_cache['ty'] = ty _curfit_cache['wrk'] = o['wrk'] ier, fp = o['ier'], o['fp'] tck = [tx, ty, c, kx, ky] ierm = min(11, max(-3, ier)) if ierm <= 0 and not quiet: _mess = (_iermess2[ierm][0] + "\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % (kx, ky, len(tx), len(ty), m, fp, s)) warnings.warn(RuntimeWarning(_mess)) if ierm > 0 and not full_output: if ier in [1, 2, 3, 4, 5]: _mess = ("\n\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" % (kx, ky, len(tx), len(ty), m, fp, s)) warnings.warn(RuntimeWarning(_iermess2[ierm][0] + _mess)) else: try: raise _iermess2[ierm][1](_iermess2[ierm][0]) except KeyError: raise _iermess2['unknown'][1](_iermess2['unknown'][0]) if full_output: try: return tck, fp, ier, _iermess2[ierm][0] except KeyError: return tck, fp, ier, _iermess2['unknown'][0] else: return tck def bisplev(x, y, tck, dx=0, dy=0): """ Evaluate a bivariate B-spline and its derivatives. Return a rank-2 array of spline function values (or spline derivative values) at points given by the cross-product of the rank-1 arrays `x` and `y`. In special cases, return an array or just a float if either `x` or `y` or both are floats. Based on BISPEV from FITPACK. Parameters ---------- x, y : ndarray Rank-1 arrays specifying the domain over which to evaluate the spline or its derivative. tck : tuple A sequence of length 5 returned by `bisplrep` containing the knot locations, the coefficients, and the degree of the spline: [tx, ty, c, kx, ky]. dx, dy : int, optional The orders of the partial derivatives in `x` and `y` respectively. Returns ------- vals : ndarray The B-spline or its derivative evaluated over the set formed by the cross-product of `x` and `y`. See Also -------- splprep, splrep, splint, sproot, splev UnivariateSpline, BivariateSpline Notes ----- See `bisplrep` to generate the `tck` representation. References ---------- .. [1] Dierckx P. : An algorithm for surface fitting with spline functions Ima J. Numer. Anal. 1 (1981) 267-283. .. [2] Dierckx P. : An algorithm for surface fitting with spline functions report tw50, Dept. Computer Science,K.U.Leuven, 1980. .. [3] Dierckx P. : Curve and surface fitting with splines, Monographs on Numerical Analysis, Oxford University Press, 1993. """ tx, ty, c, kx, ky = tck if not (0 <= dx < kx): raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx, kx)) if not (0 <= dy < ky): raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy, ky)) x, y = map(atleast_1d, [x, y]) if (len(x.shape) != 1) or (len(y.shape) != 1): raise ValueError("First two entries should be rank-1 arrays.") z, ier = _fitpack._bispev(tx, ty, c, kx, ky, x, y, dx, dy) if ier == 10: raise ValueError("Invalid input data") if ier: raise TypeError("An error occurred") z.shape = len(x), len(y) if len(z) > 1: return z if len(z[0]) > 1: return z[0] return z[0][0] def dblint(xa, xb, ya, yb, tck): """Evaluate the integral of a spline over area [xa,xb] x [ya,yb]. Parameters ---------- xa, xb : float The end-points of the x integration interval. ya, yb : float The end-points of the y integration interval. tck : list [tx, ty, c, kx, ky] A sequence of length 5 returned by bisplrep containing the knot locations tx, ty, the coefficients c, and the degrees kx, ky of the spline. Returns ------- integ : float The value of the resulting integral. """ tx, ty, c, kx, ky = tck return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb) def insert(x, tck, m=1, per=0): """ Insert knots into a B-spline. Given the knots and coefficients of a B-spline representation, create a new B-spline with a knot inserted `m` times at point `x`. This is a wrapper around the FORTRAN routine insert of FITPACK. Parameters ---------- x (u) : array_like A 1-D point at which to insert a new knot(s). If `tck` was returned from ``splprep``, then the parameter values, u should be given. tck : tuple A tuple (t,c,k) returned by ``splrep`` or ``splprep`` containing the vector of knots, the B-spline coefficients, and the degree of the spline. m : int, optional The number of times to insert the given knot (its multiplicity). Default is 1. per : int, optional If non-zero, the input spline is considered periodic. Returns ------- tck : tuple A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the new spline. ``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline. In case of a periodic spline (``per != 0``) there must be either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x`` or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``. Notes ----- Based on algorithms from [1]_ and [2]_. References ---------- .. [1] W. Boehm, "Inserting new knots into b-spline curves.", Computer Aided Design, 12, p.199-201, 1980. .. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on Numerical Analysis", Oxford University Press, 1993. """ t, c, k = tck try: c[0][0] parametric = True except: parametric = False if parametric: cc = [] for c_vals in c: tt, cc_val, kk = insert(x, [t, c_vals, k], m) cc.append(cc_val) return (tt, cc, kk) else: tt, cc, ier = _fitpack._insert(per, t, c, k, x, m) if ier == 10: raise ValueError("Invalid input data") if ier: raise TypeError("An error occurred") return (tt, cc, k) def splder(tck, n=1): """ Compute the spline representation of the derivative of a given spline Parameters ---------- tck : tuple of (t, c, k) Spline whose derivative to compute n : int, optional Order of derivative to evaluate. Default: 1 Returns ------- tck_der : tuple of (t2, c2, k2) Spline of order k2=k-n representing the derivative of the input spline. Notes ----- .. versionadded:: 0.13.0 See Also -------- splantider, splev, spalde Examples -------- This can be used for finding maxima of a curve: >>> from scipy.interpolate import splrep, splder, sproot >>> x = np.linspace(0, 10, 70) >>> y = np.sin(x) >>> spl = splrep(x, y, k=4) Now, differentiate the spline and find the zeros of the derivative. (NB: `sproot` only works for order 3 splines, so we fit an order 4 spline): >>> dspl = splder(spl) >>> sproot(dspl) / np.pi array([ 0.50000001, 1.5 , 2.49999998]) This agrees well with roots :math:`\pi/2 + n\pi` of :math:`\cos(x) = \sin'(x)`. """ if n < 0: return splantider(tck, -n) t, c, k = tck if n > k: raise ValueError(("Order of derivative (n = %r) must be <= " "order of spline (k = %r)") % (n, tck[2])) with np.errstate(invalid='raise', divide='raise'): try: for j in range(n): # See e.g. Schumaker, Spline Functions: Basic Theory, Chapter 5 # Compute the denominator in the differentiation formula. dt = t[k+1:-1] - t[1:-k-1] # Compute the new coefficients c = (c[1:-1-k] - c[:-2-k]) * k / dt # Pad coefficient array to same size as knots (FITPACK # convention) c = np.r_[c, [0]*k] # Adjust knots t = t[1:-1] k -= 1 except FloatingPointError: raise ValueError(("The spline has internal repeated knots " "and is not differentiable %d times") % n) return t, c, k def splantider(tck, n=1): """ Compute the spline for the antiderivative (integral) of a given spline. Parameters ---------- tck : tuple of (t, c, k) Spline whose antiderivative to compute n : int, optional Order of antiderivative to evaluate. Default: 1 Returns ------- tck_ader : tuple of (t2, c2, k2) Spline of order k2=k+n representing the antiderivative of the input spline. See Also -------- splder, splev, spalde Notes ----- The `splder` function is the inverse operation of this function. Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo rounding error. .. versionadded:: 0.13.0 Examples -------- >>> from scipy.interpolate import splrep, splder, splantider, splev >>> x = np.linspace(0, np.pi/2, 70) >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2) >>> spl = splrep(x, y) The derivative is the inverse operation of the antiderivative, although some floating point error accumulates: >>> splev(1.7, spl), splev(1.7, splder(splantider(spl))) (array(2.1565429877197317), array(2.1565429877201865)) Antiderivative can be used to evaluate definite integrals: >>> ispl = splantider(spl) >>> splev(np.pi/2, ispl) - splev(0, ispl) 2.2572053588768486 This is indeed an approximation to the complete elliptic integral :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`: >>> from scipy.special import ellipk >>> ellipk(0.8) 2.2572053268208538 """ if n < 0: return splder(tck, -n) t, c, k = tck for j in range(n): # This is the inverse set of operations to splder. # Compute the multiplier in the antiderivative formula. dt = t[k+1:] - t[:-k-1] # Compute the new coefficients c = np.cumsum(c[:-k-1] * dt) / (k + 1) c = np.r_[0, c, [c[-1]]*(k+2)] # New knots t = np.r_[t[0], t, t[-1]] k += 1 return t, c, k
bsd-3-clause
aborgher/OW-stats-plot
OW_flask.py
1
9956
from plotly.offline import download_plotlyjs, init_notebook_mode, iplot, plot from plotly.graph_objs import * #init_notebook_mode() import matplotlib.pyplot as plt import numpy as np from lxml import etree from lxml.html import fromstring, tostring import urllib.request def create_allinfos(tree,category = 'competitive'): # 'quick play' allheroes = {} # xpath_onehero = '//*[@id="stats-section"]/div/div/div[@data-category-id="{0}"]/div/div/table[@class="data-table"]/tbody/tr/td' xpath_onehero = '//*[@id="{}"]/section[@class="content-box u-max-width-container career-stats-section"]' xpath_onehero = xpath_onehero + '/div/div[@data-category-id="{}"]/div/div/table[@class="data-table"]/tbody/tr/td' # [@class="data-table"] is not really needed # each heroes has an exadecimal number associated for the data-category-id field in the xpath, # "All Heroes" are treated as a single hero heroes_exa = { "All Heroes":"0x02E00000FFFFFFFF", "Reaper":"0x02E0000000000002", "Tracer":"0x02E0000000000003", "Mercy":"0x02E0000000000004", "Hanzo":"0x02E0000000000005", "Torbjorn":"0x02E0000000000006", "Reinhardt":"0x02E0000000000007", "Pharah":"0x02E0000000000008", "Winston":"0x02E0000000000009", "Widowmaker":"0x02E000000000000A", "Bastion":"0x02E0000000000015", "Symmetra":"0x02E0000000000016", "Zenyatta":"0x02E0000000000020", "Genji":"0x02E0000000000029", "Roadhog":"0x02E0000000000040", "McCree":"0x02E0000000000042", "Junkrat":"0x02E0000000000065", "Zarya":"0x02E0000000000068", "Soldier: 76":"0x02E000000000006E", "Lucio":"0x02E0000000000079", "D.Va":"0x02E000000000007A", "Mei":"0x02E00000000000DD", "Ana":"0x02E000000000013B", "Sombra":"0x02E000000000012E" } for hero in heroes_exa.keys(): temp = tree.xpath(xpath_onehero.format(category,heroes_exa[hero])) tempdic = {} for i in range(0,len(temp),2): tempdic[temp[i].text] = temp[i+1].text allheroes[hero] = tempdic return allheroes def getPlayerInfos(url,category='competitive'): print("obtaining {0} infos from ".format(category) + url) request = urllib.request.Request(url) rawPage = urllib.request.urlopen(request) read = rawPage.read() tree = etree.HTML(read) allheroes = create_allinfos(tree,category) return allheroes def getAllHeroInfoName(HeroesStats, hero): temp = [] for p in HeroesStats.keys(): temp = temp + list(HeroesStats[p][hero].keys()) temp = list(set(temp)) return temp def myConvToFloat(mystr): tobereplace = ["%",","," minutes"," minute"," hours"," hour"," seconds"," second",":"] for r in tobereplace: mystr = mystr.replace(r,"") return float(mystr) def plotHeroForAllPlayersPlotly(hero,HeroesStats,FairCompare=True): units = "" allvars = getAllHeroInfoName(HeroesStats,hero) allvars.sort() data = [] layout= Layout() for p in HeroesStats.keys(): xx, yy, my_xticks = [], [], [] pp = p[0:p.find("-")] for i,var in enumerate(allvars): if FairCompare: if "Average" not in var: continue xx.append(i) if not var in HeroesStats[p][hero]: yy.append(0) else: yy.append(myConvToFloat(HeroesStats[p][hero][var])) if("%" in HeroesStats[p][hero][var]): units = " (%)" if("hour" in HeroesStats[p][hero][var]): units = " h" if("hours" in HeroesStats[p][hero][var]): units = " h" if("minute" in HeroesStats[p][hero][var]): units = " min" if("minutes" in HeroesStats[p][hero][var]): units = " min" if("seconds" in HeroesStats[p][hero][var]): units = " sec" if("second" in HeroesStats[p][hero][var]): units = " sec" else: units = "" my_xticks.append(var+units) xlabelsize = 8 if FairCompare: xlabelsize = 10 layout = Layout( title = hero, xaxis=dict( title='', titlefont=dict(family='Arial, sans-serif',size=18,color='lightgrey'), showticklabels=True, tickangle=35, tickfont=dict(family='Old Standard TT, serif',size=xlabelsize,color='black'), ), yaxis=dict( title='stats', titlefont=dict(family='Arial, sans-serif',size=18,color='lightgrey'), showticklabels=True, tickangle=0, tickfont=dict(family='Old Standard TT, serif',size=18,color='black'), type = 'log' ) ) data.append(Scatter(x = my_xticks, y = yy, mode = 'markers', marker=dict(symbol="line-ew-open",size=6,line=dict(width=4)), name = pp)) #data.append(Scatter(x = my_xticks, y = yy, mode = 'markers', name = pp)) fig = Figure(data=data, layout=layout) plot(fig, filename=hero+'.html') # Players = ['Ale-1244', 'Frenci-1486', 'Sam-1619', 'kiukki-2350', 'Alby-2701', "ziGno-2418"] # heroes_name=["Reaper", "Tracer", "Mercy", "Hanzo", "Torbjorn", "Reinhardt", "Pharah", # "Winston", "Widowmaker", "Bastion", "Symmetra", "Zenyatta", "Genji", "Roadhog", # "McCree", "Junkrat", "Zarya", "Soldier: 76", "Lucio", "D.Va", "Mei", 'Ana', 'Sombra'] # heroes_name.sort() # heroes_name_2 = ["All Heroes"] + heroes_name # HeroesStatsQuickPlay = {} # HeroesStatsCompetitive = {} # for p in Players: # HeroesStatsQuickPlay[p] = getPlayerInfos(prefix + p,'quickplay') # HeroesStatsCompetitive[p] = getPlayerInfos(prefix + p,'competitive') ### start to code the flask app from flask import Flask, render_template from flask_socketio import SocketIO, emit from flask import request import json import plotly name = 'OW_stats_compare' app = Flask(name) app.debug = True app.config['key'] = 'secret' socketio = SocketIO(app) def get_players_stats(players): # players = app_state['players'].split(",") players = players.split(",") HeroesStatsQuickPlay = {} HeroesStatsCompetitive = {} prefix = "https://playoverwatch.com/en-gb/career/pc/eu/" for p in players: p=p.strip() try: HeroesStatsQuickPlay[p] = getPlayerInfos(prefix + p,'quickplay') HeroesStatsCompetitive[p] = getPlayerInfos(prefix + p,'competitive') except urllib.error.HTTPError: print("Players {0} not found".format(p)) return HeroesStatsQuickPlay, HeroesStatsCompetitive # HeroesStats = {"quickplay":{}, "competitive":{}} @app.route('/', methods=['POST','GET']) def index(): if request.method == 'POST': players_choosen = request.form.get('players', None) global HeroesStatsQuickPlay global HeroesStatsCompetitive HeroesStatsQuickPlay, HeroesStatsCompetitive = get_players_stats(players_choosen) return render_template('layouts/layout_single_column_and_controls.html', app_name=name) @socketio.on('replot') def replot(app_state): HeroesStats = {} if app_state['mode'] == 'competitive': HeroesStats = HeroesStatsCompetitive elif app_state['mode'] == 'quickplay': HeroesStats = HeroesStatsQuickPlay hero = app_state['hero'] units = "" allvars = getAllHeroInfoName(HeroesStats,hero) allvars.sort() data = [] traces = [] for ii,p in enumerate(HeroesStats.keys()): pp = p[0:p.find("-")] xx, yy, my_xticks = [], [], [] for i,var in enumerate(allvars): xx.append(i) if not var in HeroesStats[p][hero]: yy.append(0) else: yy.append(myConvToFloat(HeroesStats[p][hero][var])) if("%" in HeroesStats[p][hero][var]): units = " (%)" if("hour" in HeroesStats[p][hero][var]): units = " h" if("hours" in HeroesStats[p][hero][var]): units = " h" if("minute" in HeroesStats[p][hero][var]): units = " min" if("minutes" in HeroesStats[p][hero][var]): units = " min" if("seconds" in HeroesStats[p][hero][var]): units = " sec" if("second" in HeroesStats[p][hero][var]): units = " sec" else: units = "" my_xticks.append(var+units) traces.append(Scatter({'x':my_xticks, 'y':yy, 'mode':'markers', 'name':pp, 'marker':{'symbol':"line-ew-open",'size':6,'line':{'width':4}}} )) fig = { 'layout':{ 'title':hero, 'xaxis':{ 'title':'', 'titlefont':{'family':'Arial, sans-serif', 'size':18,'color':'lightgrey'}, 'showticklabels':True, 'tickangle':35, 'tickfont':{'family':'Old Standard TT, serif', 'size':8,'color':'black'}, }, 'yaxis':{ 'title':'stats', 'titlefont':{'family':'Arial, sans-serif','size':18,'color':'lightgrey'}, 'showticklabels':True, 'tickangle':0, 'tickfont':{'family':'Old Standard TT, serif','size':18,'color':'black'}, 'type':'log' } }, 'data': traces } messages = [{'id': 'Scatter', 'task': 'newPlot', 'data': fig['data'], 'layout': fig['layout'] }] emit('postMessage', json.dumps(messages, cls=plotly.utils.PlotlyJSONEncoder)) if __name__ == '__main__': socketio.run(app, host='127.0.0.1', port=5000)
gpl-3.0
littleocub/python_practice
bj_tmp_matplotlib/beijing_2016.py
1
1722
# beijing_2016 import csv import matplotlib.dates from datetime import datetime from matplotlib import pyplot as plt def date_to_list(data_index): """ save date to a list """ results = [] for row in data: results.append(datetime.strptime(row[data_index], '%Y-%m-%d')) return results def data_to_list(data_index): """ save data to a list """ results = [] for row in data: results.append(int(row[data_index])) return results filename = 'beijing_2016.csv' with open(filename) as bj: data = csv.reader(bj) header = next(data) # print(header) # print(next(data)) # get the index of data needed print('date_akdt', header.index('date_akdt')) print('high_temp_f', header.index('high_temp_f')) print('low_temp_f', header.index('low_temp_f')) # create a list from the remaining contents in the iterable data = list(data) # save data to list high_temp_f_bj = data_to_list(1) high_temp_c_bj = [int((x-32)/1.8) for x in high_temp_f_bj] low_temp_f_bj = data_to_list(3) low_temp_c_bj = [int((x-32)/1.8) for x in low_temp_f_bj] date = date_to_list(0) plt.figure(figsize=(12, 5), dpi=100) plt.plot(date, high_temp_c_bj, c='xkcd:orange') plt.plot(date, low_temp_c_bj,c='xkcd:azure') plt.title('Beijing Temperatures (High & Low) - Year 2016', fontsize=22) plt.ylabel('Temperature (C)', fontsize=20) plt.tick_params(axis='both', labelsize=16) plt.fill_between(date, high_temp_c_bj, low_temp_c_bj, facecolor='xkcd:silver', alpha=0.2) plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter("%Y-%m")) plt.gcf().autofmt_xdate() plt.margins(x=0,y=0.2) plt.show()
mit
lgarren/spack
var/spack/repos/builtin/packages/py-sncosmo/package.py
3
2130
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/llnl/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PySncosmo(PythonPackage): """SNCosmo is a Python library for high-level supernova cosmology analysis.""" homepage = "http://sncosmo.readthedocs.io/" url = "https://pypi.io/packages/source/s/sncosmo/sncosmo-1.2.0.tar.gz" version('1.2.0', '028e6d1dc84ab1c17d2f3b6378b2cb1e') # Required dependencies # py-sncosmo binaries are duplicates of those from py-astropy extends('python', ignore=r'bin/.*') depends_on('py-setuptools', type='build') depends_on('py-numpy', type=('build', 'run')) depends_on('py-scipy', type=('build', 'run')) depends_on('py-astropy', type=('build', 'run')) # Recommended dependencies depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-iminuit', type=('build', 'run')) depends_on('py-emcee', type=('build', 'run')) depends_on('py-nestle', type=('build', 'run'))
lgpl-2.1
pravsripad/mne-python
tutorials/source-modeling/plot_beamformer_lcmv.py
10
12809
""" Source reconstruction using an LCMV beamformer ============================================== This tutorial gives an overview of the beamformer method and shows how to reconstruct source activity using an LCMV beamformer. """ # Authors: Britta Westner <[email protected]> # Eric Larson <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import mne from mne.datasets import sample, fetch_fsaverage from mne.beamformer import make_lcmv, apply_lcmv ############################################################################### # Introduction to beamformers # --------------------------- # A beamformer is a spatial filter that reconstructs source activity by # scanning through a grid of pre-defined source points and estimating activity # at each of those source points independently. A set of weights is # constructed for each defined source location which defines the contribution # of each sensor to this source. # Beamformers are often used for their focal reconstructions and their ability # to reconstruct deeper sources. They can also suppress external noise sources. # The beamforming method applied in this tutorial is the linearly constrained # minimum variance (LCMV) beamformer :footcite:`VanVeenEtAl1997` operates on # time series. # Frequency-resolved data can be reconstructed with the dynamic imaging of # coherent sources (DICS) beamforming method :footcite:`GrossEtAl2001`. # As we will see in the following, the spatial filter is computed from two # ingredients: the forward model solution and the covariance matrix of the # data. ############################################################################### # Data processing # --------------- # We will use the sample data set for this tutorial and reconstruct source # activity on the trials with left auditory stimulation. data_path = sample.data_path() subjects_dir = data_path + '/subjects' raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' # Read the raw data raw = mne.io.read_raw_fif(raw_fname) raw.info['bads'] = ['MEG 2443'] # bad MEG channel # Set up the epoching event_id = 1 # those are the trials with left-ear auditory stimuli tmin, tmax = -0.2, 0.5 events = mne.find_events(raw) # pick relevant channels raw.pick(['meg', 'eog']) # pick channels of interest # Create epochs proj = False # already applied epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), preload=True, proj=proj, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6)) # for speed purposes, cut to a window of interest evoked = epochs.average().crop(0.05, 0.15) # Visualize averaged sensor space data evoked.plot_joint() del raw # save memory ############################################################################### # Computing the covariance matrices # --------------------------------- # Spatial filters use the data covariance to estimate the filter # weights. The data covariance matrix will be `inverted`_ during the spatial # filter computation, so it is valuable to plot the covariance matrix and its # eigenvalues to gauge whether matrix inversion will be possible. # Also, because we want to combine different channel types (magnetometers and # gradiometers), we need to account for the different amplitude scales of these # channel types. To do this we will supply a noise covariance matrix to the # beamformer, which will be used for whitening. # The data covariance matrix should be estimated from a time window that # includes the brain signal of interest, # and incorporate enough samples for a stable estimate. A rule of thumb is to # use more samples than there are channels in the data set; see # :footcite:`BrookesEtAl2008` for more detailed advice on covariance estimation # for beamformers. Here, we use a time # window incorporating the expected auditory response at around 100 ms post # stimulus and extend the period to account for a low number of trials (72) and # low sampling rate of 150 Hz. data_cov = mne.compute_covariance(epochs, tmin=0.01, tmax=0.25, method='empirical') noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='empirical') data_cov.plot(epochs.info) del epochs ############################################################################### # When looking at the covariance matrix plots, we can see that our data is # slightly rank-deficient as the rank is not equal to the number of channels. # Thus, we will have to regularize the covariance matrix before inverting it # in the beamformer calculation. This can be achieved by setting the parameter # ``reg=0.05`` when calculating the spatial filter with # :func:`~mne.beamformer.make_lcmv`. This corresponds to loading the diagonal # of the covariance matrix with 5% of the sensor power. ############################################################################### # The forward model # ----------------- # The forward model is the other important ingredient for the computation of a # spatial filter. Here, we will load the forward model from disk; more # information on how to create a forward model can be found in this tutorial: # :ref:`tut-forward`. # Note that beamformers are usually computed in a :class:`volume source space # <mne.VolSourceEstimate>`, because estimating only cortical surface # activation can misrepresent the data. # Read forward model fwd_fname = data_path + '/MEG/sample/sample_audvis-meg-vol-7-fwd.fif' forward = mne.read_forward_solution(fwd_fname) ############################################################################### # Handling depth bias # ------------------- # # The forward model solution is inherently biased toward superficial sources. # When analyzing single conditions it is best to mitigate the depth bias # somehow. There are several ways to do this: # # - :func:`mne.beamformer.make_lcmv` has a ``depth`` parameter that normalizes # the forward model prior to computing the spatial filters. See the docstring # for details. # - Unit-noise gain beamformers handle depth bias by normalizing the # weights of the spatial filter. Choose this by setting # ``weight_norm='unit-noise-gain'``. # - When computing the Neural activity index, the depth bias is handled by # normalizing both the weights and the estimated noise (see # :footcite:`VanVeenEtAl1997`). Choose this by setting ``weight_norm='nai'``. # # Note that when comparing conditions, the depth bias will cancel out and it is # possible to set both parameters to ``None``. # # # Compute the spatial filter # -------------------------- # Now we can compute the spatial filter. We'll use a unit-noise gain beamformer # to deal with depth bias, and will also optimize the orientation of the # sources such that output power is maximized. # This is achieved by setting ``pick_ori='max-power'``. # This gives us one source estimate per source (i.e., voxel), which is known # as a scalar beamformer. filters = make_lcmv(evoked.info, forward, data_cov, reg=0.05, noise_cov=noise_cov, pick_ori='max-power', weight_norm='unit-noise-gain', rank=None) # You can save the filter for later use with: # filters.save('filters-lcmv.h5') ############################################################################### # It is also possible to compute a vector beamformer, which gives back three # estimates per voxel, corresponding to the three direction components of the # source. This can be achieved by setting # ``pick_ori='vector'`` and will yield a :class:`volume vector source estimate # <mne.VolVectorSourceEstimate>`. So we will compute another set of filters # using the vector beamformer approach: filters_vec = make_lcmv(evoked.info, forward, data_cov, reg=0.05, noise_cov=noise_cov, pick_ori='vector', weight_norm='unit-noise-gain', rank=None) # save a bit of memory src = forward['src'] del forward ############################################################################### # Apply the spatial filter # ------------------------ # The spatial filter can be applied to different data types: raw, epochs, # evoked data or the data covariance matrix to gain a static image of power. # The function to apply the spatial filter to :class:`~mne.Evoked` data is # :func:`~mne.beamformer.apply_lcmv` which is # what we will use here. The other functions are # :func:`~mne.beamformer.apply_lcmv_raw`, # :func:`~mne.beamformer.apply_lcmv_epochs`, and # :func:`~mne.beamformer.apply_lcmv_cov`. stc = apply_lcmv(evoked, filters, max_ori_out='signed') stc_vec = apply_lcmv(evoked, filters_vec, max_ori_out='signed') del filters, filters_vec ############################################################################### # Visualize the reconstructed source activity # ------------------------------------------- # We can visualize the source estimate in different ways, e.g. as a volume # rendering, an overlay onto the MRI, or as an overlay onto a glass brain. # # The plots for the scalar beamformer show brain activity in the right temporal # lobe around 100 ms post stimulus. This is expected given the left-ear # auditory stimulation of the experiment. lims = [0.3, 0.45, 0.6] kwargs = dict(src=src, subject='sample', subjects_dir=subjects_dir, initial_time=0.087, verbose=True) ############################################################################### # On MRI slices (orthoview; 2D) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stc.plot(mode='stat_map', clim=dict(kind='value', pos_lims=lims), **kwargs) ############################################################################### # On MNI glass brain (orthoview; 2D) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ stc.plot(mode='glass_brain', clim=dict(kind='value', lims=lims), **kwargs) ############################################################################### # Volumetric rendering (3D) with vectors # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # These plots can also be shown using a volumetric rendering via # :meth:`~mne.VolVectorSourceEstimate.plot_3d`. Let's try visualizing the # vector beamformer case. Here we get three source time courses out per voxel # (one for each component of the dipole moment: x, y, and z), which appear # as small vectors in the visualization (in the 2D plotters, only the # magnitude can be shown): # sphinx_gallery_thumbnail_number = 7 brain = stc_vec.plot_3d( clim=dict(kind='value', lims=lims), hemi='both', views=['coronal', 'sagittal', 'axial'], size=(800, 300), view_layout='horizontal', show_traces=0.3, brain_kwargs=dict(silhouette=True), **kwargs) ############################################################################### # Visualize the activity of the maximum voxel with all three components # --------------------------------------------------------------------- # We can also visualize all three components in the peak voxel. For this, we # will first find the peak voxel and then plot the time courses of this voxel. peak_vox, _ = stc_vec.get_peak(tmin=0.08, tmax=0.1, vert_as_index=True) ori_labels = ['x', 'y', 'z'] fig, ax = plt.subplots(1) for ori, label in zip(stc_vec.data[peak_vox, :, :], ori_labels): ax.plot(stc_vec.times, ori, label='%s component' % label) ax.legend(loc='lower right') ax.set(title='Activity per orientation in the peak voxel', xlabel='Time (s)', ylabel='Amplitude (a. u.)') mne.viz.utils.plt_show() del stc_vec ############################################################################### # Morph the output to fsaverage # ----------------------------- # # We can also use volumetric morphing to get the data to fsaverage space. This # is for example necessary when comparing activity across subjects. Here, we # will use the scalar beamformer example. # We pass a :class:`mne.SourceMorph` as the ``src`` argument to # `mne.VolSourceEstimate.plot`. To save some computational load when applying # the morph, we will crop the ``stc``: fetch_fsaverage(subjects_dir) # ensure fsaverage src exists fname_fs_src = subjects_dir + '/fsaverage/bem/fsaverage-vol-5-src.fif' src_fs = mne.read_source_spaces(fname_fs_src) morph = mne.compute_source_morph( src, subject_from='sample', src_to=src_fs, subjects_dir=subjects_dir, niter_sdr=[10, 10, 5], niter_affine=[10, 10, 5], # just for speed verbose=True) stc_fs = morph.apply(stc) del stc stc_fs.plot( src=src_fs, mode='stat_map', initial_time=0.085, subjects_dir=subjects_dir, clim=dict(kind='value', pos_lims=lims), verbose=True) ############################################################################### # References # ---------- # # .. footbibliography:: # # # .. LINKS # # .. _`inverted`: https://en.wikipedia.org/wiki/Invertible_matrix
bsd-3-clause
RyanChinSang/LeagueLatency
BETA/Test Code/Hoverover/Hoverover4.py
1
2967
import math import matplotlib.pyplot as plt class AnnoteFinder(object): """callback for matplotlib to display an annotation when points are clicked on. The point which is closest to the click and within xtol and ytol is identified. Register this function like this: scatter(xdata, ydata) af = AnnoteFinder(xdata, ydata, annotes) connect('button_press_event', af) """ def __init__(self, xdata, ydata, annotes, ax=None, xtol=None, ytol=None): self.data = list(zip(xdata, ydata, annotes)) if xtol is None: xtol = ((max(xdata) - min(xdata))/float(len(xdata)))/2 if ytol is None: ytol = ((max(ydata) - min(ydata))/float(len(ydata)))/2 self.xtol = xtol self.ytol = ytol if ax is None: self.ax = plt.gca() else: self.ax = ax self.drawnAnnotations = {} self.links = [] def distance(self, x1, x2, y1, y2): """ return the distance between two points """ return(math.sqrt((x1 - x2)**2 + (y1 - y2)**2)) def __call__(self, event): if event.inaxes: clickX = event.xdata clickY = event.ydata if (self.ax is None) or (self.ax is event.inaxes): annotes = [] # print(event.xdata, event.ydata) for x, y, a in self.data: # print(x, y, a) if ((clickX-self.xtol < x < clickX+self.xtol) and (clickY-self.ytol < y < clickY+self.ytol)): annotes.append( (self.distance(x, clickX, y, clickY), x, y, a)) if annotes: annotes.sort() distance, x, y, annote = annotes[0] self.drawAnnote(event.inaxes, x, y, annote) for l in self.links: l.drawSpecificAnnote(annote) def drawAnnote(self, ax, x, y, annote): """ Draw the annotation on the plot """ if (x, y) in self.drawnAnnotations: markers = self.drawnAnnotations[(x, y)] for m in markers: m.set_visible(not m.get_visible()) self.ax.figure.canvas.draw_idle() else: t = ax.text(x, y, " - %s" % (annote),) m = ax.scatter([x], [y], marker='d', c='r', zorder=100) self.drawnAnnotations[(x, y)] = (t, m) self.ax.figure.canvas.draw_idle() def drawSpecificAnnote(self, annote): annotesToDraw = [(x, y, a) for x, y, a in self.data if a == annote] for x, y, a in annotesToDraw: self.drawAnnote(self.ax, x, y, a) x = range(10) y = range(10) annotes = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] fig, ax = plt.subplots() ax.scatter(x,y) af = AnnoteFinder(x,y, annotes, ax=ax) fig.canvas.mpl_connect('button_press_event', af) plt.show()
gpl-3.0
lewisodriscoll/sasview
src/sas/sasgui/guiframe/local_perspectives/plotting/AnnulusSlicer.py
1
18960
# TODO: the line slicer should listen to all 2DREFRESH events, get the data and slice it # before pushing a new 1D data update. # # TODO: NEED MAJOR REFACTOR # import math import wx # from copy import deepcopy # Debug printout from sas.sasgui.guiframe.events import NewPlotEvent from sas.sasgui.guiframe.events import StatusEvent from sas.sasgui.guiframe.events import SlicerParameterEvent from sas.sasgui.guiframe.events import EVT_SLICER_PARS from BaseInteractor import _BaseInteractor from sas.sasgui.guiframe.dataFitting import Data1D class AnnulusInteractor(_BaseInteractor): """ Select an annulus through a 2D plot. This interactor is used to average 2D data with the region defined by 2 radius. this class is defined by 2 Ringinterators. """ def __init__(self, base, axes, color='black', zorder=3): _BaseInteractor.__init__(self, base, axes, color=color) self.markers = [] self.axes = axes self.base = base self.qmax = min(math.fabs(self.base.data2D.xmax), math.fabs(self.base.data2D.xmin)) # must be positive self.connect = self.base.connect # # Number of points on the plot self.nbins = 36 # Cursor position of Rings (Left(-1) or Right(1)) self.xmaxd = self.base.data2D.xmax self.xmind = self.base.data2D.xmin if (self.xmaxd + self.xmind) > 0: self.sign = 1 else: self.sign = -1 # Inner circle self.inner_circle = RingInteractor(self, self.base.subplot, zorder=zorder, r=self.qmax / 2.0, sign=self.sign) self.inner_circle.qmax = self.qmax self.outer_circle = RingInteractor(self, self.base.subplot, zorder=zorder + 1, r=self.qmax / 1.8, sign=self.sign) self.outer_circle.qmax = self.qmax * 1.2 self.update() self._post_data() # Bind to slice parameter events self.base.Bind(EVT_SLICER_PARS, self._onEVT_SLICER_PARS) def _onEVT_SLICER_PARS(self, event): """ receive an event containing parameters values to reset the slicer :param event: event of type SlicerParameterEvent with params as attribute """ wx.PostEvent(self.base, StatusEvent(status="AnnulusSlicer._onEVT_SLICER_PARS")) event.Skip() if event.type == self.__class__.__name__: self.set_params(event.params) self.base.update() def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update() def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() self.outer_circle.clear() self.inner_circle.clear() self.base.connect.clearall() self.base.Unbind(EVT_SLICER_PARS) def update(self): """ Respond to changes in the model by recalculating the profiles and resetting the widgets. """ # Update locations self.inner_circle.update() self.outer_circle.update() def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.base.freeze_axes() self.inner_circle.save(ev) self.outer_circle.save(ev) def _post_data(self, nbins=None): """ Uses annulus parameters to plot averaged data into 1D data. :param nbins: the number of points to plot """ # Data to average data = self.base.data2D # If we have no data, just return if data is None: return from sas.sascalc.dataloader.manipulations import Ring rmin = min(math.fabs(self.inner_circle.get_radius()), math.fabs(self.outer_circle.get_radius())) rmax = max(math.fabs(self.inner_circle.get_radius()), math.fabs(self.outer_circle.get_radius())) # if the user does not specify the numbers of points to plot # the default number will be nbins= 36 if nbins is None: self.nbins = 36 else: self.nbins = nbins # # create the data1D Q average of data2D sect = Ring(r_min=rmin, r_max=rmax, nbins=self.nbins) sector = sect(self.base.data2D) if hasattr(sector, "dxl"): dxl = sector.dxl else: dxl = None if hasattr(sector, "dxw"): dxw = sector.dxw else: dxw = None new_plot = Data1D(x=(sector.x - math.pi) * 180 / math.pi, y=sector.y, dy=sector.dy) new_plot.dxl = dxl new_plot.dxw = dxw new_plot.name = "AnnulusPhi" + "(" + self.base.data2D.name + ")" new_plot.source = self.base.data2D.source # new_plot.info=self.base.data2D.info new_plot.interactive = True new_plot.detector = self.base.data2D.detector # If the data file does not tell us what the axes are, just assume... new_plot.xaxis("\\rm{\phi}", 'degrees') new_plot.yaxis("\\rm{Intensity} ", "cm^{-1}") if hasattr(data, "scale") and data.scale == 'linear' and \ self.base.data2D.name.count("Residuals") > 0: new_plot.ytransform = 'y' new_plot.yaxis("\\rm{Residuals} ", "/") new_plot.group_id = "AnnulusPhi" + self.base.data2D.name new_plot.id = "AnnulusPhi" + self.base.data2D.name new_plot.is_data = True new_plot.xtransform = "x" new_plot.ytransform = "y" self.base.parent.update_theory(data_id=data.id, theory=new_plot) wx.PostEvent(self.base.parent, NewPlotEvent(plot=new_plot, title="AnnulusPhi")) def moveend(self, ev): """ Called when any dragging motion ends. Post an event (type =SlicerParameterEvent) to plotter 2D with a copy slicer parameters Call _post_data method """ self.base.thaw_axes() # Post parameters to plotter 2D event = SlicerParameterEvent() event.type = self.__class__.__name__ event.params = self.get_params() wx.PostEvent(self.base, event) def restore(self): """ Restore the roughness for this layer. """ self.inner_circle.restore() self.outer_circle.restore() def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ pass def set_cursor(self, x, y): pass def get_params(self): """ Store a copy of values of parameters of the slicer into a dictionary. :return params: the dictionary created """ params = {} params["inner_radius"] = math.fabs(self.inner_circle._inner_mouse_x) params["outer_radius"] = math.fabs(self.outer_circle._inner_mouse_x) params["nbins"] = self.nbins return params def set_params(self, params): """ Receive a dictionary and reset the slicer with values contained in the values of the dictionary. :param params: a dictionary containing name of slicer parameters and values the user assigned to the slicer. """ inner = math.fabs(params["inner_radius"]) outer = math.fabs(params["outer_radius"]) self.nbins = int(params["nbins"]) # # Update the picture self.inner_circle.set_cursor(inner, self.inner_circle._inner_mouse_y) self.outer_circle.set_cursor(outer, self.outer_circle._inner_mouse_y) # # Post the data given the nbins entered by the user self._post_data(self.nbins) def freeze_axes(self): """ """ self.base.freeze_axes() def thaw_axes(self): """ """ self.base.thaw_axes() def draw(self): """ """ self.base.draw() class RingInteractor(_BaseInteractor): """ Draw a ring Given a radius """ def __init__(self, base, axes, color='black', zorder=5, r=1.0, sign=1): """ :param: the color of the line that defined the ring :param r: the radius of the ring :param sign: the direction of motion the the marker """ _BaseInteractor.__init__(self, base, axes, color=color) self.markers = [] self.axes = axes # Current radius of the ring self._inner_mouse_x = r # Value of the center of the ring self._inner_mouse_y = 0 # previous value of that radius self._inner_save_x = r # Save value of the center of the ring self._inner_save_y = 0 # Class instantiating RingIterator class self.base = base # the direction of the motion of the marker self.sign = sign # # Create a marker try: # Inner circle marker x_value = [self.sign * math.fabs(self._inner_mouse_x)] self.inner_marker = self.axes.plot(x_value, [0], linestyle='', marker='s', markersize=10, color=self.color, alpha=0.6, pickradius=5, label="pick", zorder=zorder, visible=True)[0] except: x_value = [self.sign * math.fabs(self._inner_mouse_x)] self.inner_marker = self.axes.plot(x_value, [0], linestyle='', marker='s', markersize=10, color=self.color, alpha=0.6, label="pick", visible=True)[0] message = "\nTHIS PROTOTYPE NEEDS THE LATEST" message += " VERSION OF MATPLOTLIB\n" message += "Get the SVN version that is at " message += " least as recent as June 1, 2007" owner = self.base.base.parent wx.PostEvent(owner, StatusEvent(status="AnnulusSlicer: %s" % message)) # Draw a circle [self.inner_circle] = self.axes.plot([], [], linestyle='-', marker='', color=self.color) # the number of points that make the ring line self.npts = 40 self.connect_markers([self.inner_marker]) self.update() def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update() def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() try: self.inner_marker.remove() self.inner_circle.remove() except: # Old version of matplotlib for item in range(len(self.axes.lines)): del self.axes.lines[0] def get_radius(self): """ :return self._inner_mouse_x: the current radius of the ring """ return self._inner_mouse_x def update(self): """ Draw the new roughness on the graph. """ # Plot inner circle x = [] y = [] for i in range(self.npts): phi = 2.0 * math.pi / (self.npts - 1) * i xval = 1.0 * self._inner_mouse_x * math.cos(phi) yval = 1.0 * self._inner_mouse_x * math.sin(phi) x.append(xval) y.append(yval) self.inner_marker.set(xdata=[self.sign * math.fabs(self._inner_mouse_x)], ydata=[0]) self.inner_circle.set_data(x, y) def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self._inner_save_x = self._inner_mouse_x self._inner_save_y = self._inner_mouse_y self.base.freeze_axes() def moveend(self, ev): """ Called after a dragging motion """ self.base.moveend(ev) def restore(self): """ Restore the roughness for this layer. """ self._inner_mouse_x = self._inner_save_x self._inner_mouse_y = self._inner_save_y def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ self._inner_mouse_x = x self._inner_mouse_y = y self.base.base.update() def set_cursor(self, x, y): """ draw the ring given x, y value """ self.move(x, y, None) self.update() def get_params(self): """ Store a copy of values of parameters of the slicer into a dictionary. :return params: the dictionary created """ params = {} params["radius"] = math.fabs(self._inner_mouse_x) return params def set_params(self, params): """ Receive a dictionary and reset the slicer with values contained in the values of the dictionary. :param params: a dictionary containing name of slicer parameters and values the user assigned to the slicer. """ x = params["radius"] self.set_cursor(x, self._inner_mouse_y) class CircularMask(_BaseInteractor): """ Draw a ring Given a radius """ def __init__(self, base, axes, color='grey', zorder=3, side=None): """ :param: the color of the line that defined the ring :param r: the radius of the ring :param sign: the direction of motion the the marker """ _BaseInteractor.__init__(self, base, axes, color=color) self.markers = [] self.axes = axes self.base = base self.is_inside = side self.qmax = min(math.fabs(self.base.data.xmax), math.fabs(self.base.data.xmin)) # must be positive self.connect = self.base.connect # Cursor position of Rings (Left(-1) or Right(1)) self.xmaxd = self.base.data.xmax self.xmind = self.base.data.xmin if (self.xmaxd + self.xmind) > 0: self.sign = 1 else: self.sign = -1 # Inner circle self.outer_circle = RingInteractor(self, self.base.subplot, 'blue', zorder=zorder + 1, r=self.qmax / 1.8, sign=self.sign) self.outer_circle.qmax = self.qmax * 1.2 self.update() self._post_data() # Bind to slice parameter events # self.base.Bind(EVT_SLICER_PARS, self._onEVT_SLICER_PARS) def _onEVT_SLICER_PARS(self, event): """ receive an event containing parameters values to reset the slicer :param event: event of type SlicerParameterEvent with params as attribute """ wx.PostEvent(self.base, StatusEvent(status="AnnulusSlicer._onEVT_SLICER_PARS")) event.Skip() if event.type == self.__class__.__name__: self.set_params(event.params) self.base.update() def set_layer(self, n): """ Allow adding plot to the same panel :param n: the number of layer """ self.layernum = n self.update() def clear(self): """ Clear the slicer and all connected events related to this slicer """ self.clear_markers() self.outer_circle.clear() self.base.connect.clearall() # self.base.Unbind(EVT_SLICER_PARS) def update(self): """ Respond to changes in the model by recalculating the profiles and resetting the widgets. """ # Update locations self.outer_circle.update() # if self.is_inside is not None: out = self._post_data() return out def save(self, ev): """ Remember the roughness for this layer and the next so that we can restore on Esc. """ self.base.freeze_axes() self.outer_circle.save(ev) def _post_data(self): """ Uses annulus parameters to plot averaged data into 1D data. :param nbins: the number of points to plot """ # Data to average data = self.base.data # If we have no data, just return if data is None: return mask = data.mask from sas.sascalc.dataloader.manipulations import Ringcut rmin = 0 rmax = math.fabs(self.outer_circle.get_radius()) # # create the data1D Q average of data2D mask = Ringcut(r_min=rmin, r_max=rmax) if self.is_inside: out = (mask(data) == False) else: out = (mask(data)) # self.base.data.mask=out return out def moveend(self, ev): """ Called when any dragging motion ends. Post an event (type =SlicerParameterEvent) to plotter 2D with a copy slicer parameters Call _post_data method """ self.base.thaw_axes() # create a 1D data plot self._post_data() def restore(self): """ Restore the roughness for this layer. """ self.outer_circle.restore() def move(self, x, y, ev): """ Process move to a new position, making sure that the move is allowed. """ pass def set_cursor(self, x, y): pass def get_params(self): """ Store a copy of values of parameters of the slicer into a dictionary. :return params: the dictionary created """ params = {} params["outer_radius"] = math.fabs(self.outer_circle._inner_mouse_x) return params def set_params(self, params): """ Receive a dictionary and reset the slicer with values contained in the values of the dictionary. :param params: a dictionary containing name of slicer parameters and values the user assigned to the slicer. """ outer = math.fabs(params["outer_radius"]) # # Update the picture self.outer_circle.set_cursor(outer, self.outer_circle._inner_mouse_y) # # Post the data given the nbins entered by the user self._post_data() def freeze_axes(self): self.base.freeze_axes() def thaw_axes(self): self.base.thaw_axes() def draw(self): self.base.update()
bsd-3-clause
yanlend/scikit-learn
sklearn/utils/random.py
234
10510
# Author: Hamzeh Alsalhi <[email protected]> # # License: BSD 3 clause from __future__ import division import numpy as np import scipy.sparse as sp import operator import array from sklearn.utils import check_random_state from sklearn.utils.fixes import astype from ._random import sample_without_replacement __all__ = ['sample_without_replacement', 'choice'] # This is a backport of np.random.choice from numpy 1.7 # The function can be removed when we bump the requirements to >=1.7 def choice(a, size=None, replace=True, p=None, random_state=None): """ choice(a, size=None, replace=True, p=None) Generates a random sample from a given 1-D array .. versionadded:: 1.7.0 Parameters ----------- a : 1-D array-like or int If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if a was np.arange(n) size : int or tuple of ints, optional Output shape. Default is None, in which case a single value is returned. replace : boolean, optional Whether the sample is with or without replacement. p : 1-D array-like, optional The probabilities associated with each entry in a. If not given the sample assumes a uniform distribtion over all entries in a. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns -------- samples : 1-D ndarray, shape (size,) The generated random samples Raises ------- ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size See Also --------- randint, shuffle, permutation Examples --------- Generate a uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3) # doctest: +SKIP array([0, 3, 4]) >>> #This is equivalent to np.random.randint(0,5,3) Generate a non-uniform random sample from np.arange(5) of size 3: >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP array([3, 3, 0]) Generate a uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False) # doctest: +SKIP array([3,1,0]) >>> #This is equivalent to np.random.shuffle(np.arange(5))[:3] Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) ... # doctest: +SKIP array([2, 3, 0]) Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) ... # doctest: +SKIP array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], dtype='|S11') """ random_state = check_random_state(random_state) # Format and Verify input a = np.array(a, copy=False) if a.ndim == 0: try: # __index__ must return an integer by python rules. pop_size = operator.index(a.item()) except TypeError: raise ValueError("a must be 1-dimensional or an integer") if pop_size <= 0: raise ValueError("a must be greater than 0") elif a.ndim != 1: raise ValueError("a must be 1-dimensional") else: pop_size = a.shape[0] if pop_size is 0: raise ValueError("a must be non-empty") if None != p: p = np.array(p, dtype=np.double, ndmin=1, copy=False) if p.ndim != 1: raise ValueError("p must be 1-dimensional") if p.size != pop_size: raise ValueError("a and p must have same size") if np.any(p < 0): raise ValueError("probabilities are not non-negative") if not np.allclose(p.sum(), 1): raise ValueError("probabilities do not sum to 1") shape = size if shape is not None: size = np.prod(shape, dtype=np.intp) else: size = 1 # Actual sampling if replace: if None != p: cdf = p.cumsum() cdf /= cdf[-1] uniform_samples = random_state.random_sample(shape) idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar idx = np.array(idx, copy=False) else: idx = random_state.randint(0, pop_size, size=shape) else: if size > pop_size: raise ValueError("Cannot take a larger sample than " "population when 'replace=False'") if None != p: if np.sum(p > 0) < size: raise ValueError("Fewer non-zero entries in p than size") n_uniq = 0 p = p.copy() found = np.zeros(shape, dtype=np.int) flat_found = found.ravel() while n_uniq < size: x = random_state.rand(size - n_uniq) if n_uniq > 0: p[flat_found[0:n_uniq]] = 0 cdf = np.cumsum(p) cdf /= cdf[-1] new = cdf.searchsorted(x, side='right') _, unique_indices = np.unique(new, return_index=True) unique_indices.sort() new = new.take(unique_indices) flat_found[n_uniq:n_uniq + new.size] = new n_uniq += new.size idx = found else: idx = random_state.permutation(pop_size)[:size] if shape is not None: idx.shape = shape if shape is None and isinstance(idx, np.ndarray): # In most cases a scalar will have been made an array idx = idx.item(0) # Use samples as indices for a if a is array-like if a.ndim == 0: return idx if shape is not None and idx.ndim == 0: # If size == () then the user requested a 0-d array as opposed to # a scalar object when size is None. However a[idx] is always a # scalar and not an array. So this makes sure the result is an # array, taking into account that np.array(item) may not work # for object arrays. res = np.empty((), dtype=a.dtype) res[()] = a[idx] return res return a[idx] def random_choice_csc(n_samples, classes, class_probability=None, random_state=None): """Generate a sparse random matrix given column class distributions Parameters ---------- n_samples : int, Number of samples to draw in each column. classes : list of size n_outputs of arrays of size (n_classes,) List of classes for each column. class_probability : list of size n_outputs of arrays of size (n_classes,) Optional (default=None). Class distribution of each column. If None the uniform distribution is assumed. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- random_matrix : sparse csc matrix of size (n_samples, n_outputs) """ data = array.array('i') indices = array.array('i') indptr = array.array('i', [0]) for j in range(len(classes)): classes[j] = np.asarray(classes[j]) if classes[j].dtype.kind != 'i': raise ValueError("class dtype %s is not supported" % classes[j].dtype) classes[j] = astype(classes[j], np.int64, copy=False) # use uniform distribution if no class_probability is given if class_probability is None: class_prob_j = np.empty(shape=classes[j].shape[0]) class_prob_j.fill(1 / classes[j].shape[0]) else: class_prob_j = np.asarray(class_probability[j]) if np.sum(class_prob_j) != 1.0: raise ValueError("Probability array at index {0} does not sum to " "one".format(j)) if class_prob_j.shape[0] != classes[j].shape[0]: raise ValueError("classes[{0}] (length {1}) and " "class_probability[{0}] (length {2}) have " "different length.".format(j, classes[j].shape[0], class_prob_j.shape[0])) # If 0 is not present in the classes insert it with a probability 0.0 if 0 not in classes[j]: classes[j] = np.insert(classes[j], 0, 0) class_prob_j = np.insert(class_prob_j, 0, 0.0) # If there are nonzero classes choose randomly using class_probability rng = check_random_state(random_state) if classes[j].shape[0] > 1: p_nonzero = 1 - class_prob_j[classes[j] == 0] nnz = int(n_samples * p_nonzero) ind_sample = sample_without_replacement(n_population=n_samples, n_samples=nnz, random_state=random_state) indices.extend(ind_sample) # Normalize probabilites for the nonzero elements classes_j_nonzero = classes[j] != 0 class_probability_nz = class_prob_j[classes_j_nonzero] class_probability_nz_norm = (class_probability_nz / np.sum(class_probability_nz)) classes_ind = np.searchsorted(class_probability_nz_norm.cumsum(), rng.rand(nnz)) data.extend(classes[j][classes_j_nonzero][classes_ind]) indptr.append(len(indices)) return sp.csc_matrix((data, indices, indptr), (n_samples, len(classes)), dtype=int)
bsd-3-clause
hrjn/scikit-learn
examples/calibration/plot_calibration_curve.py
113
5904
""" ============================== Probability Calibration curves ============================== When performing classification one often wants to predict not only the class label, but also the associated probability. This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier. The experiment is performed on an artificial dataset for binary classification with 100.000 samples (1.000 of them are used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical transposed-sigmoid curve. Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such that the greater flexibility of the non-parametric model can be exploited. The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which lets the model focus on hard samples that are close to the decision boundary (the support vectors). Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes). """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import matplotlib.pyplot as plt from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import (brier_score_loss, precision_score, recall_score, f1_score) from sklearn.calibration import CalibratedClassifierCV, calibration_curve from sklearn.model_selection import train_test_split # Create dataset of classification task with many redundant and few # informative features X, y = datasets.make_classification(n_samples=100000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99, random_state=42) def plot_calibration_curve(est, name, fig_index): """Plot calibration curve for est w/o and with calibration. """ # Calibrated with isotonic calibration isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic') # Calibrated with sigmoid calibration sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid') # Logistic regression with no calibration as baseline lr = LogisticRegression(C=1., solver='lbfgs') fig = plt.figure(fig_index, figsize=(10, 10)) ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax2 = plt.subplot2grid((3, 1), (2, 0)) ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated") for clf, name in [(lr, 'Logistic'), (est, name), (isotonic, name + ' + Isotonic'), (sigmoid, name + ' + Sigmoid')]: clf.fit(X_train, y_train) y_pred = clf.predict(X_test) if hasattr(clf, "predict_proba"): prob_pos = clf.predict_proba(X_test)[:, 1] else: # use decision function prob_pos = clf.decision_function(X_test) prob_pos = \ (prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min()) clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max()) print("%s:" % name) print("\tBrier: %1.3f" % (clf_score)) print("\tPrecision: %1.3f" % precision_score(y_test, y_pred)) print("\tRecall: %1.3f" % recall_score(y_test, y_pred)) print("\tF1: %1.3f\n" % f1_score(y_test, y_pred)) fraction_of_positives, mean_predicted_value = \ calibration_curve(y_test, prob_pos, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-", label="%s (%1.3f)" % (name, clf_score)) ax2.hist(prob_pos, range=(0, 1), bins=10, label=name, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() # Plot calibration curve for Gaussian Naive Bayes plot_calibration_curve(GaussianNB(), "Naive Bayes", 1) # Plot calibration curve for Linear SVC plot_calibration_curve(LinearSVC(), "SVC", 2) plt.show()
bsd-3-clause
AlexRobson/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
254
2639
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positve elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T) l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
fengzhyuan/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
vincent-legoll/glancing
test/src/bench_mh.py
1
4044
#! /usr/bin/env python import os import sys import pickle import timeit import argparse import matplotlib.pyplot as plt import matplotlib.markers from tutils import local_pythonpath # Setup project-local PYTHONPATH local_pythonpath('..', '..', 'src') import utils _SETUP = \ ''' import multihash mh = multihash.multihash_%s(%s) ''' def bench_one(fname, setup, repeats=1): return timeit.timeit('mh.hash_file("%s")' % fname, setup=setup, number=repeats) def bench_files(files): lengths = [] times_sh = [] times_mh = { # Uninteresting buffer sizes: too small 32: [], 64: [], 128: [], 512: [], 1024: [], 1024 * 4: [], 1024 * 1024: [], 10 * 1024 * 1024: [], } for fname in files: lengths.append(os.path.getsize(fname) / (1024 * 1024)) times_sh.append(bench_one(fname, _SETUP % ('serial_exec', ''))) for size, res in times_mh.iteritems(): res.append(bench_one(fname, _SETUP % ('hashlib', 'block_size=%d' % size))) return lengths, times_sh, times_mh def plotit(lengths, times_sh, times_mh, image_file, display): plt.title('Benchmark multiple hash computing implementations') plt.xlabel('File size in MB') plt.ylabel('Time in seconds') plt.rc('lines', linewidth=1, linestyle='-') # Prepare marker list mks = set(matplotlib.markers.MarkerStyle().markers.keys()) # Remove unwanted ones mks -= set((None, 'None', '', ' ', '|', '_', '.', ',', '+', '-', 'd', 'x', '*')) mks = ['<', '>', '^', 'v', 'o', 'D', 's', 'p', 'h', ] assert len(mks) >= len(times_mh) # Experiment with logarithmic scale plotter = plt.semilogx # plt.plot # Plot serial exec data plotter(lengths, times_sh, label='serial exec', marker='*') # Plot parallel hashlib data, for each block size for size in sorted(times_mh.keys()): plotter(lengths, times_mh[size], marker=mks.pop(), label='parallel hashlib, bs=%s' % (utils.size_t(size),)) # Give some horizontal room #xmin, xmax = plt.xlim() #plt.xlim(0, xmax * 1.1) # Put legend in top left corner plt.legend(loc=2) # Save an image of the plotted data if image_file: plt.savefig(image_file) # Display resulting figure if display: plt.show() def parse_args(): parser = argparse.ArgumentParser(description='Benchmark multihash') group = parser.add_mutually_exclusive_group(required=False) group.add_argument('-l', '--load', dest='load', metavar='FILE', help='load data from specified file') group.add_argument('-s', '--store', dest='store', metavar='FILE', help='store data into specified file') parser.add_argument(dest='files', metavar='DATAFILE', nargs='*', help='files to compute checksums of') parser.add_argument('-d', '--display', dest='display', action='store_true', help='display plot data') parser.add_argument('-p', '--plot', dest='plot', metavar='FILE', help='save plot data to .svg image file') return parser def main(): parser = parse_args() args = parser.parse_args() if args.load: if args.files: print "\nIgnoring DATAFILE(s) parameters, loading data from:", args.load with open(args.load, 'rb') as fin: lengths, times_sh, times_mh = pickle.load(fin) else: if args.files: lengths, times_sh, times_mh = bench_files(args.files) if args.store: with open(args.store, 'wb+') as fout: pickle.dump((lengths, times_sh, times_mh), fout) else: parser.print_help() print "\nMissing DATAFILE(s) parameters" sys.exit(1) if args.display or args.plot: plotit(lengths, times_sh, times_mh, args.plot, args.display) if __name__ == '__main__': main()
gpl-3.0
akaihola/lusmu
lusmu/tests/test_vector.py
1
12243
"""Test suite for lusmu.vector Copyright 2013 Eniram Ltd. See the LICENSE file at the top-level directory of this distribution and at https://github.com/akaihola/lusmu/blob/master/LICENSE """ import tempfile from unittest import TestCase from mock import patch import joblib from nose.tools import assert_raises, eq_ import numpy as np import pandas as pd from lusmu.core import DIRTY from lusmu.tests.test_core import (NoOutputTypeAction, NoneOutputTypeAction, IntOutputTypeAction) from lusmu.vector import Input from lusmu import vector from lusmu.tests.tools import parameterize def sum(*args): return sum(args) class VectorEq(vector.VectorEquality): """Mock node class implementing the vector equality test""" def __init__(self, value): self._value = value def test_scalar_equality(): """Test cases for lusmu.vector.VectorEq._value_eq() with Python scalars""" @parameterize def check(value, other_value, expected): """Scalar node value {0} == {1}: {2}""" # pylint: disable=W0212 # Access to a protected member of a client class vector = VectorEq(value) assert expected == vector._value_eq(other_value) yield check(DIRTY, DIRTY, True) yield check(DIRTY, 0, False) yield check(0, 0, True) yield check(0, 1, False) yield check(0, 0.0, False) yield check(0, 1.0, False) yield check(0.0, 0.0, True) yield check(0.0, 1.0, False) yield check('a', 'a', True) yield check('a', 'b', False) def test_numpy_vector_equality(): """Test cases for lusmu.vector.VectorEq._value_eq() with numpy arrays""" @parameterize def check(value, other_value, expected): """Vector node value {0} == {1}: {2}""" # pylint: disable=W0212 # Access to a protected member of a client class vector = VectorEq(np.array(value)) assert expected == vector._value_eq(np.array(other_value)) yield check([], [], True) yield check([1], [], False) yield check([], [2], False) yield check([3], [3], True) yield check([4], [4, 5], False) yield check([4], [4, 4], False) yield check([4, 5], [4], False) yield check([6, 7, 8], [6, 7, 8], True) yield check([9, np.nan], [9, np.nan], True) yield check([9, 10], [9, np.nan], False) def test_numpy_vector_equality_others(): """Test cases for lusmu.vector.VectorEq._value_eq() with complex data types """ @parameterize def check(value, other_value, expected): """Vector node value {0} == {1}: {2}""" # pylint: disable=W0212 # Access to a protected member of a client class vector = VectorEq(value) assert expected == vector._value_eq(other_value) yield check(DIRTY, np.array([[1,2],[3,4]]), False) yield check(np.array([[1,2],[3,4]]), np.array([[1,2],[3,4]]), True) yield check(np.array([[1,2],[3,4]]), np.array([[1,2],[3,5]]), False) yield check(np.array([[1,2],[3,4]]), [[1,2],[3,4]], False) yield check(np.array([[1,2]]), np.array([[1,2],[1,2]]), False) def test_pandas_vector_equality(): """Test cases for lusmu.vector.VectorEq._value_eq() with pandas Series""" @parameterize def check(value, index, other_value, other_index, expected): """Series node value {0}/{1} == {2}/{3}: {4}""" # pylint: disable=W0212 # Access to a protected member of a client class this = pd.Series(value, index=pd.to_datetime(index)) other = pd.Series(other_value, index=pd.to_datetime(other_index)) vector = VectorEq(this) assert expected == vector._value_eq(other) yield check([], [], [], [], True) yield check([1], ['2013-10-15'], [], [], False) yield check([], [], [2], ['2013-10-15'], False) yield check([3], ['2013-10-15'], [3], ['2013-10-15'], True) yield check([4], ['2013-10-15'], [4, 5], ['2013-10-15', '2013-10-16'], False) yield check([4, 5], ['2013-10-15', '2013-10-16'], [4], ['2013-10-15'], False) yield check([6, 7, 8], ['2013-10-15', '2013-10-16', '2013-10-17'], [6, 7, 8], ['2013-10-15', '2013-10-16', '2013-10-17'], True) yield check([6, 7, 8], ['2013-10-15', '2013-10-16', '2013-10-17'], [6, 7, 8], ['2013-10-15', '2013-10-16', '2013-10-18'], False) yield check([9, np.nan], ['2013-10-15', '2013-10-16'], [9, np.nan], ['2013-10-15', '2013-10-16'], True) yield check([9, np.nan], ['2013-10-15', '2013-10-16'], [9, np.nan], ['2013-10-15', '2013-10-17'], False) yield check([9, 10], ['2013-10-15', '2013-10-16'], [9, np.nan], ['2013-10-15', '2013-10-16'], False) def test_mixed_vector_equality(): """Test cases for lusmu.vector.VectorEq._value_eq() with pandas Series""" @parameterize def check(value, index, other_value, expected): """Series node value {0}/{1} == {2}: {3}""" # pylint: disable=W0212 # Access to a protected member of a client class this = pd.Series(value, index=pd.to_datetime(index)) other = np.array(other_value) vector = VectorEq(this) assert expected == vector._value_eq(other) yield check([], [], [], False) yield check([1], ['2013-10-15'], [], False) yield check([], [], [2], False) yield check([3], ['2013-10-15'], [3], False) yield check([4], ['2013-10-15'], [4, 5], False) yield check([4, 5], ['2013-10-15', '2013-10-16'], [4], False) class InputSetValueTestCase(TestCase): def test_no_value(self): inp = vector.Input() eq_(None, inp.last_timestamp) def test_dirty_value(self): inp = vector.Input(value=DIRTY) eq_(None, inp.last_timestamp) def test_initial_value(self): inp = vector.Input(value=pd.Series([1, 2], [1001, 1002])) eq_(1002, inp.last_timestamp) def test_set_value(self): inp = vector.Input() inp.value = pd.Series([1, 2], index=[1001, 1002]) eq_(1002, inp.last_timestamp) def test_scalar_value(self): inp = vector.Input(value=100000.0) eq_(None, inp.last_timestamp) def test_array_value(self): inp = vector.Input(value=np.array([1, 2])) eq_(None, inp.last_timestamp) def _pickle_unpickle(data): with tempfile.NamedTemporaryFile(delete=True) as pickle_file: pickle_file.close() joblib.dump(data, pickle_file.name) return joblib.load(pickle_file.name) def test_pickling(): @parameterize def check(node_class, attribute, value, expected): """{0.__name__}.{1} pickling works as expected""" node = node_class() setattr(node, attribute, value) unpickled_node = _pickle_unpickle(node) if isinstance(expected, type) and issubclass(expected, Exception): assert_raises(expected, getattr, unpickled_node, attribute) else: value = getattr(unpickled_node, attribute) if callable(expected): assert expected(value) elif isinstance(expected, np.ndarray): assert vector.vector_eq(expected, value) else: assert expected == value # arguments: (node class, attribute, value to set, # expected value/exception/test) yield check(vector.Input, 'name', 'constant', 'constant') yield check(vector.Input, '_value', 42.0, 42.0) yield check(vector.Input, '_value', DIRTY, DIRTY) yield check(vector.Input, '_value', np.array([42.0]), np.array([42.0])) yield check(vector.Input, 'last_timestamp', 1234, 1234) yield check(vector.Input, 'extra_attribute', 42.0, AttributeError) yield check(vector.Node, 'name', 'constant', 'constant') yield check(vector.Node, '_value', 42.0, 42.0) yield check(vector.Node, '_value', np.array([42.0]), np.array([42.0])) yield check(vector.Node, '_action', sum, lambda _action: _action == sum) yield check(vector.Node, 'triggered', True, True) yield check(vector.Node, '_positional_inputs', (vector.Input(name='foo'),), (lambda _positional_inputs: [n.name for n in _positional_inputs] == ['foo'])) yield check(vector.Node, '_keyword_inputs', {'foo': vector.Input(name='bar')}, (lambda _keyword_inputs: {k: v.name for k, v in _keyword_inputs.items()} == {'foo': 'bar'})) yield check(vector.Node, 'extra_attribute', 42.0, AttributeError) def test_input_equality(): @parameterize def check(_, a, b, expected): """Input.__eq__ is {3} for {0}""" result = a == b eq_(expected, result) yield check('unnamed (auto-named) dirty value inputs', Input(name=None, value=DIRTY), Input(name=None, value=DIRTY), False) yield check('non-matching names', Input(name='a', value=DIRTY), Input(name='b', value=DIRTY), False) yield check('named vs. unnamed node', Input(name='a', value=DIRTY), Input(name=None, value=DIRTY), False) class VectorNodeVerifyOutputTypeTestCase(TestCase): def setUp(self): self.input = Input() def test_disabled_and_no_output_type(self): node = vector.Node(action=NoOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array(['42']) node._evaluate() def test_disabled_and_none_output_type(self): node = vector.Node(action=NoneOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array(['42']) node._evaluate() def test_disabled_and_correct_output_type(self): node = vector.Node(action=IntOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array([42]) node._evaluate() def test_disabled_and_wrong_output_type(self): node = vector.Node(action=IntOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array(['42']) node._evaluate() def test_enabled_and_no_output_type(self): with patch('lusmu.core.VERIFY_OUTPUT_TYPES', True): node = vector.Node(action=NoOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array(['42']) node._evaluate() def test_enabled_and_none_output_type(self): with patch('lusmu.core.VERIFY_OUTPUT_TYPES', True): node = vector.Node(action=NoneOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array(['42']) node._evaluate() def test_enabled_and_correct_output_type(self): with patch('lusmu.core.VERIFY_OUTPUT_TYPES', True): node = vector.Node(action=IntOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array([42]) node._evaluate() def test_enabled_and_wrong_output_type(self): with patch('lusmu.core.VERIFY_OUTPUT_TYPES', True): with assert_raises(TypeError) as exc: node = vector.Node(name='node', action=IntOutputTypeAction(), inputs=vector.Node.inputs(self.input)) self.input.value = np.array(['42']) node._evaluate() self.assertEqual( "The output value type 'string_' for [node]\n" "doesn't match the expected type 'int' for action " '"int_action".', str(exc.exception))
bsd-3-clause
jakobworldpeace/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
vybstat/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
bugraoral/TextRank
main.py
1
4731
import nltk import string import itertools import os from pos_tagger import tag import matplotlib.pyplot as plt dataPath = 'news' categoryList = os.listdir(dataPath) def removePunc(text,replace): punct = set(string.punctuation + '̇') noPuncText = '' for ch in text: if ch in punct: noPuncText += replace else: noPuncText += ch return noPuncText def extract_candidate_words(text, good_tags=set(['Adj', 'Noun', 'Noun_Nom', 'Verb'])): stop_words = set(nltk.corpus.stopwords.words('turkish')) tagged_words = itertools.chain.from_iterable((tag(removePunc(sent,' ').strip()) for sent in nltk.sent_tokenize(text))) candidates = [word.lower() for word, tag in tagged_words if tag in good_tags and word.lower() not in stop_words and (len(word) > 2)] return candidates def score_keyphrases_by_textrank(text, n_keywords=0.05): from itertools import takewhile, tee import networkx, nltk stop_words = set(nltk.corpus.stopwords.words('turkish')) # tokenize for all words, and extract *candidate* words words = [word.lower() for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(removePunc(sent,' ').strip()) if len(word) > 2 and word.lower() not in stop_words] candidates = extract_candidate_words(text) # build graph, each node is a unique candidate graph = networkx.Graph() graph.add_nodes_from(set(candidates)) # iterate over word-pairs, add unweighted edges into graph def pairwise(iterable): """s -> (s0,s1), (s1,s2), (s2, s3), ...""" a, b = tee(iterable) next(b, None) return zip(a, b) for w1, w2 in pairwise(candidates): if w2: graph.add_edge(*sorted([w1, w2])) # score nodes using default pagerank algorithm, sort by score, keep top n_keywords ranks = networkx.pagerank(graph) if 0 < n_keywords < 1: n_keywords = int(round(len(candidates) * n_keywords)) word_ranks = {word_rank[0]: word_rank[1] for word_rank in sorted(ranks.items(), key=lambda x: x[1], reverse=True)[:n_keywords]} keywords = set(word_ranks.keys()) # merge keywords into keyphrases keyphrases = {} j = 0 for i, word in enumerate(words): if i < j: continue if word in keywords: kp_words = list(takewhile(lambda x: x in keywords, words[i:i+10])) indexL = words[i:i+10].index(kp_words[0]) indexR = words[i:i+10][::-1].index(kp_words[-1]) test_words = words[indexL:indexR+1] avg_pagerank = sum(word_ranks[w] for w in kp_words) / float(len(kp_words)) keyphrases[' '.join(kp_words)] = avg_pagerank # counter as hackish way to ensure merged keyphrases are non-overlapping j = i + len(test_words) for item in candidates: if item not in keywords and item in graph: graph.remove_node(item) plt.figure(num=None, figsize=(20, 20), dpi=80) plt.axis('off') fig = plt.figure(1) sp = networkx.spring_layout(graph) networkx.draw_networkx_nodes(graph,sp) networkx.draw_networkx_edges(graph,sp) networkx.draw_networkx_labels(graph,sp) plt.show() return sorted(keyphrases.items(), key=lambda x: x[1], reverse=True) def readFile(filePath): tmp = '' with open(filePath) as f: tmp = f.readlines() text = ''.join(tmp[1:]) title = tmp[0].lower() return text,title totalNews = 0 totalCorrectNews = 0 for category in categoryList: categoryNews = 0 correctNews = 0 if not category.startswith('.'): location = dataPath + '/' + category newsList = [name for name in os.listdir(location) if not name.startswith('.')] count = len(newsList) percent = 10 index = int((count*percent)/100) for news in newsList[0:index]: totalNews += 1 categoryNews += 1 text,title = readFile(location + '/' + news) keywords = score_keyphrases_by_textrank(text) for keyword,score in keywords: if removePunc(keyword,'') in title: correctNews += 1 totalCorrectNews += 1 break print('Accuracy for %s is %f' % (category,float(correctNews)/categoryNews)) print('Total accuracy is %f' % (float(totalCorrectNews)/totalNews)) ''' with open(filePath) as f: text = ''.join(f.readlines()[1:]) keywords = score_keyphrases_by_textrank(text) for keyword,score in keywords: print(removePunc(keyword,''),score) '''
gpl-3.0
vermouthmjl/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_scalability.py
85
5728
""" ============================================ Scalability of Approximate Nearest Neighbors ============================================ This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with ``n_estimators=20`` and ``n_candidates=200`` when varying the number of samples in the dataset. The first plot demonstrates the relationship between query time and index size of LSHForest. Query time is compared with the brute force method in exact nearest neighbor search for the same index sizes. The brute force queries have a very predictable linear scalability with the index (full scan). LSHForest index have sub-linear scalability profile but can be slower for small datasets. The second plot shows the speedup when using approximate queries vs brute force exact queries. The speedup tends to increase with the dataset size but should reach a plateau typically when doing queries on datasets with millions of samples and a few hundreds of dimensions. Higher dimensional datasets tends to benefit more from LSHForest indexing. The break even point (speedup = 1) depends on the dimensionality and structure of the indexed data and the parameters of the LSHForest index. The precision of approximate queries should decrease slowly with the dataset size. The speed of the decrease depends mostly on the LSHForest parameters and the dimensionality of the data. """ from __future__ import division print(__doc__) # Authors: Maheshakya Wijewardena <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause ############################################################################### import time import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Parameters of the study n_samples_min = int(1e3) n_samples_max = int(1e5) n_features = 100 n_centers = 100 n_queries = 100 n_steps = 6 n_iter = 5 # Initialize the range of `n_samples` n_samples_values = np.logspace(np.log10(n_samples_min), np.log10(n_samples_max), n_steps).astype(np.int) # Generate some structured data rng = np.random.RandomState(42) all_data, _ = make_blobs(n_samples=n_samples_max + n_queries, n_features=n_features, centers=n_centers, shuffle=True, random_state=0) queries = all_data[:n_queries] index_data = all_data[n_queries:] # Metrics to collect for the plots average_times_exact = [] average_times_approx = [] std_times_approx = [] accuracies = [] std_accuracies = [] average_speedups = [] std_speedups = [] # Calculate the average query time for n_samples in n_samples_values: X = index_data[:n_samples] # Initialize LSHForest for queries of a single neighbor lshf = LSHForest(n_estimators=20, n_candidates=200, n_neighbors=10).fit(X) nbrs = NearestNeighbors(algorithm='brute', metric='cosine', n_neighbors=10).fit(X) time_approx = [] time_exact = [] accuracy = [] for i in range(n_iter): # pick one query at random to study query time variability in LSHForest query = queries[[rng.randint(0, n_queries)]] t0 = time.time() exact_neighbors = nbrs.kneighbors(query, return_distance=False) time_exact.append(time.time() - t0) t0 = time.time() approx_neighbors = lshf.kneighbors(query, return_distance=False) time_approx.append(time.time() - t0) accuracy.append(np.in1d(approx_neighbors, exact_neighbors).mean()) average_time_exact = np.mean(time_exact) average_time_approx = np.mean(time_approx) speedup = np.array(time_exact) / np.array(time_approx) average_speedup = np.mean(speedup) mean_accuracy = np.mean(accuracy) std_accuracy = np.std(accuracy) print("Index size: %d, exact: %0.3fs, LSHF: %0.3fs, speedup: %0.1f, " "accuracy: %0.2f +/-%0.2f" % (n_samples, average_time_exact, average_time_approx, average_speedup, mean_accuracy, std_accuracy)) accuracies.append(mean_accuracy) std_accuracies.append(std_accuracy) average_times_exact.append(average_time_exact) average_times_approx.append(average_time_approx) std_times_approx.append(np.std(time_approx)) average_speedups.append(average_speedup) std_speedups.append(np.std(speedup)) # Plot average query time against n_samples plt.figure() plt.errorbar(n_samples_values, average_times_approx, yerr=std_times_approx, fmt='o-', c='r', label='LSHForest') plt.plot(n_samples_values, average_times_exact, c='b', label="NearestNeighbors(algorithm='brute', metric='cosine')") plt.legend(loc='upper left', prop=dict(size='small')) plt.ylim(0, None) plt.ylabel("Average query time in seconds") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Impact of index size on response time for first " "nearest neighbors queries") # Plot average query speedup versus index size plt.figure() plt.errorbar(n_samples_values, average_speedups, yerr=std_speedups, fmt='o-', c='r') plt.ylim(0, None) plt.ylabel("Average speedup") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Speedup of the approximate NN queries vs brute force") # Plot average precision versus index size plt.figure() plt.errorbar(n_samples_values, accuracies, std_accuracies, fmt='o-', c='c') plt.ylim(0, 1.1) plt.ylabel("precision@10") plt.xlabel("n_samples") plt.grid(which='both') plt.title("precision of 10-nearest-neighbors queries with index size") plt.show()
bsd-3-clause
desihub/fiberassign
py/fiberassign/vis.py
1
23940
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- """ fiberassign.vis ======================= Visualization tools. """ from __future__ import absolute_import, division, print_function import os import warnings import numpy as np import multiprocessing as mp from functools import partial import fitsio from ._internal import Shape from .utils import Logger, default_mp_proc from .hardware import (load_hardware, FIBER_STATE_STUCK, FIBER_STATE_BROKEN, radec2xy) from .tiles import load_tiles from .targets import (Targets, load_target_table, TARGET_TYPE_SCIENCE, TARGET_TYPE_SKY, TARGET_TYPE_SUPPSKY, TARGET_TYPE_STANDARD, TARGET_TYPE_SAFE, create_tagalong) from .assign import (read_assignment_fits_tile, result_tiles, result_path, avail_table_to_dict, get_parked_thetaphi) plt = None def set_matplotlib_pdf_backend(): """Set the matplotlib backend to PDF. This is necessary to render high resolution figures. """ global plt if plt is not None: return try: import matplotlib matplotlib.use("pdf") import matplotlib.pyplot as plt except ValueError: warnings.warn( """Couldn't set the PDF matplotlib backend, positioner plots may be low resolution. Proceeding with the default matplotlib backend.""" ) import matplotlib.pyplot as plt def plot_target_type_color(tgtype): color = "fuchsia" tp = int(tgtype) if (tp & TARGET_TYPE_SAFE) != 0: color = "black" elif (tp & TARGET_TYPE_SKY) != 0: color = "blue" elif (tp & TARGET_TYPE_SUPPSKY) != 0: color = "blue" elif (tp & TARGET_TYPE_STANDARD) != 0: color = "gold" if (tp & TARGET_TYPE_SCIENCE) != 0: color = "green" elif (tp & TARGET_TYPE_SCIENCE) != 0: color = "red" return color def plot_positioner(ax, patrol_rad, loc, center, shptheta, shpphi, color="k", linewidth=0.2, fontpt=2.0): """Plot one fiber positioner. """ set_matplotlib_pdf_backend() if patrol_rad > 0: patrol = plt.Circle((center[0], center[1]), radius=patrol_rad, fc=color, ec="none", alpha=0.1) ax.add_artist(patrol) # Plot the arm from the center to the body thetacent = shptheta.axis armwidth = 0.25 armlen = np.sqrt((thetacent[1] - center[1])**2 + (thetacent[0] - center[0])**2) armang = np.arctan2(thetacent[1] - center[1], thetacent[0] - center[0]) sinarm = np.sin(armang) cosarm = np.cos(armang) arm_xoff = center[0] + (0.5*armwidth) * sinarm arm_yoff = center[1] - (0.5*armwidth) * cosarm armang_deg = armang * 180.0 / np.pi arm = plt.Rectangle((arm_xoff, arm_yoff), armlen, armwidth, angle=armang_deg, color=color, linewidth=2*linewidth, fill=False) ax.add_artist(arm) for piece in [shptheta, shpphi]: for circle in piece.circles: xcent, ycent = circle.center rad = circle.radius circ = plt.Circle((xcent, ycent), radius=rad, fc="none", ec=color, linewidth=linewidth) ax.add_artist(circ) for segs in piece.segments: xpts = np.array([p[0] for p in segs.points]) ypts = np.array([p[1] for p in segs.points]) ax.plot(xpts, ypts, linewidth=linewidth, color=color) xtxt = center[0] - 2 * armwidth * cosarm ytxt = center[1] - 2 * armwidth * sinarm ax.text(xtxt, ytxt, "{}".format(loc), color='k', fontsize=fontpt, horizontalalignment='center', verticalalignment='center', bbox=None) # bbox=dict(fc='w', ec='none', pad=1, alpha=1.0)) return def plot_positioner_simple(ax, patrol_rad, loc, center, theta_ang, theta_arm, phi_ang, phi_arm, color="k", linewidth=0.2): """Plot one fiber positioner. This uses a simpler representation of the positioner geometry, in order to speed up the plotting. """ set_matplotlib_pdf_backend() patrol = plt.Circle((center[0], center[1]), radius=patrol_rad, fc=color, ec="none", alpha=0.1) ax.add_artist(patrol) # Plot the arm from the center to the phi body theta_x = theta_arm * np.cos(theta_ang) + center[0] theta_y = theta_arm * np.sin(theta_ang) + center[1] ax.plot([center[0], theta_x], [center[1], theta_y], color=color, linewidth=5*linewidth) # Plot the phi arm. phi_x = phi_arm * np.cos(phi_ang + theta_ang) + theta_x phi_y = phi_arm * np.sin(phi_ang + theta_ang) + theta_y ax.plot([theta_x, phi_x], [theta_y, phi_y], color=color, linewidth=linewidth) fontpt = 2.0 xtxt = center[0] ytxt = center[1] + 0.5 ax.text(xtxt, ytxt, "{}".format(loc), color='k', fontsize=fontpt, horizontalalignment='center', verticalalignment='center', bbox=None) return def plot_positioner_invalid(ax, patrol_rad, loc, center, color="k", linewidth=0.2, fontpt=2.0): """Plot one fiber positioner which has invalid angles. """ set_matplotlib_pdf_backend() patrol = plt.Circle((center[0], center[1]), radius=patrol_rad, fc=color, ec="none", alpha=0.1) ax.add_artist(patrol) xtxt = center[0] ytxt = center[1] + 0.5 ax.text(xtxt, ytxt, "{}".format(loc), color='k', fontsize=fontpt, horizontalalignment='center', verticalalignment='center', bbox=None) return def plot_tile_targets_props(hw, tagalong, tile_ra, tile_dec, tile_obstime, tile_obstheta, tile_obsha, tgs, avail_tgid=None): if avail_tgid is None: avail_tgid = tgs.ids() ra, dec = tagalong.get_for_ids(avail_tgid, ['RA', 'DEC']) color = list() for idx, tgid in enumerate(avail_tgid): tg = tgs.get(tgid) color.append(plot_target_type_color(tg.type)) # We disable threading here, since it does not interact well with # multiprocessing. tgx,tgy = radec2xy(hw, tile_ra, tile_dec, tile_obstime, tile_obstheta, tile_obsha, ra, dec, False, threads=1) tgxy = list(zip(tgx,tgy)) props = {tgid: {"xy": xy, "color": cl} for tgid, xy, cl in zip(avail_tgid, tgxy, color)} return props def plot_available(ax, targetprops, selected, linewidth=0.1): mwidth = 5.0 * linewidth xdata = np.full(len(selected), 9999.9, dtype=np.float64) ydata = np.full(len(selected), 9999.9, dtype=np.float64) color = list() for idx, tgid in enumerate(selected): xdata[idx] = targetprops[tgid]["xy"][0] ydata[idx] = targetprops[tgid]["xy"][1] color.append(targetprops[tgid]["color"]) ax.scatter(xdata, ydata, color=color, marker=".", linewidth=linewidth, s=mwidth) return def plot_assignment(ax, hw, targetprops, tile_assigned, linewidth=0.1, real_shapes=False, fontpt=2.): log = Logger.get() center_mm = hw.loc_pos_curved_mm theta_arm = hw.loc_theta_arm phi_arm = hw.loc_phi_arm theta_offset = hw.loc_theta_offset theta_min = hw.loc_theta_min theta_max = hw.loc_theta_max theta_pos = hw.loc_theta_pos phi_offset = hw.loc_phi_offset phi_min = hw.loc_phi_min phi_max = hw.loc_phi_max phi_pos = hw.loc_phi_pos state = hw.state loc_petal = dict(hw.loc_petal) device_type = dict(hw.loc_device_type) assigned = np.array(sorted(tile_assigned.keys()), dtype=np.int32) # Plot GFA / Petal edges. Only plot one shape per petal, although # the code formally allows unique petal / GFA boundaries per device. if len(assigned) > 0: edge_gfa = dict() edge_petal = dict() for loc in assigned: pt = loc_petal[loc] if pt not in edge_gfa: edge_gfa[pt] = hw.loc_gfa_excl[loc] edge_petal[pt] = hw.loc_petal_excl[loc] for pt, shp in edge_gfa.items(): for segs in shp.segments: xpts = np.array([p[0] for p in segs.points]) ypts = np.array([p[1] for p in segs.points]) ax.plot(xpts, ypts, linewidth=0.2*linewidth, color="gray") for pt, shp in edge_petal.items(): for segs in shp.segments: xpts = np.array([p[0] for p in segs.points]) ypts = np.array([p[1] for p in segs.points]) ax.plot(xpts, ypts, linewidth=0.2*linewidth, color="gray") for lid in assigned: color = "fuchsia" if (device_type[lid] != "POS") and (device_type[lid] != "ETC"): continue shptheta = Shape() shpphi = Shape() theta = None phi = None center = center_mm[lid] tgid = tile_assigned[lid][0] is_stuck_sky = tile_assigned[lid][1] patrol_rad = theta_arm[lid] + phi_arm[lid] failed = False is_assigned = (tgid >= 0) if is_assigned: # This fiber is assigned. Plot the positioner located at the # assigned target. failed = hw.loc_position_xy(lid, targetprops[tgid]["xy"], shptheta, shpphi) if failed: msg = "Positioner at location {} cannot move to target {} at (x, y) = ({}, {}). This should have been dected during assignment!".format(lid, tgid, targetprops[tgid]["xy"][0], targetprops[tgid]["xy"][1]) log.warning(msg) else: color = targetprops[tgid]["color"] theta, phi = hw.xy_to_thetaphi( center, targetprops[tgid]["xy"], theta_arm[lid], phi_arm[lid], theta_offset[lid], phi_offset[lid], theta_min[lid], phi_min[lid], theta_max[lid], phi_max[lid], ) else: # This fiber is unassigned. if (state[lid] & FIBER_STATE_STUCK) or (state[lid] & FIBER_STATE_BROKEN): # The positioner is stuck or fiber broken. Plot it at its current # location. color = "gray" if is_stuck_sky: color = "cyan" theta = theta_pos[lid] + theta_offset[lid] phi = phi_pos [lid] + phi_offset [lid] msg = "Device location {}, state {} is stuck / broken, plotting fixed theta = {}, phi = {}".format( lid, state[lid], theta, phi ) log.debug(msg) else: # Plot the positioner in its home (parked) position theta, phi = get_parked_thetaphi(theta_offset[lid], theta_min[lid], theta_max[lid], phi_offset[lid], phi_min[lid], phi_max[lid]) msg = "Device location {}, state {} is unassigned, plotting parked theta = {}, phi = {}".format( lid, state[lid], theta, phi ) log.debug(msg) failed = hw.loc_position_thetaphi( lid, theta, phi, shptheta, shpphi, True ) if failed: msg = "Positioner at location {} cannot move to its stuck or home position. This should never happen!".format(lid) log.warning(msg) if failed: plot_positioner_invalid( ax, patrol_rad, lid, center, color=color, linewidth=linewidth, fontpt=fontpt ) else: if real_shapes: plot_positioner( ax, patrol_rad, lid, center, shptheta, shpphi, color=color, linewidth=linewidth, fontpt=fontpt ) else: plot_positioner_simple( ax, patrol_rad, lid, center, theta, theta_arm[lid], phi, phi_arm[lid], color=color, linewidth=linewidth ) return def plot_assignment_tile_file(petals, real_shapes, params): (infile, outfile) = params set_matplotlib_pdf_backend() from matplotlib.patches import Patch log = Logger.get() if os.path.isfile(outfile): log.info("Skipping existing plot {}".format(outfile)) return else: log.info("Creating {}".format(outfile)) header, fiber_data, targets_data, avail_data, gfa_data = \ read_assignment_fits_tile(infile) tile_id = int(header["TILEID"]) tile_ra = float(header["TILERA"]) tile_dec = float(header["TILEDEC"]) tile_theta = float(header["FIELDROT"]) tile_obstime = header["FA_PLAN"] tile_obsha = float(header["FA_HA"]) run_date = header["FA_RUN"] # Retrieve additional margins to add to positioner, petal & gfa exclusion # polygons from header cards. margins = {} for key in ['pos', 'gfa', 'petal']: hdrkey = "FA_M_%s" % key[:3] if hdrkey in header: margins[key] = header[hdrkey] log.debug('Read exclusion polygon margins from header: %s' % str(margins)) hw = load_hardware(rundate=run_date, add_margins=margins) locs = None if petals is None: locs = [x for x in hw.locations] else: locs = list() for p in petals: locs.extend([x for x in hw.petal_locations[p]]) locs = np.array(locs) tavail = avail_table_to_dict(avail_data) log.debug(" tile {} at RA/DEC {} / {} with rotation {}".format( tile_id, tile_ra, tile_dec, tile_theta) ) fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(1, 1, 1) ax.set_aspect("equal") # Target properties (x, y, color) for plotting tgs = Targets() tagalong = create_tagalong(plate_radec=False) if "FA_SURV" in header: load_target_table(tgs, tagalong, targets_data, survey=str(header["FA_SURV"]).rstrip(), typecol="FA_TYPE") else: load_target_table(tgs, tagalong, targets_data) targetprops = plot_tile_targets_props(hw, tagalong, tile_ra, tile_dec, tile_obstime, tile_theta, tile_obsha, tgs) log.debug(" tile {} has {} targets with properties" .format(tile_id, len(targets_data))) # When plotting available targets, we only consider those which have # RA/DEC information. Depending on how the assignment was written out, # this might include only assigned targets or all targets available to # the tile. # Available targets for our selected fibers. avtg_locs = [f for f in locs if f in tavail] avtg_ids = np.unique([x for f in avtg_locs for x in tavail[f]]) # Downselect to include only targets with properties in the file. avtg = avtg_ids[np.isin(avtg_ids, targets_data["TARGETID"], assume_unique=True)] plot_available(ax, targetprops, avtg, linewidth=0.1) # Assigned targets for our selected fibers. We handle the special case of fibers # being used as sky but not formally assigned to a target. tassign = { x["LOCATION"]: (x["TARGETID"], (x["FA_TYPE"] & TARGET_TYPE_SKY)) for x in fiber_data if (x["LOCATION"] in locs) } log.debug(" tile {} plotting {} assigned fibers" .format(tile_id, len(tassign))) fassign = {f: tassign[f] if f in tassign else (-1, False) for f in locs} plot_assignment( ax, hw, targetprops, fassign, linewidth=0.1, real_shapes=real_shapes ) ax.legend( handles=[ Patch(color="red", label="Science"), Patch(color="gold", label="Standard"), Patch(color="green", label="Standard & Science"), Patch(color="blue", label="Sky or Supp. Sky"), Patch(color="black", label="Safe (BAD_SKY)"), Patch(color="cyan", label="Stuck on Sky"), Patch(color="gray", label="Stuck or Fiber Broken"), Patch(color="fuchsia", label="Working & Unassigned"), ], loc=1 ) ax.set_xlabel("Curved Focal Surface Millimeters", fontsize="large") ax.set_ylabel("Curved Focal Surface Millimeters", fontsize="large") plt.savefig(outfile, dpi=300, format="pdf") plt.close() return def plot_tiles(files, out_dir=None, petals=None, real_shapes=False, serial=False): """Plot assignment output. Args: files (list): The list of fiberassign files. out_dir (str): Output directory for plots. petals (list): List of petals to plot. real_shapes (bool): If True, plot the full positioner shapes. serial (bool): If True, disable use of multiprocessing. Returns: None. """ log = Logger.get() log.info("Plotting {} fiberassign tile files".format(len(files))) plot_tile = partial(plot_assignment_tile_file, petals, real_shapes) if (out_dir is not None) and not os.path.isdir(out_dir): os.makedirs(out_dir) file_map_list = list() for f in files: d, base = os.path.split(f) if out_dir is not None: d = out_dir root = base.split(".")[0] file_map_list.append((f, os.path.join(d, "{}.pdf".format(root)))) if serial: for params in file_map_list: plot_tile(params) else: with mp.Pool(processes=default_mp_proc) as pool: pool.map(plot_tile, file_map_list) return def plot_assignment_tile(hw, tgs, tagalong, tile_id, tile_ra, tile_dec, tile_obstime, tile_theta, tile_obsha, tile_assign, tile_avail=None, petals=None, real_shapes=False, outfile=None, figsize=8): set_matplotlib_pdf_backend() # Get selected fibers locs = None if petals is None: locs = [x for x in hw.locations] else: locs = list() for p in petals: locs.extend([x for x in hw.petal_locations[p]]) locs = np.array(locs) # Available targets for our selected fibers. avtg_locs = None avtg_ids = None if tile_avail is None: # Just plot assigned targets avtg_locs = [f for f in locs if f in tile_assign] avtg_ids = [tile_assign[f] for f in avtg_locs] else: # Plot all available targets avtg_locs = [f for f in locs if f in tile_avail] avtg_ids = np.unique([x for f in avtg_locs for x in tile_avail[f]]) # Target properties targetprops = plot_tile_targets_props(hw, tagalong, tile_ra, tile_dec, tile_obstime, tile_theta, tile_obsha, tgs, avail_tgid=avtg_ids) fig = plt.figure(figsize=(figsize, figsize)) ax = fig.add_subplot(1, 1, 1) ax.set_aspect("equal") plot_available(ax, targetprops, avtg_ids, linewidth=0.1) # Assigned targets for our selected fibers tassign = {x: tile_assign[x] for x in locs if x in tile_assign} fassign = {f: tassign[f] if f in tassign else -1 for f in locs} plot_assignment(ax, hw, targetprops, fassign, linewidth=0.1, real_shapes=real_shapes) ax.set_xlabel("Curved Focal Surface Millimeters", fontsize="large") ax.set_ylabel("Curved Focal Surface Millimeters", fontsize="large") if outfile is None: plt.show() else: plt.savefig(outfile, dpi=300, format="pdf") plt.close() return def plot_qa_tile_color(desired, value, incr): des_color = "green" low_one_color = "gold" low_two_color = "red" low_color = "black" high_color = "cyan" if value == desired: return des_color if value > desired: return high_color if value < (desired - 2 * incr): return low_color if value < (desired - incr): return low_two_color return low_one_color def plot_qa(data, outroot, outformat="pdf", labels=False): """Make plots of QA data. """ set_matplotlib_pdf_backend() # Imported here, to ensure that the backend has been set. from matplotlib.patches import Patch hw = load_hardware() tile_radius = hw.focalplane_radius_deg fontpt = 1 linewidth = 0.1 fig = plt.figure(figsize=(12, 10)) plot_param = [ ("Total Fibers Assigned Per Tile", ["assign_total"], 5000, 5), ("Standards Assigned Per Tile", ["assign_std"], 100, 2), ("Sky Assigned Per Tile", ["assign_sky", "assign_suppsky"], 400, 2), ] pindx = 1 for title, key, desired, incr in plot_param: ax = fig.add_subplot(3, 1, pindx) ax.set_aspect("equal") xmin = 360.0 xmax = 0.0 ymin = 90.0 ymax = -90.0 for tid, props in data.items(): xcent = props["tile_ra"] ycent = props["tile_dec"] if xcent > xmax: xmax = xcent if xcent < xmin: xmin = xcent if ycent > ymax: ymax = ycent if ycent < ymin: ymin = ycent keytot = np.sum([props[x] for x in key]) color = plot_qa_tile_color(desired, keytot, incr) circ = plt.Circle((xcent, ycent), radius=tile_radius, fc="none", ec=color, linewidth=linewidth) ax.add_artist(circ) if labels: ax.text(xcent, ycent, "{}".format(tid), color=color, fontsize=fontpt, horizontalalignment='center', verticalalignment='center', bbox=None) margin = 1.1 * tile_radius xmin -= margin xmax += margin ymin -= margin ymax += margin if xmin < 0.0: xmin = 0.0 if xmax > 360.0: xmax = 360.0 if ymin < -90.0: ymin = -90.0 if ymax > 90.0: ymax = 90.0 ax.set_xlim(left=xmin, right=xmax) ax.set_ylim(bottom=ymin, top=ymax) ax.set_xlabel("RA (degrees)", fontsize="large") ax.set_ylabel("DEC (degrees)", fontsize="large") ax.set_title(title) c_high = plot_qa_tile_color(desired, desired+1, incr) c_exact = plot_qa_tile_color(desired, desired, incr) c_low_one = plot_qa_tile_color(desired, desired-incr, incr) c_low_two = plot_qa_tile_color(desired, desired-2*incr, incr) c_low = plot_qa_tile_color(desired, 0, incr) c_low_two_val = desired - incr c_low_val = desired - 2 * incr legend_elements = [ Patch(facecolor=c_high, edgecolor="none", label="> {} assigned".format(desired)), Patch(facecolor=c_exact, edgecolor="none", label="Exactly {} assigned".format(desired)), Patch(facecolor=c_low_one, edgecolor="none", label="< {} assigned".format(desired)), Patch(facecolor=c_low_two, edgecolor="none", label="< {} assigned".format(c_low_two_val)), Patch(facecolor=c_low, edgecolor="none", label="< {} assigned".format(c_low_val)), ] ax.legend(handles=legend_elements, loc="best", fontsize="x-small") pindx += 1 outfile = "{}.{}".format(outroot, outformat) plt.savefig(outfile, dpi=300, format="pdf") return
bsd-3-clause
tcm129/trading-with-python
cookbook/getDataFromYahooFinance.py
77
1391
# -*- coding: utf-8 -*- """ Created on Sun Oct 16 18:37:23 2011 @author: jev """ from urllib import urlretrieve from urllib2 import urlopen from pandas import Index, DataFrame from datetime import datetime import matplotlib.pyplot as plt sDate = (2005,1,1) eDate = (2011,10,1) symbol = 'SPY' fName = symbol+'.csv' try: # try to load saved csv file, otherwise get from the net fid = open(fName) lines = fid.readlines() fid.close() print 'Loaded from ' , fName except Exception as e: print e urlStr = 'http://ichart.finance.yahoo.com/table.csv?s={0}&a={1}&b={2}&c={3}&d={4}&e={5}&f={6}'.\ format(symbol.upper(),sDate[1]-1,sDate[2],sDate[0],eDate[1]-1,eDate[2],eDate[0]) print 'Downloading from ', urlStr urlretrieve(urlStr,symbol+'.csv') lines = urlopen(urlStr).readlines() dates = [] data = [[] for i in range(6)] #high # header : Date,Open,High,Low,Close,Volume,Adj Close for line in lines[1:]: fields = line.rstrip().split(',') dates.append(datetime.strptime( fields[0],'%Y-%m-%d')) for i,field in enumerate(fields[1:]): data[i].append(float(field)) idx = Index(dates) data = dict(zip(['open','high','low','close','volume','adj_close'],data)) # create a pandas dataframe structure df = DataFrame(data,index=idx).sort() df.plot(secondary_y=['volume'])
bsd-3-clause
jabl/vasputil
vasputil/dos.py
1
4093
# -*- coding: utf-8 -*- # vim: set fileencoding=utf-8 # Copyright (c) 2008-2016 Janne Blomqvist # This source code file is subject to the terms of the LGPL 2.1 # License. See the file LICENSE for details. """Module for doing stuff with density-of-states.""" from __future__ import print_function import matplotlib.pyplot as plt import numpy as np import sys import warnings class LDOS(object): """Class for representing a set of local DOS. DOS data is stored in the instance variable self.dos, which is a 3D ndarray, as follows: 1st dim: Which atom. 2nd dim: Selects the DOS grid point. 3rd dim: 0 is the energy, 1-3 s, p, d DOS. """ def __init__(self, doscar="DOSCAR", efermi=0.0): """Initialize LDOS.""" warnings.warn('vasputil.dos.LDOS is deprecated, please use \ ase.calculators.vasp.VaspDos instead, which is an improved version if this \ class', DeprecationWarning) self._efermi = 0.0 self.read_doscar(doscar) self.efermi = efermi def read_doscar(self, fname="DOSCAR"): """Read a VASP DOSCAR file.""" f = open(fname) natoms = int(f.readline().split()[0]) [f.readline() for nn in range(4)] # Skip next 4 lines. dos = [] for na in xrange(natoms + 1): try: line = f.readline() if line == "": raise Exception except Exception: errstr = "Failed reading " + str(na) + ":th DOS block, probably " \ + "this DOSCAR is from some old version of VASP that " \ + "doesn't " \ + "first produce a block with integrated DOS. Inserting " \ + "empty 0:th block." sys.stderr.write(errstr) dos.insert(0, np.zeros((ndos, dos[1].shape[1]))) continue try: ndos = int(line.split()[2]) except Exception: print("Error, line is: " + line + "ENDLINE") line = f.readline().split() cdos = np.zeros((ndos, len(line))) cdos[0] = np.array(line) for nd in xrange(1, ndos): line = f.readline().split() cdos[nd] = np.array(line) dos.append(cdos) f.close() if dos[0].shape != dos[1].shape: dos0 = np.zeros(dos[1].shape) dos0[:,:dos[0].shape[1]] = dos[0] dos[0] = dos0 self.dos = np.array(dos) def _set_efermi(self, efermi): """Set the Fermi level.""" if self._efermi != 0.0: self.dos[:,:,0] = self.dos[:,:,0] + self._efermi self._efermi = efermi self.dos[:,:,0] = self.dos[:,:,0] - efermi def _get_efermi(self): return self._efermi def _del_efermi(self): raise AttributeError("Can't delete attribute.") efermi = property(_get_efermi, _set_efermi, _del_efermi, "Fermi energy.") def get_energygrid(self): """Return the array with the energies.""" return self.dos[1, :, 0] def get_dos(self, atom, orbital): """Return an NDOSx1 array with dos for the chosen atom and orbital. If spin-unpolarized calculation, no phase factors: s = 1, p = 2, d = 3 Spin-polarized, no phase factors: s-up = 1, s-down = 2, p-up = 3, p-down = 4, d-up = 5, d-down = 6 If phase factors have been calculated, orbitals are s, py, pz, px, dxy, dyz, dz2, dxz, dx2 double in the above fashion if spin polarized. """ return self.dos[atom, :, orbital] def set_labels(fig=None): """Utility function to set default parameters for DOS plots.""" plt.xlabel("E-E$_\mathrm{f}$ (eV)") plt.figtext(0., 0.35, "LDOS (arb. units)", rotation='vertical') if fig is not None: # Looks good in publication plots fig.subplots_adjust(hspace=0.0, left=0.15, bottom=0.12) else: # This might be better for on-screen viewing plt.subplots_adjust(hspace=0.0)
lgpl-2.1
mikeireland/pynrm
pynrm/aoinstrument.py
1
13805
# -*- coding: utf-8 -*- """Useful utilities that are not telescope-dependent. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import astropy.io.fits as pyfits import csv class AOInstrument: """The AOInstrument Class """ #A blank dictionary on startup. csv_dict = dict() #Blank reduction, cube. and data directories on startup. rdir = '' ddir = '' cdir = '' def read_summary_csv(self, filename='datainfo.csv',ddir=''): """Read the data from local file into a csv_dict structure. Notes ----- At the moment, all data types are strings. It would work better if the second line of the CSV file was the data type. """ #Allow over-riding default data directory. if (ddir == ''): ddir = self.ddir try: f = open(ddir + filename) except: print ("Error: file doesn't exist " + ddir + filename) raise UserWarning r = csv.DictReader(f, delimiter=',') #Read first line to initiate the dictionary line = next(r) d = dict() for k in line.keys(): d[k] = [line[k]] #Read the rest of the file for line in r: for k in line.keys(): d[k].append(line[k]) #Convert to numpy arrays for k in line.keys(): d[k] = np.array(d[k]) f.close() self.csv_dict = d def make_all_darks(self, ddir='', rdir=''): """Make all darks in a current directory. This skeleton routine assumes that keywords "SHRNAME", "NAXIS1" and "NAXIS2" exist. """ #Allow over-riding default reduction and data directories. if (rdir == ''): rdir = self.rdir if (ddir == ''): ddir = self.ddir darks = np.where(np.array(n2.csv_dict['SHRNAME']) == 'closed')[0] #Now we need to find unique values of the following: #NAXIS1, NAXIS2 (plus for nirc2... ITIME, COADDS, MULTISAM) codes = [] for d in darks: codes.append(self.csv_dict['NAXIS1'][d] + self.csv_dict['NAXIS2'][d]) codes = np.array(codes) #For each unique code, find all dark files and call make_dark. for c in np.unique(codes): w = np.where(codes == c)[0] #Only bother if there are at least 3 files. if (len(w) >= 3): files = [ddir + self.csv_dict['FILENAME'][darks[ww]] for ww in w] self.make_dark(files, rdir=rdir) def make_dark(self,in_files, out_file='dark.fits', rdir=''): """This is a basic method to make a dark from several files. It is generally expected to be over-ridden in derived classes. Parameters ---------- in_files : array_like (dtype=string). A list if input filenames. out_file: string The file to write to. """ #Allow over-riding default reduction directory. if (rdir == ''): rdir = self.rdir nf = len(in_files) in_fits = pyfits.open(in_files[0], ignore_missing_end=True) adark = in_fits[0].data in_fits.close() s = adark.shape darks = np.zeros((nf,s[0],s[1])) for i in range(nf): #Read in the data, linearizing as a matter of principle, and also because #this routine is used for in_fits = pyfits.open(in_files[i], ignore_missing_end=True) adark = in_fits[0].data in_fits.close() darks[i,:,:] = adark med_dark = np.median(darks, axis=0) pyfits.writeto(rdir + out_file, med_dark, output_verify='ignore') def info_from_header(self, h): """Find important information from the fits header and store in a common format Prototype function only - to be over-ridden in derived classes. Parameters ---------- h: The fits header Returns ------- (dark_file, flat_file, filter, wave, rad_pixel) """ try: filter = h['FILTER'] except: print ("No FILTER in header") try: wave = h['WAVE'] except: print ("No WAVE in header") try: rad_pix = h['RAD_PIX'] except: print ("No RAD_PIX in header") try: targname = h['TARGET'] except: print ("No TARGET in header") return {'dark_file':'dark.fits', 'flat_file':'flat.fits', 'filter':filter, 'wave':wave, 'rad_pixel':rad_pixel,'targname':targname,'pupil_type':'circ','pupil_params':dict()} def mod2pi(self,angle): """ Convert an angle to the range (-pi,pi) Parameters ---------- angle: float input angle Returns ------- angle: float output angle after the mod2pi operation """ return np.remainder(angle + np.pi,2*np.pi) - np.pi def make_flat(self,in_files, rdir='', out_file='', dark_file='', wave=0.0): """Create a flat frame and save to a fits file, with an attached bad pixel map as the first fits extension. Parameters ---------- in_files : array_like (dtype=string). A list if input filenames. dark_file: string The dark file, previously created with make_dark out_file: string The file to write to rdir: Over-writing the default reduction directory. Returns ------- Nothing. """ #Allow over-riding default reduction directory. if (rdir == ''): rdir = self.rdir #Create a default flat filename from the input files try: in_fits = pyfits.open(in_files[0], ignore_missing_end=True) except: in_fits = pyfits.open(in_files[0]+'.gz', ignore_missing_end=True) h = in_fits[0].header hinfo = self.info_from_header(h) if (out_file == ''): out_file = hinfo['flat_file'] #We use the make_dark function to average our flats. NB we don't destripe. self.make_dark(in_files, rdir=rdir, out_file=out_file, subtract_median=False, destripe=False, med_threshold=15.0) #Now extract the key parts. h = pyfits.getheader(rdir + out_file) #Add a wavelength to the header h['WAVE'] = hinfo['wave'] if (dark_file ==''): dark_file=self.get_dark_filename(h) #FIXME: A hack if get_dark_filename returns a non existant file. #FIXME: This should be incorporated into get_dark_filename if it is necessary, or # otherwise give an error. if not os.path.isfile(rdir + dark_file): allDarks = [f for f in os.listdir(rdir) if 'dark' in f] if 'EXPTIME' in h.keys(): exptime = h['EXPTIME']*100 elif 'ITIME' in h.keys(): exptime = h['ITIME']*100 allTimes = [] for ii in range(len(allDarks)): count = 0 for jj in range(len(allDarks[ii])): if allDarks[ii][jj]=='_': count+=1 if count==2: index = jj+1 allTimes.append(int(allDarks[ii][index:allDarks[ii].find('.fits')])) allTimes = np.array(allTimes) diffTimes = abs(allTimes-exptime) dark_file = allDarks[np.argmin(diffTimes)] #Subtract the dark and normalise the flat. flat = pyfits.getdata(rdir + out_file,0) - pyfits.getdata(rdir + dark_file,0) bad = np.logical_or(pyfits.getdata(rdir + out_file,1),pyfits.getdata(rdir + dark_file,1)) flat[np.where(bad)] = np.median(flat) flat /= np.median(flat) #Write this to a file hl = pyfits.HDUList() hl.append(pyfits.ImageHDU(flat,h)) hl.append(pyfits.ImageHDU(np.uint8(bad))) hl.writeto(rdir + out_file,clobber=True) plt.figure(1) plt.imshow(flat, cmap=cm.gray, interpolation='nearest') plt.title('Flat') def fix_bad_pixels(self,im,bad,fmask): """Fix the bad pixels, using a Fourier technique that adapts to the sampling of each particular pupil/filter combination. Parameters ---------- im : (N,N) array (dtype=float) An image, already chopped to the subarr x subarr size. bad: (N,N) array (dtype=int) A bad pixel map fmask: (N,N) array (dtype=int) A mask containing the region in the Fourier plane where there is no expected signal. Returns ------- The image with bad pixel values optimally corrected. """ # fmask defines the null space of the image Fourier transform. wft = np.where(fmask) # Where the bad pixel array is non-zero. w = np.where(bad) # The bad matrix should map the bad pixels to the real and imaginary # parts of the null space of the image Fourier transform badmat = np.zeros((len(w[0]),len(wft[0])*2)) #print("Bad matrix shape: " + str(badmat.shape)) # Create a uv grid. Math should be correct here, but the second vector could be # 2*np.pi*np.arange(im.shape[0])/float(im.shape[0]) and it would still work. xy = np.meshgrid(2*np.pi*np.arange(im.shape[1]//2 + 1)/float(im.shape[1]), 2*np.pi*(((np.arange(im.shape[0]) + im.shape[0]//2) % im.shape[0]) - im.shape[0]//2)/float(im.shape[0])) for i in range(len(w[0])): # Avoiding the fft is marginally faster here... bft = np.exp(-1j*(w[0][i]*xy[1] + w[1][i]*xy[0])) badmat[i,:] = np.append(bft[wft].real, bft[wft].imag) #A dodgy pseudo-inverse that needs an "invert" is faster than the la.pinv function #Unless things are really screwed, the matrix shouldn't be singular. hb = np.transpose(np.conj(badmat)) ibadmat = np.dot(hb,np.linalg.inv(np.dot(badmat,hb))) #Now find the image Fourier transform on the "zero" region in the Fourier plane #To minimise numerical errors, set the bad pixels to zero at the start. im[w]=0 ftimz = (np.fft.rfft2(im))[wft] # Now compute the bad pixel corrections. (NB a sanity check here is # that the imaginary part really is 0) addit = -np.real(np.dot(np.append(ftimz.real, ftimz.imag),ibadmat)) #FIXIT #We would rather use linalg.solve than an inversion! #addit2 = #import pdb; pdb.set_trace() # ibadmat = np.solve( # plt.clf() # plt.plot(np.real(np.dot(ftimz,ibadmat)), np.imag(np.dot(ftimz,ibadmat))) # raise UserWarning im[w] += addit return im def regrid_fft(self,im,new_shape, fmask=[]): """Regrid onto a larger number of pixels using an fft. This is optimal for Nyquist sampled data. Parameters ---------- im: array The input image. new_shape: (new_y,new_x) The new shape Notes ------ TODO: This should work with an arbitrary number of dimensions """ ftim = np.fft.rfft2(im) if len(fmask) > 0: ftim[np.where(fmask)] = 0 new_ftim = np.zeros((new_shape[0], new_shape[1]/2 + 1),dtype='complex') new_ftim[0:ftim.shape[0]/2,0:ftim.shape[1]] = \ ftim[0:ftim.shape[0]/2,0:ftim.shape[1]] new_ftim[new_shape[0]-ftim.shape[0]/2:,0:ftim.shape[1]] = \ ftim[ftim.shape[0]/2:,0:ftim.shape[1]] return np.fft.irfft2(new_ftim) def hexagon(self, dim, width): """This function creates a hexagon. Parameters ---------- dim: int Size of the 2D array width: int flat-to-flat width of the hexagon Returns ------- pupil: float array (sz,sz) 2D array hexagonal pupil mask """ x = np.arange(dim)-dim/2.0 xy = np.meshgrid(x,x) xx = xy[1] yy = xy[0] w = np.where( (yy < width/2) * (yy > (-width/2)) * \ (yy < (width-np.sqrt(3)*xx)) * (yy > (-width+np.sqrt(3)*xx)) * \ (yy < (width+np.sqrt(3)*xx)) * (yy > (-width-np.sqrt(3)*xx))) hex = np.zeros((dim,dim)) hex[w]=1.0 return hex def rebin(self,a, shape): """Re-bins an image to a new (smaller) image with summing Originally from: http://stackoverflow.com/questions/8090229/resize-with-averaging-or-rebin-a-numpy-2d-array Parameters ---------- a: array Input image shape: (xshape,yshape) New shape """ sh = shape[0],a.shape[0]//shape[0],shape[1],a.shape[1]//shape[1] return a.reshape(sh).sum(-1).sum(1) def shift_and_ft(self,im, ftpix=(),regrid_factor=3): """Sub-pixel shift an image to the origin and Fourier-transform it Parameters ---------- im: (ny,nx) float array ftpix: optional ( (nphi) array, (nphi) array) of Fourier sampling points. If included, the mean square Fourier phase will be minimised. Returns ---------- ftim: (ny,nx/2+1) complex array """ ny = im.shape[0] nx = im.shape[1] if len(ftpix)==0: #Regrid onto a finer array im = self.regrid_fft(im,(regrid_factor*ny,regrid_factor*nx)) #Find the peak shifts = np.unravel_index(im.argmax(), im.shape) #Shift to the peak (noting that given we're about to rebin... we need to offset #by half of the regrid_factor) im = np.roll(np.roll(im,-shifts[0]+regrid_factor//2,axis=0),-shifts[1]+regrid_factor//2,axis=1) #Rebin and FFT! im = self.rebin(im,(ny,nx)) ftim = np.fft.rfft2(im) else: #Shift to the origin within a pixel and Fourier transform shifts = np.unravel_index(im.argmax(), im.shape) im = np.roll(np.roll(im,-shifts[0]+1,axis=0),-shifts[1]+1,axis=1) ftim = np.fft.rfft2(im) #Find the Fourier phase arg_ftpix = np.angle(ftim[ftpix]) #Compute phase in radians per Fourier pixel vcoord = ((ftpix[0] + ny/2) % ny)- ny/2 ucoord = ftpix[1] #Project onto the phase ramp in each direction, and remove this phase ramp #from the data. vphase = np.sum(arg_ftpix * vcoord)/np.sum(vcoord**2) uphase = np.sum(arg_ftpix * ucoord)/np.sum(ucoord**2) uv = np.meshgrid(np.arange(nx/2 + 1), ((np.arange(ny) + ny/2) % ny) - ny/2 ) ftim = ftim*np.exp(-1j * uv[0] * uphase - 1j*uv[1]*vphase) return ftim
mit
perryjohnson/biplaneblade
sandia_blade_lib/plot_selected_stations.py
1
1184
"""Plot structural parts for selected stations in the Sandia blade. Usage ----- start an IPython (qt)console with the pylab flag: $ ipython qtconsole --pylab or $ ipython --pylab Then, from the prompt, run this script: |> %run sandia_blade_lib/plot_selected_stations Once you are finished looking at the meshes, you can clean up extra files: |> %run clean (See the 'clean.py' script in this directory for details.) Author: Perry Roth-Johnson Last updated: April 14, 2014 """ import matplotlib.pyplot as plt import numpy as np import lib.blade as bl reload(bl) # load the sandia blade m = bl.MonoplaneBlade('Sandia blade SNL100-00', 'sandia_blade') # pre-process the airfoil coordinates for station in m.list_of_stations: station.airfoil.create_polygon() station.structure.create_all_layers() station.structure.save_all_layer_edges() # station.structure.create_all_alternate_layers() # station.structure.write_truegrid_inputfile(interrupt_flag=True) station.structure.write_all_part_polygons() m.plot_selected_cross_sections() # for station in m.list_of_stations: # station.plot_parts(alternate_layers=False)
gpl-3.0
DamienIrving/ocean-analysis
visualisation/plot_drift.py
1
9514
""" Filename: plot_drift.py Author: Damien Irving, [email protected] Description: Visualise the de-drifting process """ # Import general Python modules import sys import os import re import pdb import argparse import numpy import matplotlib.pyplot as plt import iris import cf_units import cmdline_provenance as cmdprov # Import my modules cwd = os.getcwd() repo_dir = '/' for directory in cwd.split('/')[1:]: repo_dir = os.path.join(repo_dir, directory) if directory == 'ocean-analysis': break modules_dir = os.path.join(repo_dir, 'modules') sys.path.append(modules_dir) processing_dir = os.path.join(repo_dir, 'data_processing') sys.path.append(processing_dir) import timeseries import remove_drift import general_io as gio # Define functions def get_title(infile, var, index_list): """Get the plot title.""" cube = iris.load_cube(infile, gio.check_iris_var(var)) title = '' coord_names = [coord.name() for coord in cube.dim_coords] for posnum, index in enumerate(index_list): point_name = coord_names[posnum + 1] point_value = cube.coord(point_name).points[index] title = f"{title} {point_name}: {point_value};" return title def select_point(cube, index_list, timeseries=False): """Select a given grid point.""" if timeseries: assert len(index_list) == cube.ndim - 1 else: assert len(index_list) == cube.ndim if len(index_list) == 1: a = index_list[0] point = cube[:, a] if timeseries else cube[a] elif len(index_list) == 2: a, b = index_list point = cube[:, a, b] if timeseries else cube[a, b] elif len(index_list) == 3: a, b, c = index_list point = cube[:, a, b, c] if timeseries else cube[a, b, c] return point def read_data(file_list, var, grid_point, convert_to_annual=False): """Read input data.""" cube, history = gio.combine_files(file_list, var) if grid_point: cube = select_point(cube, grid_point, timeseries=True) if convert_to_annual: cube = timeseries.convert_to_annual(cube) return cube, history[0] def cubic_fit(infile, grid_point, time_axis): """Get the cubic polynomial.""" a_cube = iris.load_cube(infile, 'coefficient a') a_cube = select_point(a_cube, grid_point) b_cube = iris.load_cube(infile, 'coefficient b') b_cube = select_point(b_cube, grid_point) c_cube = iris.load_cube(infile, 'coefficient c') c_cube = select_point(c_cube, grid_point) d_cube = iris.load_cube(infile, 'coefficient d') d_cube = select_point(d_cube, grid_point) numpy_poly = numpy.poly1d([float(d_cube.data), float(c_cube.data), float(b_cube.data), float(a_cube.data)]) cubic_data = numpy_poly(time_axis) return cubic_data, a_cube def main(inargs): """Run the program.""" metadata_dict = {} # Read data control_cube, control_history = read_data(inargs.control_files, inargs.variable, inargs.grid_point, convert_to_annual=inargs.annual) metadata_dict[inargs.control_files[0]] = control_history coord_names = [coord.name() for coord in control_cube.dim_coords] time_var = coord_names[0] assert time_var in ['time', 'year'] experiment_cube, experiment_history = read_data(inargs.experiment_files, inargs.variable, inargs.grid_point, convert_to_annual=inargs.annual) metadata_dict[inargs.experiment_files[0]] = experiment_history if inargs.dedrifted_files: dedrifted_cube, dedrifted_history = read_data(inargs.dedrifted_files, inargs.variable, inargs.grid_point, convert_to_annual=inargs.annual) metadata_dict[inargs.dedrifted_files[0]] = dedrifted_history if inargs.coefficient_file: cubic_data, a_cube = cubic_fit(inargs.coefficient_file, inargs.grid_point, control_cube.coord(time_var).points) #TODO: coeff metadata # Time axis adjustment if time_var == 'time': first_data_cube = iris.load_cube(inargs.experiment_files[0], gio.check_iris_var(inargs.variable)) if inargs.grid_point: first_data_cube = select_point(first_data_cube, inargs.grid_point, timeseries=True) if inargs.annual: first_data_cube = timeseries.convert_to_annual(first_data_cube) timescale = 'annual' offset = 182.5 else: timescale = 'monthly' offset = 15.5 time_diff, branch_time, new_time_unit = remove_drift.time_adjustment(first_data_cube, control_cube, timescale, branch_time=inargs.branch_time) print(f'branch time: {branch_time - offset}') time_coord = experiment_cube.coord('time') time_coord.convert_units(new_time_unit) experiment_time_values = time_coord.points.astype(numpy.float32) - time_diff elif time_var == 'year': if not inargs.branch_year == None: branch_year = inargs.branch_year else: if not inargs.control_time_units: control_time_units = gio.fix_time_descriptor(experiment_cube.attributes['parent_time_units']) else: control_time_units = inargs.control_time_units.replace("_", " ") branch_time = experiment_cube.attributes['branch_time_in_parent'] branch_datetime = cf_units.num2date(branch_time, control_time_units, cf_units.CALENDAR_STANDARD) branch_year = branch_datetime.year print(f'branch year: {branch_year}') experiment_time_values = numpy.arange(branch_year, branch_year + experiment_cube.shape[0]) # Plot fig = plt.figure(figsize=[14, 7]) plt.plot(control_cube.coord(time_var).points, control_cube.data, label='control') plt.plot(experiment_time_values, experiment_cube.data, label='experiment') if inargs.dedrifted_files: plt.plot(experiment_time_values, dedrifted_cube.data, label='dedrifted') if inargs.coefficient_file: plt.plot(control_cube.coord(time_var).points, cubic_data, label='cubic fit') if inargs.outlier_threshold: data, outlier_idx = timeseries.outlier_removal(control_cube.data, inargs.outlier_threshold) plt.plot(control_cube.coord(time_var).points[outlier_idx], control_cube.data[outlier_idx], marker='o', linestyle='none', color='r', alpha=0.3) if inargs.ylim: ymin, ymax = inargs.ylim plt.ylim(ymin, ymax) plt.ylabel(f"{gio.check_iris_var(inargs.variable)} ({control_cube.units})") if time_var == 'time': plt.xlabel(str(new_time_unit)) else: plt.xlabel('control run year') plt.legend() if inargs.grid_point: title = get_title(inargs.control_files[0], inargs.variable, inargs.grid_point) plt.title(title) # Save output plt.savefig(inargs.outfile, bbox_inches='tight') log_text = cmdprov.new_log(infile_history=metadata_dict, git_repo=repo_dir) log_file = re.sub('.png', '.met', inargs.outfile) cmdprov.write_log(log_file, log_text) if __name__ == '__main__': extra_info =""" author: Damien Irving, [email protected] """ description = 'Visualise the de-drifting process' parser = argparse.ArgumentParser(description=description, epilog=extra_info, argument_default=argparse.SUPPRESS, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("variable", type=str, help="Variable") parser.add_argument("outfile", type=str, help="Output file name") parser.add_argument("--control_files", nargs='*', type=str, required=True, help="control data files") parser.add_argument("--experiment_files", nargs='*', type=str, required=True, help="experiment data files") parser.add_argument("--coefficient_file", type=str, default=None, help="Drift coefficient file name") parser.add_argument("--dedrifted_files", nargs='*', type=str, default=None, help="dedrifted experiment data files") parser.add_argument("--outlier_threshold", type=float, default=None, help="Indicate points that were removed from control in drift calculation [default: None]") parser.add_argument("--grid_point", type=int, nargs='*', default=None, help="Array indexes for grid point to plot (e.g. 0 58 35)") parser.add_argument("--ylim", type=float, nargs=2, metavar=('MIN', 'MAX'), default=None, help="limits for y axis") parser.add_argument("--branch_year", type=int, default=None, help="override metadata") parser.add_argument("--branch_time", type=float, default=None, help="override metadata") parser.add_argument("--control_time_units", type=str, default=None, help="override metadata (e.g. days_since_1850-01-01)") parser.add_argument("--annual", action="store_true", default=False, help="Apply annual smoothing [default=False]") args = parser.parse_args() main(args)
mit
luckyharryji/physical-modeling-band
push/moving.py
1
3366
import csv import matplotlib.animation as animation ''' timestamo: data[11] linearacceleration x,y,z[12,13,14] ''' import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def randrange(n, vmin, vmax): return (vmax-vmin)*np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # n = 100 # for c, m, zl, zh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]: # xs = randrange(n, 23, 32) # ys = randrange(n, 0, 100) # zs = randrange(n, zl, zh) # ax.scatter(xs, ys, zs, c=c, marker=m) # ax.set_xlabel('X Label') # ax.set_ylabel('Y Label') # ax.set_zlabel('Z Label') # # plt.show() with open('signal1_data.csv','rb') as f_in: reader = csv.reader(f_in) raw_data = list(reader) # print data[0] for index,data in enumerate(raw_data): if index==0: continue for index2,k in enumerate(data): raw_data[index][index2]=float(raw_data[index][index2]) v_x=0 v_y=0 v_z=0 s_x=0 s_y=0 s_z=0 sports_result=list() sports_x=[] sports_y=[] sports_z=[] moving_time=[] a_x=[] a_y=[] a_z=[] v_x_list=[] v_y_list=[] v_z_list=[] for index,data in enumerate(raw_data): if index==0 or index==1: continue time=data[11] if index==1 else data[11]-raw_data[index-1][11] time_x=s_x+v_x*time+(0.5)*raw_data[index-1][12]*(time**2) time_y=s_y+v_y*time+(0.5)*raw_data[index-1][13]*(time**2) time_z=s_z+v_z*time+(0.5)*raw_data[index-1][14]*(time**2) sports_result.append([data[11],time_x,time_y,time_z]) a_x.append(raw_data[index-1][12]) a_y.append(raw_data[index-1][13]) a_z.append(raw_data[index-1][14]) v_x_list.append(v_x) v_y_list.append(v_y) v_z_list.append(v_z) sports_x.append(time_x*10) sports_y.append(time_y*10) sports_z.append(time_z*10) moving_time.append(data[11]) # if time_x<s_x or time_y<s_y or time_z<s_z: # print "yes" s_x=time_x s_y=time_y s_z=time_z v_x+=raw_data[index-1][12]*time v_y+=raw_data[index-1][13]*time v_z+=raw_data[index-1][14]*time # v_x=0 # v_y=0 # v_z=0 # print moving_time def data_gen(): t = data_gen.t cnt = 0 while cnt < len(sports_x): cnt+=1 t += 0.05 print "postion of x, y, z: ",sports_x[cnt],sports_y[cnt],sports_z[cnt] print "time: ",moving_time[cnt] print "x accrleration: ",a_x[cnt]," y accrleration: ",a_y[cnt]," z accrleration: ",a_z[cnt] print "x speed: ",v_x_list[cnt]," y speed: ",v_y_list[cnt]," z speed: ",v_z_list[cnt] yield sports_x[cnt],sports_y[cnt],sports_z[cnt] print "end" data_gen.t = 0 xdata=[] ydata=[] zdata=[] def run(data): # update the data x,y,z = data # xdata.append(x) # ydata.append(y) # zdata.append(z) # line.set_data(xdata, ydata) ax.scatter([x],[y],[z],color='blue') # ani = animation.FuncAnimation(fig, run, data_gen, blit=False, interval=1, # repeat=False) # ax.set_xlabel('X Label') # ax.set_ylabel('Y Label') # ax.set_zlabel('Z Label') # plt.show() ax.scatter(sports_x, sports_y, sports_z,color='blue') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() # print "end" # print sports_result # import json # out_put={'data':sports_result} # # with open('moving_track_1.json','wb') as f_out: # f_out.write(json.dumps(out_put))
mit
ghchinoy/tensorflow
tensorflow/contrib/learn/python/learn/grid_search_test.py
137
2035
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Grid search tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random from tensorflow.contrib.learn.python import learn from tensorflow.python.platform import test HAS_SKLEARN = os.environ.get('TENSORFLOW_SKLEARN', False) if HAS_SKLEARN: try: # pylint: disable=g-import-not-at-top from sklearn import datasets from sklearn.grid_search import GridSearchCV from sklearn.metrics import accuracy_score except ImportError: HAS_SKLEARN = False class GridSearchTest(test.TestCase): """Grid search tests.""" def testIrisDNN(self): if HAS_SKLEARN: random.seed(42) iris = datasets.load_iris() feature_columns = learn.infer_real_valued_columns_from_input(iris.data) classifier = learn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3) grid_search = GridSearchCV( classifier, {'hidden_units': [[5, 5], [10, 10]]}, scoring='accuracy', fit_params={'steps': [50]}) grid_search.fit(iris.data, iris.target) score = accuracy_score(iris.target, grid_search.predict(iris.data)) self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score)) if __name__ == '__main__': test.main()
apache-2.0
aorzh/easy-tracker
start.py
1
7349
from os.path import expanduser, exists from os import makedirs import argparse import time from sqlalchemy import create_engine, and_ from models import Task, Base from datetime import timedelta, datetime from sqlalchemy.orm import sessionmaker import re import smartchart home_dir = expanduser('~') tracker_dir = home_dir + '/easy_tracker' tracker_db = home_dir + '/easy_tracker/lite.db' def main(): parser = argparse.ArgumentParser() parser.add_argument('init', nargs='?', help="Can be init, start, stop, report, add-time, remove") parser.add_argument('--category', '-c', help='Category like JIRA or Work or Private etc.') parser.add_argument('--task', '-t', help='Task short description') parser.add_argument('--days', '-d', help='How many days (optional for reports)') parser.add_argument('--date_from', '-f', help='Start date. Format should be: dd-mm-yyyy') parser.add_argument('--time_spent', '-s', help='Time spent. Format: XhYm') parser.add_argument('--task_id', '-i', help='Id of task which need remove') """ Need add remove (by id) Add statistic (pandas etc.) """ namespace = parser.parse_args() if namespace.init == 'start': if namespace.task is None or namespace.category is None: print('Please add category and task. Use start --category="Your category" --task="Your task"') else: start(namespace.category, namespace.task) if namespace.init == 'init': init_tracker() if namespace.init == 'stop': stop() if namespace.init == 'add-time': if namespace.task is None or namespace.category is None or namespace.date_from is None \ or namespace.time_spent is None: print('Missed some required arguments. Use --help for details') else: add_time(namespace.date_from, namespace.time_spent, namespace.category, namespace.task) if namespace.init == 'report': category = '' task = '' days = 0 if namespace.category: category = namespace.category if namespace.task: task = namespace.task if namespace.days: days = namespace.days report(**{'category': category, 'days': days, 'task': task}) if namespace.init == 'remove': if namespace.task_id is None: print('Do you know task ID which need remove? Try get report for additional information') else: remove_log(namespace.task_id) if namespace.init == 'graf': smartchart.graf() def init_tracker(): if not exists(tracker_dir): makedirs(tracker_dir) engine = create_engine("sqlite:///" + tracker_db, echo=False) Base.metadata.create_all(engine) print('Created new database in %s. Run tracker with --help option for more information' % tracker_db) def start(category, issue): if validate_init() is True: now = int(time.time()) engine = create_engine("sqlite:///" + tracker_db, echo=False) Session = sessionmaker(bind=engine) session = Session() n = session.query(Task).order_by(Task.id.desc()).first() if n is not None: if n.start == n.stop: print("Please stop last task first. Use stop command") else: task = Task(category, issue, now, now) session.add(task) session.commit() session.close() print('You working on task: %s ' % issue) else: task = Task(category, issue, now, now) session.add(task) session.commit() session.close() print('You working on task: %s ' % issue) def stop(): if validate_init() is True: now = int(time.time()) engine = create_engine("sqlite:///" + tracker_db, echo=False) Session = sessionmaker(bind=engine) session = Session() n = session.query(Task).order_by(Task.id.desc()).first() session.query(Task).filter(Task.id == n.id).update({'stop': now}) print(n.name + " stopped!") session.commit() session.close() def remove_log(task_id): if validate_init() is True: engine = create_engine("sqlite:///" + tracker_db, echo=False) Session = sessionmaker(bind=engine) session = Session() n = session.query(Task) n.filter(Task.id == task_id).delete() session.commit() session.close() def report(**kwargs): if validate_init() is True: engine = create_engine("sqlite:///" + tracker_db, echo=False) Session = sessionmaker(bind=engine) session = Session() n = session.query(Task) for key in kwargs: current_time = datetime.utcnow() if key == 'days' and kwargs[key] != '': days_ago = current_time - timedelta(days=int(kwargs[key])) n = n.filter(and_(Task.start >= int(datetime.timestamp(days_ago)))) if key == 'category' and kwargs[key] != '': n = n.filter(and_(Task.category == kwargs[key])) if key == 'task' and kwargs[key] != '': n = n.filter(and_(Task.name == kwargs[key])) n.all() if not n: print('Can not find anything with this parameters. Return all.') n = session.query(Task).all() total = timedelta(seconds=0) template = "{0:2}|{1:15}|{2:65}|{3:15}|{4:20}|" print(template.format('Id', 'Category', 'Name', 'Spent hours', 'Date')) for i in n: diff = (i.stop - i.start) td = timedelta(seconds=diff) total = total + td d = datetime.fromtimestamp(i.start) print(template.format(i.id, i.category, i.name, str(td), str(d))) print('*****************') print('Total: %s (hh:mm:ss)' % total) def add_time(date_from, time_spent, category, issue): if validate_init() is True: engine = create_engine("sqlite:///" + tracker_db, echo=False) Session = sessionmaker(bind=engine) session = Session() now = int(time.time()) try: dt = int(time.mktime(datetime.strptime(date_from, "%d-%m-%Y").timetuple())) if dt >= now: print('Date should be in past.') return False except ValueError: print('Wrong date format. Use --help for additional information') return False try: result = re.search('(.*)h', time_spent) hours = result.group(1) except AttributeError: hours = 0 try: result = re.search('h(.*)m', time_spent) minutes = result.group(1) except AttributeError: minutes = 0 delta_minutes = int(hours) * 60 + int(minutes) stop_date = dt + delta_minutes * 60 task = Task(category, issue, dt, stop_date) session.add(task) session.commit() session.close() print('You added time for task: %s ' % issue) def validate_init(): if not exists(tracker_db): print('Seems like you use this tracker first time. Please use "init" command first') return False else: return True if __name__ == '__main__': main()
gpl-3.0
barnabuskev/wiicop
GetCOPparams.py
1
9350
#!/usr/bin/env python3 # software to convert raw centre of pressure (COP) data into various COP based measures of balance # IMPORTS # ~~~~~~~ import tkinter.filedialog as tk_fd import sys import os import re import pickle import numpy as np import pandas as pd import configparser import matplotlib.pyplot as plt import matplotlib import COPparamsFs as cp # %matplotlib inline #import pdb; pdb.set_trace() # INITIALISE # set regular expression to find calibration file cal_re = "calib.*dat" # set regular expression to find cop data file cop_re = "subj.*.dat" # specify list of cop parameters cop_params = ['pred_ellipse','path_length','velocity'] # string that signifies subject code sbjstr = 'subj' # Display stabilogram flag disps_f = False # Save stabilogram flag saves_f = True # name of image directory imdir = "stabilograms" # Balance board dimensions width and length in mm (Leach, J.M., Mancini, M., Peterka, R.J., Hayes, # T.L. and Horak, F.B., 2014. Validating and calibrating the Nintendo Wii # balance board to derive reliable center of pressure measures. Sensors, # 14(10), pp.18244-18267.) BB_Y = 238 BB_X = 433 # filter parameters... # cutoff frequency as proportion of Nyquist cutoff = 2/3 # order of Butterworth filter order = 4 # set up if plots flagged if disps_f or saves_f: matplotlib.rcParams['toolbar'] = 'None' # create empty list to store stuff to plot plt_lst = [] # create figure and axis fig,ax = plt.subplots(1) fig.canvas.set_window_title('Stabilogram') # setup regular expression objects cal_re_o = re.compile(cal_re) cop_re_o = re.compile(cop_re) # create empty pandas dataframes to store calibration and cop data cal_df=pd.DataFrame(columns=['session','sensor','slope','slope.se','r.coef','p-val']) # change to $XDG_RUNTIME_DIR/gvfs where samba mounts its shares # gvfs_pth = os.environ['XDG_RUNTIME_DIR']+'/gvfs/' # os.chdir(os.path.dirname(gvfs_pth)) # Get user to choose config file config_file = tk_fd.askopenfilename(title = 'Get config file for study',filetypes=[('Data files', '*.config'), ('All files','*')]) # move to directory above config file os.chdir(os.path.dirname(config_file)) os.chdir("..") # read selected config file config = configparser.ConfigParser() config.read(config_file) # get info list of factors fct_lst = config.options('factors') cop_df=pd.DataFrame(columns=['session','subj'] + fct_lst + cop_params) # SEARCH THROUGH CHOSEN DIRECTORY STRUCTURE # for data and calibration files seshd = tk_fd.askdirectory(title = 'Open study directory containing sessions') if not seshd: sys.exit() for root, dirs, files in os.walk(seshd): # for each directory if len(files) > 0: # look for calibration file using reg expression c_lst = list(filter(cal_re_o.match,files)) if c_lst: # if list c_lst is not empty.. # should contain only one calibration file assert len(c_lst)==1, "more than one calibration file in directory: {}".format(root) # open calibration file c_pth = os.path.join(root,c_lst[0]) with open(c_pth,'rb') as fptr: tmp = pickle.load(fptr, fix_imports=False) # Store 1 row of calibration data... cal_dat = tmp['details'] nxt_cal = len(cal_df.index) s_ind = 0 for sns in cal_dat.keys(): # for each sensor.. # create empty row cal_df.loc[nxt_cal+s_ind] = None cal_df.ix[nxt_cal+s_ind,'session'] = os.path.basename(root) cal_df.ix[nxt_cal+s_ind,'sensor'] = sns cal_df.ix[nxt_cal+s_ind,'slope'] = cal_dat[sns]['m'] cal_df.ix[nxt_cal+s_ind,'slope.se'] = cal_dat[sns]['se'] cal_df.ix[nxt_cal+s_ind,'r.coef'] = cal_dat[sns]['r'] cal_df.ix[nxt_cal+s_ind,'p-val'] = cal_dat[sns]['p'] s_ind+=1 # look for cop data file using reg expression d_lst = list(filter(cop_re_o.match,files)) if d_lst: for fi in d_lst: # for each data file.. # store row of study metadata... nxt_cop = len(cop_df.index) # create empty row cop_df.loc[nxt_cop] = None # strip extension prts = fi.split('.') # save levels as list lev_lst = prts[0].split('_') # get subject code tmp = [s for s in lev_lst if sbjstr in s] scode = tmp[0].strip(sbjstr) # convert to int then back to string with 3 leading zeros scode = int(scode) scode = str(scode).zfill(3) cop_df.ix[nxt_cop,'subj'] = scode # get session cop_df.ix[nxt_cop,'session'] = os.path.basename(root) # read study metadata into df for fct_i in fct_lst: for lev in lev_lst: if lev in config['factors'][fct_i]: cop_df.ix[nxt_cop,fct_i] = lev # read COP data d_pth = os.path.join(root,fi) with open(d_pth,'rb') as fptr: pkl = pickle.load(fptr) # convert time data into seconds t_dat = pkl['timedat'] t_dat = t_dat[:,0] + t_dat[:,1]/1000000 # reshape t_dat so that it is an nd array with one singleton dimension t_dat = np.reshape(t_dat,(t_dat.size,-1)) # add time data to cop data cop_dat = np.concatenate((pkl['cop'],t_dat), axis=1) # Preprocess COP data # resample to even sample points cop_dat_r = cp.resamp(cop_dat) # low pass filtering cop_dat_f = cp.bfilt(cop_dat_r, cutoff, order) # # TEST *** # # plot coronal # fg, (ax1, ax2) = plt.subplots(1, 2, sharey=True) # # resampled or raw # ax1.plot(cop_dat[:,2],cop_dat[:,0],'bo-') # # ax1.plot(t,cor,'bo-') # ax1.set_xlabel('time (secs)') # ax1.set_ylabel('coronal plane') # ax1.set_title('Raw data') # ax1.grid() # # resampled and filtered # ax2.plot(cop_dat_f[:,2],cop_dat_f[:,0],'bo-') # ax2.set_xlabel('time (secs)') # ax2.set_title('Resampled and filtered') # ax2.grid() # mng = plt.get_current_fig_manager() # mng.resize(*mng.window.maxsize()) # plt.show() # # *** # Get COP parameters... # 95% Prediction interval cop_df.ix[nxt_cop,'pred_ellipse'] = cp.PI95(cop_dat_f) # path length pl = cp.pathl(cop_dat) cop_df.ix[nxt_cop,'path_length'] = pl # velocity import pdb; pdb.set_trace() cop_df.ix[nxt_cop,'velocity'] = pl/int(cop_df.ix[nxt_cop,'acq_time']) # store data for plotting if flagged if disps_f or saves_f: # create a dictionary of relevant study factors std_fct = {} std_fct['subj'] = scode for fct_i in fct_lst: for lev in lev_lst: if lev in config['factors'][fct_i]: std_fct[fct_i] = lev plt_lst.append([[cop_dat, std_fct]]) # Plot stabilograms (see Scoppa2013) if flagged if disps_f or saves_f: if saves_f: # create image directory if it doesn't exist in current working directory imdirpth = os.path.join(os.getcwd(),imdir) if not(os.path.isdir(imdirpth)): os.mkdir(imdirpth) ax.axis([-BB_X/2, BB_X/2, -BB_Y/2, BB_Y/2]) ax.grid() plot1 = True plt.ion() for ia in plt_lst: if plot1: line_h, = ax.plot(ia[0][0][:,0], ia[0][0][:,1],'b-') plot1 = False else: line_h.set_xdata(ia[0][0][:,0]) line_h.set_ydata(ia[0][0][:,1]) plt.title('Subject: '+ia[0][1]['subj']) # get factors string fct_str = "" for ib in fct_lst: fct_str = fct_str + ib + ": " + ia[0][1][ib] + ", " fct_str = fct_str.rstrip(", ") txt_h = plt.text(-200,100,fct_str, fontsize=14) if disps_f: plt.show() plt.pause(0.5) if saves_f: # create file name im_file = ".png" for ib in fct_lst: im_file = ia[0][1][ib] + im_file im_file = "subj" + ia[0][1]['subj'] + "_" + im_file plt.savefig(os.path.join(os.getcwd(),imdir,im_file)) txt_h.remove() # create results directory if it doesn't exist res_dir = os.path.join(seshd,'results') if not(os.path.isdir(res_dir)): os.mkdir(res_dir) # write calibration results calib_file = os.path.join(res_dir,'calib_results.csv') cal_df.to_csv(calib_file) # write study results study_file = os.path.join(res_dir,'study_results.csv') cop_df.to_csv(study_file)
gpl-3.0
GaloMALDONADO/HQP
hqp/multi_contact/utils.py
1
28351
# -*- coding: utf-8 -*- """ Created on Thu Sep 1 16:54:39 2016 @author: adelpret """ from hqp.polytope_conversion_utils import crossMatrix, cone_span_to_face, eliminate_redundant_inequalities from hqp.geom_utils import is_vector_inside_cone, plot_inequalities from hqp.transformations import euler_matrix import hqp.plot_utils as plut import matplotlib.pyplot as plt from math import atan, pi import numpy as np from numpy.linalg import norm from numpy.random import uniform from numpy import sqrt import cProfile EPS = 1e-5; def compute_centroidal_cone_generators(contact_points, contact_normals, mu): ''' Compute two matrices. The first one contains the 6d generators of the centroidal cone. The second one contains the 3d generators of the contact cones (4 generators for each contact point). ''' assert contact_points.shape[1]==3, "Wrong size of contact_points" assert contact_normals.shape[1]==3, "Wrong size of contact_normals" assert contact_points.shape[0]==contact_normals.shape[0], "Size of contact_points and contact_normals do not match" contact_points = np.asarray(contact_points); contact_normals = np.asarray(contact_normals); nContacts = contact_points.shape[0]; cg = 4; # number of generators for each friction cone nGen = nContacts*cg; # total number of generators if(isinstance(mu, (list, tuple, np.ndarray))): mu = np.asarray(mu).squeeze(); else: mu = mu*np.ones(nContacts); G = np.zeros((3,nGen)); A = np.zeros((6,nGen)); P = np.zeros((6,3)); P[:3,:] = -np.identity(3); muu = mu/sqrt(2.0); for i in range(nContacts): # compute tangent directions contact_normals[i,:] = contact_normals[i,:]/norm(contact_normals[i,:]); T1 = np.cross(contact_normals[i,:], [0.,1.,0.]); if(norm(T1)<EPS): T1 = np.cross(contact_normals[i,:], [1.,0.,0.]); T1 = T1/norm(T1); T2 = np.cross(contact_normals[i,:], T1); G[:,cg*i+0] = muu[i]*T1 + muu[i]*T2 + contact_normals[i,:]; G[:,cg*i+1] = muu[i]*T1 - muu[i]*T2 + contact_normals[i,:]; G[:,cg*i+2] = -muu[i]*T1 + muu[i]*T2 + contact_normals[i,:]; G[:,cg*i+3] = -muu[i]*T1 - muu[i]*T2 + contact_normals[i,:]; # compute matrix mapping contact forces to gravito-inertial wrench P[3:,:] = -crossMatrix(contact_points[i,:]); # project generators in 6d centroidal space A[:,cg*i:cg*i+cg] = np.dot(P, G[:,cg*i:cg*i+cg]); # normalize generators for i in range(nGen): G[:,i] /= norm(G[:,i]); A[:,i] /= norm(A[:,i]); return (A, G); def find_static_equilibrium_com(mass, com_lb, com_ub, H, h, MAX_ITER=1000): ''' Find a position of the center of mass that is in static equilibrium.''' FOUND_STATIC_COM = False; g_vector = np.array([0,0,-9.81]); w = np.zeros(6); w[2] = -mass*9.81; i = 0; while(not FOUND_STATIC_COM): #STEVE: consider actual bounds on contact points c0 = np.array([np.random.uniform(com_lb[j], com_ub[j]) for j in range(3)]); w[3:] = mass*np.cross(c0, g_vector); FOUND_STATIC_COM = np.max(np.dot(H, w) - h) <= 1e-12; i += 1; if(i>=MAX_ITER): # print "ERROR: Could not find com position in static equilibrium in %d iterations."%MAX_ITER; return (False,c0); return (True,c0); def generate_rectangle_contacts(lx, ly, pos, rpy): ''' Generate the 4 contact points and the associated normal directions for a rectangular contact. ''' # contact points in local frame p = np.array([[ lx, ly, 0], [ lx, -ly, 0], [-lx, -ly, 0], [-lx, ly, 0]]); # normal direction in local frame n = np.array([0, 0, 1]); # compute rotation matrix R = euler_matrix(rpy[0], rpy[1], rpy[2], 'sxyz'); R = R[:3,:3]; # contact points in world frame p[0,:] = pos.reshape(3) + np.dot(R,p[0,:]); p[1,:] = pos.reshape(3) + np.dot(R,p[1,:]); p[2,:] = pos.reshape(3) + np.dot(R,p[2,:]); p[3,:] = pos.reshape(3) + np.dot(R,p[3,:]); # normal directions in world frame n = np.dot(R,n); N = np.vstack([n, n, n, n]); return (p,N); def generate_contacts(N_CONTACTS, lx, ly, mu, CONTACT_POINT_LOWER_BOUNDS, CONTACT_POINT_UPPER_BOUNDS, RPY_LOWER_BOUNDS, RPY_UPPER_BOUNDS, MIN_CONTACT_DISTANCE, GENERATE_QUASI_FLAT_CONTACTS=False): ''' Generate the contact points and the contact normals associated to randomly generated rectangular contact surfaces. ''' contact_pos = np.zeros((N_CONTACTS, 3)); contact_rpy = np.zeros((N_CONTACTS, 3)); p = np.zeros((4*N_CONTACTS,3)); # contact points N = np.zeros((4*N_CONTACTS,3)); # contact normals g_vector = np.array([0, 0, -9.81]); # Generate contact positions and orientations for i in range(N_CONTACTS): while True: contact_pos[i,:] = uniform(CONTACT_POINT_LOWER_BOUNDS, CONTACT_POINT_UPPER_BOUNDS); # contact position collision = False; for j in range(i-1): if(np.linalg.norm(contact_pos[i,:]-contact_pos[j,:])<MIN_CONTACT_DISTANCE): collision = True; if(not collision): break; while True: contact_rpy[i,:] = uniform(RPY_LOWER_BOUNDS, RPY_UPPER_BOUNDS); # contact orientation (p[i*4:i*4+4,:],N[i*4:i*4+4,:]) = generate_rectangle_contacts(lx, ly, contact_pos[i,:], contact_rpy[i,:].T); if(GENERATE_QUASI_FLAT_CONTACTS==False or is_vector_inside_cone(-g_vector, mu, N[i*4,:].T)): break; return (p, N); def compute_GIWC(contact_points, contact_normals, mu, eliminate_redundancies=False, USE_DIAGONAL_GENERATORS=True): ''' Compute the gravito-inertial wrench cone (i.e. the centroidal cone). @param contact_points Nx3 matrix containing the contact points @param contact_normals Nx3 matrix containing the contact normals @param mu A scalar friction coefficient, or an array of friction coefficients (one for each contact point) @param cg Number of generator for the friction cone of each contact point @param USE_DIAGONAL_GENERATORS If True generate the generators turned of 45 degrees @return (H,h) Matrix and vector defining the GIWC as H*w <= h ''' (S_centr, S) = compute_centroidal_cone_generators(contact_points, contact_normals, mu); # convert generators to inequalities H = cone_span_to_face(S_centr,eliminate_redundancies); h = np.zeros(H.shape[0]); return (H,h); def compute_support_polygon(H, h, mass, g_vector, eliminate_redundancies=False): ''' Compute the 2d support polygon A*c<=b given the gravito-inertial wrench cone (GIWC) as H*w <= h. Project inequalities from 6d to 2d x-y com space. The com wrench to maintain static equilibrium is an affine function of the com position c: w = D*c+d Substituting this into the GIWC inequalities we get: H*w <= h H*D*c + H*d <= h H*D*c <= h - H*d ''' D = np.zeros((6,3)); d = np.zeros(6); D[3:,:] = -mass*crossMatrix(g_vector); d[:3] = mass*g_vector; A = np.dot(H, D[:,:2]); b = h - np.dot(H, d); if(eliminate_redundancies): (A,b) = eliminate_redundant_inequalities(A,b); return (A,b); def compute_com_acceleration_polytope(com_pos, H, h, mass, g_vector, eliminate_redundancies=False): ''' Compute the inequalities A*x<=b defining the polytope of feasible CoM accelerations assuming zero rate of change of angular momentum. @param c0 Current com position @param H Matrix of GIWC, which can be computed by compute_GIWC @param h Vector of GIWC, which can be computed by compute_GIWC @param mass Mass of the system in Kg @param g_vector Gravity vector @return (A,b) ''' K = np.zeros((6,3)); K[:3,:] = mass*np.identity(3); K[3:,:] = mass*crossMatrix(com_pos); b = h - np.dot(H,np.dot(K,g_vector)); #constant term of F A = np.dot(-H,K); #matrix multiplying com acceleration if(eliminate_redundancies): (A,b) = eliminate_redundant_inequalities(A,b); return A,b; def can_I_stop(c0, dc0, contact_points, contact_normals, mu, mass, T_0, MAX_ITER=1000, DO_PLOTS=False, verb=0, eliminate_redundancies=False): ''' Determine whether the system can come to a stop without changing contacts. Keyword arguments: c0 -- initial CoM position dc0 -- initial CoM velocity contact points -- a matrix containing the contact points contact normals -- a matrix containing the contact normals mu -- friction coefficient (either a scalar or an array) mass -- the robot mass T_0 -- an initial guess for the time to stop Output: (is_stable, c_final, dc_final), where: is_stable -- boolean value c_final -- final com position dc_final -- final com velocity ''' # Steps: # - Compute GIWC: H*w <= h, where w=(m*(g-ddc), m*cx(g-ddc)) # - Project GIWC in (alpha,DDalpha) space, where c=c0+alpha*v, ddc=-DDalpha*v, v=dc0/||dc0||: A*(alpha,DDalpha)<=b # - Find ordered (left-most first, clockwise) vertices of 2d polytope A*(alpha,DDalpha)<=b: V # - Initialize: alpha=0, Dalpha=||dc0|| # - LOOP: # - Find current active inequality: a*alpha + b*DDalpha <= d (i.e. DDalpha upper bound for current alpha value) # - If DDalpha_upper_bound<0: return False # - Find alpha_max (i.e. value of alpha corresponding to right vertex of active inequality) # - Initialize: t=T_0, t_ub=10, t_lb=0 # LOOP: # - Integrate LDS until t: DDalpha = d/b - (a/d)*alpha # - if(Dalpha(t)==0 && alpha(t)<=alpha_max): return (True, alpha(t)*v) # - if(alpha(t)==alpha_max && Dalpha(t)>0): alpha=alpha(t), Dalpha=Dalpha(t), break # - if(alpha(t)<alpha_max && Dalpha>0): t_lb=t, t=(t_ub+t_lb)/2 # - else t_ub=t, t=(t_ub+t_lb)/2 assert mass>0.0, "Mass is not positive" assert T_0>0.0, "Time is not positive" assert mu>0.0, "Friction coefficient is not positive" c0 = np.asarray(c0).squeeze(); dc0 = np.asarray(dc0).squeeze(); contact_points = np.asarray(contact_points); contact_normals = np.asarray(contact_normals); assert c0.shape[0]==3, "Com position has not size 3" assert dc0.shape[0]==3, "Com velocity has not size 3" assert contact_points.shape[1]==3, "Contact points have not size 3" assert contact_normals.shape[1]==3, "Contact normals have not size 3" assert contact_points.shape[0]==contact_normals.shape[0], "Number of contact points and contact normals do not match" g_vector = np.array([0,0,-9.81]); (H,h) = compute_GIWC(contact_points, contact_normals, mu, eliminate_redundancies=eliminate_redundancies); # If initial com velocity is zero then test static equilibrium if(np.linalg.norm(dc0) < EPS): w = np.zeros(6); w[2] = -mass*9.81; w[3:] = mass*np.cross(c0, g_vector); if(np.max(np.dot(H, w) - h) < EPS): return (True, c0, dc0); return (False, c0, dc0); # Project GIWC in (alpha,DDalpha) space, where c=c0+alpha*v, ddc=DDalpha*v, v=dc0/||dc0||: a*alpha + b*DDalpha <= d v = dc0/np.linalg.norm(dc0); K = np.zeros((6,3)); K[:3,:] = mass*np.identity(3); K[3:,:] = mass*crossMatrix(c0); d = h - np.dot(H, np.dot(K,g_vector)); b = np.dot(np.dot(-H,K),v); # vector multiplying com acceleration tmp = np.array([[0,0,0,0,1,0], #temp times the variation dc will result in [0,0,0,-1,0,0], # [ 0 0 0 dc_y -dc_x 0]^T [0,0,0,0,0,0]]).T; a = mass*9.81*np.dot(np.dot(H,tmp),v); if(DO_PLOTS): range_plot = 10; ax = plot_inequalities(np.vstack([a,b]).T, d, [-range_plot,range_plot], [-range_plot,range_plot]); plt.axis([0,range_plot,-range_plot,0]) plt.title('Feasible com pos-acc'); plut.movePlotSpines(ax, [0, 0]); ax.set_xlabel('com pos'); ax.set_ylabel('com acc'); plt.show(); # Eliminate redundant inequalities if(eliminate_redundancies): A_red, d = eliminate_redundant_inequalities(np.vstack([a,b]).T, d); a = A_red[:,0]; b = A_red[:,1]; # Normalize inequalities to have unitary coefficients for DDalpha: b*DDalpha <= d - a*alpha for i in range(a.shape[0]): if(abs(b[i]) > EPS): a[i] /= abs(b[i]); d[i] /= abs(b[i]); b[i] /= abs(b[i]); elif(verb>0): print "WARNING: cannot normalize %d-th inequality because coefficient of DDalpha is almost zero"%i, b[i]; # Initialize: alpha=0, Dalpha=||dc0|| alpha = 0; Dalpha = np.linalg.norm(dc0); #sort b indices to only keep negative values negative_ids = np.where(b<0)[0]; if(negative_ids.shape[0]==0): # CoM acceleration is unbounded return (True, c0, 0.0*v); for iiii in range(MAX_ITER): # Find current active inequality: b*DDalpha <= d - a*alpha (i.e. DDalpha lower bound for current alpha value) a_alpha_d = a*alpha-d; a_alpha_d_negative_bs = a_alpha_d[negative_ids]; (i_DDalpha_min, DDalpha_min) = [(i,a_min) for (i, a_min) in [(j, a_alpha_d[j]) for j in negative_ids] if (a_min >= a_alpha_d_negative_bs).all()][0] if(verb>0): print "DDalpha_min", DDalpha_min; print "i_DDalpha_min", i_DDalpha_min; # If DDalpha_lower_bound>0: return False if(DDalpha_min >= -EPS): if(verb>0): print "Algorithm converged because DDalpha is positive"; return (False, c0+alpha*v, Dalpha*v); # Find alpha_max (i.e. value of alpha corresponding to right vertex of active inequality) den = b*a[i_DDalpha_min] + a; i_pos = np.where(den>0)[0]; if(i_pos.shape[0]==0): # print "WARNING b*a_i0+a is never positive, that means that alpha_max is unbounded"; alpha_max = 10.0; else: alpha_max = np.min((d[i_pos] + b[i_pos]*d[i_DDalpha_min])/den[i_pos]); if(verb>0): print "alpha_max", alpha_max; if(alpha_max<alpha): # We reach the right limit of the polytope of feasible com pos-acc. # This means there is no feasible com acc for farther com position (with zero angular momentum derivative) return (False, c0+alpha*v, Dalpha*v); # If DDalpha is not always negative on the current segment then update alpha_max to the point # where the current segment intersects the x axis if( a[i_DDalpha_min]*alpha_max - d[i_DDalpha_min] > 0.0): alpha_max = d[i_DDalpha_min] / a[i_DDalpha_min]; if(verb>0): print "Updated alpha_max", alpha_max; # Initialize: t=T_0, t_ub=10, t_lb=0 t = T_0; t_ub = 10; t_lb = 0; if(abs(a[i_DDalpha_min])>EPS): omega = sqrt(a[i_DDalpha_min]+0j); if(verb>0): print "omega", omega; else: # if the acceleration is constant over time I can compute directly the time needed # to bring the velocity to zero: # Dalpha(t) = Dalpha(0) + t*DDalpha = 0 # t = -Dalpha(0)/DDalpha t = Dalpha / d[i_DDalpha_min]; alpha_t = alpha + t*Dalpha - 0.5*t*t*d[i_DDalpha_min]; if(alpha_t <= alpha_max+EPS): if(verb>0): print "DDalpha_min is independent from alpha, algorithm converged to Dalpha=0"; return (True, c0+alpha_t*v, 0.0*v); # if alpha reaches alpha_max before the velocity is zero, then compute the time needed to reach alpha_max # alpha(t) = alpha(0) + t*Dalpha(0) + 0.5*t*t*DDalpha = alpha_max # t = (- Dalpha(0) +/- sqrt(Dalpha(0)^2 - 2*DDalpha(alpha(0)-alpha_max))) / DDalpha; # where DDalpha = -d[i_DDalpha_min] # Having two solutions, we take the smallest one because we want to find the first time # at which alpha reaches alpha_max delta = sqrt(Dalpha**2 + 2*d[i_DDalpha_min]*(alpha-alpha_max)) t = ( Dalpha - delta) / d[i_DDalpha_min]; if(t<0.0): # If the smallest time at which alpha reaches alpha_max is negative print a WARNING because this should not happen print "WARNING: Time is less than zero:", t, alpha, Dalpha, d[i_DDalpha_min], alpha_max; t = (Dalpha + delta) / d[i_DDalpha_min]; if(t<0.0): # If also the largest time is negative print an ERROR and return print "ERROR: Time is still less than zero:", t, alpha, Dalpha, d[i_DDalpha_min], alpha_max; return (False, c0+alpha*v, Dalpha*v); bisection_converged = False; for jjjj in range(MAX_ITER): # Integrate LDS until t: DDalpha = a*alpha - d if(abs(a[i_DDalpha_min])>EPS): # if a=0 then the acceleration is a linear function of the position and I need to use this formula to integrate sh = np.sinh(omega*t); ch = np.cosh(omega*t); alpha_t = ch*alpha + sh*Dalpha/omega + (1-ch)*(d[i_DDalpha_min]/a[i_DDalpha_min]); Dalpha_t = omega*sh*alpha + ch*Dalpha - omega*sh*(d[i_DDalpha_min]/a[i_DDalpha_min]); else: # if a=0 then the acceleration is constant and I need to use this formula to integrate alpha_t = alpha + t*Dalpha - 0.5*t*t*d[i_DDalpha_min]; Dalpha_t = Dalpha - t*d[i_DDalpha_min]; if(np.imag(alpha_t) != 0.0): print "ERROR alpha is imaginary", alpha_t; return (False, c0+alpha*v, Dalpha*v); if(np.imag(Dalpha_t) != 0.0): print "ERROR Dalpha is imaginary", Dalpha_t return (False, c0+alpha*v, Dalpha*v); alpha_t = np.real(alpha_t); Dalpha_t = np.real(Dalpha_t); if(verb>0): print "Bisection iter",jjjj,"alpha",alpha_t,"Dalpha",Dalpha_t,"t", t if(abs(Dalpha_t)<EPS and alpha_t <= alpha_max+EPS): if(verb>0): print "Algorithm converged to Dalpha=0"; return (True, c0+alpha_t*v, Dalpha_t*v); if(abs(alpha_t-alpha_max)<EPS and Dalpha_t>0): alpha = alpha_max+EPS; Dalpha = Dalpha_t; bisection_converged = True; break; if(alpha_t<alpha_max and Dalpha_t>0): t_lb=t; t=(t_ub+t_lb)/2; else: t_ub=t; t=(t_ub+t_lb)/2; if(not bisection_converged): print "ERROR: Bisection search did not converge in %d iterations"%MAX_ITER; return (False, c0+alpha*v, Dalpha*v); print "ERROR: Numerical integration did not converge in %d iterations"%MAX_ITER; if(DO_PLOTS): plt.show(); return (False, c0+alpha*v, Dalpha*v); ''' PROBLEM 2: MULTI-CONTACT CAPTURE POINT (what's the max vel in a given direction such that I can stop) Input: initial CoM position c0, initial CoM velocity direction v, contact points CP, friction coefficient mu, T_0=1 Output: The (norm of the) max initial CoM velocity such that I can stop without changing contacts is a piece-wise linear function of the CoM position (on the given line), which is returned as a list P of 2D points in the space where: - x is the CoM offset relatively to c0 along v (i.e. c=c0+x*v) - y is the maximum CoM velocity along v Steps: - Compute GIWC: H*w <= h, where w=(m*(g-ddc), m*cx(g-ddc)) - Project GIWC in (alpha,DDalpha) space, where c=c0+alpha*v, ddc=-DDalpha*v: A*(alpha,DDalpha)<=b - Find ordered (right-most first, counter clockwise) vertices of 2d polytope A*(alpha,DDalpha)<=b: V - if(line passing through c0 in direction v does not intersect static-equilibrium polytope): return [] - Find extremum of static-equilibrium polytope in direction v: c1 - Initialize: alpha=||c1-c0||, Dalpha=0 - Initialize: P=[(alpha,0)] - LOOP: - Find current active inequality: a*alpha + b*DDalpha <= d (i.e. DDalpha upper bound for current alpha value) - Find alpha_min (i.e. value of alpha corresponding to left vertex of active inequality) - Initialize: t=-T_0, t_ub=-10, t_lb=0 LOOP: - Integrate backward in time LDS until t: DDalpha = d/b - (a/d)*alpha - if(alpha(t)==alpha_min): alpha=alpha(t), Dalpha=Dalpha(t) P = [(alpha_min,Dalpha)]+P break - if(alpha(t)<alpha_min): t_ub=t, t=(t_ub+t_lb)/2 - else: t_lb=t, t=(t_ub+t_lb)/2 - if(alpha_min<=0): return P - if(left vertex of active inequality is left-most vertex): return P PROBLEM 3: VELOCITY PROPAGATION WITH CONTACT TRANSITION Input: initial CoM pos c0, initial CoM vel dc0, final CoM pos c2, initial contacts CP0, final contacts CP2, friction coefficient mu, min CoM distance d_min to travel in CP1 Assumptions: - CoM path is a straight line from c0 to c2. - CP0 and CP2 contains the same number of contacts N, out of which N-1 contacts must be exactly the same. Output: Min and max feasible final CoM velocity (in norm) c2_min, c2_max Steps: - Define CP1 as the intersection of CP0 and CP2 - Define alpha as: c=c0+alpha*v, ddc=DDalpha*v - Define v=(c2-c0)/||c2-c0|| - Compute the GIWCs associated to CP0, CP1, CP2: H^i*w <= h^i, where w=(m*(g-ddc), m*cx(g-ddc)), i=0,1,2 - Project GIWCs Ci in (alpha,DDalpha) space: A^i*(alpha,DDalpha)<=b^i - Compute intersection between C0 and C1 (C01), and C1 and C2 (C12) - If C01 contains zero ''' def test(): DO_PLOTS = False; PLOT_3D = False; mass = 75; # mass of the robot mu = 0.5; # friction coefficient lx = 0.1; # half foot size in x direction ly = 0.07; # half foot size in y direction USE_DIAGONAL_GENERATORS = True; GENERATE_QUASI_FLAT_CONTACTS = True; #First, generate a contact configuration CONTACT_POINT_UPPER_BOUNDS = [ 0.5, 0.5, 0.0]; CONTACT_POINT_LOWER_BOUNDS = [-0.5, -0.5, 0.0]; gamma = atan(mu); # half friction cone angle RPY_LOWER_BOUNDS = [-0*gamma, -0*gamma, -pi]; RPY_UPPER_BOUNDS = [+0*gamma, +0*gamma, +pi]; MIN_CONTACT_DISTANCE = 0.3; N_CONTACTS = 2 READ_CONTACTS_FROM_FILE = True; X_MARG = 0.07; Y_MARG = 0.07; if(READ_CONTACTS_FROM_FILE): import pickle f = open("./data.pkl", 'rb'); res = pickle.load(f); f.close(); # (p, N) = generate_contacts(N_CONTACTS, lx, ly, mu, CONTACT_POINT_LOWER_BOUNDS, CONTACT_POINT_UPPER_BOUNDS, RPY_LOWER_BOUNDS, RPY_UPPER_BOUNDS, MIN_CONTACT_DISTANCE, GENERATE_QUASI_FLAT_CONTACTS); p = res['contact_points'].T; N = res['contact_normals'].T; print "Contact points\n", p; print "Contact normals\n", 1e3*N X_LB = np.min(p[:,0]-X_MARG); X_UB = np.max(p[:,0]+X_MARG); Y_LB = np.min(p[:,1]-Y_MARG); Y_UB = np.max(p[:,1]+Y_MARG); Z_LB = np.min(p[:,2]-0.05); Z_UB = np.max(p[:,2]+1.5); (H,h) = compute_GIWC(p, N, mu, False, USE_DIAGONAL_GENERATORS); (succeeded, c0) = find_static_equilibrium_com(mass, [X_LB, Y_LB, Z_LB], [X_UB, Y_UB, Z_UB], H, h); if(not succeeded): print "Impossible to find a static equilibrium CoM position with the contacts read from file"; return else: succeeded = False; while(succeeded == False): (p, N) = generate_contacts(N_CONTACTS, lx, ly, mu, CONTACT_POINT_LOWER_BOUNDS, CONTACT_POINT_UPPER_BOUNDS, RPY_LOWER_BOUNDS, RPY_UPPER_BOUNDS, MIN_CONTACT_DISTANCE, GENERATE_QUASI_FLAT_CONTACTS); X_LB = np.min(p[:,0]-X_MARG); X_UB = np.max(p[:,0]+X_MARG); Y_LB = np.min(p[:,1]-Y_MARG); Y_UB = np.max(p[:,1]+Y_MARG); Z_LB = np.min(p[:,2]-0.05); Z_UB = np.max(p[:,2]+1.5); (H,h) = compute_GIWC(p, N, mu, False, USE_DIAGONAL_GENERATORS); (succeeded, c0) = find_static_equilibrium_com(mass, [X_LB, Y_LB, Z_LB], [X_UB, Y_UB, Z_UB], H, h); dc0 = np.random.uniform(-1, 1, size=3); dc0[2] = 0; if(DO_PLOTS): f, ax = plut.create_empty_figure(); for j in range(p.shape[0]): ax.scatter(p[j,0], p[j,1], c='k', s=100); ax.scatter(c0[0], c0[1], c='r', s=100); com_x = np.zeros(2); com_y = np.zeros(2); com_x[0] = c0[0]; com_y[0] = c0[1]; com_x[1] = c0[0]+dc0[0]; com_y[1] = c0[1]+dc0[1]; ax.plot(com_x, com_y, color='b'); plt.axis([X_LB,X_UB,Y_LB,Y_UB]); plt.title('Contact Points and CoM position'); if(PLOT_3D): fig = plt.figure(figsize=plt.figaspect(0.5)*1.5) ax = fig.gca(projection='3d') line_styles =["b", "r", "c", "g"]; ss = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]; ax.scatter(c0[0],c0[1],c0[2], c='k', marker='o'); for i in range(p.shape[0]): ax.scatter(p[i,0],p[i,1],p[i,2], c=line_styles[i%len(line_styles)], marker='o'); for s in ss: ax.scatter(p[i,0]+s*N[i,0],p[i,1]+s*N[i,1],p[i,2]+s*N[i,2], c=line_styles[i%len(line_styles)], marker='x'); for s in ss: ax.scatter(c0[0]+s*dc0[0],c0[1]+s*dc0[1],c0[2]+s*dc0[2], c='k', marker='x'); ax.set_xlabel('x'); ax.set_ylabel('y'); ax.set_zlabel('z'); # return can_I_stop(c0, dc0, p, N, mu, mass, 1.0, 100, DO_PLOTS=DO_PLOTS); (has_stopped, c_final, dc_final) = can_I_stop(c0, dc0, p, N, mu, mass, 1.0, 100, DO_PLOTS=DO_PLOTS); print "Contact points\n", p; print "Contact normals\n", N print "Initial com position", c0 print "Initial com velocity", dc0, "norm %.3f"%norm(dc0) print "Final com position", c_final print "Final com velocity", dc_final, "norm %.3f"%norm(dc_final) if(has_stopped): print "The system is stable" else: print "The system is unstable" return True; if __name__=="__main__": np.set_printoptions(precision=2, suppress=True, linewidth=100); np.random.seed(0); for i in range(1): try: test(); # ret = cProfile.run("test()"); except Exception as e: print e; continue;
lgpl-3.0
mfjb/scikit-learn
examples/tree/plot_tree_regression.py
206
1476
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="data") plt.plot(X_test, y_1, c="g", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, c="r", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
boompieman/iim_project
project_python2/lib/python2.7/site-packages/nltk/classify/scikitlearn.py
4
5920
# Natural Language Toolkit: Interface to scikit-learn classifiers # # Author: Lars Buitinck <[email protected]> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ scikit-learn (http://scikit-learn.org) is a machine learning library for Python. It supports many classification algorithms, including SVMs, Naive Bayes, logistic regression (MaxEnt) and decision trees. This package implement a wrapper around scikit-learn classifiers. To use this wrapper, construct a scikit-learn estimator object, then use that to construct a SklearnClassifier. E.g., to wrap a linear SVM with default settings: >>> from sklearn.svm import LinearSVC >>> from nltk.classify.scikitlearn import SklearnClassifier >>> classif = SklearnClassifier(LinearSVC()) A scikit-learn classifier may include preprocessing steps when it's wrapped in a Pipeline object. The following constructs and wraps a Naive Bayes text classifier with tf-idf weighting and chi-square feature selection to get the best 1000 features: >>> from sklearn.feature_extraction.text import TfidfTransformer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> from sklearn.naive_bayes import MultinomialNB >>> from sklearn.pipeline import Pipeline >>> pipeline = Pipeline([('tfidf', TfidfTransformer()), ... ('chi2', SelectKBest(chi2, k=1000)), ... ('nb', MultinomialNB())]) >>> classif = SklearnClassifier(pipeline) """ from __future__ import print_function, unicode_literals from nltk.classify.api import ClassifierI from nltk.probability import DictionaryProbDist from nltk import compat try: from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import LabelEncoder except ImportError: pass __all__ = ['SklearnClassifier'] @compat.python_2_unicode_compatible class SklearnClassifier(ClassifierI): """Wrapper for scikit-learn classifiers.""" def __init__(self, estimator, dtype=float, sparse=True): """ :param estimator: scikit-learn classifier object. :param dtype: data type used when building feature array. scikit-learn estimators work exclusively on numeric data. The default value should be fine for almost all situations. :param sparse: Whether to use sparse matrices internally. The estimator must support these; not all scikit-learn classifiers do (see their respective documentation and look for "sparse matrix"). The default value is True, since most NLP problems involve sparse feature sets. Setting this to False may take a great amount of memory. :type sparse: boolean. """ self._clf = estimator self._encoder = LabelEncoder() self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse) def __repr__(self): return "<SklearnClassifier(%r)>" % self._clf def classify_many(self, featuresets): """Classify a batch of samples. :param featuresets: An iterable over featuresets, each a dict mapping strings to either numbers, booleans or strings. :return: The predicted class label for each input sample. :rtype: list """ X = self._vectorizer.transform(featuresets) classes = self._encoder.classes_ return [classes[i] for i in self._clf.predict(X)] def prob_classify_many(self, featuresets): """Compute per-class probabilities for a batch of samples. :param featuresets: An iterable over featuresets, each a dict mapping strings to either numbers, booleans or strings. :rtype: list of ``ProbDistI`` """ X = self._vectorizer.transform(featuresets) y_proba_list = self._clf.predict_proba(X) return [self._make_probdist(y_proba) for y_proba in y_proba_list] def labels(self): """The class labels used by this classifier. :rtype: list """ return list(self._encoder.classes_) def train(self, labeled_featuresets): """ Train (fit) the scikit-learn estimator. :param labeled_featuresets: A list of ``(featureset, label)`` where each ``featureset`` is a dict mapping strings to either numbers, booleans or strings. """ X, y = list(compat.izip(*labeled_featuresets)) X = self._vectorizer.fit_transform(X) y = self._encoder.fit_transform(y) self._clf.fit(X, y) return self def _make_probdist(self, y_proba): classes = self._encoder.classes_ return DictionaryProbDist(dict((classes[i], p) for i, p in enumerate(y_proba))) # skip doctests if scikit-learn is not installed def setup_module(module): from nose import SkipTest try: import sklearn except ImportError: raise SkipTest("scikit-learn is not installed") if __name__ == "__main__": from nltk.classify.util import names_demo, names_demo_features from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import BernoulliNB # Bernoulli Naive Bayes is designed for binary classification. We set the # binarize option to False since we know we're passing boolean features. print("scikit-learn Naive Bayes:") names_demo(SklearnClassifier(BernoulliNB(binarize=False)).train, features=names_demo_features) # The C parameter on logistic regression (MaxEnt) controls regularization. # The higher it's set, the less regularized the classifier is. print("\n\nscikit-learn logistic regression:") names_demo(SklearnClassifier(LogisticRegression(C=1000)).train, features=names_demo_features)
gpl-3.0
Garrett-R/scikit-learn
benchmarks/bench_multilabel_metrics.py
11
7258
#!/usr/bin/env python """ A comparison of multilabel target formats and metrics over them """ from __future__ import division from __future__ import print_function from timeit import timeit from functools import partial import itertools import argparse import sys import matplotlib.pyplot as plt import scipy.sparse as sp import numpy as np from sklearn.datasets import make_multilabel_classification from sklearn.metrics import (f1_score, accuracy_score, hamming_loss, jaccard_similarity_score) from sklearn.utils.testing import ignore_warnings METRICS = { 'f1': f1_score, 'f1-by-sample': partial(f1_score, average='samples'), 'accuracy': accuracy_score, 'hamming': hamming_loss, 'jaccard': jaccard_similarity_score, } FORMATS = { 'sequences': lambda y: [list(np.flatnonzero(s)) for s in y], 'dense': lambda y: y, 'csr': lambda y: sp.csr_matrix(y), 'csc': lambda y: sp.csc_matrix(y), } @ignore_warnings def benchmark(metrics=tuple(v for k, v in sorted(METRICS.items())), formats=tuple(v for k, v in sorted(FORMATS.items())), samples=1000, classes=4, density=.2, n_times=5): """Times metric calculations for a number of inputs Parameters ---------- metrics : array-like of callables (1d or 0d) The metric functions to time. formats : array-like of callables (1d or 0d) These may transform a dense indicator matrix into multilabel representation. samples : array-like of ints (1d or 0d) The number of samples to generate as input. classes : array-like of ints (1d or 0d) The number of classes in the input. density : array-like of ints (1d or 0d) The density of positive labels in the input. n_times : int Time calling the metric n_times times. Returns ------- array of floats shaped like (metrics, formats, samples, classes, density) Time in seconds. """ metrics = np.atleast_1d(metrics) samples = np.atleast_1d(samples) classes = np.atleast_1d(classes) density = np.atleast_1d(density) formats = np.atleast_1d(formats) out = np.zeros((len(metrics), len(formats), len(samples), len(classes), len(density)), dtype=float) it = itertools.product(samples, classes, density) for i, (s, c, d) in enumerate(it): _, y_true = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=42) _, y_pred = make_multilabel_classification(n_samples=s, n_features=1, n_classes=c, n_labels=d * c, return_indicator=True, random_state=84) for j, f in enumerate(formats): f_true = f(y_true) f_pred = f(y_pred) for k, metric in enumerate(metrics): t = timeit(partial(metric, f_true, f_pred), number=n_times) out[k, j].flat[i] = t return out def _tabulate(results, metrics, formats): """Prints results by metric and format Uses the last ([-1]) value of other fields """ column_width = max(max(len(k) for k in formats) + 1, 8) first_width = max(len(k) for k in metrics) head_fmt = ('{:<{fw}s}' + '{:>{cw}s}' * len(formats)) row_fmt = ('{:<{fw}s}' + '{:>{cw}.3f}' * len(formats)) print(head_fmt.format('Metric', *formats, cw=column_width, fw=first_width)) for metric, row in zip(metrics, results[:, :, -1, -1, -1]): print(row_fmt.format(metric, *row, cw=column_width, fw=first_width)) def _plot(results, metrics, formats, title, x_ticks, x_label, format_markers=('x', '|', 'o', '+'), metric_colors=('c', 'm', 'y', 'k', 'g', 'r', 'b')): """ Plot the results by metric, format and some other variable given by x_label """ fig = plt.figure('scikit-learn multilabel metrics benchmarks') plt.title(title) ax = fig.add_subplot(111) for i, metric in enumerate(metrics): for j, format in enumerate(formats): ax.plot(x_ticks, results[i, j].flat, label='{}, {}'.format(metric, format), marker=format_markers[j], color=metric_colors[i % len(metric_colors)]) ax.set_xlabel(x_label) ax.set_ylabel('Time (s)') ax.legend() plt.show() if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument('metrics', nargs='*', default=sorted(METRICS), help='Specifies metrics to benchmark, defaults to all. ' 'Choices are: '.format(sorted(METRICS))) ap.add_argument('--formats', nargs='+', choices=sorted(FORMATS), help='Specifies multilabel formats to benchmark ' '(defaults to all).') ap.add_argument('--samples', type=int, default=1000, help='The number of samples to generate') ap.add_argument('--classes', type=int, default=10, help='The number of classes') ap.add_argument('--density', type=float, default=.2, help='The average density of labels per sample') ap.add_argument('--plot', choices=['classes', 'density', 'samples'], default=None, help='Plot time with respect to this parameter varying ' 'up to the specified value') ap.add_argument('--n-steps', default=10, type=int, help='Plot this many points for each metric') ap.add_argument('--n-times', default=5, type=int, help="Time performance over n_times trials") args = ap.parse_args() if args.plot is not None: max_val = getattr(args, args.plot) if args.plot in ('classes', 'samples'): min_val = 2 else: min_val = 0 steps = np.linspace(min_val, max_val, num=args.n_steps + 1)[1:] if args.plot in ('classes', 'samples'): steps = np.unique(np.round(steps).astype(int)) setattr(args, args.plot, steps) if args.metrics is None: args.metrics = sorted(METRICS) if args.formats is None: args.formats = sorted(FORMATS) results = benchmark([METRICS[k] for k in args.metrics], [FORMATS[k] for k in args.formats], args.samples, args.classes, args.density, args.n_times) _tabulate(results, args.metrics, args.formats) if args.plot is not None: print('Displaying plot', file=sys.stderr) title = ('Multilabel metrics with %s' % ', '.join('{0}={1}'.format(field, getattr(args, field)) for field in ['samples', 'classes', 'density'] if args.plot != field)) _plot(results, args.metrics, args.formats, title, steps, args.plot)
bsd-3-clause
cmtm/networkx
networkx/convert.py
2
13254
"""Functions to convert NetworkX graphs to and from other formats. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. Examples -------- Create a graph with a single edge from a dictionary of dictionaries >>> d={0: {1: 1}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) See Also -------- nx_agraph, nx_pydot """ # Copyright (C) 2006-2013 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import warnings import networkx as nx __author__ = """\n""".join(['Aric Hagberg <[email protected]>', 'Pieter Swart ([email protected])', 'Dan Schult([email protected])']) __all__ = ['to_networkx_graph', 'from_dict_of_dicts', 'to_dict_of_dicts', 'from_dict_of_lists', 'to_dict_of_lists', 'from_edgelist', 'to_edgelist'] def _prep_create_using(create_using): """Return a graph object ready to be populated. If create_using is None return the default (just networkx.Graph()) If create_using.clear() works, assume it returns a graph object. Otherwise raise an exception because create_using is not a networkx graph. """ if create_using is None: return nx.Graph() try: create_using.clear() except: raise TypeError("Input graph is not a networkx graph type") return create_using def to_networkx_graph(data,create_using=None,multigraph_input=False): """Make a NetworkX graph from a known data structure. The preferred way to call this is automatically from the class constructor >>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1) >>> G=nx.Graph(d) instead of the equivalent >>> G=nx.from_dict_of_dicts(d) Parameters ---------- data : object to be converted Current known types are: any NetworkX graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. multigraph_input : bool (default False) If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph. """ # NX graph if hasattr(data,"adj"): try: result= from_dict_of_dicts(data.adj,\ create_using=create_using,\ multigraph_input=data.is_multigraph()) if hasattr(data,'graph'): # data.graph should be dict-like result.graph.update(data.graph) if hasattr(data,'node'): # data.node should be dict-like result.node.update( (n,dd.copy()) for n,dd in data.node.items() ) return result except: raise nx.NetworkXError("Input is not a correct NetworkX graph.") # pygraphviz agraph if hasattr(data,"is_strict"): try: return nx.nx_agraph.from_agraph(data,create_using=create_using) except: raise nx.NetworkXError("Input is not a correct pygraphviz graph.") # dict of dicts/lists if isinstance(data,dict): try: return from_dict_of_dicts(data,create_using=create_using,\ multigraph_input=multigraph_input) except: try: return from_dict_of_lists(data,create_using=create_using) except: raise TypeError("Input is not known type.") # list or generator of edges if (isinstance(data,list) or isinstance(data,tuple) or hasattr(data,'next') or hasattr(data, '__next__')): try: return from_edgelist(data,create_using=create_using) except: raise nx.NetworkXError("Input is not a valid edge list") # Pandas DataFrame try: import pandas as pd if isinstance(data, pd.DataFrame): try: return nx.from_pandas_dataframe(data, create_using=create_using) except: msg = "Input is not a correct Pandas DataFrame." raise nx.NetworkXError(msg) except ImportError: msg = 'pandas not found, skipping conversion test.' warnings.warn(msg, ImportWarning) # numpy matrix or ndarray try: import numpy if isinstance(data,numpy.matrix) or \ isinstance(data,numpy.ndarray): try: return nx.from_numpy_matrix(data,create_using=create_using) except: raise nx.NetworkXError(\ "Input is not a correct numpy matrix or array.") except ImportError: warnings.warn('numpy not found, skipping conversion test.', ImportWarning) # scipy sparse matrix - any format try: import scipy if hasattr(data,"format"): try: return nx.from_scipy_sparse_matrix(data,create_using=create_using) except: raise nx.NetworkXError(\ "Input is not a correct scipy sparse matrix type.") except ImportError: warnings.warn('scipy not found, skipping conversion test.', ImportWarning) raise nx.NetworkXError(\ "Input is not a known data type for conversion.") return def convert_to_undirected(G): """Return a new undirected representation of the graph G.""" return G.to_undirected() def convert_to_directed(G): """Return a new directed representation of the graph G.""" return G.to_directed() def to_dict_of_lists(G,nodelist=None): """Return adjacency representation of graph as a dictionary of lists. Parameters ---------- G : graph A NetworkX graph nodelist : list Use only nodes specified in nodelist Notes ----- Completely ignores edge data for MultiGraph and MultiDiGraph. """ if nodelist is None: nodelist=G d = {} for n in nodelist: d[n]=[nbr for nbr in G.neighbors(n) if nbr in nodelist] return d def from_dict_of_lists(d,create_using=None): """Return a graph from a dictionary of lists. Parameters ---------- d : dictionary of lists A dictionary of lists adjacency representation. create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. Examples -------- >>> dol= {0:[1]} # single edge (0,1) >>> G=nx.from_dict_of_lists(dol) or >>> G=nx.Graph(dol) # use Graph constructor """ G=_prep_create_using(create_using) G.add_nodes_from(d) if G.is_multigraph() and not G.is_directed(): # a dict_of_lists can't show multiedges. BUT for undirected graphs, # each edge shows up twice in the dict_of_lists. # So we need to treat this case separately. seen={} for node,nbrlist in d.items(): for nbr in nbrlist: if nbr not in seen: G.add_edge(node,nbr) seen[node]=1 # don't allow reverse edge to show up else: G.add_edges_from( ((node,nbr) for node,nbrlist in d.items() for nbr in nbrlist) ) return G def to_dict_of_dicts(G,nodelist=None,edge_data=None): """Return adjacency representation of graph as a dictionary of dictionaries. Parameters ---------- G : graph A NetworkX graph nodelist : list Use only nodes specified in nodelist edge_data : list, optional If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u,v). """ dod={} if nodelist is None: if edge_data is None: for u,nbrdict in G.adjacency(): dod[u]=nbrdict.copy() else: # edge_data is not None for u,nbrdict in G.adjacency(): dod[u]=dod.fromkeys(nbrdict, edge_data) else: # nodelist is not None if edge_data is None: for u in nodelist: dod[u]={} for v,data in ((v,data) for v,data in G[u].items() if v in nodelist): dod[u][v]=data else: # nodelist and edge_data are not None for u in nodelist: dod[u]={} for v in ( v for v in G[u] if v in nodelist): dod[u][v]=edge_data return dod def from_dict_of_dicts(d,create_using=None,multigraph_input=False): """Return a graph from a dictionary of dictionaries. Parameters ---------- d : dictionary of dictionaries A dictionary of dictionaries adjacency representation. create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. multigraph_input : bool (default False) When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons. Examples -------- >>> dod= {0: {1:{'weight':1}}} # single edge (0,1) >>> G=nx.from_dict_of_dicts(dod) or >>> G=nx.Graph(dod) # use Graph constructor """ G=_prep_create_using(create_using) G.add_nodes_from(d) # is dict a MultiGraph or MultiDiGraph? if multigraph_input: # make a copy of the list of edge data (but not the edge data) if G.is_directed(): if G.is_multigraph(): G.add_edges_from( (u,v,key,data) for u,nbrs in d.items() for v,datadict in nbrs.items() for key,data in datadict.items() ) else: G.add_edges_from( (u,v,data) for u,nbrs in d.items() for v,datadict in nbrs.items() for key,data in datadict.items() ) else: # Undirected if G.is_multigraph(): seen=set() # don't add both directions of undirected graph for u,nbrs in d.items(): for v,datadict in nbrs.items(): if (u,v) not in seen: G.add_edges_from( (u,v,key,data) for key,data in datadict.items() ) seen.add((v,u)) else: seen=set() # don't add both directions of undirected graph for u,nbrs in d.items(): for v,datadict in nbrs.items(): if (u,v) not in seen: G.add_edges_from( (u,v,data) for key,data in datadict.items() ) seen.add((v,u)) else: # not a multigraph to multigraph transfer if G.is_multigraph() and not G.is_directed(): # d can have both representations u-v, v-u in dict. Only add one. # We don't need this check for digraphs since we add both directions, # or for Graph() since it is done implicitly (parallel edges not allowed) seen=set() for u,nbrs in d.items(): for v,data in nbrs.items(): if (u,v) not in seen: G.add_edge(u,v,key=0) G[u][v][0].update(data) seen.add((v,u)) else: G.add_edges_from( ( (u,v,data) for u,nbrs in d.items() for v,data in nbrs.items()) ) return G def to_edgelist(G,nodelist=None): """Return a list of edges in the graph. Parameters ---------- G : graph A NetworkX graph nodelist : list Use only nodes specified in nodelist """ if nodelist is None: return G.edges(data=True) else: return G.edges(nodelist,data=True) def from_edgelist(edgelist,create_using=None): """Return a graph from a list of edges. Parameters ---------- edgelist : list or iterator Edge tuples create_using : NetworkX graph Use specified graph for result. Otherwise a new graph is created. Examples -------- >>> edgelist= [(0,1)] # single edge (0,1) >>> G=nx.from_edgelist(edgelist) or >>> G=nx.Graph(edgelist) # use Graph constructor """ G=_prep_create_using(create_using) G.add_edges_from(edgelist) return G
bsd-3-clause
loretoparisi/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/interpolate.py
73
7068
import numpy as np from matplotlib._delaunay import compute_planes, linear_interpolate_grid, nn_interpolate_grid from matplotlib._delaunay import nn_interpolate_unstructured __all__ = ['LinearInterpolator', 'NNInterpolator'] def slice2gridspec(key): """Convert a 2-tuple of slices to start,stop,steps for x and y. key -- (slice(ystart,ystop,ystep), slice(xtart, xstop, xstep)) For now, the only accepted step values are imaginary integers (interpreted in the same way numpy.mgrid, etc. do). """ if ((len(key) != 2) or (not isinstance(key[0], slice)) or (not isinstance(key[1], slice))): raise ValueError("only 2-D slices, please") x0 = key[1].start x1 = key[1].stop xstep = key[1].step if not isinstance(xstep, complex) or int(xstep.real) != xstep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") xstep = int(xstep.imag) y0 = key[0].start y1 = key[0].stop ystep = key[0].step if not isinstance(ystep, complex) or int(ystep.real) != ystep.real: raise ValueError("only the [start:stop:numsteps*1j] form supported") ystep = int(ystep.imag) return x0, x1, xstep, y0, y1, ystep class LinearInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by using the planes defined by the three function values at each corner of the triangles. LinearInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Attributes: planes -- (ntriangles, 3) array of floats specifying the plane for each triangle. Linear Interpolation -------------------- Given the Delauany triangulation (or indeed *any* complete triangulation) we can interpolate values inside the convex hull by locating the enclosing triangle of the interpolation point and returning the value at that point of the plane defined by the three node values. f = planes[tri,0]*x + planes[tri,1]*y + planes[tri,2] The interpolated function is C0 continuous across the convex hull of the input points. It is C1 continuous across the convex hull except for the nodes and the edges of the triangulation. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value self.planes = compute_planes(triangulation.x, triangulation.y, self.z, triangulation.triangle_nodes) def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = linear_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.planes, self.triangulation.x, self.triangulation.y, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid class NNInterpolator(object): """Interpolate a function defined on the nodes of a triangulation by the natural neighbors method. NNInterpolator(triangulation, z, default_value=numpy.nan) triangulation -- Triangulation instance z -- the function values at each node of the triangulation default_value -- a float giving the default value should the interpolating point happen to fall outside of the convex hull of the triangulation At the moment, the only regular rectangular grids are supported for interpolation. vals = interp[ystart:ystop:ysteps*1j, xstart:xstop:xsteps*1j] vals would then be a (ysteps, xsteps) array containing the interpolated values. These arguments are interpreted the same way as numpy.mgrid. Natural Neighbors Interpolation ------------------------------- One feature of the Delaunay triangulation is that for each triangle, its circumcircle contains no other point (although in degenerate cases, like squares, other points may be *on* the circumcircle). One can also construct what is called the Voronoi diagram from a Delaunay triangulation by connecting the circumcenters of the triangles to those of their neighbors to form a tesselation of irregular polygons covering the plane and containing only one node from the triangulation. Each point in one node's Voronoi polygon is closer to that node than any other node. To compute the Natural Neighbors interpolant, we consider adding the interpolation point to the triangulation. We define the natural neighbors of this point as the set of nodes participating in Delaunay triangles whose circumcircles contain the point. To restore the Delaunay-ness of the triangulation, one would only have to alter those triangles and Voronoi polygons. The new Voronooi diagram would have a polygon around the inserted point. This polygon would "steal" area from the original Voronoi polygons. For each node i in the natural neighbors set, we compute the area stolen from its original Voronoi polygon, stolen[i]. We define the natural neighbors coordinates phi[i] = stolen[i] / sum(stolen,axis=0) We then use these phi[i] to weight the corresponding function values from the input data z to compute the interpolated value. The interpolated surface is C1-continuous except at the nodes themselves across the convex hull of the input points. One can find the set of points that a given node will affect by computing the union of the areas covered by the circumcircles of each Delaunay triangle that node participates in. """ def __init__(self, triangulation, z, default_value=np.nan): self.triangulation = triangulation self.z = np.asarray(z, dtype=np.float64) self.default_value = default_value def __getitem__(self, key): x0, x1, xstep, y0, y1, ystep = slice2gridspec(key) grid = nn_interpolate_grid(x0, x1, xstep, y0, y1, ystep, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return grid def __call__(self, intx, inty): intz = nn_interpolate_unstructured(intx, inty, self.default_value, self.triangulation.x, self.triangulation.y, self.z, self.triangulation.circumcenters, self.triangulation.triangle_nodes, self.triangulation.triangle_neighbors) return intz
agpl-3.0
Kleptobismol/scikit-bio
skbio/stats/distance/tests/test_base.py
1
28001
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from future.builtins import zip from six import StringIO, binary_type, text_type from unittest import TestCase, main import matplotlib as mpl mpl.use('Agg') import numpy as np import numpy.testing as npt import pandas as pd from IPython.core.display import Image, SVG from skbio import DistanceMatrix from skbio.stats.distance import ( DissimilarityMatrixError, DistanceMatrixError, MissingIDError, DissimilarityMatrix, randdm, CategoricalStatsResults) from skbio.stats.distance._base import ( _preprocess_input, _run_monte_carlo_stats, CategoricalStats) class DissimilarityMatrixTestData(TestCase): def setUp(self): self.dm_1x1_data = [[0.0]] self.dm_2x2_data = [[0.0, 0.123], [0.123, 0.0]] self.dm_2x2_asym_data = [[0.0, 1.0], [-2.0, 0.0]] self.dm_3x3_data = [[0.0, 0.01, 4.2], [0.01, 0.0, 12.0], [4.2, 12.0, 0.0]] class DissimilarityMatrixTests(DissimilarityMatrixTestData): def setUp(self): super(DissimilarityMatrixTests, self).setUp() self.dm_1x1 = DissimilarityMatrix(self.dm_1x1_data, ['a']) self.dm_2x2 = DissimilarityMatrix(self.dm_2x2_data, ['a', 'b']) self.dm_2x2_asym = DissimilarityMatrix(self.dm_2x2_asym_data, ['a', 'b']) self.dm_3x3 = DissimilarityMatrix(self.dm_3x3_data, ['a', 'b', 'c']) self.dms = [self.dm_1x1, self.dm_2x2, self.dm_2x2_asym, self.dm_3x3] self.dm_shapes = [(1, 1), (2, 2), (2, 2), (3, 3)] self.dm_sizes = [1, 4, 4, 9] self.dm_transposes = [ self.dm_1x1, self.dm_2x2, DissimilarityMatrix([[0, -2], [1, 0]], ['a', 'b']), self.dm_3x3] self.dm_redundant_forms = [np.array(self.dm_1x1_data), np.array(self.dm_2x2_data), np.array(self.dm_2x2_asym_data), np.array(self.dm_3x3_data)] def test_deprecated_io(self): fh = StringIO() npt.assert_warns(DeprecationWarning, self.dm_3x3.to_file, fh) fh.seek(0) deserialized = npt.assert_warns(DeprecationWarning, DissimilarityMatrix.from_file, fh) self.assertEqual(deserialized, self.dm_3x3) self.assertTrue(type(deserialized) == DissimilarityMatrix) def test_init_from_dm(self): ids = ['foo', 'bar', 'baz'] # DissimilarityMatrix -> DissimilarityMatrix exp = DissimilarityMatrix(self.dm_3x3_data, ids) obs = DissimilarityMatrix(self.dm_3x3, ids) self.assertEqual(obs, exp) # Test that copy of data is not made. self.assertTrue(obs.data is self.dm_3x3.data) obs.data[0, 1] = 424242 self.assertTrue(np.array_equal(obs.data, self.dm_3x3.data)) # DistanceMatrix -> DissimilarityMatrix exp = DissimilarityMatrix(self.dm_3x3_data, ids) obs = DissimilarityMatrix( DistanceMatrix(self.dm_3x3_data, ('a', 'b', 'c')), ids) self.assertEqual(obs, exp) # DissimilarityMatrix -> DistanceMatrix with self.assertRaises(DistanceMatrixError): DistanceMatrix(self.dm_2x2_asym, ['foo', 'bar']) def test_init_no_ids(self): exp = DissimilarityMatrix(self.dm_3x3_data, ('0', '1', '2')) obs = DissimilarityMatrix(self.dm_3x3_data) self.assertEqual(obs, exp) self.assertEqual(obs['1', '2'], 12.0) def test_init_invalid_input(self): # Empty data. with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix([], []) # Another type of empty data. with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix(np.empty((0, 0)), []) # Invalid number of dimensions. with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix([1, 2, 3], ['a']) # Dimensions don't match. with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix([[1, 2, 3]], ['a']) data = [[0, 1], [1, 0]] # Duplicate IDs. with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix(data, ['a', 'a']) # Number of IDs don't match dimensions. with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix(data, ['a', 'b', 'c']) # Non-hollow. data = [[0.0, 1.0], [1.0, 0.01]] with self.assertRaises(DissimilarityMatrixError): DissimilarityMatrix(data, ['a', 'b']) def test_data(self): for dm, exp in zip(self.dms, self.dm_redundant_forms): obs = dm.data self.assertTrue(np.array_equal(obs, exp)) with self.assertRaises(AttributeError): self.dm_3x3.data = 'foo' def test_ids(self): obs = self.dm_3x3.ids self.assertEqual(obs, ('a', 'b', 'c')) # Test that we overwrite the existing IDs and that the ID index is # correctly rebuilt. new_ids = ['foo', 'bar', 'baz'] self.dm_3x3.ids = new_ids obs = self.dm_3x3.ids self.assertEqual(obs, tuple(new_ids)) self.assertTrue(np.array_equal(self.dm_3x3['bar'], np.array([0.01, 0.0, 12.0]))) with self.assertRaises(MissingIDError): self.dm_3x3['b'] def test_ids_invalid_input(self): with self.assertRaises(DissimilarityMatrixError): self.dm_3x3.ids = ['foo', 'bar'] # Make sure that we can still use the dissimilarity matrix after trying # to be evil. obs = self.dm_3x3.ids self.assertEqual(obs, ('a', 'b', 'c')) def test_dtype(self): for dm in self.dms: self.assertEqual(dm.dtype, np.float64) def test_shape(self): for dm, shape in zip(self.dms, self.dm_shapes): self.assertEqual(dm.shape, shape) def test_size(self): for dm, size in zip(self.dms, self.dm_sizes): self.assertEqual(dm.size, size) def test_transpose(self): for dm, transpose in zip(self.dms, self.dm_transposes): self.assertEqual(dm.T, transpose) self.assertEqual(dm.transpose(), transpose) # We should get a reference to a different object back, even if the # transpose is the same as the original. self.assertTrue(dm.transpose() is not dm) def test_index(self): self.assertEqual(self.dm_3x3.index('a'), 0) self.assertEqual(self.dm_3x3.index('b'), 1) self.assertEqual(self.dm_3x3.index('c'), 2) with self.assertRaises(MissingIDError): self.dm_3x3.index('d') with self.assertRaises(MissingIDError): self.dm_3x3.index(1) def test_redundant_form(self): for dm, redundant in zip(self.dms, self.dm_redundant_forms): obs = dm.redundant_form() self.assertTrue(np.array_equal(obs, redundant)) def test_copy(self): copy = self.dm_2x2.copy() self.assertEqual(copy, self.dm_2x2) self.assertFalse(copy.data is self.dm_2x2.data) # deepcopy doesn't actually create a copy of the IDs because it is a # tuple of strings, which is fully immutable. self.assertTrue(copy.ids is self.dm_2x2.ids) new_ids = ['hello', 'world'] copy.ids = new_ids self.assertNotEqual(copy.ids, self.dm_2x2.ids) copy = self.dm_2x2.copy() copy.data[0, 1] = 0.0001 self.assertFalse(np.array_equal(copy.data, self.dm_2x2.data)) def test_filter_no_filtering(self): # Don't actually filter anything -- ensure we get back a different # object. obs = self.dm_3x3.filter(['a', 'b', 'c']) self.assertEqual(obs, self.dm_3x3) self.assertFalse(obs is self.dm_3x3) def test_filter_reorder(self): # Don't filter anything, but reorder the distance matrix. order = ['c', 'a', 'b'] exp = DissimilarityMatrix( [[0, 4.2, 12], [4.2, 0, 0.01], [12, 0.01, 0]], order) obs = self.dm_3x3.filter(order) self.assertEqual(obs, exp) def test_filter_single_id(self): ids = ['b'] exp = DissimilarityMatrix([[0]], ids) obs = self.dm_2x2_asym.filter(ids) self.assertEqual(obs, exp) def test_filter_asymmetric(self): # 2x2 ids = ['b', 'a'] exp = DissimilarityMatrix([[0, -2], [1, 0]], ids) obs = self.dm_2x2_asym.filter(ids) self.assertEqual(obs, exp) # 3x3 dm = DissimilarityMatrix([[0, 10, 53], [42, 0, 22.5], [53, 1, 0]], ('bro', 'brah', 'breh')) ids = ['breh', 'brah'] exp = DissimilarityMatrix([[0, 1], [22.5, 0]], ids) obs = dm.filter(ids) self.assertEqual(obs, exp) def test_filter_subset(self): ids = ('c', 'a') exp = DissimilarityMatrix([[0, 4.2], [4.2, 0]], ids) obs = self.dm_3x3.filter(ids) self.assertEqual(obs, exp) ids = ('b', 'a') exp = DissimilarityMatrix([[0, 0.01], [0.01, 0]], ids) obs = self.dm_3x3.filter(ids) self.assertEqual(obs, exp) # 4x4 dm = DissimilarityMatrix([[0, 1, 55, 7], [1, 0, 16, 1], [55, 16, 0, 23], [7, 1, 23, 0]]) ids = np.asarray(['3', '0', '1']) exp = DissimilarityMatrix([[0, 7, 1], [7, 0, 1], [1, 1, 0]], ids) obs = dm.filter(ids) self.assertEqual(obs, exp) def test_filter_duplicate_ids(self): with self.assertRaises(DissimilarityMatrixError): self.dm_3x3.filter(['c', 'a', 'c']) def test_filter_missing_ids(self): with self.assertRaises(MissingIDError): self.dm_3x3.filter(['c', 'bro']) def test_filter_missing_ids_strict_false(self): # no exception should be raised ids = ('c', 'a') exp = DissimilarityMatrix([[0, 4.2], [4.2, 0]], ids) obs = self.dm_3x3.filter(['c', 'a', 'not found'], strict=False) self.assertEqual(obs, exp) def test_filter_empty_ids(self): with self.assertRaises(DissimilarityMatrixError): self.dm_3x3.filter([]) def test_plot_default(self): fig = self.dm_1x1.plot() self.assertIsInstance(fig, mpl.figure.Figure) axes = fig.get_axes() self.assertEqual(len(axes), 2) ax = axes[0] self.assertEqual(ax.get_title(), '') xticks = [] for tick in ax.get_xticklabels(): xticks.append(tick.get_text()) self.assertEqual(xticks, ['a']) yticks = [] for tick in ax.get_yticklabels(): yticks.append(tick.get_text()) self.assertEqual(yticks, ['a']) def test_plot_no_default(self): ids = ['0', 'one', '2', 'three', '4.000'] data = ([0, 1, 2, 3, 4], [1, 0, 1, 2, 3], [2, 1, 0, 1, 2], [3, 2, 1, 0, 1], [4, 3, 2, 1, 0]) dm = DissimilarityMatrix(data, ids) fig = dm.plot(cmap='Reds', title='Testplot') self.assertIsInstance(fig, mpl.figure.Figure) axes = fig.get_axes() self.assertEqual(len(axes), 2) ax = axes[0] self.assertEqual(ax.get_title(), 'Testplot') xticks = [] for tick in ax.get_xticklabels(): xticks.append(tick.get_text()) self.assertEqual(xticks, ['0', 'one', '2', 'three', '4.000']) yticks = [] for tick in ax.get_yticklabels(): yticks.append(tick.get_text()) self.assertEqual(yticks, ['0', 'one', '2', 'three', '4.000']) def test_repr_png(self): dm = self.dm_1x1 obs = dm._repr_png_() self.assertIsInstance(obs, binary_type) self.assertTrue(len(obs) > 0) def test_repr_svg(self): obs = self.dm_1x1._repr_svg_() # print_figure(format='svg') can return text or bytes depending on the # version of IPython self.assertTrue(isinstance(obs, text_type) or isinstance(obs, binary_type)) self.assertTrue(len(obs) > 0) def test_png(self): dm = self.dm_1x1 self.assertIsInstance(dm.png, Image) def test_svg(self): dm = self.dm_1x1 self.assertIsInstance(dm.svg, SVG) def test_str(self): for dm in self.dms: obs = str(dm) # Do some very light testing here to make sure we're getting a # non-empty string back. We don't want to test the exact # formatting. self.assertTrue(obs) def test_eq(self): for dm in self.dms: copy = dm.copy() self.assertTrue(dm == dm) self.assertTrue(copy == copy) self.assertTrue(dm == copy) self.assertTrue(copy == dm) self.assertFalse(self.dm_1x1 == self.dm_3x3) def test_ne(self): # Wrong class. self.assertTrue(self.dm_3x3 != 'foo') # Wrong shape. self.assertTrue(self.dm_3x3 != self.dm_1x1) # Wrong IDs. other = self.dm_3x3.copy() other.ids = ['foo', 'bar', 'baz'] self.assertTrue(self.dm_3x3 != other) # Wrong data. other = self.dm_3x3.copy() other.data[1, 0] = 42.42 self.assertTrue(self.dm_3x3 != other) self.assertFalse(self.dm_2x2 != self.dm_2x2) def test_contains(self): self.assertTrue('a' in self.dm_3x3) self.assertTrue('b' in self.dm_3x3) self.assertTrue('c' in self.dm_3x3) self.assertFalse('d' in self.dm_3x3) def test_getslice(self): # Slice of first dimension only. Test that __getslice__ defers to # __getitem__. obs = self.dm_2x2[1:] self.assertTrue(np.array_equal(obs, np.array([[0.123, 0.0]]))) self.assertEqual(type(obs), np.ndarray) def test_getitem_by_id(self): obs = self.dm_1x1['a'] self.assertTrue(np.array_equal(obs, np.array([0.0]))) obs = self.dm_2x2_asym['b'] self.assertTrue(np.array_equal(obs, np.array([-2.0, 0.0]))) obs = self.dm_3x3['c'] self.assertTrue(np.array_equal(obs, np.array([4.2, 12.0, 0.0]))) with self.assertRaises(MissingIDError): self.dm_2x2['c'] def test_getitem_by_id_pair(self): # Same object. self.assertEqual(self.dm_1x1['a', 'a'], 0.0) # Different objects (symmetric). self.assertEqual(self.dm_3x3['b', 'c'], 12.0) self.assertEqual(self.dm_3x3['c', 'b'], 12.0) # Different objects (asymmetric). self.assertEqual(self.dm_2x2_asym['a', 'b'], 1.0) self.assertEqual(self.dm_2x2_asym['b', 'a'], -2.0) with self.assertRaises(MissingIDError): self.dm_2x2['a', 'c'] def test_getitem_ndarray_indexing(self): # Single element access. obs = self.dm_3x3[0, 1] self.assertEqual(obs, 0.01) # Single element access (via two __getitem__ calls). obs = self.dm_3x3[0][1] self.assertEqual(obs, 0.01) # Row access. obs = self.dm_3x3[1] self.assertTrue(np.array_equal(obs, np.array([0.01, 0.0, 12.0]))) self.assertEqual(type(obs), np.ndarray) # Grab all data. obs = self.dm_3x3[:, :] self.assertTrue(np.array_equal(obs, self.dm_3x3.data)) self.assertEqual(type(obs), np.ndarray) with self.assertRaises(IndexError): self.dm_3x3[:, 3] def test_validate_invalid_dtype(self): with self.assertRaises(DissimilarityMatrixError): self.dm_3x3._validate(np.array([[0, 42], [42, 0]]), ['a', 'b']) class DistanceMatrixTests(DissimilarityMatrixTestData): def setUp(self): super(DistanceMatrixTests, self).setUp() self.dm_1x1 = DistanceMatrix(self.dm_1x1_data, ['a']) self.dm_2x2 = DistanceMatrix(self.dm_2x2_data, ['a', 'b']) self.dm_3x3 = DistanceMatrix(self.dm_3x3_data, ['a', 'b', 'c']) self.dms = [self.dm_1x1, self.dm_2x2, self.dm_3x3] self.dm_condensed_forms = [np.array([]), np.array([0.123]), np.array([0.01, 4.2, 12.0])] def test_deprecated_io(self): fh = StringIO() npt.assert_warns(DeprecationWarning, self.dm_3x3.to_file, fh) fh.seek(0) deserialized = npt.assert_warns(DeprecationWarning, DistanceMatrix.from_file, fh) self.assertEqual(deserialized, self.dm_3x3) self.assertTrue(type(deserialized) == DistanceMatrix) def test_init_invalid_input(self): # Asymmetric. data = [[0.0, 2.0], [1.0, 0.0]] with self.assertRaises(DistanceMatrixError): DistanceMatrix(data, ['a', 'b']) # Ensure that the superclass validation is still being performed. with self.assertRaises(DissimilarityMatrixError): DistanceMatrix([[1, 2, 3]], ['a']) def test_condensed_form(self): for dm, condensed in zip(self.dms, self.dm_condensed_forms): obs = dm.condensed_form() self.assertTrue(np.array_equal(obs, condensed)) def test_permute_condensed(self): # Can't really permute a 1x1 or 2x2... for _ in range(2): obs = self.dm_1x1.permute(condensed=True) npt.assert_equal(obs, np.array([])) for _ in range(2): obs = self.dm_2x2.permute(condensed=True) npt.assert_equal(obs, np.array([0.123])) dm_copy = self.dm_3x3.copy() np.random.seed(0) obs = self.dm_3x3.permute(condensed=True) npt.assert_equal(obs, np.array([12.0, 4.2, 0.01])) obs = self.dm_3x3.permute(condensed=True) npt.assert_equal(obs, np.array([4.2, 12.0, 0.01])) # Ensure dm hasn't changed after calling permute() on it a couple of # times. self.assertEqual(self.dm_3x3, dm_copy) def test_permute_not_condensed(self): obs = self.dm_1x1.permute() self.assertEqual(obs, self.dm_1x1) self.assertFalse(obs is self.dm_1x1) obs = self.dm_2x2.permute() self.assertEqual(obs, self.dm_2x2) self.assertFalse(obs is self.dm_2x2) np.random.seed(0) exp = DistanceMatrix([[0, 12, 4.2], [12, 0, 0.01], [4.2, 0.01, 0]], self.dm_3x3.ids) obs = self.dm_3x3.permute() self.assertEqual(obs, exp) exp = DistanceMatrix([[0, 4.2, 12], [4.2, 0, 0.01], [12, 0.01, 0]], self.dm_3x3.ids) obs = self.dm_3x3.permute() self.assertEqual(obs, exp) def test_eq(self): # Compare DistanceMatrix to DissimilarityMatrix, where both have the # same data and IDs. eq_dm = DissimilarityMatrix(self.dm_3x3_data, ['a', 'b', 'c']) self.assertTrue(self.dm_3x3 == eq_dm) self.assertTrue(eq_dm == self.dm_3x3) class RandomDistanceMatrixTests(TestCase): def test_default_usage(self): exp = DistanceMatrix(np.asarray([[0.0]]), ['1']) obs = randdm(1) self.assertEqual(obs, exp) obs = randdm(2) self.assertEqual(obs.shape, (2, 2)) self.assertEqual(obs.ids, ('1', '2')) obs1 = randdm(5) num_trials = 10 found_diff = False for _ in range(num_trials): obs2 = randdm(5) if obs1 != obs2: found_diff = True break self.assertTrue(found_diff) def test_ids(self): ids = ['foo', 'bar', 'baz'] obs = randdm(3, ids=ids) self.assertEqual(obs.shape, (3, 3)) self.assertEqual(obs.ids, tuple(ids)) def test_constructor(self): exp = DissimilarityMatrix(np.asarray([[0.0]]), ['1']) obs = randdm(1, constructor=DissimilarityMatrix) self.assertEqual(obs, exp) self.assertEqual(type(obs), DissimilarityMatrix) def test_random_fn(self): def myrand(num_rows, num_cols): # One dm to rule them all... data = np.empty((num_rows, num_cols)) data.fill(42) return data exp = DistanceMatrix(np.asarray([[0, 42, 42], [42, 0, 42], [42, 42, 0]]), ['1', '2', '3']) obs = randdm(3, random_fn=myrand) self.assertEqual(obs, exp) def test_invalid_input(self): # Invalid dimensions. with self.assertRaises(DissimilarityMatrixError): randdm(0) # Invalid dimensions. with self.assertRaises(ValueError): randdm(-1) # Invalid number of IDs. with self.assertRaises(DissimilarityMatrixError): randdm(2, ids=['foo']) class CategoricalStatsHelperFunctionTests(TestCase): def setUp(self): self.dm = DistanceMatrix([[0.0, 1.0, 2.0], [1.0, 0.0, 3.0], [2.0, 3.0, 0.0]], ['a', 'b', 'c']) self.grouping = [1, 2, 1] # Ordering of IDs shouldn't matter, nor should extra IDs. self.df = pd.read_csv( StringIO('ID,Group\nb,Group2\na,Group1\nc,Group1\nd,Group3'), index_col=0) self.df_missing_id = pd.read_csv( StringIO('ID,Group\nb,Group2\nc,Group1'), index_col=0) def test_preprocess_input_with_valid_input(self): # Should obtain same result using grouping vector or data frame. exp = (3, 2, np.array([0, 1, 0]), (np.array([0, 0, 1]), np.array([1, 2, 2])), np.array([1., 2., 3.])) obs = _preprocess_input(self.dm, self.grouping, None) npt.assert_equal(obs, exp) obs = _preprocess_input(self.dm, self.df, 'Group') npt.assert_equal(obs, exp) def test_preprocess_input_raises_error(self): # Requires a DistanceMatrix. with self.assertRaises(TypeError): _preprocess_input( DissimilarityMatrix([[0, 2], [3, 0]], ['a', 'b']), [1, 2], None) # Requires column if DataFrame. with self.assertRaises(ValueError): _preprocess_input(self.dm, self.df, None) # Cannot provide column if not data frame. with self.assertRaises(ValueError): _preprocess_input(self.dm, self.grouping, 'Group') # Column must exist in data frame. with self.assertRaises(ValueError): _preprocess_input(self.dm, self.df, 'foo') # All distance matrix IDs must be in data frame. with self.assertRaises(ValueError): _preprocess_input(self.dm, self.df_missing_id, 'Group') # Grouping vector length must match number of objects in dm. with self.assertRaises(ValueError): _preprocess_input(self.dm, [1, 2], None) # Grouping vector cannot have only unique values. with self.assertRaises(ValueError): _preprocess_input(self.dm, [1, 2, 3], None) # Grouping vector cannot have only a single group. with self.assertRaises(ValueError): _preprocess_input(self.dm, [1, 1, 1], None) def test_run_monte_carlo_stats_with_permutations(self): obs = _run_monte_carlo_stats(lambda e: 42, self.grouping, 50) npt.assert_equal(obs, (42, 1.0)) def test_run_monte_carlo_stats_no_permutations(self): obs = _run_monte_carlo_stats(lambda e: 42, self.grouping, 0) npt.assert_equal(obs, (42, np.nan)) def test_run_monte_carlo_stats_invalid_permutations(self): with self.assertRaises(ValueError): _run_monte_carlo_stats(lambda e: 42, self.grouping, -1) class CategoricalStatsTests(TestCase): def setUp(self): self.dm = DistanceMatrix([[0.0, 1.0, 2.0], [1.0, 0.0, 3.0], [2.0, 3.0, 0.0]], ['a', 'b', 'c']) self.grouping = [1, 2, 1] # Ordering of IDs shouldn't matter, nor should extra IDs. self.df = pd.read_csv( StringIO('ID,Group\nb,Group1\na,Group2\nc,Group1\nd,Group3'), index_col=0) self.df_missing_id = pd.read_csv( StringIO('ID,Group\nb,Group1\nc,Group1'), index_col=0) self.categorical_stats = CategoricalStats(self.dm, self.grouping) self.categorical_stats_from_df = CategoricalStats(self.dm, self.df, column='Group') def test_init_invalid_input(self): # Requires a DistanceMatrix. with self.assertRaises(TypeError): CategoricalStats(DissimilarityMatrix([[0, 2], [3, 0]], ['a', 'b']), [1, 2]) # Requires column if DataFrame. with self.assertRaises(ValueError): CategoricalStats(self.dm, self.df) # Cannot provide column if not data frame. with self.assertRaises(ValueError): CategoricalStats(self.dm, self.grouping, column='Group') # Column must exist in data frame. with self.assertRaises(ValueError): CategoricalStats(self.dm, self.df, column='foo') # All distance matrix IDs must be in data frame. with self.assertRaises(ValueError): CategoricalStats(self.dm, self.df_missing_id, column='Group') # Grouping vector length must match number of objects in dm. with self.assertRaises(ValueError): CategoricalStats(self.dm, [1, 2]) # Grouping vector cannot have only unique values. with self.assertRaises(ValueError): CategoricalStats(self.dm, [1, 2, 3]) # Grouping vector cannot have only a single group. with self.assertRaises(ValueError): CategoricalStats(self.dm, [1, 1, 1]) def test_call(self): with self.assertRaises(NotImplementedError): self.categorical_stats() def test_call_invalid_permutations(self): with self.assertRaises(ValueError): self.categorical_stats(-1) class CategoricalStatsResultsTests(TestCase): def setUp(self): self.results = CategoricalStatsResults('foo', 'Foo', 'my stat', 42, ['a', 'b', 'c', 'd'], 0.01234567890, 0.1151111, 99) def test_str(self): exp = ('Method name Sample size Number of groups my stat ' 'p-value Number of permutations\n foo 42' ' 4 0.0123456789 0.12' ' 99\n') obs = str(self.results) self.assertEqual(obs, exp) def test_repr_html(self): # Not going to test against exact HTML that we expect, as this could # easily break and be annoying to constantly update. Do some light # sanity-checking to ensure there are some of the expected HTML tags. obs = self.results._repr_html_() self.assertTrue('<table' in obs) self.assertTrue('<thead' in obs) self.assertTrue('<tr' in obs) self.assertTrue('<th' in obs) self.assertTrue('<tbody' in obs) self.assertTrue('<td' in obs) def test_summary(self): exp = ('Method name\tSample size\tNumber of groups\tmy stat\tp-value\t' 'Number of permutations\nfoo\t42\t4\t0.0123456789\t0.12\t99\n') obs = self.results.summary() self.assertEqual(obs, exp) if __name__ == '__main__': main()
bsd-3-clause
mganeva/mantid
qt/applications/workbench/workbench/plotting/figuremanager.py
1
14630
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2017 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. # # """Provides our custom figure manager to wrap the canvas, window and our custom toolbar""" from __future__ import (absolute_import, unicode_literals) from functools import wraps import sys # 3rdparty imports from mantid.api import AnalysisDataServiceObserver from mantid.plots import MantidAxes from mantid.py3compat import text_type from mantidqt.plotting.figuretype import FigureType, figure_type from mantidqt.widgets.fitpropertybrowser import FitPropertyBrowser import matplotlib from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import FigureManagerBase from matplotlib.backends.backend_qt5agg import (FigureCanvasQTAgg) # noqa from matplotlib.axes import Axes from qtpy.QtCore import QObject, Qt from qtpy.QtWidgets import QApplication, QLabel # local imports from .figureinteraction import FigureInteraction from .figurewindow import FigureWindow from .qappthreadcall import QAppThreadCall from .toolbar import WorkbenchNavigationToolbar, ToolbarStateChecker def _catch_exceptions(func): """ Catch all exceptions in method and print a traceback to stderr """ @wraps(func) def wrapper(*args, **kwargs): try: func(*args, **kwargs) except Exception: sys.stderr.write("Error occurred in handler:\n") import traceback traceback.print_exc() return wrapper class FigureManagerADSObserver(AnalysisDataServiceObserver): def __init__(self, manager): super(FigureManagerADSObserver, self).__init__() self.window = manager.window self.canvas = manager.canvas self.observeClear(True) self.observeDelete(True) self.observeReplace(True) @_catch_exceptions def clearHandle(self): """ Called when the ADS is deleted all of its workspaces """ self.window.emit_close() @_catch_exceptions def deleteHandle(self, _, workspace): """ Called when the ADS has deleted a workspace. Checks the attached axes for any hold a plot from this workspace. If removing this leaves empty axes then the parent window is triggered for closer :param _: The name of the workspace. Unused :param workspace: A pointer to the workspace """ # Find the axes with this workspace reference all_axes = self.canvas.figure.axes if not all_axes: return # Here we wish to delete any curves linked to the workspace being # deleted and if a figure is now empty, close it. We must avoid closing # any figures that were created via the script window that are not # managed via a workspace. # See https://github.com/mantidproject/mantid/issues/25135. empty_axes = [] for ax in all_axes: if isinstance(ax, MantidAxes): ax.remove_workspace_artists(workspace) # We check for axes type below as a pseudo check for an axes being # a colorbar. Creating a colorfill plot creates 2 axes: one linked # to a workspace, the other a colorbar. Deleting the workspace # deletes the colorfill, but the plot remains open due to the # non-empty colorbar. This solution seems to work for the majority # of cases but could lead to unmanaged figures only containing an # Axes object being closed. if type(ax) is not Axes: empty_axes.append(MantidAxes.is_empty(ax)) if all(empty_axes): self.window.emit_close() else: self.canvas.draw_idle() @_catch_exceptions def replaceHandle(self, _, workspace): """ Called when the ADS has replaced a workspace with one of the same name. If this workspace is attached to this figure then its data is updated :param _: The name of the workspace. Unused :param workspace: A reference to the new workspace """ redraw = False for ax in self.canvas.figure.axes: if isinstance(ax, MantidAxes): redraw_this = ax.replace_workspace_artists(workspace) else: continue redraw = redraw | redraw_this if redraw: self.canvas.draw_idle() class FigureManagerWorkbench(FigureManagerBase, QObject): """ Attributes ---------- canvas : `FigureCanvas` The FigureCanvas instance num : int or str The Figure number toolbar : qt.QToolBar The qt.QToolBar window : qt.QMainWindow The qt.QMainWindow """ def __init__(self, canvas, num): QObject.__init__(self) FigureManagerBase.__init__(self, canvas, num) # Patch show/destroy to be thread aware self._destroy_orig = self.destroy self.destroy = QAppThreadCall(self._destroy_orig) self._show_orig = self.show self.show = QAppThreadCall(self._show_orig) self._window_activated_orig = self._window_activated self._window_activated = QAppThreadCall(self._window_activated_orig) self.set_window_title_orig = self.set_window_title self.set_window_title = QAppThreadCall(self.set_window_title_orig) self.fig_visibility_changed_orig = self.fig_visibility_changed self.fig_visibility_changed = QAppThreadCall(self.fig_visibility_changed_orig) self.window = FigureWindow(canvas) self.window.activated.connect(self._window_activated) self.window.closing.connect(canvas.close_event) self.window.closing.connect(self.destroy) self.window.visibility_changed.connect(self.fig_visibility_changed) self.window.setWindowTitle("Figure %d" % num) canvas.figure.set_label("Figure %d" % num) # Give the keyboard focus to the figure instead of the # manager; StrongFocus accepts both tab and click to focus and # will enable the canvas to process event w/o clicking. # ClickFocus only takes the focus is the window has been # clicked # on. http://qt-project.org/doc/qt-4.8/qt.html#FocusPolicy-enum or # http://doc.qt.digia.com/qt/qt.html#FocusPolicy-enum canvas.setFocusPolicy(Qt.StrongFocus) canvas.setFocus() self.window._destroying = False # add text label to status bar self.statusbar_label = QLabel() self.window.statusBar().addWidget(self.statusbar_label) self.toolbar = self._get_toolbar(canvas, self.window) if self.toolbar is not None: self.window.addToolBar(self.toolbar) self.toolbar.message.connect(self.statusbar_label.setText) self.toolbar.sig_grid_toggle_triggered.connect(self.grid_toggle) self.toolbar.sig_toggle_fit_triggered.connect(self.fit_toggle) self.toolbar.setFloatable(False) tbs_height = self.toolbar.sizeHint().height() else: tbs_height = 0 # resize the main window so it will display the canvas with the # requested size: cs = canvas.sizeHint() sbs = self.window.statusBar().sizeHint() self._status_and_tool_height = tbs_height + sbs.height() height = cs.height() + self._status_and_tool_height self.window.resize(cs.width(), height) self.fit_browser = FitPropertyBrowser(canvas, ToolbarStateChecker(self.toolbar)) self.fit_browser.closing.connect(self.handle_fit_browser_close) self.window.setCentralWidget(canvas) self.window.addDockWidget(Qt.LeftDockWidgetArea, self.fit_browser) self.fit_browser.hide() if matplotlib.is_interactive(): self.window.show() canvas.draw_idle() def notify_axes_change(fig): # This will be called whenever the current axes is changed if self.toolbar is not None: self.toolbar.update() canvas.figure.add_axobserver(notify_axes_change) # Register canvas observers self._fig_interation = FigureInteraction(self) self._ads_observer = FigureManagerADSObserver(self) # Plotted workspace names/spectra in form '{workspace}: spec {spec_num}' self.workspace_labels = [] self.window.raise_() def full_screen_toggle(self): if self.window.isFullScreen(): self.window.showNormal() else: self.window.showFullScreen() def _window_activated(self): Gcf.set_active(self) def _get_toolbar(self, canvas, parent): return WorkbenchNavigationToolbar(canvas, parent, False) def resize(self, width, height): 'set the canvas size in pixels' self.window.resize(width, height + self._status_and_tool_height) def show(self): # noqa self.window.show() self.window.activateWindow() self.window.raise_() if self.window.windowState() & Qt.WindowMinimized: # windowState() stores a combination of window state enums # and multiple window states can be valid. On Windows # a window can be both minimized and maximized at the # same time, so we make a check here. For more info see: # http://doc.qt.io/qt-5/qt.html#WindowState-enum if self.window.windowState() & Qt.WindowMaximized: self.window.setWindowState(Qt.WindowMaximized) else: self.window.setWindowState(Qt.WindowNoState) # Hack to ensure the canvas is up to date self.canvas.draw_idle() if figure_type(self.canvas.figure) != FigureType.Line: self._set_fit_enabled(False) self._update_workspace_labels() def destroy(self, *args): # check for qApp first, as PySide deletes it in its atexit handler if QApplication.instance() is None: return if self.window._destroying: return self.window._destroying = True if self.toolbar: self.toolbar.destroy() self._ads_observer.observeAll(False) del self._ads_observer self._fig_interation.disconnect() self.window.close() try: Gcf.destroy(self.num) except AttributeError: pass # It seems that when the python session is killed, # Gcf can get destroyed before the Gcf.destroy # line is run, leading to a useless AttributeError. def grid_toggle(self): """ Toggle grid lines on/off """ canvas = self.canvas axes = canvas.figure.get_axes() for ax in axes: ax.grid() canvas.draw_idle() def fit_toggle(self): """ Toggle fit browser and tool on/off """ if self.fit_browser.isVisible(): self.fit_browser.hide() else: self.fit_browser.show() def handle_fit_browser_close(self): """ Respond to a signal that user closed self.fit_browser by clicking the [x] button. """ self.toolbar.trigger_fit_toggle_action() def hold(self): """ Mark this figure as held """ self.toolbar.hold() def get_window_title(self): return text_type(self.window.windowTitle()) def set_window_title(self, title): self.window.setWindowTitle(title) # We need to add a call to the figure manager here to call # notify methods when a figure is renamed, to update our # plot list. Gcf.figure_title_changed(self.num) # For the workbench we also keep the label in sync, this is # to allow getting a handle as plt.figure('Figure Name') self.canvas.figure.set_label(title) def fig_visibility_changed(self): """ Make a notification in the global figure manager that plot visibility was changed. This method is added to this class so that it can be wrapped in a QAppThreadCall. """ Gcf.figure_visibility_changed(self.num) def get_curve_labels(self): """Get curve labels from Matplotlib figure""" return [line.get_label() for line in self.canvas.figure.axes[0].lines] def _update_workspace_labels(self): """Check for new curves and update the workspace labels""" curve_labels = self.get_curve_labels() num_new_curves = len(curve_labels) - len(self.workspace_labels) self.workspace_labels += curve_labels[-num_new_curves:] self._update_fit_browser_workspace_labels() can_fit = self.fit_browser.can_fit_spectra(self.workspace_labels) self._set_fit_enabled(can_fit) def _update_fit_browser_workspace_labels(self): self.fit_browser.workspace_labels = self.workspace_labels def _set_fit_enabled(self, on): action = self.toolbar._actions['toggle_fit'] action.setEnabled(on) action.setVisible(on) # ----------------------------------------------------------------------------- # Figure control # ----------------------------------------------------------------------------- def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ from matplotlib.figure import Figure # noqa figure_class = kwargs.pop('FigureClass', Figure) this_fig = figure_class(*args, **kwargs) return new_figure_manager_given_figure(num, this_fig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ canvas = FigureCanvasQTAgg(figure) manager = FigureManagerWorkbench(canvas, num) return manager if __name__ == '__main__': # testing code import numpy as np qapp = QApplication([' ']) qapp.setAttribute(Qt.AA_UseHighDpiPixmaps) if hasattr(Qt, 'AA_EnableHighDpiScaling'): qapp.setAttribute(Qt.AA_EnableHighDpiScaling, True) x = np.linspace(0, 10 * np.pi, 1000) cx, sx = np.cos(x), np.sin(x) fig_mgr_1 = new_figure_manager(1) fig1 = fig_mgr_1.canvas.figure ax = fig1.add_subplot(111) ax.set_title("Test title") ax.set_xlabel(r"$\mu s$") ax.set_ylabel("Counts") ax.plot(x, cx) fig1.show() qapp.exec_()
gpl-3.0
krez13/scikit-learn
sklearn/svm/tests/test_sparse.py
22
13181
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0, decision_function_shape='ovo') check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: svc = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo') clf = svc.fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
Srisai85/scipy
scipy/interpolate/tests/test_rbf.py
41
4367
#!/usr/bin/env python # Created by John Travers, Robert Hetland, 2007 """ Test functions for rbf module """ from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_, assert_array_almost_equal, assert_almost_equal, run_module_suite) from numpy import linspace, sin, random, exp, allclose from scipy.interpolate.rbf import Rbf FUNCTIONS = ('multiquadric', 'inverse multiquadric', 'gaussian', 'cubic', 'quintic', 'thin-plate', 'linear') def check_rbf1d_interpolation(function): # Check that the Rbf function interpolates through the nodes (1D) x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y, function=function) yi = rbf(x) assert_array_almost_equal(y, yi) assert_almost_equal(rbf(float(x[0])), y[0]) def check_rbf2d_interpolation(function): # Check that the Rbf function interpolates through the nodes (2D). x = random.rand(50,1)*4-2 y = random.rand(50,1)*4-2 z = x*exp(-x**2-1j*y**2) rbf = Rbf(x, y, z, epsilon=2, function=function) zi = rbf(x, y) zi.shape = x.shape assert_array_almost_equal(z, zi) def check_rbf3d_interpolation(function): # Check that the Rbf function interpolates through the nodes (3D). x = random.rand(50, 1)*4 - 2 y = random.rand(50, 1)*4 - 2 z = random.rand(50, 1)*4 - 2 d = x*exp(-x**2 - y**2) rbf = Rbf(x, y, z, d, epsilon=2, function=function) di = rbf(x, y, z) di.shape = x.shape assert_array_almost_equal(di, d) def test_rbf_interpolation(): for function in FUNCTIONS: yield check_rbf1d_interpolation, function yield check_rbf2d_interpolation, function yield check_rbf3d_interpolation, function def check_rbf1d_regularity(function, atol): # Check that the Rbf function approximates a smooth function well away # from the nodes. x = linspace(0, 10, 9) y = sin(x) rbf = Rbf(x, y, function=function) xi = linspace(0, 10, 100) yi = rbf(xi) # import matplotlib.pyplot as plt # plt.figure() # plt.plot(x, y, 'o', xi, sin(xi), ':', xi, yi, '-') # plt.plot(x, y, 'o', xi, yi-sin(xi), ':') # plt.title(function) # plt.show() msg = "abs-diff: %f" % abs(yi - sin(xi)).max() assert_(allclose(yi, sin(xi), atol=atol), msg) def test_rbf_regularity(): tolerances = { 'multiquadric': 0.1, 'inverse multiquadric': 0.15, 'gaussian': 0.15, 'cubic': 0.15, 'quintic': 0.1, 'thin-plate': 0.1, 'linear': 0.2 } for function in FUNCTIONS: yield check_rbf1d_regularity, function, tolerances.get(function, 1e-2) def check_rbf1d_stability(function): # Check that the Rbf function with default epsilon is not subject # to overshoot. Regression for issue #4523. # # Generate some data (fixed random seed hence deterministic) np.random.seed(1234) x = np.linspace(0, 10, 50) z = x + 4.0 * np.random.randn(len(x)) rbf = Rbf(x, z, function=function) xi = np.linspace(0, 10, 1000) yi = rbf(xi) # subtract the linear trend and make sure there no spikes assert_(np.abs(yi-xi).max() / np.abs(z-x).max() < 1.1) def test_rbf_stability(): for function in FUNCTIONS: yield check_rbf1d_stability, function def test_default_construction(): # Check that the Rbf class can be constructed with the default # multiquadric basis function. Regression test for ticket #1228. x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y) yi = rbf(x) assert_array_almost_equal(y, yi) def test_function_is_callable(): # Check that the Rbf class can be constructed with function=callable. x = linspace(0,10,9) y = sin(x) linfunc = lambda x:x rbf = Rbf(x, y, function=linfunc) yi = rbf(x) assert_array_almost_equal(y, yi) def test_two_arg_function_is_callable(): # Check that the Rbf class can be constructed with a two argument # function=callable. def _func(self, r): return self.epsilon + r x = linspace(0,10,9) y = sin(x) rbf = Rbf(x, y, function=_func) yi = rbf(x) assert_array_almost_equal(y, yi) def test_rbf_epsilon_none(): x = linspace(0, 10, 9) y = sin(x) rbf = Rbf(x, y, epsilon=None) if __name__ == "__main__": run_module_suite()
bsd-3-clause
icdishb/scikit-learn
sklearn/utils/tests/test_testing.py
33
3783
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.lda import LDA try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LDA() tree = DecisionTreeClassifier() # LDA doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
anurag313/scikit-learn
sklearn/metrics/regression.py
175
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
sprax/python
txt/sim_tfidf_nltk.py
1
21467
#!/usr/bin/env python3 '''Text similarity (between words, phrases, or short sentences) using NLTK''' import heapq import string import time import nltk from sklearn.feature_extraction.text import TfidfVectorizer import pdb import qa_csv import text_fio STEMMER = nltk.stem.porter.PorterStemmer() TRANS_NO_PUNCT = str.maketrans('', '', string.punctuation) STOP_WORDS = nltk.corpus.stopwords.words('english') # Most question words can also be used in qualifiers. It's not the word, but the useage we want. QUERY_WORDS = ['how', 'what', 'when', 'where', 'which', 'who', 'why'] MOST_STOPS = [word for word in STOP_WORDS if word not in QUERY_WORDS] def stem_tokens(tokens, stemmer=STEMMER): '''list of stems, one per input tokens''' return [stemmer.stem(item) for item in tokens] def normalize(text, translation=TRANS_NO_PUNCT): '''remove punctuation, lowercase, stem''' return stem_tokens(nltk.word_tokenize(text.translate(translation).lower())) VECTORIZER = TfidfVectorizer(tokenizer=normalize, stop_words='english') VECT_NO_STOPS = TfidfVectorizer(tokenizer=normalize) VECT_MOST_STOPS = TfidfVectorizer(tokenizer=normalize, stop_words=MOST_STOPS) def remove_stop_words(tokens, stop_words=STOP_WORDS): '''filter out stop words''' return [tok for tok in tokens if tok not in stop_words] def ident(obj): '''identify function: just returns its argument''' return obj def first(obj): '''first: returns the first item from an indexible, or failing that, just the object''' try: return obj.__getitem__(0) except TypeError: return obj def second(obj): '''second: returns second item from an indexible, or failing that, just the object''' try: return obj.__getitem__(1) except TypeError: return obj def third(obj): '''third: returns third item from an indexible, or failing that, just the object''' try: return obj.__getitem__(2) except TypeError: return obj def cosine_sim_txt(txt_1, txt_2, vectorizer=VECTORIZER): '''dot-product (projection) similarity''' tfidf = vectorizer.fit_transform([txt_1, txt_2]) return ((tfidf * tfidf.T).A)[0, 1] def sim_weighted_qas(one_quanda, other_quanda, get_question=second, get_answer=third, q_weight=0.5, sim_func=cosine_sim_txt): '''dot-product (projection) similarity combining similarities of questions and, if available, answers''' assert 0.0 < q_weight and q_weight <= 1.0 q_sim = sim_func(get_question(one_quanda), get_question(other_quanda)) if q_weight < 1.0: ans_1 = get_answer(one_quanda) ans_2 = get_answer(other_quanda) if ans_1 and ans_2: try: a_sim = sim_func(ans_1, ans_2) return (q_sim - a_sim) * q_weight + a_sim except ValueError as vex: print("Error on answers (%s|%s): %s" % (ans_1, ans_2, vex)) raise vex return q_sim def cosine_sim_quanda(one_quanda, other_quanda, get_question=second, get_answer=third, q_weight=0.5, vectorizer=VECTORIZER): '''dot-product (projection) similarity combining similarities of questions and, if available, answers''' assert 0 < q_weight and q_weight <= 1 q_sim = cosine_sim_txt(get_question(one_quanda), get_question(other_quanda), vectorizer) if q_weight >= 1.0: return q_sim ans_1 = get_answer(one_quanda) ans_2 = get_answer(other_quanda) if ans_1 and ans_2: try: a_sim = cosine_sim_txt(ans_1, ans_2, vectorizer) return (q_sim - a_sim) * q_weight + a_sim except ValueError as vex: print("Error on answers (%s|%s): %s" % (ans_1, ans_2, vex)) return q_sim def cosine_sim_quanda_2(one_quanda, other_quanda, get_question=second, get_answer=third, q_weight=0.5, vectorizer=VECT_NO_STOPS): '''dot-product (projection) similarity combining similarities of questions and, if available, answers''' assert 0.0 < q_weight and q_weight <= 1.0 if q_weight >= 1.0: print("Degenerate q_weight: ", q_weight) return cosine_sim_txt(get_question(one_quanda), get_question(other_quanda), vectorizer) # print("DBG CSQ: Q(%s) A(%s)" % (get_question(other_quanda), get_answer(other_quanda))) qst_1 = get_question(one_quanda) qst_2 = get_question(other_quanda) ans_1 = get_answer(one_quanda) ans_2 = get_answer(other_quanda) try: tfidf = vectorizer.fit_transform([qst_1, qst_2, ans_1, ans_2]) q_sim = ((tfidf * tfidf.T).A)[0, 1] a_sim = ((tfidf * tfidf.T).A)[2, 3] return (q_sim - a_sim) * q_weight + a_sim except ValueError as vex: print("Error, probably on answers (%s|%s): %s" % (ans_1, ans_2, vex)) return 0.0 def cosine_sim_quanda_ms(one_quanda, other_quanda, get_question=second, get_answer=third, q_weight=0.5, vectorizer=VECT_MOST_STOPS): '''Returns weighted Q & A similarity between two question-answer pairs''' return cosine_sim_quanda_2(one_quanda, other_quanda, get_question, get_answer, q_weight, vectorizer) def smoke_test(): '''Tests that basic sentence similarity functionality works, or at least does not blow-up''' sent_1 = 'a little bird' sent_2 = 'a little bird chirps' sent_3 = 'a big dog barks a lot' print("cosine_sim_txt(%s, %s) == %f" % (sent_1, sent_1, cosine_sim_txt(sent_1, sent_1))) print("cosine_sim_txt(%s, %s) == %f" % (sent_1, sent_2, cosine_sim_txt(sent_1, sent_2))) print("cosine_sim_txt(%s, %s) == %f" % (sent_1, sent_3, cosine_sim_txt(sent_1, sent_3))) questions = ['How is that fair?!', 'What is fair?!', 'When is the fair?', 'Where is the fair?', 'Who is fair?', 'Why is that fair?'] for qst in questions: print("remove_stop_words(normalize(%s)) -> " % qst, remove_stop_words(normalize(qst))) def nearest_known(saved_texts, input_text, similarity_func, threshold): '''find text in saved_texts most similar to input_text, if similarity >= threshold''' idx, sim = nearest_other_idx(saved_texts, input_text, similarity_func, threshold) if idx < 0: print("No saved text found more similar than %f" % threshold) else: print("Nearest at %f (%d) %s" % (sim, idx, saved_texts[idx])) def nearest_other_idx(other_texts, quat, similarity_func, max_sim_val): ''' Find the text in the other_texts array most similar to quat and return its index. similarity_func: function returning the similariy between two texts (as in sentences) vocab: the set of all known words max_sim_val: the initial value of max, or the maximum similariy found so far. ''' max_sim_idx = -9999 for idx, other_text in enumerate(other_texts): sim = similarity_func(quat, other_text) if max_sim_val < sim: max_sim_val = sim max_sim_idx = idx return max_sim_idx, max_sim_val def list_nearest_other_idx(texts, similarity_func=cosine_sim_txt): ''' For each text in texts, find the index of the most similar other text. Returns the list of indexes. The mapping is not necessarily 1-1, that is, two texts may share a most similar other text. similarity_func: function returning the similariy between two texts (as in sentences) vocab: the set of all known words ''' nearests = len(texts)*[None] for idx, txt in enumerate(texts): max_idx_0, max_sim_0 = nearest_other_idx(texts[:idx], txt, similarity_func, -1) max_idx_1, max_sim_1 = nearest_other_idx(texts[idx+1:], txt, similarity_func, max_sim_0) nearests[idx] = 1 + idx + max_idx_1 if max_sim_1 > max_sim_0 else max_idx_0 return nearests def show_nearest_neighbors(texts, nearest_indexes=None): '''print the most similar pairs''' if nearest_indexes is None: nearest_indexes = list_nearest_other_idx(texts) for idx, txt in enumerate(texts): nearest_idx = nearest_indexes[idx] nearest_txt = texts[nearest_idx] print(" %3d. T %s\n %3d. O %s\n" % (idx, txt, nearest_idx, nearest_txt)) ############################################################################### def similarity_dict(quandas, one_quanda, excludes=None, q_weight=1.0, sim_func=cosine_sim_txt, min_sim_val=0.0, max_sim_val=1): ''' Returns a dict mapping all_quandas' indexes to their similarity with quat, provide their similarity value >= min_sim_val similarity_func: function returning the similariy between two texts (as in sentences) min_sim_val: similarity threshold ''' if excludes is None: excludes = [] sim_dict = {} for idx, other_quanda in enumerate(quandas): if idx in excludes: continue try: sim = sim_weighted_qas(one_quanda, other_quanda, q_weight=q_weight, sim_func=sim_func) if sim >= min_sim_val: if sim > max_sim_val: sim = max_sim_val sim_dict[idx] = sim except ValueError as ex: print("Continuing past error at idx: %d (%s)" % (idx, ex)) return sim_dict def nlargest_items_by_value(dict_with_comparable_values, count=10): '''Returns a list of the maximally valued N items (key, value)-tuples) in descending order by value.''' return heapq.nlargest(count, dict_with_comparable_values.items(), key=lambda item: (item[1], -item[0])) def nlargest_keys_by_value(dict_with_comparable_values, count=10): '''Returns a list of the keys to the greatest values, in descending order by value.''' return heapq.nlargest(count, dict_with_comparable_values, key=dict_with_comparable_values.get) def nlargest_values(dict_with_comparable_values, count=10): '''Returns a list of the greatest values in descending order. Duplicates permitted.''' return heapq.nlargest(count, dict_with_comparable_values.values()) def find_nearest_peers(all_quandas, quat, excludes=None, q_weight=1.0, sim_func=cosine_sim_txt, max_count=5, min_sim_val=0.0): ''' Find the N most similar texts to quat and return a list of (index, similarity) pairs in descending order of similarity. all_quandas: the sentences or question-answer-tuples or whatever is to be compared. quat: the one to compare against the rest excludes: list of IDs to exclude from the comparison; e.g. quat.id if excluding self comparison. similarity_func: function returning the similariy between two texts (as in sentences) vocab: the set of all known words max_count maximum size of returned dict max_sim_val: the initial value of max, or the maximum similariy found so far. ''' assert q_weight >= 0.0 print("FNP/fn={}: {}".format(sim_func, quat)) sim_dict = similarity_dict(all_quandas, quat, excludes, q_weight=q_weight, sim_func=sim_func, min_sim_val=min_sim_val) return nlargest_items_by_value(sim_dict, max_count) def find_nearest_peer_lists(quandas, q_weight=1.0, sim_func=cosine_sim_txt, max_count=5, min_sim_val=0.0, id_eq_index=False): ''' For each question-and-answer tuple in quandas, find a list of indexes of the most similar Q and A's. Returns list of lists of items as in: [[(index, similariy), ...], ...] similarity_func: function returning the similariy between two texts (as in sentences) vocab: the set of all known words ''' assert q_weight >= 0.0 nearests = len(quandas)*[None] for idx, quanda in enumerate(quandas): # consistency check: idn = quanda[0] assert isinstance(idn, int) if id_eq_index: # print("STN:FNPL: ", quanda) if idx > 0 and idx + 100 != idn: print("ERROR:", (idx + 100), "!=", quanda[0], "at", quanda) raise IndexError nearests[idx] = find_nearest_peers(quandas, quanda, [idx], q_weight=q_weight, sim_func=sim_func, max_count=max_count, min_sim_val=min_sim_val) return nearests def find_ranked_qa_lists_inclusive(quandas, q_weight=1.0, sim_func=cosine_sim_txt, max_count=5, min_sim_val=0.0, id_eq_index=False): return [find_nearest_peers(quandas, quanda, None, q_weight, sim_func, max_count, min_sim_val) for quanda in quandas] def find_ranked_qa_lists_verbose(quandas, exclude_self=True, q_weight=1.0, sim_func=cosine_sim_txt, max_count=6, min_sim_val=0): ''' Returns list of most similar lists. For each object in quandas, compute the similarity with all (other) objects in quandas, and save at most max_count indices and similarity measures in descending order of similarity, where similiary >= min_sim_val. If exclude_self is false, compare each object with itself as well as the others (sanity check) ''' ranked_lists = None beg_time = time.time() if exclude_self: ranked_lists = find_nearest_peer_lists(quandas, q_weight, sim_func, max_count, min_sim_val, id_eq_index=False) else: ranked_lists = find_ranked_qa_lists_inclusive(quandas, q_weight, sim_func, max_count, min_sim_val, id_eq_index=True) seconds = time.time() - beg_time print("Finding all similarity lists (size=%d, count=%d) took %.1f seconds" % (len(quandas), max_count, seconds)) return ranked_lists def show_most_sim_texts_list(texts, most_sim_lists=None): '''print already-found similarity lists''' if most_sim_lists is None: most_sim_lists = find_ranked_qa_lists_verbose(texts) # use defaults for idx, txt in enumerate(texts): most_sim_list = most_sim_lists[idx] print(" %3d. %s" % (idx, txt)) for oix, sim in most_sim_list: print(" %3d %.5f %s" % (oix, sim, texts[oix])) print() return most_sim_lists def distance_counts(quandas, most_sim_lists, max_dist): ''' Returns a list of miss-distance counts: how many missed the gold standard by 0 (exact match), how many missed it by one (as in the gold standard got the second highest similarity score) how many missed it by two, on up to max_dist. The total number of items with a gold standard is added as the last element in the list. ''' dist_counts = (max_dist + 1) * [0] gold_scored = 0 for qax, sim_list in zip(quandas, most_sim_lists): if len(qax) > 3 and qax[3]: try: gold = int(qax[3]) assert isinstance(gold, int) except ValueError as ex: print("ERROR on: ", qax, ex) continue gold_scored += 1 # ms = sim_list[0] # msi = ms[0] # sim = ms[1] # print("DBG_F: Q_%d <==> Q_%d (%s <==> %s) first, %.4f (%s : %s)" % (int(qax[0]), msi, qax[1], # quandas[msi][1], sim, remove_stop_words(normalize(qax[1])), remove_stop_words(normalize(quandas[msi][1])))) for idx, item in enumerate(sim_list): # print("DC: %d item(%d, %f)" % (idx, item[0], item[1])) qax = quandas[item[0]] if gold == qax[0]: # compare idn to idn (not idx) # print("DBG_G: Q_%d <==> Q_%d (%s <==> %s) at %d, %.4f (%s : %s)\n" % (int(qax[0]), item[0], qax[1], quandas[item[0]][1], # idx, item[1], remove_stop_words(normalize(qax[1])), remove_stop_words(normalize(quandas[item[0]][1])))) dist_counts[idx] += 1 break # save the number of gold standard matches as the last count in the list dist_counts[max_dist] = gold_scored return dist_counts def score_distance_counts(dist_counts, weights): '''Compute a score from miss-distance counts. The perfect score would be 1.0''' assert len(weights) > 0 and weights[0] == 1.0 assert len(weights) < len(dist_counts) gold_scored = dist_counts[-1] # print("DBG SDC DCS:", dist_counts) # print("DBG SDC WTS:", weights) assert gold_scored > 0 score = dist_counts[0] # number of exact matches for idx, weight in enumerate(weights[1:], 1): assert weight <= weights[idx - 1] # print("DBG SDC LOOP:", idx, dist_counts[idx]) score += weight * dist_counts[idx] # print("DBG_SDC: score(%.4f) / %d == %f" % (score, gold_scored, score/gold_scored)) return score / gold_scored def score_most_sim_lists(quandas, most_sim_lists, weights=None): '''Sum up gold-standard accuracy score''' if weights is None: weights = [1.0, 0.8, 0.6, 0.4, 0.2, 0.1] dist_counts = distance_counts(quandas, most_sim_lists, len(weights)) return score_distance_counts(dist_counts, weights) def save_most_sim_qa_lists_tsv(quandas, path, most_sim_lists, min_sim_val=0, sort_most_sim=True): '''Save ranked most-similar lists to TSV file''' isorted = None sim_oix = [] if sort_most_sim: # TODO: replace with zip for idx, sim_list in enumerate(most_sim_lists): print("MSL:", most_sim_lists) if len(sim_list) > 0 and len(sim_list[0]) > 0: max_oix = sim_list[0][0] max_sim = sim_list[0][1] sum_sim = sum([y[1] for y in sim_list]) sim_oix.append((max_sim, sum_sim, -idx, -max_oix)) else: print("EMPTY SIM_LIST!") # TODO: sorted with 2 keys?? FIXME: should sort on all keys!! isorted = [-tup[2] for tup in sorted(sim_oix, reverse=True)] else: isorted = range(len(quandas)) print("ISORTED ", len(isorted), ": ", isorted) out = text_fio.open_out_file(path) mix = 0 for idx in isorted: qax = quandas[idx] idn = qax[0] most_sim_list = most_sim_lists[idx] lqax, ansr = len(qax), 'N/A' if lqax < 3: print("MISSING ANSWER at:", idx, qax[0], qax[1], "ANSWER:", ansr, sep="\t") else: ansr = qax[2] gold = qax[3] if lqax > 3 else None print(idn, qax[1], ansr, gold, sep="\t", file=out) for oix, sim in most_sim_list: # Note: oix = other index, i.e., the index of the gold standard other QAS if sim > min_sim_val: try: # print("IDX: ", idx, " OIX: ", oix, " SIM: ", sim) quox = quandas[oix] sidn = quox[0] stxt = quox[1] sans = quox[2] if len(quox) > 2 else 'N/A' sgld = quox[3] if len(quox) > 3 else None print("\t%3d\t%.5f\t%s\t%s\t%s" % (sidn, sim, stxt, sans, sgld), file=out) except Exception as ex: print("ERROR AT MIX {}: idx {} qax {}, err: {}\n".format(mix, idx, qax, ex)) # pass OR raise IndexError ?? # if sort_most_sim: # print("TUP {:3}:\t {}".format(mix, sim_oix[idx])) print(file=out) mix += 1 if path != '-': out.close() # VECTORIZER (default): (size=201, count=6) took 96.1 seconds; score 0.8583 # VECT_MOST_STOPS (DEFAULT-QUERY_WORDS): (size=201, count=6) took 96.3 seconds; score 0.6635 # TODO: Why do the query words make the score worse? # TEST: >>> match_tat(fair, sim_func=sim_wosc_nltk.sentence_similarity) def match_tat(quandas, path="simlists.tsv", q_weight=1.0, sim_func=cosine_sim_txt, max_count=6, min_sim_val=0, sort_most_sim=False): '''Compute similarities using sim_func, score them against gold standard, and save the list of similarity lists to TSV for further work. Many default values are assumed, and the score is returned, not saved.''' beg_time = time.time() most_sim_lists = find_ranked_qa_lists_verbose(quandas, exclude_self=True, q_weight=q_weight, sim_func=sim_func, max_count=max_count, min_sim_val=min_sim_val) score = score_most_sim_lists(quandas, most_sim_lists) save_most_sim_qa_lists_tsv(quandas, path, most_sim_lists, min_sim_val=min_sim_val, sort_most_sim=sort_most_sim) seconds = time.time() - beg_time print("match_tat(size=%d, count=%d) took %.1f seconds; score %.4f" % (len(quandas), max_count, seconds, score)) return score, most_sim_lists ############################################################################### # >>> quandas = sc.csv_read_qa("simsilver.tsv", delimiter="\t") # >>> score, msl = sn.match_tat(quandas, "simlists_sort.tsv", min_sim_val=0.00) # Finding all similarity lists (size=309, count=6) took 218.1 seconds # match_tat(size=309, count=6) took 218.1 seconds; score 0.5941 ############################################################################### def test_fair(): '''test similariy of QA pairs containing many stop words, including "fair"''' fair = qa_csv.csv_read_qa('fair.txt', delimiter='\t') score = match_tat(fair) print("match_tat(fair) => %.3f" % score) if __name__ == '__main__': test_fair()
lgpl-3.0
ArnaudKOPP/BioREST
BioREST/Psicquic.py
1
40457
# coding=utf-8 """ Interface to the PSICQUIC web service .. topic:: What is PSICQUIC ? :URL: http://code.google.com/p/psicquic/ :REST: http://code.google.com/p/psicquic/wiki/PsicquicSpec_1_3_Rest .. highlights:: "PSICQUIC is an effort from the HUPO Proteomics Standard Initiative (HUPO-PSI) to standardise the access to molecular interaction databases programmatically. The PSICQUIC View web interface shows that PSICQUIC provides access to 25 active service " -- Dec 2012 About queries ================ The idea behind PSICQUIC is to retrieve information related to protein interactions from various databases. Note that protein interactions does not necesseraly mean protein-protein interactions. In order to be effective, the query format has been standarised. To do a search you can use the Molecular Interaction Query Language which is based on Lucene's syntax. Here are some rules * Use OR or space ' ' to search for ANY of the terms in a field * Use AND if you want to search for those interactions where ALL of your terms are found * Use quotes (") if you look for a specific phrase (group of terms that must be searched together) or terms containing special characters that may otherwise be interpreted by our query engine (eg. ':' in a GO term) * Use parenthesis for complex queries (e.g. '(XXX OR YYY) AND ZZZ') * Wildcards (`*`,?) can be used between letters in a term or at the end of terms to do fuzzy queries, but never at the beginning of a term. * Optionally, you can prepend a symbol in front of your term. * + (plus): include this term. Equivalent to AND. e.g. +P12345 * - (minus): do not include this term. Equivalent to NOT. e.g. -P12345 * Nothing in front of the term. Equivalent to OR. e.g. P12345 * Implicit fields are used when no field is specified (simple search). For instance, if you put 'P12345' in the simple query box, this will mean the same as identifier:P12345 OR pubid:P12345 OR pubauth:P12345 OR species:P12345 OR type:P12345 OR detmethod:P12345 OR interaction_id:P12345 About the MITAB output ========================= The output returned by a query contains a list of entries. Each entry is formatted following the MITAB output. Here below are listed the name of the field returned ordered as they would appear in one entry. The first item is always idA whatever version of MITAB is used. The version 25 of MITAB contains the first 15 fields in the table below. Newer version may incude more fields but always include the 15 from MITAB 25 in the same order. See the link from **irefindex** `about mitab <http://irefindex.uio.no/wiki/README_MITAB2.6_for_iRefIndex_8.0#What_each_line_represents>`_ for more information. =============== =========================================== =============== ====================== Field Name Searches on Implicit* Example =============== =========================================== =============== ====================== idA Identifier A No idA:P74565 idB Identifier B No idB:P74565 id Identifiers (A or B) No id:P74565 alias Aliases (A or B) No alias:(KHDRBS1 HCK) identifiers Identifiers and Aliases undistinctively Yes identifier:P74565 pubauth Publication 1st author(s) Yes pubauth:scott pubid Publication Identifier(s) OR Yes pubid:(10837477 12029088) taxidA Tax ID interactor A: the tax ID or the species name No taxidA:mouse taxidB Tax ID interactor B: the tax ID or species name No taxidB:9606 species Species. Tax ID A or Tax ID B Yes species:human type Interaction type(s) Yes type:"physical interaction" detmethod Interaction Detection method(s) Yes detmethod:"two hybrid*" interaction_id Interaction identifier(s) Yes interaction_id:EBI-761050 pbioroleA Biological role A Yes pbioroleA:ancillary pbioroleB Biological role B Yes pbioroleB:"MI:0684" pbiorole Biological roles (A or B) Yes pbiorole:enzyme ptypeA Interactor type A Yes ptypeA:protein ptypeB Interactor type B Yes ptypeB:"gene" ptype Interactor types (A or B) Yes pbiorole:"small molecule" pxrefA Interactor xref A (or Identifier A) Yes pxrefA:"GO:0003824" pxrefB Interactor xref B (or Identifier B) Yes pxrefB:"GO:0003824" pxref Interactor xrefs (A or B or Identifier A or Identifier B) Yes pxref:"catalytic activity" xref Interaction xrefs (or Interaction identifiers) Yes xref:"nuclear pore" annot Interaction annotations and tags Yes annot:"internally curated" udate Update date Yes udate:[20100101 TO 20120101] negative Negative interaction boolean Yes negative:true complex Complex expansion Yes complex:"spoke expanded" ftypeA Feature type of participant A Yes ftypeA:"sufficient to bind" ftypeB Feature type of participant B Yes ftypeB:mutation ftype Feature type of participant A or B Yes ftype:"binding site" pmethodA Participant identification method A Yes pmethodA:"western blot" pmethodB Participant identification method B Yes pmethodB:"sequence tag identification" pmethod Participant identification methods (A or B) Yes pmethod:immunostaining stc Stoichiometry (A or B). Only true or false, just to be able to filter interaction having stoichiometry available Yes stc:true param Interaction parameters. Only true or false, just to be able to filter interaction having parameters available Yes param:true =============== =========================================== =============== ====================== # #### Psicquic REST TEST # from BioREST import PSICQUIC # p = PSICQUIC() # p.print_status(full=True) # print(p.activeDBs) # p.retrieve("intact", "brca2", "tab27") # p.retrieve("intact", "zap70", "xml25") # p.retrieve("matrixdb", "*", "xml25") # print(p.retrieve("string", "species:10090", firstresult=0, maxresults=100, output="tab25")) # print(p.retrieve("biogrid", "ZAP70")) # print(p.retrieve("biogrid", "ZAP70 AND species:10090")) # res = p.retrieve("intact", "zap70") # for x in res: # print(x) # print(p.get_db_properties('intact')) # print(p.retrive_all("ZAP70 AND species:9606")) """ __author__ = "Arnaud KOPP" __copyright__ = "© 2015-2016 KOPP Arnaud All Rights Reserved" __credits__ = ["KOPP Arnaud"] __license__ = "GNU GPL V3.0" __maintainer__ = "Arnaud KOPP" __email__ = "[email protected]" __status__ = "Production" import logging from BioREST.Service import REST, check_param_in_list, RestServiceError from BioREST.Uniprot import Uniprot log = logging.getLogger(__name__) class Psicquic(REST): """ Interface to the `PSICQUIC service This service provides a common interface to more than 25 other services related to protein. So, we won't detail all the possiblity of this service. Here is an example that consists of looking for interactors of the protein ZAP70 within the IntAct database:: s = PSICQUIC() res = s.query("intact", "zap70") len(res) # there are 11 interactions found 11 for x in res[1]: print(x) uniprotkb:O95169 uniprotkb:P43403 intact:EBI-716238 intact:EBI-1211276 psi-mi:ndub8_human(display_long)|uniprotkb:NADH-ubiquinone oxidoreductase ASHI Here we have a list of entries. There are 15 of them (depending on the *output* parameter). The meaning of the entries is described on PSICQUIC website: https://code.google.com/p/psicquic/wiki/MITAB25Format . In short: #. Unique identifier for interactor A #. Unique identifier for interactor B. #. Alternative identifier for interactor A, for example the official gene #. Alternative identifier for interactor B. #. Aliases for A, separated by "| #. Aliases for B. #. Interaction detection methods, taken from the corresponding PSI-MI #. First author surname(s) of the publication(s) #. Identifier of the publication #. NCBI Taxonomy identifier for interactor A. #. NCBI Taxonomy identifier for interactor B. #. Interaction types, #. Source databases and identifiers, #. Interaction identifier(s) i #. Confidence score. Denoted as scoreType:value. Another example with reactome database:: res = s.query("reactome", "Q9Y266") .. warning:: PSICQUIC gives access to 25 other services. We cannot create a dedicated parsing for all of them. So, the ::`query` method returns the raw data. Addition class may provide dedicated parsing in the future. """ _formats = ["tab25", "tab26", "tab27", "xml25", "count", "biopax", "xgmml", "rdf-xml", "rdf-xml-abbrev", "rdf-n3", "rdf-turtle"] # note the typo in "genbank indentifier from bind DB _mapping_uniprot = {"genbank indentifier": "P_GI", 'entrezgene/locuslink': "P_ENTREZGENEID", 'uniprotkb': "ACC+ID", 'rcsb pdb': "PDB_ID", 'ensembl': "ENSEMBL_ID", 'refseq': "P_REFSEQ_AC", 'hgnc': 'HGNC_ID', "kegg": "KEGG_ID", "entrez gene/locuslink": "P_ENTREZGENEID", "chembl": "CHEMBL_ID", "ddbj/embl/genbank": "EMBL_ID", "dip": "DIP_ID", "ensemblgenomes": "ENSEMBLGENOME_ID", "omim": "MIM_ID", "chebi": None, "intact": None} _retrieve_methods = ['interactor', 'interaction', 'query'] def __init__(self): """ Constructor import PSICQUIC s = PSICQUIC() """ super(Psicquic, self).__init__("PSICQUIC", url='http://www.ebi.ac.uk/Tools/webservices/psicquic') self._registry = None try: self.uniprot = Uniprot() except: log.warning("UniProt service can't be initialised, needed for some parts") self.buffer = {} def _get_formats(self): return Psicquic._formats formats = property(_get_formats, doc="Returns the possible output formats") def _get_active_db(self): names = self.registry_names[:] actives = self.registry_actives[:] names = [x.lower() for x, y in zip(names, actives) if y == "true"] return names activeDBs = property(_get_active_db, doc="returns the active DBs only") def read_registry(self): """ Reads and returns the active registry """ url = 'registry/registry?action=ACTIVE&format=txt' res = self.http_get(url, frmt='txt') return res.split() def print_status(self, full=False): """ Prints the services that are available :param full: print full information :return: Nothing The output is tabulated. The columns are: * names * active * count * version * rest URL * rest example * restricted """ names = self.registry_names counts = self.registry_counts versions = self.registry_versions actives = self.registry_actives resturls = self.registry_resturls restricted = self.registry_restricted n = len(names) for i in range(0, n): if not full: print("{0:15} {1:15} {2:15} {3}".format(names[i], actives[i], counts[i], versions[i])) else: print("%s\t %s\t %s\t %s\t %s \t %s\n" % (names[i], actives[i], counts[i], versions[i], resturls[i], restricted[i])) def __get_rest_url(self, service): """ Get the base REST url for the service :param service: service name :return: REST url """ names = [x.lower() for x in self.registry_names] try: index = names.index(service) except ValueError: raise ValueError("The service you gave (%s) is not registered. See self.registery_names" % service) return self.registry_resturls[index] def get_db_properties(self, service): """ Get db properties for the service :param service: :return: """ resturl = self.__get_rest_url(service) url = resturl + 'properties' res = self.http_get(url, frmt="txt") if res is not None: res = res.strip().split("\n") return res def get_all_db_properties(self, service=None): """ Get db properties for services :param service: :return: :raise ValueError: """ results = {} if service is None: service = [x.lower() for x in self.activeDBs] for x in service: if x not in self.activeDBs: raise ValueError("database %s not in active databases" % x) for name in service: log.warning("Querying %s" % name) res = self.get_db_properties(name) results[name] = res for name in service: log.info("Found %s in %s" % (len(results[name]), name)) return results def get_db_formats(self, service): """ Get db format for the service :param service: :return: """ resturl = self.__get_rest_url(service) url = resturl + 'formats' res = self.http_get(url, frmt="txt") if res is not None: res = res.strip().split("\n") return res def get_all_db_formats(self, service=None): """ Get db formats for services :param service: :return: :raise ValueError: """ results = {} if service is None: service = [x.lower() for x in self.activeDBs] for x in service: if x not in self.activeDBs: raise ValueError("database %s not in active databases" % x) for name in service: log.warning("Querying %s" % name) res = self.get_db_formats(name) results[name] = res for name in service: log.info("Found %s in %s" % (len(results[name]), name)) return results def get_db_version(self, service): """ Get db version for the service :param service: :return: """ resturl = self.__get_rest_url(service) url = resturl + 'version' res = self.http_get(url, frmt="txt") if res is not None: res = res.strip().split("\n") return res def get_all_db_version(self, service=None): """ Get db version for all services :param service: :return: :raise ValueError: """ results = {} if service is None: service = [x.lower() for x in self.activeDBs] for x in service: if x not in self.activeDBs: raise ValueError("database %s not in active databases" % x) for name in service: log.warning("Querying %s" % name) res = self.get_db_version(name) results[name] = res for name in service: log.info("Found %s in %s" % (len(results[name]), name)) return results def _get_registry(self): if self._registry is None: url = 'registry/registry?action=STATUS&format=xml' res = self.http_get(url, frmt="xml") res = self.easyXML(res) self._registry = res return self._registry registry = property(_get_registry, doc="returns the registry of psicquic") def _get_registry_names(self): res = self.registry return [x.findAll('name')[0].text for x in res.findAll("service")] registry_names = property(_get_registry_names, doc="returns all services available (names)") def _get_registry_restricted(self): res = self.registry return [x.findAll('restricted')[0].text for x in res.findAll("service")] registry_restricted = property(_get_registry_restricted, doc="returns restricted status of services") def _get_registry_resturl(self): res = self.registry data = [x.findAll('resturl')[0].text for x in res.findAll("service")] return data registry_resturls = property(_get_registry_resturl, doc="returns URL of REST services") def _get_registry_active(self): res = self.registry return [x.findAll('active')[0].text for x in res.findAll("service")] registry_actives = property(_get_registry_active, doc="returns active state of each service") def _get_registry_count(self): res = self.registry return [x.findAll('count')[0].text for x in res.findAll("service")] registry_counts = property(_get_registry_count, doc="returns number of entries in each service") def _get_registry_version(self): res = self.registry names = [x.findAll('name')[0].text for x in res.findAll("service")] n = len(names) version = [0] * n for i in range(0, n): x = res.findAll("service")[i] if x.findAll("version"): version[i] = x.findAll("version")[0].text else: version[i] = None return version registry_versions = property(_get_registry_version, doc="returns version of each service") @staticmethod def _convert_tab2dict(data): """ https://code.google.com/p/psicquic/wiki/MITAB26Format """ results = [] for line in data: results.append(line.split("\t")) return results def retrieve(self, service, query, methods='query', output="tab25", firstresult=None, maxresults=None, compressed=True): """ Send a query to a specific database :param methods: interation , interactor or query :param maxresults: max results :param firstresult: pos of first result :param str service: a registered service. See :attr:`registry_names`. :param str query: a valid query. Can be `*` or a protein name. :param str output: a valid format. See s._formats :param compressed: gzipped or not data, speedup and requests unzipped auto s.query("intact", "brca2", "tab27") s.query("intact", "zap70", "xml25") s.query("matrixdb", "*", "xml25") This is the programmatic approach to this website: http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml Another example consist in accessing the *string* database for fetching protein-protein interaction data of a particular model organism. Here we restrict the query to 100 results:: s.query("string", "species:10090", firstResult=0, maxResults=100, output="tab25") # spaces are automatically converted s.query("biogrid", "ZAP70 AND species:9606") warning:: AND must be in big caps. Some database are ore permissive than other (e.g., intact accepts "and"). species must be a valid ID number. Again, some DB are more permissive and may accept the name (e.g., human) To obtain the number of interactions in intact for the human specy:: len(p.query("intact", "species:9606")) """ if methods not in self._retrieve_methods: raise ValueError("Retrieve methods {} don't exists".format(methods)) if service not in self.activeDBs: raise ValueError("database %s not in active databases" % service) params = {} if output is not None: check_param_in_list(output, self.formats) params['format'] = output else: output = "none" resturl = self.__get_rest_url(service) if firstresult is not None: params['firstResult'] = firstresult if maxresults is not None: params['maxResults'] = maxresults if compressed: params['compressed'] = 'y' url = resturl + 'query/' + query if "xml" in output: res = self.http_get(url, frmt="xml", params=params) else: res = self.http_get(url, frmt="txt", params=params) if res is not None: res = res.strip().split("\n") if output.startswith("tab"): if res is not None: res = self._convert_tab2dict(res) return res def retrieve_all(self, query, methods='query', databases=None, output="tab25", firstresult=None, maxresults=None, compressed=True): """ Same as query but runs on all active database :param methods: interation , interactor or query :param maxresults: max results :param firstresult: pos of first result :param output: a valid format. See s._formats :param query: a valid query. Can be `*` or a protein name. :param list databases: database to query. Queries all active DB if not provided :param compressed: gzipped or not data, speedup and requests unzipped auto :return: dictionary where keys correspond to databases and values to the output of the query. res = s.queryAll("ZAP70 AND species:9606") """ if methods not in self._retrieve_methods: raise ValueError("Retrieve methods {} don't exists".format(methods)) results = {} if databases is None: databases = [x.lower() for x in self.activeDBs] for x in databases: if x not in self.activeDBs: raise ValueError("database %s not in active databases" % x) for name in databases: try: res = self.retrieve(service=name, query=query, methods=methods, output=output, firstresult=firstresult, maxresults=maxresults, compressed=compressed) if output.startswith("tab25"): results[name] = [x for x in res if x != [""]] else: import copy results[name] = copy.copy(res) log.info("Found %s items in %s" % (len(results[name]), name)) except RestServiceError: log.warning("Service {} unavailable".format(name)) return results def count_interaction(self, query): """ Returns a dictionary with database as key and results as values :param str query: a valid query :return: a dictionary which key as database and value as number of entries Consider only the active database. """ activedbs = self.activeDBs[:] res = [(str(name), int(self.query(name, query, output="count")[0])) for name in activedbs] return dict(res) @staticmethod def get_name(data): """ :param data: :return: """ idsa = [x[0] for x in data] idsb = [x[1] for x in data] return idsa, idsb def know_name(self, data): """ Scan all entries (MITAB) and returns simplified version Each item in the input list of mitab entry The output is made of 2 lists corresponding to interactor A and B found in the mitab entries. :param data: elements in the input list takes the following forms:: DB1:ID1|DB2:ID2 DB3:ID3 The | sign separates equivalent IDs from different databases. We want to keep only one. The first known databae is kept. If in the list of DB:ID pairs no known database is found, then we keep the first one whatsover. known databases are those available in the uniprot mapping tools. chembl and chebi IDs are kept unchanged. """ log.info("converting data into known names") idsa = [x[0].replace("\"", "") for x in data] idsb = [x[1].replace("\"", "") for x in data] # extract the first and second ID but let us check if it is part of a # known uniprot mapping.Otherwise no conversion will be possible. # If so, we set the ID to "unknown" # remove the " character that can be found in a few cases (e.g, # chebi:"CHEBI:29036") # idsA = [x.replace("chebi:CHEBI:","chebi:") for x in idsA] # idsB = [x.replace("chebi:CHEBI:", "chebi:") for x in idsB] # special case: # in mint, there is an entry that ends with a | uniprotkb:P17844| idsa = [x.strip("|") for x in idsa] idsb = [x.strip("|") for x in idsb] # the first ID for i, entry in enumerate(idsa): try: dbs = [x.split(":")[0] for x in entry.split("|")] ids = [x.split(":")[1] for x in entry.split("|")] valid_dbs = [(db, ID) for db, ID in zip(dbs, ids) if db in self._mapping_uniprot.keys()] # search for an existing DB if len(valid_dbs) >= 1: idsa[i] = valid_dbs[0][0] + ":" + valid_dbs[0][1] else: log.warning("None of the DB for this entry (%s) are available" % entry) idsa[i] = "?" + dbs[0] + ":" + ids[0] except: log.warning("Could not extract name from %s" % entry) idsa[i] = "??:" + entry # we add a : so that we are sure that a split(":") will work # the second ID for i, entry in enumerate(idsb): try: dbs = [x.split(":")[0] for x in entry.split("|")] ids = [x.split(":")[1] for x in entry.split("|")] valid_dbs = [(db, ID) for db, ID in zip(dbs, ids) if db in self._mapping_uniprot.keys()] # search for an existing DB if len(valid_dbs) >= 1: idsb[i] = valid_dbs[0][0] + ":" + valid_dbs[0][1] else: log.warning("None of the DB (%s) for this entry are available" % entry) idsb[i] = "?" + dbs[0] + ":" + ids[0] except: log.warning("Could not extract name from %s" % entry) idsb[i] = "??:" + entry counta = len([x for x in idsa if x.startswith("?")]) countb = len([x for x in idsb if x.startswith("?")]) if counta + countb > 0: print(" %s ids out of %s were not identified" % (counta + countb, len(idsa) * 2)) print(set([x.split(":")[0] for x in idsa if x.startswith("?")])) print(set([x.split(":")[0] for x in idsb if x.startswith("?")])) log.info("\033[0;33m[WARNING]\033[0m knownName done") return idsa, idsb @staticmethod def pre_cleaning(data): """ remove entries ehre IdA or IdB is set to "-" :param data: """ ret = [x for x in data if x[0] != "-" and x[1] != "-"] return ret def post_cleaning_all(self, data, keep_only="HUMAN", flatten=True, verbose=True): """ even more cleaing by ignoring score, db and interaction len(set([(x[0],x[1]) for x in retnew])) :param verbose: :param flatten: :param keep_only: :param data: """ results = {} for k in data.keys(): log.warning("Post cleaning %s" % k) ret = self.post_cleaning(data[k], keep_only="HUMAN", verbose=verbose) if len(ret): results[k] = ret if flatten: results = [x for k in results.keys() for x in results[k]] return results @staticmethod def post_cleaning(data, keep_only="HUMAN", remove_db=["chebi", "chembl"], keep_self_loop=False): """ Remove entries with a None and keep only those with the keep pattern :param verbose: :param keep_self_loop: :param remove_db: :param keep_only: :param data: """ log.info("Before removing anything: ", len(data)) data = [x for x in data if x[0] is not None and x[1] is not None] log.info("After removing the None: ", len(data)) data = [x for x in data if x[0].startswith("!") is False and x[1].startswith("!") is False] log.info("After removing the !: ", len(data)) for db in remove_db: data = [x for x in data if x[0].startswith(db) is False] data = [x for x in data if x[1].startswith(db) is False] log.info("After removing entries that match %s : " % db, len(data)) data = [x for x in data if keep_only in x[0] and keep_only in x[1]] log.info("After removing entries that don't match %s : " % keep_only, len(data)) if keep_self_loop is False: data = [x for x in data if x[0] != x[1]] log.info("After removing self loop : ", len(data)) data = list(set(data)) log.info("After removing identical entries", len(data)) return data def convert_all(self, data): """ :param data: :return: """ results = {} for k in data.keys(): log.info("Analysing %s" % k) results[k] = self.convert(data[k], db=k) return results def convert(self, data, db=None): """ :param data: :param db: :return: """ log.info("Converting the database %s" % db) idsa, idsb = self.know_name(data) mapping = self.mapping_one_db(data) results = [] for i, entry in enumerate(data): x = idsa[i].split(":", 1)[1] y = idsb[i].split(":", 1)[1] xp = mapping[x] yp = mapping[y] try: ref = entry[8] except: ref = "?" try: score = entry[14] except: score = "?" try: interaction = entry[11] except: interaction = "?" results.append((xp, yp, score, interaction, ref, db)) return results def mapping_one_db(self, data): """ :param data: """ query = {} log.info("Converting IDs with proper DB name (knownName function)") entriesa, entriesb = self.know_name(data) # idsA and B contains list of a single identifier of the form db:id # the db is known from _mapping.uniprot otherwise it is called "unknown" # get unique DBs to build the query dictionary dbsa = [x.split(":")[0] for x in entriesa] dbsb = [x.split(":")[0] for x in entriesb] for x in set(dbsa): query[x] = set() for x in set(dbsb): query[x] = set() for k in query.keys(): if k.startswith("?"): del query[k] # the data to store mapping = {} n = len(data) # scan all entries counter = 0 for entryA, entryB in zip(entriesa, entriesb): counter += 1 dba, ida = entryA.split(":") try: dbb, idb = entryB.split(":") except: print(entryB) if ida not in mapping.keys(): if dba.startswith("?"): mapping[ida] = entryA else: query[dba].add(ida) if idb not in mapping.keys(): if dbb.startswith("?"): mapping[idb] = entryB else: query[dbb].add(idb) for k in query.keys(): if len(query[k]) > 2000 or counter == n: this_query = list(query[k]) dbname = self._mapping_uniprot[k] if dbname is not None: log.info("Request sent to uniprot for %s database (%s/%s)" % (dbname, counter, n)) res = self.uniprot.mapping(fr=dbname, to="ID", query=" ".join(this_query)) for x in this_query: if x not in res: # was not found mapping[x] = "!" + k + ":" + x else: # we should be here since the queries are populated # if not already in the mapping dictionary if x not in res.keys(): raise ValueError(x) if len(res[x]) == 1: mapping[x] = res[x][0] else: log.info("Psicquic mapping found more than 1 id. keep first one") mapping[x] = res[x][0] else: for x in this_query: mapping[x] = k + ":" + x query[k] = set() for k in query.keys(): assert len(query[k]) == 0 return mapping def __str__(self): txt = self._get_active_db() return txt class AppsPPI(object): """ This is an application based on PPI that search for relevant interactions Interctions between proteins may have a score provided by each database. However, scores are sometimes ommited. Besides, they may have different meaning for different databases. Another way to score an interaction is to count in how many database it is found. This class works as follows. First, you query a protein: p = AppsPPI() p.query("ZAP70 AND species:9606") This, is going to call the PSICQUIC queryAll method to send this query to all active databases. Then, it calls the convertAll functions to convert all interactors names into uniprot name if possible. If not, interactions are not taken into account. Finally, it removes duplicated and performs some cleaning inside the postCleaningall method. Then, you can call the summary method that counts the interactions. The count is stored in the attribute relevant_interactions. p.summary() Let us see how many interactions where found with. THe number of databases that contains at least one interactions is p.N p.relevant_interactions[N] [['ZAP70_HUMAN', 'DBNL_HUMAN']] So, there was 1 interaction found in all databases. """ def __init__(self, verbose=False): self.psicquic = Psicquic() self.verbose = verbose self.counter = None self.relevant_interactions = None self.interactions = {} self.N = None self.results_query = None def query_all(self, query, databases=None): """ :param str query: a valid query. :param str databases: by default, queries are sent to each active database. you can overwrite this behavious by providing your own list of databases :return: nothing but the interactions attributes is populated with a dictionary where keys correspond to each database that returned a non empty list of interactions. The item for each key is a list of interactions containing the interactors A and B, the score, the type of interactions and the score. """ # self.results_query = self.psicquic.queryAll("ZAP70 AND species:9606") log.warning("Requests sent to psicquic. Can take a while, please be patient...") self.results_query = self.psicquic.retrieve_all(query, databases) self.interactions = self.psicquic.convert_all(self.results_query) self.interactions = self.psicquic.post_cleaning_all(self.interactions, flatten=False, verbose=self.verbose) self.N = len(self.interactions.keys()) self.counter = {} self.relevant_interactions = {} def summary(self): """ Build some summary related to the found interactions from queryAll :return: nothing but the relevant_interactions and counter attribute p = AppsPPI() p.queryAll("ZAP70 AND species:9606") p.summary() """ for k, v in self.interactions.items(): log.info("Found %s interactions within %s database" % (len(v), k)) counter = {} for k in self.interactions.keys(): # scan each dabase for v in self.interactions[k]: interaction = v[0] + "++" + v[1] db = v[5] if interaction in counter.keys(): counter[interaction].append(db) else: counter[interaction] = [db] for k in counter.keys(): counter[k] = list(set(counter[k])) n = len(self.interactions.keys()) print("-------------") summ = {} for i in range(1, n + 1): res = [(x.split("++"), counter[x]) for x in counter.keys() if len(counter[x]) == i] log.info("Found %s interactions in %s common databases" % (len(res), i)) res = [x.split("++") for x in counter.keys() if len(counter[x]) == i] if len(res): summ[i] = [x for x in res] else: summ[i] = [] self.counter = counter.copy() self.relevant_interactions = summ.copy() def get_reference(self, ida, idb): """ :param ida: :param idb: """ key = ida + "++" + idb uniq = len(self.counter[key]) ret = [x for k in self.interactions.keys() for x in self.interactions[k] if x[0] == ida and x[1] == idb] N = len(ret) log.info("Interactions %s -- %s has %s entries in %s databases (%s):" % (ida, idb, N, uniq, self.counter[key])) for r in ret: print(r[5], " reference", r[4]) def show_pie(self): """ a simple example to demonstrate how to visualise number of interactions found in various databases """ try: from pylab import pie, clf, title, show, legend except ImportError: raise ImportError("You must install pylab/matplotlib to use this functionality") labels = range(1, self.N + 1) print(labels) counting = [len(self.relevant_interactions[i]) for i in labels] clf() # pie(counting, labels=[str(int(x)) for x in labels], shadow=True) pie(counting, labels=[str(x) for x in counting], shadow=True) title("Number of interactions found in N databases") legend([str(x) + " database(s)" for x in labels]) show()
gpl-3.0
anntzer/scikit-learn
examples/inspection/plot_linear_model_coefficient_interpretation.py
9
23016
""" ================================================================== Common pitfalls in interpretation of coefficients of linear models ================================================================== In linear models, the target value is modeled as a linear combination of the features (see the :ref:`linear_model` User Guide section for a description of a set of linear models available in scikit-learn). Coefficients in multiple linear models represent the relationship between the given feature, :math:`X_i` and the target, :math:`y`, assuming that all the other features remain constant (`conditional dependence <https://en.wikipedia.org/wiki/Conditional_dependence>`_). This is different from plotting :math:`X_i` versus :math:`y` and fitting a linear relationship: in that case all possible values of the other features are taken into account in the estimation (marginal dependence). This example will provide some hints in interpreting coefficient in linear models, pointing at problems that arise when either the linear model is not appropriate to describe the dataset, or when features are correlated. We will use data from the `"Current Population Survey" <https://www.openml.org/d/534>`_ from 1985 to predict wage as a function of various features such as experience, age, or education. .. contents:: :local: :depth: 1 """ print(__doc__) import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # %% # The dataset: wages # ------------------ # # We fetch the data from `OpenML <http://openml.org/>`_. # Note that setting the parameter `as_frame` to True will retrieve the data # as a pandas dataframe. from sklearn.datasets import fetch_openml survey = fetch_openml(data_id=534, as_frame=True) # %% # Then, we identify features `X` and targets `y`: the column WAGE is our # target variable (i.e., the variable which we want to predict). # X = survey.data[survey.feature_names] X.describe(include="all") # %% # Note that the dataset contains categorical and numerical variables. # We will need to take this into account when preprocessing the dataset # thereafter. X.head() # %% # Our target for prediction: the wage. # Wages are described as floating-point number in dollars per hour. y = survey.target.values.ravel() survey.target.head() # %% # We split the sample into a train and a test dataset. # Only the train dataset will be used in the following exploratory analysis. # This is a way to emulate a real situation where predictions are performed on # an unknown target, and we don't want our analysis and decisions to be biased # by our knowledge of the test data. from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, random_state=42 ) # %% # First, let's get some insights by looking at the variable distributions and # at the pairwise relationships between them. Only numerical # variables will be used. In the following plot, each dot represents a sample. # # .. _marginal_dependencies: train_dataset = X_train.copy() train_dataset.insert(0, "WAGE", y_train) _ = sns.pairplot(train_dataset, kind='reg', diag_kind='kde') # %% # Looking closely at the WAGE distribution reveals that it has a # long tail. For this reason, we should take its logarithm # to turn it approximately into a normal distribution (linear models such # as ridge or lasso work best for a normal distribution of error). # # The WAGE is increasing when EDUCATION is increasing. # Note that the dependence between WAGE and EDUCATION # represented here is a marginal dependence, i.e., it describes the behavior # of a specific variable without keeping the others fixed. # # Also, the EXPERIENCE and AGE are strongly linearly correlated. # # .. _the-pipeline: # # The machine-learning pipeline # ----------------------------- # # To design our machine-learning pipeline, we first manually # check the type of data that we are dealing with: survey.data.info() # %% # As seen previously, the dataset contains columns with different data types # and we need to apply a specific preprocessing for each data types. # In particular categorical variables cannot be included in linear model if not # coded as integers first. In addition, to avoid categorical features to be # treated as ordered values, we need to one-hot-encode them. # Our pre-processor will # # - one-hot encode (i.e., generate a column by category) the categorical # columns; # - as a first approach (we will see after how the normalisation of numerical # values will affect our discussion), keep numerical values as they are. from sklearn.compose import make_column_transformer from sklearn.preprocessing import OneHotEncoder categorical_columns = ['RACE', 'OCCUPATION', 'SECTOR', 'MARR', 'UNION', 'SEX', 'SOUTH'] numerical_columns = ['EDUCATION', 'EXPERIENCE', 'AGE'] preprocessor = make_column_transformer( (OneHotEncoder(drop='if_binary'), categorical_columns), remainder='passthrough' ) # %% # To describe the dataset as a linear model we use a ridge regressor # with a very small regularization and to model the logarithm of the WAGE. from sklearn.pipeline import make_pipeline from sklearn.linear_model import Ridge from sklearn.compose import TransformedTargetRegressor model = make_pipeline( preprocessor, TransformedTargetRegressor( regressor=Ridge(alpha=1e-10), func=np.log10, inverse_func=sp.special.exp10 ) ) # %% # Processing the dataset # ---------------------- # # First, we fit the model. _ = model.fit(X_train, y_train) # %% # Then we check the performance of the computed model plotting its predictions # on the test set and computing, # for example, the median absolute error of the model. from sklearn.metrics import median_absolute_error y_pred = model.predict(X_train) mae = median_absolute_error(y_train, y_pred) string_score = f'MAE on training set: {mae:.2f} $/hour' y_pred = model.predict(X_test) mae = median_absolute_error(y_test, y_pred) string_score += f'\nMAE on testing set: {mae:.2f} $/hour' fig, ax = plt.subplots(figsize=(5, 5)) plt.scatter(y_test, y_pred) ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red") plt.text(3, 20, string_score) plt.title('Ridge model, small regularization') plt.ylabel('Model predictions') plt.xlabel('Truths') plt.xlim([0, 27]) _ = plt.ylim([0, 27]) # %% # The model learnt is far from being a good model making accurate predictions: # this is obvious when looking at the plot above, where good predictions # should lie on the red line. # # In the following section, we will interpret the coefficients of the model. # While we do so, we should keep in mind that any conclusion we draw is # about the model that we build, rather than about the true (real-world) # generative process of the data. # # Interpreting coefficients: scale matters # --------------------------------------------- # # First of all, we can take a look to the values of the coefficients of the # regressor we have fitted. feature_names = (model.named_steps['columntransformer'] .named_transformers_['onehotencoder'] .get_feature_names(input_features=categorical_columns)) feature_names = np.concatenate( [feature_names, numerical_columns]) coefs = pd.DataFrame( model.named_steps['transformedtargetregressor'].regressor_.coef_, columns=['Coefficients'], index=feature_names ) coefs # %% # The AGE coefficient is expressed in "dollars/hour per living years" while the # EDUCATION one is expressed in "dollars/hour per years of education". This # representation of the coefficients has the benefit of making clear the # practical predictions of the model: an increase of :math:`1` year in AGE # means a decrease of :math:`0.030867` dollars/hour, while an increase of # :math:`1` year in EDUCATION means an increase of :math:`0.054699` # dollars/hour. On the other hand, categorical variables (as UNION or SEX) are # adimensional numbers taking either the value 0 or 1. Their coefficients # are expressed in dollars/hour. Then, we cannot compare the magnitude of # different coefficients since the features have different natural scales, and # hence value ranges, because of their different unit of measure. This is more # visible if we plot the coefficients. coefs.plot(kind='barh', figsize=(9, 7)) plt.title('Ridge model, small regularization') plt.axvline(x=0, color='.5') plt.subplots_adjust(left=.3) # %% # Indeed, from the plot above the most important factor in determining WAGE # appears to be the # variable UNION, even if our intuition might tell us that variables # like EXPERIENCE should have more impact. # # Looking at the coefficient plot to gauge feature importance can be # misleading as some of them vary on a small scale, while others, like AGE, # varies a lot more, several decades. # # This is visible if we compare the standard deviations of different # features. X_train_preprocessed = pd.DataFrame( model.named_steps['columntransformer'].transform(X_train), columns=feature_names ) X_train_preprocessed.std(axis=0).plot(kind='barh', figsize=(9, 7)) plt.title('Features std. dev.') plt.subplots_adjust(left=.3) # %% # Multiplying the coefficients by the standard deviation of the related # feature would reduce all the coefficients to the same unit of measure. # As we will see :ref:`after<scaling_num>` this is equivalent to normalize # numerical variables to their standard deviation, # as :math:`y = \sum{coef_i \times X_i} = # \sum{(coef_i \times std_i) \times (X_i / std_i)}`. # # In that way, we emphasize that the # greater the variance of a feature, the larger the weight of the corresponding # coefficient on the output, all else being equal. coefs = pd.DataFrame( model.named_steps['transformedtargetregressor'].regressor_.coef_ * X_train_preprocessed.std(axis=0), columns=['Coefficient importance'], index=feature_names ) coefs.plot(kind='barh', figsize=(9, 7)) plt.title('Ridge model, small regularization') plt.axvline(x=0, color='.5') plt.subplots_adjust(left=.3) # %% # Now that the coefficients have been scaled, we can safely compare them. # # .. warning:: # # Why does the plot above suggest that an increase in age leads to a # decrease in wage? Why the :ref:`initial pairplot # <marginal_dependencies>` is telling the opposite? # # The plot above tells us about dependencies between a specific feature and # the target when all other features remain constant, i.e., **conditional # dependencies**. An increase of the AGE will induce a decrease # of the WAGE when all other features remain constant. On the contrary, an # increase of the EXPERIENCE will induce an increase of the WAGE when all # other features remain constant. # Also, AGE, EXPERIENCE and EDUCATION are the three variables that most # influence the model. # # Checking the variability of the coefficients # -------------------------------------------- # # We can check the coefficient variability through cross-validation: # it is a form of data perturbation (related to # `resampling <https://en.wikipedia.org/wiki/Resampling_(statistics)>`_). # # If coefficients vary significantly when changing the input dataset # their robustness is not guaranteed, and they should probably be interpreted # with caution. from sklearn.model_selection import cross_validate from sklearn.model_selection import RepeatedKFold cv_model = cross_validate( model, X, y, cv=RepeatedKFold(n_splits=5, n_repeats=5), return_estimator=True, n_jobs=-1 ) coefs = pd.DataFrame( [est.named_steps['transformedtargetregressor'].regressor_.coef_ * X_train_preprocessed.std(axis=0) for est in cv_model['estimator']], columns=feature_names ) plt.figure(figsize=(9, 7)) sns.stripplot(data=coefs, orient='h', color='k', alpha=0.5) sns.boxplot(data=coefs, orient='h', color='cyan', saturation=0.5) plt.axvline(x=0, color='.5') plt.xlabel('Coefficient importance') plt.title('Coefficient importance and its variability') plt.subplots_adjust(left=.3) # %% # The problem of correlated variables # ----------------------------------- # # The AGE and EXPERIENCE coefficients are affected by strong variability which # might be due to the collinearity between the 2 features: as AGE and # EXPERIENCE vary together in the data, their effect is difficult to tease # apart. # # To verify this interpretation we plot the variability of the AGE and # EXPERIENCE coefficient. # # .. _covariation: plt.ylabel('Age coefficient') plt.xlabel('Experience coefficient') plt.grid(True) plt.xlim(-0.4, 0.5) plt.ylim(-0.4, 0.5) plt.scatter(coefs["AGE"], coefs["EXPERIENCE"]) _ = plt.title('Co-variations of coefficients for AGE and EXPERIENCE ' 'across folds') # %% # Two regions are populated: when the EXPERIENCE coefficient is # positive the AGE one is negative and viceversa. # # To go further we remove one of the 2 features and check what is the impact # on the model stability. column_to_drop = ['AGE'] cv_model = cross_validate( model, X.drop(columns=column_to_drop), y, cv=RepeatedKFold(n_splits=5, n_repeats=5), return_estimator=True, n_jobs=-1 ) coefs = pd.DataFrame( [est.named_steps['transformedtargetregressor'].regressor_.coef_ * X_train_preprocessed.drop(columns=column_to_drop).std(axis=0) for est in cv_model['estimator']], columns=feature_names[:-1] ) plt.figure(figsize=(9, 7)) sns.stripplot(data=coefs, orient='h', color='k', alpha=0.5) sns.boxplot(data=coefs, orient='h', color='cyan', saturation=0.5) plt.axvline(x=0, color='.5') plt.title('Coefficient importance and its variability') plt.xlabel('Coefficient importance') plt.subplots_adjust(left=.3) # %% # The estimation of the EXPERIENCE coefficient is now less variable and # remain important for all models trained during cross-validation. # # .. _scaling_num: # # Preprocessing numerical variables # --------------------------------- # # As said above (see ":ref:`the-pipeline`"), we could also choose to scale # numerical values before training the model. # This can be useful to apply a similar amount regularization to all of them # in the Ridge. # The preprocessor is redefined in order to subtract the mean and scale # variables to unit variance. from sklearn.preprocessing import StandardScaler preprocessor = make_column_transformer( (OneHotEncoder(drop='if_binary'), categorical_columns), (StandardScaler(), numerical_columns), remainder='passthrough' ) # %% # The model will stay unchanged. model = make_pipeline( preprocessor, TransformedTargetRegressor( regressor=Ridge(alpha=1e-10), func=np.log10, inverse_func=sp.special.exp10 ) ) _ = model.fit(X_train, y_train) # %% # Again, we check the performance of the computed # model using, for example, the median absolute error of the model and the R # squared coefficient. y_pred = model.predict(X_train) mae = median_absolute_error(y_train, y_pred) string_score = f'MAE on training set: {mae:.2f} $/hour' y_pred = model.predict(X_test) mae = median_absolute_error(y_test, y_pred) string_score += f'\nMAE on testing set: {mae:.2f} $/hour' fig, ax = plt.subplots(figsize=(6, 6)) plt.scatter(y_test, y_pred) ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red") plt.text(3, 20, string_score) plt.title('Ridge model, small regularization, normalized variables') plt.ylabel('Model predictions') plt.xlabel('Truths') plt.xlim([0, 27]) _ = plt.ylim([0, 27]) # %% # For the coefficient analysis, scaling is not needed this time. coefs = pd.DataFrame( model.named_steps['transformedtargetregressor'].regressor_.coef_, columns=['Coefficients'], index=feature_names ) coefs.plot(kind='barh', figsize=(9, 7)) plt.title('Ridge model, small regularization, normalized variables') plt.axvline(x=0, color='.5') plt.subplots_adjust(left=.3) # %% # We now inspect the coefficients across several cross-validation folds. cv_model = cross_validate( model, X, y, cv=RepeatedKFold(n_splits=5, n_repeats=5), return_estimator=True, n_jobs=-1 ) coefs = pd.DataFrame( [est.named_steps['transformedtargetregressor'].regressor_.coef_ for est in cv_model['estimator']], columns=feature_names ) plt.figure(figsize=(9, 7)) sns.stripplot(data=coefs, orient='h', color='k', alpha=0.5) sns.boxplot(data=coefs, orient='h', color='cyan', saturation=0.5) plt.axvline(x=0, color='.5') plt.title('Coefficient variability') plt.subplots_adjust(left=.3) # %% # The result is quite similar to the non-normalized case. # # Linear models with regularization # --------------------------------- # # In machine-learning practice, Ridge Regression is more often used with # non-negligible regularization. # # Above, we limited this regularization to a very little amount. # Regularization improves the conditioning of the problem and reduces the # variance of the estimates. RidgeCV applies cross validation in order to # determine which value of the regularization parameter (`alpha`) is best # suited for prediction. from sklearn.linear_model import RidgeCV model = make_pipeline( preprocessor, TransformedTargetRegressor( regressor=RidgeCV(alphas=np.logspace(-10, 10, 21)), func=np.log10, inverse_func=sp.special.exp10 ) ) _ = model.fit(X_train, y_train) # %% # First we check which value of :math:`\alpha` has been selected. model[-1].regressor_.alpha_ # %% # Then we check the quality of the predictions. y_pred = model.predict(X_train) mae = median_absolute_error(y_train, y_pred) string_score = f'MAE on training set: {mae:.2f} $/hour' y_pred = model.predict(X_test) mae = median_absolute_error(y_test, y_pred) string_score += f'\nMAE on testing set: {mae:.2f} $/hour' fig, ax = plt.subplots(figsize=(6, 6)) plt.scatter(y_test, y_pred) ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red") plt.text(3, 20, string_score) plt.title('Ridge model, regularization, normalized variables') plt.ylabel('Model predictions') plt.xlabel('Truths') plt.xlim([0, 27]) _ = plt.ylim([0, 27]) # %% # The ability to reproduce the data of the regularized model is similar to # the one of the non-regularized model. coefs = pd.DataFrame( model.named_steps['transformedtargetregressor'].regressor_.coef_, columns=['Coefficients'], index=feature_names ) coefs.plot(kind='barh', figsize=(9, 7)) plt.title('Ridge model, regularization, normalized variables') plt.axvline(x=0, color='.5') plt.subplots_adjust(left=.3) # %% # The coefficients are significantly different. # AGE and EXPERIENCE coefficients are both positive but they now have less # influence on the prediction. # # The regularization reduces the influence of correlated # variables on the model because the weight is shared between the two # predictive variables, so neither alone would have strong weights. # # On the other hand, the weights obtained with regularization are more # stable (see the :ref:`ridge_regression` User Guide section). This # increased stability is visible from the plot, obtained from data # perturbations, in a cross validation. This plot can be compared with # the :ref:`previous one<covariation>`. cv_model = cross_validate( model, X, y, cv=RepeatedKFold(n_splits=5, n_repeats=5), return_estimator=True, n_jobs=-1 ) coefs = pd.DataFrame( [est.named_steps['transformedtargetregressor'].regressor_.coef_ * X_train_preprocessed.std(axis=0) for est in cv_model['estimator']], columns=feature_names ) plt.ylabel('Age coefficient') plt.xlabel('Experience coefficient') plt.grid(True) plt.xlim(-0.4, 0.5) plt.ylim(-0.4, 0.5) plt.scatter(coefs["AGE"], coefs["EXPERIENCE"]) _ = plt.title('Co-variations of coefficients for AGE and EXPERIENCE ' 'across folds') # %% # Linear models with sparse coefficients # -------------------------------------- # # Another possibility to take into account correlated variables in the dataset, # is to estimate sparse coefficients. In some way we already did it manually # when we dropped the AGE column in a previous Ridge estimation. # # Lasso models (see the :ref:`lasso` User Guide section) estimates sparse # coefficients. LassoCV applies cross validation in order to # determine which value of the regularization parameter (`alpha`) is best # suited for the model estimation. from sklearn.linear_model import LassoCV model = make_pipeline( preprocessor, TransformedTargetRegressor( regressor=LassoCV(alphas=np.logspace(-10, 10, 21), max_iter=100000), func=np.log10, inverse_func=sp.special.exp10 ) ) _ = model.fit(X_train, y_train) # %% # First we verify which value of :math:`\alpha` has been selected. model[-1].regressor_.alpha_ # %% # Then we check the quality of the predictions. y_pred = model.predict(X_train) mae = median_absolute_error(y_train, y_pred) string_score = f'MAE on training set: {mae:.2f} $/hour' y_pred = model.predict(X_test) mae = median_absolute_error(y_test, y_pred) string_score += f'\nMAE on testing set: {mae:.2f} $/hour' fig, ax = plt.subplots(figsize=(6, 6)) plt.scatter(y_test, y_pred) ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red") plt.text(3, 20, string_score) plt.title('Lasso model, regularization, normalized variables') plt.ylabel('Model predictions') plt.xlabel('Truths') plt.xlim([0, 27]) _ = plt.ylim([0, 27]) # %% # For our dataset, again the model is not very predictive. coefs = pd.DataFrame( model.named_steps['transformedtargetregressor'].regressor_.coef_, columns=['Coefficients'], index=feature_names ) coefs.plot(kind='barh', figsize=(9, 7)) plt.title('Lasso model, regularization, normalized variables') plt.axvline(x=0, color='.5') plt.subplots_adjust(left=.3) # %% # A Lasso model identifies the correlation between # AGE and EXPERIENCE and suppresses one of them for the sake of the prediction. # # It is important to keep in mind that the coefficients that have been # dropped may still be related to the outcome by themselves: the model # chose to suppress them because they bring little or no additional # information on top of the other features. Additionnaly, this selection # is unstable for correlated features, and should be interpreted with # caution. # # Lessons learned # --------------- # # * Coefficients must be scaled to the same unit of measure to retrieve # feature importance. Scaling them with the standard-deviation of the # feature is a useful proxy. # * Coefficients in multivariate linear models represent the dependency # between a given feature and the target, **conditional** on the other # features. # * Correlated features induce instabilities in the coefficients of linear # models and their effects cannot be well teased apart. # * Different linear models respond differently to feature correlation and # coefficients could significantly vary from one another. # * Inspecting coefficients across the folds of a cross-validation loop # gives an idea of their stability.
bsd-3-clause
cainiaocome/scikit-learn
sklearn/metrics/ranking.py
75
25426
"""Metrics to assess performance on classification task given scores Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy.sparse import csr_matrix from ..utils import check_consistent_length from ..utils import column_or_1d, check_array from ..utils.multiclass import type_of_target from ..utils.fixes import isclose from ..utils.fixes import bincount from ..utils.stats import rankdata from ..utils.sparsefuncs import count_nonzero from .base import _average_binary_score from .base import UndefinedMetricWarning def auc(x, y, reorder=False): """Compute Area Under the Curve (AUC) using the trapezoidal rule This is a general function, given points on a curve. For computing the area under the ROC-curve, see :func:`roc_auc_score`. Parameters ---------- x : array, shape = [n] x coordinates. y : array, shape = [n] y coordinates. reorder : boolean, optional (default=False) If True, assume that the curve is ascending in the case of ties, as for an ROC curve. If the curve is non-ascending, the result will be wrong. Returns ------- auc : float Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> pred = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2) >>> metrics.auc(fpr, tpr) 0.75 See also -------- roc_auc_score : Computes the area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds """ check_consistent_length(x, y) x = column_or_1d(x) y = column_or_1d(y) if x.shape[0] < 2: raise ValueError('At least 2 points are needed to compute' ' area under curve, but x.shape = %s' % x.shape) direction = 1 if reorder: # reorder the data points according to the x axis and using y to # break ties order = np.lexsort((y, x)) x, y = x[order], y[order] else: dx = np.diff(x) if np.any(dx < 0): if np.all(dx <= 0): direction = -1 else: raise ValueError("Reordering is not turned on, and " "the x array is not increasing: %s" % x) area = direction * np.trapz(y, x) return area def average_precision_score(y_true, y_score, average="macro", sample_weight=None): """Compute average precision (AP) from prediction scores This score corresponds to the area under the precision-recall curve. Note: this implementation is restricted to the binary classification task or multilabel classification task. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- average_precision : float References ---------- .. [1] `Wikipedia entry for the Average precision <http://en.wikipedia.org/wiki/Average_precision>`_ See also -------- roc_auc_score : Area under the ROC curve precision_recall_curve : Compute precision-recall pairs for different probability thresholds Examples -------- >>> import numpy as np >>> from sklearn.metrics import average_precision_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> average_precision_score(y_true, y_scores) # doctest: +ELLIPSIS 0.79... """ def _binary_average_precision(y_true, y_score, sample_weight=None): precision, recall, thresholds = precision_recall_curve( y_true, y_score, sample_weight=sample_weight) return auc(recall, precision) return _average_binary_score(_binary_average_precision, y_true, y_score, average, sample_weight=sample_weight) def roc_auc_score(y_true, y_score, average="macro", sample_weight=None): """Compute Area Under the Curve (AUC) from prediction scores Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- auc : float References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ See also -------- average_precision_score : Area under the precision-recall curve roc_curve : Compute Receiver operating characteristic (ROC) Examples -------- >>> import numpy as np >>> from sklearn.metrics import roc_auc_score >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> roc_auc_score(y_true, y_scores) 0.75 """ def _binary_roc_auc_score(y_true, y_score, sample_weight=None): if len(np.unique(y_true)) != 2: raise ValueError("Only one class present in y_true. ROC AUC score " "is not defined in that case.") fpr, tpr, tresholds = roc_curve(y_true, y_score, sample_weight=sample_weight) return auc(fpr, tpr, reorder=True) return _average_binary_score( _binary_roc_auc_score, y_true, y_score, average, sample_weight=sample_weight) def _binary_clf_curve(y_true, y_score, pos_label=None, sample_weight=None): """Calculate true and false positives per binary classification threshold. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification y_score : array, shape = [n_samples] Estimated probabilities or decision function pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fps : array, shape = [n_thresholds] A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps). tps : array, shape = [n_thresholds := len(np.unique(y_score))] An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps). thresholds : array, shape = [n_thresholds] Decreasing score values. """ check_consistent_length(y_true, y_score) y_true = column_or_1d(y_true) y_score = column_or_1d(y_score) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (np.all(classes == [0, 1]) or np.all(classes == [-1, 1]) or np.all(classes == [0]) or np.all(classes == [-1]) or np.all(classes == [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score = y_score[desc_score_indices] y_true = y_true[desc_score_indices] if sample_weight is not None: weight = sample_weight[desc_score_indices] else: weight = 1. # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. # We need to use isclose to avoid spurious repeated thresholds # stemming from floating point roundoff errors. distinct_value_indices = np.where(np.logical_not(isclose( np.diff(y_score), 0)))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] # accumulate the true positives with decreasing threshold tps = (y_true * weight).cumsum()[threshold_idxs] if sample_weight is not None: fps = weight.cumsum()[threshold_idxs] - tps else: fps = 1 + threshold_idxs - tps return fps, tps, y_score[threshold_idxs] def precision_recall_curve(y_true, probas_pred, pos_label=None, sample_weight=None): """Compute precision-recall pairs for different probability thresholds Note: this implementation is restricted to the binary classification task. The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of true positives and ``fp`` the number of false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is negative. The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of true positives and ``fn`` the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples. The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This ensures that the graph starts on the x axis. Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True targets of binary classification in range {-1, 1} or {0, 1}. probas_pred : array, shape = [n_samples] Estimated probabilities or decision function. pos_label : int, optional (default=None) The label of the positive class sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- precision : array, shape = [n_thresholds + 1] Precision values such that element i is the precision of predictions with score >= thresholds[i] and the last element is 1. recall : array, shape = [n_thresholds + 1] Decreasing recall values such that element i is the recall of predictions with score >= thresholds[i] and the last element is 0. thresholds : array, shape = [n_thresholds := len(np.unique(probas_pred))] Increasing thresholds on the decision function used to compute precision and recall. Examples -------- >>> import numpy as np >>> from sklearn.metrics import precision_recall_curve >>> y_true = np.array([0, 0, 1, 1]) >>> y_scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> precision, recall, thresholds = precision_recall_curve( ... y_true, y_scores) >>> precision # doctest: +ELLIPSIS array([ 0.66..., 0.5 , 1. , 1. ]) >>> recall array([ 1. , 0.5, 0.5, 0. ]) >>> thresholds array([ 0.35, 0.4 , 0.8 ]) """ fps, tps, thresholds = _binary_clf_curve(y_true, probas_pred, pos_label=pos_label, sample_weight=sample_weight) precision = tps / (tps + fps) recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) return np.r_[precision[sl], 1], np.r_[recall[sl], 0], thresholds[sl] def roc_curve(y_true, y_score, pos_label=None, sample_weight=None): """Compute Receiver operating characteristic (ROC) Note: this implementation is restricted to the binary classification task. Read more in the :ref:`User Guide <roc_metrics>`. Parameters ---------- y_true : array, shape = [n_samples] True binary labels in range {0, 1} or {-1, 1}. If labels are not binary, pos_label should be explicitly given. y_score : array, shape = [n_samples] Target scores, can either be probability estimates of the positive class or confidence values. pos_label : int Label considered as positive and others are considered negative. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- fpr : array, shape = [>2] Increasing false positive rates such that element i is the false positive rate of predictions with score >= thresholds[i]. tpr : array, shape = [>2] Increasing true positive rates such that element i is the true positive rate of predictions with score >= thresholds[i]. thresholds : array, shape = [n_thresholds] Decreasing thresholds on the decision function used to compute fpr and tpr. `thresholds[0]` represents no instances being predicted and is arbitrarily set to `max(y_score) + 1`. See also -------- roc_auc_score : Compute Area Under the Curve (AUC) from prediction scores Notes ----- Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they correspond to both ``fpr`` and ``tpr``, which are sorted in reversed order during their calculation. References ---------- .. [1] `Wikipedia entry for the Receiver operating characteristic <http://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_ Examples -------- >>> import numpy as np >>> from sklearn import metrics >>> y = np.array([1, 1, 2, 2]) >>> scores = np.array([0.1, 0.4, 0.35, 0.8]) >>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2) >>> fpr array([ 0. , 0.5, 0.5, 1. ]) >>> tpr array([ 0.5, 0.5, 1. , 1. ]) >>> thresholds array([ 0.8 , 0.4 , 0.35, 0.1 ]) """ fps, tps, thresholds = _binary_clf_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight) if tps.size == 0 or fps[0] != 0: # Add an extra threshold position if necessary tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] if fps[-1] <= 0: warnings.warn("No negative samples in y_true, " "false positive value should be meaningless", UndefinedMetricWarning) fpr = np.repeat(np.nan, fps.shape) else: fpr = fps / fps[-1] if tps[-1] <= 0: warnings.warn("No positive samples in y_true, " "true positive value should be meaningless", UndefinedMetricWarning) tpr = np.repeat(np.nan, tps.shape) else: tpr = tps / tps[-1] return fpr, tpr, thresholds def label_ranking_average_precision_score(y_true, y_score): """Compute ranking-based average precision Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of the ratio of true vs. total labels with lower score. This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated to each sample. The obtained score is always strictly greater than 0 and the best value is 1. Read more in the :ref:`User Guide <label_ranking_average_precision>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. Returns ------- score : float Examples -------- >>> import numpy as np >>> from sklearn.metrics import label_ranking_average_precision_score >>> y_true = np.array([[1, 0, 0], [0, 0, 1]]) >>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]]) >>> label_ranking_average_precision_score(y_true, y_score) \ # doctest: +ELLIPSIS 0.416... """ check_consistent_length(y_true, y_score) y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") # Handle badly formated array and the degenerate case with one label y_type = type_of_target(y_true) if (y_type != "multilabel-indicator" and not (y_type == "binary" and y_true.ndim == 2)): raise ValueError("{0} format is not supported".format(y_type)) y_true = csr_matrix(y_true) y_score = -y_score n_samples, n_labels = y_true.shape out = 0. for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): relevant = y_true.indices[start:stop] if (relevant.size == 0 or relevant.size == n_labels): # If all labels are relevant or unrelevant, the score is also # equal to 1. The label ranking has no meaning. out += 1. continue scores_i = y_score[i] rank = rankdata(scores_i, 'max')[relevant] L = rankdata(scores_i[relevant], 'max') out += (L / rank).mean() return out / n_samples def coverage_error(y_true, y_score, sample_weight=None): """Coverage error measure Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the average number of labels in ``y_true`` per sample. Ties in ``y_scores`` are broken by giving maximal rank that would have been assigned to all tied values. Read more in the :ref:`User Guide <coverage_error>`. Parameters ---------- y_true : array, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- coverage_error : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False) y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type != "multilabel-indicator": raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") y_score_mask = np.ma.masked_array(y_score, mask=np.logical_not(y_true)) y_min_relevant = y_score_mask.min(axis=1).reshape((-1, 1)) coverage = (y_score >= y_min_relevant).sum(axis=1) coverage = coverage.filled(0) return np.average(coverage, weights=sample_weight) def label_ranking_loss(y_true, y_score, sample_weight=None): """Compute Ranking loss measure Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of the label set and the number of labels not in the label set. This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best performance is achieved with a ranking loss of zero. Read more in the :ref:`User Guide <label_ranking_loss>`. Parameters ---------- y_true : array or sparse matrix, shape = [n_samples, n_labels] True binary labels in binary indicator format. y_score : array, shape = [n_samples, n_labels] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. sample_weight : array-like of shape = [n_samples], optional Sample weights. Returns ------- loss : float References ---------- .. [1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge discovery handbook (pp. 667-685). Springer US. """ y_true = check_array(y_true, ensure_2d=False, accept_sparse='csr') y_score = check_array(y_score, ensure_2d=False) check_consistent_length(y_true, y_score, sample_weight) y_type = type_of_target(y_true) if y_type not in ("multilabel-indicator",): raise ValueError("{0} format is not supported".format(y_type)) if y_true.shape != y_score.shape: raise ValueError("y_true and y_score have different shape") n_samples, n_labels = y_true.shape y_true = csr_matrix(y_true) loss = np.zeros(n_samples) for i, (start, stop) in enumerate(zip(y_true.indptr, y_true.indptr[1:])): # Sort and bin the label scores unique_scores, unique_inverse = np.unique(y_score[i], return_inverse=True) true_at_reversed_rank = bincount( unique_inverse[y_true.indices[start:stop]], minlength=len(unique_scores)) all_at_reversed_rank = bincount(unique_inverse, minlength=len(unique_scores)) false_at_reversed_rank = all_at_reversed_rank - true_at_reversed_rank # if the scores are ordered, it's possible to count the number of # incorrectly ordered paires in linear time by cumulatively counting # how many false labels of a given score have a score higher than the # accumulated true labels with lower score. loss[i] = np.dot(true_at_reversed_rank.cumsum(), false_at_reversed_rank) n_positives = count_nonzero(y_true, axis=1) with np.errstate(divide="ignore", invalid="ignore"): loss /= ((n_labels - n_positives) * n_positives) # When there is no positive or no negative labels, those values should # be consider as correct, i.e. the ranking doesn't matter. loss[np.logical_or(n_positives == 0, n_positives == n_labels)] = 0. return np.average(loss, weights=sample_weight)
bsd-3-clause
mengyun1993/RNN-binary
history code/rnn_minibatch.py
8
39709
""" Vanilla RNN Parallelizes scan over sequences by using mini-batches. @author Graham Taylor """ import numpy as np import theano import theano.tensor as T from sklearn.base import BaseEstimator import logging import time import os import datetime import cPickle as pickle logger = logging.getLogger(__name__) import matplotlib.pyplot as plt plt.ion() mode = theano.Mode(linker='cvm') #mode = 'DEBUG_MODE' class RNN(object): """ Recurrent neural network class Supported output types: real : linear output units, use mean-squared error binary : binary output units, use cross-entropy error softmax : single softmax out, use cross-entropy error """ def __init__(self, input, n_in, n_hidden, n_out, activation=T.tanh, output_type='real'): self.input = input self.activation = activation self.output_type = output_type self.batch_size = T.iscalar() # theta is a vector of all trainable parameters # it represents the value of W, W_in, W_out, h0, bh, by theta_shape = n_hidden ** 2 + n_in * n_hidden + n_hidden * n_out + \ n_hidden + n_hidden + n_out self.theta = theano.shared(value=np.zeros(theta_shape, dtype=theano.config.floatX)) # Parameters are reshaped views of theta param_idx = 0 # pointer to somewhere along parameter vector # recurrent weights as a shared variable self.W = self.theta[param_idx:(param_idx + n_hidden ** 2)].reshape( (n_hidden, n_hidden)) self.W.name = 'W' W_init = np.asarray(np.random.uniform(size=(n_hidden, n_hidden), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_hidden ** 2 # input to hidden layer weights self.W_in = self.theta[param_idx:(param_idx + n_in * \ n_hidden)].reshape((n_in, n_hidden)) self.W_in.name = 'W_in' W_in_init = np.asarray(np.random.uniform(size=(n_in, n_hidden), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_in * n_hidden # hidden to output layer weights self.W_out = self.theta[param_idx:(param_idx + n_hidden * \ n_out)].reshape((n_hidden, n_out)) self.W_out.name = 'W_out' W_out_init = np.asarray(np.random.uniform(size=(n_hidden, n_out), low=-0.01, high=0.01), dtype=theano.config.floatX) param_idx += n_hidden * n_out self.h0 = self.theta[param_idx:(param_idx + n_hidden)] self.h0.name = 'h0' h0_init = np.zeros((n_hidden,), dtype=theano.config.floatX) param_idx += n_hidden self.bh = self.theta[param_idx:(param_idx + n_hidden)] self.bh.name = 'bh' bh_init = np.zeros((n_hidden,), dtype=theano.config.floatX) param_idx += n_hidden self.by = self.theta[param_idx:(param_idx + n_out)] self.by.name = 'by' by_init = np.zeros((n_out,), dtype=theano.config.floatX) param_idx += n_out assert(param_idx == theta_shape) # for convenience self.params = [self.W, self.W_in, self.W_out, self.h0, self.bh, self.by] # shortcut to norms (for monitoring) self.l2_norms = {} for param in self.params: self.l2_norms[param] = T.sqrt(T.sum(param ** 2)) # initialize parameters # DEBUG_MODE gives division by zero error when we leave parameters # as zeros self.theta.set_value(np.concatenate([x.ravel() for x in (W_init, W_in_init, W_out_init, h0_init, bh_init, by_init)])) self.theta_update = theano.shared( value=np.zeros(theta_shape, dtype=theano.config.floatX)) # recurrent function (using tanh activation function) and arbitrary output # activation function def step(x_t, h_tm1): h_t = self.activation(T.dot(x_t, self.W_in) + \ T.dot(h_tm1, self.W) + self.bh) y_t = T.dot(h_t, self.W_out) + self.by return h_t, y_t # the hidden state `h` for the entire sequence, and the output for the # entire sequence `y` (first dimension is always time) # Note the implementation of weight-sharing h0 across variable-size # batches using T.ones multiplying h0 # Alternatively, T.alloc approach is more robust [self.h, self.y_pred], _ = theano.scan(step, sequences=self.input, outputs_info=[T.alloc(self.h0, self.input.shape[1], n_hidden), None]) # outputs_info=[T.ones(shape=(self.input.shape[1], # self.h0.shape[0])) * self.h0, None]) # L1 norm ; one regularization option is to enforce L1 norm to # be small self.L1 = 0 self.L1 += abs(self.W.sum()) self.L1 += abs(self.W_in.sum()) self.L1 += abs(self.W_out.sum()) # square of L2 norm ; one regularization option is to enforce # square of L2 norm to be small self.L2_sqr = 0 self.L2_sqr += (self.W ** 2).sum() self.L2_sqr += (self.W_in ** 2).sum() self.L2_sqr += (self.W_out ** 2).sum() if self.output_type == 'real': self.loss = lambda y: self.mse(y) elif self.output_type == 'binary': # push through sigmoid self.p_y_given_x = T.nnet.sigmoid(self.y_pred) # apply sigmoid self.y_out = T.round(self.p_y_given_x) # round to {0,1} self.loss = lambda y: self.nll_binary(y) elif self.output_type == 'softmax': # push through softmax, computing vector of class-membership # probabilities in symbolic form # # T.nnet.softmax will not operate on T.tensor3 types, only matrices # We take our n_steps x n_seq x n_classes output from the net # and reshape it into a (n_steps * n_seq) x n_classes matrix # apply softmax, then reshape back y_p = self.y_pred y_p_m = T.reshape(y_p, (y_p.shape[0] * y_p.shape[1], -1)) y_p_s = T.nnet.softmax(y_p_m) self.p_y_given_x = T.reshape(y_p_s, y_p.shape) # compute prediction as class whose probability is maximal self.y_out = T.argmax(self.p_y_given_x, axis=-1) self.loss = lambda y: self.nll_multiclass(y) else: raise NotImplementedError def mse(self, y): # error between output and target return T.mean((self.y_pred - y) ** 2) def nll_binary(self, y): # negative log likelihood based on binary cross entropy error return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y)) def nll_multiclass(self, y): # negative log likelihood based on multiclass cross entropy error # # Theano's advanced indexing is limited # therefore we reshape our n_steps x n_seq x n_classes tensor3 of probs # to a (n_steps * n_seq) x n_classes matrix of probs # so that we can use advanced indexing (i.e. get the probs which # correspond to the true class) # the labels y also must be flattened when we do this to use the # advanced indexing p_y = self.p_y_given_x p_y_m = T.reshape(p_y, (p_y.shape[0] * p_y.shape[1], -1)) y_f = y.flatten(ndim=1) return -T.mean(T.log(p_y_m)[T.arange(p_y_m.shape[0]), y_f]) def errors(self, y): """Return a float representing the number of errors in the minibatch over the total number of examples of the minibatch ; zero one loss over the size of the minibatch :type y: theano.tensor.TensorType :param y: corresponds to a vector that gives for each example the correct label """ # check if y has same dimension of y_pred if y.ndim != self.y_out.ndim: raise TypeError('y should have the same shape as self.y_out', ('y', y.type, 'y_out', self.y_out.type)) # check if y is of the correct datatype if y.dtype.startswith('int'): # the T.neq operator returns a vector of 0s and 1s, where 1 # represents a mistake in prediction return T.mean(T.neq(self.y_out, y)) else: raise NotImplementedError() class MetaRNN(BaseEstimator): def __init__(self, n_in=5, n_hidden=50, n_out=5, learning_rate=0.01, n_epochs=100, batch_size=100, L1_reg=0.00, L2_reg=0.00, learning_rate_decay=1, activation='tanh', output_type='real', final_momentum=0.9, initial_momentum=0.5, momentum_switchover=5, snapshot_every=None, snapshot_path='/tmp'): self.n_in = int(n_in) self.n_hidden = int(n_hidden) self.n_out = int(n_out) self.learning_rate = float(learning_rate) self.learning_rate_decay = float(learning_rate_decay) self.n_epochs = int(n_epochs) self.batch_size = int(batch_size) self.L1_reg = float(L1_reg) self.L2_reg = float(L2_reg) self.activation = activation self.output_type = output_type self.initial_momentum = float(initial_momentum) self.final_momentum = float(final_momentum) self.momentum_switchover = int(momentum_switchover) if snapshot_every is not None: self.snapshot_every = int(snapshot_every) else: self.snapshot_every = None self.snapshot_path = snapshot_path self.ready() def ready(self): # input (where first dimension is time) self.x = T.tensor3(name='x') # target (where first dimension is time) if self.output_type == 'real': self.y = T.tensor3(name='y', dtype=theano.config.floatX) elif self.output_type == 'binary': self.y = T.tensor3(name='y', dtype='int32') elif self.output_type == 'softmax': # now it is a matrix (T x n_seq) self.y = T.matrix(name='y', dtype='int32') else: raise NotImplementedError # learning rate self.lr = T.scalar() if self.activation == 'tanh': activation = T.tanh elif self.activation == 'sigmoid': activation = T.nnet.sigmoid elif self.activation == 'relu': activation = lambda x: x * (x > 0) elif self.activation == 'cappedrelu': activation = lambda x: T.minimum(x * (x > 0), 6) else: raise NotImplementedError self.rnn = RNN(input=self.x, n_in=self.n_in, n_hidden=self.n_hidden, n_out=self.n_out, activation=activation, output_type=self.output_type) if self.output_type == 'real': self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_pred, mode=mode) elif self.output_type == 'binary': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=T.round(self.rnn.p_y_given_x), mode=mode) elif self.output_type == 'softmax': self.predict_proba = theano.function(inputs=[self.x, ], outputs=self.rnn.p_y_given_x, mode=mode) self.predict = theano.function(inputs=[self.x, ], outputs=self.rnn.y_out, mode=mode) else: raise NotImplementedError def shared_dataset(self, data_xy, borrow=True): """ Load the dataset into shared variables """ data_x, data_y = data_xy shared_x = theano.shared(np.asarray(data_x, dtype=theano.config.floatX), borrow=True) shared_y = theano.shared(np.asarray(data_y, dtype=theano.config.floatX), borrow=True) if self.output_type in ('binary', 'softmax'): return shared_x, T.cast(shared_y, 'int32') else: return shared_x, shared_y def __getstate__(self): """ Return state sequence.""" params = self._get_params() # parameters set in constructor theta = self.rnn.theta.get_value() state = (params, theta) return state def _set_weights(self, theta): """ Set fittable parameters from weights sequence. """ self.rnn.theta.set_value(theta) def __setstate__(self, state): """ Set parameters from state sequence. """ params, theta = state self.set_params(**params) self.ready() self._set_weights(theta) def save(self, fpath='.', fname=None): """ Save a pickled representation of Model state. """ fpathstart, fpathext = os.path.splitext(fpath) if fpathext == '.pkl': # User supplied an absolute path to a pickle file fpath, fname = os.path.split(fpath) elif fname is None: # Generate filename based on date date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s.pkl' % (class_name, date_str) fabspath = os.path.join(fpath, fname) logger.info("Saving to %s ..." % fabspath) file = open(fabspath, 'wb') state = self.__getstate__() pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL) file.close() def load(self, path): """ Load model parameters from path. """ logger.info("Loading from %s ..." % path) file = open(path, 'rb') state = pickle.load(file) self.__setstate__(state) file.close() def optional_output(self, train_set_x, show_norms=True, show_output=True): """ Produces some debugging output. """ if show_norms: norm_output = [] for param in self.rnn.params: norm_output.append('%s: %6.4f' % (param.name, self.get_norms[param]())) logger.info("norms: {" + ', '.join(norm_output) + "}") if show_output: # show output for a single case if self.output_type == 'binary': output_fn = self.predict_proba else: output_fn = self.predict logger.info("sample output: " + \ str(output_fn(train_set_x.get_value( borrow=True)[:, 0, :][:, np.newaxis, :]).flatten())) def fit(self, X_train, Y_train, X_test=None, Y_test=None, validate_every=100, optimizer='sgd', compute_zero_one=False, show_norms=True, show_output=True): """ Fit model Pass in X_test, Y_test to compute test error and report during training. X_train : ndarray (T x n_in) Y_train : ndarray (T x n_out) validation_frequency : int in terms of number of epochs optimizer : string Optimizer type. Possible values: 'sgd' : batch stochastic gradient descent 'cg' : nonlinear conjugate gradient algorithm (scipy.optimize.fmin_cg) 'bfgs' : quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (scipy.optimize.fmin_bfgs) 'l_bfgs_b' : Limited-memory BFGS (scipy.optimize.fmin_l_bfgs_b) compute_zero_one : bool in the case of binary output, compute zero-one error in addition to cross-entropy error show_norms : bool Show L2 norms of individual parameter groups while training. show_output : bool Show the model output on first training case while training. """ if X_test is not None: assert(Y_test is not None) self.interactive = True test_set_x, test_set_y = self.shared_dataset((X_test, Y_test)) else: self.interactive = False train_set_x, train_set_y = self.shared_dataset((X_train, Y_train)) if compute_zero_one: assert(self.output_type == 'binary' \ or self.output_type == 'softmax') # compute number of minibatches for training # note that cases are the second dimension, not the first n_train = train_set_x.get_value(borrow=True).shape[1] n_train_batches = int(np.ceil(1.0 * n_train / self.batch_size)) if self.interactive: n_test = test_set_x.get_value(borrow=True).shape[1] n_test_batches = int(np.ceil(1.0 * n_test / self.batch_size)) #validate_every is specified in terms of epochs validation_frequency = validate_every * n_train_batches ###################### # BUILD ACTUAL MODEL # ###################### logger.info('... building the model') index = T.lscalar('index') # index to a [mini]batch n_ex = T.lscalar('n_ex') # total number of examples # learning rate (may change) l_r = T.scalar('l_r', dtype=theano.config.floatX) mom = T.scalar('mom', dtype=theano.config.floatX) # momentum cost = self.rnn.loss(self.y) \ + self.L1_reg * self.rnn.L1 \ + self.L2_reg * self.rnn.L2_sqr # Proper implementation of variable-batch size evaluation # Note that classifier.errors() returns the mean error # But the last batch may be a smaller size # So we keep around the effective_batch_size (whose last element may # be smaller than the rest) # And weight the reported error by the batch_size when we average # Also, by keeping batch_start and batch_stop as symbolic variables, # we make the theano function easier to read batch_start = index * self.batch_size batch_stop = T.minimum(n_ex, (index + 1) * self.batch_size) effective_batch_size = batch_stop - batch_start get_batch_size = theano.function(inputs=[index, n_ex], outputs=effective_batch_size) compute_train_error = theano.function(inputs=[index, n_ex], outputs=self.rnn.loss(self.y), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode) if compute_zero_one: compute_train_zo = theano.function(inputs=[index, n_ex], outputs=self.rnn.errors(self.y), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode) if self.interactive: compute_test_error = theano.function(inputs=[index, n_ex], outputs=self.rnn.loss(self.y), givens={self.x: test_set_x[:, batch_start:batch_stop], self.y: test_set_y[:, batch_start:batch_stop]}, mode=mode) if compute_zero_one: compute_test_zo = theano.function(inputs=[index, n_ex], outputs=self.rnn.errors(self.y), givens={self.x: test_set_x[:, batch_start:batch_stop], self.y: test_set_y[:, batch_start:batch_stop]}, mode=mode) self.get_norms = {} for param in self.rnn.params: self.get_norms[param] = theano.function(inputs=[], outputs=self.rnn.l2_norms[param], mode=mode) # compute the gradient of cost with respect to theta using BPTT gtheta = T.grad(cost, self.rnn.theta) if optimizer == 'sgd': updates = {} theta = self.rnn.theta theta_update = self.rnn.theta_update # careful here, update to the shared variable # cannot depend on an updated other shared variable # since updates happen in parallel # so we need to be explicit upd = mom * theta_update - l_r * gtheta updates[theta_update] = upd updates[theta] = theta + upd # compiling a Theano function `train_model` that returns the # cost, but in the same time updates the parameter of the # model based on the rules defined in `updates` train_model = theano.function(inputs=[index, n_ex, l_r, mom], outputs=cost, updates=updates, givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode) ############### # TRAIN MODEL # ############### logger.info('... training') epoch = 0 while (epoch < self.n_epochs): epoch = epoch + 1 effective_momentum = self.final_momentum \ if epoch > self.momentum_switchover \ else self.initial_momentum for minibatch_idx in xrange(n_train_batches): minibatch_avg_cost = train_model(minibatch_idx, n_train, self.learning_rate, effective_momentum) # iteration number (how many weight updates have we made?) # epoch is 1-based, index is 0 based iter = (epoch - 1) * n_train_batches + minibatch_idx + 1 if iter % validation_frequency == 0: # compute loss on training set train_losses = [compute_train_error(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] this_train_loss = np.average(train_losses, weights=train_batch_sizes) if compute_zero_one: train_zero_one = [compute_train_zo(i, n_train) for i in xrange(n_train_batches)] this_train_zero_one = np.average(train_zero_one, weights=train_batch_sizes) if self.interactive: test_losses = [compute_test_error(i, n_test) for i in xrange(n_test_batches)] test_batch_sizes = [get_batch_size(i, n_test) for i in xrange(n_test_batches)] this_test_loss = np.average(test_losses, weights=test_batch_sizes) if compute_zero_one: test_zero_one = [compute_test_zo(i, n_test) for i in xrange(n_test_batches)] this_test_zero_one = np.average(test_zero_one, weights=test_batch_sizes) if compute_zero_one: logger.info('epoch %i, mb %i/%i, tr loss %f, ' 'tr zo %f, te loss %f ' 'te zo %f lr: %f' % \ (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_train_zero_one, this_test_loss, this_test_zero_one, self.learning_rate)) else: logger.info('epoch %i, mb %i/%i, tr loss %f ' 'te loss %f lr: %f' % \ (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_test_loss, self.learning_rate)) else: if compute_zero_one: logger.info('epoch %i, mb %i/%i, train loss %f' ' train zo %f ' 'lr: %f' % (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, this_train_zero_one, self.learning_rate)) else: logger.info('epoch %i, mb %i/%i, train loss %f' ' lr: %f' % (epoch, minibatch_idx + 1, n_train_batches, this_train_loss, self.learning_rate)) self.optional_output(train_set_x, show_norms, show_output) self.learning_rate *= self.learning_rate_decay if self.snapshot_every is not None: if (epoch + 1) % self.snapshot_every == 0: date_obj = datetime.datetime.now() date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S') class_name = self.__class__.__name__ fname = '%s.%s-snapshot-%d.pkl' % (class_name, date_str, epoch + 1) fabspath = os.path.join(self.snapshot_path, fname) self.save(fpath=fabspath) elif optimizer == 'cg' or optimizer == 'bfgs' \ or optimizer == 'l_bfgs_b': # compile a theano function that returns the cost of a minibatch batch_cost = theano.function(inputs=[index, n_ex], outputs=cost, givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode, name="batch_cost") # compile a theano function that returns the gradient of the # minibatch with respect to theta batch_grad = theano.function(inputs=[index, n_ex], outputs=T.grad(cost, self.rnn.theta), givens={self.x: train_set_x[:, batch_start:batch_stop], self.y: train_set_y[:, batch_start:batch_stop]}, mode=mode, name="batch_grad") # creates a function that computes the average cost on the training # set def train_fn(theta_value): self.rnn.theta.set_value(theta_value, borrow=True) train_losses = [batch_cost(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] return np.average(train_losses, weights=train_batch_sizes) # creates a function that computes the average gradient of cost # with respect to theta def train_fn_grad(theta_value): self.rnn.theta.set_value(theta_value, borrow=True) train_grads = [batch_grad(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] return np.average(train_grads, weights=train_batch_sizes, axis=0) # validation function, prints useful output after each iteration def callback(theta_value): self.epoch += 1 if (self.epoch) % validate_every == 0: self.rnn.theta.set_value(theta_value, borrow=True) # compute loss on training set train_losses = [compute_train_error(i, n_train) for i in xrange(n_train_batches)] train_batch_sizes = [get_batch_size(i, n_train) for i in xrange(n_train_batches)] this_train_loss = np.average(train_losses, weights=train_batch_sizes) if compute_zero_one: train_zero_one = [compute_train_zo(i, n_train) for i in xrange(n_train_batches)] this_train_zero_one = np.average(train_zero_one, weights=train_batch_sizes) if self.interactive: test_losses = [compute_test_error(i, n_test) for i in xrange(n_test_batches)] test_batch_sizes = [get_batch_size(i, n_test) for i in xrange(n_test_batches)] this_test_loss = np.average(test_losses, weights=test_batch_sizes) if compute_zero_one: test_zero_one = [compute_test_zo(i, n_test) for i in xrange(n_test_batches)] this_test_zero_one = np.average(test_zero_one, weights=test_batch_sizes) if compute_zero_one: logger.info('epoch %i, tr loss %f, ' 'tr zo %f, te loss %f ' 'te zo %f' % \ (self.epoch, this_train_loss, this_train_zero_one, this_test_loss, this_test_zero_one)) else: logger.info('epoch %i, tr loss %f, te loss %f' % \ (self.epoch, this_train_loss, this_test_loss, self.learning_rate)) else: if compute_zero_one: logger.info('epoch %i, train loss %f' ', train zo %f ' % \ (self.epoch, this_train_loss, this_train_zero_one)) else: logger.info('epoch %i, train loss %f ' % \ (self.epoch, this_train_loss)) self.optional_output(train_set_x, show_norms, show_output) ############### # TRAIN MODEL # ############### logger.info('... training') # using scipy conjugate gradient optimizer import scipy.optimize if optimizer == 'cg': of = scipy.optimize.fmin_cg elif optimizer == 'bfgs': of = scipy.optimize.fmin_bfgs elif optimizer == 'l_bfgs_b': of = scipy.optimize.fmin_l_bfgs_b logger.info("Optimizing using %s..." % of.__name__) start_time = time.clock() # keep track of epochs externally # these get updated through callback self.epoch = 0 # interface to l_bfgs_b is different than that of cg, bfgs # however, this will be changed in scipy 0.11 # unified under scipy.optimize.minimize if optimizer == 'cg' or optimizer == 'bfgs': best_theta = of( f=train_fn, x0=self.rnn.theta.get_value(), # x0=np.zeros(self.rnn.theta.get_value().shape, # dtype=theano.config.floatX), fprime=train_fn_grad, callback=callback, disp=1, retall=1, maxiter=self.n_epochs) elif optimizer == 'l_bfgs_b': best_theta, f_best_theta, info = of( func=train_fn, x0=self.rnn.theta.get_value(), fprime=train_fn_grad, iprint=validate_every, maxfun=self.n_epochs) # max number of feval end_time = time.clock() print "Optimization time: %f" % (end_time - start_time) else: raise NotImplementedError def test_real(n_epochs=1000): """ Test RNN with real-valued outputs. """ n_hidden = 10 n_in = 5 n_out = 3 n_steps = 10 n_seq = 10 # per batch n_batches = 10 np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches, n_out)) targets[1:, :, 0] = seq[:-1, :, 3] # delayed 1 targets[1:, :, 1] = seq[:-1, :, 2] # delayed 1 targets[2:, :, 2] = seq[:-2, :, 0] # delayed 2 targets += 0.01 * np.random.standard_normal(targets.shape) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.01, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', L2_reg=1e-3) model.fit(seq, targets, validate_every=100, optimizer='bfgs') plt.close('all') fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, 0, :]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.plot(targets[:, 0, :]) guess = model.predict(seq[:, 0, :][:, np.newaxis, :]) guessed_targets = plt.plot(guess.squeeze(), linestyle='--') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_title('solid: true output, dashed: model output') def test_binary(multiple_out=False, n_epochs=1000, optimizer='cg'): """ Test RNN with binary outputs. """ n_hidden = 10 n_in = 5 if multiple_out: n_out = 2 else: n_out = 1 n_steps = 10 n_seq = 10 # per batch n_batches = 50 np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches, n_out)) # whether lag 1 (dim 3) is greater than lag 2 (dim 0) targets[2:, :, 0] = np.cast[np.int](seq[1:-1, :, 3] > seq[:-2, :, 0]) if multiple_out: # whether product of lag 1 (dim 4) and lag 1 (dim 2) # is less than lag 2 (dim 0) targets[2:, :, 1] = np.cast[np.int]( (seq[1:-1, :, 4] * seq[1:-1, :, 2]) > seq[:-2, :, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.005, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', output_type='binary') model.fit(seq, targets, validate_every=100, compute_zero_one=True, optimizer=optimizer) seqs = xrange(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, seq_num, :]) ax1.set_title('input') ax2 = plt.subplot(212) true_targets = plt.step(xrange(n_steps), targets[:, seq_num, :], marker='o') guess = model.predict_proba(seq[:, seq_num, :][:, np.newaxis, :]) guessed_targets = plt.step(xrange(n_steps), guess.squeeze()) plt.setp(guessed_targets, linestyle='--', marker='d') for i, x in enumerate(guessed_targets): x.set_color(true_targets[i].get_color()) ax2.set_ylim((-0.1, 1.1)) ax2.set_title('solid: true output, dashed: model output (prob)') def test_softmax(n_epochs=250, optimizer='cg'): """ Test RNN with softmax outputs. """ n_hidden = 10 n_in = 5 n_steps = 10 n_seq = 10 # per batch n_batches = 50 n_classes = 3 n_out = n_classes # restricted to single softmax per time step np.random.seed(0) # simple lag test seq = np.random.randn(n_steps, n_seq * n_batches, n_in) targets = np.zeros((n_steps, n_seq * n_batches), dtype=np.int) thresh = 0.5 # if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh # class 1 # if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh # class 2 # if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh # class 0 targets[2:, :][seq[1:-1, :, 3] > seq[:-2, :, 0] + thresh] = 1 targets[2:, :][seq[1:-1, :, 3] < seq[:-2, :, 0] - thresh] = 2 #targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0]) model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out, learning_rate=0.005, learning_rate_decay=0.999, n_epochs=n_epochs, batch_size=n_seq, activation='tanh', output_type='softmax') model.fit(seq, targets, validate_every=10, compute_zero_one=True, optimizer=optimizer) seqs = xrange(10) plt.close('all') for seq_num in seqs: fig = plt.figure() ax1 = plt.subplot(211) plt.plot(seq[:, seq_num]) ax1.set_title('input') ax2 = plt.subplot(212) # blue line will represent true classes true_targets = plt.step(xrange(n_steps), targets[:, seq_num], marker='o') # show probabilities (in b/w) output by model guess = model.predict_proba(seq[:, seq_num][:, np.newaxis]) guessed_probs = plt.imshow(guess.squeeze().T, interpolation='nearest', cmap='gray') ax2.set_title('blue: true class, grayscale: probs assigned by model') if __name__ == "__main__": logging.basicConfig(level=logging.INFO) t0 = time.time() test_real(n_epochs=1000) #test_binary(optimizer='sgd', n_epochs=1000) #test_softmax(n_epochs=250, optimizer='sgd') print "Elapsed time: %f" % (time.time() - t0)
bsd-3-clause
UBOdin/jitd-synthesis
treetoaster_scripts/generate_supplements_3_4_5.py
1
10049
import gzip import json import sys import os import io import copy import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import matplotlib.patches as mpatches import math from matplotlib.patches import Patch from matplotlib.lines import Line2D runcount = 10 #xdim = 22 #ydim = 12 #xdim = 10 #ydim = 6 savepdf = True setbox = True n_naive = "Naive" n_set = "Index" n_classic = "Classic" n_dbt = "DBT" n_tt = "TT" def process_loglines(input_file_name, results_list_list_list): # input_file_name = "" # results_list_list_list = [] # type_dict = {} input_file_obj = "" # file obj iteration = -1 logline = "" logline_list = [] latency = 0 latency_total = 0 optype = 0 vmsize = 0 latency_list = results_list_list_list[0] operation_list_list = results_list_list_list[1] vmsize_list = results_list_list_list[2] input_file_obj = open(input_file_name, "r") # Skip first line (schema info): logline = input_file_obj.readline() #.decode("ascii") while (True): iteration += 1 # Keep reading until finished: try: logline = input_file_obj.readline() #.decode("ascii") except: print("File read error") sys.exit(1) #end_try if (logline == ""): break #end_if logline_list = logline.split("\t") if (len(logline_list) != 29): print("Unexpected length") sys.exit(1) #end_if latency = int(logline_list[1]) latency_total += latency #id_list.append(iteration) #latency_list.append(latency) optype = int(logline_list[2]) vmsize = int(logline_list[6]) # repurposed jitd depth field (kludge) latency_list.append(latency) operation_list_list[optype].append(latency) # per-operation type vmsize_list.append(vmsize) #end_while return #end_def def get_memory_lists(workload): # workload = "" input_file_prefix = "" input_file_name = "" naive_results_list_list_list = [[], [], []] set_results_list_list_list = [[], [], []] jitd_results_list_list_list = [[], [], []] toaster_results_list_list_list = [[], [], []] classic_results_list_list_list = [[], [], []] for i in range(5): # 5 DB operations naive_results_list_list_list[1].append([]) set_results_list_list_list[1].append([]) jitd_results_list_list_list[1].append([]) toaster_results_list_list_list[1].append([]) classic_results_list_list_list[1].append([]) #end_if for i in range(runcount): #index_list.append(i + 1) input_file_name = "tracefiles/naive_data_performance_" + workload + "_" + str(i) + ".txt" process_loglines(input_file_name, naive_results_list_list_list) input_file_name = "tracefiles/set_data_performance_" + workload + "_" + str(i) + ".txt" process_loglines(input_file_name, set_results_list_list_list) input_file_name = "tracefiles/view_data_performance_" + workload + "_" + str(i) + ".txt" process_loglines(input_file_name, jitd_results_list_list_list) input_file_name = "tracefiles/toaster_data_performance_" + workload + "_" + str(i) + ".txt" process_loglines(input_file_name, toaster_results_list_list_list) input_file_name = "tracefiles/classic_data_performance_" + workload + "_" + str(i) + ".txt" process_loglines(input_file_name, classic_results_list_list_list) #end_for return naive_results_list_list_list, set_results_list_list_list, classic_results_list_list_list, toaster_results_list_list_list, jitd_results_list_list_list #end_def #def graph_boxplot(usenaive): def graph_boxplot(whichloads): # usenaive = False # Whether to use naive search data in processing graphs # whichloads = 0 # Which loads to include in graph: 2 = Classic and DBT only; 3 = add TT; 4 = add Naive (exclude Index in all) workload_list = ["a", "b", "c", "d", "f"] naive_uber_list = [] set_uber_list = [] classic_uber_list = [] toaster_uber_list = [] jitd_uber_list = [] summary_list = [] summary_list.append([]) for workload in workload_list: print("Processing maintenance " + workload) naive_uber_list, set_uber_list, classic_uber_list, toaster_uber_list, jitd_uber_list = get_memory_lists(workload) ''' if (usenaive == True): summary_list.append(naive_uber_list[2]) #end_if ''' summary_list.append(naive_uber_list[2]) summary_list.append(set_uber_list[2]) summary_list.append(classic_uber_list[2]) summary_list.append(toaster_uber_list[2]) summary_list.append(jitd_uber_list[2]) summary_list.append([]) #end_for fig2_list, ax2_list = plt.subplots() bp_latency = ax2_list.boxplot(summary_list) ''' #ax2_list.set_title("Average Process Memory Usage By Workload", fontsize = 14, fontweight = "bold") ax2_list.set_xlabel("Maintenance type and workload", fontsize = 14, fontweight = "bold") ax2_list.set_ylabel("Average memory\npages allocated", fontsize = 14, fontweight = "bold") ax2_list.axis([1, len(workload_list) * 5 + 1, 0, 100000]) if (usenaive == True): x_subname_list = [n_naive, n_set, n_classic, n_dbt, n_tt, ""] else: x_subname_list = [n_set, n_classic, n_dbt, n_tt, ""] #end_if x_labels = [""] for i in range(5): for e in x_subname_list: x_labels.append(e) #end_for #end_for x_labels[0] = "\n\n\n Workload A" x_labels[5] = "\n\n\n Workload B" x_labels[10] = "\n\n\n Workload C" x_labels[15] = "\n\n\n Workload D" x_labels[20] = "\n\n\n Workload F" # N.b. No data/plots for insert_singleton or remove_singleton -- these are mutate only ax2_list.set_xticklabels(x_labels) tick_list = ax2_list.get_xticklabels() for i in range(len(tick_list)): if (i % 5 != 0): tick_list[i].set_rotation(-45) tick_list[i].set_ha("left") #end_if #end_for # Do not include naive search in memory usage boxplot: if (usenaive == False): if (savepdf == True): fig2_list.savefig("graphs/figure_13.pdf", bbox_inches = "tight"); else: fig2_list.savefig("graphs/figure_13.png"); #endif return # Done; do not process scatter crossplot with naive search data #end_if ''' line_list = [] median = 0 memory_list = [] view_cost_list = [] try: boxplot_input_file_obj = open("graphdata_summary.txt") except: print("ERROR: Missing data file. Please run script to create graphs 9-10-12 first.") sys.exit(1) #end_try input_line = "" while (True): input_line = boxplot_input_file_obj.readline() if (input_line == ""): break #end_if view_cost_list.append(float(input_line)) #end_while line_list = bp_latency["medians"] # boxplot return value is a dictionary -- get medians for line in line_list: # line is a pyplot line2d object # get_ydata() returns a 2-tuple of redundant values # so, get_ydata()[0] returns a float (or a "nan") median = line.get_ydata()[0] if (math.isnan(median) == True): memory_list.append(0.0) else: memory_list.append(float(median)) #end_if #end_for ''' print(view_cost_list) print("") print(memory_list) ''' fig3, ax3 = plt.subplots() hadj = .07 vadj = 0.1 fig3.subplots_adjust(left = 0.125 + hadj, right = 0.90 + hadj, top = 0.88 + vadj, bottom = 0.115 + vadj) color_list = ["brown", "orange", "black", "blue", "red", "green"] #color_list = ["brown", "black", "blue", "red", "green"] color = "" marker_list = ["o", "s", "<", ">", "P", "*"] marker = "" if (len(view_cost_list) != len(memory_list)): print("Error: Mismatched lists") exit(1) #end_if for e, f, g in zip(range(len(view_cost_list)), view_cost_list, memory_list): color = color_list[e % 6] marker = marker_list[int(e / 6)] if (f == 0): continue #end_if # Skip index: if (e % 6 == 2): continue #end_if # Skip naive for loads 2-3: if ((e % 6 == 1) and (whichloads >= 3)): continue #end_if # Skip TT for load 2: if ((e % 6 == 5) and (whichloads == 4)): continue #end_if ax3.scatter(f, g, s = 40, color = color, marker = marker) #end_for #ax3.set_title("Latency / Memory Crossplot", fontsize = 14, fontweight = "bold") ax3.set_xlabel("Average total latency (search + maintenance)", fontsize = 14, fontweight = "bold") ax3.set_ylabel("Average memory\npages allocated", fontsize = 14, fontweight = "bold") ax3.axis([0, 15000, 0, 80000]) handle_list = [] if (whichloads == 2): handle_list.append(Patch(color = "orange", label = "Naive")) else: handle_list.append(Patch(color = "white", label = "")) #end_if #handle_list.append(Patch(color = "black", label = "Index")) handle_list.append(Patch(color = "white", label = "")) handle_list.append(Patch(color = "blue", label = "Classic")) handle_list.append(Patch(color = "red", label = "DBT")) if (whichloads <= 3): handle_list.append(Patch(color = "green", label = "TT")) else: handle_list.append(Patch(color = "white", label = "")) #end_if handle_list.append(Line2D([], [], marker = "o", color = "black", label = "Workload A", linewidth = 0)) handle_list.append(Line2D([], [], marker = "s", color = "black", label = "Workload B", linewidth = 0)) handle_list.append(Line2D([], [], marker = "<", color = "black", label = "Workload C", linewidth = 0)) handle_list.append(Line2D([], [], marker = ">", color = "black", label = "Workload D", linewidth = 0)) handle_list.append(Line2D([], [], marker = "P", color = "black", label = "Workload F", linewidth = 0)) ax3.legend(handles = handle_list, loc = "upper right", ncol = 2) #fig3.savefig("graphs/figure_11.pdf") if (whichloads == 2): fig3.savefig("graphs/supplement_3_crossplot_naive_class_dbt_tt.pdf") elif (whichloads == 3): fig3.savefig("graphs/supplement_4_crossplot_class_dbt_tt.pdf") elif (whichloads == 4): fig3.savefig("graphs/supplement_5_crossplot_class_dbt.pdf") #end_if return #end_def def main(): print("Processing supplementary crossplots") graph_boxplot(2) graph_boxplot(3) graph_boxplot(4) print("Done") sys.exit(0) print("Processing scatter crossplot (Figure 12)") graph_boxplot(True) print("Processing memory boxplot graph (Figure 13)") graph_boxplot(False) print("Success. Graphs in ../graph directory") #end_def main()
apache-2.0
pld/bamboo
bamboo/tests/models/test_dataset.py
2
5129
from datetime import datetime from pandas import DataFrame from bamboo.tests.test_base import TestBase from bamboo.models.dataset import Dataset from bamboo.models.observation import Observation from bamboo.lib.datetools import recognize_dates from bamboo.lib.mongo import MONGO_ID_ENCODED from bamboo.lib.schema_builder import OLAP_TYPE, RE_ENCODED_COLUMN, SIMPLETYPE class TestDataset(TestBase): def test_save(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset().save(self.test_dataset_ids[dataset_name]) record = dataset.record self.assertTrue(isinstance(record, dict)) self.assertTrue('_id' in record.keys()) def test_find(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset.create(self.test_dataset_ids[dataset_name]) record = dataset.record rows = Dataset.find(self.test_dataset_ids[dataset_name]) self.assertEqual(record, rows[0].record) def test_find_one(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset.create(self.test_dataset_ids[dataset_name]) record = dataset.record row = Dataset.find_one(self.test_dataset_ids[dataset_name]) self.assertEqual(record, row.record) def test_create(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset.create(self.test_dataset_ids[dataset_name]) self.assertTrue(isinstance(dataset, Dataset)) def test_delete(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset.create(self.test_dataset_ids[dataset_name]) records = Dataset.find(self.test_dataset_ids[dataset_name]) self.assertNotEqual(records, []) dataset.delete() records = Dataset.find(self.test_dataset_ids[dataset_name]) self.assertEqual(records, []) self.assertEqual(Observation.encoding(dataset), None) def test_update(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset.create(self.test_dataset_ids[dataset_name]) self.assertFalse('field' in dataset.record) dataset.update({'field': {'key': 'value'}}) dataset = Dataset.find_one(self.test_dataset_ids[dataset_name]) self.assertTrue('field' in dataset.record) self.assertEqual(dataset.record['field'], {'key': 'value'}) def test_build_schema(self): for dataset_name in self.TEST_DATASETS: dataset = Dataset.create(self.test_dataset_ids[dataset_name]) dataset.build_schema(self.get_data(dataset_name)) # get dataset with new schema dataset = Dataset.find_one(self.test_dataset_ids[dataset_name]) for key in [ Dataset.CREATED_AT, Dataset.SCHEMA, Dataset.UPDATED_AT]: self.assertTrue(key in dataset.record.keys()) df_columns = self.get_data(dataset_name).columns.tolist() seen_columns = [] for column_name, column_attributes in dataset.schema.items(): # check column_name is unique self.assertFalse(column_name in seen_columns) seen_columns.append(column_name) # check column name is only legal chars self.assertFalse(RE_ENCODED_COLUMN.search(column_name)) # check has require attributes self.assertTrue(SIMPLETYPE in column_attributes) self.assertTrue(OLAP_TYPE in column_attributes) self.assertTrue(Dataset.LABEL in column_attributes) # check label is an original column original_col = column_attributes[Dataset.LABEL] error_msg = '%s not in %s' % (original_col, df_columns) self.assertTrue(original_col in df_columns, error_msg) df_columns.remove(column_attributes[Dataset.LABEL]) # check not reserved key self.assertFalse(column_name == MONGO_ID_ENCODED) # ensure all columns in df_columns have store columns self.assertTrue(len(df_columns) == 0) def test_dframe(self): dataset = Dataset.create(self.test_dataset_ids['good_eats.csv']) dataset.save_observations( recognize_dates(self.get_data('good_eats.csv'))) dframe = dataset.dframe() self.assertTrue(isinstance(dframe, DataFrame)) self.assertTrue(all(self.get_data('good_eats.csv').reindex( columns=dframe.columns).eq(dframe))) columns = dframe.columns # ensure no reserved keys self.assertFalse(MONGO_ID_ENCODED in columns) # ensure date is converted self.assertTrue(isinstance(dframe.submit_date[0], datetime)) def test_count(self): dataset = Dataset.create(self.test_dataset_ids['good_eats.csv']) dataset.save_observations( recognize_dates(self.get_data('good_eats.csv'))) self.assertEqual(len(dataset.dframe()), dataset.count())
bsd-3-clause
CVML/pycortex
cortex/blender.py
2
4007
import os import struct import numpy as np from matplotlib import cm, colors import bpy.ops from bpy import context as C from bpy import data as D def make_object(pts, polys, name="mesh"): mesh = D.meshes.new(name) mesh.from_pydata(pts.tolist(), [], polys.tolist()) obj = D.objects.new(name, mesh) C.scene.objects.link(obj) return obj, mesh def add_vcolor(color, mesh=None, name='color', cmap=cm.RdBu, vmin=None, vmax=None): if mesh is None: mesh = C.scene.objects.active.data elif isinstance(mesh, str): mesh = D.meshes[mesh] bpy.ops.object.mode_set(mode='OBJECT') if color.ndim == 1: if vmin is None: vmin = color.min() if vmax is None: vmax = color.max() color = cmap((color - vmin) / (vmax - vmin))[:,:3] loopidx = np.zeros((len(mesh.loops),), dtype=np.uint32) mesh.loops.foreach_get('vertex_index', loopidx) vcolor = mesh.vertex_colors.new(name) for i, j in enumerate(loopidx): vcolor.data[i].color = list(color[j]) return vcolor def add_shapekey(shape, name=None): bpy.ops.object.shape_key_add() key = D.shape_keys[-1].key_blocks[-1] if name is not None: key.name = name for i in range(len(key.data)): key.data[i].co = shape[i] return key def cut_data(volumedata, name="retinotopy", projection="nearest", cmap=cm.RdBu, vmin=None, vmax=None, mesh="hemi"): if isinstance(mesh, str): mesh = D.meshes[mesh] mapped = volumedata.map(projection) if mapped.llen == len(mesh.vertices): print("left hemisphere") vcolor = mapped.left else: print ("right hemisphere") vcolor = mapped.right return add_vcolor(vcolor, mesh=mesh, name=name, cmap=cmap, vmin=vmin, vmax=vmax) def fs_cut(subject, hemi): from .freesurfer import get_surf wpts, polys, curv = get_surf(subject, hemi, 'smoothwm') ipts, _, _ = get_surf(subject, hemi, 'inflated') obj, mesh = make_object(wpts, polys, name='hemi') obj.scale = .1, .1, .1 C.scene.objects.active = obj bpy.ops.object.shape_key_add() add_vcolor(curv, mesh, vmin=-.6, vmax=.6, name='curvature') add_shapekey(ipts, name='inflated') obj.use_shape_key_edit_mode = True return mesh def write_patch(subject, hemi, name, mesh='hemi'): from .freesurfer import get_paths, write_patch if isinstance(mesh, str): mesh = D.meshes[mesh] bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.select_all(action='DESELECT') C.tool_settings.mesh_select_mode = False, True, False bpy.ops.mesh.select_non_manifold() bpy.ops.object.mode_set(mode='OBJECT') mwall_edge = set() for edge in mesh.edges: if edge.select: mwall_edge.add(edge.vertices[0]) mwall_edge.add(edge.vertices[1]) bpy.ops.object.mode_set(mode='EDIT') C.tool_settings.mesh_select_mode = True, False, False bpy.ops.mesh.select_all(action='DESELECT') bpy.ops.object.mode_set(mode='OBJECT') seam = set() for edge in mesh.edges: if edge.use_seam: seam.add(edge.vertices[0]) seam.add(edge.vertices[1]) edge.select = True bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.select_more() bpy.ops.object.mode_set(mode='OBJECT') smore = set() for i, vert in enumerate(mesh.vertices): if vert.select: smore.add(i) bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.select_all(action='DESELECT') bpy.ops.object.mode_set(mode='OBJECT') fverts = set() for face in mesh.polygons: fverts.add(face.vertices[0]) fverts.add(face.vertices[1]) fverts.add(face.vertices[2]) edges = mwall_edge | (smore - seam) verts = fverts - seam pts = [(v, D.shape_keys['Key'].key_blocks['inflated'].data[v].co) for v in verts] write_patch(get_paths(subject, hemi).format(name=name), pts, edges)
bsd-2-clause
chaluemwut/fbserver
venv/lib/python2.7/site-packages/scipy/signal/windows.py
7
48626
"""The suite of window functions.""" from __future__ import division, print_function, absolute_import import warnings import numpy as np from scipy import special, linalg from scipy.fftpack import fft from scipy.lib.six import string_types __all__ = ['boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall', 'blackmanharris', 'flattop', 'bartlett', 'hanning', 'barthann', 'hamming', 'kaiser', 'gaussian', 'general_gaussian', 'chebwin', 'slepian', 'cosine', 'hann', 'get_window'] def boxcar(M, sym=True): """Return a boxcar or rectangular window. Included for completeness, this is equivalent to no window at all. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional Whether the window is symmetric. (Has no effect for boxcar.) Returns ------- w : ndarray The window, with the maximum value normalized to 1. Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.boxcar(51) >>> plt.plot(window) >>> plt.title("Boxcar window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the boxcar window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ return np.ones(M, float) def triang(M, sym=True): """Return a triangular window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.triang(51) >>> plt.plot(window) >>> plt.title("Triangular window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the triangular window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(1, (M + 1) // 2 + 1) if M % 2 == 0: w = (2 * n - 1.0) / M w = np.r_[w, w[::-1]] else: w = 2 * n / (M + 1.0) w = np.r_[w, w[-2::-1]] if not sym and not odd: w = w[:-1] return w def parzen(M, sym=True): """Return a Parzen window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.parzen(51) >>> plt.plot(window) >>> plt.title("Parzen window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Parzen window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(-(M - 1) / 2.0, (M - 1) / 2.0 + 0.5, 1.0) na = np.extract(n < -(M - 1) / 4.0, n) nb = np.extract(abs(n) <= (M - 1) / 4.0, n) wa = 2 * (1 - np.abs(na) / (M / 2.0)) ** 3.0 wb = (1 - 6 * (np.abs(nb) / (M / 2.0)) ** 2.0 + 6 * (np.abs(nb) / (M / 2.0)) ** 3.0) w = np.r_[wa, wb, wa[::-1]] if not sym and not odd: w = w[:-1] return w def bohman(M, sym=True): """Return a Bohman window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.bohman(51) >>> plt.plot(window) >>> plt.title("Bohman window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Bohman window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 fac = np.abs(np.linspace(-1, 1, M)[1:-1]) w = (1 - fac) * np.cos(np.pi * fac) + 1.0 / np.pi * np.sin(np.pi * fac) w = np.r_[0, w, 0] if not sym and not odd: w = w[:-1] return w def blackman(M, sym=True): r""" Return a Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the Kaiser window. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.blackman(51) >>> plt.plot(window) >>> plt.title("Blackman window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Blackman window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ # Docstring adapted from NumPy's blackman function if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) w = (0.42 - 0.5 * np.cos(2.0 * np.pi * n / (M - 1)) + 0.08 * np.cos(4.0 * np.pi * n / (M - 1))) if not sym and not odd: w = w[:-1] return w def nuttall(M, sym=True): """Return a minimum 4-term Blackman-Harris window according to Nuttall. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.nuttall(51) >>> plt.plot(window) >>> plt.title("Nuttall window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Nuttall window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 a = [0.3635819, 0.4891775, 0.1365995, 0.0106411] n = np.arange(0, M) fac = n * 2 * np.pi / (M - 1.0) w = (a[0] - a[1] * np.cos(fac) + a[2] * np.cos(2 * fac) - a[3] * np.cos(3 * fac)) if not sym and not odd: w = w[:-1] return w def blackmanharris(M, sym=True): """Return a minimum 4-term Blackman-Harris window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.blackmanharris(51) >>> plt.plot(window) >>> plt.title("Blackman-Harris window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Blackman-Harris window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 a = [0.35875, 0.48829, 0.14128, 0.01168] n = np.arange(0, M) fac = n * 2 * np.pi / (M - 1.0) w = (a[0] - a[1] * np.cos(fac) + a[2] * np.cos(2 * fac) - a[3] * np.cos(3 * fac)) if not sym and not odd: w = w[:-1] return w def flattop(M, sym=True): """Return a flat top window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.flattop(51) >>> plt.plot(window) >>> plt.title("Flat top window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the flat top window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 a = [0.2156, 0.4160, 0.2781, 0.0836, 0.0069] n = np.arange(0, M) fac = n * 2 * np.pi / (M - 1.0) w = (a[0] - a[1] * np.cos(fac) + a[2] * np.cos(2 * fac) - a[3] * np.cos(3 * fac) + a[4] * np.cos(4 * fac)) if not sym and not odd: w = w[:-1] return w def bartlett(M, sym=True): r""" Return a Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The triangular window, with the first and last samples equal to zero and the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Bartlett window is defined as .. math:: w(n) = \frac{2}{M-1} \left( \frac{M-1}{2} - \left|n - \frac{M-1}{2}\right| \right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The Fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.bartlett(51) >>> plt.plot(window) >>> plt.title("Bartlett window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Bartlett window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ # Docstring adapted from NumPy's bartlett function if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) w = np.where(np.less_equal(n, (M - 1) / 2.0), 2.0 * n / (M - 1), 2.0 - 2.0 * n / (M - 1)) if not sym and not odd: w = w[:-1] return w def hann(M, sym=True): r""" Return a Hann window. The Hann window is a taper formed by using a raised cosine or sine-squared with ends that touch zero. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Hann window is defined as .. math:: w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1 The window was named for Julius van Hann, an Austrian meteorologist. It is also known as the Cosine Bell. It is sometimes erroneously referred to as the "Hanning" window, from the use of "hann" as a verb in the original paper and confusion with the very similar Hamming window. Most references to the Hann window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.hann(51) >>> plt.plot(window) >>> plt.title("Hann window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Hann window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ # Docstring adapted from NumPy's hanning function if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) w = 0.5 - 0.5 * np.cos(2.0 * np.pi * n / (M - 1)) if not sym and not odd: w = w[:-1] return w hanning = hann def barthann(M, sym=True): """Return a modified Bartlett-Hann window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.barthann(51) >>> plt.plot(window) >>> plt.title("Bartlett-Hann window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Bartlett-Hann window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) fac = np.abs(n / (M - 1.0) - 0.5) w = 0.62 - 0.48 * fac + 0.38 * np.cos(2 * np.pi * fac) if not sym and not odd: w = w[:-1] return w def hamming(M, sym=True): r"""Return a Hamming window. The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to minimize the nearest side lobe. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.hamming(51) >>> plt.plot(window) >>> plt.title("Hamming window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Hamming window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ # Docstring adapted from NumPy's hamming function if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) w = 0.54 - 0.46 * np.cos(2.0 * np.pi * n / (M - 1)) if not sym and not odd: w = w[:-1] return w def kaiser(M, beta, sym=True): r"""Return a Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter, determines trade-off between main-lobe width and side lobe level. As beta gets large, the window narrows. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}} \right)/I_0(\beta) with .. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hann 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise NaNs will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.kaiser(51, beta=14) >>> plt.plot(window) >>> plt.title(r"Kaiser window ($\beta$=14)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title(r"Frequency response of the Kaiser window ($\beta$=14)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ # Docstring adapted from NumPy's kaiser function if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) alpha = (M - 1) / 2.0 w = (special.i0(beta * np.sqrt(1 - ((n - alpha) / alpha) ** 2.0)) / special.i0(beta)) if not sym and not odd: w = w[:-1] return w def gaussian(M, std, sym=True): r"""Return a Gaussian window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. std : float The standard deviation, sigma. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Gaussian window is defined as .. math:: w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 } Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.gaussian(51, std=7) >>> plt.plot(window) >>> plt.title(r"Gaussian window ($\sigma$=7)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title(r"Frequency response of the Gaussian window ($\sigma$=7)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) - (M - 1.0) / 2.0 sig2 = 2 * std * std w = np.exp(-n ** 2 / sig2) if not sym and not odd: w = w[:-1] return w def general_gaussian(M, p, sig, sym=True): r"""Return a window with a generalized Gaussian shape. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. p : float Shape parameter. p = 1 is identical to `gaussian`, p = 0.5 is the same shape as the Laplace distribution. sig : float The standard deviation, sigma. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The generalized Gaussian window is defined as .. math:: w(n) = e^{ -\frac{1}{2}\left|\frac{n}{\sigma}\right|^{2p} } the half-power point is at .. math:: (2 \log(2))^{1/(2 p)} \sigma Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.general_gaussian(51, p=1.5, sig=7) >>> plt.plot(window) >>> plt.title(r"Generalized Gaussian window (p=1.5, $\sigma$=7)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title(r"Freq. resp. of the gen. Gaussian window (p=1.5, $\sigma$=7)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 n = np.arange(0, M) - (M - 1.0) / 2.0 w = np.exp(-0.5 * np.abs(n / sig) ** (2 * p)) if not sym and not odd: w = w[:-1] return w # `chebwin` contributed by Kumar Appaiah. def chebwin(M, at, sym=True): r"""Return a Dolph-Chebyshev window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. at : float Attenuation (in dB). sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value always normalized to 1 Notes ----- This window optimizes for the narrowest main lobe width for a given order `M` and sidelobe equiripple attenuation `at`, using Chebyshev polynomials. It was originally developed by Dolph to optimize the directionality of radio antenna arrays. Unlike most windows, the Dolph-Chebyshev is defined in terms of its frequency response: .. math:: W(k) = \frac {\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}} {\cosh[M \cosh^{-1}(\beta)]} where .. math:: \beta = \cosh \left [\frac{1}{M} \cosh^{-1}(10^\frac{A}{20}) \right ] and 0 <= abs(k) <= M-1. A is the attenuation in decibels (`at`). The time domain window is then generated using the IFFT, so power-of-two `M` are the fastest to generate, and prime number `M` are the slowest. The equiripple condition in the frequency domain creates impulses in the time domain, which appear at the ends of the window. References ---------- .. [1] C. Dolph, "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level", Proceedings of the IEEE, Vol. 34, Issue 6 .. [2] Peter Lynch, "The Dolph-Chebyshev Window: A Simple Optimal Filter", American Meteorological Society (April 1997) http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf .. [3] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transforms", Proceedings of the IEEE, Vol. 66, No. 1, January 1978 Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.chebwin(51, at=100) >>> plt.plot(window) >>> plt.title("Dolph-Chebyshev window (100 dB)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if np.abs(at) < 45: warnings.warn("This window is not suitable for spectral analysis " "for attenuation values lower than about 45dB because " "the equivalent noise bandwidth of a Chebyshev window " "does not grow monotonically with increasing sidelobe " "attenuation when the attenuation is smaller than " "about 45 dB.") if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 # compute the parameter beta order = M - 1.0 beta = np.cosh(1.0 / order * np.arccosh(10 ** (np.abs(at) / 20.))) k = np.r_[0:M] * 1.0 x = beta * np.cos(np.pi * k / M) # Find the window's DFT coefficients # Use analytic definition of Chebyshev polynomial instead of expansion # from scipy.special. Using the expansion in scipy.special leads to errors. p = np.zeros(x.shape) p[x > 1] = np.cosh(order * np.arccosh(x[x > 1])) p[x < -1] = (1 - 2 * (order % 2)) * np.cosh(order * np.arccosh(-x[x < -1])) p[np.abs(x) <= 1] = np.cos(order * np.arccos(x[np.abs(x) <= 1])) # Appropriate IDFT and filling up # depending on even/odd M if M % 2: w = np.real(fft(p)) n = (M + 1) // 2 w = w[:n] w = np.concatenate((w[n - 1:0:-1], w)) else: p = p * np.exp(1.j * np.pi / M * np.r_[0:M]) w = np.real(fft(p)) n = M // 2 + 1 w = np.concatenate((w[n - 1:0:-1], w[1:n])) w = w / max(w) if not sym and not odd: w = w[:-1] return w def slepian(M, width, sym=True): """Return a digital Slepian (DPSS) window. Used to maximize the energy concentration in the main lobe. Also called the digital prolate spheroidal sequence (DPSS). Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. width : float Bandwidth sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value always normalized to 1 Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.slepian(51, width=0.3) >>> plt.plot(window) >>> plt.title("Slepian (DPSS) window (BW=0.3)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the Slepian window (BW=0.3)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if (M * width > 27.38): raise ValueError("Cannot reliably obtain Slepian sequences for" " M*width > 27.38.") if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 twoF = width / 2.0 alpha = (M - 1) / 2.0 m = np.arange(0, M) - alpha n = m[:, np.newaxis] k = m[np.newaxis, :] AF = twoF * special.sinc(twoF * (n - k)) [lam, vec] = linalg.eig(AF) ind = np.argmax(abs(lam), axis=-1) w = np.abs(vec[:, ind]) w = w / max(w) if not sym and not odd: w = w[:-1] return w def cosine(M, sym=True): """Return a window with a simple cosine shape. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- .. versionadded:: 0.13.0 Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.cosine(51) >>> plt.plot(window) >>> plt.title("Cosine window") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title("Frequency response of the cosine window") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") >>> plt.show() """ if M < 1: return np.array([]) if M == 1: return np.ones(1, 'd') odd = M % 2 if not sym and not odd: M = M + 1 w = np.sin(np.pi / M * (np.arange(0, M) + .5)) if not sym and not odd: w = w[:-1] return w def get_window(window, Nx, fftbins=True): """ Return a window. Parameters ---------- window : string, float, or tuple The type of window to create. See below for more details. Nx : int The number of samples in the window. fftbins : bool, optional If True, create a "periodic" window ready to use with ifftshift and be multiplied by the result of an fft (SEE ALSO fftfreq). Returns ------- get_window : ndarray Returns a window of length `Nx` and type `window` Notes ----- Window types: boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs std), general_gaussian (needs power, width), slepian (needs width), chebwin (needs attenuation) If the window requires no parameters, then `window` can be a string. If the window requires parameters, then `window` must be a tuple with the first argument the string name of the window, and the next arguments the needed parameters. If `window` is a floating point number, it is interpreted as the beta parameter of the kaiser window. Each of the window types listed above is also the name of a function that can be called directly to create a window of that type. Examples -------- >>> from scipy import signal >>> signal.get_window('triang', 7) array([ 0.25, 0.5 , 0.75, 1. , 0.75, 0.5 , 0.25]) >>> signal.get_window(('kaiser', 4.0), 9) array([ 0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. , 0.89640418, 0.63343178, 0.32578323, 0.08848053]) >>> signal.get_window(4.0, 9) array([ 0.08848053, 0.32578323, 0.63343178, 0.89640418, 1. , 0.89640418, 0.63343178, 0.32578323, 0.08848053]) """ sym = not fftbins try: beta = float(window) except (TypeError, ValueError): args = () if isinstance(window, tuple): winstr = window[0] if len(window) > 1: args = window[1:] elif isinstance(window, string_types): if window in ['kaiser', 'ksr', 'gaussian', 'gauss', 'gss', 'general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs', 'slepian', 'optimal', 'slep', 'dss', 'chebwin', 'cheb']: raise ValueError("The '" + window + "' window needs one or " "more parameters -- pass a tuple.") else: winstr = window else: raise ValueError("%s as window type is not supported." % str(type(window))) if winstr in ['blackman', 'black', 'blk']: winfunc = blackman elif winstr in ['triangle', 'triang', 'tri']: winfunc = triang elif winstr in ['hamming', 'hamm', 'ham']: winfunc = hamming elif winstr in ['bartlett', 'bart', 'brt']: winfunc = bartlett elif winstr in ['hanning', 'hann', 'han']: winfunc = hann elif winstr in ['blackmanharris', 'blackharr', 'bkh']: winfunc = blackmanharris elif winstr in ['parzen', 'parz', 'par']: winfunc = parzen elif winstr in ['bohman', 'bman', 'bmn']: winfunc = bohman elif winstr in ['nuttall', 'nutl', 'nut']: winfunc = nuttall elif winstr in ['barthann', 'brthan', 'bth']: winfunc = barthann elif winstr in ['flattop', 'flat', 'flt']: winfunc = flattop elif winstr in ['kaiser', 'ksr']: winfunc = kaiser elif winstr in ['gaussian', 'gauss', 'gss']: winfunc = gaussian elif winstr in ['general gaussian', 'general_gaussian', 'general gauss', 'general_gauss', 'ggs']: winfunc = general_gaussian elif winstr in ['boxcar', 'box', 'ones', 'rect', 'rectangular']: winfunc = boxcar elif winstr in ['slepian', 'slep', 'optimal', 'dpss', 'dss']: winfunc = slepian elif winstr in ['cosine', 'halfcosine']: winfunc = cosine elif winstr in ['chebwin', 'cheb']: winfunc = chebwin else: raise ValueError("Unknown window type.") params = (Nx,) + args + (sym,) else: winfunc = kaiser params = (Nx, beta, sym) return winfunc(*params)
apache-2.0
matthiasdiener/spack
var/spack/repos/builtin/packages/geopm/package.py
1
4766
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Geopm(AutotoolsPackage): """GEOPM is an extensible power management framework targeting HPC. The GEOPM package provides libgeopm, libgeopmpolicy and applications geopmctl and geopmpolicy, as well as tools for postprocessing. GEOPM is designed to be extended for new control algorithms and new hardware power management features via its plugin infrastructure. Note: GEOPM interfaces with hardware using Model Specific Registers (MSRs). For propper usage make sure MSRs are made available directly or via the msr-safe kernel module by your administrator.""" homepage = "https://geopm.github.io" url = "https://github.com/geopm/geopm/releases/download/v0.4.0/geopm-0.4.0.tar.gz" # Add additional proper versions and checksums here. "spack checksum geopm" version('0.5.0', '61b454bc74d4606fe84818aef16c1be4') version('0.4.0', 'd4cc8fffe521296dab379857d7e2064d') version('0.3.0', '568fd37234396fff134f8d57b60f2b83') version('master', git='https://github.com/geopm/geopm.git', branch='master') version('develop', git='https://github.com/geopm/geopm.git', branch='dev') # Variants reflecting most ./configure --help options variant('debug', default=False, description='Enable debug.') variant('coverage', default=False, description='Enable test coverage support, enables debug by default.') variant('overhead', default=False, description='Enable GEOPM to calculate and display time spent in GEOPM API calls.') variant('procfs', default=True, description='Enable procfs (disable for OSes not using procfs).') variant('mpi', default=True, description='Enable MPI dependent components.') variant('fortran', default=True, description='Build fortran interface.') variant('doc', default=True, description='Create man pages with ruby-ronn.') variant('openmp', default=True, description='Build with OpenMP.') variant('ompt', default=False, description='Use OpenMP Tools Interface.') variant('hwloc', default=True, description='Build with hwloc.') variant('gnu-ld', default=False, description='Assume C compiler uses gnu-ld.') # Added dependencies. depends_on('m4', type='build') depends_on('automake', type='build') depends_on('autoconf', type='build') depends_on('libtool', type='build') depends_on('ruby-ronn', type='build', when='+doc') depends_on('doxygen', type='build', when='+doc') depends_on('numactl') depends_on('mpi', when='+mpi') # TODO: check if hwloc@specific-version still required with future openmpi depends_on('[email protected]', when='+hwloc') depends_on('json-c') depends_on('py-pandas', type='run') depends_on('py-numpy', type='run') depends_on('py-natsort', type='run') depends_on('py-matplotlib', type='run') parallel = False def configure_args(self): args = [] args.extend(self.enable_or_disable('debug')) args.extend(self.enable_or_disable('coverage')) args.extend(self.enable_or_disable('overhead')) args.extend(self.enable_or_disable('procfs')) args.extend(self.enable_or_disable('mpi')) args.extend(self.enable_or_disable('fortran')) args.extend(self.enable_or_disable('doc')) args.extend(self.enable_or_disable('openmp')) args.extend(self.enable_or_disable('ompt')) args.extend(self.with_or_without('hwloc', activation_value='prefix')) args.extend(self.with_or_without('gnu-ld')) return args
lgpl-2.1
phoebe-project/phoebe2-docs
development/examples/single_spots.py
2
2832
#!/usr/bin/env python # coding: utf-8 # Single Star with Spots # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). # In[1]: #!pip install -I "phoebe>=2.3,<2.4" # As always, let's do imports and initialize a logger and a new bundle. # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_star() # Adding Spots # --------------------- # Let's add one spot to our star. Since there is only one star, the spot will automatically attach without needing to provide component (as is needed in the [binary with spots example](./binary_spots.ipynb) # In[3]: b.add_spot(radius=30, colat=80, long=0, relteff=0.9) # Spot Parameters # ----------------- # A spot is defined by the colatitude and longitude of its center, its angular radius, and the ratio of temperature of the spot to the local intrinsic value. # In[4]: print(b['spot']) # The 'colat' parameter defines the colatitude on the star measured from its North (spin) Pole. The 'long' parameter measures the longitude of the spot - with longitude = 0 being defined as pointing towards the observer at t0 for a single star. See the [spots tutorial](../tutorials/spots.ipynb) for more details. # In[5]: times = np.linspace(0, 10, 11) b.set_value('period', 10) b.add_dataset('mesh', times=times, columns=['teffs']) # In[6]: b.run_compute(distortion_method='rotstar', irrad_method='none') # In[7]: afig, mplfig = b.plot(x='us', y='vs', fc='teffs', animate=True, save='single_spots_1.gif', save_kwargs={'writer': 'imagemagick'}) # ![animation](single_spots_1.gif) # If we set t0 to 5 instead of zero, then the spot will cross the line-of-sight at t=5 (since the spot's longitude is 0). # In[8]: b.set_value('t0', 5) # In[9]: b.run_compute(distortion_method='rotstar', irrad_method='none') # In[10]: afig, mplfig = b.plot(x='us', y='vs', fc='teffs', animate=True, save='single_spots_2.gif', save_kwargs={'writer': 'imagemagick'}) # ![animation](single_spots_2.gif) # And if we change the inclination to 0, we'll be looking at the north pole of the star. This clearly illustrates the right-handed rotation of the star. At time=t0=5 the spot will now be pointing in the negative y-direction. # In[11]: b.set_value('incl', 0) # In[12]: b.run_compute(distortion_method='rotstar', irrad_method='none') # In[13]: afig, mplfig = b.plot(x='us', y='vs', fc='teffs', animate=True, save='single_spots_3.gif', save_kwargs={'writer': 'imagemagick'}) # ![animation](single_spots_3.gif) # In[ ]:
gpl-3.0
phoebe-project/phoebe2-docs
2.0/tutorials/t0s.py
1
5043
#!/usr/bin/env python # coding: utf-8 # Various t0s # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.0 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.0,<2.1"') # As always, let's do imports and initialize a logger and a new Bundle. See [Building a System](building_a_system.html) for more details. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() # And let's make our system a little more interesting so that we can discriminate between the various t0s # In[3]: b.set_value('sma@binary', 20) b.set_value('q', 0.8) b.set_value('ecc', 0.8) b.set_value('per0', 45) # t0 Parameters # --------------- # **IMPORTANT NOTE**: the definition of the constraint between 't0_supconj' and 't0_perpass' was fixed in the 2.0.3 hotfix release. Earlier versions may give different results in some cases. Please make sure to update to at least 2.0.3. To check your installed version of phoebe, you can do the following: # In[4]: print phoebe.__version__ # There are three t0 parameters that are available to define an orbit (but only one of which is editable at any given time), as well as a t0 parameter for the entire system. Let's first access the three t0 parameters for our binary orbit. # # 't0_supconj' defines the time at which the primary component in our orbit is at superior conjunction. For a binary system in which there are eclipses, this is defined as the primary eclipse. By default this parameter is editable. # In[5]: b.get_parameter('t0_supconj', context='component') # 't0_perpass' defines the time at which both components in our orbit is at periastron passage. By default this parameter is *constrained* by 't0_supconj'. For more details or information on how to change which parameter is editable, see the [Constraints Tutorial](constraints.html). # In[6]: b.get_parameter('t0_perpass', context='component') # In[7]: b.get_parameter('t0_perpass', context='constraint') # The 't0_ref' defines the time at which the primary component in our orbit passes an arbitrary reference point. This 't0_ref' is defined in the same way as PHOEBE legacy's 'HJD0' parameter, so is included for convenience translating between the two. # In[8]: b.get_parameter('t0_ref', context='component') # In[9]: b.get_parameter('t0_ref', context='constraint') # In addition, there is a single 't0' parameter that is system-wide. This parameter simply defines the time at which **all** parameters are defined and therefore at which all computations start. The value of this parameter begins to play an important role if any parameter is given a time-derivative (see [apsidal motion](apsidal_motion.html) for an example) or when using N-body instead of Keplerian dynamics (coming in a future release). # In[10]: b.get_parameter('t0', context='system') # Influence on Oribits (positions) # ----------------- # In[11]: b.add_dataset('orb', times=np.linspace(-1,1,1001)) # In[12]: b.run_compute(ltte=False) # To visualize where these times are with respect to the orbits, we can plot the model orbit and highlight the positions of each star at the times defined by these parameters. Note here that the observer is in the **positive** z-direction. # In[13]: axs, artists = b.plot(x='xs', y='zs', time='t0_supconj') # In[14]: axs, artists = b.plot(x='xs', y='zs', time='t0_perpass') # In[15]: axs, artists = b.plot(x='xs', y='zs', time='t0_ref') # Influence on Phasing # ----------- # All computations in PHOEBE 2 are done in the time-domain. Times can be translated to phases using any ephemeris available, as well as any of the t0s. # # By default (if not passing any options), times will be phased using the outer-most orbit in the system and using 't0_supconj'. # In[16]: b.to_phase(0.0) # In[17]: b.to_phase(0.0, component='binary', t0='t0_supconj') # In[18]: b.to_phase(0.0, component='binary', t0='t0_perpass') # In[19]: b.to_phase(0.0, component='binary', t0='t0_ref') # Similarly, if plotting phases on any axis, passing the 't0' keyword will set the zero-phase accordingly. To see this, let's compute a light curve and phase it with the various t0s shown in the orbits above. # In[20]: b.add_dataset('lc', times=np.linspace(0,1,51), ld_func='linear', ld_coeffs=[0.0]) # In[21]: b.run_compute(ltte=False, irrad_method='none', atm='blackbody') # In[22]: axs, artists = b['lc01@model'].plot(x='phases', t0='t0_supconj', xlim=(-0.3,0.3)) # In[23]: axs, artists = b['lc01@model'].plot(x='phases', t0='t0_perpass', xlim=(-0.3,0.3)) # In[24]: axs, artists = b['lc01@model'].plot(x='phases', t0='t0_ref', xlim=(-0.3,0.3)) # In[ ]:
gpl-3.0
jaantollander/Pointwise-Convergence
src/plotting/convergence_plotting.py
8
3846
# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import matplotlib.pyplot as plt import seaborn as sns from matplotlib.widgets import Button from src_legacy.analysis.convergence import max_slope from src_legacy.io.load.load import LoadCsv from src_legacy.other.settings import timeit class ConvergencePlot: """ Interactive plot for results. http://bastibe.de/2013-05-30-speeding-up-matplotlib.html http://stackoverflow.com/questions/29277080/efficient-matplotlib-redrawing """ def __init__(self, filename, function): self.initial = True # Flag loads = LoadCsv(filename, function) self.function = function self.index = loads.errors.index.values self.errors = loads.errors self.a = loads.inputs[0] self.x = loads.inputs[1] self.fig, self.ax = plt.subplots(figsize=(10, 8)) self.fig.subplots_adjust(bottom=0.2) self.ax.set(ylim=(10 ** -6, np.max(self.errors.values) + 0.1), xlim=(self.index.min(), self.index.max()), xlabel=r'$ p $', ylabel=r'$ \varepsilon $') self.line, = self.ax.loglog([], [], lw=1, marker='*') self.cline, = self.ax.loglog([], [], lw=2, marker='*') self.background = self.fig.canvas.copy_from_bbox(self.ax.bbox) # rect = [left, bottom, width, height] in normalized (0, 1) units xprev = plt.axes([0.44, 0.05, 0.1, 0.075]) xnext = plt.axes([0.56, 0.05, 0.1, 0.075]) bnext = Button(xnext, r'$ x \Rightarrow $') bprev = Button(xprev, r'$ \Leftarrow x $') bnext.on_clicked(self.xnext) bprev.on_clicked(self.xprev) aprev = plt.axes([0.91, 0.45, 0.08, 0.075]) anext = plt.axes([0.91, 0.55, 0.08, 0.075]) cnext = Button(anext, r'$ a \Rightarrow $') cprev = Button(aprev, r'$ \Leftarrow a $') cnext.on_clicked(self.anext) cprev.on_clicked(self.aprev) self.index_x = 0 self.index_a = 0 self.line.set_xdata(self.index) self.draw() @timeit def draw(self): """ Redraw the axis """ a_ = self.a[self.index_a] x_ = self.x[self.index_x] data = self.errors[str(a_)] data = data[str(x_)] mask = max_slope(data) convergence = data.iloc[mask] self.line.set_ydata(data.values) self.cline.set_data(convergence.index.values, convergence.values) self.ax.set_title(r'{function}: '.format(function=self.function) + r'$ a: {}\approx {:.4f} $, '.format(a_, float(a_)) + r'$ x: {}\approx {:.4f} $ '.format(x_, float(x_))) if self.initial: self.fig.canvas.draw() self.initial = False plt.show() else: self.fig.canvas.restore_region(self.background) self.ax.draw_artist(self.ax.patch) self.ax.draw_artist(self.line) self.ax.draw_artist(self.cline) # self.fig.canvas.update() # self.fig.canvas.flush_events() self.fig.canvas.blit(self.ax.bbox) def xnext(self, event): if self.index_x < len(self.x) - 1: self.index_x += 1 self.draw() def xprev(self, event): if self.index_x > -len(self.x): self.index_x -= 1 self.draw() def anext(self, event): if self.index_a < len(self.a) - 1: self.index_a += 1 self.draw() def aprev(self, event): if self.index_a > 0: self.index_a -= 1 self.draw() sns.set() ConvergencePlot('100000_391_1', 'step_function')
mit
Shaky156/Shield-Tablet-CPU2.5Ghz-GPU060Mhz-Overclock
scripts/tracing/dma-api/trace.py
96
12420
"""Main program and stuff""" #from pprint import pprint from sys import stdin import os.path import re from argparse import ArgumentParser import cPickle as pickle from collections import namedtuple from plotting import plotseries, disp_pic import smmu class TracelineParser(object): """Parse the needed information out of an ftrace line""" # <...>-6 [000] d..2 5.287079: dmadebug_iommu_map_page: device=sdhci-tegra.3, addr=0x01048000, size=4096 page=c13e7214 archdata=ed504640 def __init__(self): self.pattern = re.compile("device=(?P<dev>.*), addr=(?P<addr>.*), size=(?P<size>.*) page=(?P<page>.*) archdata=(?P<archdata>.*)") def parse(self, args): args = self.pattern.match(args) return (args.group("dev"), int(args.group("addr"), 16), int(args.group("size")), int(args.group("page"), 16), int(args.group("archdata"), 16)) def biggest_indices(items, n): """Return list of indices of n biggest elements in items""" with_indices = [(x, i) for i, x in enumerate(items)] ordered = sorted(with_indices) return [i for x, i in ordered[-n:]] def by_indices(xs, ids): """Get elements from the list xs by their indices""" return [xs[i] for i in ids] """Event represents one input line""" Event = namedtuple("Event", ["time", "dev", "data", "delta"]) class Trace(object): def __init__(self, args): smmu.VERBOSITY = args.verbosity self._args = args self.devlist = [] self.events = [] self.metrics = { "max_peak": self._usage_peak, "activity_rate": self._usage_activity, "average_mem": self._usage_avg } self.traceliner = TracelineParser() @staticmethod def get_metrics(): """What filter metrics to get max users""" return ["max_peak", "activity_rate", "average_mem"] def show(self): """Shuffle events around, build plots, and show them""" if self._args.max_plots: evs = self.merge_events() else: evs = self.events series, devlist = self.unload(evs) if not self._args.no_plots: self.plot(series, devlist) def _get_usage(self, evs): """Return a metric of how active the events in evs are""" return self.metrics[self._args.max_metric](evs) def _usage_peak(self, evs): """Return the biggest peak""" return max(e.data for e in evs) def _usage_activity(self, evs): """Return the activity count: simply the length of the event list""" return len(evs) def _usage_avg(self, evs): """Return the average over all points""" # FIXME: the data points are not uniform in time, so this might be # somewhat off. return float(sum(e.data for e in evs)) / len(e) def merge_events(self): """Find out biggest users, keep them and flatten others to a single user""" sizes = [] dev_evs = [] for i, dev in enumerate(self.devlist): dev_evs.append([e for e in self.events if e.dev == dev]) sizes.append(self._get_usage(dev_evs[i])) # indices of the devices biggestix = biggest_indices(sizes, self._args.max_plots) print biggestix is_big = {} for i, dev in enumerate(self.devlist): is_big[dev] = i in biggestix evs = [] for e in self.events: if not is_big[e.dev]: e = Event(e.time, "others", e.data, e.delta) evs.append(e) self.devlist.append("others") return evs def unload(self, events): """Prepare the event list for plotting series ends up as [([time0], [data0]), ([time1], [data1]), ...] """ # ([x], [y]) for matplotlib series = [([], []) for x in self.devlist] devidx = dict([(d, i) for i, d in enumerate(self.devlist)]) for event in events: devid = devidx[event.dev] series[devid][0].append(event.time) series[devid][1].append(event.data) # self.dev_data(event.dev)) series_out = [] devlist_out = [] for ser, dev in zip(series, self.devlist): if len(ser[0]) > 0: series_out.append(ser) devlist_out.append(dev) return series_out, devlist_out def plot(self, series, devlist): """Display the plots""" #series, devlist = flatten_axes(self.series, self.devlist, # self._args.max_plots) devinfo = (series, map(str, devlist)) allocfreeinfo = (self.allocsfrees, ["allocd", "freed", "current"]) plotseries(devinfo, allocfreeinfo) #plotseries(devinfo) def dev_data(self, dev): """what data to plot against time""" return dev._cur_alloc def _cache_hash(self, filename): """The trace files are probably not of the same size""" return str(os.path.getsize(filename)) def load_cache(self): """Get the trace data from a database file, if one exists""" has = self._cache_hash(self._args.filename) try: cache = open("trace." + has) except IOError: pass else: self._load_cache(pickle.load(cache)) return True return False def save_cache(self): """Store the raw trace data to a database""" data = self._save_cache() fh = open("trace." + self._cache_hash(self._args.filename), "w") pickle.dump(data, fh) def _save_cache(self): """Return the internal data that is needed to be pickled""" return self.events, self.devlist, self.allocsfrees def _load_cache(self, data): """Get the data from an unpickled object""" self.events, self.devlist, self.allocsfrees = data def load_events(self): """Get the internal data from a trace file or cache""" if self._args.filename: if self._args.cache and self.load_cache(): return fh = open(self._args.filename) else: fh = stdin self.parse(fh) if self._args.cache and self._args.filename: self.save_cache() def parse(self, fh): """Parse the trace file in fh, store data to self""" mems = {} dev_by_name = {} devlist = [] buf_owners = {} events = [] allocsfrees = [([], []), ([], []), ([], [])] # allocs, frees, current allocs = 0 frees = 0 curbufs = 0 mem_bytes = 1024 * 1024 * 1024 npages = mem_bytes / 4096 ncols = 512 le_pic = [0] * npages lastupd = 0 for lineidx, line in enumerate(fh): # no comments if line.startswith("#"): continue taskpid, cpu, flags, timestamp, func, args = line.strip().split(None, 5) func = func[:-len(":")] # unneeded events may be there too if not func.startswith("dmadebug"): continue if self._args.verbosity >= 3: print line.rstrip() timestamp = float(timestamp[:-1]) if timestamp < self._args.start: continue if timestamp >= self._args.end: break devname, addr, size, page, archdata = self.traceliner.parse(args) if self._args.processes: devname = taskpid.split("-")[0] mapping = archdata try: memmap = mems[mapping] except KeyError: memmap = mem(mapping) mems[mapping] = memmap try: dev = dev_by_name[devname] except KeyError: dev = smmu.Device(devname, memmap) dev_by_name[devname] = dev devlist.append(dev) allocfuncs = ["dmadebug_map_page", "dmadebug_map_sg", "dmadebug_alloc_coherent"] freefuncs = ["dmadebug_unmap_page", "dmadebug_unmap_sg", "dmadebug_free_coherent"] ignfuncs = [] if timestamp-lastupd > 0.1: # just some debug prints for now lastupd = timestamp print lineidx,timestamp le_pic2 = [le_pic[i:i+ncols] for i in range(0, npages, ncols)] #disp_pic(le_pic2) # animating the bitmap would be cool #for row in le_pic: # for i, a in enumerate(row): # pass #row[i] = 0.09 * a if func in allocfuncs: pages = dev_by_name[devname].alloc(addr, size) for p in pages: le_pic[p] = 1 buf_owners[addr] = dev_by_name[devname] allocs += 1 curbufs += 1 allocsfrees[0][0].append(timestamp) allocsfrees[0][1].append(allocs) elif func in freefuncs: if addr not in buf_owners: if self._args.verbosity >= 1: print "warning: %s unmapping unmapped %s" % (dev, addr) buf_owners[addr] = dev # fixme: move this to bitmap handling # get to know the owners of bits # allocs/frees calls should be traced separately from maps? # map_pages is traced per page :( if buf_owners[addr] != dev and self._args.verbosity >= 2: print "note: %s unmapping [%d,%d) mapped by %s" % ( dev, addr, addr+size, buf_owners[addr]) pages = buf_owners[addr].free(addr, size) for p in pages: le_pic[p] = 0 frees -= 1 curbufs -= 1 allocsfrees[1][0].append(timestamp) allocsfrees[1][1].append(frees) elif func not in ignfuncs: raise ValueError("unhandled %s" % func) allocsfrees[2][0].append(timestamp) allocsfrees[2][1].append(curbufs) events.append(Event(timestamp, dev, self.dev_data(dev), size)) self.events = events self.devlist = devlist self.allocsfrees = allocsfrees le_pic2 = [le_pic[i:i+ncols] for i in range(0, npages, ncols)] # FIXME: not quite ready yet disp_pic(le_pic2) return def mem(asid): """Create a new memory object for the given asid space""" SZ_2G = 2 * 1024 * 1024 * 1024 SZ_1M = 1 * 1024 * 1024 # arch/arm/mach-tegra/include/mach/iomap.h TEGRA_SMMU_(BASE|SIZE) base = 0x80000000 size = SZ_2G - SZ_1M return smmu.Memory(base, size, asid) def get_args(): """Eat command line arguments, return argparse namespace for settings""" parser = ArgumentParser() parser.add_argument("filename", nargs="?", help="trace file dump, stdin if not given") parser.add_argument("-s", "--start", type=float, default=0, help="start timestamp") parser.add_argument("-e", "--end", type=float, default=1e9, help="end timestamp") parser.add_argument("-v", "--verbosity", action="count", default=0, help="amount of extra information: once for warns (dup addrs), " "twice for notices (different client in map/unmap), " "three for echoing all back") parser.add_argument("-p", "--processes", action="store_true", help="use processes as memory clients instead of devices") parser.add_argument("-n", "--no-plots", action="store_true", help="Don't draw the plots, only read the trace") parser.add_argument("-c", "--cache", action="store_true", help="Pickle the data and make a cache file for fast reloading") parser.add_argument("-m", "--max-plots", type=int, help="Maximum number of clients to show; show biggest and sum others") parser.add_argument("-M", "--max-metric", choices=Trace.get_metrics(), default=Trace.get_metrics()[0], help="Metric to use when choosing clients in --max-plots") return parser.parse_args() def main(): args = get_args() trace = Trace(args) trace.load_events() trace.show() if __name__ == "__main__": main()
gpl-2.0
rpalovics/Alpenglow
python/test_alpenglow/experiments/test_FmExperiment.py
2
15194
import alpenglow as prs import alpenglow.Getter as rs import alpenglow.experiments import alpenglow.evaluation import pandas as pd import math import numpy as np class TestFactorExperiment: def test_factorExperiment(self): fmExperiment = alpenglow.experiments.FmExperiment( top_k=100, seed=254938879, dimension=10, learning_rate=0.05, negative_rate=10, user_attributes="python/test_alpenglow/test_data_4_user_attr", item_attributes="python/test_alpenglow/test_data_4_item_attr" ) facRankings = fmExperiment.run( "python/test_alpenglow/test_data_4", experimentType="online_id", verbose=True, exclude_known=True ) #print([i for i in facRankings["rank"].fillna(101)]) assert facRankings.top_k == 100 desired_ranks = [101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 12.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 2.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 1.0, 101.0, 101.0, 101.0, 38.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 7.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 8.0, 7.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 9.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 58.0, 101.0, 60.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 65.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 9.0, 5.0, 101.0, 101.0, 101.0, 101.0, 9.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 1.0, 101.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 65.0, 101.0, 101.0, 101.0, 4.0, 101.0, 57.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 13.0, 101.0, 101.0, 101.0, 101.0, 7.0, 101.0, 101.0, 101.0, 101.0, 101.0, 70.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 68.0, 101.0, 101.0, 101.0, 101.0, 17.0, 101.0, 101.0, 101.0, 94.0, 91.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 78.0, 11.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 89.0, 101.0, 101.0, 101.0, 9.0, 101.0, 3.0, 20.0, 101.0, 101.0, 101.0, 5.0, 101.0, 101.0, 101.0, 101.0, 101.0, 70.0, 86.0, 101.0, 101.0, 101.0, 101.0, 18.0, 101.0, 101.0, 101.0, 101.0, 101.0, 21.0, 5.0, 101.0, 101.0, 15.0, 101.0, 94.0, 101.0, 101.0, 101.0, 81.0, 98.0, 101.0, 101.0, 101.0, 101.0, 101.0, 80.0, 101.0, 101.0, 101.0, 101.0, 101.0, 97.0, 101.0, 101.0, 2.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 7.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 27.0, 101.0, 101.0, 101.0, 101.0, 99.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 2.0, 101.0, 101.0, 24.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 1.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 2.0, 101.0, 1.0, 101.0, 12.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 12.0, 2.0, 101.0, 101.0, 101.0, 101.0, 101.0, 15.0, 101.0, 20.0, 101.0, 101.0, 101.0, 27.0, 14.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 11.0, 101.0, 101.0, 8.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 22.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 23.0, 101.0, 101.0, 101.0, 101.0, 6.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 12.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 28.0, 101.0, 101.0, 101.0, 101.0, 4.0, 101.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 21.0, 101.0, 101.0, 18.0, 101.0, 3.0, 37.0, 101.0, 101.0, 101.0, 14.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 30.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 4.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 8.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 3.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 8.0, 101.0, 101.0, 101.0, 101.0, 101.0, 11.0, 101.0, 30.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 2.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 53.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 5.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 4.0, 101.0, 101.0, 101.0, 40.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 38.0, 101.0, 25.0, 101.0, 101.0, 44.0, 101.0, 101.0, 101.0, 7.0, 101.0, 19.0, 101.0, 101.0, 31.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 14.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 21.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 39.0, 101.0, 101.0, 101.0, 101.0, 101.0, 40.0, 101.0, 101.0, 20.0, 101.0, 33.0, 101.0, 40.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 38.0, 101.0, 47.0, 3.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 31.0, 33.0, 101.0, 101.0, 50.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 37.0, 101.0, 101.0, 1.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 8.0, 46.0, 101.0, 101.0, 11.0, 26.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 8.0, 37.0, 101.0, 101.0, 10.0, 3.0, 101.0, 101.0, 101.0, 37.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 44.0, 101.0, 101.0, 2.0, 101.0, 101.0, 101.0, 26.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 24.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 33.0, 101.0, 4.0, 101.0, 101.0, 101.0, 101.0, 101.0, 13.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 44.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 12.0, 101.0, 101.0, 101.0, 101.0, 101.0, 6.0, 101.0, 101.0, 36.0, 101.0, 101.0, 101.0, 20.0, 101.0, 44.0, 101.0, 101.0, 101.0, 101.0, 23.0, 101.0, 101.0, 101.0, 24.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 6.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 38.0, 57.0, 7.0, 101.0, 7.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 37.0, 101.0, 101.0, 101.0, 101.0, 101.0, 48.0, 101.0, 101.0, 101.0, 4.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 27.0, 101.0, 101.0, 101.0, 101.0, 101.0] assert [i for i in facRankings["rank"].fillna(101)] == desired_ranks def test_factorExperiment2(self): fmExperiment = alpenglow.experiments.FmExperiment( top_k=100, seed=254938879, dimension=10, learning_rate=0.05, negative_rate=10, user_attributes="python/test_alpenglow/test_data_4_user_attr" ) facRankings = fmExperiment.run( "python/test_alpenglow/test_data_4", experimentType="online_id", verbose=True, exclude_known=True ) assert facRankings.top_k == 100 #print([i for i in facRankings["rank"].fillna(101)]) desired_ranks = [101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 3.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 3.0, 101.0, 101.0, 2.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 23.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 4.0, 101.0, 101.0, 101.0, 33.0, 27.0, 101.0, 101.0, 101.0, 101.0, 101.0, 23.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 4.0, 101.0, 27.0, 23.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 35.0, 101.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 33.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 39.0, 101.0, 1.0, 101.0, 101.0, 101.0, 14.0, 101.0, 52.0, 101.0, 101.0, 52.0, 101.0, 101.0, 101.0, 101.0, 19.0, 22.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 68.0, 33.0, 101.0, 101.0, 101.0, 101.0, 64.0, 101.0, 101.0, 62.0, 36.0, 69.0, 57.0, 2.0, 101.0, 5.0, 101.0, 101.0, 101.0, 101.0, 101.0, 75.0, 101.0, 101.0, 101.0, 65.0, 101.0, 37.0, 101.0, 2.0, 101.0, 101.0, 101.0, 101.0, 17.0, 101.0, 101.0, 101.0, 101.0, 10.0, 101.0, 41.0, 53.0, 101.0, 101.0, 45.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 7.0, 30.0, 101.0, 101.0, 101.0, 101.0, 59.0, 60.0, 31.0, 101.0, 101.0, 101.0, 101.0, 55.0, 101.0, 48.0, 101.0, 42.0, 71.0, 101.0, 101.0, 101.0, 101.0, 101.0, 71.0, 73.0, 60.0, 1.0, 37.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 84.0, 101.0, 10.0, 101.0, 76.0, 101.0, 101.0, 101.0, 43.0, 101.0, 12.0, 26.0, 101.0, 101.0, 101.0, 47.0, 101.0, 77.0, 101.0, 101.0, 101.0, 93.0, 37.0, 101.0, 101.0, 101.0, 101.0, 31.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 60.0, 101.0, 101.0, 63.0, 101.0, 56.0, 63.0, 101.0, 43.0, 10.0, 66.0, 71.0, 101.0, 101.0, 101.0, 101.0, 96.0, 58.0, 16.0, 101.0, 101.0, 61.0, 101.0, 101.0, 101.0, 13.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 21.0, 38.0, 12.0, 101.0, 101.0, 101.0, 101.0, 74.0, 101.0, 101.0, 2.0, 44.0, 101.0, 78.0, 74.0, 72.0, 101.0, 101.0, 101.0, 80.0, 101.0, 101.0, 1.0, 101.0, 90.0, 16.0, 101.0, 101.0, 101.0, 101.0, 101.0, 87.0, 84.0, 99.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 87.0, 101.0, 74.0, 101.0, 49.0, 101.0, 101.0, 101.0, 101.0, 101.0, 26.0, 101.0, 84.0, 74.0, 101.0, 101.0, 38.0, 101.0, 66.0, 16.0, 101.0, 23.0, 101.0, 101.0, 85.0, 47.0, 4.0, 53.0, 101.0, 13.0, 101.0, 101.0, 101.0, 101.0, 13.0, 22.0, 83.0, 101.0, 101.0, 101.0, 37.0, 101.0, 101.0, 82.0, 101.0, 101.0, 10.0, 101.0, 82.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 96.0, 101.0, 13.0, 101.0, 101.0, 101.0, 101.0, 17.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 91.0, 14.0, 101.0, 101.0, 101.0, 76.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 38.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 62.0, 101.0, 3.0, 101.0, 80.0, 101.0, 23.0, 101.0, 101.0, 101.0, 14.0, 101.0, 101.0, 101.0, 29.0, 101.0, 101.0, 1.0, 101.0, 2.0, 72.0, 101.0, 101.0, 70.0, 56.0, 101.0, 89.0, 22.0, 101.0, 5.0, 101.0, 101.0, 101.0, 101.0, 101.0, 45.0, 101.0, 101.0, 101.0, 99.0, 101.0, 101.0, 101.0, 101.0, 101.0, 38.0, 29.0, 67.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 2.0, 101.0, 72.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 73.0, 101.0, 101.0, 101.0, 87.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 80.0, 101.0, 101.0, 42.0, 95.0, 101.0, 101.0, 101.0, 101.0, 101.0, 2.0, 101.0, 99.0, 101.0, 101.0, 91.0, 101.0, 101.0, 101.0, 101.0, 55.0, 101.0, 72.0, 101.0, 101.0, 101.0, 101.0, 101.0, 6.0, 16.0, 21.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 74.0, 101.0, 101.0, 101.0, 101.0, 96.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 15.0, 101.0, 101.0, 97.0, 101.0, 101.0, 101.0, 47.0, 101.0, 101.0, 101.0, 33.0, 101.0, 35.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 83.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 81.0, 46.0, 101.0, 101.0, 101.0, 101.0, 65.0, 101.0, 101.0, 101.0, 6.0, 34.0, 101.0, 101.0, 34.0, 84.0, 101.0, 101.0, 91.0, 101.0, 101.0, 101.0, 11.0, 101.0, 98.0, 101.0, 101.0, 101.0, 101.0, 55.0, 101.0, 101.0, 101.0, 101.0, 95.0, 101.0, 101.0, 101.0, 67.0, 101.0, 48.0, 10.0, 101.0, 101.0, 101.0, 101.0, 101.0, 21.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 98.0, 101.0, 101.0, 101.0, 101.0, 101.0, 57.0, 101.0, 101.0, 78.0, 101.0, 101.0, 101.0, 101.0, 101.0, 43.0, 67.0, 36.0, 101.0, 101.0, 101.0, 82.0, 78.0, 47.0, 101.0, 31.0, 79.0, 2.0, 101.0, 4.0, 101.0, 101.0, 101.0, 29.0, 14.0, 101.0, 101.0, 101.0, 36.0, 101.0, 72.0, 101.0, 10.0, 101.0, 101.0, 25.0, 101.0, 46.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 56.0, 101.0, 101.0, 101.0, 49.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 25.0, 94.0, 101.0, 101.0, 101.0, 101.0, 101.0, 85.0, 101.0, 101.0, 54.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 40.0, 55.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 30.0, 101.0, 101.0, 101.0, 4.0, 101.0, 101.0, 4.0, 5.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 63.0, 101.0, 101.0, 101.0, 101.0, 101.0, 82.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 56.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 14.0, 75.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 60.0, 72.0, 101.0, 101.0, 29.0, 20.0, 81.0, 61.0, 45.0, 57.0, 24.0, 101.0, 101.0, 26.0, 45.0, 1.0, 101.0, 101.0, 14.0, 101.0, 101.0, 25.0, 101.0, 101.0, 101.0, 22.0, 101.0, 101.0, 101.0, 101.0, 75.0, 101.0, 101.0, 4.0, 101.0, 101.0, 101.0, 43.0, 42.0, 47.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 33.0, 101.0, 101.0, 101.0, 101.0, 59.0, 101.0, 101.0, 52.0, 98.0, 63.0, 50.0, 9.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 92.0, 101.0, 101.0, 61.0, 101.0, 55.0, 101.0, 101.0, 101.0, 101.0, 25.0, 10.0, 101.0, 101.0, 101.0, 62.0, 93.0, 101.0, 101.0, 98.0, 61.0, 101.0, 60.0, 82.0, 101.0, 101.0, 95.0, 101.0, 83.0, 101.0, 24.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 49.0, 3.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 73.0, 101.0, 101.0, 101.0, 101.0, 101.0, 94.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 34.0, 101.0, 101.0, 101.0, 101.0, 101.0, 94.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 12.0, 44.0, 5.0, 101.0, 49.0, 101.0, 101.0, 101.0, 101.0, 70.0, 101.0, 23.0, 101.0, 94.0, 91.0, 101.0, 101.0, 101.0, 73.0, 101.0, 101.0, 30.0, 101.0, 101.0, 101.0, 27.0, 101.0, 101.0, 101.0, 101.0, 72.0, 101.0, 101.0, 101.0, 22.0, 101.0, 101.0, 101.0, 101.0, 101.0, 26.0, 101.0, 101.0, 101.0, 101.0, 101.0, 90.0, 55.0, 71.0, 101.0, 101.0, 101.0, 101.0, 101.0] assert list(facRankings["rank"].fillna(101)) == desired_ranks
apache-2.0
kpei/cs-rating
wl_model/spcl_case.py
1
1599
import pandas as pd import pymc3 as pm import numpy as np def fix_teams(h_teams): h_teams.loc[7723, 'Name'] = 'Morior Invictus' h_teams.loc[8241, 'Name'] = 'ex-Nitrious' h_teams.loc[8349, 'Name'] = 'Good People' h_teams.loc[8008, 'Name'] = 'Grayhound' h_teams.loc[5293, 'Name'] = 'AVANT' h_teams.loc[8030, 'Name'] = 'Not Academy' return h_teams def prep_pymc_model(n_teams, n_maps): with pm.Model() as rating_model: omega = pm.HalfCauchy('omega', 0.5) tau = pm.HalfCauchy('tau', 0.5) rating = pm.Normal('rating', 0, omega, shape=n_teams) theta_tilde = pm.Normal('rate_t', mu=0, sd=1, shape=(n_maps, n_teams)) rating_map = pm.Deterministic('rating | map', rating + tau * theta_tilde) alpha = pm.Normal('alpha', 1., 0.2) beta = pm.Normal('beta', 0.5, 0.2) sigma = pm.HalfCauchy('sigma', 0.5) return rating_model def prep_pymc_time_model(n_teams, n_maps, n_periods): with pm.Model() as rating_model: rho = pm.Uniform('rho', -1, 1) omega = pm.HalfNormal('omega', 0.5) sigma = pm.HalfNormal('sigma', 0.5) time_rating = [pm.Normal('rating_0', 0, omega, shape=n_teams)] theta_tilde = pm.Normal('rate_t', mu=0, sd=1, shape=(n_maps, n_teams)) tau = pm.HalfCauchy('tau', 0.5) time_rating_map = [pm.Deterministic('rating_0 | map', time_rating[0] + tau * theta_tilde)] gamma = pm.HalfNormal('gamma', 1.5) for i in np.arange(1, n_periods): time_rating.append(pm.Normal('rating_'+str(i), rho*time_rating[i-1], sigma, shape=n_teams)) time_rating_map.append(pm.Deterministic('rating_'+str(i)+' | map', time_rating[i] + tau * theta_tilde)) return rating_model
gpl-3.0
aiguofer/bokeh
bokeh/models/sources.py
1
11783
from __future__ import absolute_import import warnings from ..core.has_props import abstract from ..core.properties import Any, Bool, ColumnData, Dict, Enum, Instance, Int, JSON, List, Seq, String from ..model import Model from ..util.dependencies import import_optional from ..util.warnings import BokehUserWarning from .callbacks import Callback pd = import_optional('pandas') @abstract class DataSource(Model): ''' A base class for data source types. ''' selected = Dict(String, Dict(String, Any), default={ '0d': {'glyph': None, 'indices': []}, '1d': {'indices': []}, '2d': {} }, help=""" A dict to indicate selected indices on different dimensions on this DataSource. Keys are: .. code-block:: python # selection information for line and patch glyphs '0d' : { # the glyph that was selected 'glyph': None # array with the [smallest] index of the segment of the line that was hit 'indices': [] } # selection for most (point-like) glyphs, except lines and patches '1d': { # indices of the points included in the selection indices: [] } # selection information for multiline and patches glyphs '2d': { # mapping of indices of the multiglyph to array of glyph indices that were hit # e.g. {3: [5, 6], 4, [5]} } """) callback = Instance(Callback, help=""" A callback to run in the browser whenever the selection is changed. """) @abstract class ColumnarDataSource(DataSource): ''' A base class for data source types, which can be mapped onto a columnar format. ''' column_names = List(String, help=""" An list of names for all the columns in this DataSource. """) class ColumnDataSource(ColumnarDataSource): ''' Maps names of columns to sequences or arrays. If the ColumnDataSource initializer is called with a single argument that is a dict or pandas.DataFrame, that argument is used as the value for the "data" attribute. For example:: ColumnDataSource(mydict) # same as ColumnDataSource(data=mydict) ColumnDataSource(df) # same as ColumnDataSource(data=df) .. note:: There is an implicit assumption that all the columns in a a given ColumnDataSource have the same length. ''' data = ColumnData(String, Seq(Any), help=""" Mapping of column names to sequences of data. The data can be, e.g, Python lists or tuples, NumPy arrays, etc. """).asserts(lambda _, data: len(set(len(x) for x in data.values())) <= 1, lambda: warnings.warn("ColumnDataSource's columns must be of the same length", BokehUserWarning)) def __init__(self, *args, **kw): ''' If called with a single argument that is a dict or pandas.DataFrame, treat that implicitly as the "data" attribute. ''' if len(args) == 1 and "data" not in kw: kw["data"] = args[0] # TODO (bev) invalid to pass args and "data", check and raise exception raw_data = kw.pop("data", {}) if not isinstance(raw_data, dict): if pd and isinstance(raw_data, pd.DataFrame): raw_data = self._data_from_df(raw_data) else: raise ValueError("expected a dict or pandas.DataFrame, got %s" % raw_data) super(ColumnDataSource, self).__init__(**kw) for name, data in raw_data.items(): self.add(data, name) @staticmethod def _data_from_df(df): ''' Create a ``dict`` of columns from a Pandas DataFrame, suitable for creating a ColumnDataSource. Args: df (DataFrame) : data to convert Returns: dict(str, list) ''' index = df.index new_data = {} for colname in df: new_data[colname] = df[colname].tolist() if index.name: new_data[index.name] = index.tolist() elif index.names and not all([x is None for x in index.names]): new_data["_".join(index.names)] = index.tolist() else: new_data["index"] = index.tolist() return new_data @classmethod def from_df(cls, data): ''' Create a ``dict`` of columns from a Pandas DataFrame, suitable for creating a ColumnDataSource. Args: data (DataFrame) : data to convert Returns: dict[str, list] ''' return cls._data_from_df(data) def to_df(self): ''' Convert this data source to pandas dataframe. If ``column_names`` is set, use those. Otherwise let Pandas infer the column names. The ``column_names`` property can be used both to order and filter the columns. Returns: DataFrame ''' if not pd: raise RuntimeError('Pandas must be installed to convert to a Pandas Dataframe') if self.column_names: return pd.DataFrame(self.data, columns=self.column_names) else: return pd.DataFrame(self.data) def add(self, data, name=None): ''' Appends a new column of data to the data source. Args: data (seq) : new data to add name (str, optional) : column name to use. If not supplied, generate a name of the form "Series ####" Returns: str: the column name used ''' if name is None: n = len(self.data) while "Series %d"%n in self.data: n += 1 name = "Series %d"%n self.column_names.append(name) self.data[name] = data return name def remove(self, name): ''' Remove a column of data. Args: name (str) : name of the column to remove Returns: None .. note:: If the column name does not exist, a warning is issued. ''' try: self.column_names.remove(name) del self.data[name] except (ValueError, KeyError): import warnings warnings.warn("Unable to find column '%s' in data source" % name) def stream(self, new_data, rollover=None, setter=None): ''' Efficiently update data source columns with new append-only data. In cases where it is necessary to update data columns in, this method can efficiently send only the new data, instead of requiring the entire data set to be re-sent. Args: new_data (dict[str, seq]) : a mapping of column names to sequences of new data to append to each column. All columns of the data source must be present in ``new_data``, with identical-length append data. rollover (int, optional) : A maximum column size, above which data from the start of the column begins to be discarded. If None, then columns will continue to grow unbounded (default: None) Returns: None Raises: ValueError Example: .. code-block:: python source = ColumnDataSource(data=dict(foo=[], bar=[])) # has new, identical-length updates for all columns in source new_data = { 'foo' : [10, 20], 'bar' : [100, 200], } source.stream(new_data) ''' import numpy as np newkeys = set(new_data.keys()) oldkeys = set(self.data.keys()) if newkeys != oldkeys: missing = oldkeys - newkeys extra = newkeys - oldkeys if missing and extra: raise ValueError( "Must stream updates to all existing columns (missing: %s, extra: %s)" % (", ".join(sorted(missing)), ", ".join(sorted(extra))) ) elif missing: raise ValueError("Must stream updates to all existing columns (missing: %s)" % ", ".join(sorted(missing))) else: raise ValueError("Must stream updates to all existing columns (extra: %s)" % ", ".join(sorted(extra))) lengths = set() for x in new_data.values(): if isinstance(x, np.ndarray): if len(x.shape) != 1: raise ValueError("stream(...) only supports 1d sequences, got ndarray with size %r" % (x.shape,)) lengths.add(x.shape[0]) else: lengths.add(len(x)) if len(lengths) > 1: raise ValueError("All streaming column updates must be the same length") self.data._stream(self.document, self, new_data, rollover, setter) def patch(self, patches, setter=None): ''' Efficiently update data source columns at specific locations If it is only necessary to update a small subset of data in a ColumnDataSource, this method can be used to efficiently update only the subset, instead of requiring the entire data set to be sent. This method should be passed a dictionary that maps column names to lists of tuples, each of the form ``(index, new_value)``. The value at the given index for that column will be updated with the new value. Args: patches (dict[str, list[tuple]]) : lists of patches for each column. Returns: None Raises: ValueError Example: .. code-block:: python source = ColumnDataSource(data=dict(foo=[10, 20], bar=[100, 200])) patches = { 'foo' : [ (0, 1) ], 'bar' : [ (0, 101), (1, 201) ], } source.patch(patches) ''' extra = set(patches.keys()) - set(self.data.keys()) if extra: raise ValueError("Can only patch existing columns (extra: %s)" % ", ".join(sorted(extra))) for name, patch in patches.items(): max_ind = max(x[0] for x in patch) if max_ind >= len(self.data[name]): raise ValueError("Out-of bounds index (%d) in patch for column: %s" % (max_ind, name)) self.data._patch(self.document, self, patches, setter) class GeoJSONDataSource(ColumnarDataSource): ''' ''' geojson = JSON(help=""" GeoJSON that contains features for plotting. Currently GeoJSONDataSource can only process a FeatureCollection or GeometryCollection. """) @abstract class RemoteSource(ColumnDataSource): ''' ''' data_url = String(help=""" The URL to the endpoint for the data. """) polling_interval = Int(help=""" polling interval for updating data source in milliseconds """) class AjaxDataSource(RemoteSource): ''' ''' method = Enum('POST', 'GET', help="http method - GET or POST") mode = Enum("replace", "append", help=""" Whether to append new data to existing data (up to ``max_size``), or to replace existing data entirely. """) max_size = Int(help=""" Maximum size of the data array being kept after each pull requests. Larger than that size, the data will be right shifted. """) if_modified = Bool(False, help=""" Whether to include an ``If-Modified-Since`` header in AJAX requests to the server. If this header is supported by the server, then only new data since the last request will be returned. """) content_type = String(default='application/json', help=""" Set the "contentType" parameter for the Ajax request. """) http_headers = Dict(String, String, help=""" HTTP headers to set for the Ajax request. """)
bsd-3-clause
kernc/scikit-learn
sklearn/preprocessing/tests/test_label.py
12
17807
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): lb = LabelBinarizer() # one-class case defaults to negative label inp = ["pos", "pos", "pos", "pos"] expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) le.fit(["apple", "orange"]) msg = "bad input shape" assert_raise_message(ValueError, msg, le.transform, "apple") def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
Soya93/Extract-Refactoring
python/helpers/pydev/pydev_ipython/matplotlibtools.py
12
5436
import sys backends = {'tk': 'TkAgg', 'gtk': 'GTKAgg', 'wx': 'WXAgg', 'qt': 'Qt4Agg', # qt3 not supported 'qt4': 'Qt4Agg', 'osx': 'MacOSX'} # We also need a reverse backends2guis mapping that will properly choose which # GUI support to activate based on the desired matplotlib backend. For the # most part it's just a reverse of the above dict, but we also need to add a # few others that map to the same GUI manually: backend2gui = dict(zip(backends.values(), backends.keys())) backend2gui['Qt4Agg'] = 'qt' # In the reverse mapping, there are a few extra valid matplotlib backends that # map to the same GUI support backend2gui['GTK'] = backend2gui['GTKCairo'] = 'gtk' backend2gui['WX'] = 'wx' backend2gui['CocoaAgg'] = 'osx' def do_enable_gui(guiname): from _pydev_bundle.pydev_versioncheck import versionok_for_gui if versionok_for_gui(): try: from pydev_ipython.inputhook import enable_gui enable_gui(guiname) except: sys.stderr.write("Failed to enable GUI event loop integration for '%s'\n" % guiname) import traceback traceback.print_exc() elif guiname not in ['none', '', None]: # Only print a warning if the guiname was going to do something sys.stderr.write("Debug console: Python version does not support GUI event loop integration for '%s'\n" % guiname) # Return value does not matter, so return back what was sent return guiname def find_gui_and_backend(): """Return the gui and mpl backend.""" matplotlib = sys.modules['matplotlib'] # WARNING: this assumes matplotlib 1.1 or newer!! backend = matplotlib.rcParams['backend'] # In this case, we need to find what the appropriate gui selection call # should be for IPython, so we can activate inputhook accordingly gui = backend2gui.get(backend, None) return gui, backend def is_interactive_backend(backend): """ Check if backend is interactive """ matplotlib = sys.modules['matplotlib'] from matplotlib.rcsetup import interactive_bk, non_interactive_bk # @UnresolvedImport if backend in interactive_bk: return True elif backend in non_interactive_bk: return False else: return matplotlib.is_interactive() def patch_use(enable_gui_function): """ Patch matplotlib function 'use' """ matplotlib = sys.modules['matplotlib'] def patched_use(*args, **kwargs): matplotlib.real_use(*args, **kwargs) gui, backend = find_gui_and_backend() enable_gui_function(gui) setattr(matplotlib, "real_use", getattr(matplotlib, "use")) setattr(matplotlib, "use", patched_use) def patch_is_interactive(): """ Patch matplotlib function 'use' """ matplotlib = sys.modules['matplotlib'] def patched_is_interactive(): return matplotlib.rcParams['interactive'] setattr(matplotlib, "real_is_interactive", getattr(matplotlib, "is_interactive")) setattr(matplotlib, "is_interactive", patched_is_interactive) def activate_matplotlib(enable_gui_function): """Set interactive to True for interactive backends. enable_gui_function - Function which enables gui, should be run in the main thread. """ matplotlib = sys.modules['matplotlib'] gui, backend = find_gui_and_backend() is_interactive = is_interactive_backend(backend) if is_interactive: enable_gui_function(gui) if not matplotlib.is_interactive(): sys.stdout.write("Backend %s is interactive backend. Turning interactive mode on.\n" % backend) matplotlib.interactive(True) else: if matplotlib.is_interactive(): sys.stdout.write("Backend %s is non-interactive backend. Turning interactive mode off.\n" % backend) matplotlib.interactive(False) patch_use(enable_gui_function) patch_is_interactive() def flag_calls(func): """Wrap a function to detect and flag when it gets called. This is a decorator which takes a function and wraps it in a function with a 'called' attribute. wrapper.called is initialized to False. The wrapper.called attribute is set to False right before each call to the wrapped function, so if the call fails it remains False. After the call completes, wrapper.called is set to True and the output is returned. Testing for truth in wrapper.called allows you to determine if a call to func() was attempted and succeeded.""" # don't wrap twice if hasattr(func, 'called'): return func def wrapper(*args,**kw): wrapper.called = False out = func(*args,**kw) wrapper.called = True return out wrapper.called = False wrapper.__doc__ = func.__doc__ return wrapper def activate_pylab(): pylab = sys.modules['pylab'] pylab.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. pylab.draw_if_interactive = flag_calls(pylab.draw_if_interactive) def activate_pyplot(): pyplot = sys.modules['matplotlib.pyplot'] pyplot.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. pyplot.draw_if_interactive = flag_calls(pyplot.draw_if_interactive)
apache-2.0
fivejjs/GPy
GPy/models/bayesian_gplvm_minibatch.py
4
11292
# Copyright (c) 2012-2014, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from .. import kern from ..likelihoods import Gaussian from ..core.parameterization.variational import NormalPosterior, NormalPrior from ..inference.latent_function_inference.var_dtc_parallel import VarDTC_minibatch import logging from GPy.models.sparse_gp_minibatch import SparseGPMiniBatch from GPy.core.parameterization.param import Param class BayesianGPLVMMiniBatch(SparseGPMiniBatch): """ Bayesian Gaussian Process Latent Variable Model :param Y: observed data (np.ndarray) or GPy.likelihood :type Y: np.ndarray| GPy.likelihood instance :param input_dim: latent dimensionality :type input_dim: int :param init: initialisation method for the latent space :type init: 'PCA'|'random' """ def __init__(self, Y, input_dim, X=None, X_variance=None, init='PCA', num_inducing=10, Z=None, kernel=None, inference_method=None, likelihood=None, name='bayesian gplvm', normalizer=None, missing_data=False, stochastic=False, batchsize=1): self.logger = logging.getLogger(self.__class__.__name__) if X is None: from ..util.initialization import initialize_latent self.logger.info("initializing latent space X with method {}".format(init)) X, fracs = initialize_latent(init, input_dim, Y) else: fracs = np.ones(input_dim) self.init = init if Z is None: self.logger.info("initializing inducing inputs") Z = np.random.permutation(X.copy())[:num_inducing] assert Z.shape[1] == X.shape[1] if X_variance == False: self.logger.info('no variance on X, activating sparse GPLVM') X = Param("latent space", X) elif X_variance is None: self.logger.info("initializing latent space variance ~ uniform(0,.1)") X_variance = np.random.uniform(0,.1,X.shape) self.variational_prior = NormalPrior() X = NormalPosterior(X, X_variance) if kernel is None: self.logger.info("initializing kernel RBF") kernel = kern.RBF(input_dim, lengthscale=1./fracs, ARD=True) #+ kern.Bias(input_dim) + kern.White(input_dim) if likelihood is None: likelihood = Gaussian() self.kl_factr = 1. if inference_method is None: from ..inference.latent_function_inference.var_dtc import VarDTC self.logger.debug("creating inference_method var_dtc") inference_method = VarDTC(limit=1 if not missing_data else Y.shape[1]) if kernel.useGPU and isinstance(inference_method, VarDTC_GPU): kernel.psicomp.GPU_direct = True super(BayesianGPLVMMiniBatch,self).__init__(X, Y, Z, kernel, likelihood=likelihood, name=name, inference_method=inference_method, normalizer=normalizer, missing_data=missing_data, stochastic=stochastic, batchsize=batchsize) self.X = X self.link_parameter(self.X, 0) def set_X_gradients(self, X, X_grad): """Set the gradients of the posterior distribution of X in its specific form.""" X.mean.gradient, X.variance.gradient = X_grad def get_X_gradients(self, X): """Get the gradients of the posterior distribution of X in its specific form.""" return X.mean.gradient, X.variance.gradient def _inner_parameters_changed(self, kern, X, Z, likelihood, Y, Y_metadata, Lm=None, dL_dKmm=None, subset_indices=None): posterior, log_marginal_likelihood, grad_dict, current_values, value_indices = super(BayesianGPLVMMiniBatch, self)._inner_parameters_changed(kern, X, Z, likelihood, Y, Y_metadata, Lm=Lm, dL_dKmm=dL_dKmm, subset_indices=subset_indices) if self.has_uncertain_inputs(): current_values['meangrad'], current_values['vargrad'] = self.kern.gradients_qX_expectations( variational_posterior=X, Z=Z, dL_dpsi0=grad_dict['dL_dpsi0'], dL_dpsi1=grad_dict['dL_dpsi1'], dL_dpsi2=grad_dict['dL_dpsi2']) else: current_values['Xgrad'] = self.kern.gradients_X(grad_dict['dL_dKnm'], X, Z) current_values['Xgrad'] += self.kern.gradients_X_diag(grad_dict['dL_dKdiag'], X) if subset_indices is not None: value_indices['Xgrad'] = subset_indices['samples'] kl_fctr = self.kl_factr if self.has_uncertain_inputs(): if self.missing_data: d = self.output_dim log_marginal_likelihood -= kl_fctr*self.variational_prior.KL_divergence(X)/d else: log_marginal_likelihood -= kl_fctr*self.variational_prior.KL_divergence(X) # Subsetting Variational Posterior objects, makes the gradients # empty. We need them to be 0 though: X.mean.gradient[:] = 0 X.variance.gradient[:] = 0 self.variational_prior.update_gradients_KL(X) if self.missing_data: current_values['meangrad'] += kl_fctr*X.mean.gradient/d current_values['vargrad'] += kl_fctr*X.variance.gradient/d else: current_values['meangrad'] += kl_fctr*X.mean.gradient current_values['vargrad'] += kl_fctr*X.variance.gradient if subset_indices is not None: value_indices['meangrad'] = subset_indices['samples'] value_indices['vargrad'] = subset_indices['samples'] return posterior, log_marginal_likelihood, grad_dict, current_values, value_indices def _outer_values_update(self, full_values): """ Here you put the values, which were collected before in the right places. E.g. set the gradients of parameters, etc. """ super(BayesianGPLVMMiniBatch, self)._outer_values_update(full_values) if self.has_uncertain_inputs(): self.X.mean.gradient = full_values['meangrad'] self.X.variance.gradient = full_values['vargrad'] else: self.X.gradient = full_values['Xgrad'] def _outer_init_full_values(self): if self.has_uncertain_inputs(): return dict(meangrad=np.zeros(self.X.mean.shape), vargrad=np.zeros(self.X.variance.shape)) else: return dict(Xgrad=np.zeros(self.X.shape)) def parameters_changed(self): super(BayesianGPLVMMiniBatch,self).parameters_changed() if isinstance(self.inference_method, VarDTC_minibatch): return def plot_latent(self, labels=None, which_indices=None, resolution=50, ax=None, marker='o', s=40, fignum=None, plot_inducing=True, legend=True, plot_limits=None, aspect='auto', updates=False, predict_kwargs={}, imshow_kwargs={}): import sys assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import dim_reduction_plots return dim_reduction_plots.plot_latent(self, labels, which_indices, resolution, ax, marker, s, fignum, plot_inducing, legend, plot_limits, aspect, updates, predict_kwargs, imshow_kwargs) def do_test_latents(self, Y): """ Compute the latent representation for a set of new points Y Notes: This will only work with a univariate Gaussian likelihood (for now) """ N_test = Y.shape[0] input_dim = self.Z.shape[1] means = np.zeros((N_test, input_dim)) covars = np.zeros((N_test, input_dim)) dpsi0 = -0.5 * self.input_dim / self.likelihood.variance dpsi2 = self.grad_dict['dL_dpsi2'][0][None, :, :] # TODO: this may change if we ignore het. likelihoods V = Y/self.likelihood.variance #compute CPsi1V #if self.Cpsi1V is None: # psi1V = np.dot(self.psi1.T, self.likelihood.V) # tmp, _ = linalg.dtrtrs(self._Lm, np.asfortranarray(psi1V), lower=1, trans=0) # tmp, _ = linalg.dpotrs(self.LB, tmp, lower=1) # self.Cpsi1V, _ = linalg.dtrtrs(self._Lm, tmp, lower=1, trans=1) dpsi1 = np.dot(self.posterior.woodbury_vector, V.T) #start = np.zeros(self.input_dim * 2) from scipy.optimize import minimize for n, dpsi1_n in enumerate(dpsi1.T[:, :, None]): args = (input_dim, self.kern.copy(), self.Z, dpsi0, dpsi1_n.T, dpsi2) res = minimize(latent_cost_and_grad, jac=True, x0=np.hstack((means[n], covars[n])), args=args, method='BFGS') xopt = res.x mu, log_S = xopt.reshape(2, 1, -1) means[n] = mu[0].copy() covars[n] = np.exp(log_S[0]).copy() X = NormalPosterior(means, covars) return X def dmu_dX(self, Xnew): """ Calculate the gradient of the prediction at Xnew w.r.t Xnew. """ dmu_dX = np.zeros_like(Xnew) for i in range(self.Z.shape[0]): dmu_dX += self.kern.gradients_X(self.grad_dict['dL_dpsi1'][i:i + 1, :], Xnew, self.Z[i:i + 1, :]) return dmu_dX def dmu_dXnew(self, Xnew): """ Individual gradient of prediction at Xnew w.r.t. each sample in Xnew """ gradients_X = np.zeros((Xnew.shape[0], self.num_inducing)) ones = np.ones((1, 1)) for i in range(self.Z.shape[0]): gradients_X[:, i] = self.kern.gradients_X(ones, Xnew, self.Z[i:i + 1, :]).sum(-1) return np.dot(gradients_X, self.grad_dict['dL_dpsi1']) def plot_steepest_gradient_map(self, *args, ** kwargs): """ See GPy.plotting.matplot_dep.dim_reduction_plots.plot_steepest_gradient_map """ import sys assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import dim_reduction_plots return dim_reduction_plots.plot_steepest_gradient_map(self,*args,**kwargs) def latent_cost_and_grad(mu_S, input_dim, kern, Z, dL_dpsi0, dL_dpsi1, dL_dpsi2): """ objective function for fitting the latent variables for test points (negative log-likelihood: should be minimised!) """ mu = mu_S[:input_dim][None] log_S = mu_S[input_dim:][None] S = np.exp(log_S) X = NormalPosterior(mu, S) psi0 = kern.psi0(Z, X) psi1 = kern.psi1(Z, X) psi2 = kern.psi2(Z, X) lik = dL_dpsi0 * psi0.sum() + np.einsum('ij,kj->...', dL_dpsi1, psi1) + np.einsum('ijk,lkj->...', dL_dpsi2, psi2) - 0.5 * np.sum(np.square(mu) + S) + 0.5 * np.sum(log_S) dLdmu, dLdS = kern.gradients_qX_expectations(dL_dpsi0, dL_dpsi1, dL_dpsi2, Z, X) dmu = dLdmu - mu # dS = S0 + S1 + S2 -0.5 + .5/S dlnS = S * (dLdS - 0.5) + .5 return -lik, -np.hstack((dmu.flatten(), dlnS.flatten()))
bsd-3-clause
JingJunYin/tensorflow
tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py
13
20278
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators import kmeans as kmeans_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce( offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points - 1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies( [q.enqueue_many(math_ops.range(num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig(tf_random_seed=tf_random_seed) @property def initial_clusters(self): return kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) score1 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) steps = 10 * self.num_points // self.batch_size kmeans.fit(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=learn.RunConfig(tf_random_seed=14), random_seed=12, relative_tolerance=1e-4) kmeans.fit( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertNear(self.true_score, score, self.true_score * 0.01) def _infer_helper(self, kmeans, clusters, num_points): points, true_assignments, true_offsets = make_random_points( clusters, num_points) # Test predict assignments = list( kmeans.predict_cluster_idx(input_fn=self.input_fn( batch_size=num_points, points=points, num_epochs=1))) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform( input_fn=lambda: (constant_op.constant(points), None)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot(points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.clusters() # Run inference on small datasets. self._infer_helper(kmeans, clusters, num_points=10) self._infer_helper(kmeans, clusters, num_points=1) class KMeansTestMultiStageInit(KMeansTestBase): def test_random(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_just_right(self): points = np.array([[1, 2]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_too_small(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) with self.assertRaisesOpError(AssertionError): kmeans.fit( input_fn=self.input_fn(batch_size=4, points=points, randomize=False), steps=1) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean(normalize(self.points)[0:4, :], axis=0, keepdims=True))[ 0], normalize( np.mean(normalize(self.points)[4:, :], axis=0, keepdims=True))[ 0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.fit(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.clusters()) true_transform = 1 - cosine_similarity(self.points, centers) transform = self.kmeans.transform(input_fn=self.input_fn( batch_size=self.num_points)) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) assignments = list( self.kmeans.predict_cluster_idx(input_fn=self.input_fn( num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean(normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.clusters()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return (input_lib.limit_epochs( constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_idx(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, relative_tolerance=1e-6, config=run_config.RunConfig(tf_random_seed=3)) tf_kmeans.fit( input_fn=lambda: (constant_op.constant(self.points), None), steps=50) _ = tf_kmeans.clusters() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None), steps=1)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) class KMeansTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue( capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner( queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependendent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): kmeans = kmeans_lib.KMeansClustering(5) kmeans.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/pandas/tests/indexes/datetimes/test_datetimelike.py
9
2526
""" generic tests from the Datetimelike class """ import numpy as np import pandas as pd from pandas.util import testing as tm from pandas import Series, Index, DatetimeIndex, date_range from ..datetimelike import DatetimeLike class TestDatetimeIndex(DatetimeLike): _holder = DatetimeIndex def setup_method(self, method): self.indices = dict(index=tm.makeDateIndex(10)) self.setup_indices() def create_index(self): return date_range('20130101', periods=5) def test_shift(self): # test shift for datetimeIndex and non datetimeIndex # GH8083 drange = self.create_index() result = drange.shift(1) expected = DatetimeIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') tm.assert_index_equal(result, expected) result = drange.shift(-1) expected = DatetimeIndex(['2012-12-31', '2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04'], freq='D') tm.assert_index_equal(result, expected) result = drange.shift(3, freq='2D') expected = DatetimeIndex(['2013-01-07', '2013-01-08', '2013-01-09', '2013-01-10', '2013-01-11'], freq='D') tm.assert_index_equal(result, expected) def test_pickle_compat_construction(self): pass def test_intersection(self): first = self.index second = self.index[5:] intersect = first.intersection(second) assert tm.equalContents(intersect, second) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.intersection(case) assert tm.equalContents(result, second) third = Index(['a', 'b', 'c']) result = first.intersection(third) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_union(self): first = self.index[:5] second = self.index[5:] everything = self.index union = first.union(second) assert tm.equalContents(union, everything) # GH 10149 cases = [klass(second.values) for klass in [np.array, Series, list]] for case in cases: result = first.union(case) assert tm.equalContents(result, everything)
mit
mattgiguere/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
tiagofrepereira2012/tensorflow
tensorflow/python/estimator/canned/linear_testing_utils.py
14
66739
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils for testing linear estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import shutil import tempfile import numpy as np import six from tensorflow.core.example import example_pb2 from tensorflow.core.example import feature_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.estimator import estimator from tensorflow.python.estimator import run_config from tensorflow.python.estimator.canned import linear from tensorflow.python.estimator.canned import metric_keys from tensorflow.python.estimator.export import export from tensorflow.python.estimator.inputs import numpy_io from tensorflow.python.estimator.inputs import pandas_io from tensorflow.python.feature_column import feature_column as feature_column_lib from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import checkpoint_utils from tensorflow.python.training import input as input_lib from tensorflow.python.training import optimizer from tensorflow.python.training import queue_runner from tensorflow.python.training import saver from tensorflow.python.training import session_run_hook try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False # pylint rules which are disabled by default for test files. # pylint: disable=invalid-name,protected-access,missing-docstring # Names of variables created by model. AGE_WEIGHT_NAME = 'linear/linear_model/age/weights' HEIGHT_WEIGHT_NAME = 'linear/linear_model/height/weights' BIAS_NAME = 'linear/linear_model/bias_weights' LANGUAGE_WEIGHT_NAME = 'linear/linear_model/language/weights' def assert_close(expected, actual, rtol=1e-04, name='assert_close'): with ops.name_scope(name, 'assert_close', (expected, actual, rtol)) as scope: expected = ops.convert_to_tensor(expected, name='expected') actual = ops.convert_to_tensor(actual, name='actual') rdiff = math_ops.abs(expected - actual, 'diff') / math_ops.abs(expected) rtol = ops.convert_to_tensor(rtol, name='rtol') return check_ops.assert_less( rdiff, rtol, data=('Condition expected =~ actual did not hold element-wise:' 'expected = ', expected, 'actual = ', actual, 'rdiff = ', rdiff, 'rtol = ', rtol,), name=scope) def save_variables_to_ckpt(model_dir): init_all_op = [variables.global_variables_initializer()] with tf_session.Session() as sess: sess.run(init_all_op) saver.Saver().save(sess, os.path.join(model_dir, 'model.ckpt')) def queue_parsed_features(feature_map): tensors_to_enqueue = [] keys = [] for key, tensor in six.iteritems(feature_map): keys.append(key) tensors_to_enqueue.append(tensor) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = data_flow_ops.FIFOQueue(capacity=100, dtypes=queue_dtypes) queue_runner.add_queue_runner( queue_runner.QueueRunner(input_queue, [input_queue.enqueue(tensors_to_enqueue)])) dequeued_tensors = input_queue.dequeue() return {keys[i]: dequeued_tensors[i] for i in range(len(dequeued_tensors))} def sorted_key_dict(unsorted_dict): return {k: unsorted_dict[k] for k in sorted(unsorted_dict)} def sigmoid(x): return 1 / (1 + np.exp(-1.0 * x)) class CheckPartitionerVarHook(session_run_hook.SessionRunHook): """A `SessionRunHook` to check a partitioned variable.""" def __init__(self, test_case, var_name, var_dim, partitions): self._test_case = test_case self._var_name = var_name self._var_dim = var_dim self._partitions = partitions def begin(self): with variable_scope.variable_scope( variable_scope.get_variable_scope()) as scope: scope.reuse_variables() partitioned_weight = variable_scope.get_variable( self._var_name, shape=(self._var_dim, 1)) self._test_case.assertTrue( isinstance(partitioned_weight, variables.PartitionedVariable)) for part in partitioned_weight: self._test_case.assertEqual(self._var_dim // self._partitions, part.get_shape()[0]) class BaseLinearRegressorPartitionerTest(object): def __init__(self, linear_regressor_fn): self._linear_regressor_fn = linear_regressor_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def testPartitioner(self): x_dim = 64 partitions = 4 def _partitioner(shape, dtype): del dtype # unused; required by Fn signature. # Only partition the embedding tensor. return [partitions, 1] if shape[0] == x_dim else [1] regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.categorical_column_with_hash_bucket( 'language', hash_bucket_size=x_dim),), partitioner=_partitioner, model_dir=self._model_dir) def _input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english', 'spanish'], indices=[[0, 0], [0, 1]], dense_shape=[1, 2]) }, [[10.]] hook = CheckPartitionerVarHook(self, LANGUAGE_WEIGHT_NAME, x_dim, partitions) regressor.train(input_fn=_input_fn, steps=1, hooks=[hook]) def testDefaultPartitionerWithMultiplePsReplicas(self): partitions = 2 # This results in weights larger than the default partition size of 64M, # so partitioned weights are created (each weight uses 4 bytes). x_dim = 32 << 20 class FakeRunConfig(run_config.RunConfig): @property def num_ps_replicas(self): return partitions # Mock the device setter as ps is not available on test machines. with test.mock.patch.object( estimator, '_get_replica_device_setter', return_value=lambda _: '/cpu:0'): linear_regressor = self._linear_regressor_fn( feature_columns=( feature_column_lib.categorical_column_with_hash_bucket( 'language', hash_bucket_size=x_dim),), config=FakeRunConfig(), model_dir=self._model_dir) def _input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english', 'spanish'], indices=[[0, 0], [0, 1]], dense_shape=[1, 2]) }, [[10.]] hook = CheckPartitionerVarHook(self, LANGUAGE_WEIGHT_NAME, x_dim, partitions) linear_regressor.train(input_fn=_input_fn, steps=1, hooks=[hook]) # TODO(b/36813849): Add tests with dynamic shape inputs using placeholders. class BaseLinearRegressorEvaluationTest(object): def __init__(self, linear_regressor_fn): self._linear_regressor_fn = linear_regressor_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def test_evaluation_for_simple_data(self): with ops.Graph().as_default(): variables.Variable([[11.0]], name=AGE_WEIGHT_NAME) variables.Variable([2.0], name=BIAS_NAME) variables.Variable( 100, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), model_dir=self._model_dir) eval_metrics = linear_regressor.evaluate( input_fn=lambda: ({'age': ((1,),)}, ((10.,),)), steps=1) # Logit is (1. * 11.0 + 2.0) = 13, while label is 10. Loss is 3**2 = 9. self.assertDictEqual({ metric_keys.MetricKeys.LOSS: 9., metric_keys.MetricKeys.LOSS_MEAN: 9., ops.GraphKeys.GLOBAL_STEP: 100 }, eval_metrics) def test_evaluation_batch(self): """Tests evaluation for batch_size==2.""" with ops.Graph().as_default(): variables.Variable([[11.0]], name=AGE_WEIGHT_NAME) variables.Variable([2.0], name=BIAS_NAME) variables.Variable( 100, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), model_dir=self._model_dir) eval_metrics = linear_regressor.evaluate( input_fn=lambda: ({'age': ((1,), (1,))}, ((10.,), (10.,))), steps=1) # Logit is (1. * 11.0 + 2.0) = 13, while label is 10. # Loss per example is 3**2 = 9. # Training loss is the sum over batch = 9 + 9 = 18 # Average loss is the average over batch = 9 self.assertDictEqual({ metric_keys.MetricKeys.LOSS: 18., metric_keys.MetricKeys.LOSS_MEAN: 9., ops.GraphKeys.GLOBAL_STEP: 100 }, eval_metrics) def test_evaluation_weights(self): """Tests evaluation with weights.""" with ops.Graph().as_default(): variables.Variable([[11.0]], name=AGE_WEIGHT_NAME) variables.Variable([2.0], name=BIAS_NAME) variables.Variable( 100, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) def _input_fn(): features = {'age': ((1,), (1,)), 'weights': ((1.,), (2.,))} labels = ((10.,), (10.,)) return features, labels linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), weight_column='weights', model_dir=self._model_dir) eval_metrics = linear_regressor.evaluate(input_fn=_input_fn, steps=1) # Logit is (1. * 11.0 + 2.0) = 13, while label is 10. # Loss per example is 3**2 = 9. # Training loss is the weighted sum over batch = 9 + 2*9 = 27 # average loss is the weighted average = 9 + 2*9 / (1 + 2) = 9 self.assertDictEqual({ metric_keys.MetricKeys.LOSS: 27., metric_keys.MetricKeys.LOSS_MEAN: 9., ops.GraphKeys.GLOBAL_STEP: 100 }, eval_metrics) def test_evaluation_for_multi_dimensions(self): x_dim = 3 label_dim = 2 with ops.Graph().as_default(): variables.Variable( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], name=AGE_WEIGHT_NAME) variables.Variable([7.0, 8.0], name=BIAS_NAME) variables.Variable(100, name='global_step', dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column( 'age', shape=(x_dim,)),), label_dimension=label_dim, model_dir=self._model_dir) input_fn = numpy_io.numpy_input_fn( x={ 'age': np.array([[2., 4., 5.]]), }, y=np.array([[46., 58.]]), batch_size=1, num_epochs=None, shuffle=False) eval_metrics = linear_regressor.evaluate(input_fn=input_fn, steps=1) self.assertItemsEqual( (metric_keys.MetricKeys.LOSS, metric_keys.MetricKeys.LOSS_MEAN, ops.GraphKeys.GLOBAL_STEP), eval_metrics.keys()) # Logit is # [2., 4., 5.] * [1.0, 2.0] + [7.0, 8.0] = [39, 50] + [7.0, 8.0] # [3.0, 4.0] # [5.0, 6.0] # which is [46, 58] self.assertAlmostEqual(0, eval_metrics[metric_keys.MetricKeys.LOSS]) def test_evaluation_for_multiple_feature_columns(self): with ops.Graph().as_default(): variables.Variable([[10.0]], name=AGE_WEIGHT_NAME) variables.Variable([[2.0]], name=HEIGHT_WEIGHT_NAME) variables.Variable([5.0], name=BIAS_NAME) variables.Variable( 100, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) batch_size = 2 feature_columns = [ feature_column_lib.numeric_column('age'), feature_column_lib.numeric_column('height') ] input_fn = numpy_io.numpy_input_fn( x={'age': np.array([20, 40]), 'height': np.array([4, 8])}, y=np.array([[213.], [421.]]), batch_size=batch_size, num_epochs=None, shuffle=False) est = self._linear_regressor_fn( feature_columns=feature_columns, model_dir=self._model_dir) eval_metrics = est.evaluate(input_fn=input_fn, steps=1) self.assertItemsEqual( (metric_keys.MetricKeys.LOSS, metric_keys.MetricKeys.LOSS_MEAN, ops.GraphKeys.GLOBAL_STEP), eval_metrics.keys()) # Logit is [(20. * 10.0 + 4 * 2.0 + 5.0), (40. * 10.0 + 8 * 2.0 + 5.0)] = # [213.0, 421.0], while label is [213., 421.]. Loss = 0. self.assertAlmostEqual(0, eval_metrics[metric_keys.MetricKeys.LOSS]) class BaseLinearRegressorPredictTest(object): def __init__(self, linear_regressor_fn): self._linear_regressor_fn = linear_regressor_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def test_1d(self): """Tests predict when all variables are one-dimensional.""" with ops.Graph().as_default(): variables.Variable([[10.]], name='linear/linear_model/x/weights') variables.Variable([.2], name=BIAS_NAME) variables.Variable(100, name='global_step', dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('x'),), model_dir=self._model_dir) predict_input_fn = numpy_io.numpy_input_fn( x={'x': np.array([[2.]])}, y=None, batch_size=1, num_epochs=1, shuffle=False) predictions = linear_regressor.predict(input_fn=predict_input_fn) predicted_scores = list([x['predictions'] for x in predictions]) # x * weight + bias = 2. * 10. + .2 = 20.2 self.assertAllClose([[20.2]], predicted_scores) def testMultiDim(self): """Tests predict when all variables are multi-dimenstional.""" batch_size = 2 label_dimension = 3 x_dim = 4 feature_columns = (feature_column_lib.numeric_column('x', shape=(x_dim,)),) with ops.Graph().as_default(): variables.Variable( # shape=[x_dim, label_dimension] [[1., 2., 3.], [2., 3., 4.], [3., 4., 5.], [4., 5., 6.]], name='linear/linear_model/x/weights') variables.Variable( # shape=[label_dimension] [.2, .4, .6], name=BIAS_NAME) variables.Variable(100, name='global_step', dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) linear_regressor = self._linear_regressor_fn( feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) predict_input_fn = numpy_io.numpy_input_fn( # x shape=[batch_size, x_dim] x={'x': np.array([[1., 2., 3., 4.], [5., 6., 7., 8.]])}, y=None, batch_size=batch_size, num_epochs=1, shuffle=False) predictions = linear_regressor.predict(input_fn=predict_input_fn) predicted_scores = list([x['predictions'] for x in predictions]) # score = x * weight + bias, shape=[batch_size, label_dimension] self.assertAllClose([[30.2, 40.4, 50.6], [70.2, 96.4, 122.6]], predicted_scores) def testTwoFeatureColumns(self): """Tests predict with two feature columns.""" with ops.Graph().as_default(): variables.Variable([[10.]], name='linear/linear_model/x0/weights') variables.Variable([[20.]], name='linear/linear_model/x1/weights') variables.Variable([.2], name=BIAS_NAME) variables.Variable(100, name='global_step', dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('x0'), feature_column_lib.numeric_column('x1')), model_dir=self._model_dir) predict_input_fn = numpy_io.numpy_input_fn( x={'x0': np.array([[2.]]), 'x1': np.array([[3.]])}, y=None, batch_size=1, num_epochs=1, shuffle=False) predictions = linear_regressor.predict(input_fn=predict_input_fn) predicted_scores = list([x['predictions'] for x in predictions]) # x0 * weight0 + x1 * weight1 + bias = 2. * 10. + 3. * 20 + .2 = 80.2 self.assertAllClose([[80.2]], predicted_scores) class BaseLinearRegressorIntegrationTest(object): def __init__(self, linear_regressor_fn): self._linear_regressor_fn = linear_regressor_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _test_complete_flow(self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, label_dimension, prediction_length): feature_columns = [ feature_column_lib.numeric_column('x', shape=(input_dimension,)) ] est = self._linear_regressor_fn( feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) # TRAIN # learn y = x est.train(train_input_fn, steps=200) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(200, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn(metric_keys.MetricKeys.LOSS, six.iterkeys(scores)) # PREDICT predictions = np.array( [x['predictions'] for x in est.predict(predict_input_fn)]) self.assertAllEqual((prediction_length, label_dimension), predictions.shape) # EXPORT feature_spec = feature_column_lib.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def test_numpy_input_fn(self): """Tests complete flow with numpy_input_fn.""" label_dimension = 2 input_dimension = label_dimension batch_size = 10 prediction_length = batch_size data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=data, batch_size=batch_size, num_epochs=1, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=None, batch_size=batch_size, num_epochs=1, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, label_dimension=label_dimension, prediction_length=prediction_length) def test_pandas_input_fn(self): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return # Pandas DataFrame natually supports 1 dim data only. label_dimension = 1 input_dimension = label_dimension batch_size = 10 data = np.array([1., 2., 3., 4.], dtype=np.float32) x = pd.DataFrame({'x': data}) y = pd.Series(data) prediction_length = 4 train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, label_dimension=label_dimension, prediction_length=prediction_length) def test_input_fn_from_parse_example(self): """Tests complete flow with input_fn constructed from parse_example.""" label_dimension = 2 input_dimension = label_dimension batch_size = 10 prediction_length = batch_size data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32) data = data.reshape(batch_size, label_dimension) serialized_examples = [] for datum in data: example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum)), 'y': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=datum[:label_dimension])), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, label_dimension=label_dimension, prediction_length=prediction_length) class BaseLinearRegressorTrainingTest(object): def __init__(self, linear_regressor_fn): self._linear_regressor_fn = linear_regressor_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: writer_cache.FileWriterCache.clear() shutil.rmtree(self._model_dir) def _mock_optimizer(self, expected_loss=None): expected_var_names = [ '%s/part_0:0' % AGE_WEIGHT_NAME, '%s/part_0:0' % BIAS_NAME ] def _minimize(loss, global_step=None, var_list=None): trainable_vars = var_list or ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) self.assertItemsEqual(expected_var_names, [var.name for var in trainable_vars]) # Verify loss. We can't check the value directly, so we add an assert op. self.assertEquals(0, loss.shape.ndims) if expected_loss is None: if global_step is not None: return state_ops.assign_add(global_step, 1).op return control_flow_ops.no_op() assert_loss = assert_close( math_ops.to_float(expected_loss, name='expected'), loss, name='assert_loss') with ops.control_dependencies((assert_loss,)): if global_step is not None: return state_ops.assign_add(global_step, 1).op return control_flow_ops.no_op() mock_optimizer = test.mock.NonCallableMock( spec=optimizer.Optimizer, wraps=optimizer.Optimizer(use_locking=False, name='my_optimizer')) mock_optimizer.minimize = test.mock.MagicMock(wraps=_minimize) # NOTE: Estimator.params performs a deepcopy, which wreaks havoc with mocks. # So, return mock_optimizer itself for deepcopy. mock_optimizer.__deepcopy__ = lambda _: mock_optimizer return mock_optimizer def _assert_checkpoint(self, expected_global_step, expected_age_weight=None, expected_bias=None): shapes = { name: shape for (name, shape) in checkpoint_utils.list_variables(self._model_dir) } self.assertEqual([], shapes[ops.GraphKeys.GLOBAL_STEP]) self.assertEqual(expected_global_step, checkpoint_utils.load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP)) self.assertEqual([1, 1], shapes[AGE_WEIGHT_NAME]) if expected_age_weight is not None: self.assertEqual(expected_age_weight, checkpoint_utils.load_variable(self._model_dir, AGE_WEIGHT_NAME)) self.assertEqual([1], shapes[BIAS_NAME]) if expected_bias is not None: self.assertEqual(expected_bias, checkpoint_utils.load_variable(self._model_dir, BIAS_NAME)) def testFromScratchWithDefaultOptimizer(self): # Create LinearRegressor. label = 5. age = 17 linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), model_dir=self._model_dir) # Train for a few steps, and validate final checkpoint. num_steps = 10 linear_regressor.train( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps) self._assert_checkpoint(num_steps) def testTrainWithOneDimLabel(self): label_dimension = 1 batch_size = 20 feature_columns = [feature_column_lib.numeric_column('age', shape=(1,))] est = self._linear_regressor_fn( feature_columns=feature_columns, label_dimension=label_dimension, model_dir=self._model_dir) data_rank_1 = np.linspace(0., 2., batch_size, dtype=np.float32) self.assertEqual((batch_size,), data_rank_1.shape) train_input_fn = numpy_io.numpy_input_fn( x={'age': data_rank_1}, y=data_rank_1, batch_size=batch_size, num_epochs=None, shuffle=True) est.train(train_input_fn, steps=200) self._assert_checkpoint(200) def testTrainWithOneDimWeight(self): label_dimension = 1 batch_size = 20 feature_columns = [feature_column_lib.numeric_column('age', shape=(1,))] est = self._linear_regressor_fn( feature_columns=feature_columns, label_dimension=label_dimension, weight_column='w', model_dir=self._model_dir) data_rank_1 = np.linspace(0., 2., batch_size, dtype=np.float32) self.assertEqual((batch_size,), data_rank_1.shape) train_input_fn = numpy_io.numpy_input_fn( x={'age': data_rank_1, 'w': data_rank_1}, y=data_rank_1, batch_size=batch_size, num_epochs=None, shuffle=True) est.train(train_input_fn, steps=200) self._assert_checkpoint(200) def testFromScratch(self): # Create LinearRegressor. label = 5. age = 17 # loss = (logits - label)^2 = (0 - 5.)^2 = 25. mock_optimizer = self._mock_optimizer(expected_loss=25.) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), model_dir=self._model_dir, optimizer=mock_optimizer) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 linear_regressor.train( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) self._assert_checkpoint( expected_global_step=num_steps, expected_age_weight=0., expected_bias=0.) def testFromCheckpoint(self): # Create initial checkpoint. age_weight = 10.0 bias = 5.0 initial_global_step = 100 with ops.Graph().as_default(): variables.Variable([[age_weight]], name=AGE_WEIGHT_NAME) variables.Variable([bias], name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) # logits = age * age_weight + bias = 17 * 10. + 5. = 175 # loss = (logits - label)^2 = (175 - 5)^2 = 28900 mock_optimizer = self._mock_optimizer(expected_loss=28900.) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), model_dir=self._model_dir, optimizer=mock_optimizer) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 linear_regressor.train( input_fn=lambda: ({'age': ((17,),)}, ((5.,),)), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) self._assert_checkpoint( expected_global_step=initial_global_step + num_steps, expected_age_weight=age_weight, expected_bias=bias) def testFromCheckpointMultiBatch(self): # Create initial checkpoint. age_weight = 10.0 bias = 5.0 initial_global_step = 100 with ops.Graph().as_default(): variables.Variable([[age_weight]], name=AGE_WEIGHT_NAME) variables.Variable([bias], name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) # logits = age * age_weight + bias # logits[0] = 17 * 10. + 5. = 175 # logits[1] = 15 * 10. + 5. = 155 # loss = sum(logits - label)^2 = (175 - 5)^2 + (155 - 3)^2 = 52004 mock_optimizer = self._mock_optimizer(expected_loss=52004.) linear_regressor = self._linear_regressor_fn( feature_columns=(feature_column_lib.numeric_column('age'),), model_dir=self._model_dir, optimizer=mock_optimizer) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 linear_regressor.train( input_fn=lambda: ({'age': ((17,), (15,))}, ((5.,), (3.,))), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) self._assert_checkpoint( expected_global_step=initial_global_step + num_steps, expected_age_weight=age_weight, expected_bias=bias) class BaseLinearClassifierTrainingTest(object): def __init__(self, linear_classifier_fn): self._linear_classifier_fn = linear_classifier_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _mock_optimizer(self, expected_loss=None): expected_var_names = [ '%s/part_0:0' % AGE_WEIGHT_NAME, '%s/part_0:0' % BIAS_NAME ] def _minimize(loss, global_step): trainable_vars = ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES) self.assertItemsEqual( expected_var_names, [var.name for var in trainable_vars]) # Verify loss. We can't check the value directly, so we add an assert op. self.assertEquals(0, loss.shape.ndims) if expected_loss is None: return state_ops.assign_add(global_step, 1).op assert_loss = assert_close( math_ops.to_float(expected_loss, name='expected'), loss, name='assert_loss') with ops.control_dependencies((assert_loss,)): return state_ops.assign_add(global_step, 1).op mock_optimizer = test.mock.NonCallableMock( spec=optimizer.Optimizer, wraps=optimizer.Optimizer(use_locking=False, name='my_optimizer')) mock_optimizer.minimize = test.mock.MagicMock(wraps=_minimize) # NOTE: Estimator.params performs a deepcopy, which wreaks havoc with mocks. # So, return mock_optimizer itself for deepcopy. mock_optimizer.__deepcopy__ = lambda _: mock_optimizer return mock_optimizer def _assert_checkpoint( self, n_classes, expected_global_step, expected_age_weight=None, expected_bias=None): logits_dimension = n_classes if n_classes > 2 else 1 shapes = { name: shape for (name, shape) in checkpoint_utils.list_variables(self._model_dir) } self.assertEqual([], shapes[ops.GraphKeys.GLOBAL_STEP]) self.assertEqual( expected_global_step, checkpoint_utils.load_variable( self._model_dir, ops.GraphKeys.GLOBAL_STEP)) self.assertEqual([1, logits_dimension], shapes[AGE_WEIGHT_NAME]) if expected_age_weight is not None: self.assertAllEqual(expected_age_weight, checkpoint_utils.load_variable( self._model_dir, AGE_WEIGHT_NAME)) self.assertEqual([logits_dimension], shapes[BIAS_NAME]) if expected_bias is not None: self.assertAllEqual(expected_bias, checkpoint_utils.load_variable( self._model_dir, BIAS_NAME)) def _testFromScratchWithDefaultOptimizer(self, n_classes): label = 0 age = 17 est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, model_dir=self._model_dir) # Train for a few steps, and validate final checkpoint. num_steps = 10 est.train( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps) self._assert_checkpoint(n_classes, num_steps) def testBinaryClassesFromScratchWithDefaultOptimizer(self): self._testFromScratchWithDefaultOptimizer(n_classes=2) def testMultiClassesFromScratchWithDefaultOptimizer(self): self._testFromScratchWithDefaultOptimizer(n_classes=4) def _testTrainWithTwoDimsLabel(self, n_classes): batch_size = 20 est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, model_dir=self._model_dir) data_rank_1 = np.array([0, 1]) data_rank_2 = np.array([[0], [1]]) self.assertEqual((2,), data_rank_1.shape) self.assertEqual((2, 1), data_rank_2.shape) train_input_fn = numpy_io.numpy_input_fn( x={'age': data_rank_1}, y=data_rank_2, batch_size=batch_size, num_epochs=None, shuffle=True) est.train(train_input_fn, steps=200) self._assert_checkpoint(n_classes, 200) def testBinaryClassesTrainWithTwoDimsLabel(self): self._testTrainWithTwoDimsLabel(n_classes=2) def testMultiClassesTrainWithTwoDimsLabel(self): self._testTrainWithTwoDimsLabel(n_classes=4) def _testTrainWithOneDimLabel(self, n_classes): batch_size = 20 est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, model_dir=self._model_dir) data_rank_1 = np.array([0, 1]) self.assertEqual((2,), data_rank_1.shape) train_input_fn = numpy_io.numpy_input_fn( x={'age': data_rank_1}, y=data_rank_1, batch_size=batch_size, num_epochs=None, shuffle=True) est.train(train_input_fn, steps=200) self._assert_checkpoint(n_classes, 200) def testBinaryClassesTrainWithOneDimLabel(self): self._testTrainWithOneDimLabel(n_classes=2) def testMultiClassesTrainWithOneDimLabel(self): self._testTrainWithOneDimLabel(n_classes=4) def _testTrainWithTwoDimsWeight(self, n_classes): batch_size = 20 est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), weight_column='w', n_classes=n_classes, model_dir=self._model_dir) data_rank_1 = np.array([0, 1]) data_rank_2 = np.array([[0], [1]]) self.assertEqual((2,), data_rank_1.shape) self.assertEqual((2, 1), data_rank_2.shape) train_input_fn = numpy_io.numpy_input_fn( x={'age': data_rank_1, 'w': data_rank_2}, y=data_rank_1, batch_size=batch_size, num_epochs=None, shuffle=True) est.train(train_input_fn, steps=200) self._assert_checkpoint(n_classes, 200) def testBinaryClassesTrainWithTwoDimsWeight(self): self._testTrainWithTwoDimsWeight(n_classes=2) def testMultiClassesTrainWithTwoDimsWeight(self): self._testTrainWithTwoDimsWeight(n_classes=4) def _testTrainWithOneDimWeight(self, n_classes): batch_size = 20 est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), weight_column='w', n_classes=n_classes, model_dir=self._model_dir) data_rank_1 = np.array([0, 1]) self.assertEqual((2,), data_rank_1.shape) train_input_fn = numpy_io.numpy_input_fn( x={'age': data_rank_1, 'w': data_rank_1}, y=data_rank_1, batch_size=batch_size, num_epochs=None, shuffle=True) est.train(train_input_fn, steps=200) self._assert_checkpoint(n_classes, 200) def testBinaryClassesTrainWithOneDimWeight(self): self._testTrainWithOneDimWeight(n_classes=2) def testMultiClassesTrainWithOneDimWeight(self): self._testTrainWithOneDimWeight(n_classes=4) def _testFromScratch(self, n_classes): label = 1 age = 17 # For binary classifer: # loss = sigmoid_cross_entropy(logits, label) where logits=0 (weights are # all zero initially) and label = 1 so, # loss = 1 * -log ( sigmoid(logits) ) = 0.69315 # For multi class classifer: # loss = cross_entropy(logits, label) where logits are all 0s (weights are # all zero initially) and label = 1 so, # loss = 1 * -log ( 1.0 / n_classes ) # For this particular test case, as logits are same, the formular # 1 * -log ( 1.0 / n_classes ) covers both binary and multi class cases. mock_optimizer = self._mock_optimizer( expected_loss=-1 * math.log(1.0/n_classes)) est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 est.train( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) self._assert_checkpoint( n_classes, expected_global_step=num_steps, expected_age_weight=[[0.]] if n_classes == 2 else [[0.] * n_classes], expected_bias=[0.] if n_classes == 2 else [.0] * n_classes) def testBinaryClassesFromScratch(self): self._testFromScratch(n_classes=2) def testMultiClassesFromScratch(self): self._testFromScratch(n_classes=4) def _testFromCheckpoint(self, n_classes): # Create initial checkpoint. label = 1 age = 17 # For binary case, the expected weight has shape (1,1). For multi class # case, the shape is (1, n_classes). In order to test the weights, set # weights as 2.0 * range(n_classes). age_weight = [[2.0]] if n_classes == 2 else ( np.reshape(2.0 * np.array(list(range(n_classes)), dtype=np.float32), (1, n_classes))) bias = [-35.0] if n_classes == 2 else [-35.0] * n_classes initial_global_step = 100 with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) # For binary classifer: # logits = age * age_weight + bias = 17 * 2. - 35. = -1. # loss = sigmoid_cross_entropy(logits, label) # so, loss = 1 * -log ( sigmoid(-1) ) = 1.3133 # For multi class classifer: # loss = cross_entropy(logits, label) # where logits = 17 * age_weight + bias and label = 1 # so, loss = 1 * -log ( soft_max(logits)[1] ) if n_classes == 2: expected_loss = 1.3133 else: logits = age_weight * age + bias logits_exp = np.exp(logits) softmax = logits_exp / logits_exp.sum() expected_loss = -1 * math.log(softmax[0, label]) mock_optimizer = self._mock_optimizer(expected_loss=expected_loss) est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 est.train( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) self._assert_checkpoint( n_classes, expected_global_step=initial_global_step + num_steps, expected_age_weight=age_weight, expected_bias=bias) def testBinaryClassesFromCheckpoint(self): self._testFromCheckpoint(n_classes=2) def testMultiClassesFromCheckpoint(self): self._testFromCheckpoint(n_classes=4) def _testFromCheckpointFloatLabels(self, n_classes): """Tests float labels for binary classification.""" # Create initial checkpoint. if n_classes > 2: return label = 0.8 age = 17 age_weight = [[2.0]] bias = [-35.0] initial_global_step = 100 with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) # logits = age * age_weight + bias = 17 * 2. - 35. = -1. # loss = sigmoid_cross_entropy(logits, label) # => loss = -0.8 * log(sigmoid(-1)) -0.2 * log(sigmoid(+1)) = 1.1132617 mock_optimizer = self._mock_optimizer(expected_loss=1.1132617) est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 est.train( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) def testBinaryClassesFromCheckpointFloatLabels(self): self._testFromCheckpointFloatLabels(n_classes=2) def testMultiClassesFromCheckpointFloatLabels(self): self._testFromCheckpointFloatLabels(n_classes=4) def _testFromCheckpointMultiBatch(self, n_classes): # Create initial checkpoint. label = [1, 0] age = [17, 18.5] # For binary case, the expected weight has shape (1,1). For multi class # case, the shape is (1, n_classes). In order to test the weights, set # weights as 2.0 * range(n_classes). age_weight = [[2.0]] if n_classes == 2 else ( np.reshape(2.0 * np.array(list(range(n_classes)), dtype=np.float32), (1, n_classes))) bias = [-35.0] if n_classes == 2 else [-35.0] * n_classes initial_global_step = 100 with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) # For binary classifer: # logits = age * age_weight + bias # logits[0] = 17 * 2. - 35. = -1. # logits[1] = 18.5 * 2. - 35. = 2. # loss = sigmoid_cross_entropy(logits, label) # so, loss[0] = 1 * -log ( sigmoid(-1) ) = 1.3133 # loss[1] = (1 - 0) * -log ( 1- sigmoid(2) ) = 2.1269 # For multi class classifer: # loss = cross_entropy(logits, label) # where logits = [17, 18.5] * age_weight + bias and label = [1, 0] # so, loss = 1 * -log ( soft_max(logits)[label] ) if n_classes == 2: expected_loss = (1.3133 + 2.1269) else: logits = age_weight * np.reshape(age, (2, 1)) + bias logits_exp = np.exp(logits) softmax_row_0 = logits_exp[0] / logits_exp[0].sum() softmax_row_1 = logits_exp[1] / logits_exp[1].sum() expected_loss_0 = -1 * math.log(softmax_row_0[label[0]]) expected_loss_1 = -1 * math.log(softmax_row_1[label[1]]) expected_loss = expected_loss_0 + expected_loss_1 mock_optimizer = self._mock_optimizer(expected_loss=expected_loss) est = linear.LinearClassifier( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, optimizer=mock_optimizer, model_dir=self._model_dir) self.assertEqual(0, mock_optimizer.minimize.call_count) # Train for a few steps, and validate optimizer and final checkpoint. num_steps = 10 est.train( input_fn=lambda: ({'age': (age)}, (label)), steps=num_steps) self.assertEqual(1, mock_optimizer.minimize.call_count) self._assert_checkpoint( n_classes, expected_global_step=initial_global_step + num_steps, expected_age_weight=age_weight, expected_bias=bias) def testBinaryClassesFromCheckpointMultiBatch(self): self._testFromCheckpointMultiBatch(n_classes=2) def testMultiClassesFromCheckpointMultiBatch(self): self._testFromCheckpointMultiBatch(n_classes=4) class BaseLinearClassifierEvaluationTest(object): def __init__(self, linear_classifier_fn): self._linear_classifier_fn = linear_classifier_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _test_evaluation_for_simple_data(self, n_classes): label = 1 age = 1. # For binary case, the expected weight has shape (1,1). For multi class # case, the shape is (1, n_classes). In order to test the weights, set # weights as 2.0 * range(n_classes). age_weight = [[-11.0]] if n_classes == 2 else ( np.reshape(-11.0 * np.array(list(range(n_classes)), dtype=np.float32), (1, n_classes))) bias = [-30.0] if n_classes == 2 else [-30.0] * n_classes with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable( 100, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) est = self._linear_classifier_fn( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, model_dir=self._model_dir) eval_metrics = est.evaluate( input_fn=lambda: ({'age': ((age,),)}, ((label,),)), steps=1) if n_classes == 2: # Binary classes: loss = sum(corss_entropy(41)) = 41. expected_metrics = { metric_keys.MetricKeys.LOSS: 41., ops.GraphKeys.GLOBAL_STEP: 100, metric_keys.MetricKeys.LOSS_MEAN: 41., metric_keys.MetricKeys.ACCURACY: 0., metric_keys.MetricKeys.PREDICTION_MEAN: 0., metric_keys.MetricKeys.LABEL_MEAN: 1., metric_keys.MetricKeys.ACCURACY_BASELINE: 1, metric_keys.MetricKeys.AUC: 0., metric_keys.MetricKeys.AUC_PR: 1., } else: # Multi classes: loss = 1 * -log ( soft_max(logits)[label] ) logits = age_weight * age + bias logits_exp = np.exp(logits) softmax = logits_exp / logits_exp.sum() expected_loss = -1 * math.log(softmax[0, label]) expected_metrics = { metric_keys.MetricKeys.LOSS: expected_loss, ops.GraphKeys.GLOBAL_STEP: 100, metric_keys.MetricKeys.LOSS_MEAN: expected_loss, metric_keys.MetricKeys.ACCURACY: 0., } self.assertAllClose(sorted_key_dict(expected_metrics), sorted_key_dict(eval_metrics), rtol=1e-3) def test_binary_classes_evaluation_for_simple_data(self): self._test_evaluation_for_simple_data(n_classes=2) def test_multi_classes_evaluation_for_simple_data(self): self._test_evaluation_for_simple_data(n_classes=4) def _test_evaluation_batch(self, n_classes): """Tests evaluation for batch_size==2.""" label = [1, 0] age = [17., 18.] # For binary case, the expected weight has shape (1,1). For multi class # case, the shape is (1, n_classes). In order to test the weights, set # weights as 2.0 * range(n_classes). age_weight = [[2.0]] if n_classes == 2 else ( np.reshape(2.0 * np.array(list(range(n_classes)), dtype=np.float32), (1, n_classes))) bias = [-35.0] if n_classes == 2 else [-35.0] * n_classes initial_global_step = 100 with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) est = self._linear_classifier_fn( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, model_dir=self._model_dir) eval_metrics = est.evaluate( input_fn=lambda: ({'age': (age)}, (label)), steps=1) if n_classes == 2: # Logits are (-1., 1.) labels are (1, 0). # Loss is # loss for row 1: 1 * -log(sigmoid(-1)) = 1.3133 # loss for row 2: (1 - 0) * -log(1 - sigmoid(1)) = 1.3133 expected_loss = 1.3133 * 2 expected_metrics = { metric_keys.MetricKeys.LOSS: expected_loss, ops.GraphKeys.GLOBAL_STEP: 100, metric_keys.MetricKeys.LOSS_MEAN: expected_loss / 2, metric_keys.MetricKeys.ACCURACY: 0., metric_keys.MetricKeys.PREDICTION_MEAN: 0.5, metric_keys.MetricKeys.LABEL_MEAN: 0.5, metric_keys.MetricKeys.ACCURACY_BASELINE: 0.5, metric_keys.MetricKeys.AUC: 0., metric_keys.MetricKeys.AUC_PR: 0.25, } else: # Multi classes: loss = 1 * -log ( soft_max(logits)[label] ) logits = age_weight * np.reshape(age, (2, 1)) + bias logits_exp = np.exp(logits) softmax_row_0 = logits_exp[0] / logits_exp[0].sum() softmax_row_1 = logits_exp[1] / logits_exp[1].sum() expected_loss_0 = -1 * math.log(softmax_row_0[label[0]]) expected_loss_1 = -1 * math.log(softmax_row_1[label[1]]) expected_loss = expected_loss_0 + expected_loss_1 expected_metrics = { metric_keys.MetricKeys.LOSS: expected_loss, ops.GraphKeys.GLOBAL_STEP: 100, metric_keys.MetricKeys.LOSS_MEAN: expected_loss / 2, metric_keys.MetricKeys.ACCURACY: 0., } self.assertAllClose(sorted_key_dict(expected_metrics), sorted_key_dict(eval_metrics), rtol=1e-3) def test_binary_classes_evaluation_batch(self): self._test_evaluation_batch(n_classes=2) def test_multi_classes_evaluation_batch(self): self._test_evaluation_batch(n_classes=4) def _test_evaluation_weights(self, n_classes): """Tests evaluation with weights.""" label = [1, 0] age = [17., 18.] weights = [1., 2.] # For binary case, the expected weight has shape (1,1). For multi class # case, the shape is (1, n_classes). In order to test the weights, set # weights as 2.0 * range(n_classes). age_weight = [[2.0]] if n_classes == 2 else ( np.reshape(2.0 * np.array(list(range(n_classes)), dtype=np.float32), (1, n_classes))) bias = [-35.0] if n_classes == 2 else [-35.0] * n_classes initial_global_step = 100 with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable( initial_global_step, name=ops.GraphKeys.GLOBAL_STEP, dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) est = self._linear_classifier_fn( feature_columns=(feature_column_lib.numeric_column('age'),), n_classes=n_classes, weight_column='w', model_dir=self._model_dir) eval_metrics = est.evaluate( input_fn=lambda: ({'age': (age), 'w': (weights)}, (label)), steps=1) if n_classes == 2: # Logits are (-1., 1.) labels are (1, 0). # Loss is # loss for row 1: 1 * -log(sigmoid(-1)) = 1.3133 # loss for row 2: (1 - 0) * -log(1 - sigmoid(1)) = 1.3133 # weights = [1., 2.] expected_loss = 1.3133 * (1. + 2.) loss_mean = expected_loss / (1.0 + 2.0) label_mean = np.average(label, weights=weights) logits = [-1, 1] logistics = sigmoid(np.array(logits)) predictions_mean = np.average(logistics, weights=weights) expected_metrics = { metric_keys.MetricKeys.LOSS: expected_loss, ops.GraphKeys.GLOBAL_STEP: 100, metric_keys.MetricKeys.LOSS_MEAN: loss_mean, metric_keys.MetricKeys.ACCURACY: 0., metric_keys.MetricKeys.PREDICTION_MEAN: predictions_mean, metric_keys.MetricKeys.LABEL_MEAN: label_mean, metric_keys.MetricKeys.ACCURACY_BASELINE: ( max(label_mean, 1-label_mean)), metric_keys.MetricKeys.AUC: 0., metric_keys.MetricKeys.AUC_PR: 0.1668, } else: # Multi classes: unweighted_loss = 1 * -log ( soft_max(logits)[label] ) logits = age_weight * np.reshape(age, (2, 1)) + bias logits_exp = np.exp(logits) softmax_row_0 = logits_exp[0] / logits_exp[0].sum() softmax_row_1 = logits_exp[1] / logits_exp[1].sum() expected_loss_0 = -1 * math.log(softmax_row_0[label[0]]) expected_loss_1 = -1 * math.log(softmax_row_1[label[1]]) loss_mean = np.average([expected_loss_0, expected_loss_1], weights=weights) expected_loss = loss_mean * np.sum(weights) expected_metrics = { metric_keys.MetricKeys.LOSS: expected_loss, ops.GraphKeys.GLOBAL_STEP: 100, metric_keys.MetricKeys.LOSS_MEAN: loss_mean, metric_keys.MetricKeys.ACCURACY: 0., } self.assertAllClose(sorted_key_dict(expected_metrics), sorted_key_dict(eval_metrics), rtol=1e-3) def test_binary_classes_evaluation_weights(self): self._test_evaluation_weights(n_classes=2) def test_multi_classes_evaluation_weights(self): self._test_evaluation_weights(n_classes=4) class BaseLinearClassifierPredictTest(object): def __init__(self, linear_classifier_fn): self._linear_classifier_fn = linear_classifier_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _testPredications(self, n_classes, label_vocabulary, label_output_fn): """Tests predict when all variables are one-dimensional.""" age = 1. # For binary case, the expected weight has shape (1,1). For multi class # case, the shape is (1, n_classes). In order to test the weights, set # weights as 2.0 * range(n_classes). age_weight = [[-11.0]] if n_classes == 2 else ( np.reshape(-11.0 * np.array(list(range(n_classes)), dtype=np.float32), (1, n_classes))) bias = [10.0] if n_classes == 2 else [10.0] * n_classes with ops.Graph().as_default(): variables.Variable(age_weight, name=AGE_WEIGHT_NAME) variables.Variable(bias, name=BIAS_NAME) variables.Variable(100, name='global_step', dtype=dtypes.int64) save_variables_to_ckpt(self._model_dir) est = self._linear_classifier_fn( feature_columns=(feature_column_lib.numeric_column('age'),), label_vocabulary=label_vocabulary, n_classes=n_classes, model_dir=self._model_dir) predict_input_fn = numpy_io.numpy_input_fn( x={'age': np.array([[age]])}, y=None, batch_size=1, num_epochs=1, shuffle=False) predictions = list(est.predict(input_fn=predict_input_fn)) if n_classes == 2: scalar_logits = np.asscalar( np.reshape(np.array(age_weight) * age + bias, (1,))) two_classes_logits = [0, scalar_logits] two_classes_logits_exp = np.exp(two_classes_logits) softmax = two_classes_logits_exp / two_classes_logits_exp.sum() expected_predictions = { 'class_ids': [0], 'classes': [label_output_fn(0)], 'logistic': [sigmoid(np.array(scalar_logits))], 'logits': [scalar_logits], 'probabilities': softmax, } else: onedim_logits = np.reshape(np.array(age_weight) * age + bias, (-1,)) class_ids = onedim_logits.argmax() logits_exp = np.exp(onedim_logits) softmax = logits_exp / logits_exp.sum() expected_predictions = { 'class_ids': [class_ids], 'classes': [label_output_fn(class_ids)], 'logits': onedim_logits, 'probabilities': softmax, } self.assertEqual(1, len(predictions)) # assertAllClose cannot handle byte type. self.assertEqual(expected_predictions['classes'], predictions[0]['classes']) expected_predictions.pop('classes') predictions[0].pop('classes') self.assertAllClose(sorted_key_dict(expected_predictions), sorted_key_dict(predictions[0])) def testBinaryClassesWithoutLabelVocabulary(self): n_classes = 2 self._testPredications(n_classes, label_vocabulary=None, label_output_fn=lambda x: ('%s' % x).encode()) def testBinaryClassesWithLabelVocabulary(self): n_classes = 2 self._testPredications( n_classes, label_vocabulary=['class_vocab_{}'.format(i) for i in range(n_classes)], label_output_fn=lambda x: ('class_vocab_%s' % x).encode()) def testMultiClassesWithoutLabelVocabulary(self): n_classes = 4 self._testPredications( n_classes, label_vocabulary=None, label_output_fn=lambda x: ('%s' % x).encode()) def testMultiClassesWithLabelVocabulary(self): n_classes = 4 self._testPredications( n_classes, label_vocabulary=['class_vocab_{}'.format(i) for i in range(n_classes)], label_output_fn=lambda x: ('class_vocab_%s' % x).encode()) class BaseLinearClassifierIntegrationTest(object): def __init__(self, linear_classifier_fn): self._linear_classifier_fn = linear_classifier_fn def setUp(self): self._model_dir = tempfile.mkdtemp() def tearDown(self): if self._model_dir: shutil.rmtree(self._model_dir) def _test_complete_flow(self, n_classes, train_input_fn, eval_input_fn, predict_input_fn, input_dimension, prediction_length): feature_columns = [ feature_column_lib.numeric_column('x', shape=(input_dimension,)) ] est = self._linear_classifier_fn( feature_columns=feature_columns, n_classes=n_classes, model_dir=self._model_dir) # TRAIN # learn y = x est.train(train_input_fn, steps=200) # EVALUTE scores = est.evaluate(eval_input_fn) self.assertEqual(200, scores[ops.GraphKeys.GLOBAL_STEP]) self.assertIn(metric_keys.MetricKeys.LOSS, six.iterkeys(scores)) # PREDICT predictions = np.array( [x['classes'] for x in est.predict(predict_input_fn)]) self.assertAllEqual((prediction_length, 1), predictions.shape) # EXPORT feature_spec = feature_column_lib.make_parse_example_spec(feature_columns) serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn( feature_spec) export_dir = est.export_savedmodel(tempfile.mkdtemp(), serving_input_receiver_fn) self.assertTrue(gfile.Exists(export_dir)) def _test_numpy_input_fn(self, n_classes): """Tests complete flow with numpy_input_fn.""" input_dimension = 4 batch_size = 10 prediction_length = batch_size data = np.linspace(0., 2., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) target = np.array([1] * batch_size) train_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=target, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=target, batch_size=batch_size, num_epochs=1, shuffle=False) predict_input_fn = numpy_io.numpy_input_fn( x={'x': data}, y=None, batch_size=batch_size, num_epochs=1, shuffle=False) self._test_complete_flow( n_classes=n_classes, train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, prediction_length=prediction_length) def test_binary_classes_numpy_input_fn(self): self._test_numpy_input_fn(n_classes=2) def test_multi_classes_numpy_input_fn(self): self._test_numpy_input_fn(n_classes=4) def _test_pandas_input_fn(self, n_classes): """Tests complete flow with pandas_input_fn.""" if not HAS_PANDAS: return # Pandas DataFrame natually supports 1 dim data only. input_dimension = 1 batch_size = 10 data = np.array([1., 2., 3., 4.], dtype=np.float32) target = np.array([1, 0, 1, 0], dtype=np.int32) x = pd.DataFrame({'x': data}) y = pd.Series(target) prediction_length = 4 train_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, num_epochs=None, shuffle=True) eval_input_fn = pandas_io.pandas_input_fn( x=x, y=y, batch_size=batch_size, shuffle=False) predict_input_fn = pandas_io.pandas_input_fn( x=x, batch_size=batch_size, shuffle=False) self._test_complete_flow( n_classes=n_classes, train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, predict_input_fn=predict_input_fn, input_dimension=input_dimension, prediction_length=prediction_length) def test_binary_classes_pandas_input_fn(self): self._test_pandas_input_fn(n_classes=2) def test_multi_classes_pandas_input_fn(self): self._test_pandas_input_fn(n_classes=4) def _test_input_fn_from_parse_example(self, n_classes): """Tests complete flow with input_fn constructed from parse_example.""" input_dimension = 2 batch_size = 10 prediction_length = batch_size data = np.linspace(0., 2., batch_size * input_dimension, dtype=np.float32) data = data.reshape(batch_size, input_dimension) target = np.array([1] * batch_size, dtype=np.int64) serialized_examples = [] for x, y in zip(data, target): example = example_pb2.Example(features=feature_pb2.Features( feature={ 'x': feature_pb2.Feature(float_list=feature_pb2.FloatList( value=x)), 'y': feature_pb2.Feature(int64_list=feature_pb2.Int64List( value=[y])), })) serialized_examples.append(example.SerializeToString()) feature_spec = { 'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32), 'y': parsing_ops.FixedLenFeature([1], dtypes.int64), } def _train_input_fn(): feature_map = parsing_ops.parse_example(serialized_examples, feature_spec) features = queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _eval_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = queue_parsed_features(feature_map) labels = features.pop('y') return features, labels def _predict_input_fn(): feature_map = parsing_ops.parse_example( input_lib.limit_epochs(serialized_examples, num_epochs=1), feature_spec) features = queue_parsed_features(feature_map) features.pop('y') return features, None self._test_complete_flow( n_classes=n_classes, train_input_fn=_train_input_fn, eval_input_fn=_eval_input_fn, predict_input_fn=_predict_input_fn, input_dimension=input_dimension, prediction_length=prediction_length) def test_binary_classes_input_fn_from_parse_example(self): self._test_input_fn_from_parse_example(n_classes=2) def test_multi_classes_input_fn_from_parse_example(self): self._test_input_fn_from_parse_example(n_classes=4)
apache-2.0