repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
basaks/PyKrige
pykrige/test.py
1
91554
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals """ Testing code. Updated BSM March 2016 """ import unittest import os import numpy as np from itertools import product from pykrige import kriging_tools as kt from pykrige import core from pykrige import variogram_models from pykrige.ok import OrdinaryKriging from pykrige.uk import UniversalKriging from pykrige.ok3d import OrdinaryKriging3D from pykrige.uk3d import UniversalKriging3D from pykrige.compat import SKLEARN_INSTALLED class TestPyKrige(unittest.TestCase): def setUp(self): self.test_data = np.genfromtxt(os.path.join(os.getcwd(), 'test_data/test_data.txt')) self.ok_test_answer, self.ok_test_gridx, self.ok_test_gridy, cellsize, no_data = \ kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/test1_answer.asc'), footer=2) self.uk_test_answer, self.uk_test_gridx, self.uk_test_gridy, cellsize, no_data = \ kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/test2_answer.asc'), footer=2) self.simple_data = np.array([[0.3, 1.2, 0.47], [1.9, 0.6, 0.56], [1.1, 3.2, 0.74], [3.3, 4.4, 1.47], [4.7, 3.8, 1.74]]) self.simple_gridx = np.arange(0.0, 6.0, 1.0) self.simple_gridx_2 = np.arange(0.0, 5.5, 0.5) self.simple_gridy = np.arange(0.0, 5.5, 0.5) xi, yi = np.meshgrid(self.simple_gridx, self.simple_gridy) self.mask = np.array(xi == yi) self.simple_data_3d = np.array([[0.1, 0.1, 0.3, 0.9], [0.2, 0.1, 0.4, 0.8], [0.1, 0.3, 0.1, 0.9], [0.5, 0.4, 0.4, 0.5], [0.3, 0.3, 0.2, 0.7]]) self.simple_gridx_3d = np.arange(0.0, 0.6, 0.05) self.simple_gridy_3d = np.arange(0.0, 0.6, 0.01) self.simple_gridz_3d = np.arange(0.0, 0.6, 0.1) zi, yi, xi = np.meshgrid(self.simple_gridz_3d, self.simple_gridy_3d, self.simple_gridx_3d, indexing='ij') self.mask_3d = np.array((xi == yi) & (yi == zi)) def test_core_adjust_for_anisotropy(self): X = np.array([[1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]]).T X_adj = core._adjust_for_anisotropy(X, [0.0, 0.0], [2.0], [90.0]) self.assertTrue(np.allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0, -1.0]))) self.assertTrue(np.allclose(X_adj[:, 1], np.array([-2.0, 0.0, 2.0, 0.0]))) def test_core_adjust_for_anisotropy_3d(self): # this is a bad examples, as the X matrix is symmetric # and insensitive to transpositions X = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]).T X_adj = core._adjust_for_anisotropy(X, [0., 0., 0.], [2., 2.], [90., 0., 0.]) self.assertTrue(np.allclose(X_adj[:, 0], np.array([1., 0., 0.]))) self.assertTrue(np.allclose(X_adj[:, 1], np.array([0., 0., 2.]))) self.assertTrue(np.allclose(X_adj[:, 2], np.array([0., -2., 0.]))) X_adj = core._adjust_for_anisotropy(X, [0., 0., 0.], [2., 2.], [0., 90., 0.]) self.assertTrue(np.allclose(X_adj[:, 0], np.array([0., 0., -1.]))) self.assertTrue(np.allclose(X_adj[:, 1], np.array([0., 2., 0.]))) self.assertTrue(np.allclose(X_adj[:, 2], np.array([2., 0., 0.]))) X_adj = core._adjust_for_anisotropy(X, [0., 0., 0.], [2., 2.], [0., 0., 90.]) self.assertTrue(np.allclose(X_adj[:, 0], np.array([0., 1., 0.]))) self.assertTrue(np.allclose(X_adj[:, 1], np.array([-2., 0., 0.]))) self.assertTrue(np.allclose(X_adj[:, 2], np.array([0., 0., 2.]))) def test_core_initialize_variogram_model(self): # Note the variogram_function argument is not a string in real life... self.assertRaises(ValueError, core.initialize_variogram_model, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], 'linear', [0.0], 'linear', 6, False, 'euclidean') self.assertRaises(ValueError, core.initialize_variogram_model, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], 'spherical', [0.0], 'spherical', 6, False, 'euclidean') x = np.array([1.0 + n/np.sqrt(2) for n in range(4)]) y = np.array([1.0 + n/np.sqrt(2) for n in range(4)]) z = np.arange(1.0, 5.0, 1.0) lags, semivariance, variogram_model_parameters = core.initialize_variogram_model(x, y, z, 'linear', [0.0, 0.0], 'linear', 6, False, 'euclidean') self.assertTrue(np.allclose(lags, np.array([1.0, 2.0, 3.0]))) self.assertTrue(np.allclose(semivariance, np.array([0.5, 2.0, 4.5]))) def test_core_initialize_variogram_model_3d(self): # Note the variogram_function argument is not a string in real life... self.assertRaises(ValueError, core.initialize_variogram_model_3d, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], 'linear', [0.0], 'linear', 6, False) self.assertRaises(ValueError, core.initialize_variogram_model_3d, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], 'spherical', [0.0], 'spherical', 6, False) lags, semivariance, variogram_model_parameters = core.initialize_variogram_model_3d(np.array([1., 2., 3., 4.]), np.array([1., 2., 3., 4.]), np.array([1., 2., 3., 4.]), np.array([1., 2., 3., 4.]), 'linear', [0.0, 0.0], 'linear', 3, False) self.assertTrue(np.allclose(lags, np.array([np.sqrt(3.), 2.*np.sqrt(3.), 3.*np.sqrt(3.)]))) self.assertTrue(np.allclose(semivariance, np.array([0.5, 2.0, 4.5]))) def test_core_calculate_variogram_model(self): res = core.calculate_variogram_model(np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), 'linear', variogram_models.linear_variogram_model, False) self.assertTrue(np.allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)) res = core.calculate_variogram_model(np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), 'linear', variogram_models.linear_variogram_model, True) self.assertTrue(np.allclose(res, np.array([0.98, 1.05]), 0.01, 0.01)) res = core.calculate_variogram_model(np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.8284, 5.1962, 8.0]), 'power', variogram_models.power_variogram_model, False) self.assertTrue(np.allclose(res, np.array([1.0, 1.5, 0.0]))) res = core.calculate_variogram_model(np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 1.4142, 1.7321, 2.0]), 'power', variogram_models.power_variogram_model, False) self.assertTrue(np.allclose(res, np.array([1.0, 0.5, 0.0]))) res = core.calculate_variogram_model(np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.2642, 1.7293, 1.9004, 1.9634]), 'exponential', variogram_models.exponential_variogram_model, False) self.assertTrue(np.allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)) res = core.calculate_variogram_model(np.array([1.0, 2.0, 3.0, 4.0]), np.array([0.5769, 1.4872, 1.9065, 1.9914]), 'gaussian', variogram_models.gaussian_variogram_model, False) self.assertTrue(np.allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001)) def test_core_krige(self): # Example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.22], [43.8, 24.6, 2.822]]) z, ss = core.krige(data[:, 0], data[:, 1], data[:, 2], (18.8, 67.9), variogram_models.linear_variogram_model, [0.006, 0.1], 'euclidean') self.assertAlmostEqual(z, 1.6364, 4) self.assertAlmostEqual(ss, 0.4201, 4) z, ss = core.krige(data[:, 0], data[:, 1], data[:, 2], (43.8, 24.6), variogram_models.linear_variogram_model, [0.006, 0.1], 'euclidean') self.assertAlmostEqual(z, 2.822, 3) self.assertAlmostEqual(ss, 0.0, 3) def test_core_krige_3d(self): # Adapted from example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.0, 1.22], [43.8, 24.6, 1.0, 2.822]]) z, ss = core.krige_3d(data[:, 0], data[:, 1], data[:, 2], data[:, 3], (18.8, 67.9, 1.0), variogram_models.linear_variogram_model, [0.006, 0.1]) self.assertAlmostEqual(z, 1.6364, 4) self.assertAlmostEqual(ss, 0.4201, 4) z, ss = core.krige_3d(data[:, 0], data[:, 1], data[:, 2], data[:, 3], (43.8, 24.6, 1.0), variogram_models.linear_variogram_model, [0.006, 0.1]) self.assertAlmostEqual(z, 2.822, 3) self.assertAlmostEqual(ss, 0.0, 3) def test_ok(self): # Test to compare OK results to those obtained using KT3D_H2O. # (M. Karanovic, M. Tonkin, and D. Wilson, 2009, Groundwater, vol. 47, no. 4, 580-586.) ok = OrdinaryKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='exponential', variogram_parameters=[500.0, 3000.0, 0.0]) z, ss = ok.execute('grid', self.ok_test_gridx, self.ok_test_gridy, backend='vectorized') self.assertTrue(np.allclose(z, self.ok_test_answer)) z, ss = ok.execute('grid', self.ok_test_gridx, self.ok_test_gridy, backend='loop') self.assertTrue(np.allclose(z, self.ok_test_answer)) def test_ok_update_variogram_model(self): self.assertRaises(ValueError, OrdinaryKriging, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='blurg') ok = OrdinaryKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2]) variogram_model = ok.variogram_model variogram_parameters = ok.variogram_model_parameters anisotropy_scaling = ok.anisotropy_scaling anisotropy_angle = ok.anisotropy_angle self.assertRaises(ValueError, ok.update_variogram_model, 'blurg') ok.update_variogram_model('power', anisotropy_scaling=3.0, anisotropy_angle=45.0) self.assertFalse(variogram_model == ok.variogram_model) self.assertFalse(variogram_parameters == ok.variogram_model_parameters) self.assertFalse(anisotropy_scaling == ok.anisotropy_scaling) self.assertFalse(anisotropy_angle == ok.anisotropy_angle) def test_ok_execute(self): ok = OrdinaryKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2]) self.assertRaises(ValueError, ok.execute, 'blurg', self.simple_gridx, self.simple_gridy) z, ss = ok.execute('grid', self.simple_gridx, self.simple_gridy, backend='vectorized') shape = (self.simple_gridy.size, self.simple_gridx.size) self.assertEqual(z.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(z), np.amin(z)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(z)) z, ss = ok.execute('grid', self.simple_gridx, self.simple_gridy, backend='loop') shape = (self.simple_gridy.size, self.simple_gridx.size) self.assertEqual(z.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(z), np.amin(z)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(z)) self.assertRaises(IOError, ok.execute, 'masked', self.simple_gridx, self.simple_gridy, backend='vectorized') mask = np.array([True, False]) self.assertRaises(ValueError, ok.execute, 'masked', self.simple_gridx, self.simple_gridy, mask=mask, backend='vectorized') z, ss = ok.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask, backend='vectorized') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) z, ss = ok.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask.T, backend='vectorized') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) self.assertRaises(IOError, ok.execute, 'masked', self.simple_gridx, self.simple_gridy, backend='loop') mask = np.array([True, False]) self.assertRaises(ValueError, ok.execute, 'masked', self.simple_gridx, self.simple_gridy, mask=mask, backend='loop') z, ss = ok.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask, backend='loop') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) z, ss = ok.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask.T, backend='loop') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) self.assertRaises(ValueError, ok.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend='vectorized') z, ss = ok.execute('points', self.simple_gridx[0], self.simple_gridy[0], backend='vectorized') self.assertEqual(z.shape, (1,)) self.assertEqual(ss.shape, (1,)) self.assertRaises(ValueError, ok.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend='loop') z, ss = ok.execute('points', self.simple_gridx[0], self.simple_gridy[0], backend='loop') self.assertEqual(z.shape, (1,)) self.assertEqual(ss.shape, (1,)) def test_cython_ok(self): ok = OrdinaryKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2]) z1, ss1 = ok.execute('grid', self.simple_gridx, self.simple_gridy, backend='loop') z2, ss2 = ok.execute('grid', self.simple_gridx, self.simple_gridy, backend='C') self.assertTrue(np.allclose(z1, z2)) self.assertTrue(np.allclose(ss1, ss2)) closest_points = 4 z1, ss1 = ok.execute('grid', self.simple_gridx, self.simple_gridy, backend='loop', n_closest_points=closest_points) z2, ss2 = ok.execute('grid', self.simple_gridx, self.simple_gridy, backend='C', n_closest_points=closest_points) self.assertTrue(np.allclose(z1, z2)) self.assertTrue(np.allclose(ss1, ss2)) def test_uk(self): # Test to compare UK with linear drift to results from KT3D_H2O. # (M. Karanovic, M. Tonkin, and D. Wilson, 2009, Groundwater, vol. 47, no. 4, 580-586.) uk = UniversalKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='exponential', variogram_parameters=[500.0, 3000.0, 0.0], drift_terms=['regional_linear']) z, ss = uk.execute('grid', self.uk_test_gridx, self.uk_test_gridy, backend='vectorized') self.assertTrue(np.allclose(z, self.uk_test_answer)) z, ss = uk.execute('grid', self.uk_test_gridx, self.uk_test_gridy, backend='loop') self.assertTrue(np.allclose(z, self.uk_test_answer)) def test_uk_update_variogram_model(self): self.assertRaises(ValueError, UniversalKriging, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='blurg') self.assertRaises(ValueError, UniversalKriging, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], drift_terms=['external_Z']) self.assertRaises(ValueError, UniversalKriging, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], drift_terms=['external_Z'], external_drift=np.array([0])) self.assertRaises(ValueError, UniversalKriging, self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], drift_terms=['point_log']) uk = UniversalKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2]) variogram_model = uk.variogram_model variogram_parameters = uk.variogram_model_parameters anisotropy_scaling = uk.anisotropy_scaling anisotropy_angle = uk.anisotropy_angle self.assertRaises(ValueError, uk.update_variogram_model, 'blurg') uk.update_variogram_model('power', anisotropy_scaling=3.0, anisotropy_angle=45.0) self.assertFalse(variogram_model == uk.variogram_model) self.assertFalse(variogram_parameters == uk.variogram_model_parameters) self.assertFalse(anisotropy_scaling == uk.anisotropy_scaling) self.assertFalse(anisotropy_angle == uk.anisotropy_angle) def test_uk_calculate_data_point_zscalars(self): dem = np.arange(0.0, 5.1, 0.1) dem = np.repeat(dem[np.newaxis, :], 6, axis=0) dem_x = np.arange(0.0, 5.1, 0.1) dem_y = np.arange(0.0, 6.0, 1.0) self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', variogram_parameters=[1.0, 0.0], drift_terms=['external_Z']) self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', variogram_parameters=[1.0, 0.0], drift_terms=['external_Z'], external_drift=dem) self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', variogram_parameters=[1.0, 0.0], drift_terms=['external_Z'], external_drift=dem, external_drift_x=dem_x, external_drift_y=np.arange(0.0, 5.0, 1.0)) uk = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', variogram_parameters=[1.0, 0.0], drift_terms=['external_Z'], external_drift=dem, external_drift_x=dem_x, external_drift_y=dem_y) self.assertTrue(np.allclose(uk.z_scalars, self.simple_data[:, 0])) xi, yi = np.meshgrid(np.arange(0.0, 5.3, 0.1), self.simple_gridy) self.assertRaises(ValueError, uk._calculate_data_point_zscalars, xi, yi) xi, yi = np.meshgrid(np.arange(0.0, 5.0, 0.1), self.simple_gridy) z_scalars = uk._calculate_data_point_zscalars(xi, yi) self.assertTrue(np.allclose(z_scalars[0, :], np.arange(0.0, 5.0, 0.1))) def test_uk_execute_single_point(self): # Test data and answer from lecture notes by Nicolas Christou, UCLA Stats data = np.array([[61.0, 139.0, 477.0], [63.0, 140.0, 696.0], [64.0, 129.0, 227.0], [68.0, 128.0, 646.0], [71.0, 140.0, 606.0], [73.0, 141.0, 791.0], [75.0, 128.0, 783.0]]) point = (65.0, 137.0) z_answer = 567.54 ss_answer = 9.044 uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='exponential', variogram_parameters=[10.0, 9.99, 0.0], drift_terms=['regional_linear']) z, ss = uk.execute('points', np.array([point[0]]), np.array([point[1]]), backend='vectorized') self.assertAlmostEqual(z_answer, z[0], places=0) self.assertAlmostEqual(ss_answer, ss[0], places=0) z, ss = uk.execute('points', np.array([61.0]), np.array([139.0]), backend='vectorized') self.assertAlmostEqual(z[0], 477.0, 3) self.assertAlmostEqual(ss[0], 0.0, 3) z, ss = uk.execute('points', np.array([61.0]), np.array([139.0]), backend='loop') self.assertAlmostEqual(z[0], 477.0, 3) self.assertAlmostEqual(ss[0], 0.0, 3) def test_uk_execute(self): uk = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['regional_linear']) self.assertRaises(ValueError, uk.execute, 'blurg', self.simple_gridx, self.simple_gridy) self.assertRaises(ValueError, uk.execute, 'grid', self.simple_gridx, self.simple_gridy, backend='mrow') z, ss = uk.execute('grid', self.simple_gridx, self.simple_gridy, backend='vectorized') shape = (self.simple_gridy.size, self.simple_gridx.size) self.assertEqual(z.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(z), np.amin(z)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(z)) z, ss = uk.execute('grid', self.simple_gridx, self.simple_gridy, backend='loop') shape = (self.simple_gridy.size, self.simple_gridx.size) self.assertEqual(z.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(z), np.amin(z)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(z)) self.assertRaises(IOError, uk.execute, 'masked', self.simple_gridx, self.simple_gridy, backend='vectorized') mask = np.array([True, False]) self.assertRaises(ValueError, uk.execute, 'masked', self.simple_gridx, self.simple_gridy, mask=mask, backend='vectorized') z, ss = uk.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask, backend='vectorized') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) z, ss = uk.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask.T, backend='vectorized') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) self.assertRaises(IOError, uk.execute, 'masked', self.simple_gridx, self.simple_gridy, backend='loop') mask = np.array([True, False]) self.assertRaises(ValueError, uk.execute, 'masked', self.simple_gridx, self.simple_gridy, mask=mask, backend='loop') z, ss = uk.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask, backend='loop') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) z, ss = uk.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask.T, backend='loop') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0], np.ma.masked) self.assertIs(ss[0, 0], np.ma.masked) self.assertRaises(ValueError, uk.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend='vectorized') z, ss = uk.execute('points', self.simple_gridx[0], self.simple_gridy[0], backend='vectorized') self.assertEqual(z.shape, (1,)) self.assertEqual(ss.shape, (1,)) self.assertRaises(ValueError, uk.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend='loop') z, ss = uk.execute('points', self.simple_gridx[0], self.simple_gridy[0], backend='loop') self.assertEqual(z.shape, (1,)) self.assertEqual(ss.shape, (1,)) def test_ok_uk_produce_same_result(self): gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) ok = OrdinaryKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='linear', verbose=False, enable_plotting=False) z_ok, ss_ok = ok.execute('grid', gridx, gridy, backend='vectorized') uk = UniversalKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='linear', verbose=False, enable_plotting=False) z_uk, ss_uk = uk.execute('grid', gridx, gridy, backend='vectorized') self.assertTrue(np.allclose(z_ok, z_uk)) self.assertTrue(np.allclose(ss_ok, ss_uk)) z_ok, ss_ok = ok.execute('grid', gridx, gridy, backend='loop') z_uk, ss_uk = uk.execute('grid', gridx, gridy, backend='loop') self.assertTrue(np.allclose(z_ok, z_uk)) self.assertTrue(np.allclose(ss_ok, ss_uk)) def test_ok_backends_produce_same_result(self): gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) ok = OrdinaryKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='linear', verbose=False, enable_plotting=False) z_ok_v, ss_ok_v = ok.execute('grid', gridx, gridy, backend='vectorized') z_ok_l, ss_ok_l = ok.execute('grid', gridx, gridy, backend='loop') self.assertTrue(np.allclose(z_ok_v, z_ok_l)) self.assertTrue(np.allclose(ss_ok_v, ss_ok_l)) def test_uk_backends_produce_same_result(self): gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) uk = UniversalKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='linear', verbose=False, enable_plotting=False) z_uk_v, ss_uk_v = uk.execute('grid', gridx, gridy, backend='vectorized') z_uk_l, ss_uk_l = uk.execute('grid', gridx, gridy, backend='loop') self.assertTrue(np.allclose(z_uk_v, z_uk_l)) self.assertTrue(np.allclose(ss_uk_v, ss_uk_l)) def test_kriging_tools(self): ok = OrdinaryKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2]) z_write, ss_write = ok.execute('grid', self.simple_gridx, self.simple_gridy) kt.write_asc_grid(self.simple_gridx, self.simple_gridy, z_write, filename=os.path.join(os.getcwd(), 'test_data/temp.asc'), style=1) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/temp.asc')) self.assertTrue(np.allclose(z_write, z_read, 0.01, 0.01)) self.assertTrue(np.allclose(self.simple_gridx, x_read)) self.assertTrue(np.allclose(self.simple_gridy, y_read)) z_write, ss_write = ok.execute('masked', self.simple_gridx, self.simple_gridy, mask=self.mask) kt.write_asc_grid(self.simple_gridx, self.simple_gridy, z_write, filename=os.path.join(os.getcwd(), 'test_data/temp.asc'), style=1) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/temp.asc')) self.assertTrue(np.ma.allclose(z_write, np.ma.masked_where(z_read == no_data, z_read), masked_equal=True, rtol=0.01, atol=0.01)) self.assertTrue(np.allclose(self.simple_gridx, x_read)) self.assertTrue(np.allclose(self.simple_gridy, y_read)) ok = OrdinaryKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2]) z_write, ss_write = ok.execute('grid', self.simple_gridx_2, self.simple_gridy) kt.write_asc_grid(self.simple_gridx_2, self.simple_gridy, z_write, filename=os.path.join(os.getcwd(), 'test_data/temp.asc'), style=2) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/temp.asc')) self.assertTrue(np.allclose(z_write, z_read, 0.01, 0.01)) self.assertTrue(np.allclose(self.simple_gridx_2, x_read)) self.assertTrue(np.allclose(self.simple_gridy, y_read)) os.remove(os.path.join(os.getcwd(), 'test_data/temp.asc')) def test_uk_three_primary_drifts(self): well = np.array([[1.1, 1.1, -1.0]]) dem = np.arange(0.0, 5.1, 0.1) dem = np.repeat(dem[np.newaxis, :], 6, axis=0) dem_x = np.arange(0.0, 5.1, 0.1) dem_y = np.arange(0.0, 6.0, 1.0) uk = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['regional_linear', 'external_Z', 'point_log'], point_drift=well, external_drift=dem, external_drift_x=dem_x, external_drift_y=dem_y) z, ss = uk.execute('grid', self.simple_gridx, self.simple_gridy, backend='vectorized') self.assertEquals(z.shape, (self.simple_gridy.shape[0], self.simple_gridx.shape[0])) self.assertEquals(ss.shape, (self.simple_gridy.shape[0], self.simple_gridx.shape[0])) self.assertTrue(np.all(np.isfinite(z))) self.assertFalse(np.all(np.isnan(z))) self.assertTrue(np.all(np.isfinite(ss))) self.assertFalse(np.all(np.isnan(ss))) z, ss = uk.execute('grid', self.simple_gridx, self.simple_gridy, backend='loop') self.assertEquals(z.shape, (self.simple_gridy.shape[0], self.simple_gridx.shape[0])) self.assertEquals(ss.shape, (self.simple_gridy.shape[0], self.simple_gridx.shape[0])) self.assertTrue(np.all(np.isfinite(z))) self.assertFalse(np.all(np.isnan(z))) self.assertTrue(np.all(np.isfinite(ss))) self.assertFalse(np.all(np.isnan(ss))) def test_uk_specified_drift(self): xg, yg = np.meshgrid(self.simple_gridx, self.simple_gridy) well = np.array([[1.1, 1.1, -1.0]]) point_log = well[0, 2] * np.log(np.sqrt((xg - well[0, 0])**2. + (yg - well[0, 1])**2.)) * -1. if np.any(np.isinf(point_log)): point_log[np.isinf(point_log)] = -100. * well[0, 2] * -1. point_log_data = well[0, 2] * np.log(np.sqrt((self.simple_data[:, 0] - well[0, 0])**2. + (self.simple_data[:, 1] - well[0, 1])**2.)) * -1. if np.any(np.isinf(point_log_data)): point_log_data[np.isinf(point_log_data)] = -100. * well[0, 2] * -1. self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['specified']) self.assertRaises(TypeError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['specified'], specified_drift=self.simple_data[:, 0]) self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['specified'], specified_drift=[self.simple_data[:2, 0]]) uk_spec = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['specified'], specified_drift=[self.simple_data[:, 0], self.simple_data[:, 1]]) self.assertRaises(ValueError, uk_spec.execute, 'grid', self.simple_gridx, self.simple_gridy, specified_drift_arrays=[self.simple_gridx, self.simple_gridy]) self.assertRaises(TypeError, uk_spec.execute, 'grid', self.simple_gridx, self.simple_gridy, specified_drift_arrays=self.simple_gridx) self.assertRaises(ValueError, uk_spec.execute, 'grid', self.simple_gridx, self.simple_gridy, specified_drift_arrays=[xg]) z_spec, ss_spec = uk_spec.execute('grid', self.simple_gridx, self.simple_gridy, specified_drift_arrays=[xg, yg]) uk_lin = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['regional_linear']) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx, self.simple_gridy) self.assertTrue(np.allclose(z_spec, z_lin)) self.assertTrue(np.allclose(ss_spec, ss_lin)) uk_spec = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['specified'], specified_drift=[point_log_data]) z_spec, ss_spec = uk_spec.execute('grid', self.simple_gridx, self.simple_gridy, specified_drift_arrays=[point_log]) uk_lin = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['point_log'], point_drift=well) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx, self.simple_gridy) self.assertTrue(np.allclose(z_spec, z_lin)) self.assertTrue(np.allclose(ss_spec, ss_lin)) uk_spec = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['specified'], specified_drift=[self.simple_data[:, 0], self.simple_data[:, 1], point_log_data]) z_spec, ss_spec = uk_spec.execute('grid', self.simple_gridx, self.simple_gridy, specified_drift_arrays=[xg, yg, point_log]) uk_lin = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['regional_linear', 'point_log'], point_drift=well) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx, self.simple_gridy) self.assertTrue(np.allclose(z_spec, z_lin)) self.assertTrue(np.allclose(ss_spec, ss_lin)) def test_uk_functional_drift(self): well = np.array([[1.1, 1.1, -1.0]]) func_x = lambda x, y: x func_y = lambda x, y: y func_well = lambda x, y: - well[0, 2] * np.log(np.sqrt((x - well[0, 0])**2. + (y - well[0, 1])**2.)) self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['functional']) self.assertRaises(TypeError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['functional'], functional_drift=func_x) uk_func = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['functional'], functional_drift=[func_x, func_y]) z_func, ss_func = uk_func.execute('grid', self.simple_gridx, self.simple_gridy) uk_lin = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['regional_linear']) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx, self.simple_gridy) self.assertTrue(np.allclose(z_func, z_lin)) self.assertTrue(np.allclose(ss_func, ss_lin)) uk_func = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['functional'], functional_drift=[func_well]) z_func, ss_func = uk_func.execute('grid', self.simple_gridx, self.simple_gridy) uk_lin = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['point_log'], point_drift=well) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx, self.simple_gridy) self.assertTrue(np.allclose(z_func, z_lin)) self.assertTrue(np.allclose(ss_func, ss_lin)) uk_func = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['functional'], functional_drift=[func_x, func_y, func_well]) z_func, ss_func = uk_func.execute('grid', self.simple_gridx, self.simple_gridy) uk_lin = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear', drift_terms=['regional_linear', 'point_log'], point_drift=well) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx, self.simple_gridy) self.assertTrue(np.allclose(z_func, z_lin)) self.assertTrue(np.allclose(ss_func, ss_lin)) def test_uk_with_external_drift(self): dem, demx, demy, cellsize, no_data = \ kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/test3_dem.asc')) uk = UniversalKriging(self.test_data[:, 0], self.test_data[:, 1], self.test_data[:, 2], variogram_model='spherical', variogram_parameters=[500.0, 3000.0, 0.0], anisotropy_scaling=1.0, anisotropy_angle=0.0, drift_terms=['external_Z'], external_drift=dem, external_drift_x=demx, external_drift_y=demy, verbose=False) answer, gridx, gridy, cellsize, no_data = \ kt.read_asc_grid(os.path.join(os.getcwd(), 'test_data/test3_answer.asc')) z, ss = uk.execute('grid', gridx, gridy, backend='vectorized') self.assertTrue(np.allclose(z, answer)) z, ss = uk.execute('grid', gridx, gridy, backend='loop') self.assertTrue(np.allclose(z, answer)) def test_force_exact(self): data = np.array([[1., 1., 2.], [2., 2., 1.5], [3., 3., 1.]]) ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear', variogram_parameters=[1.0, 1.0]) z, ss = ok.execute('grid', [1., 2., 3.], [1., 2., 3.], backend='vectorized') self.assertAlmostEqual(z[0, 0], 2.0) self.assertAlmostEqual(ss[0, 0], 0.0) self.assertAlmostEqual(z[1, 1], 1.5) self.assertAlmostEqual(ss[1, 1], 0.0) self.assertAlmostEqual(z[2, 2], 1.0) self.assertAlmostEqual(ss[2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 2], 0.0) self.assertNotAlmostEqual(ss[2, 0], 0.0) z, ss = ok.execute('points', [1., 2., 3., 3.], [2., 1., 1., 3.], backend='vectorized') self.assertNotAlmostEqual(ss[0], 0.0) self.assertNotAlmostEqual(ss[1], 0.0) self.assertNotAlmostEqual(ss[2], 0.0) self.assertAlmostEqual(z[3], 1.0) self.assertAlmostEqual(ss[3], 0.0) z, ss = ok.execute('grid', np.arange(0., 4., 0.1), np.arange(0., 4., 0.1), backend='vectorized') self.assertAlmostEqual(z[10, 10], 2.) self.assertAlmostEqual(ss[10, 10], 0.) self.assertAlmostEqual(z[20, 20], 1.5) self.assertAlmostEqual(ss[20, 20], 0.) self.assertAlmostEqual(z[30, 30], 1.0) self.assertAlmostEqual(ss[30, 30], 0.) self.assertNotAlmostEqual(ss[0, 0], 0.0) self.assertNotAlmostEqual(ss[15, 15], 0.0) self.assertNotAlmostEqual(ss[10, 0], 0.0) self.assertNotAlmostEqual(ss[0, 10], 0.0) self.assertNotAlmostEqual(ss[20, 10], 0.0) self.assertNotAlmostEqual(ss[10, 20], 0.0) self.assertNotAlmostEqual(ss[30, 20], 0.0) self.assertNotAlmostEqual(ss[20, 30], 0.0) z, ss = ok.execute('grid', np.arange(0., 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend='vectorized') self.assertTrue(np.any(ss <= 1e-15)) self.assertFalse(np.any(ss[:9, :30] <= 1e-15)) self.assertFalse(np.allclose(z[:9, :30], 0.)) z, ss = ok.execute('grid', np.arange(0., 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend='vectorized') self.assertFalse(np.any(ss <= 1e-15)) z, ss = ok.execute('masked', np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend='vectorized', mask=np.asarray(np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.)) self.assertTrue(ss[2, 5] <= 1e-15) self.assertFalse(np.allclose(ss, 0.)) z, ss = ok.execute('grid', [1., 2., 3.], [1., 2., 3.], backend='loop') self.assertAlmostEqual(z[0, 0], 2.0) self.assertAlmostEqual(ss[0, 0], 0.0) self.assertAlmostEqual(z[1, 1], 1.5) self.assertAlmostEqual(ss[1, 1], 0.0) self.assertAlmostEqual(z[2, 2], 1.0) self.assertAlmostEqual(ss[2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 2], 0.0) self.assertNotAlmostEqual(ss[2, 0], 0.0) z, ss = ok.execute('points', [1., 2., 3., 3.], [2., 1., 1., 3.], backend='loop') self.assertNotAlmostEqual(ss[0], 0.0) self.assertNotAlmostEqual(ss[1], 0.0) self.assertNotAlmostEqual(ss[2], 0.0) self.assertAlmostEqual(z[3], 1.0) self.assertAlmostEqual(ss[3], 0.0) z, ss = ok.execute('grid', np.arange(0., 4., 0.1), np.arange(0., 4., 0.1), backend='loop') self.assertAlmostEqual(z[10, 10], 2.) self.assertAlmostEqual(ss[10, 10], 0.) self.assertAlmostEqual(z[20, 20], 1.5) self.assertAlmostEqual(ss[20, 20], 0.) self.assertAlmostEqual(z[30, 30], 1.0) self.assertAlmostEqual(ss[30, 30], 0.) self.assertNotAlmostEqual(ss[0, 0], 0.0) self.assertNotAlmostEqual(ss[15, 15], 0.0) self.assertNotAlmostEqual(ss[10, 0], 0.0) self.assertNotAlmostEqual(ss[0, 10], 0.0) self.assertNotAlmostEqual(ss[20, 10], 0.0) self.assertNotAlmostEqual(ss[10, 20], 0.0) self.assertNotAlmostEqual(ss[30, 20], 0.0) self.assertNotAlmostEqual(ss[20, 30], 0.0) z, ss = ok.execute('grid', np.arange(0., 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend='loop') self.assertTrue(np.any(ss <= 1e-15)) self.assertFalse(np.any(ss[:9, :30] <= 1e-15)) self.assertFalse(np.allclose(z[:9, :30], 0.)) z, ss = ok.execute('grid', np.arange(0., 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend='loop') self.assertFalse(np.any(ss <= 1e-15)) z, ss = ok.execute('masked', np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend='loop', mask=np.asarray(np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.)) self.assertTrue(ss[2, 5] <= 1e-15) self.assertFalse(np.allclose(ss, 0.)) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2]) z, ss = uk.execute('grid', [1., 2., 3.], [1., 2., 3.], backend='vectorized') self.assertAlmostEqual(z[0, 0], 2.0) self.assertAlmostEqual(ss[0, 0], 0.0) self.assertAlmostEqual(z[1, 1], 1.5) self.assertAlmostEqual(ss[1, 1], 0.0) self.assertAlmostEqual(z[2, 2], 1.0) self.assertAlmostEqual(ss[2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 2], 0.0) self.assertNotAlmostEqual(ss[2, 0], 0.0) z, ss = uk.execute('points', [1., 2., 3., 3.], [2., 1., 1., 3.], backend='vectorized') self.assertNotAlmostEqual(ss[0], 0.0) self.assertNotAlmostEqual(ss[1], 0.0) self.assertNotAlmostEqual(ss[2], 0.0) self.assertAlmostEqual(z[3], 1.0) self.assertAlmostEqual(ss[3], 0.0) z, ss = uk.execute('grid', np.arange(0., 4., 0.1), np.arange(0., 4., 0.1), backend='vectorized') self.assertAlmostEqual(z[10, 10], 2.) self.assertAlmostEqual(ss[10, 10], 0.) self.assertAlmostEqual(z[20, 20], 1.5) self.assertAlmostEqual(ss[20, 20], 0.) self.assertAlmostEqual(z[30, 30], 1.0) self.assertAlmostEqual(ss[30, 30], 0.) self.assertNotAlmostEqual(ss[0, 0], 0.0) self.assertNotAlmostEqual(ss[15, 15], 0.0) self.assertNotAlmostEqual(ss[10, 0], 0.0) self.assertNotAlmostEqual(ss[0, 10], 0.0) self.assertNotAlmostEqual(ss[20, 10], 0.0) self.assertNotAlmostEqual(ss[10, 20], 0.0) self.assertNotAlmostEqual(ss[30, 20], 0.0) self.assertNotAlmostEqual(ss[20, 30], 0.0) z, ss = uk.execute('grid', np.arange(0., 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend='vectorized') self.assertTrue(np.any(ss <= 1e-15)) self.assertFalse(np.any(ss[:9, :30] <= 1e-15)) self.assertFalse(np.allclose(z[:9, :30], 0.)) z, ss = uk.execute('grid', np.arange(0., 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend='vectorized') self.assertFalse(np.any(ss <= 1e-15)) z, ss = uk.execute('masked', np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend='vectorized', mask=np.asarray(np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.)) self.assertTrue(ss[2, 5] <= 1e-15) self.assertFalse(np.allclose(ss, 0.)) z, ss = uk.execute('grid', [1., 2., 3.], [1., 2., 3.], backend='loop') self.assertAlmostEqual(z[0, 0], 2.0) self.assertAlmostEqual(ss[0, 0], 0.0) self.assertAlmostEqual(z[1, 1], 1.5) self.assertAlmostEqual(ss[1, 1], 0.0) self.assertAlmostEqual(z[2, 2], 1.0) self.assertAlmostEqual(ss[2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 2], 0.0) self.assertNotAlmostEqual(ss[2, 0], 0.0) z, ss = uk.execute('points', [1., 2., 3., 3.], [2., 1., 1., 3.], backend='loop') self.assertNotAlmostEqual(ss[0], 0.0) self.assertNotAlmostEqual(ss[1], 0.0) self.assertNotAlmostEqual(ss[2], 0.0) self.assertAlmostEqual(z[3], 1.0) self.assertAlmostEqual(ss[3], 0.0) z, ss = uk.execute('grid', np.arange(0., 4., 0.1), np.arange(0., 4., 0.1), backend='loop') self.assertAlmostEqual(z[10, 10], 2.) self.assertAlmostEqual(ss[10, 10], 0.) self.assertAlmostEqual(z[20, 20], 1.5) self.assertAlmostEqual(ss[20, 20], 0.) self.assertAlmostEqual(z[30, 30], 1.0) self.assertAlmostEqual(ss[30, 30], 0.) self.assertNotAlmostEqual(ss[0, 0], 0.0) self.assertNotAlmostEqual(ss[15, 15], 0.0) self.assertNotAlmostEqual(ss[10, 0], 0.0) self.assertNotAlmostEqual(ss[0, 10], 0.0) self.assertNotAlmostEqual(ss[20, 10], 0.0) self.assertNotAlmostEqual(ss[10, 20], 0.0) self.assertNotAlmostEqual(ss[30, 20], 0.0) self.assertNotAlmostEqual(ss[20, 30], 0.0) z, ss = uk.execute('grid', np.arange(0., 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend='loop') self.assertTrue(np.any(ss <= 1e-15)) self.assertFalse(np.any(ss[:9, :30] <= 1e-15)) self.assertFalse(np.allclose(z[:9, :30], 0.)) z, ss = uk.execute('grid', np.arange(0., 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend='loop') self.assertFalse(np.any(ss <= 1e-15)) z, ss = uk.execute('masked', np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend='loop', mask=np.asarray(np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.)) self.assertTrue(ss[2, 5] <= 1e-15) self.assertFalse(np.allclose(ss, 0.)) z, ss = core.krige(data[:, 0], data[:, 1], data[:, 2], (1., 1.), variogram_models.linear_variogram_model, [1.0, 1.0], 'euclidean') self.assertAlmostEqual(z, 2.) self.assertAlmostEqual(ss, 0.) z, ss = core.krige(data[:, 0], data[:, 1], data[:, 2], (1., 2.), variogram_models.linear_variogram_model, [1.0, 1.0], 'euclidean') self.assertNotAlmostEqual(ss, 0.) data = np.zeros((50, 3)) x, y = np.meshgrid(np.arange(0., 10., 1.), np.arange(0., 10., 2.)) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(x) * np.ravel(y) ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear', variogram_parameters=[100.0, 1.0]) z, ss = ok.execute('grid', np.arange(0., 10., 1.), np.arange(0., 10., 2.), backend='vectorized') self.assertTrue(np.allclose(np.ravel(z), data[:, 2])) self.assertTrue(np.allclose(ss, 0.)) z, ss = ok.execute('grid', np.arange(0.5, 10., 1.), np.arange(0.5, 10., 2.), backend='vectorized') self.assertFalse(np.allclose(np.ravel(z), data[:, 2])) self.assertFalse(np.allclose(ss, 0.)) z, ss = ok.execute('grid', np.arange(0., 10., 1.), np.arange(0., 10., 2.), backend='loop') self.assertTrue(np.allclose(np.ravel(z), data[:, 2])) self.assertTrue(np.allclose(ss, 0.)) z, ss = ok.execute('grid', np.arange(0.5, 10., 1.), np.arange(0.5, 10., 2.), backend='loop') self.assertFalse(np.allclose(np.ravel(z), data[:, 2])) self.assertFalse(np.allclose(ss, 0.)) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear', variogram_parameters=[100.0, 1.0]) z, ss = uk.execute('grid', np.arange(0., 10., 1.), np.arange(0., 10., 2.), backend='vectorized') self.assertTrue(np.allclose(np.ravel(z), data[:, 2])) self.assertTrue(np.allclose(ss, 0.)) z, ss = uk.execute('grid', np.arange(0.5, 10., 1.), np.arange(0.5, 10., 2.), backend='vectorized') self.assertFalse(np.allclose(np.ravel(z), data[:, 2])) self.assertFalse(np.allclose(ss, 0.)) z, ss = uk.execute('grid', np.arange(0., 10., 1.), np.arange(0., 10., 2.), backend='loop') self.assertTrue(np.allclose(np.ravel(z), data[:, 2])) self.assertTrue(np.allclose(ss, 0.)) z, ss = uk.execute('grid', np.arange(0.5, 10., 1.), np.arange(0.5, 10., 2.), backend='loop') self.assertFalse(np.allclose(np.ravel(z), data[:, 2])) self.assertFalse(np.allclose(ss, 0.)) def test_custom_variogram(self): func = lambda params, dist: params[0] * np.log10(dist + params[1]) + params[2] self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='mrow') self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom') self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom', variogram_function=0) self.assertRaises(ValueError, UniversalKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom', variogram_function=func) uk = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom', variogram_parameters=[1., 1., 1.], variogram_function=func) self.assertAlmostEqual(uk.variogram_function([1., 1., 1.], 1.), 1.3010, 4) uk = UniversalKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear') uk.update_variogram_model('custom', variogram_parameters=[1., 1., 1.], variogram_function=func) self.assertAlmostEqual(uk.variogram_function([1., 1., 1.], 1.), 1.3010, 4) self.assertRaises(ValueError, OrdinaryKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='mrow') self.assertRaises(ValueError, OrdinaryKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom') self.assertRaises(ValueError, OrdinaryKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom', variogram_function=0) self.assertRaises(ValueError, OrdinaryKriging, self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom', variogram_function=func) ok = OrdinaryKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='custom', variogram_parameters=[1., 1., 1.], variogram_function=func) self.assertAlmostEqual(ok.variogram_function([1., 1., 1.], 1.), 1.3010, 4) ok = OrdinaryKriging(self.simple_data[:, 0], self.simple_data[:, 1], self.simple_data[:, 2], variogram_model='linear') ok.update_variogram_model('custom', variogram_parameters=[1., 1., 1.], variogram_function=func) self.assertAlmostEqual(ok.variogram_function([1., 1., 1.], 1.), 1.3010, 4) def test_ok3d(self): # Test to compare K3D results to those obtained using KT3D_H2O. # (M. Karanovic, M. Tonkin, and D. Wilson, 2009, Groundwater, vol. 47, no. 4, 580-586.) k3d = OrdinaryKriging3D(self.test_data[:, 0], self.test_data[:, 1], np.zeros(self.test_data[:, 1].shape), self.test_data[:, 2], variogram_model='exponential', variogram_parameters=[500.0, 3000.0, 0.0]) k, ss = k3d.execute('grid', self.ok_test_gridx, self.ok_test_gridy, np.array([0.]), backend='vectorized') self.assertTrue(np.allclose(k, self.ok_test_answer)) k, ss = k3d.execute('grid', self.ok_test_gridx, self.ok_test_gridy, np.array([0.]), backend='loop') self.assertTrue(np.allclose(k, self.ok_test_answer)) # Test to compare K3D results to those obtained using KT3D. data = np.genfromtxt('./test_data/test3d_data.txt', skip_header=1) ans = np.genfromtxt('./test_data/test3d_answer.txt') ans_z = ans[:, 0].reshape((10, 10, 10)) ans_ss = ans[:, 1].reshape((10, 10, 10)) k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear', variogram_parameters=[1., 0.1]) k, ss = k3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='vectorized') self.assertTrue(np.allclose(k, ans_z, rtol=1e-3)) self.assertTrue(np.allclose(ss, ans_ss, rtol=1e-3)) k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear', variogram_parameters=[1., 0.1]) k, ss = k3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='loop') self.assertTrue(np.allclose(k, ans_z, rtol=1e-3)) self.assertTrue(np.allclose(ss, ans_ss, rtol=1e-3)) def test_ok3d_moving_window(self): # Test to compare K3D results to those obtained using KT3D. data = np.genfromtxt('./test_data/test3d_data.txt', skip_header=1) ans = np.genfromtxt('./test_data/test3d_answer.txt') ans_z = ans[:, 0].reshape((10, 10, 10)) ans_ss = ans[:, 1].reshape((10, 10, 10)) k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear', variogram_parameters=[1., 0.1]) k, ss = k3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='loop', n_closest_points=10) self.assertTrue(np.allclose(k, ans_z, rtol=1e-3)) self.assertTrue(np.allclose(ss, ans_ss, rtol=1e-3)) def test_ok3d_uk3d_and_backends_produce_same_results(self): ok3d = OrdinaryKriging3D(self.test_data[:, 0], self.test_data[:, 1], np.zeros(self.test_data[:, 1].shape), self.test_data[:, 2], variogram_model='exponential', variogram_parameters=[500.0, 3000.0, 0.0]) ok_v, oss_v = ok3d.execute('grid', self.ok_test_gridx, self.ok_test_gridy, np.array([0.]), backend='vectorized') ok_l, oss_l = ok3d.execute('grid', self.ok_test_gridx, self.ok_test_gridy, np.array([0.]), backend='loop') uk3d = UniversalKriging3D(self.test_data[:, 0], self.test_data[:, 1], np.zeros(self.test_data[:, 1].shape), self.test_data[:, 2], variogram_model='exponential', variogram_parameters=[500., 3000., 0.]) uk_v, uss_v = uk3d.execute('grid', self.ok_test_gridx, self.ok_test_gridy, np.array([0.]), backend='vectorized') self.assertTrue(np.allclose(uk_v, ok_v)) uk_l, uss_l = uk3d.execute('grid', self.ok_test_gridx, self.ok_test_gridy, np.array([0.]), backend='loop') self.assertTrue(np.allclose(uk_l, ok_l)) self.assertTrue(np.allclose(uk_l, uk_v)) self.assertTrue(np.allclose(uss_l, uss_v)) data = np.genfromtxt('./test_data/test3d_data.txt', skip_header=1) ok3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear', variogram_parameters=[1., 0.1]) ok_v, oss_v = ok3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='vectorized') ok_l, oss_l = ok3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='loop') uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear', variogram_parameters=[1., 0.1]) uk_v, uss_v = uk3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='vectorized') self.assertTrue(np.allclose(uk_v, ok_v)) self.assertTrue(np.allclose(uss_v, oss_v)) uk_l, uss_l = uk3d.execute('grid', np.arange(10.), np.arange(10.), np.arange(10.), backend='loop') self.assertTrue(np.allclose(uk_l, ok_l)) self.assertTrue(np.allclose(uss_l, oss_l)) self.assertTrue(np.allclose(uk_l, uk_v)) self.assertTrue(np.allclose(uss_l, uss_v)) def test_ok3d_update_variogram_model(self): self.assertRaises(ValueError, OrdinaryKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='blurg') k3d = OrdinaryKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3]) variogram_model = k3d.variogram_model variogram_parameters = k3d.variogram_model_parameters anisotropy_scaling_y = k3d.anisotropy_scaling_y anisotropy_scaling_z = k3d.anisotropy_scaling_z anisotropy_angle_x = k3d.anisotropy_angle_x anisotropy_angle_y = k3d.anisotropy_angle_y anisotropy_angle_z = k3d.anisotropy_angle_z self.assertRaises(ValueError, k3d.update_variogram_model, 'blurg') k3d.update_variogram_model('power', anisotropy_scaling_y=3.0, anisotropy_scaling_z=3.0, anisotropy_angle_x=45.0, anisotropy_angle_y=45.0, anisotropy_angle_z=45.0) self.assertFalse(variogram_model == k3d.variogram_model) self.assertFalse(variogram_parameters == k3d.variogram_model_parameters) self.assertFalse(anisotropy_scaling_y == k3d.anisotropy_scaling_y) self.assertFalse(anisotropy_scaling_z == k3d.anisotropy_scaling_z) self.assertFalse(anisotropy_angle_x == k3d.anisotropy_angle_x) self.assertFalse(anisotropy_angle_y == k3d.anisotropy_angle_y) self.assertFalse(anisotropy_angle_z == k3d.anisotropy_angle_z) def test_uk3d_update_variogram_model(self): self.assertRaises(ValueError, UniversalKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='blurg') uk3d = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3]) variogram_model = uk3d.variogram_model variogram_parameters = uk3d.variogram_model_parameters anisotropy_scaling_y = uk3d.anisotropy_scaling_y anisotropy_scaling_z = uk3d.anisotropy_scaling_z anisotropy_angle_x = uk3d.anisotropy_angle_x anisotropy_angle_y = uk3d.anisotropy_angle_y anisotropy_angle_z = uk3d.anisotropy_angle_z self.assertRaises(ValueError, uk3d.update_variogram_model, 'blurg') uk3d.update_variogram_model('power', anisotropy_scaling_y=3.0, anisotropy_scaling_z=3.0, anisotropy_angle_x=45.0, anisotropy_angle_y=45.0, anisotropy_angle_z=45.0) self.assertFalse(variogram_model == uk3d.variogram_model) self.assertFalse(variogram_parameters == uk3d.variogram_model_parameters) self.assertFalse(anisotropy_scaling_y == uk3d.anisotropy_scaling_y) self.assertFalse(anisotropy_scaling_z == uk3d.anisotropy_scaling_z) self.assertFalse(anisotropy_angle_x == uk3d.anisotropy_angle_x) self.assertFalse(anisotropy_angle_y == uk3d.anisotropy_angle_y) self.assertFalse(anisotropy_angle_z == uk3d.anisotropy_angle_z) def test_ok3d_backends_produce_same_result(self): k3d = OrdinaryKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear') k_k3d_v, ss_k3d_v = k3d.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='vectorized') k_k3d_l, ss_k3d_l = k3d.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='loop') self.assertTrue(np.allclose(k_k3d_v, k_k3d_l)) self.assertTrue(np.allclose(ss_k3d_v, ss_k3d_l)) def test_ok3d_execute(self): k3d = OrdinaryKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3]) self.assertRaises(ValueError, k3d.execute, 'blurg', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d) k, ss = k3d.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='vectorized') shape = (self.simple_gridz_3d.size, self.simple_gridy_3d.size, self.simple_gridx_3d.size) self.assertEqual(k.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(k), np.amin(k)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(k)) k, ss = k3d.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='loop') shape = (self.simple_gridz_3d.size, self.simple_gridy_3d.size, self.simple_gridx_3d.size) self.assertEqual(k.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(k), np.amin(k)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(k)) self.assertRaises(IOError, k3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='vectorized') mask = np.array([True, False]) self.assertRaises(ValueError, k3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=mask, backend='vectorized') k, ss = k3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d, backend='vectorized') self.assertTrue(np.ma.is_masked(k)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(k[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) z, ss = k3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d.T, backend='vectorized') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) self.assertRaises(IOError, k3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='loop') mask = np.array([True, False]) self.assertRaises(ValueError, k3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=mask, backend='loop') k, ss = k3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d, backend='loop') self.assertTrue(np.ma.is_masked(k)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(k[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) z, ss = k3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d.T, backend='loop') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) self.assertRaises(ValueError, k3d.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend='vectorized') k, ss = k3d.execute('points', self.simple_gridx_3d[0], self.simple_gridy_3d[0], self.simple_gridz_3d[0], backend='vectorized') self.assertEqual(k.shape, (1,)) self.assertEqual(ss.shape, (1,)) self.assertRaises(ValueError, k3d.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend='loop') k, ss = k3d.execute('points', self.simple_gridx_3d[0], self.simple_gridy_3d[0], self.simple_gridz_3d[0], backend='loop') self.assertEqual(k.shape, (1,)) self.assertEqual(ss.shape, (1,)) data = np.zeros((125, 4)) z, y, x = np.meshgrid(np.arange(0., 5., 1.), np.arange(0., 5., 1.), np.arange(0., 5., 1.)) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(z) data[:, 3] = np.ravel(z) k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear') k, ss = k3d.execute('grid', np.arange(2., 3., 0.1), np.arange(2., 3., 0.1), np.arange(0., 4., 1.), backend='vectorized') self.assertTrue(np.allclose(k[0, :, :], 0., atol=0.01)) self.assertTrue(np.allclose(k[1, :, :], 1., rtol=1.e-2)) self.assertTrue(np.allclose(k[2, :, :], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[3, :, :], 3., rtol=1.e-2)) k, ss = k3d.execute('grid', np.arange(2., 3., 0.1), np.arange(2., 3., 0.1), np.arange(0., 4., 1.), backend='loop') self.assertTrue(np.allclose(k[0, :, :], 0., atol=0.01)) self.assertTrue(np.allclose(k[1, :, :], 1., rtol=1.e-2)) self.assertTrue(np.allclose(k[2, :, :], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[3, :, :], 3., rtol=1.e-2)) k3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear') k, ss = k3d.execute('points', [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1., 2., 3.], backend='vectorized') self.assertTrue(np.allclose(k[0], 1., atol=0.01)) self.assertTrue(np.allclose(k[1], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[2], 3., rtol=1.e-2)) k, ss = k3d.execute('points', [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1., 2., 3.], backend='loop') self.assertTrue(np.allclose(k[0], 1., atol=0.01)) self.assertTrue(np.allclose(k[1], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[2], 3., rtol=1.e-2)) def test_uk3d_execute(self): uk3d = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3]) self.assertRaises(ValueError, uk3d.execute, 'blurg', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d) k, ss = uk3d.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='vectorized') shape = (self.simple_gridz_3d.size, self.simple_gridy_3d.size, self.simple_gridx_3d.size) self.assertEqual(k.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(k), np.amin(k)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(k)) k, ss = uk3d.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='loop') shape = (self.simple_gridz_3d.size, self.simple_gridy_3d.size, self.simple_gridx_3d.size) self.assertEqual(k.shape, shape) self.assertEqual(ss.shape, shape) self.assertNotEqual(np.amax(k), np.amin(k)) self.assertNotEqual(np.amax(ss), np.amin(ss)) self.assertFalse(np.ma.is_masked(k)) self.assertRaises(IOError, uk3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='vectorized') mask = np.array([True, False]) self.assertRaises(ValueError, uk3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=mask, backend='vectorized') k, ss = uk3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d, backend='vectorized') self.assertTrue(np.ma.is_masked(k)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(k[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) z, ss = uk3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d.T, backend='vectorized') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) self.assertRaises(IOError, uk3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, backend='loop') mask = np.array([True, False]) self.assertRaises(ValueError, uk3d.execute, 'masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=mask, backend='loop') k, ss = uk3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d, backend='loop') self.assertTrue(np.ma.is_masked(k)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(k[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) z, ss = uk3d.execute('masked', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, mask=self.mask_3d.T, backend='loop') self.assertTrue(np.ma.is_masked(z)) self.assertTrue(np.ma.is_masked(ss)) self.assertIs(z[0, 0, 0], np.ma.masked) self.assertIs(ss[0, 0, 0], np.ma.masked) self.assertRaises(ValueError, uk3d.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend='vectorized') k, ss = uk3d.execute('points', self.simple_gridx_3d[0], self.simple_gridy_3d[0], self.simple_gridz_3d[0], backend='vectorized') self.assertEqual(k.shape, (1,)) self.assertEqual(ss.shape, (1,)) self.assertRaises(ValueError, uk3d.execute, 'points', np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), np.array([1.0]), backend='loop') k, ss = uk3d.execute('points', self.simple_gridx_3d[0], self.simple_gridy_3d[0], self.simple_gridz_3d[0], backend='loop') self.assertEqual(k.shape, (1,)) self.assertEqual(ss.shape, (1,)) data = np.zeros((125, 4)) z, y, x = np.meshgrid(np.arange(0., 5., 1.), np.arange(0., 5., 1.), np.arange(0., 5., 1.)) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(z) data[:, 3] = np.ravel(z) k3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear') k, ss = k3d.execute('grid', np.arange(2., 3., 0.1), np.arange(2., 3., 0.1), np.arange(0., 4., 1.), backend='vectorized') self.assertTrue(np.allclose(k[0, :, :], 0., atol=0.01)) self.assertTrue(np.allclose(k[1, :, :], 1., rtol=1.e-2)) self.assertTrue(np.allclose(k[2, :, :], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[3, :, :], 3., rtol=1.e-2)) k, ss = k3d.execute('grid', np.arange(2., 3., 0.1), np.arange(2., 3., 0.1), np.arange(0., 4., 1.), backend='loop') self.assertTrue(np.allclose(k[0, :, :], 0., atol=0.01)) self.assertTrue(np.allclose(k[1, :, :], 1., rtol=1.e-2)) self.assertTrue(np.allclose(k[2, :, :], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[3, :, :], 3., rtol=1.e-2)) k3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3], variogram_model='linear') k, ss = k3d.execute('points', [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1., 2., 3.], backend='vectorized') self.assertTrue(np.allclose(k[0], 1., atol=0.01)) self.assertTrue(np.allclose(k[1], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[2], 3., rtol=1.e-2)) k, ss = k3d.execute('points', [2.5, 2.5, 2.5], [2.5, 2.5, 2.5], [1., 2., 3.], backend='loop') self.assertTrue(np.allclose(k[0], 1., atol=0.01)) self.assertTrue(np.allclose(k[1], 2., rtol=1.e-2)) self.assertTrue(np.allclose(k[2], 3., rtol=1.e-2)) def test_force_exact_3d(self): k3d = OrdinaryKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear') k, ss = k3d.execute('grid', [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend='vectorized') self.assertAlmostEqual(k[2, 0, 0], 0.9) self.assertAlmostEqual(ss[2, 0, 0], 0.0) self.assertAlmostEqual(k[0, 2, 0], 0.9) self.assertAlmostEqual(ss[0, 2, 0], 0.0) self.assertAlmostEqual(k[1, 2, 2], 0.7) self.assertAlmostEqual(ss[1, 2, 2], 0.0) self.assertNotAlmostEqual(ss[2, 2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 0, 0], 0.0) k, ss = k3d.execute('grid', [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend='loop') self.assertAlmostEqual(k[2, 0, 0], 0.9) self.assertAlmostEqual(ss[2, 0, 0], 0.0) self.assertAlmostEqual(k[0, 2, 0], 0.9) self.assertAlmostEqual(ss[0, 2, 0], 0.0) self.assertAlmostEqual(k[1, 2, 2], 0.7) self.assertAlmostEqual(ss[1, 2, 2], 0.0) self.assertNotAlmostEqual(ss[2, 2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 0, 0], 0.0) k3d = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear') k, ss = k3d.execute('grid', [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend='vectorized') self.assertAlmostEqual(k[2, 0, 0], 0.9) self.assertAlmostEqual(ss[2, 0, 0], 0.0) self.assertAlmostEqual(k[0, 2, 0], 0.9) self.assertAlmostEqual(ss[0, 2, 0], 0.0) self.assertAlmostEqual(k[1, 2, 2], 0.7) self.assertAlmostEqual(ss[1, 2, 2], 0.0) self.assertNotAlmostEqual(ss[2, 2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 0, 0], 0.0) k, ss = k3d.execute('grid', [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], [0.1, 0.2, 0.3], backend='loop') self.assertAlmostEqual(k[2, 0, 0], 0.9) self.assertAlmostEqual(ss[2, 0, 0], 0.0) self.assertAlmostEqual(k[0, 2, 0], 0.9) self.assertAlmostEqual(ss[0, 2, 0], 0.0) self.assertAlmostEqual(k[1, 2, 2], 0.7) self.assertAlmostEqual(ss[1, 2, 2], 0.0) self.assertNotAlmostEqual(ss[2, 2, 2], 0.0) self.assertNotAlmostEqual(ss[0, 0, 0], 0.0) def test_uk3d_specified_drift(self): zg, yg, xg = np.meshgrid(self.simple_gridz_3d, self.simple_gridy_3d, self.simple_gridx_3d, indexing='ij') self.assertRaises(ValueError, UniversalKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['specified']) self.assertRaises(TypeError, UniversalKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['specified'], specified_drift=self.simple_data_3d[:, 0]) self.assertRaises(ValueError, UniversalKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['specified'], specified_drift=[self.simple_data_3d[:2, 0]]) uk_spec = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['specified'], specified_drift=[self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2]]) self.assertRaises(ValueError, uk_spec.execute, 'grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, specified_drift_arrays=[self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d]) self.assertRaises(TypeError, uk_spec.execute, 'grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, specified_drift_arrays=self.simple_gridx_3d) self.assertRaises(ValueError, uk_spec.execute, 'grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, specified_drift_arrays=[zg]) z_spec, ss_spec = uk_spec.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d, specified_drift_arrays=[xg, yg, zg]) uk_lin = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['regional_linear']) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d) self.assertTrue(np.allclose(z_spec, z_lin)) self.assertTrue(np.allclose(ss_spec, ss_lin)) def test_uk3d_functional_drift(self): func_x = lambda x, y, z: x func_y = lambda x, y, z: y func_z = lambda x, y, z: z self.assertRaises(ValueError, UniversalKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['functional']) self.assertRaises(TypeError, UniversalKriging3D, self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['functional'], functional_drift=func_x) uk_func = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['functional'], functional_drift=[func_x, func_y, func_z]) z_func, ss_func = uk_func.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d) uk_lin = UniversalKriging3D(self.simple_data_3d[:, 0], self.simple_data_3d[:, 1], self.simple_data_3d[:, 2], self.simple_data_3d[:, 3], variogram_model='linear', drift_terms=['regional_linear']) z_lin, ss_lin = uk_lin.execute('grid', self.simple_gridx_3d, self.simple_gridy_3d, self.simple_gridz_3d) self.assertTrue(np.allclose(z_func, z_lin)) self.assertTrue(np.allclose(ss_func, ss_lin)) def test_geometric_code(self): # Create selected points distributed across the sphere: N=4 lon = np.array([7.0, 7.0, 187.0, 73.231]) lat = np.array([13.23, 13.2301, -13.23, -79.3]) # For the points generated with this reference seed, the distance matrix # has been calculated using geopy (v. 1.11.0) as follows: # >>> from geopy.distance import great_circle # >>> g = great_circle(radius=1.0) # >>> d = np.zeros((N,N), dtype=float) # >>> for i in range(N): # >>> for j in range(N): # >>> d[i,j] = g.measure((lat[i],lon[i]),(lat[j],lon[j])) # >>> d *= 180.0/np.pi # From that distance matrix, the reference values have been obtained. d_ref = np.array( [[0.0, 1e-4, 180.0, 98.744848317171801], [1e-4, 0.0, 179.9999, 98.744946828324345], [180.0, 179.9999, 0.0, 81.255151682828213], [98.744848317171801, 98.744946828324345, 81.255151682828213, 0.0]] ) # Calculate distance matrix using the PyKrige code: d = np.zeros((N,N)) for i in range(N): for j in range(N): d[i,j] = core.great_circle_distance(lon[i],lat[i],lon[j],lat[j]) # Test agains reference values: np.testing.assert_allclose(d, d_ref) # Test general features: np.testing.assert_allclose(d[np.eye(N,dtype=bool)], 0.0) np.testing.assert_equal(d>=0.0, np.ones((N,N),dtype=bool)) np.testing.assert_allclose(d,d.T) np.testing.assert_equal(d<=180.0,np.ones((N,N),dtype=bool)) # Test great_circle_distance and euclid3_to_great_circle against each other: lon_ref = lon lat_ref = lat for i in range(len(lon_ref)): lon, lat = np.meshgrid(np.linspace(0, 360.0, 20), np.linspace(-90.0, 90.0, 20)) dx = np.cos(np.pi/180.0*lon)*np.cos(np.pi/180.0*lat)- \ np.cos(np.pi/180.0*lon_ref[i])*np.cos(np.pi/180.0*lat_ref[i]) dy = np.sin(np.pi/180.0*lon)*np.cos(np.pi/180.0*lat)- \ np.sin(np.pi/180.0*lon_ref[i])*np.cos(np.pi/180.0*lat_ref[i]) dz = np.sin(np.pi/180.0*lat) - np.sin(np.pi/180.0*lat_ref[i]) np.testing.assert_allclose(core.great_circle_distance(lon_ref[i], lat_ref[i], lon, lat), core.euclid3_to_great_circle(np.sqrt(dx**2+dy**2+dz**2)), rtol=1e-5) def test_ok_geometric(self): # Generate random data: np.random.seed(89239413) lon = 360.0*np.random.rand(50, 1) lat = 180.0*np.random.rand(50, 1) - 90.0 z = np.random.rand(50, 1) #data = np.concatenate((lon, lat, z), 1) # Generate grid: grid_lon = 360.0*np.random.rand(120, 1) grid_lat = 180.0*np.random.rand(120, 1) - 90.0 # Create ordinary kriging object: OK = OrdinaryKriging(lon, lat, z, variogram_model='linear', verbose=False, enable_plotting=False, coordinates_type='geographic') # Execute on grid: z, ss = OK.execute('grid', grid_lon, grid_lat) @unittest.skipUnless(SKLEARN_INSTALLED, "scikit-learn not installed") class TestKrige(unittest.TestCase): @staticmethod def method_and_vergiogram(): method = ['ordinary', 'universal', 'ordinary3d', 'universal3d'] variogram_model = ['linear', 'power', 'gaussian', 'spherical', 'exponential'] return product(method, variogram_model) def test_krige(self): from pykrige.rk import Krige from pykrige.rk import threed_krige from pykrige.compat import GridSearchCV # dummy data np.random.seed(1) X = np.random.randint(0, 400, size=(20, 3)).astype(float) y = 5 * np.random.rand(20) for m, v in self.method_and_vergiogram(): param_dict = {'method': [m], 'variogram_model': [v]} estimator = GridSearchCV(Krige(), param_dict, n_jobs=-1, iid=False, pre_dispatch='2*n_jobs', verbose=False, cv=5, ) # run the gridsearch if m in ['ordinary', 'universal']: estimator.fit(X=X[:, :2], y=y) else: estimator.fit(X=X, y=y) if hasattr(estimator, 'best_score_'): if m in threed_krige: assert estimator.best_score_ > -10.0 else: assert estimator.best_score_ > -3.0 if hasattr(estimator, 'cv_results_'): assert estimator.cv_results_['mean_train_score'] > 0 @unittest.skipUnless(SKLEARN_INSTALLED, "scikit-learn not installed") class TestRegressionKrige(unittest.TestCase): @staticmethod def methods(): from sklearn.svm import SVR from sklearn.linear_model import ElasticNet, Lasso from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression krige_methods = ['ordinary', 'universal'] ml_methods = [SVR(C=0.01), RandomForestRegressor(min_samples_split=5, n_estimators=50), LinearRegression(), Lasso(), ElasticNet() ] return product(ml_methods, krige_methods) def test_krige(self): from pykrige.rk import RegressionKriging from pykrige.compat import train_test_split from itertools import product np.random.seed(1) x = np.linspace(-1., 1., 100) # create a feature matrix with 5 features X = np.tile(x, reps=(5, 1)).T y = 1 + 5*X[:, 0] - 2*X[:, 1] - 2*X[:, 2] + 3*X[:, 3] + 4*X[:, 4] + \ 2*(np.random.rand(100) - 0.5) # create lat/lon array lon = np.linspace(-180., 180.0, 10) lat = np.linspace(-90., 90., 10) lon_lat = np.array(list(product(lon, lat))) X_train, X_test, y_train, y_test, lon_lat_train, lon_lat_test = \ train_test_split(X, y, lon_lat, train_size=0.7, random_state=10) for ml_model, krige_method in self.methods(): reg_kr_model = RegressionKriging(regression_model=ml_model, method=krige_method, n_closest_points=2) reg_kr_model.fit(X_train, lon_lat_train, y_train) assert reg_kr_model.score(X_test, lon_lat_test, y_test) > 0.25 def test_krige_housing(self): from pykrige.rk import RegressionKriging from pykrige.compat import train_test_split from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() # take only first 1000 p = housing['data'][:1000, :-2] x = housing['data'][:1000, -2:] target = housing['target'][:1000] p_train, p_test, y_train, y_test, x_train, x_test = \ train_test_split(p, target, x, train_size=0.7, random_state=10) for ml_model, krige_method in self.methods(): reg_kr_model = RegressionKriging(regression_model=ml_model, method=krige_method, n_closest_points=2) reg_kr_model.fit(p_train, x_train, y_train) if krige_method == 'ordinary': assert reg_kr_model.score(p_test, x_test, y_test) > 0.5 else: assert reg_kr_model.score(p_test, x_test, y_test) > 0.0 if __name__ == '__main__': unittest.main()
bsd-3-clause
ver228/tierpsy-tracker
tierpsy/features/tierpsy_features/path.py
1
13169
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 29 15:54:00 2017 @author: ajaver """ import numpy as np import cv2 import pandas as pd from scipy.interpolate import interp1d from .curvatures import curvature_grad from .postures import get_length from .helper import DataPartition, get_n_worms_estimate path_curvature_columns = ['path_curvature_body', 'path_curvature_tail', 'path_curvature_midbody', 'path_curvature_head' ] path_curvature_columns_aux = ['coord_x_body', 'coord_y_body', 'coord_x_tail', 'coord_y_tail', 'coord_x_midbody', 'coord_y_midbody', 'coord_x_head', 'coord_y_head' ] DFLT_ARGS = dict( path_step = 11, path_grad_window = 5, clip_val_body_lengths = 20, bin_size_microns = 250, bin_size_body_lengths = 0.25 ) #%% def _h_path_curvature(skeletons, body_length = None, partition_str = 'body', path_step = DFLT_ARGS['path_step'], path_grad_window = DFLT_ARGS['path_grad_window'], _is_debug = False): if body_length is None: #caculate the length if it is not given body_length = np.nanmedian(get_length(skeletons)) #clip_val = clip_val_body_lengths/body_length p_obj = DataPartition(n_segments=skeletons.shape[1]) body_coords = p_obj.apply(skeletons, partition_str, func=np.mean) xx = body_coords[:,0] yy = body_coords[:,1] tt = np.arange(body_coords.shape[0]) #empty array return if body_coords.size == 0 or np.all(np.isnan(body_coords)): return np.full_like(tt, np.nan), body_coords #interpolate nan values good = ~np.isnan(xx) x_i = xx[good] y_i = yy[good] t_i = tt[good] t_i = np.hstack([-1, t_i, body_coords.shape[0]]) x_i = np.hstack([x_i[0], x_i, x_i[-1]]) y_i = np.hstack([y_i[0], y_i, y_i[-1]]) fx = interp1d(t_i, x_i) fy = interp1d(t_i, y_i) xx_i = fx(tt) yy_i = fy(tt) # calculate the cumulative length for each segment in the curve dx = np.diff(xx_i) dy = np.diff(yy_i) dr = np.sqrt(dx * dx + dy * dy) lengths = np.cumsum(dr) lengths = np.hstack((0, lengths)) fx = interp1d(lengths, xx_i) fy = interp1d(lengths, yy_i) ft = interp1d(lengths, tt) sub_lengths = np.arange(lengths[0], lengths[-1], path_step) #there is not enough data to calculate the curvature if len(sub_lengths) <= 4*path_grad_window: return np.full(skeletons.shape[0], np.nan), body_coords xs = fx(sub_lengths) ys = fy(sub_lengths) ts = ft(sub_lengths) curve = np.vstack((xs, ys)).T curvature_r = curvature_grad(curve, points_window = path_grad_window, axis=0, is_nan_border=False) #clip values to remove regions with extremely large curvatures (typically short reversars) #curvature_r = np.clip(curvature_r, -clip_val,clip_val) ts_i = np.hstack((-1, ts, tt[-1] + 1)) c_i = np.hstack((curvature_r[0], curvature_r, curvature_r[-1])) curvature_t = interp1d(ts_i, c_i)(tt) if _is_debug: import matplotlib.pylab as plt from matplotlib.collections import LineCollection #path_curvature[np.isnan(worm_features['speed'])] = np.nan #path_curvature = np.clip(curvature_t, -0.02, 0.02) path_curvature = curvature_t curv_range = (np.nanmin(path_curvature), np.nanmax(path_curvature)) points = body_coords.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) lc = LineCollection(segments, cmap = plt.get_cmap('plasma'), norm = plt.Normalize(*curv_range)) lc.set_array(path_curvature) lc.set_linewidth(2) plt.figure(figsize=(20, 5)) plt.subplot(1,2,1) plt.gca().add_collection(lc) plt.xlim(3000, 11000) plt.ylim(3000, 11000) plt.axis('equal') plt.subplot(1,2,2) plt.plot(path_curvature) return curvature_t, body_coords def get_path_curvatures(skeletons, **argkws): path_curvatures = [] path_coords = [] body_length = np.nanmedian(get_length(skeletons)) for partition_str in ['body', 'tail', 'midbody', 'head']: path_curv, coords = \ _h_path_curvature(skeletons, body_length, partition_str = partition_str, **argkws ) path_curvatures.append(('path_curvature_' + partition_str, path_curv)) path_coords.append(('coord_x_' + partition_str, coords[...,0])) path_coords.append(('coord_y_' + partition_str, coords[...,1])) cols, dat = zip(*path_curvatures) path_curvatures_df = pd.DataFrame(np.array(dat).T, columns=cols) cols, dat = zip(*path_coords) path_coords_df = pd.DataFrame(np.array(dat).T, columns=cols) return path_curvatures_df, path_coords_df def _test_plot_cnts_maps(ventral_contour, dorsal_contour): import matplotlib.pylab as plt pix2microns = 10 x_min = np.nanmin(ventral_contour[:, :, 0]) x_max = np.nanmax(ventral_contour[:, :, 0]) y_min = np.nanmin(dorsal_contour[:, :, 1]) y_max = np.nanmax(dorsal_contour[:, :, 1]) rx = int(round((x_max - x_min)/pix2microns)) ry = int(round((y_max - y_min)/pix2microns)) size_counts = (rx + 1, ry + 1) partitions_dflt = {'head': (0, 8), 'neck': (8, 16), 'midbody': (16, 33), 'hips': (33, 41), 'tail': (41, 49), 'all': (0, 49), 'body': (8, 41) } all_cnts = {} for part, rr in partitions_dflt.items(): p_vc = ventral_contour[:, rr[0]:rr[1], :].astype(np.float32) p_dc = dorsal_contour[:, rr[0]:rr[1], :].astype(np.float32) h = np.hstack((p_vc[:, ], p_dc[:, ::-1, :], p_vc[:, 0, :][:, None, :])) cnts = [np.round((x-np.array((x_min, y_min))[None, :])/pix2microns) for x in h] counts = np.zeros(size_counts, np.float32) for ii, cnt in enumerate(cnts): if np.any(np.isnan(cnt)): continue cc = np.zeros(size_counts, np.float32) cc = cv2.drawContours(cc, [cnt[:, None, :].astype(np.int)], contourIdx=-1, thickness=-1, color=1) counts += cc plt.figure() plt.imshow(counts, interpolation='none') plt.title(part) all_cnts[part] = counts print(part) #%% def _get_path_coverage_feats(timeseries_data, bin_size_microns): #find the columns that correspond to curvature_coords cols = [x for x in timeseries_data if x in path_curvature_columns_aux] path_coords_df = timeseries_data[cols] bin_vals = ((path_coords_df - path_coords_df.mean())/bin_size_microns).round() try: bin_vals = bin_vals.fillna(method='ffill').fillna(method='bfill').astype(np.int) except ValueError: #likely full of nan's return empty return {} path_coverage_feats = {} # loop over worm body parts for b_part in set(x.rpartition('_')[-1] for x in bin_vals.columns): # get the binned coordinates of the given body part # (the coordinates defining in which square of the grid the worm body part is) dat = bin_vals[['coord_x_' + b_part,'coord_y_' + b_part]] dat.columns = ['X', 'Y'] # groupby individual grid squares gg = dat.groupby(["X", "Y"]) #here i am counting the number of times any worm enter to a given grid # count the number of worm occurancies in each grid square throughout the video grid_counts = gg.size().reset_index(name="Counts") #cc = pd.crosstab(dat['X'], dat['Y']) #now i want to assign a label to each grid each (worm_index, timestamp) ind_bins = np.full(dat.shape[0], -1) for ii, (k, vals) in enumerate(gg): ind_bins[vals.index] = ii df = timeseries_data[['worm_index']].copy() df['ind_bins'] = ind_bins #now i want to see the duration a given worm spend in each grid grid_durations = [] for w, vec in df.groupby('worm_index'): xx = vec['ind_bins'].values xr = np.insert(xx[1:], xx.size-1, -1) b_flags = xr!=xx #b_id = xx[b_flags] b_s = np.diff(np.insert(np.where(b_flags)[0], 0, -1)) grid_durations.append(b_s) if grid_durations: grid_durations = np.concatenate(grid_durations) else: grid_durations = np.zeros(0) path_coverage_feats[b_part] = (grid_counts, grid_durations) return path_coverage_feats def get_path_extent_stats(timeseries_data, fps, is_normalized = False): if is_normalized: body_length = timeseries_data['length'].median() bin_size_microns = DFLT_ARGS['bin_size_body_lengths']*body_length area_per_grid = 1 is_norm_str = '_norm' else: bin_size_microns = DFLT_ARGS['bin_size_microns'] is_norm_str = '' area_per_grid = bin_size_microns**2 path_coverage_feats = _get_path_coverage_feats(timeseries_data, bin_size_microns) Q = [50, 95] grid_stats = [] for b_part, (grid_counts, grid_durations) in path_coverage_feats.items(): if grid_durations.size > 0: grid_transit_time = np.percentile(grid_durations, Q)/fps else: grid_transit_time = (np.nan, np.nan) if grid_counts['Counts'].size > 0: path_coverage = grid_counts['Counts'].size*area_per_grid path_density = np.percentile(grid_counts['Counts'], Q)/grid_counts['Counts'].sum() else: path_coverage = np.nan path_density = (np.nan, np.nan) posfix = b_part + is_norm_str grid_stats += [ (path_coverage, 'path_coverage_' + posfix), (path_density[0], 'path_density_{}_{}th'.format(posfix, Q[0])), (path_density[1], 'path_density_{}_{}th'.format(posfix, Q[1])), (grid_transit_time[0], 'path_transit_time_{}_{}th'.format(posfix, Q[0])), (grid_transit_time[1], 'path_transit_time_{}_{}th'.format(posfix, Q[1])), ] grid_stats_s = pd.Series(*list(zip(*grid_stats))) return grid_stats_s #%% if __name__ == '__main__': import os import tables #%% #_test_plot_cnts_maps(ventral_contour, dorsal_contour) base_dir = '/Users/ajaver/OneDrive - Imperial College London/tierpsy_features/test_data/multiworm' skeletons_file = os.path.join(base_dir, 'MY23_worms5_food1-10_Set4_Pos5_Ch4_29062017_140148_skeletons.hdf5') features_file = skeletons_file.replace('_skeletons.hdf5', '_featuresN.hdf5') #features_file = '/Users/ajaver/OneDrive - Imperial College London/tierpsy_features/test_data/multiworm/MY16_worms5_food1-10_Set5_Pos4_Ch1_02062017_131004_featuresN.hdf5' features_file = '/Users/ajaver/OneDrive - Imperial College London/tierpsy_features/test_data/multiworm/170817_matdeve_exp7co1_12_Set0_Pos0_Ch1_17082017_140001_featuresN.hdf5' with pd.HDFStore(features_file, 'r') as fid: blob_features = fid['/blob_features'] trajectories_data = fid['/trajectories_data'] timeseries_data = fid['/timeseries_data'] fps = fid.get_storer('/trajectories_data').attrs['fps'] good = trajectories_data['skeleton_id']>=0 trajectories_data = trajectories_data[good] blob_features = blob_features[good] if False: trajectories_data_g = trajectories_data.groupby('worm_index_joined') for worm_index in trajectories_data_g.groups.keys(): worm_index = 4#695 worm_data = trajectories_data_g.get_group(worm_index) skel_id = worm_data['skeleton_id'].values with tables.File(features_file, 'r') as fid: skeletons = fid.get_node('/coordinates/skeletons')[skel_id, :, :] worm_features = timeseries_data.loc[skel_id] path_curvatures_df, path_coords_df = get_path_curvatures(skeletons, _is_debug=True) break #%% get_path_extent_stats(timeseries_data)
mit
jstoxrocky/statsmodels
statsmodels/sandbox/regression/tests/test_gmm.py
8
24983
# -*- coding: utf-8 -*- """ Created on Fri Oct 04 13:19:01 2013 Author: Josef Perktold """ from __future__ import print_function from statsmodels.compat.python import lrange, lmap import numpy as np from numpy.testing import assert_allclose, assert_almost_equal, assert_equal from statsmodels import iolib from statsmodels.tools.tools import add_constant from statsmodels.regression.linear_model import OLS import statsmodels.sandbox.regression.gmm as gmm def get_griliches76_data(): import os curdir = os.path.split(__file__)[0] path = os.path.join(curdir, 'griliches76.dta') griliches76_data = iolib.genfromdta(path, missing_flt=np.NaN, pandas=True) # create year dummies years = griliches76_data['year'].unique() N = griliches76_data.shape[0] for yr in years: griliches76_data['D_%i' %yr] = np.zeros(N) for i in range(N): if griliches76_data.ix[i, 'year'] == yr: griliches76_data.ix[i, 'D_%i' %yr] = 1 else: pass griliches76_data['const'] = 1 X = add_constant(griliches76_data[['s', 'iq', 'expr', 'tenure', 'rns', 'smsa', 'D_67', 'D_68', 'D_69', 'D_70', 'D_71', 'D_73']], prepend=True) # for R comparison #prepend=False) # for Stata comparison Z = add_constant(griliches76_data[['expr', 'tenure', 'rns', 'smsa', \ 'D_67', 'D_68', 'D_69', 'D_70', 'D_71', 'D_73', 'med', 'kww', 'age', 'mrt']]) Y = griliches76_data['lw'] return Y, X, Z # use module global to load only once yg_df, xg_df, zg_df = get_griliches76_data() endog = np.asarray(yg_df, dtype=float) # TODO: why is yg_df float32 exog, instrument = lmap(np.asarray, [xg_df, zg_df]) assert exog.dtype == np.float64 assert instrument.dtype == np.float64 # from R #----------------- varnames = np.array(["(Intercept)", "s", "iq", "expr", "tenure", "rns", "smsa", "D_67", "D_68", "D_69", "D_70", "D_71", "D_73"]) params = np.array([ 4.03350989, 0.17242531, -0.00909883, 0.04928949, 0.04221709, -0.10179345, 0.12611095, -0.05961711, 0.04867956, 0.15281763, 0.17443605, 0.09166597, 0.09323977]) bse = np.array([ 0.31816162, 0.02091823, 0.00474527, 0.00822543, 0.00891969, 0.03447337, 0.03119615, 0.05577582, 0.05246796, 0.05201092, 0.06027671, 0.05461436, 0.05767865]) tvalues = np.array([ 12.6775501, 8.2428242, -1.9174531, 5.9923305, 4.7330205, -2.9528144, 4.0425165, -1.0688701, 0.9277959, 2.9381834, 2.8939212, 1.6784225, 1.6165385]) pvalues = np.array([ 1.72360000e-33, 7.57025400e-16, 5.55625000e-02, 3.21996700e-09, 2.64739100e-06, 3.24794100e-03, 5.83809900e-05, 2.85474400e-01, 3.53813900e-01, 3.40336100e-03, 3.91575100e-03, 9.36840200e-02, 1.06401300e-01]) #----------------- def test_iv2sls_r(): mod = gmm.IV2SLS(endog, exog, instrument) res = mod.fit() # print(res.params) # print(res.params - params) n, k = exog.shape assert_allclose(res.params, params, rtol=1e-7, atol=1e-9) # TODO: check df correction #assert_allclose(res.bse * np.sqrt((n - k) / (n - k - 1.)), bse, assert_allclose(res.bse, bse, rtol=0, atol=3e-7) def test_ivgmm0_r(): n, k = exog.shape nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(np.ones(exog.shape[1], float), maxiter=0, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}) assert_allclose(res.params, params, rtol=1e-4, atol=1e-4) # TODO : res.bse and bse are not the same, rtol=0.09 is large in this case #res.bse is still robust?, bse is not a sandwich ? assert_allclose(res.bse, bse, rtol=0.09, atol=0) score = res.model.score(res.params, w0) assert_allclose(score, np.zeros(score.shape), rtol=0, atol=5e-6) # atol=1e-8) ?? def test_ivgmm1_stata(): # copied constant to the beginning params_stata = np.array( [ 4.0335099 , 0.17242531, -0.00909883, 0.04928949, 0.04221709, -0.10179345, 0.12611095, -0.05961711, 0.04867956, 0.15281763, 0.17443605, 0.09166597, 0.09323976]) # robust bse with gmm onestep bse_stata = np.array( [ 0.33503289, 0.02073947, 0.00488624, 0.0080498 , 0.00946363, 0.03371053, 0.03081138, 0.05171372, 0.04981322, 0.0479285 , 0.06112515, 0.0554618 , 0.06084901]) n, k = exog.shape nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs w0 = np.linalg.inv(w0inv) start = OLS(endog, exog).fit().params mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}) # move constant to end for Stata idx = lrange(len(params)) idx = idx[1:] + idx[:1] exog_st = exog[:, idx] class TestGMMOLS(object): @classmethod def setup_class(self): exog = exog_st # with const at end res_ols = OLS(endog, exog).fit() # use exog as instrument nobs, k_instr = exog.shape w0inv = np.dot(exog.T, exog) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, exog) res = mod.fit(np.ones(exog.shape[1], float), maxiter=0, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}) self.res1 = res self.res2 = res_ols def test_basic(self): res1, res2 = self.res1, self.res2 # test both absolute and relative difference assert_allclose(res1.params, res2.params, rtol=5e-4, atol=0) assert_allclose(res1.params, res2.params, rtol=0, atol=1e-5) n = res1.model.exog.shape[0] dffac = 1#np.sqrt((n - 1.) / n) # currently different df in cov calculation assert_allclose(res1.bse * dffac, res2.HC0_se, rtol=5e-6, atol=0) assert_allclose(res1.bse * dffac, res2.HC0_se, rtol=0, atol=1e-7) def test_other(self): res1, res2 = self.res1, self.res2 class CheckGMM(object): params_tol = [5e-6, 5e-6] bse_tol = [5e-7, 5e-7] def test_basic(self): res1, res2 = self.res1, self.res2 # test both absolute and relative difference rtol, atol = self.params_tol assert_allclose(res1.params, res2.params, rtol=rtol, atol=0) assert_allclose(res1.params, res2.params, rtol=0, atol=atol) n = res1.model.exog.shape[0] dffac = 1 #np.sqrt((n - 1.) / n) # currently different df in cov calculation rtol, atol = self.bse_tol assert_allclose(res1.bse * dffac, res2.bse, rtol=rtol, atol=0) assert_allclose(res1.bse * dffac, res2.bse, rtol=0, atol=atol) #skip temporarily def _est_other(self): res1, res2 = self.res1, self.res2 assert_allclose(res1.q, res2.Q, rtol=5e-6, atol=0) assert_allclose(res1.jval, res2.J, rtol=5e-5, atol=0) class TestGMMSt1(CheckGMM): @classmethod def setup_class(self): #self.bse_tol = [5e-7, 5e-7] # compare to Stata default options, iterative GMM exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res10 = mod.fit(start, maxiter=10, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}) self.res1 = res10 from .results_gmm_griliches_iter import results self.res2 = results class TestGMMStTwostep(CheckGMM): #compares has_optimal_weights=True with Stata's has_optimal_weights=False @classmethod def setup_class(self): # compare to Stata default options, twostep GMM self.params_tol = [5e-5, 5e-6] self.bse_tol = [5e-6, 5e-7] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res10 = mod.fit(start, maxiter=2, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}) self.res1 = res10 from .results_gmm_griliches import results_twostep as results self.res2 = results class TestGMMStTwostepNO(CheckGMM): #with Stata default `has_optimal_weights=False` @classmethod def setup_class(self): # compare to Stata default options, twostep GMM self.params_tol = [5e-5, 5e-6] self.bse_tol = [1e-6, 5e-5] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res10 = mod.fit(start, maxiter=2, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res10 from .results_gmm_griliches import results_twostep as results self.res2 = results class TestGMMStOnestep(CheckGMM): @classmethod def setup_class(self): # compare to Stata default options, onestep GMM self.params_tol = [5e-4, 5e-5] self.bse_tol = [7e-3, 5e-4] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=0, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}) self.res1 = res from .results_gmm_griliches import results_onestep as results self.res2 = results def test_bse_other(self): res1, res2 = self.res1, self.res2 # try other versions for bse, # TODO: next two produce the same as before (looks like) bse = np.sqrt(np.diag((res1.cov_params(has_optimal_weights=False)))) #weights=res1.weights)))) # TODO: doesn't look different #assert_allclose(res1.bse, res2.bse, rtol=5e-06, atol=0) #nobs = instrument.shape[0] #w0inv = np.dot(instrument.T, instrument) / nobs q = self.res1.model.gmmobjective(self.res1.params, np.linalg.inv(self.res1.weights)) #assert_allclose(q, res2.Q, rtol=5e-6, atol=0) class TestGMMStOnestepNO(CheckGMM): # matches Stats's defaults wargs={'centered':False}, has_optimal_weights=False @classmethod def setup_class(self): # compare to Stata default options, onestep GMM self.params_tol = [1e-5, 1e-6] self.bse_tol = [5e-6, 5e-7] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=0, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res from .results_gmm_griliches import results_onestep as results self.res2 = results class TestGMMStOneiter(CheckGMM): @classmethod def setup_class(self): # compare to Stata default options, onestep GMM # this uses maxiter=1, one iteration in loop self.params_tol = [5e-4, 5e-5] self.bse_tol = [7e-3, 5e-4] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}) self.res1 = res from .results_gmm_griliches import results_onestep as results self.res2 = results def test_bse_other(self): res1, res2 = self.res1, self.res2 moms = res1.model.momcond(res1.params) w = res1.model.calc_weightmatrix(moms) # try other versions for bse, # TODO: next two produce the same as before (looks like) bse = np.sqrt(np.diag((res1.cov_params(has_optimal_weights=False, weights=res1.weights)))) # TODO: doesn't look different #assert_allclose(res1.bse, res2.bse, rtol=5e-06, atol=0) bse = np.sqrt(np.diag((res1.cov_params(has_optimal_weights=False, #use_weights=True #weights=w )))) #assert_allclose(res1.bse, res2.bse, rtol=5e-06, atol=0) #This doesn't replicate Stata oneway either nobs = instrument.shape[0] w0inv = np.dot(instrument.T, instrument) / nobs q = self.res1.model.gmmobjective(self.res1.params, w)#self.res1.weights) #assert_allclose(q, res2.Q, rtol=5e-6, atol=0) class TestGMMStOneiterNO(CheckGMM): @classmethod def setup_class(self): # compare to Stata default options, onestep GMM # this uses maxiter=1, one iteration in loop self.params_tol = [1e-5, 1e-6] self.bse_tol = [5e-6, 5e-7] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res from .results_gmm_griliches import results_onestep as results self.res2 = results #------------ Crosscheck subclasses class TestGMMStOneiterNO_Linear(CheckGMM): @classmethod def setup_class(self): # compare to Stata default options, onestep GMM # this uses maxiter=1, one iteration in loop self.params_tol = [5e-9, 1e-9] self.bse_tol = [5e-10, 1e-10] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.LinearIVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res3 = res from .results_gmm_griliches import results_onestep as results self.res2 = results class TestGMMStOneiterNO_Nonlinear(CheckGMM): @classmethod def setup_class(self): # compare to Stata default options, onestep GMM # this uses maxiter=1, one iteration in loop self.params_tol = [5e-5, 5e-6] self.bse_tol = [5e-6, 1e-1] exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) def func(params, exog): return np.dot(exog, params) mod = gmm.NonlinearIVGMM(endog, exog, instrument, func) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-8, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res1 = res mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, wargs={'centered':False}, has_optimal_weights=False) self.res3 = res from .results_gmm_griliches import results_onestep as results self.res2 = results def test_score(self): params = self.res1.params * 1.1 weights = self.res1.weights sc1 = self.res1.model.score(params, weights) sc2 = super(self.res1.model.__class__, self.res1.model).score(params, weights) assert_allclose(sc1, sc2, rtol=1e-6, atol=0) assert_allclose(sc1, sc2, rtol=0, atol=1e-7) # score at optimum sc1 = self.res1.model.score(self.res1.params, weights) assert_allclose(sc1, np.zeros(len(params)), rtol=0, atol=1e-8) class TestGMMStOneiterOLS_Linear(CheckGMM): @classmethod def setup_class(self): # replicating OLS by GMM - high agreement self.params_tol = [1e-11, 1e-12] self.bse_tol = [1e-13, 1e-13] exog = exog_st # with const at end res_ols = OLS(endog, exog).fit() #Note: start is irrelevant but required start = np.ones(len(res_ols.params)) nobs, k_instr = instrument.shape w0inv = np.dot(exog.T, exog) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.LinearIVGMM(endog, exog, exog) res = mod.fit(start, maxiter=0, inv_weights=w0inv, #optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}, optim_args={'disp': 0}, weights_method='iid', wargs={'centered':False, 'ddof':'k_params'}, has_optimal_weights=True) self.res1 = res #from .results_gmm_griliches import results_onestep as results #self.res2 = results self.res2 = res_ols #------------------ class TestGMMSt2(object): # this looks like an old version, trying out different comparisons # of options with Stats @classmethod def setup_class(self): # compare to Stata default options, iterative GMM exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape w0inv = np.dot(instrument.T, instrument) / nobs #w0 = np.linalg.inv(w0inv) mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=2, inv_weights=w0inv, wargs={'ddof':0, 'centered':False}, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}) self.res1 = res from .results_ivreg2_griliches import results_gmm2s_robust as results self.res2 = results # TODO: remove after testing, compare bse from 1 iteration # see test_basic mod = gmm.IVGMM(endog, exog, instrument) res = mod.fit(start, maxiter=1, inv_weights=w0inv, wargs={'ddof':0, 'centered':False}, optim_method='bfgs', optim_args={'gtol':1e-6, 'disp': 0}) self.res3 = res def test_basic(self): res1, res2 = self.res1, self.res2 # test both absolute and relative difference assert_allclose(res1.params, res2.params, rtol=5e-05, atol=0) assert_allclose(res1.params, res2.params, rtol=0, atol=5e-06) n = res1.model.exog.shape[0] # TODO: check df correction np.sqrt(745./758 )*res1.bse matches better dffact = np.sqrt(745. / 758 ) assert_allclose(res1.bse * dffact, res2.bse, rtol=5e-03, atol=0) assert_allclose(res1.bse * dffact, res2.bse, rtol=0, atol=5e-03) # try other versions for bse, # TODO: next two produce the same as before (looks like) bse = np.sqrt(np.diag((res1.cov_params(has_optimal_weights=True, weights=res1.weights)))) assert_allclose(res1.bse, res2.bse, rtol=5e-01, atol=0) bse = np.sqrt(np.diag((res1.cov_params(has_optimal_weights=True, weights=res1.weights, use_weights=True)))) assert_allclose(res1.bse, res2.bse, rtol=5e-02, atol=0) # TODO: resolve this # try bse from previous step, is closer to Stata # guess: Stata ivreg2 doesn't calc for bse update after final iteration # need better test case, bse difference is close to numerical optimization precision assert_allclose(self.res3.bse, res2.bse, rtol=5e-05, atol=0) assert_allclose(self.res3.bse, res2.bse, rtol=0, atol=5e-06) # TODO; tvalues are not available yet, no inheritance #assert_allclose(res1.tvalues, res2.tvalues, rtol=5e-10, atol=0) class CheckIV2SLS(object): def test_basic(self): res1, res2 = self.res1, self.res2 # test both absolute and relative difference assert_allclose(res1.params, res2.params, rtol=1e-9, atol=0) assert_allclose(res1.params, res2.params, rtol=0, atol=1e-10) n = res1.model.exog.shape[0] assert_allclose(res1.bse, res2.bse, rtol=1e-10, atol=0) assert_allclose(res1.bse, res2.bse, rtol=0, atol=1e-11) assert_allclose(res1.tvalues, res2.tvalues, rtol=5e-10, atol=0) def test_other(self): res1, res2 = self.res1, self.res2 assert_allclose(res1.rsquared, res2.r2, rtol=1e-7, atol=0) assert_allclose(res1.rsquared_adj, res2.r2_a, rtol=1e-7, atol=0) # TODO: why is fvalue different, IV2SLS uses inherited linear assert_allclose(res1.fvalue, res2.F, rtol=1e-10, atol=0) assert_allclose(res1.f_pvalue, res2.Fp, rtol=1e-8, atol=0) assert_allclose(np.sqrt(res1.mse_resid), res2.rmse, rtol=1e-10, atol=0) assert_allclose(res1.ssr, res2.rss, rtol=1e-10, atol=0) assert_allclose(res1.uncentered_tss, res2.yy, rtol=1e-10, atol=0) assert_allclose(res1.centered_tss, res2.yyc, rtol=1e-10, atol=0) assert_allclose(res1.ess, res2.mss, rtol=1e-9, atol=0) assert_equal(res1.df_model, res2.df_m) assert_equal(res1.df_resid, res2.df_r) # TODO: llf raise NotImplementedError #assert_allclose(res1.llf, res2.ll, rtol=1e-10, atol=0) def test_hypothesis(self): res1, res2 = self.res1, self.res2 restriction = np.eye(len(res1.params)) res_t = res1.t_test(restriction) assert_allclose(res_t.tvalue, res1.tvalues, rtol=1e-12, atol=0) assert_allclose(res_t.pvalue, res1.pvalues, rtol=1e-12, atol=0) res_f = res1.f_test(restriction[:-1]) # without constant # TODO res1.fvalue problem, see issue #1104 assert_allclose(res_f.fvalue, res1.fvalue, rtol=1e-12, atol=0) assert_allclose(res_f.pvalue, res1.f_pvalue, rtol=1e-12, atol=0) assert_allclose(res_f.fvalue, res2.F, rtol=1e-10, atol=0) assert_allclose(res_f.pvalue, res2.Fp, rtol=1e-08, atol=0) def test_hausman(self): res1, res2 = self.res1, self.res2 hausm = res1.spec_hausman() # hausman uses se2 = ssr / nobs, no df correction assert_allclose(hausm[0], res2.hausman['DWH'], rtol=1e-11, atol=0) assert_allclose(hausm[1], res2.hausman['DWHp'], rtol=1e-10, atol=1e-25) def test_smoke(self): res1 = self.res1 res1.summary() class TestIV2SLSSt1(CheckIV2SLS): @classmethod def setup_class(self): exog = exog_st # with const at end start = OLS(endog, exog).fit().params nobs, k_instr = instrument.shape mod = gmm.IV2SLS(endog, exog, instrument) res = mod.fit() self.res1 = res from .results_ivreg2_griliches import results_small as results self.res2 = results
bsd-3-clause
ishalyminov/memn2n
babi_plus_dialog_single_legacy.py
1
7822
"""Example running MemN2N on a single bAbI task. Download tasks from facebook.ai/babi """ from __future__ import absolute_import from __future__ import print_function import random from itertools import chain from six.moves import range, reduce import logging from sklearn import metrics import tensorflow as tf import numpy as np from dialog_data_utils import ( vectorize_data_dialog, get_candidates_list, load_task, vectorize_answers ) from memn2n import MemN2N logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) logger = logging.getLogger(__file__) tf.flags.DEFINE_float( "learning_rate", 0.01, "Learning rate for Adam Optimizer." ) tf.flags.DEFINE_float("epsilon", 1e-8, "Epsilon value for Adam Optimizer.") tf.flags.DEFINE_float("max_grad_norm", 40.0, "Clip gradients to this norm.") tf.flags.DEFINE_integer( "evaluation_interval", 1, "Evaluate and print results every x epochs" ) tf.flags.DEFINE_integer("batch_size", 8, "Batch size for training.") tf.flags.DEFINE_integer("hops", 1, "Number of hops in the Memory Network.") tf.flags.DEFINE_integer("epochs", 3, "Number of epochs to train for.") tf.flags.DEFINE_integer( "embedding_size", 128, "Embedding size for embedding matrices." ) tf.flags.DEFINE_integer("memory_size", 64, "Maximum size of memory.") tf.flags.DEFINE_integer("task_id", 1, "bAbI task id, 1 <= id <= 6") tf.flags.DEFINE_integer("random_state", 273, "Random state.") tf.flags.DEFINE_string( "data_dir", "../babi_tools/babi_plus/", "Directory containing bAbI tasks" ) tf.flags.DEFINE_string( "data_dir_plus", "../babi_tools/babi_plus/", "Directory containing bAbI+ tasks" ) FLAGS = tf.flags.FLAGS random.seed(FLAGS.random_state) np.random.seed(FLAGS.random_state) print("Started Task:", FLAGS.task_id) # task data train_babi, dev_babi, test_babi, test_oov_babi = load_task(FLAGS.data_dir, FLAGS.task_id) train_plus, dev_plus, test_plus, test_oov_plus = load_task(FLAGS.data_dir_plus, FLAGS.task_id) all_dialogues_babi = train_babi + dev_babi + test_babi + test_oov_babi all_dialogues_babi_plus = train_plus + dev_plus + test_plus + test_oov_plus data = reduce( lambda x, y: x + y, all_dialogues_babi + all_dialogues_babi_plus, [] ) max_story_size = max(map(len, (s for s, _, _ in data))) mean_story_size = int(np.mean([len(s) for s, _, _ in data])) sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data))) + 2 query_size = max(map(len, (q for _, q, _ in data))) memory_size = min(FLAGS.memory_size, max_story_size) answer_candidates = get_candidates_list(FLAGS.data_dir) vocab = reduce( lambda x, y: x | y, (set(list(chain.from_iterable(s)) + q + a) for s, q, a in data) ) vocab |= reduce( lambda x, y: x | y, [set(answer.split()) for answer in answer_candidates] ) vocab = sorted(vocab) word_idx = {c: i + 1 for i, c in enumerate(vocab)} answer_idx = { candidate: i + 1 for i, candidate in enumerate(answer_candidates) } vocab_size = len(word_idx) + 1 # +1 for nil word answer_vocab_size = len(answer_idx) + 1 sentence_size = max(query_size, sentence_size) # for the position answers_vectorized = vectorize_answers(answer_candidates, word_idx, sentence_size) print("Longest sentence length", sentence_size) print("Longest story length", max_story_size) print("Average story length", mean_story_size) # in_train_sqa - trainset # in_train_eval_sqa - trainset for evaluation (may be API calls only) # # in_test_sqa - testset for evaluation def train_model(in_model, in_train_sqa, in_train_eval_sqa, in_test_sqa, in_batches): best_train_accuracy, best_test_accuracy = 0.0, 0.0 for t in range(1, FLAGS.epochs+1): s_train, q_train, a_train = in_train_sqa s_train_eval, q_train_eval, a_train_eval = in_train_eval_sqa s_test, q_test, a_test = in_test_sqa train_labels = np.argmax(a_train, axis=1) train_eval_labels = np.argmax(a_train_eval, axis=1) test_labels = np.argmax(a_test, axis=1) np.random.shuffle(in_batches) total_cost = 0.0 for start, end in in_batches: s = s_train[start:end] q = q_train[start:end] a = a_train[start:end] # back-propagating each batch cost_t = in_model.batch_fit(s, q, a) total_cost += cost_t if t % FLAGS.evaluation_interval == 0: # evaluate on the whole trainset train_preds = in_model.predict(s_train_eval, q_train_eval) train_acc = metrics.accuracy_score( train_preds, train_eval_labels ) # evaluating on the whole testset test_preds = in_model.predict(s_test, q_test) test_acc = metrics.accuracy_score( test_preds, test_labels ) logger.info('-----------------------') logger.info('Epoch:\t{}'.format(t)) logger.info('Total Cost:\t{}'.format(total_cost)) logger.info('Training Accuracy:\t{}'.format(train_acc)) logger.info('Testing Accuracy:\t{}'.format(test_acc)) logger.info('-----------------------') if best_test_accuracy < test_acc: best_train_accuracy, best_test_accuracy = train_acc, test_acc return best_train_accuracy, best_test_accuracy def main(): dialogues_train = map(lambda x: x, train_babi) dialogues_train_eval = map(lambda x: [x[-1]], train_babi) # testing only on API calls? dialogues_test = map(lambda x: [x[-1]], test_plus) data_train = reduce(lambda x, y: x + y, dialogues_train, []) data_train_eval = reduce(lambda x, y: x + y, dialogues_train_eval, []) data_test = reduce(lambda x, y: x + y, dialogues_test, []) train_s, train_q, train_a = vectorize_data_dialog( data_train, word_idx, answer_idx, sentence_size, memory_size ) train_eval_s, train_eval_q, train_eval_a = vectorize_data_dialog( data_train_eval, word_idx, answer_idx, sentence_size, memory_size ) test_s, test_q, test_a = vectorize_data_dialog( data_test, word_idx, answer_idx, sentence_size, memory_size ) print("Training Size (dialogues)", len(dialogues_train)) print("Training/Evaluation Size (dialogues)", len(dialogues_train_eval)) print("Testing Size (dialogues)", len(dialogues_test)) print("Training Size (stories)", len(data_train)) print("Training/Evaluation Size (stories)", len(data_train_eval)) print("Testing Size (stories)", len(data_test)) tf.set_random_seed(FLAGS.random_state) batch_size = FLAGS.batch_size optimizer = tf.train.GradientDescentOptimizer( learning_rate=FLAGS.learning_rate ) batches = zip( range(0, len(data_train) - batch_size, batch_size), range(batch_size, len(data_train), batch_size) ) batches = [(start, end) for start, end in batches] with tf.Session() as sess: model = MemN2N( batch_size, vocab_size, sentence_size, memory_size, FLAGS.embedding_size, answers_vectorized, session=sess, hops=FLAGS.hops, max_grad_norm=FLAGS.max_grad_norm, optimizer=optimizer ) best_accuracy_per_epoch = train_model( model, (train_s, train_q, train_a), (train_eval_s, train_eval_q, train_eval_a), (test_s, test_q, test_a), batches ) return best_accuracy_per_epoch if __name__ == '__main__': accuracies = main() print ('train: {0:.3f}, test: {1:.3f}'.format(*accuracies))
mit
e-mission/e-mission-server
emission/analysis/intake/segmentation/trip_segmentation_methods/dwell_segmentation_time_filter.py
2
16913
from __future__ import division from __future__ import unicode_literals from __future__ import print_function from __future__ import absolute_import # Standard imports from future import standard_library standard_library.install_aliases() from builtins import str from builtins import * from past.utils import old_div import logging import attrdict as ad import numpy as np import pandas as pd import datetime as pydt # Our imports import emission.analysis.point_features as pf import emission.analysis.intake.segmentation.trip_segmentation as eaist import emission.core.wrapper.location as ecwl import emission.analysis.intake.segmentation.restart_checking as eaisr class DwellSegmentationTimeFilter(eaist.TripSegmentationMethod): def __init__(self, time_threshold, point_threshold, distance_threshold): """ Determines segmentation points for points that were generated using a time filter (i.e. report points every n seconds). This will *not* work for points generated using a distance filter because it expects to have a cluster of points to detect the trip end, and with a distance filter, we will not get updates while we are still. At least on android, we can get updates at a different frequency than the "n" specified above. In particular: a) we can get updates more frequently than "n" if there are other apps that are requesting updates frequently - for example, while using a routing app. b) we can get updates less frequently than "n" if there are bad/low accuracy points that are filtered out. So we use a combination of a time filter and a "number of points" filter to detect the trip end. The time_threshold indicates the number of seconds that we need to be still before a trip end is detected. The point_threshold indicates the number of prior points (after filtering) that we need to be still for before a trip end is detected The distance_threshold indicates the radius of the circle used to detect that we are still. If all the points within the time_threshold AND all the points within the point_threshold are within the distance_threshold of each other, then we are still. """ self.time_threshold = time_threshold self.point_threshold = point_threshold self.distance_threshold = distance_threshold def segment_into_trips(self, timeseries, time_query): """ Examines the timeseries database for a specific range and returns the segmentation points. Note that the input is the entire timeseries and the time range. This allows algorithms to use whatever combination of data that they want from the sensor streams in order to determine the segmentation points. """ filtered_points_pre_ts_diff_df = timeseries.get_data_df("background/filtered_location", time_query) # Sometimes, we can get bogus points because data.ts and # metadata.write_ts are off by a lot. If we don't do this, we end up # appearing to travel back in time # https://github.com/e-mission/e-mission-server/issues/457 filtered_points_df = filtered_points_pre_ts_diff_df[(filtered_points_pre_ts_diff_df.metadata_write_ts - filtered_points_pre_ts_diff_df.ts) < 1000] filtered_points_df.reset_index(inplace=True) transition_df = timeseries.get_data_df("statemachine/transition", time_query) if len(transition_df) > 0: logging.debug("transition_df = %s" % transition_df[["fmt_time", "transition"]]) else: logging.debug("no transitions found. This can happen for continuous sensing") self.last_ts_processed = None logging.info("Last ts processed = %s" % self.last_ts_processed) segmentation_points = [] last_trip_end_point = None curr_trip_start_point = None just_ended = True prevPoint = None for idx, row in filtered_points_df.iterrows(): currPoint = ad.AttrDict(row) currPoint.update({"idx": idx}) logging.debug("-" * 30 + str(currPoint.fmt_time) + "-" * 30) if curr_trip_start_point is None: logging.debug("Appending currPoint because the current start point is None") # segmentation_points.append(currPoint) if just_ended: if self.continue_just_ended(idx, currPoint, filtered_points_df): # We have "processed" the currPoint by deciding to glom it self.last_ts_processed = currPoint.metadata_write_ts continue # else: sel_point = currPoint logging.debug("Setting new trip start point %s with idx %s" % (sel_point, sel_point.idx)) curr_trip_start_point = sel_point just_ended = False last5MinsPoints_df = filtered_points_df[np.logical_and( np.logical_and( filtered_points_df.ts > currPoint.ts - self.time_threshold, filtered_points_df.ts < currPoint.ts), filtered_points_df.ts >= curr_trip_start_point.ts)] # Using .loc here causes problems if we have filtered out some points and so the index is non-consecutive. # Using .iloc just ends up including points after this one. # So we reset_index upstream and use it here. # We are going to use the last 8 points for now. # TODO: Change this back to last 10 points once we normalize phone and this last10Points_df = filtered_points_df.iloc[max(idx-self.point_threshold, curr_trip_start_point.idx):idx+1] distanceToLast = lambda row: pf.calDistance(ad.AttrDict(row), currPoint) timeToLast = lambda row: currPoint.ts - ad.AttrDict(row).ts last5MinsDistances = last5MinsPoints_df.apply(distanceToLast, axis=1) logging.debug("last5MinsDistances = %s with length %d" % (last5MinsDistances.to_numpy(), len(last5MinsDistances))) last10PointsDistances = last10Points_df.apply(distanceToLast, axis=1) logging.debug("last10PointsDistances = %s with length %d, shape %s" % (last10PointsDistances.to_numpy(), len(last10PointsDistances), last10PointsDistances.shape)) # Fix for https://github.com/e-mission/e-mission-server/issues/348 last5MinTimes = last5MinsPoints_df.apply(timeToLast, axis=1) logging.debug("len(last10PointsDistances) = %d, len(last5MinsDistances) = %d" % (len(last10PointsDistances), len(last5MinsDistances))) logging.debug("last5MinsTimes.max() = %s, time_threshold = %s" % (last5MinTimes.max() if len(last5MinTimes) > 0 else np.NaN, self.time_threshold)) if self.has_trip_ended(prevPoint, currPoint, timeseries, last10PointsDistances, last5MinsDistances, last5MinTimes): (ended_before_this, last_trip_end_point) = self.get_last_trip_end_point(filtered_points_df, last10Points_df, last5MinsPoints_df) segmentation_points.append((curr_trip_start_point, last_trip_end_point)) logging.info("Found trip end at %s" % last_trip_end_point.fmt_time) # We have processed everything up to the trip end by marking it as a completed trip self.last_ts_processed = currPoint.metadata_write_ts if ended_before_this: # in this case, we end a trip at the previous point, and the next trip starts at this # point, not the next one just_ended = False prevPoint = currPoint curr_trip_start_point = currPoint logging.debug("Setting new trip start point %s with idx %s" % (currPoint, currPoint.idx)) else: # We end a trip at the current point, and the next trip starts at the next point just_ended = True prevPoint = None else: prevPoint = currPoint logging.debug("Iterated over all points, just_ended = %s, len(transition_df) = %s" % (just_ended, len(transition_df))) if not just_ended and len(transition_df) > 0: stopped_moving_after_last = transition_df[(transition_df.ts > currPoint.ts) & (transition_df.transition == 2)] logging.debug("looking after %s, found transitions %s" % (currPoint.ts, stopped_moving_after_last)) if len(stopped_moving_after_last) > 0: (unused, last_trip_end_point) = self.get_last_trip_end_point(filtered_points_df, last10Points_df, None) segmentation_points.append((curr_trip_start_point, last_trip_end_point)) logging.debug("Found trip end at %s" % last_trip_end_point.fmt_time) # We have processed everything up to the trip end by marking it as a completed trip self.last_ts_processed = currPoint.metadata_write_ts return segmentation_points def continue_just_ended(self, idx, currPoint, filtered_points_df): """ Normally, since the logic here and the logic on the phone are the same, if we have detected a trip end, any points after this are part of the new trip. However, in some circumstances, notably in my data from 27th August, there appears to be a mismatch and we get a couple of points past the end that we detected here. So let's look for points that are within the distance filter, and are at a delta of a minute, and join them to the just ended trip instead of using them to start the new trip :param idx: Index of the current point :param currPoint: current point :param filtered_points_df: dataframe of filtered points :return: True if we should continue the just ended trip, False otherwise """ if idx == 0: return False else: prev_point = ad.AttrDict(filtered_points_df.iloc[idx - 1]) logging.debug("Comparing with prev_point = %s" % prev_point) if pf.calDistance(prev_point, currPoint) < self.distance_threshold and \ currPoint.ts - prev_point.ts <= 60: logging.info("Points %s and %s are within the distance filter and only 1 min apart so part of the same trip" % (prev_point, currPoint)) return True else: return False def has_trip_ended(self, prev_point, curr_point, timeseries, last10PointsDistances, last5MinsDistances, last5MinTimes): # Another mismatch between phone and server. Phone stops tracking too soon, # so the distance is still greater than the threshold at the end of the trip. # But then the next point is a long time away, so we can split again (similar to a distance filter) if prev_point is None: logging.debug("prev_point is None, continuing trip") else: timeDelta = curr_point.ts - prev_point.ts distDelta = pf.calDistance(prev_point, curr_point) if timeDelta > 0: speedDelta = old_div(distDelta, timeDelta) else: speedDelta = np.nan speedThreshold = old_div(float(self.distance_threshold), self.time_threshold) if eaisr.is_tracking_restarted_in_range(prev_point.ts, curr_point.ts, timeseries): logging.debug("tracking was restarted, ending trip") return True ongoing_motion_check = len(eaisr.get_ongoing_motion_in_range(prev_point.ts, curr_point.ts, timeseries)) > 0 if timeDelta > 2 * self.time_threshold and not ongoing_motion_check: logging.debug("lastPoint.ts = %s, currPoint.ts = %s, threshold = %s, large gap = %s, ongoing_motion_in_range = %s, ending trip" % (prev_point.ts, curr_point.ts,self.time_threshold, curr_point.ts - prev_point.ts, ongoing_motion_check)) return True # http://www.huffingtonpost.com/hoppercom/the-worlds-20-longest-non-stop-flights_b_5994268.html # Longest flight is 17 hours, which is the longest you can go without cell reception # And even if you split an air flight that long into two, you will get some untracked time in the # middle, so that's good. TWELVE_HOURS = 12 * 60 * 60 if timeDelta > TWELVE_HOURS: logging.debug("prev_point.ts = %s, curr_point.ts = %s, TWELVE_HOURS = %s, large gap = %s, ending trip" % (prev_point.ts, curr_point.ts, TWELVE_HOURS, curr_point.ts - prev_point.ts)) return True if (timeDelta > 2 * self.time_threshold and # We have been here for a while speedDelta < speedThreshold): # we haven't moved very much logging.debug("prev_point.ts = %s, curr_point.ts = %s, threshold = %s, large gap = %s, ending trip" % (prev_point.ts, curr_point.ts,self.time_threshold, curr_point.ts - prev_point.ts)) return True else: logging.debug("prev_point.ts = %s, curr_point.ts = %s, time gap = %s (vs %s), distance_gap = %s (vs %s), speed_gap = %s (vs %s) continuing trip" % (prev_point.ts, curr_point.ts, timeDelta, self.time_threshold, distDelta, self.distance_threshold, speedDelta, speedThreshold)) # The -30 is a fuzz factor intended to compensate for older clients # where data collection stopped after 5 mins, so that we never actually # see 5 mins of data if (len(last10PointsDistances) < self.point_threshold - 1 or len(last5MinsDistances) == 0 or last5MinTimes.max() < self.time_threshold - 30): logging.debug("Too few points to make a decision, continuing") return False # Normal end-of-trip case logging.debug("last5MinsDistances.max() = %s, last10PointsDistance.max() = %s" % (last5MinsDistances.max(), last10PointsDistances.max())) if (last5MinsDistances.max() < self.distance_threshold and last10PointsDistances.max() < self.distance_threshold): return True def get_last_trip_end_point(self, filtered_points_df, last10Points_df, last5MinsPoints_df): ended_before_this = last5MinsPoints_df is None or len(last5MinsPoints_df) == 0 if ended_before_this: logging.debug("trip end transition, so last 10 points are %s" % last10Points_df.index) last10PointsMedian = np.median(last10Points_df.index) last_trip_end_index = int(last10PointsMedian) logging.debug("last5MinsPoints not found, last_trip_end_index = %s" % last_trip_end_index) else: last10PointsMedian = np.median(last10Points_df.index) last5MinsPointsMedian = np.median(last5MinsPoints_df.index) last_trip_end_index = int(min(last5MinsPointsMedian, last10PointsMedian)) logging.debug("last5MinsPoints and last10PointsMedian found, last_trip_end_index = %s" % last_trip_end_index) # logging.debug("last5MinPoints.median = %s (%s), last10Points_df = %s (%s), sel index = %s" % # (np.median(last5MinsPoints_df.index), last5MinsPoints_df.index, # np.median(last10Points_df.index), last10Points_df.index, # last_trip_end_index)) last_trip_end_point_row = filtered_points_df.iloc[last_trip_end_index] last_trip_end_point = ad.AttrDict(filtered_points_df.iloc[last_trip_end_index]) logging.debug("Appending last_trip_end_point %s with index %s " % (last_trip_end_point, last_trip_end_point_row.name)) return (ended_before_this, last_trip_end_point)
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/matplotlib/offsetbox.py
4
55635
""" The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. The [VH]Packer, DrawingArea and TextArea are derived from the OffsetBox. The [VH]Packer automatically adjust the relative postisions of their children, which should be instances of the OffsetBox. This is used to align similar artists together, e.g., in legend. The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The TextArea is contains a single Text instance. The width and height of the TextArea instance is the width and height of the its child text. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange, zip import warnings import matplotlib.transforms as mtransforms import matplotlib.artist as martist import matplotlib.text as mtext import matplotlib.path as mpath import numpy as np from matplotlib.transforms import Bbox, BboxBase, TransformedBbox from matplotlib.font_manager import FontProperties from matplotlib.patches import FancyBboxPatch, FancyArrowPatch from matplotlib import rcParams from matplotlib import docstring #from bboximage import BboxImage from matplotlib.image import BboxImage from matplotlib.patches import bbox_artist as mbbox_artist from matplotlib.text import _AnnotationBase DEBUG = False # for debuging use def bbox_artist(*args, **kwargs): if DEBUG: mbbox_artist(*args, **kwargs) # _get_packed_offsets() and _get_aligned_offsets() are coded assuming # that we are packing boxes horizontally. But same function will be # used with vertical packing. def _get_packed_offsets(wd_list, total, sep, mode="fixed"): """ Geiven a list of (width, xdescent) of each boxes, calculate the total width and the x-offset positions of each items according to *mode*. xdescent is analagous to the usual descent, but along the x-direction. xdescent values are currently ignored. *wd_list* : list of (width, xdescent) of boxes to be packed. *sep* : spacing between boxes *total* : Intended total length. None if not used. *mode* : packing mode. 'fixed', 'expand', or 'equal'. """ w_list, d_list = list(zip(*wd_list)) # d_list is currently not used. if mode == "fixed": offsets_ = np.add.accumulate([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": if len(w_list) > 1: sep = (total - sum(w_list)) / (len(w_list) - 1.) else: sep = 0. offsets_ = np.add.accumulate([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: total = (maxh + sep) * len(w_list) else: sep = float(total) / (len(w_list)) - maxh offsets = np.array([(maxh + sep) * i for i in range(len(w_list))]) return total, offsets else: raise ValueError("Unknown mode : %s" % (mode,)) def _get_aligned_offsets(hd_list, height, align="baseline"): """ Given a list of (height, descent) of each boxes, align the boxes with *align* and calculate the y-offsets of each boxes. total width and the offset positions of each items according to *mode*. xdescent is analogous to the usual descent, but along the x-direction. xdescent values are currently ignored. *hd_list* : list of (width, xdescent) of boxes to be aligned. *sep* : spacing between boxes *height* : Intended total length. None if not used. *align* : align mode. 'baseline', 'top', 'bottom', or 'center'. """ if height is None: height = max([h for h, d in hd_list]) if align == "baseline": height_descent = max([h - d for h, d in hd_list]) descent = max([d for h, d in hd_list]) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "top"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "bottom"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] else: raise ValueError("Unknown Align mode : %s" % (align,)) return height, descent, offsets class OffsetBox(martist.Artist): """ The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. """ def __init__(self, *args, **kwargs): super(OffsetBox, self).__init__(*args, **kwargs) # Clipping has not been implemented in the OffesetBox family, so # disable the clip flag for consistency. It can always be turned back # on to zero effect. self.set_clip_on(False) self._children = [] self._offset = (0, 0) def __getstate__(self): state = martist.Artist.__getstate__(self) # pickle cannot save instancemethods, so handle them here from .cbook import _InstanceMethodPickler import inspect offset = state['_offset'] if inspect.ismethod(offset): state['_offset'] = _InstanceMethodPickler(offset) return state def __setstate__(self, state): self.__dict__ = state from .cbook import _InstanceMethodPickler if isinstance(self._offset, _InstanceMethodPickler): self._offset = self._offset.get_instancemethod() self.stale = True def set_figure(self, fig): """ Set the figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) for c in self.get_children(): c.set_figure(fig) @martist.Artist.axes.setter def axes(self, ax): # TODO deal with this better martist.Artist.axes.fset(self, ax) for c in self.get_children(): if c is not None: c.axes = ax def contains(self, mouseevent): for c in self.get_children(): a, b = c.contains(mouseevent) if a: return a, b return False, {} def set_offset(self, xy): """ Set the offset accepts x, y, tuple, or a callable object. """ self._offset = xy self.stale = True def get_offset(self, width, height, xdescent, ydescent, renderer): """ Get the offset accepts extent of the box """ if six.callable(self._offset): return self._offset(width, height, xdescent, ydescent, renderer) else: return self._offset def set_width(self, width): """ Set the width accepts float """ self.width = width self.stale = True def set_height(self, height): """ Set the height accepts float """ self.height = height self.stale = True def get_visible_children(self): """ Return a list of visible artists it contains. """ return [c for c in self._children if c.get_visible()] def get_children(self): """ Return a list of artists it contains. """ return self._children def get_extent_offsets(self, renderer): raise Exception("") def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ w, h, xd, yd, offsets = self.get_extent_offsets(renderer) return w, h, xd, yd def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd, offsets = self.get_extent_offsets(renderer) px, py = self.get_offset(w, h, xd, yd, renderer) return mtransforms.Bbox.from_bounds(px - xd, py - yd, w, h) def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class PackerBase(OffsetBox): def __init__(self, pad=None, sep=None, width=None, height=None, align=None, mode=None, children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. Can be one of ``top``, ``bottom``, ``left``, ``right``, ``center`` and ``baseline`` mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(PackerBase, self).__init__() self.height = height self.width = width self.sep = sep self.pad = pad self.mode = mode self.align = align self._children = children class VPacker(PackerBase): """ The VPacker has its children packed vertically. It automatically adjust the relative positions of children in the drawing time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(VPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor if self.width is not None: for c in self.get_visible_children(): if isinstance(c, PackerBase) and c.mode == "expand": c.set_width(self.width) whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] whd_list = [(w, h, xd, (h - yd)) for w, h, xd, yd in whd_list] wd_list = [(w, xd) for w, h, xd, yd in whd_list] width, xdescent, xoffsets = _get_aligned_offsets(wd_list, self.width, self.align) pack_list = [(h, yd) for w, h, xd, yd in whd_list] height, yoffsets_ = _get_packed_offsets(pack_list, self.height, sep, self.mode) yoffsets = yoffsets_ + [yd for w, h, xd, yd in whd_list] ydescent = height - yoffsets[0] yoffsets = height - yoffsets #w, h, xd, h_yd = whd_list[-1] yoffsets = yoffsets - ydescent return width + 2 * pad, height + 2 * pad, \ xdescent + pad, ydescent + pad, \ list(zip(xoffsets, yoffsets)) class HPacker(PackerBase): """ The HPacker has its children packed horizontally. It automatically adjusts the relative positions of children at draw time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str Alignment of boxes. mode : str Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(HPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of children and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] if not whd_list: return 2 * pad, 2 * pad, pad, pad, [] if self.height is None: height_descent = max([h - yd for w, h, xd, yd in whd_list]) ydescent = max([yd for w, h, xd, yd in whd_list]) height = height_descent + ydescent else: height = self.height - 2 * pad # width w/o pad hd_list = [(h, yd) for w, h, xd, yd in whd_list] height, ydescent, yoffsets = _get_aligned_offsets(hd_list, self.height, self.align) pack_list = [(w, xd) for w, h, xd, yd in whd_list] width, xoffsets_ = _get_packed_offsets(pack_list, self.width, sep, self.mode) xoffsets = xoffsets_ + [xd for w, h, xd, yd in whd_list] xdescent = whd_list[0][2] xoffsets = xoffsets - xdescent return width + 2 * pad, height + 2 * pad, \ xdescent + pad, ydescent + pad, \ list(zip(xoffsets, yoffsets)) class PaddedBox(OffsetBox): def __init__(self, child, pad=None, draw_frame=False, patch_attrs=None): """ *pad* : boundary pad .. note:: *pad* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(PaddedBox, self).__init__() self.pad = pad self._children = [child] self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=1, # self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) if patch_attrs is not None: self.patch.update(patch_attrs) self._drawFrame = draw_frame def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor w, h, xd, yd = self._children[0].get_extent(renderer) return w + 2 * pad, h + 2 * pad, \ xd + pad, yd + pad, \ [(0, 0)] def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) self.draw_frame(renderer) for c in self.get_visible_children(): c.draw(renderer) #bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) self.stale = True def draw_frame(self, renderer): # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox) if self._drawFrame: self.patch.draw(renderer) class DrawingArea(OffsetBox): """ The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The children can be clipped at the boundaries of the parent. """ def __init__(self, width, height, xdescent=0., ydescent=0., clip=False): """ *width*, *height* : width and height of the container box. *xdescent*, *ydescent* : descent of the box in x- and y-direction. *clip* : Whether to clip the children """ super(DrawingArea, self).__init__() self.width = width self.height = height self.xdescent = xdescent self.ydescent = ydescent self._clip_children = clip self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self.dpi_transform = mtransforms.Affine2D() @property def clip_children(self): """ If the children of this DrawingArea should be clipped by DrawingArea bounding box. """ return self._clip_children @clip_children.setter def clip_children(self, val): self._clip_children = bool(val) self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.dpi_transform + self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y cooridnate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ dpi_cor = renderer.points_to_pixels(1.) return self.width * dpi_cor, self.height * dpi_cor, \ self.xdescent * dpi_cor, self.ydescent * dpi_cor def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) if not a.is_transform_set(): a.set_transform(self.get_transform()) if self.axes is not None: a.axes = self.axes fig = self.figure if fig is not None: a.set_figure(fig) def draw(self, renderer): """ Draw the children """ dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear() self.dpi_transform.scale(dpi_cor, dpi_cor) # At this point the DrawingArea has a transform # to the display space so the path created is # good for clipping children tpath = mtransforms.TransformedPath( mpath.Path([[0, 0], [0, self.height], [self.width, self.height], [self.width, 0]]), self.get_transform()) for c in self._children: if self._clip_children and not (c.clipbox or c._clippath): c.set_clip_path(tpath) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class TextArea(OffsetBox): """ The TextArea is contains a single Text instance. The text is placed at (0,0) with baseline+left alignment. The width and height of the TextArea instance is the width and height of the its child text. """ def __init__(self, s, textprops=None, multilinebaseline=None, minimumdescent=True, ): """ Parameters ---------- s : str a string to be displayed. textprops : `~matplotlib.font_manager.FontProperties`, optional multilinebaseline : bool, optional If `True`, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. minimumdescent : bool, optional If `True`, the box has a minimum descent of "p". """ if textprops is None: textprops = {} if "va" not in textprops: textprops["va"] = "baseline" self._text = mtext.Text(0, 0, s, **textprops) OffsetBox.__init__(self) self._children = [self._text] self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self._baseline_transform = mtransforms.Affine2D() self._text.set_transform(self.offset_transform + self._baseline_transform) self._multilinebaseline = multilinebaseline self._minimumdescent = minimumdescent def set_text(self, s): "Set the text of this area as a string." self._text.set_text(s) self.stale = True def get_text(self): "Returns the string representation of this area's text" return self._text.get_text() def set_multilinebaseline(self, t): """ Set multilinebaseline . If True, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. """ self._multilinebaseline = t self.stale = True def get_multilinebaseline(self): """ get multilinebaseline . """ return self._multilinebaseline def set_minimumdescent(self, t): """ Set minimumdescent . If True, extent of the single line text is adjusted so that it has minimum descent of "p" """ self._minimumdescent = t self.stale = True def get_minimumdescent(self): """ get minimumdescent. """ return self._minimumdescent def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y coordinates in display units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): clean_line, ismath = self._text.is_math_text(self._text._text) _, h_, d_ = renderer.get_text_width_height_descent( "lp", self._text._fontproperties, ismath=False) bbox, info, d = self._text._get_layout(renderer) w, h = bbox.width, bbox.height line = info[-1][0] # last line self._baseline_transform.clear() if len(info) > 1 and self._multilinebaseline: d_new = 0.5 * h - 0.5 * (h_ - d_) self._baseline_transform.translate(0, d - d_new) d = d_new else: # single line h_d = max(h_ - d_, h - d) if self.get_minimumdescent(): ## to have a minimum descent, #i.e., "l" and "p" have same ## descents. d = max(d, d_) #else: # d = d h = h_d + d return w, h, 0., d def draw(self, renderer): """ Draw the children """ self._text.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AuxTransformBox(OffsetBox): """ Offset Box with the aux_transform . Its children will be transformed with the aux_transform first then will be offseted. The absolute coordinate of the aux_transform is meaning as it will be automatically adjust so that the left-lower corner of the bounding box of children will be set to (0,0) before the offset transform. It is similar to drawing area, except that the extent of the box is not predetermined but calculated from the window extent of its children. Furthermore, the extent of the children will be calculated in the transformed coordinate. """ def __init__(self, aux_transform): self.aux_transform = aux_transform OffsetBox.__init__(self) self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) # ref_offset_transform is used to make the offset_transform is # always reference to the lower-left corner of the bbox of its # children. self.ref_offset_transform = mtransforms.Affine2D() self.ref_offset_transform.clear() def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) a.set_transform(self.get_transform()) self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.aux_transform + \ self.ref_offset_transform + \ self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y coordinate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) self.stale = True def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # clear the offset transforms _off = self.offset_transform.to_values() # to be restored later self.ref_offset_transform.clear() self.offset_transform.clear() # calculate the extent bboxes = [c.get_window_extent(renderer) for c in self._children] ub = mtransforms.Bbox.union(bboxes) # adjust ref_offset_tansform self.ref_offset_transform.translate(-ub.x0, -ub.y0) # restor offset transform mtx = self.offset_transform.matrix_from_values(*_off) self.offset_transform.set_matrix(mtx) return ub.width, ub.height, 0., 0. def draw(self, renderer): """ Draw the children """ for c in self._children: c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AnchoredOffsetbox(OffsetBox): """ An offset box placed according to the legend location loc. AnchoredOffsetbox has a single child. When multiple children is needed, use other OffsetBox class to enclose them. By default, the offset box is anchored against its parent axes. You may explicitly specify the bbox_to_anchor. """ zorder = 5 # zorder of the legend def __init__(self, loc, pad=0.4, borderpad=0.5, child=None, prop=None, frameon=True, bbox_to_anchor=None, bbox_transform=None, **kwargs): """ loc is a string or an integer specifying the legend location. The valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, pad : pad around the child for drawing a frame. given in fraction of fontsize. borderpad : pad between offsetbox frame and the bbox_to_anchor, child : OffsetBox instance that will be anchored. prop : font property. This is only used as a reference for paddings. frameon : draw a frame box if True. bbox_to_anchor : bbox to anchor. Use self.axes.bbox if None. bbox_transform : with which the bbox_to_anchor will be transformed. """ super(AnchoredOffsetbox, self).__init__(**kwargs) self.set_bbox_to_anchor(bbox_to_anchor, bbox_transform) self.set_child(child) self.loc = loc self.borderpad = borderpad self.pad = pad if prop is None: self.prop = FontProperties(size=rcParams["legend.fontsize"]) elif isinstance(prop, dict): self.prop = FontProperties(**prop) if "size" not in prop: self.prop.set_size(rcParams["legend.fontsize"]) else: self.prop = prop self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) self._drawFrame = frameon def set_child(self, child): "set the child to be anchored" self._child = child if child is not None: child.axes = self.axes self.stale = True def get_child(self): "return the child" return self._child def get_children(self): "return the list of children" return [self._child] def get_extent(self, renderer): """ return the extent of the artist. The extent of the child added with the pad is returned """ w, h, xd, yd = self.get_child().get_extent(renderer) fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) pad = self.pad * fontsize return w + 2 * pad, h + 2 * pad, xd + pad, yd + pad def get_bbox_to_anchor(self): """ return the bbox that the legend will be anchored """ if self._bbox_to_anchor is None: return self.axes.bbox else: transform = self._bbox_to_anchor_transform if transform is None: return self._bbox_to_anchor else: return TransformedBbox(self._bbox_to_anchor, transform) def set_bbox_to_anchor(self, bbox, transform=None): """ set the bbox that the child will be anchored. *bbox* can be a Bbox instance, a list of [left, bottom, width, height], or a list of [left, bottom] where the width and height will be assumed to be zero. The bbox will be transformed to display coordinate by the given transform. """ if bbox is None or isinstance(bbox, BboxBase): self._bbox_to_anchor = bbox else: try: l = len(bbox) except TypeError: raise ValueError("Invalid argument for bbox : %s" % str(bbox)) if l == 2: bbox = [bbox[0], bbox[1], 0, 0] self._bbox_to_anchor = Bbox.from_bounds(*bbox) self._bbox_to_anchor_transform = transform self.stale = True def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' self._update_offset_func(renderer) w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset(w, h, xd, yd, renderer) return Bbox.from_bounds(ox - xd, oy - yd, w, h) def _update_offset_func(self, renderer, fontsize=None): """ Update the offset func which depends on the dpi of the renderer (because of the padding). """ if fontsize is None: fontsize = renderer.points_to_pixels( self.prop.get_size_in_points()) def _offset(w, h, xd, yd, renderer, fontsize=fontsize, self=self): bbox = Bbox.from_bounds(0, 0, w, h) borderpad = self.borderpad * fontsize bbox_to_anchor = self.get_bbox_to_anchor() x0, y0 = self._get_anchored_bbox(self.loc, bbox, bbox_to_anchor, borderpad) return x0 + xd, y0 + yd self.set_offset(_offset) def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) def draw(self, renderer): "draw the artist" if not self.get_visible(): return fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) self._update_offset_func(renderer, fontsize) if self._drawFrame: # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox, fontsize) self.patch.draw(renderer) width, height, xdescent, ydescent = self.get_extent(renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) self.get_child().set_offset((px, py)) self.get_child().draw(renderer) self.stale = False def _get_anchored_bbox(self, loc, bbox, parentbbox, borderpad): """ return the position of the bbox anchored at the parentbbox with the loc code, with the borderpad. """ assert loc in range(1, 11) # called only internally BEST, UR, UL, LL, LR, R, CL, CR, LC, UC, C = list(xrange(11)) anchor_coefs = {UR: "NE", UL: "NW", LL: "SW", LR: "SE", R: "E", CL: "W", CR: "E", LC: "S", UC: "N", C: "C"} c = anchor_coefs[loc] container = parentbbox.padded(-borderpad) anchored_box = bbox.anchored(c, container=container) return anchored_box.x0, anchored_box.y0 class AnchoredText(AnchoredOffsetbox): """ AnchoredOffsetbox with Text. """ def __init__(self, s, loc, pad=0.4, borderpad=0.5, prop=None, **kwargs): """ Parameters ---------- s : string Text. loc : str Location code. pad : float, optional Pad between the text and the frame as fraction of the font size. borderpad : float, optional Pad between the frame and the axes (or *bbox_to_anchor*). prop : `matplotlib.font_manager.FontProperties` Font properties. Notes ----- Other keyword parameters of `AnchoredOffsetbox` are also allowed. """ if prop is None: prop = {} propkeys = list(six.iterkeys(prop)) badkwargs = ('ha', 'horizontalalignment', 'va', 'verticalalignment') if set(badkwargs) & set(propkeys): warnings.warn("Mixing horizontalalignment or verticalalignment " "with AnchoredText is not supported.") self.txt = TextArea(s, textprops=prop, minimumdescent=False) fp = self.txt._text.get_fontproperties() super(AnchoredText, self).__init__(loc, pad=pad, borderpad=borderpad, child=self.txt, prop=fp, **kwargs) class OffsetImage(OffsetBox): def __init__(self, arr, zoom=1, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, dpi_cor=True, **kwargs ): OffsetBox.__init__(self) self._dpi_cor = dpi_cor self.image = BboxImage(bbox=self.get_window_extent, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._children = [self.image] self.set_zoom(zoom) self.set_data(arr) def set_data(self, arr): self._data = np.asarray(arr) self.image.set_data(self._data) self.stale = True def get_data(self): return self._data def set_zoom(self, zoom): self._zoom = zoom self.stale = True def get_zoom(self): return self._zoom # def set_axes(self, axes): # self.image.set_axes(axes) # martist.Artist.set_axes(self, axes) # def set_offset(self, xy): # """ # set offset of the container. # Accept : tuple of x,y coordinate in disokay units. # """ # self._offset = xy # self.offset_transform.clear() # self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_children(self): return [self.image] def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # FIXME dpi_cor is never used if self._dpi_cor: # True, do correction dpi_cor = renderer.points_to_pixels(1.) else: dpi_cor = 1. zoom = self.get_zoom() data = self.get_data() ny, nx = data.shape[:2] w, h = nx * zoom, ny * zoom return w, h, 0, 0 def draw(self, renderer): """ Draw the children """ self.image.draw(renderer) # bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) self.stale = False class AnnotationBbox(martist.Artist, _AnnotationBase): """ Annotation-like class, but with offsetbox instead of Text. """ zorder = 3 def __str__(self): return "AnnotationBbox(%g,%g)" % (self.xy[0], self.xy[1]) @docstring.dedent_interpd def __init__(self, offsetbox, xy, xybox=None, xycoords='data', boxcoords=None, frameon=True, pad=0.4, # BboxPatch annotation_clip=None, box_alignment=(0.5, 0.5), bboxprops=None, arrowprops=None, fontsize=None, **kwargs): """ *offsetbox* : OffsetBox instance *xycoords* : same as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *boxcoords* : similar to textcoords as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *box_alignment* : a tuple of two floats for a vertical and horizontal alignment of the offset box w.r.t. the *boxcoords*. The lower-left corner is (0.0) and upper-right corner is (1.1). other parameters are identical to that of Annotation. """ martist.Artist.__init__(self, **kwargs) _AnnotationBase.__init__(self, xy, xycoords=xycoords, annotation_clip=annotation_clip) self.offsetbox = offsetbox self.arrowprops = arrowprops self.set_fontsize(fontsize) if xybox is None: self.xybox = xy else: self.xybox = xybox if boxcoords is None: self.boxcoords = xycoords else: self.boxcoords = boxcoords if arrowprops is not None: self._arrow_relpos = self.arrowprops.pop("relpos", (0.5, 0.5)) self.arrow_patch = FancyArrowPatch((0, 0), (1, 1), **self.arrowprops) else: self._arrow_relpos = None self.arrow_patch = None #self._fw, self._fh = 0., 0. # for alignment self._box_alignment = box_alignment # frame self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=pad) if bboxprops: self.patch.set(**bboxprops) self._drawFrame = frameon @property def xyann(self): return self.xybox @xyann.setter def xyann(self, xyann): self.xybox = xyann self.stale = True @property def anncoords(self): return self.boxcoords @anncoords.setter def anncoords(self, coords): self.boxcoords = coords self.stale = True def contains(self, event): t, tinfo = self.offsetbox.contains(event) #if self.arrow_patch is not None: # a,ainfo=self.arrow_patch.contains(event) # t = t or a # self.arrow_patch is currently not checked as this can be a line - JJ return t, tinfo def get_children(self): children = [self.offsetbox, self.patch] if self.arrow_patch: children.append(self.arrow_patch) return children def set_figure(self, fig): if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) self.offsetbox.set_figure(fig) martist.Artist.set_figure(self, fig) def set_fontsize(self, s=None): """ set fontsize in points """ if s is None: s = rcParams["legend.fontsize"] self.prop = FontProperties(size=s) self.stale = True def get_fontsize(self, s=None): """ return fontsize in points """ return self.prop.get_size_in_points() def update_positions(self, renderer): """ Update the pixel positions of the annotated point and the text. """ xy_pixel = self._get_position_xy(renderer) self._update_position_xybox(renderer, xy_pixel) mutation_scale = renderer.points_to_pixels(self.get_fontsize()) self.patch.set_mutation_scale(mutation_scale) if self.arrow_patch: self.arrow_patch.set_mutation_scale(mutation_scale) def _update_position_xybox(self, renderer, xy_pixel): """ Update the pixel positions of the annotation text and the arrow patch. """ x, y = self.xybox if isinstance(self.boxcoords, tuple): xcoord, ycoord = self.boxcoords x1, y1 = self._get_xy(renderer, x, y, xcoord) x2, y2 = self._get_xy(renderer, x, y, ycoord) ox0, oy0 = x1, y2 else: ox0, oy0 = self._get_xy(renderer, x, y, self.boxcoords) w, h, xd, yd = self.offsetbox.get_extent(renderer) _fw, _fh = self._box_alignment self.offsetbox.set_offset((ox0 - _fw * w + xd, oy0 - _fh * h + yd)) # update patch position bbox = self.offsetbox.get_window_extent(renderer) #self.offsetbox.set_offset((ox0-_fw*w, oy0-_fh*h)) self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) x, y = xy_pixel ox1, oy1 = x, y if self.arrowprops: x0, y0 = x, y d = self.arrowprops.copy() # Use FancyArrowPatch if self.arrowprops has "arrowstyle" key. # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrinked by shirnkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1, oy1)) fs = self.prop.get_size_in_points() mutation_scale = d.pop("mutation_scale", fs) mutation_scale = renderer.points_to_pixels(mutation_scale) self.arrow_patch.set_mutation_scale(mutation_scale) patchA = d.pop("patchA", self.patch) self.arrow_patch.set_patchA(patchA) def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return xy_pixel = self._get_position_xy(renderer) if not self._check_xy(renderer, xy_pixel): return self.update_positions(renderer) if self.arrow_patch is not None: if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) if self._drawFrame: self.patch.draw(renderer) self.offsetbox.draw(renderer) self.stale = False class DraggableBase(object): """ helper code for a draggable artist (legend, offsetbox) The derived class must override following two method. def saveoffset(self): pass def update_offset(self, dx, dy): pass *saveoffset* is called when the object is picked for dragging and it is meant to save reference position of the artist. *update_offset* is called during the dragging. dx and dy is the pixel offset from the point where the mouse drag started. Optionally you may override following two methods. def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def finalize_offset(self): pass *artist_picker* is a picker method that will be used. *finalize_offset* is called when the mouse is released. In current implementaion of DraggableLegend and DraggableAnnotation, *update_offset* places the artists simply in display coordinates. And *finalize_offset* recalculate their position in the normalized axes coordinate and set a relavant attribute. """ def __init__(self, ref_artist, use_blit=False): self.ref_artist = ref_artist self.got_artist = False self.canvas = self.ref_artist.figure.canvas self._use_blit = use_blit and self.canvas.supports_blit c2 = self.canvas.mpl_connect('pick_event', self.on_pick) c3 = self.canvas.mpl_connect('button_release_event', self.on_release) ref_artist.set_picker(self.artist_picker) self.cids = [c2, c3] def on_motion(self, evt): if self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.draw() def on_motion_blit(self, evt): if self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.restore_region(self.background) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) def on_pick(self, evt): if evt.artist == self.ref_artist: self.mouse_x = evt.mouseevent.x self.mouse_y = evt.mouseevent.y self.got_artist = True if self._use_blit: self.ref_artist.set_animated(True) self.canvas.draw() self.background = self.canvas.copy_from_bbox( self.ref_artist.figure.bbox) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion_blit) else: self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion) self.save_offset() def on_release(self, event): if self.got_artist: self.finalize_offset() self.got_artist = False self.canvas.mpl_disconnect(self._c1) if self._use_blit: self.ref_artist.set_animated(False) def disconnect(self): """disconnect the callbacks""" for cid in self.cids: self.canvas.mpl_disconnect(cid) def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def save_offset(self): pass def update_offset(self, dx, dy): pass def finalize_offset(self): pass class DraggableOffsetBox(DraggableBase): def __init__(self, ref_artist, offsetbox, use_blit=False): DraggableBase.__init__(self, ref_artist, use_blit=use_blit) self.offsetbox = offsetbox def save_offset(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) offset = offsetbox.get_offset(w, h, xd, yd, renderer) self.offsetbox_x, self.offsetbox_y = offset self.offsetbox.set_offset(offset) def update_offset(self, dx, dy): loc_in_canvas = self.offsetbox_x + dx, self.offsetbox_y + dy self.offsetbox.set_offset(loc_in_canvas) def get_loc_in_canvas(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) ox, oy = offsetbox._offset loc_in_canvas = (ox - xd, oy - yd) return loc_in_canvas class DraggableAnnotation(DraggableBase): def __init__(self, annotation, use_blit=False): DraggableBase.__init__(self, annotation, use_blit=use_blit) self.annotation = annotation def save_offset(self): ann = self.annotation x, y = ann.xyann if isinstance(ann.anncoords, tuple): xcoord, ycoord = ann.anncoords x1, y1 = ann._get_xy(self.canvas.renderer, x, y, xcoord) x2, y2 = ann._get_xy(self.canvas.renderer, x, y, ycoord) ox0, oy0 = x1, y2 else: ox0, oy0 = ann._get_xy(self.canvas.renderer, x, y, ann.anncoords) self.ox, self.oy = ox0, oy0 self.annotation.anncoords = "figure pixels" self.update_offset(0, 0) def update_offset(self, dx, dy): ann = self.annotation ann.xyann = self.ox + dx, self.oy + dy x, y = ann.xyann def finalize_offset(self): loc_in_canvas = self.annotation.xyann self.annotation.anncoords = "axes fraction" pos_axes_fraction = self.annotation.axes.transAxes.inverted() pos_axes_fraction = pos_axes_fraction.transform_point(loc_in_canvas) self.annotation.xyann = tuple(pos_axes_fraction) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = plt.subplot(121) #txt = ax.text(0.5, 0.5, "Test", size=30, ha="center", color="w") kwargs = dict() a = np.arange(256).reshape(16, 16) / 256. myimage = OffsetImage(a, zoom=2, norm=None, origin=None, **kwargs ) ax.add_artist(myimage) myimage.set_offset((100, 100)) myimage2 = OffsetImage(a, zoom=2, norm=None, origin=None, **kwargs ) ann = AnnotationBbox(myimage2, (0.5, 0.5), xybox=(30, 30), xycoords='data', boxcoords="offset points", frameon=True, pad=0.4, # BboxPatch bboxprops=dict(boxstyle="round", fc="y"), fontsize=None, arrowprops=dict(arrowstyle="->"), ) ax.add_artist(ann) plt.draw() plt.show()
mit
jseabold/statsmodels
statsmodels/sandbox/distributions/otherdist.py
5
10101
'''Parametric Mixture Distributions Created on Sat Jun 04 2011 Author: Josef Perktold Notes: Compound Poisson has mass point at zero https://en.wikipedia.org/wiki/Compound_Poisson_distribution and would need special treatment need a distribution that has discrete mass points and contiuous range, e.g. compound Poisson, Tweedie (for some parameter range), pdf of Tobit model (?) - truncation with clipping Question: Metaclasses and class factories for generating new distributions from existing distributions by transformation, mixing, compounding ''' import numpy as np from scipy import stats class ParametricMixtureD(object): '''mixtures with a discrete distribution The mixing distribution is a discrete distribution like scipy.stats.poisson. All distribution in the mixture of the same type and parametrized by the outcome of the mixing distribution and have to be a continuous distribution (or have a pdf method). As an example, a mixture of normal distributed random variables with Poisson as the mixing distribution. assumes vectorized shape, loc and scale as in scipy.stats.distributions assume mixing_dist is frozen initialization looks fragile for all possible cases of lower and upper bounds of the distributions. ''' def __init__(self, mixing_dist, base_dist, bd_args_func, bd_kwds_func, cutoff=1e-3): '''create a mixture distribution Parameters ---------- mixing_dist : discrete frozen distribution mixing distribution base_dist : continuous distribution parametrized distributions in the mixture bd_args_func : callable function that builds the tuple of args for the base_dist. The function obtains as argument the values in the support of the mixing distribution and should return an empty tuple or a tuple of arrays. bd_kwds_func : callable function that builds the dictionary of kwds for the base_dist. The function obtains as argument the values in the support of the mixing distribution and should return an empty dictionary or a dictionary with arrays as values. cutoff : float If the mixing distribution has infinite support, then the distribution is truncated with approximately (subject to integer conversion) the cutoff probability in the missing tail. Random draws that are outside the truncated range are clipped, that is assigned to the highest or lowest value in the truncated support. ''' self.mixing_dist = mixing_dist self.base_dist = base_dist #self.bd_args = bd_args if not np.isneginf(mixing_dist.dist.a): lower = mixing_dist.dist.a else: lower = mixing_dist.ppf(1e-4) if not np.isposinf(mixing_dist.dist.b): upper = mixing_dist.dist.b else: upper = mixing_dist.isf(1e-4) self.ma = lower self.mb = upper mixing_support = np.arange(lower, upper+1) self.mixing_probs = mixing_dist.pmf(mixing_support) self.bd_args = bd_args_func(mixing_support) self.bd_kwds = bd_kwds_func(mixing_support) def rvs(self, size=1): mrvs = self.mixing_dist.rvs(size) #TODO: check strange cases ? this assumes continous integers mrvs_idx = (np.clip(mrvs, self.ma, self.mb) - self.ma).astype(int) bd_args = tuple(md[mrvs_idx] for md in self.bd_args) bd_kwds = dict((k, self.bd_kwds[k][mrvs_idx]) for k in self.bd_kwds) kwds = {'size':size} kwds.update(bd_kwds) rvs = self.base_dist.rvs(*self.bd_args, **kwds) return rvs, mrvs_idx def pdf(self, x): x = np.asarray(x) if np.size(x) > 1: x = x[...,None] #[None, ...] bd_probs = self.base_dist.pdf(x, *self.bd_args, **self.bd_kwds) prob = (bd_probs * self.mixing_probs).sum(-1) return prob, bd_probs def cdf(self, x): x = np.asarray(x) if np.size(x) > 1: x = x[...,None] #[None, ...] bd_probs = self.base_dist.cdf(x, *self.bd_args, **self.bd_kwds) prob = (bd_probs * self.mixing_probs).sum(-1) return prob, bd_probs #try: class ClippedContinuous(object): '''clipped continuous distribution with a masspoint at clip_lower Notes ----- first version, to try out possible designs insufficient checks for valid arguments and not clear whether it works for distributions that have compact support clip_lower is fixed and independent of the distribution parameters. The clip_lower point in the pdf has to be interpreted as a mass point, i.e. different treatment in integration and expect function, which means none of the generic methods for this can be used. maybe this will be better designed as a mixture between a degenerate or discrete and a continuous distribution Warning: uses equality to check for clip_lower values in function arguments, since these are floating points, the comparison might fail if clip_lower values are not exactly equal. We could add a check whether the values are in a small neighborhood, but it would be expensive (need to search and check all values). ''' def __init__(self, base_dist, clip_lower): self.base_dist = base_dist self.clip_lower = clip_lower def _get_clip_lower(self, kwds): '''helper method to get clip_lower from kwds or attribute ''' if 'clip_lower' not in kwds: clip_lower = self.clip_lower else: clip_lower = kwds.pop('clip_lower') return clip_lower, kwds def rvs(self, *args, **kwds): clip_lower, kwds = self._get_clip_lower(kwds) rvs_ = self.base_dist.rvs(*args, **kwds) #same as numpy.clip ? rvs_[rvs_ < clip_lower] = clip_lower return rvs_ def pdf(self, x, *args, **kwds): x = np.atleast_1d(x) if 'clip_lower' not in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') pdf_raw = np.atleast_1d(self.base_dist.pdf(x, *args, **kwds)) clip_mask = (x == self.clip_lower) if np.any(clip_mask): clip_prob = self.base_dist.cdf(clip_lower, *args, **kwds) pdf_raw[clip_mask] = clip_prob #the following will be handled by sub-classing rv_continuous pdf_raw[x < clip_lower] = 0 return pdf_raw def cdf(self, x, *args, **kwds): if 'clip_lower' not in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') cdf_raw = self.base_dist.cdf(x, *args, **kwds) #not needed if equality test is used ## clip_mask = (x == self.clip_lower) ## if np.any(clip_mask): ## clip_prob = self.base_dist.cdf(clip_lower, *args, **kwds) ## pdf_raw[clip_mask] = clip_prob #the following will be handled by sub-classing rv_continuous #if self.a is defined cdf_raw[x < clip_lower] = 0 return cdf_raw def sf(self, x, *args, **kwds): if 'clip_lower' not in kwds: clip_lower = self.clip_lower else: #allow clip_lower to be a possible parameter clip_lower = kwds.pop('clip_lower') sf_raw = self.base_dist.sf(x, *args, **kwds) sf_raw[x <= clip_lower] = 1 return sf_raw def ppf(self, x, *args, **kwds): raise NotImplementedError def plot(self, x, *args, **kwds): clip_lower, kwds = self._get_clip_lower(kwds) mass = self.pdf(clip_lower, *args, **kwds) xr = np.concatenate(([clip_lower+1e-6], x[x>clip_lower])) import matplotlib.pyplot as plt #x = np.linspace(-4, 4, 21) #plt.figure() plt.xlim(clip_lower-0.1, x.max()) #remove duplicate calculation xpdf = self.pdf(x, *args, **kwds) plt.ylim(0, max(mass, xpdf.max())*1.1) plt.plot(xr, self.pdf(xr, *args, **kwds)) #plt.vline(clip_lower, self.pdf(clip_lower, *args, **kwds)) plt.stem([clip_lower], [mass], linefmt='b-', markerfmt='bo', basefmt='r-') return if __name__ == '__main__': doplots = 1 #*********** Poisson-Normal Mixture mdist = stats.poisson(2.) bdist = stats.norm bd_args_fn = lambda x: () #bd_kwds_fn = lambda x: {'loc': np.atleast_2d(10./(1+x))} bd_kwds_fn = lambda x: {'loc': x, 'scale': 0.1*np.ones_like(x)} #10./(1+x)} pd = ParametricMixtureD(mdist, bdist, bd_args_fn, bd_kwds_fn) print(pd.pdf(1)) p, bp = pd.pdf(np.linspace(0,20,21)) pc, bpc = pd.cdf(np.linspace(0,20,21)) print(pd.rvs()) rvs, m = pd.rvs(size=1000) if doplots: import matplotlib.pyplot as plt plt.hist(rvs, bins = 100) plt.title('poisson mixture of normal distributions') #********** clipped normal distribution (Tobit) bdist = stats.norm clip_lower_ = 0. #-0.5 cnorm = ClippedContinuous(bdist, clip_lower_) x = np.linspace(1e-8, 4, 11) print(cnorm.pdf(x)) print(cnorm.cdf(x)) if doplots: #plt.figure() #cnorm.plot(x) plt.figure() cnorm.plot(x = np.linspace(-1, 4, 51), loc=0.5, scale=np.sqrt(2)) plt.title('clipped normal distribution') fig = plt.figure() for i, loc in enumerate([0., 0.5, 1.,2.]): fig.add_subplot(2,2,i+1) cnorm.plot(x = np.linspace(-1, 4, 51), loc=loc, scale=np.sqrt(2)) plt.title('clipped normal, loc = %3.2f' % loc) loc = 1.5 rvs = cnorm.rvs(loc=loc, size=2000) plt.figure() plt.hist(rvs, bins=50) plt.title('clipped normal rvs, loc = %3.2f' % loc) #plt.show()
bsd-3-clause
Cronjaeger/coalescent-simulations
finiteSitesModell_investigations.py
1
43035
# -*- coding: utf-8 -*- """ Created on Wed May 27 22:17:25 2015 @author: mathias """ import libCoal import numpy as np import matplotlib.pyplot as pl from scipy.special import binom from copy import deepcopy from time import ctime from math import log10 import networkx as nx class coalescent_finiteSites(libCoal.coalescent): ''' functionally identical to libCoal.coalescent. Only practical difference being that the site frequency spectrum is not computed. ''' def computeSFS(self): pass class simulator_KingmanFiniteSites(libCoal.simulateKingman): def __init__(self,n,mutationRate,L,compute_ancestral_configuration_on_initialization = True,*args): ''' n = number of individuals mutationRate = Mutation rate of the coalescent. T_Max = Time-horizon of the coalescent. ''' self.n = n self.mutationRate = mutationRate # self.mergerRate = mergerRate self.T_max = float('inf') self.T_MRCA = float('inf') self.args = args self.SFS = np.zeros(n) self.coal = coalescent_finiteSites(libCoal.partition([[i] for i in range(n)])) # self.simulateCoalescent(self.args) self.L = L self.MRCA_seq = np.zeros(self.L,dtype=int) self.site_mutationCount = np.zeros(self.L,dtype=int) #self.mutations_with_site_and_type = [] # lists of tuples of the form [(time,lineage,site,k)] self.sequences_mutationCount = np.zeros(self.n, dtype=int) self.sequences = np.zeros((self.n,self.L),dtype=int) self.compute_ancestral_configuration_on_initialization = compute_ancestral_configuration_on_initialization self.simulateCoalescent() # def preSimulationSteps(self): # self.L = self.args[0] # self.MRCA_seq = np.zeros(self.L,dtype=int) # self.site_mutationCount = np.zeros(self.L,dtype=int) # self.sequences_mutationCount = np.zeros(self.n, dtype=int) # self.sequences = np.zeros((self.n,self.L),dtype=int) # def getMutations_withSitesAndShifts(self): # return deepcopy(self.mutations_with_site_and_type) def postSimulationSteps(self): if self.compute_ancestral_configuration_on_initialization: self.computeAncestralConfiguration() def computeAncestralConfiguration(self): affectedSites = np.random.randint(self.L, size=len(self.coal.mutations)) mutationType = np.random.randint(1,4,size = len(self.coal.mutations)) self.coal.mutations = [self.coal.mutations[i] + (affectedSites[i], mutationType[i],i) for i in xrange(len(self.coal.mutations))] for i in range(len(self.coal.mutations)): j = affectedSites[i] k = mutationType[i] self.site_mutationCount[j] += 1 t, branch = self.coal.mutations[i][:2] affectedSequences = self.coal.getStateNoCoppy(t).blocks[branch] for sequenceIndex in affectedSequences: self.sequences[sequenceIndex,j] += k self.sequences[sequenceIndex,j] %= 4 self.sequences_mutationCount[sequenceIndex] += 1 def untillFirstXInconsistencies(self,computeS_seq = False,X = 2): """ Step 1, set up everything like we were running computeAncestralConfiguration """ M = len(self.coal.mutations) S = np.zeros((self.n,self.L),dtype=int) S_old = np.array(S) site_mut_count = np.zeros(self.L,dtype=int) seq_mut_count = np.zeros(self.n, dtype=int) # affectedSites = np.random.randint(self.L, size = M) # mutationType = np.random.randint(1,4,size = M) ''' Step 2, randomly iterate over the list of mutations. Mutaions, untill the number of added mutations exceeds the number of segregating sites by X. ''' inconsistencyCount = 0 mutationCounter = 0 ignoredMutations = list(self.coal.mutations) consideredMutations = [] deviant_mutations = [] # deviant_mutations_indices = [] # self.coal.mutations = [] typeCount = [0,0,0,0] typeCountList = [list(typeCount)] S_seq = [np.matrix(S)] # inconsistentPairs = [] """ type 0 : a column with 3 states type 1 : a column with 2 states and >2 mutations : (no incompatibility w. other states) type 2 : creating a column with 2 states and incompatibilities type 3 : create an invisible state """ while inconsistencyCount < X and mutationCounter < M: m_index = np.random.randint(M - mutationCounter) m_k = np.random.randint(1,4) m_site = np.random.randint(self.L) site_mut_count[m_site] += 1 mutation = ignoredMutations.pop(m_index) + (m_site, m_k,mutationCounter) """ Now a mutatiin has the following as its entries: m[0] : time of mutation m[1] : affected leneage m[2] : affected site m[3] : mutation type (k - shift mod 4) m[4] : a counter -- number of mutations preceeding this one """ t,branch = mutation[:2] affectedSequences = self.coal.getStateNoCoppy(t).blocks[branch] for sequenceIndex in affectedSequences: S[sequenceIndex,m_site] += m_k S[sequenceIndex,m_site] %= 4 seq_mut_count[sequenceIndex] += 1 # if site_mut_count[m_site] > 1 and S[sequenceIndex,m_site] != 0: if site_mut_count[m_site] > 1: inconsistencyCount += 1 mutation += (inconsistencyCount,) # inconsistent_columns_new = inconsistentColumnPairs(site_mut_count,S) # inconsistent_columns_old = inconsistentColumnPairs([ i - int(i==m_site) for i in site_mut_count],S_old) inconsistent_columns_new = inconsistentColumnPairs(S) inconsistent_columns_old = inconsistentColumnPairs(S_old) newInconsistencies = len(inconsistent_columns_new) > len(inconsistent_columns_old) if len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) > 1: typeCount[0] += 1 elif len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) == 1: if newInconsistencies: typeCount[2] += 1 else: typeCount[1] += 1 #if S[sequenceIndex,m_site] == 0: elif len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) == 0: typeCount[3] += 1 else: raise Error("An exception which defies categorization has occurred. This should not happen!") typeCountList.append(list(typeCount)) deviant_mutations.append(mutation) # deviant_mutations_indices.append(mutationCounter) mutationCounter += 1 consideredMutations.append(mutation) if computeS_seq: S_seq.append(np.matrix(S)) S_old[:,m_site] = S[:,m_site] if computeS_seq: newSeq = zip(consideredMutations,S_seq[1:]) newSeq.sort(cmp = lambda x,y: int(np.sign(x[0][0] - y[0][0]))) consideredMutations = [x[0] for x in newSeq] S_seq = S_seq[:1] + [x[1] for x in newSeq] else: consideredMutations.sort(cmp = lambda x,y: int(np.sign(x[0] - y[0]))) newSeq = [] self.coal.mutations = consideredMutations return {"S":S, "mutCount_sites":site_mut_count, "mutCount_sequences":seq_mut_count, "Inconsistencies":inconsistencyCount, "typeCount":typeCount, "typeCount_arr":np.array(typeCount), "coalescent" : deepcopy(self.coal), "typeCountList" : typeCountList, "newSeq" : newSeq, "S_seq" : S_seq, "deviant_mutations": deviant_mutations} def until_k_visible_mutations(self,k = 10): """ Step 1, set up everything like we were running computeAncestralConfiguration """ computeS_seq = False, M = len(self.coal.mutations) S = np.zeros((self.n,self.L),dtype=int) S_old = np.array(S) site_mut_count = np.zeros(self.L,dtype=int) seq_mut_count = np.zeros(self.n, dtype=int) # affectedSites = np.random.randint(self.L, size = M) # mutationType = np.random.randint(1,4,size = M) ''' Step 2, randomly iterate over the list of mutations, untill enough mutations have occurred. ''' inconsistencyCount = 0 mutationCounter = 0 ignoredMutations = list(self.coal.mutations) consideredMutations = [] deviant_mutations = [] # deviant_mutations_indices = [] # self.coal.mutations = [] typeCount = [0,0,0,0] # typeCountList = [list(typeCount)] # S_seq = [np.matrix(S)] # inconsistentPairs = [] """ type 0 : a column with 3 states type 1 : a column with 2 states and >2 mutations : (no incompatibility w. other states) type 2 : creating a column with 2 states and incompatibilities type 3 : create an invisible state """ while mutationCounter - (typeCount[1]+typeCount[3]) < k and mutationCounter < M: m_index = np.random.randint(M - mutationCounter) m_k = np.random.randint(1,4) m_site = np.random.randint(self.L) site_mut_count[m_site] += 1 mutation = ignoredMutations.pop(m_index) + (m_site, m_k,mutationCounter) """ Now a mutatiin has the following as its entries: m[0] : time of mutation m[1] : affected leneage m[2] : affected site m[3] : mutation type (k - shift mod 4) m[4] : a counter -- number of mutations preceeding this one """ t,branch = mutation[:2] affectedSequences = self.coal.getStateNoCoppy(t).blocks[branch] for sequenceIndex in affectedSequences: S[sequenceIndex,m_site] += m_k S[sequenceIndex,m_site] %= 4 seq_mut_count[sequenceIndex] += 1 # if site_mut_count[m_site] > 1 and S[sequenceIndex,m_site] != 0: if site_mut_count[m_site] > 1: inconsistencyCount += 1 mutation += (inconsistencyCount,) # inconsistent_columns_new = inconsistentColumnPairs(site_mut_count,S) # inconsistent_columns_old = inconsistentColumnPairs([ i - int(i==m_site) for i in site_mut_count],S_old) inconsistent_columns_new = inconsistentColumnPairs(S) inconsistent_columns_old = inconsistentColumnPairs(S_old) newInconsistencies = len(inconsistent_columns_new) > len(inconsistent_columns_old) if len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) > 1: typeCount[0] += 1 elif len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) == 1: if newInconsistencies: typeCount[2] += 1 else: typeCount[1] += 1 elif len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) == 0: typeCount[3] += 1 else: raise Error("An exception which defies categorization has occurred. This should not happen!") # typeCountList.append(list(typeCount)) deviant_mutations.append(mutation) # deviant_mutations_indices.append(mutationCounter) mutationCounter += 1 consideredMutations.append(mutation) # if computeS_seq: S_seq.append(np.matrix(S)) S_old[:,m_site] = S[:,m_site] # if computeS_seq: # newSeq = zip(consideredMutations,S_seq[1:]) # newSeq.sort(cmp = lambda x,y: int(np.sign(x[0][0] - y[0][0]))) # consideredMutations = [x[0] for x in newSeq] # S_seq = S_seq[:1] + [x[1] for x in newSeq] # else: # consideredMutations.sort(cmp = lambda x,y: int(np.sign(x[0] - y[0]))) # newSeq = [] consideredMutations.sort(cmp = lambda x,y: int(np.sign(x[0] - y[0]))) # newSeq = [] self.coal.mutations = consideredMutations return {"S":S, "mutCount_sites":site_mut_count, "mutCount_sequences":seq_mut_count, "Inconsistencies":inconsistencyCount, "typeCount":typeCount, "typeCount_arr":np.array(typeCount), "coalescent" : deepcopy(self.coal), # "typeCountList" : typeCountList, # "newSeq" : newSeq, # "S_seq" : S_seq, "deviant_mutations": deviant_mutations} def until_k_mutations(self,k = 10): ''' Samples K mutations from self.muitations, and discards the rest. It then proceeds to compute the S-matrix associated with the coalescent. ''' """ Step 1, set up everything like we were running computeAncestralConfiguration """ M = len(self.coal.mutations) S = np.zeros((self.n,self.L),dtype=int) S_old = np.array(S) # site_mut_count = np.zeros(self.L,dtype=int) # seq_mut_count = np.zeros(self.n, dtype=int) # affectedSites = np.random.randint(self.L, size = M) # mutationType = np.random.randint(1,4,size = M) # ''' Step 2, randomly iterate over the list of mutations. Mutaions, untill the number of added mutations equals k ''' # inconsistencyCount = 0 mutationCounter = 0 ignoredMutations = list(self.coal.mutations) consideredMutations = [] # deviant_mutations = [] # deviant_mutations_indices = [] # self.coal.mutations = [] # typeCount = [0,0,0,0] # typeCountList = [list(typeCount)] S_seq = [np.matrix(S)] # inconsistentPairs = [] """ type 0 : a column with 3 states type 1 : a column with 2 states and >2 mutations : (no incompatibility w. other states) type 2 : creating a column with 2 states and incompatibilities type 3 : create an invisible state """ while mutationCounter < min(M,k): m_index = np.random.randint(M - mutationCounter) m_k = np.random.randint(1,4) m_site = np.random.randint(self.L) # site_mut_count[m_site] += 1 mutation = ignoredMutations.pop(m_index) + (m_site, m_k,mutationCounter) """ Now a mutatiin has the following as its entries: m[0] : time of mutation m[1] : affected leneage m[2] : affected site m[3] : mutation type (k - shift mod 4) m[4] : a counter -- number of mutations preceeding this one """ t,branch = mutation[:2] affectedSequences = self.coal.getStateNoCoppy(t).blocks[branch] for sequenceIndex in affectedSequences: S[sequenceIndex,m_site] += m_k S[sequenceIndex,m_site] %= 4 # seq_mut_count[sequenceIndex] += 1 # if site_mut_count[m_site] > 1 and S[sequenceIndex,m_site] != 0: # if site_mut_count[m_site] > 1: # # inconsistencyCount += 1 # mutation += (inconsistencyCount,) # # inconsistent_columns_new = inconsistentColumnPairs(site_mut_count,S) # inconsistent_columns_old = inconsistentColumnPairs([ i - int(i==m_site) for i in site_mut_count],S_old) # # newInconsistencies = len(inconsistent_columns_new) > len(inconsistent_columns_old) # # if len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) > 1: # typeCount[0] += 1 # # if len(set((S[i,m_site] for i in xrange(S.shape[0]))) - set((0,))) == 1: # if newInconsistencies: # typeCount[2] += 1 # else: # typeCount[1] += 1 # # if S[sequenceIndex,m_site] == 0: # typeCount[3] += 1 # # typeCountList.append(list(typeCount)) # # deviant_mutations.append(mutation) # # deviant_mutations_indices.append(mutationCounter) mutationCounter += 1 consideredMutations.append(mutation) # if computeS_seq: S_seq.append(np.matrix(S)) S_old[:,m_site] = S[:,m_site] # if computeS_seq: # newSeq = zip(consideredMutations,S_seq[1:]) # newSeq.sort(cmp = lambda x,y: int(np.sign(x[0][0] - y[0][0]))) # consideredMutations = [x[0] for x in newSeq] # S_seq = S_seq[:1] + [x[1] for x in newSeq] # else: # consideredMutations.sort(cmp = lambda x,y: int(np.sign(x[0] - y[0]))) # newSeq = [] consideredMutations.sort(cmp = lambda x,y: int(np.sign(x[0] - y[0]))) #newSeq = [] self.coal.mutations = consideredMutations self.sequences = S # return {"S":S, # "mutCount_sites":site_mut_count, # "mutCount_sequences":seq_mut_count, # "Inconsistencies":inconsistencyCount, # "typeCount":typeCount, # "typeCount_arr":np.array(typeCount), "coalescent" : deepcopy(self.coal) # "typeCountList" : typeCountList, # "newSeq" : newSeq, # "S_seq" : S_seq, # "deviant_mutations": deviant_mutations } def getS(self): return np.array(self.sequences, dtype=int) def getSiteMutationCounts(self): return np.array(self.site_mutationCount, dtype = int) def getSeq_mutationCount(self): return np.array(self.sequences_mutationCount, dtype = int ) def getSegregatingSites(self): return [j for j in range(self.L) if max(self.sequences[:,j]) > 0] def getInvisibleSites(self): return [j for j in range(self.L) if max(self.sequences[:,j])==0 and self.site_mutationCount[j] > 0] def countSegregatingSites(self): # counter = np.zeros(self.n, dtype = int) counter = 0 for j in range(self.L): if len(filter(lambda x: x!= 0 , self.sequences[:,j])) > 0: counter += 1 return counter def countMinimalMutations(self): counter = 0 for j in range(self.L): mutations = filter(lambda x: x!= 0 , self.sequences[:,j]) if len(mutations) > 0: counter += len(set(mutations)) return counter def countInconsistencies(self): #return len(inconsistentColumnPairs(site_mut_count = self.site_mutationCount , S = self.sequences) ) return len(inconsistentColumnPairs(S = self.sequences) ) def getInconsistentColumnPairs(self): #return inconsistentColumnPairs(site_mut_count = self.site_mutationCount , S = self.sequences) return inconsistentColumnPairs(S = self.sequences) # def inconsistentColumnPairs(site_mut_count, S, ancestral_type_known = True): # if S.shape[1] != len(site_mut_count): # raise ValueError('Number of collumns in S (=%i) does not match length of site_mut_count (=%i)'%(S.shape[1],len(site_mut_count))) # pairs = [] # affectedSites = filter(lambda i: sum(S[j,i] != 0 for j in xrange(S.shape[0])) > 1, xrange(S.shape[1]) ) # #affectedSites = filter(lambda i: site_mut_count[i] > 0, xrange(len(site_mut_count)) ) # for s1 in affectedSites: # for s2 in filter(lambda x: x > s1 , affectedSites): # #if not three_gammete_test(S[:,s1],S[:,s2]): # if not compatibility_test(S[:,s1], S[:,s2], ancestral_type_known = ancestral_type_known): # pairs.append((s1,s2)) # return pairs def inconsistentColumnPairs(S, ancestral_type_known = True): pairs = [] number_of_non_0_elements = np.apply_along_axis(func1d = sum, axis = 0, arr = (S != 0)) affectedSites = [i for i,n in enumerate(number_of_non_0_elements) if n > 1] # discriminant = lambda i: sum(S[j,i] != 0 for j in xrange(S.shape[0])) > 1 # affectedSites = filter(discriminant, xrange(S.shape[1])) for i,s1 in enumerate(affectedSites): #for s2 in filter(lambda x: x > s1 , affectedSites): for s2 in affectedSites[(i+1):]: if not two_char_compatibility_test(S[:,s1], S[:,s2], ancestral_type_known = ancestral_type_known): pairs.append((s1,s2)) return pairs def two_char_compatibility_test(c1,c2, ancestral_type_known = False, ancestral_type = (0,0)): ''' Takes two columns of equal length (representing characters on a phylogeny), and returns true if and only if they are compatible (in the sense that the number of mutations nessecary to place both characters on a single tree is the sum of the numbr of mutations nessecary to place each character on a tree individually) ''' if len(c1) != len(c2): raise(ValueError('Cannot compare characters of unequal length')) #convert input to list c1_list = list(c1) c2_list = list(c2) if ancestral_type_known: c1_list.append(ancestral_type[0]) c2_list.append(ancestral_type[1]) # G_dict = partition_intersection_graph([c1_list,c2_list]) # G_nx = nx.Graph(G_dict['E']) G_nx = partition_intersection_graph([c1_list,c2_list]) return nx.is_forest(G_nx) #return len(nx.cycles.cycle_basis(G_nx)) == 0 def three_gammete_test(c1,c2): ''' Takes two columns/or characters. Returns False if the characters contain all three of the gammetes (not 0, 0) (not 0, not 0) and (0, not 0). Returns True otherwise. ''' n = len(c1) AX_occurs = reduce(lambda x,y: x or y, map(lambda i: c1[i] == 0 and c2[i] != 0, range(n))) YA_occurs = reduce(lambda x,y: x or y, map(lambda i: c1[i] != 0 and c2[i] == 0, range(n))) YX_occurs = reduce(lambda x,y: x or y, map(lambda i: c1[i] != 0 and c2[i] != 0, range(n))) return not(AX_occurs and YA_occurs and YX_occurs) def compatibility_criterion_1(c1,c2, ancestral_type_known = False, ancestral_type = (0,0)): ''' THIS CRITERION IS NESSECARY BUT INSUFFICIENT FOR PAIRWISE COMPATIBILITY! Takes two columns of equal length (representing characters on a phylogeny), and returns true if (NOT only if) they are compatible (in the sense that the number of mutations nessecary to place both characters on a single tree is the sum of the numbr of mutations nessecary to place each character on a tree individually) ''' if len(c1) != len(c2): raise(ValueError('Cannot compare characters of unequal length')) states_1 = set(c1) states_2 = set(c2) gammetes = set(zip(c1,c2)) if ancestral_type_known: gammetes.add((0,0)) # gammetes is a set; only has effect when (0,0) not already present. n_states_1 = len(states_1) n_states_2 = len(states_2) n_gammetes = len(set(gammetes)) return n_gammetes <= n_states_1 + n_states_2 - 1 #,states_1,states_2,gammetes def partition_intersection_graph(chars, output_as_dict = False): ''' accepts a collection (e.g. a list) of characters, and generates their partition intersection graph G. The output is either a dictionary, where G['V'] = nodes, and G['E'] = edges, or an object of the type networkx.Graph. ''' nodes = [] for i,char in enumerate(chars): p = to_partition(char) for block in p: nodes.append((i,tuple(block))) edges = [] for i, a in enumerate(nodes): for b in nodes[i+1:]: if len(set(a[1]).intersection(set(b[1]))) > 0: edges.append([a,b]) if output_as_dict: return {'V':nodes,'E':edges} else: return nx.Graph(edges) def get_informative_collumns(S): '''A columns where all but one character state exists only once is deemed 'un-informative'. This method removes all such columns. ''' number_of_non_0_elements = np.apply_along_axis(func1d = sum, axis = 0, arr = (S != 0)) segregatingSites = [i for i,n in enumerate(number_of_non_0_elements) if n>1] #return filter(lambda i: is_informative(S[:,i]), range(S.shape[1])) return filter(lambda i: is_informative(S[:,i]), segregatingSites) def get_non_informative_collumns(S): ''' returns the complement of get_informative_collumns(S) ''' return filter(lambda i: not is_informative(S[:,i]), range(S.shape[1])) def get_essential_state_counts(S): return map(lambda i: number_of_essential_states(S[:,i]), range(S.shape[1])) def is_informative(char,ancestral_type_known = True, ancestral_type = 0): ''' Determine if a character is informative Returns: Boolean value True iff char has only one block, or multiple blocks, with the seccond-largest block having size 1 (i.e. if only one non-trivial block) ''' char = list(char) if ancestral_type_known: char.append(ancestral_type) n_part = map(len,to_partition(char)) # get block-sizes of partition if len(n_part) == 1: return False # len(part)==1 iff single state character else: n_part.sort(reverse = True) return n_part[1] > 1 def number_of_essential_states(char, ancestral_type_known = True, ancestral_type = 0): '''returns the number of states which appear more than one. if the ancestral type is indicated as known, the count of the state indicated by the variable 'ancestral_type' artificially has its count boosted by 1. ''' char = list(char) if ancestral_type_known: char = char + [ancestral_type] n_part = map(len,to_partition(char)) return sum([b > 1 for b in n_part]) def to_partition(char, block_constructor = set): '''in : a character e.g. ['A','A','G','A','T'] out: a list of sets. each set corresponds to all indices (from 0 to len(char)-1) with the same state, e.g. [set([0,1,3]),set([2]),set([4])]. This list will be sorted in order of least elements.''' states = set(list(char)) partition = [block_constructor( filter( lambda i: char[i] == s, range(len(char)) ) ) for s in states] partition.sort(key = min) return partition def count_minimal_vs_actual_mutations(simulation, ancestral_type_known = True, ret_all= True): #assert isinstance(simulation,simulator_KingmanFiniteSites) site_mut_count = simulation.getSiteMutationCounts() # counts actual number of mutations S = simulation.getS() if ancestral_type_known: # add a (0,0,0,...,0)-row to S; representing the sequence of the MRCA S = np.r_[S,np.zeros( (1,S.shape[1]), dtype = int)] block_counts = [len( to_partition( S[:,i] ) ) for i in range(S.shape[1])] min_mut_counts = [i-1 for i in block_counts] A = np.array(site_mut_count) B = np.array(min_mut_counts) C = A - B if ret_all: return {'actual':A, 'minimal':B, 'diff':C} else: return C def draw_partition_intersection_graph(representation): if type(representation) == list: # we have been passed a list of characters chars = representation G = partition_intersection_graph(chars) else: assert type(representation) == nx.Graph G = representation nx.draw(G, node_color = [n[0] for n in G.nodes()]) def fromEdgesToConnectedComponents(pairs): ''' In: a list of edges (i,j) satisfying i < j Out: a list of sets [S_1, S_2, ...] corresponding to the verticees of connected components in the graph encoded by the input. ''' if len(pairs) == 0: return [] # vertices_with_duplicates = reduce( lambda x,y: x+y, pairs) # verticees = list(set(vertices_with_duplicates)) # verticees.sort() #we encode the set of all blocks in the graph by the smallest vertex if. # hence j belongs to the block encoded by i if and only if is the minimum # index in the connected component containing j. blocks = {} block_index = {} # blocks = dict(verticees[0]:set(verticees[0],)) # block_indices = dict(verticees[0]:verticees[0]) #for v in verticees: # verticees_seen = set([]) for edge in pairs: vertices_seen = block_index.keys() v1 = edge[0] v2 = edge[1] if v1 not in vertices_seen and v2 not in vertices_seen: block_index[v1] = v1 block_index[v2] = v1 blocks[v1] = set([v1,v2]) if v1 in vertices_seen and v2 not in vertices_seen: block_index[v2] = block_index[v1] blocks[block_index[v1]].add(v2) if v1 not in vertices_seen and v2 in vertices_seen: block_index[v1] = block_index[v2] blocks[block_index[v2]].add(v1) if v1 in vertices_seen and v2 in vertices_seen: if block_index[v1] != block_index[v2]: if block_index[v1] < block_index[v2]: index_min = block_index[v1] index_max = block_index[v2] else: index_max = block_index[v1] index_min = block_index[v2] block_max = blocks.pop(index_max) blocks[index_min] = blocks[index_min].union(block_max) for v in block_max: block_index[v] = index_min return blocks.values() def printPairListWithDegrees(pairs,components): vertices_with_duplicates = reduce( lambda x,y: x+y, pairs) verticees = list(set(vertices_with_duplicates)) verticees.sort() degree = dict([(v,0) for v in verticees]) for v1,v2 in pairs: degree[v1] += 1 degree[v2] += 1 degreeList = degree.items() degreeList.sort(cmp = lambda x,y: y[1] - x[1]) print 'vertices (%i total):'%len(verticees) print verticees print '\nedges (%i total):'%len(pairs) print set(pairs) print '\nconnected components:(%i total)'%len(components) print components print '\ndegrees (as (vertex,degree) ):' print degreeList def generate_plots_for_jotun(n = 8,L = 100,thetaMax = 100,thetaMin=0.001,steps=5,N=100,savePath = ''): saveFigures = len(savePath) > 0 print_a_larger_than_10 = 10 print_a_50 = True #Run simulations thetas = np.logspace(log10(thetaMin),log10(thetaMax),steps) typeCouunter_simulationAverages = np.zeros((len(thetas),4)) averageInconsistencyBlocksizeFrequency = np.zeros((len(thetas),L)) for i,theta in enumerate(thetas): simulations = [simulator_KingmanFiniteSites(n,float(theta)/2,L) for z in range(N)] typeCounter = np.zeros((N,4)) for j in range(N): s = simulations[j] S = s.getS() for column in range(S.shape[1]): typeCounter[j,len(set(S[:,column]))-1] += 1 incompatible_pairs = s.getInconsistentColumnPairs() incompatible_components = fromEdgesToConnectedComponents(incompatible_pairs) # print incompatible_pairs # print incompatible_components incompatability_group_sizes = map(len,incompatible_components) #incompatability_group_sizes = [len(c) for c in incompatible_components] for k in incompatability_group_sizes: if print_a_larger_than_10 > 0 and k >= 10: print 'Incompatitility graph: generated with (n,L,theta) = (%i,%i,%10.5f):\n'%(n,L,theta) printPairListWithDegrees(incompatible_pairs,incompatible_components) print_a_larger_than_10 -= 1 print '-'*80 averageInconsistencyBlocksizeFrequency[i][k -1] += 1 typeCouunter_simulationAverages[i] = [sum(typeCounter[:,k]) / float(N) for k in range(4)] averageInconsistencyBlocksizeFrequency[i] *= 1.0/N #generate plot of frequency of number of dirrerent characters: fig = pl.figure(figsize=(20,5)) pl.suptitle('%i sequences of length %i; %i simulations per point '%(n,L,N)) pl.subplot(121) pl.xlabel(r"$\frac{\theta}{L}$") pl.ylabel("mean frequency of loci with k types") pl.xscale('log') for k in (1,2,3,4): pl.plot(thetas/L , typeCouunter_simulationAverages[:,k-1], label = '$k = %i$'%k) pl.legend(loc='best') #generate plot of frequency of incompatability-blocksizes pl.subplot(122) pl.xlabel(r"$\frac{\theta}{L}$") pl.ylabel("mean frequency of maximal\nincompatible groups of size s") pl.xscale('log') blocksizelist = [2,3,4,5,10,25,50] for k in blocksizelist: pl.plot(thetas/L , averageInconsistencyBlocksizeFrequency[:,k-1],label = '$s = %i$'%k) pl.legend(loc='best') fig.tight_layout() fig.subplots_adjust(top=0.88) if saveFigures: pl.savefig(savePath+"jotunPlot__L_%i__N_%i__n_%i.pdf"%(L,N,n)) pl.savefig(savePath+"jotunPlot__L_%i__N_%i__n_%i.png"%(L,N,n)) pl.savefig(savePath+"jotunPlot__L_%i__N_%i__n_%i.eps"%(L,N,n)) pl.savefig(savePath+"jotunPlot__L_%i__N_%i__n_%i.svg"%(L,N,n)) csv_path = savePath+"jotunPlot__L_%i__N_%i__n_%i"%(L,N,n) #csv_out = open(csv_path,w) array1_out = np.c_[thetas/L , typeCouunter_simulationAverages] np.savetxt(csv_path+'_subfig_1.csv',array1_out,fmt='%10.10f',delimiter = ', ') array2_out = np.c_[thetas/L , averageInconsistencyBlocksizeFrequency[:,blocksizelist]] np.savetxt(csv_path+'_subfig_2.csv',array2_out,fmt='%10.10f',delimiter = ', ') # for vector in [thetas/L]+[[]]+[typeCouunter_simulationAverages[:,k-1] for k in (1,2,3,4)]+[[]]+[averageInconsistencyBlocksizeFrequency[:,k-1] for k in range(2,11)]: # csv_out.write(', '.join(['%.10f'%x for x in vector])) # csv_out.write('\n') # csv_out.close() pl.show() def generate_plot_1(n = 8,L = 100,thetaMax = 10,thetaMin=0.01,steps=20,N=100,savePath = ''): saveFigures = len(savePath) > 0 #Run simulations h = (float(thetaMax) - thetaMin)/steps thetas = np.arange(thetaMin,thetaMax,h)+h avgRate = np.zeros(len(thetas)) inconsistencyCount = np.zeros(len(thetas)) invisibleSiteCount = np.zeros(len(thetas)) for i,theta in enumerate(thetas): simulations = [simulator_KingmanFiniteSites(n,float(theta)/2,L) for z in range(N)] # rates = [] # inconsistencies = [] # invisibleSites = 0 # segCounter = 0 for s in simulations: # for i in range(N): # s = simulations[i] minimalMutations = s.countMinimalMutations() actualMutations = len(s.coal.mutations) segregatingSites = s.countSegregatingSites() # siteMutationCounts = s.getSiteMutationCounts() if minimalMutations > 0: rates.append( float(actualMutations) / minimalMutations ) inconsistencies.append(s.countInconsistencies()) invisibleSites += len(s.getInvisibleSites())/float(segregatingSites) segCounter += 1 if segCounter > 0: invisibleSiteCount[i] = invisibleSites/float(segCounter) else: invisibleSiteCount[i] = 0 avgRate[i] = np.average(rates) inconsistencyCount[i] = np.average(inconsistencies) / binom(L,2) #generate plot 1 pl.figure() label = "L,N,n = %i,%i,%i"%(L,N,n) pl.xlabel(r"$\frac{\theta}{L}$") pl.ylabel(r"(actual # mutations) / (# visible mutations)") pl.plot(thetas/L , avgRate , color='blue' , label=label) pl.legend(loc='upper left') if saveFigures: pl.savefig(savePath+"plot1__L_%i__N_%i__n_%i.pdf"%(L,N,n)) #generate plot 2 pl.figure() # label = "(x;y) = (theta/L ; fraction of inconsistent columns)\nL,N,n = %i,%i,%i"%(L,N,n) label = "L,N,n = %i,%i,%i"%(L,N,n) pl.xlabel(r"$\frac{\theta}{L}$") pl.ylabel(r"#inconsistent column-pairs / $\binom{L}{2}$") pl.plot(thetas/L, inconsistencyCount, color = "red", label = label) pl.legend(loc='upper left') if saveFigures: pl.savefig(savePath+"plots/plot2__L_%i__N_%i__n_%i.pdf"%(L,N,n)) #generate plot 3 pl.figure() # label = "(x;y) = (theta/L ; fraction of invisible sites)\nL,N,n = %i,%i,%i"%(L,N,n) label = "L,N,n = %i,%i,%i"%(L,N,n) pl.xlabel(r"$\frac{\theta}{L}$") pl.ylabel(r"#invisible sites / #segregating sites") pl.plot(thetas/L, invisibleSiteCount, color = "green", label = label) pl.legend(loc='upper right') if saveFigures: pl.savefig(savePath+"plots/plot3__L_%i__N_%i__n_%i.pdf"%(L,N,n)) pl.show() #def generate_plot_2(n,L,theta,N=100): # simulations = [simulator_KingmanFiniteSites(n,float(theta)/2,L) for z in range(N)] # count_inconsistencies_total = 0 # for i,s in enumerate(simulations): # count_inconsistencies = s.countInconsistColumnPairs() # count_inconsistencies_total += count_inconsistencies def runTests(): # generate_plot_1(n=10,L=50,thetaMax=50,steps=50,N=1000) generate_plot_1(n=20,L=200,thetaMax=200,steps=20,N=1000) def simulateUntillXMutations(N = 1000, n = 20, L = 100, mutRate = 200,printFirst10 = False,X = 2): K_list = [simulator_KingmanFiniteSites(n,mutRate,L,False) for i in xrange(N)] totalTypeCount = np.array((0,0,0,0)) misses = 0 k_res_List = [] for K in K_list: res = K.untillFirstXInconsistencies(X = X) #Guarentee that we actually got enough mutations. if res["Inconsistencies"] == X: totalTypeCount += res["typeCount_arr"] k_res_List.append([K,res]) else: misses += 1 if printFirst10: for K in K_list[:10]: print chronology(K) print "" N_eff = N - misses return totalTypeCount,N_eff,k_res_List def chronology(K): ''' Outputs a String of all events in K, sorted in chronological order ''' events = list(K.coal.jumps) events.extend(K.coal.mutations) events.sort(cmp = lambda x,y: int(np.sign(x[0] - y[0]))) return "\n".join(map(eventToString,events)) def eventToString(e): if str(type(e[1])) == "<class 'libCoal.partition'>": return "t = %1.4f\t"%e[0] + str(e[1]) if isinstance(e[1], int): outStr = "t = %1.4f\t"%e[0] if len(e) > 5: outStr += " *** Inconsistency number %i *** "%e[5] outStr += "Mutation (%i in order added"%e[4] outStr += "; +%i-mod4 at site %i affecting block %i)"%(e[3],e[2],e[1]) return outStr else: print "WTF!",e def scatterplot_index_and_time_of_abnormal_mutations(N = 1000 , L = 100, n = 20): theta = 1.2 * L typeCounts,N_eff,k_res_list = simulateUntillXMutations(N = N, n = n , L = L, mutRate=theta, printFirst10= False) t1, I1 = np.zeros(N_eff,dtype = float), np.zeros(N_eff,dtype = int) t2, I2 = np.zeros(N_eff,dtype = float), np.zeros(N_eff,dtype = int) i = 0 for K,res in k_res_list: mutations = res["deviant_mutations"] t1[i], I1[i] = mutations[0][0],mutations[0][4] t2[i], I2[i] = mutations[1][0],mutations[1][4] i += 1 pl.figure() pl.subplot(1,2,1) pl.scatter(t1,t2,marker="+",s=10) pl.axis('scaled') pl.xlim(xmin = 0.0) pl.ylim(ymin = 0.0) pl.title("(coalescent) time of mutations") pl.xlabel(r"$t_1$") pl.ylabel(r"$t_2$") pl.subplot(1,2,2) pl.scatter(I1,I2,marker="+",s=10) pl.xlim(xmin = 0.0) pl.ylim(ymin = 0.0) pl.axis('scaled') pl.xlabel(r"$i_1$") pl.ylabel(r"$i_2$") pl.title("Index of mutations\n(in order of simulation)") pl.suptitle("N = %i L = %i n = %i"%(N_eff,L,n)) filename_str = "plots/scatter_mut1_vs_2/scatter_mut1_vs_2_N_%i_L_%i_n_%i"%(N_eff,L,n) try: pl.savefig(filename_str+".pdf") pl.savefig(filename_str+".png") pl.savefig(filename_str+".ps") pl.savefig(filename_str+".svg") pl.savefig(filename_str+".eps") except Exception: print "could not save in all formats" pl.draw() def generatePlot_of_mutationTypes(N = 1000,L = 100, n = 20, printFirsrst10 = False,show = False, X=2): theta = 2.0 * L typeCounts,N_eff,K_list = simulateUntillXMutations(N = N, n = n , L = L, mutRate=theta, printFirst10= printFirsrst10, X = X) #run simulations #typeCounts,N_eff = simulateUntillXMutations(N = N, n = n , L = L, mutRate=theta, printFirst10= printFirsrst10,X = X)[:2] #plot simulation-results width = 0.8 #color = ("cyan","orange","grey","magenta") color = ("white","white","white","white") hatch = ("//", ".","\\") left = np.arange(1,5) - width/2.0 pl.figure() bars = pl.bar(left,typeCounts,width = width, color = color) for bar,pattern in zip(bars[1:],hatch): bar.set_hatch(pattern) # pl.xlabel("Type of incompatibility") pl.xticks(np.arange(1,5),("3 types","2 types\n2 mutations\n3 gammete test passes","2 types\n3 gammete test fails","1 type\n2 mutations")) pl.ylabel("frequency") pl.title("Result of %i simulations stopped after %i events\nsequences = %i sequence-length = %i"%(N_eff,X,n,L)) # pl.tight_layout() pl.draw() filename_str = "plots/bars_stoppedProcess/bar_typeFrequencies_X_%i_N_%i_L_%i_n_%i_no_color"%(X,N_eff,L,n) try: pl.savefig(filename_str+".pdf") pl.savefig(filename_str+".png") pl.savefig(filename_str+".ps") pl.savefig(filename_str+".svg") pl.savefig(filename_str+".eps") except Exception: print "could not save in all formats (pdf,png,ps,svg,eps)" if show: pl.show() np.savetxt(filename_str+".csv", np.array(typeCounts,ndmin=2),fmt='%d', delimiter = ', ',header = "(a) 3 types, (b) 2 types 2 mutations 3 gammete test passes, (c) 2 types 3 gammete test fails, (d) 1 type 2 mutations") def run_generatePlot_of_mutationTypes(arglist = [(1000,100,20)],X = 2): for args in arglist: N,L,n = args print "%s Generating plots (Barcharts) for N,L,n,X = %i,%i,%i,%i"%((ctime(),)+tuple(args)+(X,)) generatePlot_of_mutationTypes(N=N,L=L,n=n,printFirsrst10 = False,show = False, X = X) def run_generateScatterplots(arglist = [(100,100,20)]): for args in arglist: N,L,n = args print "Generating plots (scatterplts) for N,L,n = %i,%i,%i"%tuple(args) scatterplot_index_and_time_of_abnormal_mutations(N,L,n)
gpl-2.0
brguez/TEIBA
src/python/activityStatus_VAF_association.py
1
3005
#!/usr/bin/env python #coding: utf-8 #### MAIN #### ## Import modules ## import argparse import sys import os.path import time import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy import stats import seaborn as sns import scipy ## Get user's input ## parser = argparse.ArgumentParser(description= """""") parser.add_argument('activityRateFile', help='') parser.add_argument('alleleFreqFile', help='') parser.add_argument('-o', '--outDir', default=os.getcwd(), dest='outDir', help='output directory. Default: current working directory.' ) args = parser.parse_args() activityRateFile = args.activityRateFile alleleFreqFile = args.alleleFreqFile outDir = args.outDir scriptName = os.path.basename(sys.argv[0]) ## Display configuration to standard output ## print print "***** ", scriptName, " configuration *****" print "activityRateFile: ", activityRateFile print "alleleFreqFile: ", alleleFreqFile print "outDir: ", outDir print print "***** Executing ", scriptName, ".... *****" print ## Start ## #### 1) Make activity rate dataframe ##################################### dfActivityRate = pd.read_csv(activityRateFile, header=0, index_col=0, sep='\t') print "dfActivityRate: ", dfActivityRate #### 2) Make allele frequency across ancestries dataframe ########################################################## ## Load allele count matrix into dataframe dfAlleleFreqAncestry = pd.read_csv(alleleFreqFile, header=0, index_col=0, sep='\t') print "dfAlleleFreqAncestry: ", dfAlleleFreqAncestry #### 3) none/low vs moderate/high activity VAF comparison ############################################################ ### Prepare Data dataframe = pd.concat([dfActivityRate["activityStatus"], dfAlleleFreqAncestry["PCAWG"]], axis=1) print "dataframe: ", dataframe dataframe1 = dataframe[(dataframe['activityStatus']=="none") | (dataframe['activityStatus']=="low")] dataframe1['activityStatus'] = "none/low" dataframe2 = dataframe[(dataframe['activityStatus']=="moderate") | (dataframe['activityStatus']=="high")] dataframe2['activityStatus'] = "moderate/high" dataframe3 = pd.concat([dataframe1, dataframe2]) x = dataframe3[(dataframe3['activityStatus']=="none/low")]["PCAWG"].values y = dataframe3[(dataframe3['activityStatus']=="moderate/high")]["PCAWG"].values mannWhitneyU = stats.mannwhitneyu(x, y, alternative='two-sided') Ustat = mannWhitneyU[0] pvalue = round(mannWhitneyU[1], 4) ## Make boxplot: ################# title = "Mann-Whitney U = " + str(Ustat) + ", P = " + str(pvalue) fig = plt.figure(figsize=(5,6)) fig.suptitle(title, fontsize=14) ax = sns.boxplot(x="activityStatus", y="PCAWG",data=dataframe3, width=0.5, showfliers=False) ax = sns.stripplot(x="activityStatus", y="PCAWG", data=dataframe3, jitter=True, color=".3") ax.set(ylim=(-0.1, 1.1)) ax.set_xlabel('') # Add mann whitney U statistic and p-value to the plot: ## Save figure fileName = outDir + "/low_vs_high_activity_VAF_boxPlot.pdf" plt.savefig(fileName) sys.exit(1)
gpl-3.0
yunfeilu/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
284
3265
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
trnet4334/img_colorization
landscape_colorizer/colorization_use_pretrained_conv_layers.py
1
6440
from keras.models import Sequential, model_from_json from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape from keras.layers.convolutional import Convolution2D, MaxPooling2D,Conv2D from keras.utils import np_utils from keras.layers.normalization import BatchNormalization import numpy as np import matplotlib.pyplot as plt import matplotlib import os, shutil import theano from PIL import Image from numpy import * from sklearn.utils import shuffle from sklearn.cross_validation import train_test_split from skimage.color import rgb2lab import skimage.color as color # General parameters img_rows, img_cols = 96, 96 # Image dimensions after resizing bin_num = 20 # For classification : Since a and b channel contains continous value from -100 to 100, we bin them to several classes input_channels = 1 # The paper use 3 duplicated channel as input since pre-trained network has 3 channel, but we can use 1 if we are not using VGG-16 test_img_num = 40 # Use first-n files in the data folder to test the model lab_channels = ['l', 'a', 'b'] # Cnn model parameters era = 1000 epoch = 3 batch_size = 64 validation_split = 0.1 # Paths img_input_path = "./combined/" img_output_path = "./predict_output_pretrained_conv_layers/" img_reconstructed_path = "./reconstructed_input_after_bining/" img_channels_path = "./channels_img/" def save_img_of_channel(img_lab, channel, name="img"): img_lab_cp = img_lab.copy() # Delete the rest channels by setting them to 0 if channel == 'l': img_lab_cp[:,:,1:] = 0 elif channel == 'a': img_lab_cp[:,:,0] = 0 img_lab_cp[:,:,2] = 0 elif channel == 'b': img_lab_cp[:,:,:2] = 0 else: print "[ERROR!!] The channel should be 'l', 'a' or 'b' " return img_rgb_channel = color.lab2rgb(img_lab_cp) im = Image.fromarray((img_rgb_channel * 255).astype(uint8)) im.save(img_channels_path + name + "_" + channel + ".jpg", "jpeg") def save_image_by_channels(img_lab, name): # Seperate the image channels L a* and b* for i in xrange(0, len(lab_channels)): img = img_lab[:,:,i] save_img_of_channel(img_lab, lab_channels[i], name=name) def reconstruct_image_by_lab_channels(img_l, img_a, img_b): img = array([img_l.T, img_a.T, img_b.T]).T img_rgb_channel = color.lab2rgb(img) im = Image.fromarray((img_rgb_channel * 255).astype(uint8)) return im def get_img_ab_binned(img_lab): img_a = img_lab[:,:,1] img_b = img_lab[:,:,2] img_a_binned = ((img_a + 100) * bin_num) / 200 img_b_binned = ((img_b + 100) * bin_num) / 200 return img_a_binned.astype(int), img_b_binned.astype(int) def get_img_ab_unbinned(img_a_binned, img_b_binned): img_a_unbinned = ((img_a_binned * 200) / bin_num) - 100.0 img_b_unbinned = ((img_b_binned * 200) / bin_num) - 100.0 return img_a_unbinned, img_b_unbinned def save_input_image_after_bining(img_lab, name='img'): # Use this function to test how bin_num affect the original input image img_a_binned, img_b_binned = get_img_ab_binned(img_lab) img_a_unbinned, img_b_unbinned = get_img_ab_unbinned(img_a_binned, img_b_binned) im = reconstruct_image_by_lab_channels(img_lab[:,:,0], img_a_unbinned, img_b_unbinned) im.save(img_reconstructed_path + name + "_reconstructed_after_bining.jpg", "jpeg") def get_duplicated_l_channel(img_l, channels): img_l_duplicated = [] for i in xrange(channels): img_l_duplicated.append(img_l.T) result = array(img_l_duplicated).T return result ''' Start Here ''' imlist = os.listdir(img_input_path) imlist.sort() # ''' For playing with lab images and also testing the affect of bining ''' for i in xrange(test_img_num): # Save image of each channel (l, a, b) img_rgb = array(Image.open(img_input_path + imlist[i]).resize((img_rows,img_cols))) img_lab = rgb2lab(img_rgb) save_image_by_channels(img_lab, imlist[i]) # Test the color distortion of input image after bining save_input_image_after_bining(img_lab, name = imlist[i]) ''' For training and testing cnn model ''' X = [] # Traning inputs X_l = [] # Keep the l channel to reconstruct the image from lab to rgb Y = [] # Traning labels count = 1; for img in imlist: print "loading data .... " + str(count) + "/" +str(len(imlist)) img_rgb = array(Image.open(img_input_path + img).resize((img_rows,img_cols))) img_lab = rgb2lab(img_rgb) img_a_binned, img_b_binned = get_img_ab_binned(img_lab) img_y = np.append(img_a_binned.flatten(), img_b_binned.flatten()) y = np_utils.to_categorical(img_y, bin_num) X.append(get_duplicated_l_channel(img_lab[:,:,0], input_channels)) # The paper use 3 duplicated l channel as network input X_l.append(img_lab[:,:,0]) Y.append(y) count += 1 X = array(X) Y = array(Y) X_l = array(X_l) print X.shape print Y.shape # Use the trained model to do prediction # Load model from json file json_file = open('model(80).json', 'r') loaded_model_json = json_file.read() json_file.close() model = model_from_json(loaded_model_json) # Load weights into model model.load_weights("weight(80).hdf5") for i in xrange(1, 11, 1): model.layers.pop() model.layers[-1].outbound_nodes = [] model.outputs = [model.layers[-1].output] model.summary() for layer in model.layers: layer.trainable = False model.add(Dense(1024, name ='dd')) model.add(BatchNormalization(name='nn')) model.add(Activation('relu', name='rr')) model.add(Dropout(0.5, name='dr')) model.add(Dense(img_rows * img_cols * 2 * bin_num, name='den')) model.add(Reshape((img_rows * img_cols * 2, bin_num))) model.add(Activation('softmax', name="act")) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=["acc"]) model.summary() for j in xrange(era): hist = model.fit(X[test_img_num:], Y[test_img_num:], batch_size=batch_size, nb_epoch=epoch, verbose=1, validation_split=validation_split, shuffle=True) if j % 10 == 0: for i in xrange(0, test_img_num): result = model.predict_classes(X[i].flatten().reshape(1, img_rows, img_cols, input_channels)) print result reshaped = result.reshape(2, img_rows, img_cols) a, b = get_img_ab_unbinned(reshaped[0], reshaped[1]) im = reconstruct_image_by_lab_channels(X_l[i], a, b) im.save(img_output_path + imlist[i] + "_predicted_" + "era_" +str(j) + ".jpg", "jpeg") model_json = model.to_json() with open("colorize_with_pretrain.json", "w") as json_file: json_file.write(model_json) model.save_weights("colorize_with_pretrain.hdf5", overwrite=True)
mit
gromitsun/sim-xrf-py
others/snr_90_180/snr_0_90_180_as.py
1
1155
import numpy as np from scipy.interpolate import interp1d import matplotlib.pyplot as plt plt.figure() ax1 = plt.gca() ax2 = ax1.twinx() openings = np.load('snr_as0_5um.npz')['openings'] snr = np.load('snr_as0_5um.npz')['snr'] p2b = np.load('snr_as0_5um.npz')['p2b'] ax1.plot(openings,snr, 'r-', label=r'0$^\circ$') ax2.plot(openings,p2b, 'r--', label=r'0$^\circ$') openings = np.load('snr_as90_5um.npz')['openings'] snr = np.load('snr_as90_5um.npz')['snr'] p2b = np.load('snr_as90_5um.npz')['p2b'] ax1.plot(openings,snr, 'b-', label=r'90$^\circ$') ax2.plot(openings,p2b, 'b--', label=r'90$^\circ$') openings = np.load('snr_as180_5um.npz')['openings'] snr = np.load('snr_as180_5um.npz')['snr'] p2b = np.load('snr_as180_5um.npz')['p2b'] ax1.plot(openings,snr, 'g-', label=r'180$^\circ$') ax2.plot(openings,p2b, 'g--', label=r'180$^\circ$') ax1.set_ylabel(r'S/N (solid)') ax2.set_ylabel(r'P/B (dashed)') ax2.set_yscale('log') ax1.legend(loc=0,ncol=3) ax1.set_xlabel(r'Collection semi-angle $\phi$ (deg)') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2,2)) # ax2.ticklabel_format(style='sci', axis='y', scilimits=(-2,2)) plt.show()
mit
mugizico/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
kcavagnolo/astroML
book_figures/chapter8/fig_regression_mu_z.py
3
3813
""" Cosmology Regression Example ---------------------------- Figure 8.2 Various regression fits to the distance modulus vs. redshift relation for a simulated set of 100 supernovas, selected from a distribution :math:`p(z) \propto (z/z_0)^2 \exp[(z/z_0)^{1.5}]` with :math:`z_0 = 0.3`. Gaussian basis functions have 15 Gaussians evenly spaced between z = 0 and 2, with widths of 0.14. Kernel regression uses a Gaussian kernel with width 0.1. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from scipy.stats import lognorm from astroML.cosmology import Cosmology from astroML.datasets import generate_mu_z from astroML.linear_model import LinearRegression, PolynomialRegression,\ BasisFunctionRegression, NadarayaWatson #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Generate data z_sample, mu_sample, dmu = generate_mu_z(100, random_state=0) cosmo = Cosmology() z = np.linspace(0.01, 2, 1000) mu_true = np.asarray([cosmo.mu(zi) for zi in z]) #------------------------------------------------------------ # Define our classifiers basis_mu = np.linspace(0, 2, 15)[:, None] basis_sigma = 3 * (basis_mu[1] - basis_mu[0]) subplots = [221, 222, 223, 224] classifiers = [LinearRegression(), PolynomialRegression(4), BasisFunctionRegression('gaussian', mu=basis_mu, sigma=basis_sigma), NadarayaWatson('gaussian', h=0.1)] text = ['Straight-line Regression', '4th degree Polynomial\n Regression', 'Gaussian Basis Function\n Regression', 'Gaussian Kernel\n Regression'] # number of constraints of the model. Because # Nadaraya-watson is just a weighted mean, it has only one constraint n_constraints = [2, 5, len(basis_mu) + 1, 1] #------------------------------------------------------------ # Plot the results fig = plt.figure(figsize=(5, 5)) fig.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95, hspace=0.05, wspace=0.05) for i in range(4): ax = fig.add_subplot(subplots[i]) # fit the data clf = classifiers[i] clf.fit(z_sample[:, None], mu_sample, dmu) mu_sample_fit = clf.predict(z_sample[:, None]) mu_fit = clf.predict(z[:, None]) chi2_dof = (np.sum(((mu_sample_fit - mu_sample) / dmu) ** 2) / (len(mu_sample) - n_constraints[i])) ax.plot(z, mu_fit, '-k') ax.plot(z, mu_true, '--', c='gray') ax.errorbar(z_sample, mu_sample, dmu, fmt='.k', ecolor='gray', lw=1) ax.text(0.5, 0.05, r"$\chi^2_{\rm dof} = %.2f$" % chi2_dof, ha='center', va='bottom', transform=ax.transAxes) ax.set_xlim(0.01, 1.8) ax.set_ylim(36.01, 48) ax.text(0.05, 0.95, text[i], ha='left', va='top', transform=ax.transAxes) if i in (0, 2): ax.set_ylabel(r'$\mu$') else: ax.yaxis.set_major_formatter(plt.NullFormatter()) if i in (2, 3): ax.set_xlabel(r'$z$') else: ax.xaxis.set_major_formatter(plt.NullFormatter()) plt.show()
bsd-2-clause
jrabenoit/skellify
mltools.py
1
7990
#!/usr/bin/env python from sklearn import svm from sklearn import naive_bayes from sklearn import neighbors from sklearn import ensemble from sklearn import linear_model import copy #.fit fits the model to the dataset in brackets. Score tests the fitted model on data. def GauNaiBay(X_train, X_test, y_train, y_test): for i in range(0,len(X_train)): gnb = naive_bayes.GaussianNB() gnb.fit(X_train[i], y_train[i]) X_train[i] = gnb.score(X_train[i], y_train[i]) X_test[i] = gnb.score(X_test[i], y_test[i]) return X_train, X_test def KNeighbors(X_train, X_test, y_train, y_test): for i in range(0,len(X_train)): knc = neighbors.KNeighborsClassifier() knc.fit(X_train[i], y_train[i]) X_train[i] = knc.score(X_train[i], y_train[i]) X_test[i] = knc.score(X_test[i], y_test[i]) return X_train, X_test def CSupSvc(X_train, X_test, y_train, y_test): for i in range(len(X_train)): csvm = svm.SVC() csvm.fit(X_train[i], y_train[i]) X_train[i] = csvm.score(X_train[i], y_train[i]) X_test[i] = csvm.score(X_test[i], y_test[i]) return X_train, X_test def RandomForest(X_train, X_test, y_train, y_test): for i in range(len(X_train)): rf = ensemble.RandomForestClassifier() rf.fit(X_train[i], y_train[i]) X_train[i] = rf.score(X_train[i], y_train[i]) X_test[i] = rf.score(X_test[i], y_test[i]) return X_train, X_test def ExtraTrees(X_train, X_test, y_train, y_test): for i in range(len(X_train)): rf = ensemble.ExtraTreesClassifier() rf.fit(X_train[i], y_train[i]) X_train[i] = rf.score(X_train[i], y_train[i]) X_test[i] = rf.score(X_test[i], y_test[i]) return X_train, X_test def LinearSgd(X_train, X_test, y_train, y_test): for i in range(len(X_train)): sgd = linear_model.SGDClassifier() sgd.fit(X_train[i], y_train[i]) X_train[i] = sgd.score(X_train[i], y_train[i]) X_test[i] = sgd.score(X_test[i], y_test[i]) return X_train, X_test ml_func_dict = { # 'GauNaiBay':GauNaiBay, # 'KNeighbors':KNeighbors, # 'CSupSvc':CSupSvc, 'RandomForest':RandomForest # 'ExtraTrees':ExtraTrees # 'LinearSgd':LinearSgd } ''' def LSvm_maker(penalty,loss,dual,C): return lambda fX_train, fX_test, fy_train, fy_test: LSvm_base(fX_train, fX_test, fy_train, fy_test, penalty,loss,dual,C) #remember to change the final run values of C as well, if you change this one for C in [0.01,0.03,0.1,0.3,1.0,3.0,10.0,30.0]: ml_func_dict['LSvmL1_C'+str(C).replace(".","p")] = LSvm_maker(penalty='l1',loss=None,dual=False,C=C) ml_func_dict['LSvmL2_C'+str(C).replace(".","p")] = LSvm_maker(penalty='l2',loss='hinge',dual=True,C=C) def LSvm_base(fX_train, fX_test, fy_train, fy_test, penalty='l1', loss=None, dual=False, C=1.0): # Note: c argument not actually used yet lX_train = copy.copy(fX_train) lX_test = copy.copy(fX_test) ly_train = copy.copy(fy_train) ly_test = copy.copy(fy_test) for i in range(0,len(fX_train)): if not loss: lsvm = svm.LinearSVC(penalty=penalty, dual=dual, C=C) else: lsvm = svm.LinearSVC(penalty=penalty, dual=dual, loss=loss) lsvm.fit(lX_train[i], ly_train[i]) lX_train[i] = lsvm.score(lX_train[i], ly_train[i]) lX_test[i] = lsvm.score(lX_test[i], ly_test[i]) return lX_train, lX_test ''' ################################################################################ ################################################################################ def GauNaiBayFinal(X_train, X_test, y_train, y_test): gnb = naive_bayes.GaussianNB() gnb.fit(X_train, y_train) lX_train = gnb.score(X_train, y_train) lX_test = gnb.score(X_test, y_test) lX_train_predict= gnb.predict(X_train) lX_test_predict= gnb.predict(X_test) ly_train_labels= y_train ly_test_labels= y_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels def KNeighborsFinal(X_train, X_test, y_train, y_test): knc = neighbors.KNeighborsClassifier() knc.fit(X_train, y_train) lX_train = knc.score(X_train, y_train) lX_test = knc.score(X_test, y_test) lX_train_predict= knc.predict(X_train) lX_test_predict= knc.predict(X_test) ly_train_labels= y_train ly_test_labels= y_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels def CSupSvcFinal(X_train, X_test, y_train, y_test): csvm = svm.SVC() csvm.fit(X_train, y_train) lX_train = csvm.score(X_train, y_train) lX_test = csvm.score(X_test, y_test) lX_train_predict= csvm.predict(X_train) lX_test_predict= csvm.predict(X_test) ly_train_labels= y_train ly_test_labels= y_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels def RandomForestFinal(X_train, X_test, y_train, y_test): rf = ensemble.RandomForestClassifier() rf.fit(X_train, y_train) lX_train = rf.score(X_train, y_train) lX_test = rf.score(X_test, y_test) lX_train_predict= rf.predict(X_train) lX_test_predict= rf.predict(X_test) ly_train_labels= y_train ly_test_labels= y_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels def ExtraTreesFinal(X_train, X_test, y_train, y_test): rf = ensemble.ExtraTreesClassifier() rf.fit(X_train, y_train) lX_train = rf.score(X_train, y_train) lX_test = rf.score(X_test, y_test) lX_train_predict= rf.predict(X_train) lX_test_predict= rf.predict(X_test) ly_train_labels= y_train ly_test_labels= y_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels def LinearSgdFinal(X_train, X_test, y_train, y_test): sgd = linear_model.SGDClassifier() sgd.fit(X_train, y_train) lX_train = sgd.score(X_train, y_train) lX_test = sgd.score(X_test, y_test) lX_train_predict= sgd.predict(X_train) lX_test_predict= sgd.predict(X_test) ly_train_labels= y_train ly_test_labels= y_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels ml_func_dict_final = { # 'GauNaiBay':GauNaiBayFinal, # 'KNeighbors':KNeighborsFinal, # 'CSupSvc':CSupSvcFinal, 'RandomForest':RandomForestFinal # 'ExtraTrees':ExtraTreesFinal # 'LinearSgd':LinearSgdFinal } ''' def LSvm_maker_final(penalty,loss,dual,C): return lambda fX_train, fX_test, fy_train, fy_test: LSvm_base_final(fX_train, fX_test, fy_train, fy_test, penalty,loss,dual,C) # Expanded C: [0.01,0.03,0.1,0.3,1.0,3.0,10.0,30.0] for C in [0.01,0.03,0.1,0.3,1.0,3.0,10.0,30.0]: ml_func_dict_final['LSvmL1_C'+str(C).replace(".","p")] = LSvm_maker_final(penalty='l1',loss=None,dual=False,C=C) ml_func_dict_final['LSvmL2_C'+str(C).replace(".","p")] = LSvm_maker_final(penalty='l2',loss='hinge',dual=True,C=C) def LSvm_base_final(fX_train, fX_test, fy_train, fy_test, penalty='l1', loss=None, dual=False, C=1.0): # Note: c argument not actually used yet for i in range(0,len(fX_train)): if not loss: lsvm = svm.LinearSVC(penalty=penalty, dual=dual, C=C) else: lsvm = svm.LinearSVC(penalty=penalty, dual=dual, loss=loss) lsvm.fit(fX_train, fy_train) lX_train = lsvm.score(fX_train, fy_train) lX_test = lsvm.score(fX_test, fy_test) lX_train_predict= lsvm.predict(fX_train) lX_test_predict= lsvm.predict(fX_test) ly_train_labels= fy_train ly_test_labels= fy_test return lX_train, lX_test, lX_train_predict, lX_test_predict, ly_train_labels, ly_test_labels '''
gpl-3.0
f3r/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
sonium0/pymatgen
pymatgen/io/abinitio/works.py
1
44493
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Works for Abinit: """ from __future__ import unicode_literals, division, print_function import os import shutil import time import abc import collections import numpy as np import six import copy from six.moves import filter from monty.collections import AttrDict from monty.itertools import chunks from monty.functools import lazy_property from monty.fnmatch import WildCard from pydispatch import dispatcher from pymatgen.core.units import EnergyArray from . import wrappers from .tasks import (Task, AbinitTask, Dependency, Node, NodeResults, ScfTask, NscfTask, PhononTask, DdkTask, BseTask, RelaxTask, DdeTask, ScrTask, SigmaTask) from .strategies import HtcStrategy, NscfStrategy from .utils import Directory from .netcdf import ETSF_Reader from .abitimer import AbinitTimerParser import logging logger = logging.getLogger(__name__) __author__ = "Matteo Giantomassi" __copyright__ = "Copyright 2013, The Materials Project" __version__ = "0.1" __maintainer__ = "Matteo Giantomassi" __all__ = [ "Work", "BandStructureWork", "RelaxWork", "G0W0Work", "QptdmWork", "SigmaConvWork", "BseMdfWork", "PhononWork", ] class WorkResults(NodeResults): JSON_SCHEMA = NodeResults.JSON_SCHEMA.copy() @classmethod def from_node(cls, work): """Initialize an instance from a :class:`Work` instance.""" new = super(WorkResults, cls).from_node(work) #new.update( # #input=work.strategy #) # Will put all files found in outdir in GridFs # Warning: assuming binary files. d = {os.path.basename(f): f for f in work.outdir.list_filepaths()} new.register_gridfs_files(**d) return new class WorkError(Exception): """Base class for the exceptions raised by Work objects.""" class BaseWork(six.with_metaclass(abc.ABCMeta, Node)): Error = WorkError Results = WorkResults # interface modeled after subprocess.Popen @abc.abstractproperty def processes(self): """Return a list of objects that support the `subprocess.Popen` protocol.""" def poll(self): """ Check if all child processes have terminated. Set and return returncode attribute. """ return [task.poll() for task in self] def wait(self): """ Wait for child processed to terminate. Set and return returncode attribute. """ return [task.wait() for task in self] def communicate(self, input=None): """ Interact with processes: Send data to stdin. Read data from stdout and stderr, until end-of-file is reached. Wait for process to terminate. The optional input argument should be a string to be sent to the child processed, or None, if no data should be sent to the children. communicate() returns a list of tuples (stdoutdata, stderrdata). """ return [task.communicate(input) for task in self] @property def returncodes(self): """ The children return codes, set by poll() and wait() (and indirectly by communicate()). A None value indicates that the process hasn't terminated yet. A negative value -N indicates that the child was terminated by signal N (Unix only). """ return [task.returncode for task in self] @property def ncores_reserved(self): """ Returns the number of cores reserved in this moment. A core is reserved if it's still not running but we have submitted the task to the queue manager. """ return sum(task.tot_cores for task in self if task.status == task.S_SUB) @property def ncores_allocated(self): """ Returns the number of CPUs allocated in this moment. A core is allocated if it's running a task or if we have submitted a task to the queue manager but the job is still pending. """ return sum(task.tot_cores for task in self if task.status in [task.S_SUB, task.S_RUN]) @property def ncores_inuse(self): """ Returns the number of cores used in this moment. A core is used if there's a job that is running on it. """ return sum(task.tot_cores for task in self if task.status == task.S_RUN) def fetch_task_to_run(self): """ Returns the first task that is ready to run or None if no task can be submitted at present" Raises: `StopIteration` if all tasks are done. """ # All the tasks are done so raise an exception # that will be handled by the client code. if all(task.is_completed for task in self): raise StopIteration("All tasks completed.") for task in self: if task.can_run: return task # No task found, this usually happens when we have dependencies. # Beware of possible deadlocks here! logger.warning("Possible deadlock in fetch_task_to_run!") return None def fetch_alltasks_to_run(self): """ Returns a list with all the tasks that can be submitted. Empty list if not task has been found. """ return [task for task in self if task.can_run] @abc.abstractmethod def setup(self, *args, **kwargs): """Method called before submitting the calculations.""" def _setup(self, *args, **kwargs): self.setup(*args, **kwargs) def connect_signals(self): """ Connect the signals within the work. The :class:`Work` is responsible for catching the important signals raised from its task and raise new signals when some particular condition occurs. """ for task in self: dispatcher.connect(self.on_ok, signal=task.S_OK, sender=task) @property def all_ok(self): return all(task.status == task.S_OK for task in self) def on_ok(self, sender): """ This callback is called when one task reaches status `S_OK`. It executes on_all_ok when all task in self have reached `S_OK`. """ logger.debug("in on_ok with sender %s" % sender) if self.all_ok: if self.finalized: return AttrDict(returncode=0, message="Work has been already finalized") else: # Set finalized here, because on_all_ok might change it (e.g. Relax + EOS in a single work) self._finalized = True try: results = AttrDict(**self.on_all_ok()) except: self.finalized = False raise # Signal to possible observers that the `Work` reached S_OK logger.info("Work %s is finalized and broadcasts signal S_OK" % str(self)) logger.info("Work %s status = %s" % (str(self), self.status)) if self._finalized: dispatcher.send(signal=self.S_OK, sender=self) return results return AttrDict(returncode=1, message="Not all tasks are OK!") def on_all_ok(self): """ This method is called once the `Work` is completed i.e. when all the tasks have reached status S_OK. Subclasses should provide their own implementation Returns: Dictionary that must contain at least the following entries: returncode: 0 on success. message: a string that should provide a human-readable description of what has been performed. """ return dict(returncode=0, message="Calling on_all_ok of the base class!") def get_results(self, **kwargs): """ Method called once the calculations are completed. The base version returns a dictionary task_name: TaskResults for each task in self. """ results = self.Results.from_node(self) return results class Work(BaseWork): """ A Work is a list of (possibly connected) tasks. """ def __init__(self, workdir=None, manager=None): """ Args: workdir: Path to the working directory. manager: :class:`TaskManager` object. """ super(Work, self).__init__() self._tasks = [] if workdir is not None: self.set_workdir(workdir) if manager is not None: self.set_manager(manager) def set_manager(self, manager): """Set the :class:`TaskManager` to use to launch the :class:`Task`.""" self.manager = manager.deepcopy() for task in self: task.set_manager(manager) @property def flow(self): """The flow containing this :class:`Work`.""" return self._flow def set_flow(self, flow): """Set the flow associated to this :class:`Work`.""" if not hasattr(self, "_flow"): self._flow = flow else: if self._flow != flow: raise ValueError("self._flow != flow") @lazy_property def pos(self): """The position of self in the :class:`Flow`""" for i, work in enumerate(self.flow): if self == work: return i raise ValueError("Cannot find the position of %s in flow %s" % (self, self.flow)) @property def pos_str(self): """String representation of self.pos""" return "w" + str(self.pos) def set_workdir(self, workdir, chroot=False): """Set the working directory. Cannot be set more than once unless chroot is True""" if not chroot and hasattr(self, "workdir") and self.workdir != workdir: raise ValueError("self.workdir != workdir: %s, %s" % (self.workdir, workdir)) self.workdir = os.path.abspath(workdir) # Directories with (input|output|temporary) data. # The work will use these directories to connect # itself to other works and/or to produce new data # that will be used by its children. self.indir = Directory(os.path.join(self.workdir, "indata")) self.outdir = Directory(os.path.join(self.workdir, "outdata")) self.tmpdir = Directory(os.path.join(self.workdir, "tmpdata")) def chroot(self, new_workdir): self.set_workdir(new_workdir, chroot=True) for i, task in enumerate(self): new_tdir = os.path.join(self.workdir, "t" + str(i)) task.set_workdir(new_tdir, chroot=True) def __len__(self): return len(self._tasks) def __iter__(self): return self._tasks.__iter__() def __getitem__(self, slice): return self._tasks[slice] def chunks(self, chunk_size): """Yield successive chunks of tasks of lenght chunk_size.""" for tasks in chunks(self, chunk_size): yield tasks def opath_from_ext(self, ext): """ Returns the path of the output file with extension ext. Use it when the file does not exist yet. """ return self.indir.path_in("in_" + ext) def opath_from_ext(self, ext): """ Returns the path of the output file with extension ext. Use it when the file does not exist yet. """ return self.outdir.path_in("out_" + ext) @property def processes(self): return [task.process for task in self] @property def all_done(self): """True if all the :class:`Task` objects in the :class:`Work` are done.""" return all(task.status >= task.S_DONE for task in self) @property def isnc(self): """True if norm-conserving calculation.""" return all(task.isnc for task in self) @property def ispaw(self): """True if PAW calculation.""" return all(task.ispaw for task in self) @property def status_counter(self): """ Returns a `Counter` object that counts the number of task with given status (use the string representation of the status as key). """ counter = collections.Counter() for task in self: counter[str(task.status)] += 1 return counter def allocate(self, manager=None): """ This function is called once we have completed the initialization of the :class:`Work`. It sets the manager of each task (if not already done) and defines the working directories of the tasks. Args: manager: :class:`TaskManager` object or None """ for i, task in enumerate(self): if not hasattr(task, "manager"): # Set the manager # Use the one provided in input else the one of the work. task.set_manager(manager) if manager is not None else task.set_manager(self.manager) task_workdir = os.path.join(self.workdir, "t" + str(i)) if not hasattr(task, "workdir"): task.set_workdir(task_workdir) else: if task.workdir != task_workdir: raise ValueError("task.workdir != task_workdir: %s, %s" % (task.workdir, task_workdir)) def register(self, obj, deps=None, required_files=None, manager=None, task_class=None): """ Registers a new :class:`Task` and add it to the internal list, taking into account possible dependencies. Args: obj: :class:`Strategy` object or :class:`AbinitInput` instance. if Strategy object, we create a new `AbinitTask` from the input strategy and add it to the list. deps: Dictionary specifying the dependency of this node. None means that this obj has no dependency. required_files: List of strings with the path of the files used by the task. Note that the files must exist when the task is registered. Use the standard approach based on Works, Tasks and deps if the files will be produced in the future. manager: The :class:`TaskManager` responsible for the submission of the task. If manager is None, we use the `TaskManager` specified during the creation of the :class:`Work`. task_class: Task subclass to instantiate. Default: :class:`AbinitTask` Returns: :class:`Task` object """ task_workdir = None if hasattr(self, "workdir"): task_workdir = os.path.join(self.workdir, "t" + str(len(self))) if isinstance(obj, Task): task = obj else: # Set the class if task_class is None: task_class = AbinitTask if isinstance(obj, HtcStrategy): # Create the new task (note the factory so that we create subclasses easily). task = task_class(obj, task_workdir, manager) else: task = task_class.from_input(obj, task_workdir, manager) self._tasks.append(task) # Handle possible dependencies. if deps is not None: deps = [Dependency(node, exts) for node, exts in deps.items()] task.add_deps(deps) # Handle possible dependencies. if required_files is not None: task.add_required_files(required_files) return task # Helper functions def register_scf_task(self, *args, **kwargs): """Register a Scf task.""" kwargs["task_class"] = ScfTask return self.register(*args, **kwargs) def register_nscf_task(self, *args, **kwargs): """Register a nscf task.""" kwargs["task_class"] = NscfTask return self.register(*args, **kwargs) def register_relax_task(self, *args, **kwargs): """Register a task for structural optimization.""" kwargs["task_class"] = RelaxTask return self.register(*args, **kwargs) def register_phonon_task(self, *args, **kwargs): """Register a phonon task.""" kwargs["task_class"] = PhononTask return self.register(*args, **kwargs) def register_ddk_task(self, *args, **kwargs): """Register a ddk task.""" kwargs["task_class"] = DdkTask return self.register(*args, **kwargs) def register_scr_task(self, *args, **kwargs): """Register a screening task.""" kwargs["task_class"] = ScrTask return self.register(*args, **kwargs) def register_sigma_task(self, *args, **kwargs): """Register a sigma task.""" kwargs["task_class"] = SigmaTask return self.register(*args, **kwargs) def register_dde_task(self, *args, **kwargs): """Register a Dde task.""" kwargs["task_class"] = DdeTask return self.register(*args, **kwargs) def register_bse_task(self, *args, **kwargs): """Register a nscf task.""" kwargs["task_class"] = BseTask return self.register(*args, **kwargs) def path_in_workdir(self, filename): """Create the absolute path of filename in the working directory.""" return os.path.join(self.workdir, filename) def setup(self, *args, **kwargs): """ Method called before running the calculations. The default implementation is empty. """ def build(self, *args, **kwargs): """Creates the top level directory.""" # Create the directories of the work. self.indir.makedirs() self.outdir.makedirs() self.tmpdir.makedirs() # Build dirs and files of each task. for task in self: task.build(*args, **kwargs) # Connect signals within the work. self.connect_signals() @property def status(self): """ Returns the status of the work i.e. the minimum of the status of the tasks. """ return self.get_all_status(only_min=True) #def set_status(self, status): def get_all_status(self, only_min=False): """ Returns a list with the status of the tasks in self. Args: only_min: If True, the minimum of the status is returned. """ if len(self) == 0: # The work will be created in the future. if only_min: return self.S_INIT else: return [self.S_INIT] self.check_status() status_list = [task.status for task in self] if only_min: return min(status_list) else: return status_list def check_status(self): """Check the status of the tasks.""" # Recompute the status of the tasks for task in self: task.check_status() # Take into account possible dependencies. Use a list instead of generators for task in self: if task.status < task.S_SUB and all([status == task.S_OK for status in task.deps_status]): task.set_status(task.S_READY) def rmtree(self, exclude_wildcard=""): """ Remove all files and directories in the working directory Args: exclude_wildcard: Optional string with regular expressions separated by `|`. Files matching one of the regular expressions will be preserved. example: exclude_wildard="*.nc|*.txt" preserves all the files whose extension is in ["nc", "txt"]. """ if not exclude_wildcard: shutil.rmtree(self.workdir) else: w = WildCard(exclude_wildcard) for dirpath, dirnames, filenames in os.walk(self.workdir): for fname in filenames: path = os.path.join(dirpath, fname) if not w.match(fname): os.remove(path) def rm_indatadir(self): """Remove all the indata directories.""" for task in self: task.rm_indatadir() def rm_outdatadir(self): """Remove all the indata directories.""" for task in self: task.rm_outatadir() def rm_tmpdatadir(self): """Remove all the tmpdata directories.""" for task in self: task.rm_tmpdatadir() def move(self, dest, isabspath=False): """ Recursively move self.workdir to another location. This is similar to the Unix "mv" command. The destination path must not already exist. If the destination already exists but is not a directory, it may be overwritten depending on os.rename() semantics. Be default, dest is located in the parent directory of self.workdir, use isabspath=True to specify an absolute path. """ if not isabspath: dest = os.path.join(os.path.dirname(self.workdir), dest) shutil.move(self.workdir, dest) def submit_tasks(self, wait=False): """ Submits the task in self and wait. TODO: change name. """ for task in self: print(task) task.start() if wait: for task in self: task.wait() def start(self, *args, **kwargs): """ Start the work. Calls build and _setup first, then submit the tasks. Non-blocking call unless wait is set to True """ wait = kwargs.pop("wait", False) # Initial setup self._setup(*args, **kwargs) # Build dirs and files. self.build(*args, **kwargs) # Submit tasks (does not block) self.submit_tasks(wait=wait) def read_etotals(self, unit="Ha"): """ Reads the total energy from the GSR file produced by the task. Return a numpy array with the total energies in Hartree The array element is set to np.inf if an exception is raised while reading the GSR file. """ if not self.all_done: raise self.Error("Some task is still in running/submitted state") etotals = [] for task in self: # Open the GSR file and read etotal (Hartree) gsr_path = task.outdir.has_abiext("GSR") etot = np.inf if gsr_path: with ETSF_Reader(gsr_path) as r: etot = r.read_value("etotal") etotals.append(etot) return EnergyArray(etotals, "Ha").to(unit) def parse_timers(self): """ Parse the TIMER section reported in the ABINIT output files. Returns: :class:`AbinitTimerParser` object """ filenames = list(filter(os.path.exists, [task.output_file.path for task in self])) parser = AbinitTimerParser() parser.parse(filenames) return parser class BandStructureWork(Work): """Work for band structure calculations.""" def __init__(self, scf_input, nscf_input, dos_inputs=None, workdir=None, manager=None): """ Args: scf_input: Input for the SCF run or :class:`SCFStrategy` object. nscf_input: Input for the NSCF run or :class:`NSCFStrategy` object defining the band structure calculation. dos_inputs: Input(s) for the DOS. DOS is computed only if dos_inputs is not None. workdir: Working directory. manager: :class:`TaskManager` object. """ super(BandStructureWork, self).__init__(workdir=workdir, manager=manager) # Register the GS-SCF run. self.scf_task = self.register_scf_task(scf_input) # Register the NSCF run and its dependency. self.nscf_task = self.register_nscf_task(nscf_input, deps={self.scf_task: "DEN"}) # Add DOS computation(s) if requested. self.dos_tasks = [] if dos_inputs is not None: if not isinstance(dos_inputs, (list, tuple)): dos_inputs = [dos_inputs] for dos_input in dos_inputs: dos_task = self.register_nscf_task(dos_input, deps={self.scf_task: "DEN"}) self.dos_tasks.append(dos_task) def plot_ebands(self, **kwargs): """ Plot the band structure. kwargs are passed to the plot method of :class:`ElectronBands`. Returns: `matplotlib` figure """ with self.nscf_task.open_gsr() as gsr: return gsr.ebands.plot(**kwargs) def plot_ebands_with_edos(self, dos_pos=0, method="gaussian", step=0.01, width=0.1, **kwargs): """ Plot the band structure and the DOS. Args: dos_pos: Index of the task from which the DOS should be obtained (note: 0 refers to the first DOS task). method: String defining the method for the computation of the DOS. step: Energy step (eV) of the linear mesh. width: Standard deviation (eV) of the gaussian. kwargs: Keyword arguments passed to `plot_with_edos` method to customize the plot. Returns: `matplotlib` figure. """ with self.nscf_task.open_gsr() as gsr: gs_ebands = gsr.ebands with self.dos_tasks[dos_pos].open_gsr() as gsr: dos_ebands = gsr.ebands edos = dos_ebands.get_edos(method=method, step=step, width=width) return gs_ebands.plot_with_edos(edos, **kwargs) def plot_edoses(self, dos_pos=None, method="gaussian", step=0.01, width=0.1, **kwargs): """ Plot the band structure and the DOS. Args: dos_pos: Index of the task from which the DOS should be obtained. None is all DOSes should be displayed. Accepts integer or list of integers. method: String defining the method for the computation of the DOS. step: Energy step (eV) of the linear mesh. width: Standard deviation (eV) of the gaussian. kwargs: Keyword arguments passed to `plot` method to customize the plot. Returns: `matplotlib` figure. """ if dos_pos is not None and not isistance(dos_pos, (list, tuple)): dos_pos = [dos_pos] from abipy.electrons.ebands import ElectronDosPlotter plotter = ElectronDosPlotter() for i, task in enumerate(self.dos_tasks): if dos_pos is not None and i not in dos_pos: continue with task.open_gsr() as gsr: edos = gsr.ebands.get_edos(method=method, step=step, width=width) ngkpt = task.get_inpvar("ngkpt") plotter.add_edos("ngkpt %s" % str(ngkpt), edos) return plotter.plot(**kwargs) class RelaxWork(Work): """ Work for structural relaxations. The first task relaxes the atomic position while keeping the unit cell parameters fixed. The second task uses the final structure to perform a structural relaxation in which both the atomic positions and the lattice parameters are optimized. """ def __init__(self, ion_input, ioncell_input, workdir=None, manager=None): """ Args: ion_input: Input for the relaxation of the ions (cell is fixed) ioncell_input: Input for the relaxation of the ions and the unit cell. workdir: Working directory. manager: :class:`TaskManager` object. """ super(RelaxWork, self).__init__(workdir=workdir, manager=manager) self.ion_task = self.register_relax_task(ion_input) # Note: # 1) It would be nice to restart from the WFK file but ABINIT crashes due to the # different unit cell parameters. # # 2) Restarting form DEN is not trivial because Abinit produces all these _TIM?_DEN files. # and the syntax used to specify dependencies is not powerful enough. # # For the time being, we don't use any output from ion_tasl except for the # the final structure that will be transferred in on_ok. deps = {self.ion_task: "DEN"} deps = {self.ion_task: "WFK"} deps = None self.ioncell_task = self.register_relax_task(ioncell_input, deps=deps) # Lock ioncell_task as ion_task should communicate to ioncell_task that # the calculation is OK and pass the final structure. self.ioncell_task.set_status(self.S_LOCKED) self.transfer_done = False def on_ok(self, sender): """ This callback is called when one task reaches status S_OK. If sender == self.ion_task, we update the initial structure used by self.ioncell_task and we unlock it so that the job can be submitted. """ logger.debug("in on_ok with sender %s" % sender) if sender == self.ion_task and not self.transfer_done: # Get the relaxed structure from ion_task ion_structure = self.ion_task.read_final_structure() # Transfer it to the ioncell task (we do it only once). self.ioncell_task._change_structure(ion_structure) self.transfer_done = True # Unlock ioncell_task so that we can submit it. self.ioncell_task.set_status(self.S_READY) return super(RelaxWork, self).on_ok(sender) class G0W0Work(Work): """ Work for G0W0 calculations. """ def __init__(self, scf_input, nscf_input, scr_input, sigma_inputs, workdir=None, manager=None, spread_scr=False, nksmall=None): """ Args: scf_input: Input for the SCF run or :class:`SCFStrategy` object. nscf_input: Input for the NSCF run or :class:`NSCFStrategy` object. scr_input: Input for the screening run or :class:`ScrStrategy` object sigma_inputs: List of Strategies for the self-energy run. workdir: Working directory of the calculation. manager: :class:`TaskManager` object. spread_scr: Attach a screening task to every sigma task if false only one screening task with the max ecuteps and nbands for all sigma tasks nksmall: if not none add a dos and bands calculation to the Work """ super(G0W0Work, self).__init__(workdir=workdir, manager=manager) # Register the GS-SCF run. # register all scf_inputs but link the nscf only the last scf in the list #MG: FIXME Why this? if isinstance(scf_input, (list, tuple)): for single_scf_input in scf_input: self.scf_task = self.register_scf_task(single_scf_input) else: self.scf_task = self.register_scf_task(scf_input) # Construct the input for the NSCF run. self.nscf_task = nscf_task = self.register_nscf_task(nscf_input, deps={self.scf_task: "DEN"}) # Register the SCREENING run. if not spread_scr: self.scr_task = scr_task = self.register_scr_task(scr_input, deps={nscf_task: "WFK"}) else: self.scr_tasks = [] if nksmall: # if nksmall add bandstructure and dos calculations as well from abiobjects import KSampling scf_in = scf_input[-1] if isinstance(scf_input, (list, tuple)) else scf_input logger.info('added band structure calculation') bands_input = NscfStrategy(scf_strategy=scf_in, ksampling=KSampling.path_from_structure(ndivsm=nksmall, structure=scf_in.structure), nscf_nband=scf_in.electrons.nband*2, ecut=scf_in.ecut) self.bands_task = self.register_nscf_task(bands_input, deps={self.scf_task: "DEN"}) dos_input = NscfStrategy(scf_strategy=scf_in, ksampling=KSampling.automatic_density(kppa=nksmall**3, structure=scf_in.structure, shifts=(0.0, 0.0, 0.0)), nscf_nband=scf_in.electrons.nband*2, ecut=scf_in.ecut) self.dos_task = self.register_nscf_task(dos_input, deps={self.scf_task: "DEN"}) # Register the SIGMA runs. if not isinstance(sigma_inputs, (list, tuple)): sigma_inputs = [sigma_inputs] self.sigma_tasks = [] for sigma_input in sigma_inputs: if spread_scr: new_scr_input = copy.deepcopy(scr_input) new_scr_input.screening.ecuteps = sigma_input.sigma.ecuteps new_scr_input.screening.nband = sigma_input.sigma.nband new_scr_input.electrons.nband = sigma_input.sigma.nband scr_task = self.register_scr_task(new_scr_input, deps={nscf_task: "WFK"}) task = self.register_sigma_task(sigma_input, deps={nscf_task: "WFK", scr_task: "SCR"}) self.sigma_tasks.append(task) class SigmaConvWork(Work): """ Work for self-energy convergence studies. """ def __init__(self, wfk_node, scr_node, sigma_inputs, workdir=None, manager=None): """ Args: wfk_node: The node who has produced the WFK file or filepath pointing to the WFK file. scr_node: The node who has produced the SCR file or filepath pointing to the SCR file. sigma_inputs: List of Strategies for the self-energy run. workdir: Working directory of the calculation. manager: :class:`TaskManager` object. """ # Cast to node instances. wfk_node, scr_node = Node.as_node(wfk_node), Node.as_node(scr_node) super(SigmaConvWork, self).__init__(workdir=workdir, manager=manager) # Register the SIGMA runs. if not isinstance(sigma_inputs, (list, tuple)): sigma_inputs = [sigma_inputs] for sigma_input in sigma_inputs: self.register_sigma_task(sigma_input, deps={wfk_node: "WFK", scr_node: "SCR"}) class BseMdfWork(Work): """ Work for simple BSE calculations in which the self-energy corrections are approximated by the scissors operator and the screening is modeled with the model dielectric function. """ def __init__(self, scf_input, nscf_input, bse_inputs, workdir=None, manager=None): """ Args: scf_input: Input for the SCF run or :class:`ScfStrategy` object. nscf_input: Input for the NSCF run or :class:`NscfStrategy` object. bse_inputs: List of Inputs for the BSE run or :class:`BSEStrategy` object. workdir: Working directory of the calculation. manager: :class:`TaskManager`. """ super(BseMdfWork, self).__init__(workdir=workdir, manager=manager) # Register the GS-SCF run. self.scf_task = self.register_scf_task(scf_input) # Construct the input for the NSCF run. self.nscf_task = self.register_nscf_task(nscf_input, deps={self.scf_task: "DEN"}) # Construct the input(s) for the BSE run. if not isinstance(bse_inputs, (list, tuple)): bse_inputs = [bse_inputs] for bse_input in bse_inputs: self.register_bse_task(bse_input, deps={self.nscf_task: "WFK"}) class QptdmWork(Work): """ This work parallelizes the calculation of the q-points of the screening. It also provides the callback `on_all_ok` that calls mrgscr to merge all the partial screening files produced. """ def create_tasks(self, wfk_file, scr_input): """ Create the SCR tasks and register them in self. Args: wfk_file: Path to the ABINIT WFK file to use for the computation of the screening. scr_input: Input for the screening calculation. """ assert len(self) == 0 wfk_file = self.wfk_file = os.path.abspath(wfk_file) # Build a temporary work in the tmpdir that will use a shell manager # to run ABINIT in order to get the list of q-points for the screening. shell_manager = self.manager.to_shell_manager(mpi_procs=1) w = Work(workdir=self.tmpdir.path_join("_qptdm_run"), manager=shell_manager) fake_input = scr_input.deepcopy() fake_task = w.register(fake_input) w.allocate() w.build() # Create the symbolic link and add the magic value # nqpdm = -1 to the input to get the list of q-points. fake_task.inlink_file(wfk_file) fake_task.strategy.add_extra_abivars({"nqptdm": -1}) fake_task.start_and_wait() # Parse the section with the q-points from pymatgen.io.abinitio.netcdf import NetcdfReader with NetcdfReader(fake_task.outdir.has_abiext("qptdms.nc")) as reader: qpoints = reader.read_value("reduced_coordinates_of_kpoints") #print("qpoints) #w.rmtree() # Now we can register the task for the different q-points for qpoint in qpoints: qptdm_input = scr_input.deepcopy() qptdm_input.set_vars(nqptdm=1, qptdm=qpoint) new_task = self.register_scr_task(qptdm_input, manager=self.manager) #new_task.set_cleanup_exts() self.allocate() def merge_scrfiles(self, remove_scrfiles=True): """ This method is called when all the q-points have been computed. It runs `mrgscr` in sequential on the local machine to produce the final SCR file in the outdir of the `Work`. If remove_scrfiles is True, the partial SCR files are removed after the merge. """ scr_files = list(filter(None, [task.outdir.has_abiext("SCR") for task in self])) logger.debug("will call mrgscr to merge %s:\n" % str(scr_files)) assert len(scr_files) == len(self) # TODO: Propapagate the manager to the wrappers mrgscr = wrappers.Mrgscr(verbose=1) mrgscr.set_mpi_runner("mpirun") final_scr = mrgscr.merge_qpoints(scr_files, out_prefix="out", cwd=self.outdir.path) if remove_scrfiles: for scr_file in scr_files: try: os.remove(scr_file) except IOError: pass return final_scr def on_all_ok(self): """ This method is called when all the q-points have been computed. It runs `mrgscr` in sequential on the local machine to produce the final SCR file in the outdir of the `Work`. """ final_scr = self.merge_scrfiles() return self.Results(node=self, returncode=0, message="mrgscr done", final_scr=final_scr) def build_oneshot_phononwork(scf_input, ph_inputs, workdir=None, manager=None, work_class=None): """ Returns a work for the computation of phonon frequencies ph_inputs is a list of input for Phonon calculation in which all the independent perturbations are explicitly computed i.e. * rfdir 1 1 1 * rfatpol 1 natom .. warning:: This work is mainly used for simple calculations, e.g. converge studies. Use :class:`PhononWork` for better efficiency. """ work_class = OneShotPhononWork if work_class is None else work_class work = work_class(workdir=workdir, manager=manager) scf_task = work.register_scf_task(scf_input) ph_inputs = [ph_inputs] if not isinstance(ph_inputs, (list, tuple)) else ph_inputs # cannot use PhononTaks here because the Task is not able to deal with multiple phonon calculations for phinp in ph_inputs: ph_task = work.register(phinp, deps={scf_task: "WFK"}) return work class OneShotPhononWork(Work): """ Simple and very inefficient work for the computation of the phonon frequencies It consists of a GS task and a DFPT calculations for all the independent perturbations. The main advantage is that one has direct access to the phonon frequencies that can be computed at the end of the second task without having to call anaddb. Use ``build_oneshot_phononwork`` to construct this work from the input files. """ def read_phonons(self): """Read phonon frequencies from the output file.""" # # Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000 # Phonon energies in Hartree : # 1.089934E-04 4.990512E-04 1.239177E-03 1.572715E-03 1.576801E-03 # 1.579326E-03 # Phonon frequencies in cm-1 : # - 2.392128E+01 1.095291E+02 2.719679E+02 3.451711E+02 3.460677E+02 # - 3.466221E+02 BEGIN = " Phonon wavevector (reduced coordinates) :" END = " Phonon frequencies in cm-1 :" ph_tasks, qpts, phfreqs = self[1:], [], [] for task in ph_tasks: with open(task.output_file.path, "r") as fh: qpt, inside = None, 0 for line in fh: if line.startswith(BEGIN): qpts.append([float(s) for s in line[len(BEGIN):].split()]) inside, omegas = 1, [] elif line.startswith(END): break elif inside: inside += 1 if inside > 2: omegas.extend((float(s) for s in line.split())) else: raise ValueError("Cannot find %s in file %s" % (END, task.output_file.path)) phfreqs.append(omegas) # Use namedtuple to store q-point and frequencies in meV phonon = collections.namedtuple("phonon", "qpt freqs") return [phonon(qpt=qpt, freqs=freqs_meV) for qpt, freqs_meV in zip(qpts, EnergyArray(phfreqs, "Ha").to("meV") )] def get_results(self, **kwargs): results = super(OneShotPhononWork, self).get_results() phonons = self.read_phonons() results.update(phonons=phonons) return results class PhononWork(Work): """ This work usually consists of nirred Phonon tasks where nirred is the number of irreducible perturbations for a given q-point. It provides the callback method (on_all_ok) that calls mrgddb to merge the partial DDB files and mrgggkk to merge the GKK files. """ def merge_ddb_files(self): """ This method is called when all the q-points have been computed. It runs `mrgddb` in sequential on the local machine to produce the final DDB file in the outdir of the `Work`. Returns: path to the output DDB file """ ddb_files = list(filter(None, [task.outdir.has_abiext("DDB") for task in self])) logger.debug("will call mrgddb to merge %s:\n" % str(ddb_files)) # assert len(ddb_files) == len(self) #if len(ddb_files) == 1: # Avoid the merge. Just move the DDB file to the outdir of the work # Final DDB file will be produced in the outdir of the work. out_ddb = self.outdir.path_in("out_DDB") desc = "DDB file merged by %s on %s" % (self.__class__.__name__, time.asctime()) # TODO: propagate the taskmanager mrgddb = wrappers.Mrgddb(verbose=1) mrgddb.set_mpi_runner("mpirun") mrgddb.merge(ddb_files, out_ddb=out_ddb, description=desc, cwd=self.outdir.path) return out_ddb def on_all_ok(self): """ This method is called when all the q-points have been computed. Ir runs `mrgddb` in sequential on the local machine to produce the final DDB file in the outdir of the `Work`. """ # Merge DDB files. out_ddb = self.merge_ddb_files() results = self.Results(node=self, returncode=0, message="DDB merge done") results.register_gridfs_files(DDB=(out_ddb, "t")) # TODO # Call anaddb to compute the phonon frequencies for this q-point and # store the results in the outdir of the work. #atask = AnaddbTask(anaddb_input, ddb_node, # gkk_node=None, md_node=None, ddk_node=None, workdir=None, manager=None) #atask.start() return results
mit
lucidfrontier45/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
4
2176
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same accross tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print __doc__ # Author: Alexandre Gramfort <[email protected]> # License: BSD Style. import pylab as pl import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = pl.figure(figsize=(8, 5)) pl.subplot(1, 2, 1) pl.spy(coef_lasso_) pl.xlabel('Feature') pl.ylabel('Time (or Task)') pl.text(10, 5, 'Lasso') pl.subplot(1, 2, 2) pl.spy(coef_multi_task_lasso_) pl.xlabel('Feature') pl.ylabel('Time (or Task)') pl.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 pl.figure() pl.plot(coef[:, feature_to_plot], 'k', label='Ground truth') pl.plot(coef_lasso_[:, feature_to_plot], 'g', label='Lasso') pl.plot(coef_multi_task_lasso_[:, feature_to_plot], 'r', label='MultiTaskLasso') pl.legend(loc='upper center') pl.axis('tight') pl.ylim([-1.1, 1.1]) pl.show()
bsd-3-clause
bartnijssen/RVIC
rvic/parameters.py
1
22374
""" RVIC parameter file development driver """ import os import numpy as np import pandas as pd from collections import OrderedDict from logging import getLogger from core.log import init_logger, close_logger, LOG_NAME from core.mpi import LoggingPool from core.utilities import make_directories, copy_inputs, strip_invalid_char from core.utilities import read_netcdf, tar_inputs, latlon2yx from core.utilities import check_ncvars, clean_file, read_domain from core.utilities import search_for_channel from core.aggregate import make_agg_pairs, aggregate from core.make_uh import rout from core.share import NcGlobals from core.write import write_agg_netcdf from core.variables import Point from core.param_file import finish_params from core.config import read_config try: from core.remap import remap remap_available = True except: remap_available = False # -------------------------------------------------------------------- # # Top level driver def parameters(config_file, numofproc=1): # ---------------------------------------------------------------- # # Initilize uh_box, fdr_data, fdr_vatts, dom_data, \ outlets, config_dict, directories = gen_uh_init(config_file) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Get main logger log = getLogger(LOG_NAME) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Run if numofproc > 1: pool = LoggingPool(processes=numofproc) for i, (cell_id, outlet) in enumerate(outlets.iteritems()): log.info('On Outlet #{0} of {1}'.format(i+1, len(outlets))) pool.apply_async(gen_uh_run, args=(uh_box, fdr_data, fdr_vatts, dom_data, outlet, config_dict, directories), callback=store_result) pool.close() pool.join() outlets = OrderedDict(sorted(results.items(), key=lambda t: t[0])) else: for name, outlet in outlets.iteritems(): outlet = gen_uh_run(uh_box, fdr_data, fdr_vatts, dom_data, outlet, config_dict, directories) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Finally, make the parameter file gen_uh_final(outlets, dom_data, config_dict, directories) # ---------------------------------------------------------------- # return # -------------------------------------------------------------------- # def gen_uh_init(config_file): """Initialize RVIC parameter""" # ---------------------------------------------------------------- # # Read Configuration files config_dict = read_config(config_file) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Import optional modules if config_dict['OPTIONS']['REMAP'] and not remap_available: raise ValueError('Problem importing remap module ' 'check to make sure cdo.py is available)') # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Setup Directory Structures directories = make_directories(config_dict['OPTIONS']['CASE_DIR'], ['plots', 'logs', 'params', 'inputs']) directories.update(make_directories(config_dict['OPTIONS']['TEMP_DIR'], ['aggregated', 'remapped'])) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # copy inputs to $case_dir/inputs and update configuration config_dict = copy_inputs(config_file, directories['inputs']) options = config_dict['OPTIONS'] # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Start Logging log = init_logger(directories['logs'], options['LOG_LEVEL'], options['VERBOSE']) for direc in directories: log.info('%s directory is %s', direc, directories[direc]) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Read Pour Points files try: pour_points = pd.read_csv(config_dict['POUR_POINTS']['FILE_NAME'], comment='#') log.info('Opened Pour Points File: ' '{0}'.format(config_dict['POUR_POINTS']['FILE_NAME'])) if not (all(x in pour_points.keys() for x in ['lons', 'lats']) or all(x in pour_points.keys() for x in ['x', 'y'])): raise ValueError('Pour Points File must include ' 'variables (lons, lats) or (x, y)') if 'names' in pour_points: pour_points.fillna(inplace=True, value='unknown') for i, name in enumerate(pour_points.names): pour_points.names[i] = strip_invalid_char(name) pour_points.drop_duplicates(inplace=True) pour_points.dropna() except Exception as e: log.error('Error opening pour points file: ' '{0}'.format(config_dict['POUR_POINTS']['FILE_NAME'])) log.exception(e) raise # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Read uh box file uh_file = config_dict['UH_BOX']['FILE_NAME'] uh_header = int(config_dict['UH_BOX']['HEADER_LINES']) uh_box = {} try: uh_box['time'], uh_box['func'] = np.genfromtxt(uh_file, skip_header=uh_header, delimiter=',', unpack=True) log.info('Opened UHbox File: ' '{0}'.format(config_dict['UH_BOX']['FILE_NAME'])) except: log.exception('Error opening uh_box file: ' '{0}'.format(config_dict['POUR_POINTS']['FILE_NAME'])) raise # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Read FDR file fdr_file = config_dict['ROUTING']['FILE_NAME'] fdr_var = config_dict['ROUTING']['FLOW_DIRECTION_VAR'] fdr_lat = config_dict['ROUTING']['LATITUDE_VAR'] fdr_lon = config_dict['ROUTING']['LONGITUDE_VAR'] fdr_vel = config_dict['ROUTING']['VELOCITY'] fdr_dif = config_dict['ROUTING']['DIFFUSION'] try: fdr_data, fdr_vatts, _ = read_netcdf(fdr_file) fdr_shape = fdr_data[fdr_var].shape # ---------------------------------------------------------------- # # Check latitude order, flip if necessary. if fdr_data[fdr_lat][-1] > fdr_data[fdr_lat][0]: log.debug('Flow Direction inputs came in upside down, flipping ' 'everything now.') remove_vars = [] for var, data in fdr_data.iteritems(): log.debug('flipping %s', var) if data.ndim >= 1 and var != fdr_lon: fdr_data[var] = np.flipud(data) elif data.ndim == 0: remove_vars.append(var) if remove_vars: for var in remove_vars: del fdr_data[var] # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Add velocity and/or diffusion grids if not present yet if not type(fdr_vel) == str: fdr_data['velocity'] = np.zeros(fdr_shape) + fdr_vel config_dict['ROUTING']['VELOCITY'] = 'velocity' log.info('Added velocity grid to fdr_data') if not type(fdr_dif) == str: fdr_data['diffusion'] = np.zeros(fdr_shape) + fdr_dif config_dict['ROUTING']['DIFFUSION'] = 'diffusion' log.info('Added diffusion grid to fdr_data') if ('SOURCE_AREA_VAR' not in config_dict['ROUTING'] or config_dict['ROUTING']['SOURCE_AREA_VAR'] not in fdr_data): log.warning('Upstream `SOURCE_AREA` was not provided, output ' 'source area will be zero.') config_dict['ROUTING']['SOURCE_AREA_VAR'] = 'src_area' fdr_data[config_dict['ROUTING']['SOURCE_AREA_VAR']] = \ np.zeros(fdr_shape) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # fdr_data['resolution'] = np.abs(fdr_data[fdr_lon][1] - fdr_data[fdr_lon][0]) check_ncvars(config_dict['ROUTING'], fdr_data.keys()) # ---------------------------------------------------------------- # log.info('Opened FDR File: {0}'.format(fdr_file)) except: log.exception('Error opening FDR file') raise # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Read domain file domain = config_dict['DOMAIN'] dom_data, _, _ = read_domain(domain) log.info('Opened Domain File: ' '{0}'.format(domain['FILE_NAME'])) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # If remap is False, domain coordinates needs to be in the fdr coordinates # We can move the unit hydrographs to the domain grid later if options['AGGREGATE'] and not options['REMAP']: log.error('RVIC parameter generation requires REMAP option to be True' ' if AGGREGATE is True') raise ValueError('Invalid option') # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # Group pour points (if aggregate) if options['AGGREGATE']: outlets = make_agg_pairs(pour_points, dom_data, fdr_data, config_dict) log.info('Finished making agg pairs of ' 'pour points and outlet grid cells') else: outlets = {} if all(x in pour_points.keys() for x in ['x', 'y', 'lons', 'lats']): lats = pour_points['lats'].values lons = pour_points['lons'].values routys = pour_points['y'].values routxs = pour_points['x'].values elif all(x in pour_points.keys() for x in ['x', 'y']): # use x and y (assume from routing inputs grid) # find lons and lats from xs and ys routys = pour_points['y'].values routxs = pour_points['x'].values lats = fdr_data[fdr_lat][routys] lons = fdr_data[fdr_lon][routxs] else: # use lons and lats to find xs and ys lats = pour_points['lats'].values lons = pour_points['lons'].values # find x and y on routing grid routys, routxs = latlon2yx(plats=lats, plons=lons, glats=fdr_data[fdr_lat], glons=fdr_data[fdr_lon]) if options['SEARCH_FOR_CHANNEL']: routys, routxs = search_for_channel( fdr_data[config_dict['ROUTING']['SOURCE_AREA_VAR']], routys, routxs, tol=10, search=2) # update lats and lons lats = fdr_data[fdr_lat][routys] lons = fdr_data[fdr_lon][routxs] # Find location on domain grid domys, domxs = latlon2yx(plats=lats, plons=lons, glats=dom_data[domain['LATITUDE_VAR']], glons=dom_data[domain['LONGITUDE_VAR']]) for i in xrange(len(lats)): if 'names' in pour_points.keys(): name = pour_points['names'].values[i] name = name.replace("'", '').replace(" ", "_") else: # fill name filed with p-outlet_num name = 'p-{0}'.format(i) outlets[i] = Point(lat=lats[i], lon=lons[i], domx=domxs[i], domy=domys[i], routx=routxs[i], routy=routys[i], name=name, cell_id=dom_data['cell_ids'][domys[i], domxs[i]]) outlets[i].pour_points = [outlets[i]] # ---------------------------------------------------------------- # log.debug(outlets) log.info('Finished with gen_uh_init') log.info('-------------------------------------------------------------\n') return (uh_box, fdr_data, fdr_vatts, dom_data, outlets, config_dict, directories) # -------------------------------------------------------------------- # def gen_uh_run(uh_box, fdr_data, fdr_vatts, dom_data, outlet, config_dict, directories): """ Run Genuh_run """ log = getLogger(LOG_NAME) log.info('Running outlet cell id {0}'.format(outlet.cell_id)) agg_data = {} domain = config_dict['DOMAIN'] dom_lat = domain['LATITUDE_VAR'] dom_lon = domain['LONGITUDE_VAR'] dom_mask = domain['LAND_MASK_VAR'] options = config_dict['OPTIONS'] # ------------------------------------------------------------ # # netCDF variable options ncvaropts = {} if 'NETCDF_ZLIB' in options: ncvaropts['zlib'] = options['NETCDF_ZLIB'] if 'NETCDF_COMPLEVEL' in options: ncvaropts['complevel'] = options['NETCDF_COMPLEVEL'] if 'NETCDF_SIGFIGS' in options: ncvaropts['least_significant_digit'] = options['NETCDF_SIGFIGS'] # ------------------------------------------------------------ # # ------------------------------------------------------------ # # Loop over pour points for j, pour_point in enumerate(outlet.pour_points): log.info('On pour_point #{0} of' ' {1}'.format(j+1, len(outlet.pour_points))) # -------------------------------------------------------- # # Make the Unit Hydrograph Grid rout_data = rout(pour_point, uh_box, fdr_data, fdr_vatts, config_dict['ROUTING']) log.debug('Done routing to pour_point') log.debug('rout_data: {0}, ' '{1}'.format(rout_data['unit_hydrograph'].min(), rout_data['unit_hydrograph'].max())) log.debug('rout_data sum: {0}, ' '{1}'.format(rout_data['unit_hydrograph'].sum(), rout_data['fraction'].sum())) # -------------------------------------------------------- # # -------------------------------------------------------- # # aggregate if options['AGGREGATE']: if j != len(outlet.pour_points)-1: agg_data = aggregate(rout_data, agg_data, res=fdr_data['resolution']) else: agg_data = aggregate(rout_data, agg_data, res=fdr_data['resolution'], pad=options['AGG_PAD'], maskandnorm=True) log.debug('agg_data: {0}, ' '{1}'.format(agg_data['unit_hydrograph'].min(), agg_data['unit_hydrograph'].max())) else: agg_data = rout_data # -------------------------------------------------------- # # ------------------------------------------------------------ # # write temporary file #1 if options['REMAP']: glob_atts = NcGlobals(title='RVIC Unit Hydrograph Grid File', RvicPourPointsFile=os.path.split(config_dict['POUR_POINTS']['FILE_NAME'])[1], RvicUHFile=os.path.split(config_dict['UH_BOX']['FILE_NAME'])[1], RvicFdrFile=os.path.split(config_dict['ROUTING']['FILE_NAME'])[1], RvicDomainFile=os.path.split(domain['FILE_NAME'])[1]) temp_file_1 = os.path.join(directories['aggregated'], 'aggUH_{0}.nc'.format(outlet.name.replace(" ", "_"))) write_agg_netcdf(temp_file_1, agg_data, glob_atts, options['NETCDF_FORMAT'], **ncvaropts) # -------------------------------------------------------- # # Remap temporary file #1 to temporary file #2 temp_file_2 = os.path.join(directories['remapped'], 'remapUH_{0}.nc'.format(outlet.name.replace(" ", "_"))) remap(domain['FILE_NAME'], temp_file_1, temp_file_2) # -------------------------------------------------------- # # Read temporary file #2 final_data, _, _ = read_netcdf(temp_file_2, variables=['unit_hydrograph', 'fraction', dom_lat]) # -------------------------------------------------------- # # Check latitude order, flip if necessary. if final_data[dom_lat].ndim == 1: if final_data[dom_lat][-1] > final_data[dom_lat][0]: var_list = final_data.keys() log.debug('Remapped inputs came in upside down, flipping {0}' ' now.'.format(", ".join(var_list))) # flip lattiutude and fraction along y axis (axis 0) final_data[dom_lat] = final_data[dom_lat][::-1] final_data['fraction'] = final_data['fraction'][::-1, :] # flip unit hydrograph along y axis (axis 1) final_data['unit_hydrograph'] = final_data['unit_hydrograph'][:, ::-1, :] assert dom_data['cord_lats'][0] == final_data[dom_lat][0] # -------------------------------------------------------- # # -------------------------------------------------------- # # Clean temporary file #2 (if applicable) if config_dict['OPTIONS']['CLEAN']: clean_file(temp_file_1) clean_file(temp_file_2) # -------------------------------------------------------- # # -------------------------------------------------------- # # Set the domain index offest to zero and use the remapped fraction # as the final fractions y0, x0 = 0, 0 final_fracs = final_data['fraction'] # -------------------------------------------------------- # else: # -------------------------------------------------------- # # Put the agg data back onto the original grid final_data = agg_data final_fracs = np.zeros_like(fdr_data['velocity'], dtype=np.float64) x0 = final_data['dom_x_min'] x1 = final_data['dom_x_max'] y0 = final_data['dom_y_min'] y1 = final_data['dom_y_max'] final_fracs[y0:y1, x0:x1] = final_data['fraction'] # -------------------------------------------------------- # # ------------------------------------------------------------ # # ------------------------------------------------------------ # # Add to "adjust fractions structure" y, x = np.nonzero((final_fracs > 0.0) * (dom_data[dom_mask] == 1)) yi = y - y0 xi = x - x0 # From final data outlet.time = np.arange(final_data['unit_hydrograph'].shape[0]) outlet.fractions = final_data['fraction'][yi, xi] outlet.unit_hydrograph = final_data['unit_hydrograph'][:, yi, xi] # From domain data outlet.lon_source = dom_data[dom_lon][y, x] outlet.lat_source = dom_data[dom_lat][y, x] outlet.cell_id_source = dom_data['cell_ids'][y, x] outlet.x_source = x outlet.y_source = y # ---------------------------------------------------------------- # return outlet # -------------------------------------------------------------------- # def gen_uh_final(outlets, dom_data, config_dict, directories): """ Make the RVIC Parameter File """ log = getLogger(LOG_NAME) log.info('In gen_uh_final') # ---------------------------------------------------------------- # # Write the parameter file param_file, today = finish_params(outlets, dom_data, config_dict, directories) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # tar the inputs directory / log file inputs_tar = tar_inputs(directories['inputs'], suffix=today) log_tar = tar_inputs(log.filename) log.info('Done with RvicGenParam.') log.info('Location of Inputs: %s', inputs_tar) log.info('Location of Log: %s', log_tar) log.info('Location of Parmeter File %s', param_file) close_logger() # ---------------------------------------------------------------- # return # -------------------------------------------------------------------- # # -------------------------------------------------------------------- # # store_result helper function def store_result(result): # This is called whenever foo_pool(i) returns a result. # result_list is modified only by the main process, not the pool workers. results[result.cell_id] = result # -------------------------------------------------------------------- # results = {}
gpl-3.0
Lynn-015/NJU_DMRG
giggleliu/mps/mpo.py
1
1492
#!/usr/bin/python ''' Matrix Product State. ''' from numpy import * from matplotlib.pyplot import * from matplotlib import patches from matplotlib.collections import LineCollection from scipy.linalg import svd,qr,rq from scipy import sparse as sps from utils import bcast_dot import pdb,time class OpString(object): ''' Operator String. ''' def __init__(self,nsite): self.__opdict__={} self.nsite=nsite def __getitem__(self,l): return self.__opdict__.get(l) def __setitem__(self,l,op): self.__opdict__[l]=op def __iter__(self): for i in xrange(self.nsite): yield self.__opdict__.get(l) @property def oplist(self): '''A list of operators defined on sites.''' opl=[None]*self.nsite for l in self.__opdict__: opl[l]=self.__opdict__[l] @property def siteindices(self): '''The site indices with valid data.''' return self.__opdict__.keys() class MPO(object): ''' Matrix product operator. WL: The Matrix product operator datas. ''' def __init__(self,WL): self.WL=WL def __str__(self): return self.WL.__str__() def serialize(self): ''' Return The serialized form of operator. ''' O=w[0] for w in self.WL[1:]: O=O.dot(w) return O[0,0] @property def nsite(self): '''Number of sites.''' return len(self.WL)
mit
marcocaccin/MarcoGP
predict_alpha.py
1
5693
#!/usr/bin/env python import os, pickle, time try: os.remove('my_gp_module.pyc') except OSError: pass import scipy as sp from scipy.linalg import eigh from my_gp_module import GaussianProcess import matplotlib.pyplot as plt import matplotlib.cm as cm def randint_norepeat(low, exclude=None, high=None, size=None): l = list(sp.random.randint(low, high=high, size=size)) if exclude is not None: # remove elements already present in exclude l = [x for x in l if x not in exclude] for i in range(size-len(l)): while True: new = sp.random.randint(low, high=high) if new not in exclude and new not in l: l.append(new) break l.sort() return l def teach_database_plusone(GP, X, y, X_t, y_t): # Force all data to be numpy arrays X, y = sp.asarray(X), sp.asarray(y) X_t, y_t = sp.asarray(X_t), sp.asarray(y_t) # From a fixed database (X,y), get alpha of some new configurations if added one at a time alphas = [] for i, (X_test, y_test) in enumerate(zip(X_t, y_t)): if y_test.size != 1: print "ERROR: output space must be 1D. Exiting..." return # Test configuration is placed at position 0 X_plus = sp.row_stack((X_test, X)) y_plus = sp.append(y_test, y) ttt = time.clock() GP.fit(X_plus, y_plus) print "TIMER teach", time.clock() - ttt alphas.append((gp.alpha[0]).flatten().copy()) GP.flush_data() return sp.array(alphas).flatten() # -------------------------------------------- # WHAT IT DOES: # Latest idea by Anatole # Ntest test configurations, Ndatabases databases. Teach db+1 and check if inverse*inverse*k works # -------------------------------------------- # -------------------------------------------- # Parameters for the run # -------------------------------------------- split = 1 N_models = 1 theta0 = 1.0e1 nugget = 1.0e-15 normalise = 1 metric = 'cityblock' Ntest = 20 Nteach = 500 Ndatabases = 21 target_property = 'T' database_file = 'qm7.pkl' # -------------------------------------------- # Load all database # -------------------------------------------- ttt = time.clock() if not os.path.exists(database_file): os.system('wget http://www.quantum-machine.org/data/qm7.pkl') dataset = pickle.load(open(database_file,'r')) print "TIMER load_data", time.clock() - ttt test_indices_rec = [] teach_indices_rec = [] alpha_predicted = [] alpha_target = [] energy_target = [] energy_error = [] # -------------------------------------------- # Setup a Gaussian Process once and for all so that parameters do not change # -------------------------------------------- gp = GaussianProcess(corr='absolute_exponential', theta0=sp.asarray([theta0]), nugget=nugget, verbose=True, normalise=normalise, do_features_projection=False, low_memory=False, metric=metric) # -------------------------------------------- # Loop over different training sets of the same size # -------------------------------------------- for iteration in range(Ndatabases): # -------------------------------------------- # Pick Ntest configurations randomly # -------------------------------------------- test_indices = list(sp.random.randint(0, high=dataset[target_property].size, size=Ntest)) db_indices = randint_norepeat(0, exclude=test_indices, high=dataset[target_property].size, size=Nteach) teach_indices_rec.append(db_indices) X = dataset['X'][test_indices + db_indices] T = dataset[target_property][test_indices + db_indices] print "\n", "-"*60, "\n" print "db size = %d, iteration %03d" % (Nteach, iteration) # -------------------------------------------- # Extract feature(s) from training data and test set: # only sorted eigenvalues of Coulomb matrix in this case # -------------------------------------------- ttt = time.clock() eigX = [(eigh(M, eigvals_only=True))[::-1] for M in X] print "TIMER eval_features", time.clock() - ttt eigX_t = eigX[:Ntest] eigX_db = eigX[Ntest:] y = T.ravel() y_t = y[:Ntest] y_db = y[Ntest:] # -------------------------------------------- # Do len(y_t) teachings by including db + 1 configurations # -------------------------------------------- alphas = teach_database_plusone(gp, eigX_db, y_db, eigX_t, y_t) alpha_target.append(alphas) # -------------------------------------------- # -------------------------------------------- # Second time don't include the test set and predict # -------------------------------------------- ttt = time.clock() gp.flush_data() # Fit to data gp.fit(eigX_db, y_db) print "TIMER teach", time.clock() - ttt beta = sp.dot(gp.inverse, gp.alpha) y_pred, k = gp.predict(eigX_t, return_k=True) # -------------------------------------------- # predict the alphas the K-1 * K-1 * k way # -------------------------------------------- alpha_predicted.append(sp.dot(k, beta.flatten())) energy_target.append(y_t) energy_error.append(y_pred - y_t) # check whether the ML itself is doing sensible things print "ERROR = ", energy_error[-1] print "ALPHA TRUE vs. PREDICTED:", alphas, alpha_predicted[-1] with open('alpha_predictions.txt', 'a') as f: f.write("n_test_molecules=%d n_databases=%d db_size=%d\n" % (Ntest, Ndatabases, Nteach)) output_data = sp.vstack((sp.array(alpha_target).flatten(), sp.array(alpha_predicted).flatten(), sp.array(energy_target).flatten(), sp.array(energy_error).flatten())) sp.savetxt(f, output_data.T) f.close()
apache-2.0
kelseyoo14/Wander
venv_2_7/lib/python2.7/site-packages/pandas/io/tests/test_packers.py
9
21638
import nose import os import datetime import numpy as np import sys from distutils.version import LooseVersion from pandas import compat from pandas.compat import u from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, period_range, Index, SparseSeries, SparseDataFrame, SparsePanel) import pandas.util.testing as tm from pandas.util.testing import ensure_clean, assert_index_equal from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas.tests.test_panel import assert_panel_equal import pandas from pandas.sparse.tests.test_sparse import assert_sp_series_equal, assert_sp_frame_equal from pandas import Timestamp, tslib nan = np.nan from pandas.io.packers import to_msgpack, read_msgpack _multiprocess_can_split_ = False def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, Panel): assert_panel_equal(a, b) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) else: assert(a == b) class TestPackers(tm.TestCase): def setUp(self): self.path = '__%s__.msg' % tm.rands(10) def tearDown(self): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10,2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result,df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result,df) s = df.to_msgpack() result = read_msgpack(compat.BytesIO(s)) tm.assert_frame_equal(result,df) s = to_msgpack(None,df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() fh = open(p,'wb') fh.write(s) fh.close() result = read_msgpack(p) tm.assert_frame_equal(result, df) def test_iterator_with_string_io(self): dfs = [ DataFrame(np.random.randn(10,2)) for i in range(5) ] s = to_msgpack(None,*dfs) for i, result in enumerate(read_msgpack(s,iterator=True)): tm.assert_frame_equal(result,dfs[i]) def test_invalid_arg(self): #GH10369 class A(object): def __init__(self): self.read = 0 tm.assertRaises(ValueError, read_msgpack, path_or_buf=None) tm.assertRaises(ValueError, read_msgpack, path_or_buf={}) tm.assertRaises(ValueError, read_msgpack, path_or_buf=A()) class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, 'complex128'): raise nose.SkipTest('numpy cant handle complex128') x = [np.float32(np.random.rand()) for i in range(5)] + \ [np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + \ [(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_dict_float(self): x = {'foo': 1.0, 'bar': 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_dict_numpy_float(self): x = {'foo': np.float32(1.0), 'bar': np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ['float32','float64']: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) self.assertTrue(all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype) def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), u('foo')] x_rec = self.encode_decode(x) tm.assert_almost_equal(x,x_rec) class TestBasic(TestPackers): def test_timestamp(self): for i in [Timestamp( '20130101'), Timestamp('20130101', tz='US/Eastern'), Timestamp('201301010501')]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_datetimes(self): # fails under 2.6/win32 (np.datetime64 seems broken) if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('2.6 with np.datetime64 is broken') for i in [datetime.datetime( 2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15))]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_timedeltas(self): for i in [datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000)]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) class TestIndex(TestPackers): def setUp(self): super(TestIndex, self).setUp() self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), } def test_basic_index(self): for s, i in self.d.items(): i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) # datetime with no freq (GH5506) i = Index([Timestamp('20130101'),Timestamp('20130103')]) i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) # datetime with timezone i = Index([Timestamp('20130101 9:00:00'),Timestamp('20130103 11:00:00')]).tz_localize('US/Eastern') i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) def test_multi_index(self): for s, i in self.mi.items(): i_rec = self.encode_decode(i) self.assertTrue(i.equals(i_rec)) def test_unicode(self): i = tm.makeUnicodeIndex(100) # this currently fails self.assertRaises(UnicodeEncodeError, self.encode_decode, i) #i_rec = self.encode_decode(i) #self.assertTrue(i.equals(i_rec)) class TestSeries(TestPackers): def setUp(self): super(TestSeries, self).setUp() self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(tslib.iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_series_equal(i, i_rec) class TestNDFrame(TestPackers): def setUp(self): super(TestNDFrame, self).setUp() data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], } self.frame = { 'float': DataFrame(dict(A=data['A'], B=Series(data['A']) + 1)), 'int': DataFrame(dict(A=data['B'], B=Series(data['B']) + 1)), 'mixed': DataFrame(dict([(k, data[k]) for k in ['A', 'B', 'C', 'D']]))} self.panel = { 'float': Panel(dict(ItemA=self.frame['float'], ItemB=self.frame['float'] + 1))} def test_basic_frame(self): for s, i in self.frame.items(): i_rec = self.encode_decode(i) assert_frame_equal(i, i_rec) def test_basic_panel(self): for s, i in self.panel.items(): i_rec = self.encode_decode(i) assert_panel_equal(i, i_rec) def test_multi(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) l = tuple( [self.frame['float'], self.frame['float'].A, self.frame['float'].B, None]) l_rec = self.encode_decode(l) check_arbitrary(l, l_rec) # this is an oddity in that packed lists will be returned as tuples l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] l_rec = self.encode_decode(l) self.assertIsInstance(l_rec, tuple) check_arbitrary(l, l_rec) def test_iterator(self): l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] with ensure_clean(self.path) as path: to_msgpack(path, *l) for i, packed in enumerate(read_msgpack(path, iterator=True)): check_arbitrary(packed, l[i]) def tests_datetimeindex_freq_issue(self): # GH 5947 # inferring freq on the datetimeindex df = DataFrame([1, 2, 3], index=date_range('1/1/2013', '1/3/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) df = DataFrame([1, 2], index=date_range('1/1/2013', '1/2/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) def test_dataframe_duplicate_column_names(self): # GH 9618 expected_1 = DataFrame(columns=['a', 'a']) expected_2 = DataFrame(columns=[1]*100) expected_2.loc[0] = np.random.randn(100) expected_3 = DataFrame(columns=[1, 1]) expected_3.loc[0] = ['abc', np.nan] result_1 = self.encode_decode(expected_1) result_2 = self.encode_decode(expected_2) result_3 = self.encode_decode(expected_3) assert_frame_equal(result_1, expected_1) assert_frame_equal(result_2, expected_2) assert_frame_equal(result_3, expected_3) class TestSparse(TestPackers): def _check_roundtrip(self, obj, comparator, **kwargs): # currently these are not implemetned #i_rec = self.encode_decode(obj) #comparator(obj, i_rec, **kwargs) self.assertRaises(NotImplementedError, self.encode_decode, obj) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.ix[3:5, 1:3] = np.nan s.ix[8:10, -2] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_sparse_panel(self): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): items = ['x', 'y', 'z'] p = Panel(dict((i, tm.makeDataFrame().ix[:2, :2]) for i in items)) sp = p.to_sparse() self._check_roundtrip(sp, tm.assert_panel_equal, check_panel_type=True) sp2 = p.to_sparse(kind='integer') self._check_roundtrip(sp2, tm.assert_panel_equal, check_panel_type=True) sp3 = p.to_sparse(fill_value=0) self._check_roundtrip(sp3, tm.assert_panel_equal, check_panel_type=True) class TestCompression(TestPackers): """See https://github.com/pydata/pandas/pull/9783 """ def setUp(self): super(TestCompression, self).setUp() data = { 'A': np.arange(1000, dtype=np.float64), 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], } self.frame = { 'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])), 'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])), 'mixed': DataFrame(data), } def test_plain(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) def test_compression_zlib(self): i_rec = self.encode_decode(self.frame, compress='zlib') for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) def test_compression_blosc(self): try: import blosc except ImportError: raise nose.SkipTest('no blosc') i_rec = self.encode_decode(self.frame, compress='blosc') for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) class TestEncoding(TestPackers): def setUp(self): super(TestEncoding, self).setUp() data = { 'A': [compat.u('\u2019')] * 1000, 'B': np.arange(1000, dtype=np.int32), 'C': list(100 * 'abcdefghij'), 'D': date_range(datetime.datetime(2015, 4, 1), periods=1000), 'E': [datetime.timedelta(days=x) for x in range(1000)], 'G': [400] * 1000 } self.frame = { 'float': DataFrame(dict((k, data[k]) for k in ['A', 'A'])), 'int': DataFrame(dict((k, data[k]) for k in ['B', 'B'])), 'mixed': DataFrame(data), } self.utf_encodings = ['utf8', 'utf16', 'utf32'] def test_utf(self): # GH10581 for encoding in self.utf_encodings: for frame in compat.itervalues(self.frame): result = self.encode_decode(frame, encoding=encoding) assert_frame_equal(result, frame) class TestMsgpack(): """ How to add msgpack tests: 1. Install pandas version intended to output the msgpack. TestPackers 2. Execute "generate_legacy_storage_files.py" to create the msgpack. $ python generate_legacy_storage_files.py <output_dir> msgpack 3. Move the created pickle to "data/legacy_msgpack/<version>" directory. NOTE: TestMsgpack can't be a subclass of tm.Testcase to use test generator. http://stackoverflow.com/questions/6689537/nose-test-generators-inside-class """ def setUp(self): from pandas.io.tests.generate_legacy_storage_files import ( create_msgpack_data, create_data) self.data = create_msgpack_data() self.all_data = create_data() self.path = u('__%s__.msgpack' % tm.rands(10)) self.minimum_structure = {'series': ['float', 'int', 'mixed', 'ts', 'mi', 'dup'], 'frame': ['float', 'int', 'mixed', 'mi'], 'panel': ['float'], 'index': ['int', 'date', 'period'], 'mi': ['reg2']} def check_min_structure(self, data): for typ, v in self.minimum_structure.items(): assert typ in data, '"{0}" not found in unpacked data'.format(typ) for kind in v: assert kind in data[typ], '"{0}" not found in data["{1}"]'.format(kind, typ) def compare(self, vf, version): data = read_msgpack(vf) self.check_min_structure(data) for typ, dv in data.items(): assert typ in self.all_data, 'unpacked data contains extra key "{0}"'.format(typ) for dt, result in dv.items(): assert dt in self.all_data[typ], 'data["{0}"] contains extra key "{1}"'.format(typ, dt) try: expected = self.data[typ][dt] except KeyError: continue # use a specific comparator # if available comparator = getattr(self,"compare_{typ}_{dt}".format(typ=typ,dt=dt), None) if comparator is not None: comparator(result, expected, typ, version) else: check_arbitrary(result, expected) return data def compare_series_dt_tz(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < '0.17.0': expected = expected.astype(object) tm.assert_series_equal(result, expected) else: tm.assert_series_equal(result, expected) def compare_frame_dt_mixed_tzs(self, result, expected, typ, version): # 8260 # dtype is object < 0.17.0 if LooseVersion(version) < '0.17.0': expected = expected.astype(object) tm.assert_frame_equal(result, expected) else: tm.assert_frame_equal(result, expected) def read_msgpacks(self, version): pth = tm.get_data_path('legacy_msgpack/{0}'.format(str(version))) n = 0 for f in os.listdir(pth): vf = os.path.join(pth, f) self.compare(vf, version) n += 1 assert n > 0, 'Msgpack files are not tested' def test_msgpack(self): msgpack_path = tm.get_data_path('legacy_msgpack') n = 0 for v in os.listdir(msgpack_path): pth = os.path.join(msgpack_path, v) if os.path.isdir(pth): yield self.read_msgpacks, v n += 1 assert n > 0, 'Msgpack files are not tested' if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
artistic-2.0
sfairhur/pycbc
examples/distributions/spin_spatial_distr_example.py
14
1973
import numpy import matplotlib.pyplot as plt import pycbc.coordinates as co from mpl_toolkits.mplot3d import Axes3D from pycbc import distributions # We can choose any bounds between 0 and pi for this distribution but in units # of pi so we use between 0 and 1. theta_low = 0. theta_high = 1. # Units of pi for the bounds of the azimuthal angle which goes from 0 to 2 pi. phi_low = 0. phi_high = 2. # Create a distribution object from distributions.py # Here we are using the Uniform Solid Angle function which takes # theta = polar_bounds(theta_lower_bound to a theta_upper_bound), and then # phi = azimuthal_bound(phi_lower_bound to a phi_upper_bound). uniform_solid_angle_distribution = distributions.UniformSolidAngle( polar_bounds=(theta_low,theta_high), azimuthal_bounds=(phi_low,phi_high)) # Now we can take a random variable sample from that distribution. # In this case we want 50000 samples. solid_angle_samples = uniform_solid_angle_distribution.rvs(size=10000) # Make a spin 1 magnitude since solid angle is only 2 dimensions and we need a # 3rd dimension for a 3D plot that we make later on. spin_mag = numpy.ndarray(shape=(10000), dtype=float) for i in range(0,10000): spin_mag[i] = 1. # Use pycbc.coordinates as co. Use spherical_to_cartesian function to # convert from spherical polar coordinates to cartesian coordinates. spinx, spiny, spinz = co.spherical_to_cartesian(spin_mag, solid_angle_samples['phi'], solid_angle_samples['theta']) # Plot the spherical distribution of spins to make sure that we # distributed across the surface of a sphere. fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111, projection='3d') ax.scatter(spinx, spiny, spinz, s=1) ax.set_xlabel('Spin X Axis') ax.set_ylabel('Spin Y Axis') ax.set_zlabel('Spin Z Axis') plt.show()
gpl-3.0
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/core/missing.py
7
21165
""" Routines for filling missing data """ import numpy as np from distutils.version import LooseVersion import pandas.algos as algos import pandas.lib as lib from pandas.compat import range, string_types from pandas.types.common import (is_numeric_v_string_like, is_float_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_integer_dtype, _ensure_float64, is_scalar) from pandas.types.missing import isnull def mask_missing(arr, values_to_mask): """ Return a masking array of same size/shape as arr with entries equaling any member of values_to_mask set to True """ if not isinstance(values_to_mask, (list, np.ndarray)): values_to_mask = [values_to_mask] try: values_to_mask = np.array(values_to_mask, dtype=arr.dtype) except Exception: values_to_mask = np.array(values_to_mask, dtype=object) na_mask = isnull(values_to_mask) nonna = values_to_mask[~na_mask] mask = None for x in nonna: if mask is None: # numpy elementwise comparison warning if is_numeric_v_string_like(arr, x): mask = False else: mask = arr == x # if x is a string and arr is not, then we get False and we must # expand the mask to size arr.shape if is_scalar(mask): mask = np.zeros(arr.shape, dtype=bool) else: # numpy elementwise comparison warning if is_numeric_v_string_like(arr, x): mask |= False else: mask |= arr == x if na_mask.any(): if mask is None: mask = isnull(arr) else: mask |= isnull(arr) return mask def clean_fill_method(method, allow_nearest=False): # asfreq is compat for resampling if method in [None, 'asfreq']: return None if isinstance(method, string_types): method = method.lower() if method == 'ffill': method = 'pad' elif method == 'bfill': method = 'backfill' valid_methods = ['pad', 'backfill'] expecting = 'pad (ffill) or backfill (bfill)' if allow_nearest: valid_methods.append('nearest') expecting = 'pad (ffill), backfill (bfill) or nearest' if method not in valid_methods: msg = ('Invalid fill method. Expecting %s. Got %s' % (expecting, method)) raise ValueError(msg) return method def clean_interp_method(method, **kwargs): order = kwargs.get('order') valid = ['linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial', 'krogh', 'piecewise_polynomial', 'pchip', 'akima', 'spline', 'from_derivatives'] if method in ('spline', 'polynomial') and order is None: raise ValueError("You must specify the order of the spline or " "polynomial.") if method not in valid: raise ValueError("method must be one of {0}." "Got '{1}' instead.".format(valid, method)) return method def interpolate_1d(xvalues, yvalues, method='linear', limit=None, limit_direction='forward', fill_value=None, bounds_error=False, order=None, **kwargs): """ Logic for the 1-d interpolation. The result should be 1-d, inputs xvalues and yvalues will each be 1-d arrays of the same length. Bounds_error is currently hardcoded to False since non-scipy ones don't take it as an argumnet. """ # Treat the original, non-scipy methods first. invalid = isnull(yvalues) valid = ~invalid if not valid.any(): # have to call np.asarray(xvalues) since xvalues could be an Index # which cant be mutated result = np.empty_like(np.asarray(xvalues), dtype=np.float64) result.fill(np.nan) return result if valid.all(): return yvalues if method == 'time': if not getattr(xvalues, 'is_all_dates', None): # if not issubclass(xvalues.dtype.type, np.datetime64): raise ValueError('time-weighted interpolation only works ' 'on Series or DataFrames with a ' 'DatetimeIndex') method = 'values' def _interp_limit(invalid, fw_limit, bw_limit): "Get idx of values that won't be filled b/c they exceed the limits." for x in np.where(invalid)[0]: if invalid[max(0, x - fw_limit):x + bw_limit + 1].all(): yield x valid_limit_directions = ['forward', 'backward', 'both'] limit_direction = limit_direction.lower() if limit_direction not in valid_limit_directions: raise ValueError('Invalid limit_direction: expecting one of %r, got ' '%r.' % (valid_limit_directions, limit_direction)) from pandas import Series ys = Series(yvalues) start_nans = set(range(ys.first_valid_index())) end_nans = set(range(1 + ys.last_valid_index(), len(valid))) # This is a list of the indexes in the series whose yvalue is currently # NaN, but whose interpolated yvalue will be overwritten with NaN after # computing the interpolation. For each index in this list, one of these # conditions is true of the corresponding NaN in the yvalues: # # a) It is one of a chain of NaNs at the beginning of the series, and # either limit is not specified or limit_direction is 'forward'. # b) It is one of a chain of NaNs at the end of the series, and limit is # specified and limit_direction is 'backward' or 'both'. # c) Limit is nonzero and it is further than limit from the nearest non-NaN # value (with respect to the limit_direction setting). # # The default behavior is to fill forward with no limit, ignoring NaNs at # the beginning (see issues #9218 and #10420) violate_limit = sorted(start_nans) if limit: if limit_direction == 'forward': violate_limit = sorted(start_nans | set(_interp_limit(invalid, limit, 0))) if limit_direction == 'backward': violate_limit = sorted(end_nans | set(_interp_limit(invalid, 0, limit))) if limit_direction == 'both': violate_limit = sorted(_interp_limit(invalid, limit, limit)) xvalues = getattr(xvalues, 'values', xvalues) yvalues = getattr(yvalues, 'values', yvalues) result = yvalues.copy() if method in ['linear', 'time', 'index', 'values']: if method in ('values', 'index'): inds = np.asarray(xvalues) # hack for DatetimeIndex, #1646 if issubclass(inds.dtype.type, np.datetime64): inds = inds.view(np.int64) if inds.dtype == np.object_: inds = lib.maybe_convert_objects(inds) else: inds = xvalues result[invalid] = np.interp(inds[invalid], inds[valid], yvalues[valid]) result[violate_limit] = np.nan return result sp_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'spline', 'polynomial', 'from_derivatives', 'piecewise_polynomial', 'pchip', 'akima'] if method in sp_methods: inds = np.asarray(xvalues) # hack for DatetimeIndex, #1646 if issubclass(inds.dtype.type, np.datetime64): inds = inds.view(np.int64) result[invalid] = _interpolate_scipy_wrapper(inds[valid], yvalues[valid], inds[invalid], method=method, fill_value=fill_value, bounds_error=bounds_error, order=order, **kwargs) result[violate_limit] = np.nan return result def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None, bounds_error=False, order=None, **kwargs): """ passed off to scipy.interpolate.interp1d. method is scipy's kind. Returns an array interpolated at new_x. Add any new methods to the list in _clean_interp_method """ try: from scipy import interpolate # TODO: Why is DatetimeIndex being imported here? from pandas import DatetimeIndex # noqa except ImportError: raise ImportError('{0} interpolation requires Scipy'.format(method)) new_x = np.asarray(new_x) # ignores some kwargs that could be passed along. alt_methods = { 'barycentric': interpolate.barycentric_interpolate, 'krogh': interpolate.krogh_interpolate, 'from_derivatives': _from_derivatives, 'piecewise_polynomial': _from_derivatives, } if getattr(x, 'is_all_dates', False): # GH 5975, scipy.interp1d can't hande datetime64s x, new_x = x._values.astype('i8'), new_x.astype('i8') if method == 'pchip': try: alt_methods['pchip'] = interpolate.pchip_interpolate except AttributeError: raise ImportError("Your version of Scipy does not support " "PCHIP interpolation.") elif method == 'akima': try: from scipy.interpolate import Akima1DInterpolator # noqa alt_methods['akima'] = _akima_interpolate except ImportError: raise ImportError("Your version of Scipy does not support " "Akima interpolation.") interp1d_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'polynomial'] if method in interp1d_methods: if method == 'polynomial': method = order terp = interpolate.interp1d(x, y, kind=method, fill_value=fill_value, bounds_error=bounds_error) new_y = terp(new_x) elif method == 'spline': # GH #10633 if not order: raise ValueError("order needs to be specified and greater than 0") terp = interpolate.UnivariateSpline(x, y, k=order, **kwargs) new_y = terp(new_x) else: # GH 7295: need to be able to write for some reason # in some circumstances: check all three if not x.flags.writeable: x = x.copy() if not y.flags.writeable: y = y.copy() if not new_x.flags.writeable: new_x = new_x.copy() method = alt_methods[method] new_y = method(x, y, new_x, **kwargs) return new_y def _from_derivatives(xi, yi, x, order=None, der=0, extrapolate=False): """ Convenience function for interpolate.BPoly.from_derivatives Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array-likes yi[i][j] is the j-th derivative known at xi[i] orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. der : int or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This numberincludes the function value as 0th derivative. extrapolate : bool, optional Whether to extrapolate to ouf-of-bounds points based on first and last intervals, or to return NaNs. Default: True. See Also -------- scipy.interpolate.BPoly.from_derivatives Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ import scipy from scipy import interpolate if LooseVersion(scipy.__version__) < '0.18.0': try: method = interpolate.piecewise_polynomial_interpolate return method(xi, yi.reshape(-1, 1), x, orders=order, der=der) except AttributeError: pass # return the method for compat with scipy version & backwards compat method = interpolate.BPoly.from_derivatives m = method(xi, yi.reshape(-1, 1), orders=order, extrapolate=extrapolate) return m(x) def _akima_interpolate(xi, yi, x, der=0, axis=0): """ Convenience function for akima interpolation. xi and yi are arrays of values used to approximate some function f, with ``yi = f(xi)``. See `Akima1DInterpolator` for details. Parameters ---------- xi : array_like A sorted list of x-coordinates, of length N. yi : array_like A 1-D array of real values. `yi`'s length along the interpolation axis must be equal to the length of `xi`. If N-D array, use axis parameter to select correct axis. x : scalar or array_like Of length M. der : int or list, optional How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This number includes the function value as 0th derivative. axis : int, optional Axis in the yi array corresponding to the x-coordinate values. See Also -------- scipy.interpolate.Akima1DInterpolator Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ from scipy import interpolate try: P = interpolate.Akima1DInterpolator(xi, yi, axis=axis) except TypeError: # Scipy earlier than 0.17.0 missing axis P = interpolate.Akima1DInterpolator(xi, yi) if der == 0: return P(x) elif interpolate._isscalar(der): return P(x, der=der) else: return [P(x, nu) for nu in der] def interpolate_2d(values, method='pad', axis=0, limit=None, fill_value=None, dtype=None): """ perform an actual interpolation of values, values will be make 2-d if needed fills inplace, returns the result """ transf = (lambda x: x) if axis == 0 else (lambda x: x.T) # reshape a 1 dim if needed ndim = values.ndim if values.ndim == 1: if axis != 0: # pragma: no cover raise AssertionError("cannot interpolate on a ndim == 1 with " "axis != 0") values = values.reshape(tuple((1, ) + values.shape)) if fill_value is None: mask = None else: # todo create faster fill func without masking mask = mask_missing(transf(values), fill_value) method = clean_fill_method(method) if method == 'pad': values = transf(pad_2d( transf(values), limit=limit, mask=mask, dtype=dtype)) else: values = transf(backfill_2d( transf(values), limit=limit, mask=mask, dtype=dtype)) # reshape back if ndim == 1: values = values[0] return values def _interp_wrapper(f, wrap_dtype, na_override=None): def wrapper(arr, mask, limit=None): view = arr.view(wrap_dtype) f(view, mask, limit=limit) return wrapper _pad_1d_datetime = _interp_wrapper(algos.pad_inplace_int64, np.int64) _pad_2d_datetime = _interp_wrapper(algos.pad_2d_inplace_int64, np.int64) _backfill_1d_datetime = _interp_wrapper(algos.backfill_inplace_int64, np.int64) _backfill_2d_datetime = _interp_wrapper(algos.backfill_2d_inplace_int64, np.int64) def pad_1d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): _method = getattr(algos, 'pad_inplace_%s' % dtype.name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _pad_1d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.pad_inplace_float64 elif values.dtype == np.object_: _method = algos.pad_inplace_object if _method is None: raise ValueError('Invalid dtype for pad_1d [%s]' % dtype.name) if mask is None: mask = isnull(values) mask = mask.view(np.uint8) _method(values, mask, limit=limit) return values def backfill_1d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): _method = getattr(algos, 'backfill_inplace_%s' % dtype.name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _backfill_1d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.backfill_inplace_float64 elif values.dtype == np.object_: _method = algos.backfill_inplace_object if _method is None: raise ValueError('Invalid dtype for backfill_1d [%s]' % dtype.name) if mask is None: mask = isnull(values) mask = mask.view(np.uint8) _method(values, mask, limit=limit) return values def pad_2d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): _method = getattr(algos, 'pad_2d_inplace_%s' % dtype.name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _pad_2d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.pad_2d_inplace_float64 elif values.dtype == np.object_: _method = algos.pad_2d_inplace_object if _method is None: raise ValueError('Invalid dtype for pad_2d [%s]' % dtype.name) if mask is None: mask = isnull(values) mask = mask.view(np.uint8) if np.all(values.shape): _method(values, mask, limit=limit) else: # for test coverage pass return values def backfill_2d(values, limit=None, mask=None, dtype=None): if dtype is None: dtype = values.dtype _method = None if is_float_dtype(values): _method = getattr(algos, 'backfill_2d_inplace_%s' % dtype.name, None) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): _method = _backfill_2d_datetime elif is_integer_dtype(values): values = _ensure_float64(values) _method = algos.backfill_2d_inplace_float64 elif values.dtype == np.object_: _method = algos.backfill_2d_inplace_object if _method is None: raise ValueError('Invalid dtype for backfill_2d [%s]' % dtype.name) if mask is None: mask = isnull(values) mask = mask.view(np.uint8) if np.all(values.shape): _method(values, mask, limit=limit) else: # for test coverage pass return values _fill_methods = {'pad': pad_1d, 'backfill': backfill_1d} def get_fill_func(method): method = clean_fill_method(method) return _fill_methods[method] def clean_reindex_fill_method(method): return clean_fill_method(method, allow_nearest=True) def fill_zeros(result, x, y, name, fill): """ if this is a reversed op, then flip x,y if we have an integer value (or array in y) and we have 0's, fill them with the fill, return the result mask the nan's from x """ if fill is None or is_float_dtype(result): return result if name.startswith(('r', '__r')): x, y = y, x is_variable_type = (hasattr(y, 'dtype') or hasattr(y, 'type')) is_scalar_type = is_scalar(y) if not is_variable_type and not is_scalar_type: return result if is_scalar_type: y = np.array(y) if is_integer_dtype(y): if (y == 0).any(): # GH 7325, mask and nans must be broadcastable (also: PR 9308) # Raveling and then reshaping makes np.putmask faster mask = ((y == 0) & ~np.isnan(result)).ravel() shape = result.shape result = result.astype('float64', copy=False).ravel() np.putmask(result, mask, fill) # if we have a fill of inf, then sign it correctly # (GH 6178 and PR 9308) if np.isinf(fill): signs = np.sign(y if name.startswith(('r', '__r')) else x) negative_inf_mask = (signs.ravel() < 0) & mask np.putmask(result, negative_inf_mask, -fill) if "floordiv" in name: # (PR 9308) nan_mask = ((y == 0) & (x == 0)).ravel() np.putmask(result, nan_mask, np.nan) result = result.reshape(shape) return result
apache-2.0
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/sklearn/svm/tests/test_sparse.py
2
7677
import numpy as np from scipy import sparse from sklearn import datasets, svm, linear_model, base from numpy.testing import assert_array_almost_equal, \ assert_array_equal, assert_equal from nose.tools import assert_raises, assert_true from sklearn.datasets.samples_generator import make_classification from sklearn.svm.tests import test_svm # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def test_svc(): """Check that sparse SVC gives the same result as SVC""" clf = svm.SVC(kernel='linear').fit(X, Y) sp_clf = svm.SVC(kernel='linear').fit(X_sp, Y) assert_array_equal(sp_clf.predict(T), true_result) assert_true(sparse.issparse(sp_clf.support_vectors_)) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.todense()) assert_true(sparse.issparse(sp_clf.dual_coef_)) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense()) assert_true(sparse.issparse(sp_clf.coef_)) assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense()) assert_array_almost_equal(clf.predict(T), sp_clf.predict(T)) # refit with a different dataset clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.todense()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense()) assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense()) assert_array_almost_equal(clf.predict(T2), sp_clf.predict(T2)) def test_svc_iris(): """Test the sparse SVC with the iris dataset""" for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.todense(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.todense()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.todense()) assert_array_almost_equal( clf.predict(iris.data.todense()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.todense()) def test_error(): """ Test that it gives proper exception on deficient input """ # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): """ Similar to test_SVC """ clf = svm.LinearSVC().fit(X, Y) sp_clf = svm.LinearSVC().fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=4) def test_linearsvc_iris(): """Test the sparse LinearSVC with the iris dataset""" sp_clf = svm.LinearSVC().fit(iris.data, iris.target) clf = svm.LinearSVC().fit(iris.data.todense(), iris.target) assert_array_almost_equal(clf.label_, sp_clf.label_) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.raw_coef_, sp_clf.raw_coef_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.todense()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.todense())) def test_weight(): """ Test class weights """ X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): """ Test weights on individual samples """ clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): """ Test that sparse liblinear honours intercept_scaling param """ test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_realdata(): """ Test on a subset from the 20newsgroups dataset. This catchs some bugs if input is not correctly converted into sparse format or weights are not correctly initialized. """ data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.todense(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.todense()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.todense()) def test_sparse_svc_clone_with_callable_kernel(): # first, test that we raise a value error for "sparse kernels" # this test is only relevant for the deprecated sparse.SVC class. sp = svm.sparse.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True) assert_raises(ValueError, sp.fit, X_sp, Y) # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported if __name__ == '__main__': import nose nose.runmodule()
agpl-3.0
PrashntS/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
RangerKD/RFS-SLAM
scripts/componentTesting/spatialIndexTreeTestVisualizer.py
1
1061
#!/usr/bin/python import sys import os.path import matplotlib import matplotlib.pyplot as plt import argparse import numpy as np parser = argparse.ArgumentParser(description="Map Octree Visualizer") parser.add_argument("dataFile", help="path to tree data") args = parser.parse_args() if os.path.exists(args.dataFile): print('Opening ' + args.dataFile) else: print(args.dataFile + ' does not exist'); sys.exit(0); treeData = np.genfromtxt(args.dataFile) pt = np.empty([0,2]) box = np.empty([0,5]) for i in range(0, treeData.shape[0]): if( treeData[i][1] == treeData[i][3] and treeData[i][2] == treeData[i][4] ): # point pt = np.vstack( [pt, treeData[i,1:3]] ) else: #box box = np.vstack( [box, treeData[i,1:6]] ) print pt print box fig = plt.figure() ax1 = fig.add_subplot(111, aspect='equal') for i in range (0, box.shape[0]): ax1.add_patch( matplotlib.patches.Rectangle( box[i,:], box[i,2]-box[i,0], box[i,3]-box[i,1], fill=False ) ) plt.plot(pt[:,0], pt[:,1], marker='+', color='r', linewidth=0) plt.show()
bsd-3-clause
mehdidc/scikit-learn
sklearn/decomposition/__init__.py
99
1331
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD']
bsd-3-clause
murawaki/lexwave
pca_tree.py
1
4465
# -*- coding: utf-8 -*- import sys from sklearn.decomposition import PCA import numpy as np from parse_tree import Node def extract_mat(root, k): # if full == False: only leaves are extracted mat_orig = {} stack = [root] size = -1 while len(stack) > 0: node = stack.pop(0) vect = map(lambda x: int(x), node.annotation["&" + k][2:-1]) size = len(vect) mat_orig[node._id] = vect if hasattr(node, "left"): stack.append(node.left) stack.append(node.right) mat = np.empty((len(mat_orig), size), dtype=np.int32) for _id, vect in mat_orig.iteritems(): mat[_id] = vect return mat def extract_mat_leaves(root, k): # if full == False: only leaves are extracted mat_orig = {} id2idx = {} idx2node = {} stack = [root] size = -1 while len(stack) > 0: node = stack.pop(0) if hasattr(node, "left"): stack.append(node.left) stack.append(node.right) else: vect = map(lambda x: int(x), node.annotation["&" + k][2:-1]) size = len(vect) idx = id2idx[node._id] = len(id2idx) idx2node[idx] = node mat_orig[idx] = vect mat = np.empty((len(mat_orig), size), dtype=np.int32) for idx, vect in mat_orig.iteritems(): mat[idx] = vect return mat, id2idx, idx2node def do_pca(X): pca = PCA() pca = PCA() U, S, V = pca._fit(X) X_transformed = np.dot(X - pca.mean_, pca.components_.T) return pca, X_transformed def do_pca_new(pca, X): return np.dot(X - pca.mean_, pca.components_.T) def plot_rec(node, X_transformed, plt, p1, p2): _id = node._id if hasattr(node, "parent"): # non-root _id2 = node.parent._id x1, x2 = X_transformed[_id2, p1], X_transformed[_id, p1] y1, y2 = X_transformed[_id2, p2], X_transformed[_id, p2] if min(abs(x1 - x2), abs(y1 - y2)) > 0.1: length_includes_head=True else: length_includes_head=False plt.arrow(x1, y1, x2 - x1, y2 - y1, fc="k", ec="k", length_includes_head=length_includes_head) # ) # head_width=0.05, head_length=0.1 ) # plt.annotate("", xy=(x2, y2), xytext=(0, 0), # arrowprops=dict(arrowstyle="->")) if hasattr(node, "left"): plot_rec(node.left, X_transformed, plt, p1, p2) plot_rec(node.right, X_transformed, plt, p1, p2) if hasattr(node, "left"): # internal plt.scatter(X_transformed[_id, p1], X_transformed[_id, p2], c="r", s=30) if not hasattr(node, "parent"): # root plt.annotate("ROOT", (X_transformed[_id, p1], X_transformed[_id, p2])) else: # leaf x, y = X_transformed[_id, p1], X_transformed[_id, p2] plt.scatter(x, y, c="g", s=120) plt.annotate(node.name, (x, y), xytext=(x + 0.10, y + 0.05)) def main(): # usage: input key [output] # key: japanese, Ainu_UCLD_GRRW_SDollo, Koreanic_CovUCLD import cPickle as pickle root = pickle.load(open(sys.argv[1])) use_internal = False X = extract_mat(root, sys.argv[2]) if use_internal: pca, X_transformed = do_pca(X) else: Y, id2idx, idx2node = extract_mat_leaves(root, sys.argv[2]) pca, Y_transformed = do_pca(Y) X_transformed = do_pca_new(pca, X) # OJ p1 = 0 k = 'OJ' t = 0 d = {} for idx, node in idx2node.iteritems(): d[idx] = Y_transformed[idx][p1] if node.name == k: t = Y_transformed[idx][p1] sidx = sorted(idx2node.keys(), key=lambda x: abs(d[x] - t)) for idx in sidx: sys.stdout.write("%s\t%f\n" % (idx2node[idx].name, d[idx] - t)) exit(0) import matplotlib.pyplot as plt p1, p2 = 0, 1 # first and second PCs (zero-based numbering) plt.figure(figsize=(8, 6), dpi=120) plt.xlabel("PC%d (%2.1f%%)" % (p1 + 1, pca.explained_variance_ratio_[p1] * 100)) plt.ylabel("PC%d (%2.1f%%)" % (p2 + 1, pca.explained_variance_ratio_[p2] * 100)) plot_rec(root, X_transformed, plt, p1, p2) plt.legend() # plt.title('PCA') # plt.xlim([-2.5, 1.5]) # plt.ylim([-1.5, 2.5]) if len(sys.argv) > 3: plt.savefig(sys.argv[3], format="png", transparent=False, dpi=160) plt.show() if __name__ == "__main__": main()
bsd-2-clause
siddharthhparikh/INFM750-project
boosted_gmm.py
1
2154
import matplotlib.pyplot as plt import csv from GMM_classifier import gmm_classifier from sklearn.ensemble import AdaBoostRegressor import random import numpy as np data = {} with open('datasets/data_boston.csv', 'r') as csvfile: csvfile.readline() file = csv.reader(csvfile, delimiter=',') for row in file: if data.has_key(row[5]): data[row[5]].append([float(row[14]), float(row[15]), row[5]]) else: data[row[5]] = [[float(row[14]), float(row[15]), row[5]]] test_data_list = [] train_data_list = [] for key,value in data.iteritems(): if len(value) > 15000: for val in value[:15000]: train_data_list.append(val) for val in value[15000:19000]: test_data_list.append(val) del data """ train_data = np.array([[train_data_list[0][0], train_data_list[0][1]]]) train_data_label = np.array([[train_data_list[0][2]]]) test_data = np.empty(4000) test_data_label = np.empty(4000) """ """ train_data = np.zeros((15000,2)) train_data_label = [] test_data = np.zeros((4000,2)) test_data_label = [] i=0 for item in train_data_list[0]: train_data[i,0] = item[0] train_data[i,1] = item[1] train_data_label.append(item[2]) i=i+1 i=0 for item in test_data_list[0]: test_data[i,0] = item[0] test_data[i,1] = item[1] test_data_label.append(item[2]) i=i+1 del test_data_list del train_data_list """ d = { 'Improper storage trash: res' : 0, 'Overgrown Weeds On Property' : 1, 'Failure clear sidewalk - snow' : 2, 'Overfilling of barrel/dumpster' : 3 } train_data = list() train_data_label = list() test_data = list() test_data_label = list() random.shuffle(train_data_list) random.shuffle(test_data_list) for item in train_data_list: train_data.append([item[0], item[1]]) train_data_label.append(d[item[2]]) for item in test_data_list: test_data.append([item[0], item[1]]) test_data_label.append(d[item[2]]) print len(train_data), len(train_data_label), len(train_data_list) regr = gmm_classifier() regr.fit(train_data,train_data_label) y_predict = regr.predict(test_data) print y_predict correct = 0 for a,b in zip(y_predict, test_data_label): if a == b: correct = correct+1 print float(correct)/len(test_data_label)
apache-2.0
yukke42/machine-learning
2/p30.py
1
2222
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() - 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() - 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) class Perceptron(object): def __init__(self, eta=0.01, n_iter=10): self.eta = eta self.n_iter = n_iter def fit(self, X, Y): """ paramater # X.shape = [n_samples, n_features] # Y.shape = [n_samples] return # object """ self.w_ = np.zeros(1 + X.shape[1]) self.errors_ = [] for _ in range(self.n_iter): errors = 0 for xi, target in zip(X, y): update = self.eta * (target - self.predict(xi)) self.w_[1:] += update * xi self.w_[0] += update errors += int(update != 0.0) self.errors_.append(errors) return self def net_input(self, X): return np.dot(X, self.w_[1:]) + self.w_[0] def predict(self, X): return np.where(self.net_input(X) >= 0.0, 1, -1) df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None) y = df.iloc[0:150, 4].values y = np.where(y == 'Iris-setosa', -1, 1) X = df.iloc[0:150, [0,2]].values ppn = Perceptron(eta=0.01, n_iter=10) ppn.fit(X, y) plot_decision_regions(X, y, classifier=ppn) plt.xlabel('sepal lenght') plt.ylabel('petal lenght') plt.legend(loc='upper left') plt.show()
mit
all-umass/metric-learn
test/test_utils.py
1
43506
import pytest from collections import namedtuple import numpy as np from numpy.testing import assert_array_equal, assert_equal from sklearn.model_selection import train_test_split from sklearn.exceptions import DataConversionWarning from sklearn.utils import check_random_state, shuffle from sklearn.utils.testing import set_random_state from sklearn.base import clone from metric_learn._util import (check_input, make_context, preprocess_tuples, make_name, preprocess_points, check_collapsed_pairs, validate_vector) from metric_learn import (ITML, LSML, MMC, RCA, SDML, Covariance, LFDA, LMNN, MLKR, NCA, ITML_Supervised, LSML_Supervised, MMC_Supervised, RCA_Supervised, SDML_Supervised, Constraints) from metric_learn.base_metric import (ArrayIndexer, MahalanobisMixin, _PairsClassifierMixin, _QuadrupletsClassifierMixin) from metric_learn.exceptions import PreprocessorError from sklearn.datasets import make_regression, make_blobs, load_iris SEED = 42 RNG = check_random_state(SEED) Dataset = namedtuple('Dataset', ('data target preprocessor to_transform')) # Data and target are what we will fit on. Preprocessor is the additional # data if we use a preprocessor (which should be the default ArrayIndexer), # and to_transform is some additional data that we would want to transform @pytest.fixture def build_classification(with_preprocessor=False): """Basic array for testing when using a preprocessor""" X, y = shuffle(*make_blobs(random_state=SEED), random_state=SEED) indices = shuffle(np.arange(X.shape[0]), random_state=SEED).astype(int) if with_preprocessor: return Dataset(indices, y[indices], X, indices) else: return Dataset(X[indices], y[indices], None, X[indices]) @pytest.fixture def build_regression(with_preprocessor=False): """Basic array for testing when using a preprocessor""" X, y = shuffle(*make_regression(n_samples=100, n_features=5, random_state=SEED), random_state=SEED) indices = shuffle(np.arange(X.shape[0]), random_state=SEED).astype(int) if with_preprocessor: return Dataset(indices, y[indices], X, indices) else: return Dataset(X[indices], y[indices], None, X[indices]) def build_data(): input_data, labels = load_iris(return_X_y=True) X, y = shuffle(input_data, labels, random_state=SEED) num_constraints = 50 constraints = Constraints(y) pairs = ( constraints .positive_negative_pairs(num_constraints, same_length=True, random_state=check_random_state(SEED))) return X, pairs def build_pairs(with_preprocessor=False): # builds a toy pairs problem X, indices = build_data() c = np.vstack([np.column_stack(indices[:2]), np.column_stack(indices[2:])]) target = np.concatenate([np.ones(indices[0].shape[0]), - np.ones(indices[0].shape[0])]) c, target = shuffle(c, target, random_state=SEED) if with_preprocessor: # if preprocessor, we build a 2D array of pairs of indices return Dataset(c, target, X, c[:, 0]) else: # if not, we build a 3D array of pairs of samples return Dataset(X[c], target, None, X[c[:, 0]]) def build_quadruplets(with_preprocessor=False): # builds a toy quadruplets problem X, indices = build_data() c = np.column_stack(indices) target = np.ones(c.shape[0]) # quadruplets targets are not used # anyways c, target = shuffle(c, target, random_state=SEED) if with_preprocessor: # if preprocessor, we build a 2D array of quadruplets of indices return Dataset(c, target, X, c[:, 0]) else: # if not, we build a 3D array of quadruplets of samples return Dataset(X[c], target, None, X[c[:, 0]]) quadruplets_learners = [(LSML(), build_quadruplets)] ids_quadruplets_learners = list(map(lambda x: x.__class__.__name__, [learner for (learner, _) in quadruplets_learners])) pairs_learners = [(ITML(), build_pairs), (MMC(max_iter=2), build_pairs), # max_iter=2 for faster (SDML(), build_pairs), ] ids_pairs_learners = list(map(lambda x: x.__class__.__name__, [learner for (learner, _) in pairs_learners])) classifiers = [(Covariance(), build_classification), (LFDA(), build_classification), (LMNN(), build_classification), (NCA(), build_classification), (RCA(), build_classification), (ITML_Supervised(max_iter=5), build_classification), (LSML_Supervised(), build_classification), (MMC_Supervised(max_iter=5), build_classification), (RCA_Supervised(num_chunks=10), build_classification), (SDML_Supervised(), build_classification) ] ids_classifiers = list(map(lambda x: x.__class__.__name__, [learner for (learner, _) in classifiers])) regressors = [(MLKR(), build_regression)] ids_regressors = list(map(lambda x: x.__class__.__name__, [learner for (learner, _) in regressors])) WeaklySupervisedClasses = (_PairsClassifierMixin, _QuadrupletsClassifierMixin) tuples_learners = pairs_learners + quadruplets_learners ids_tuples_learners = ids_pairs_learners + ids_quadruplets_learners supervised_learners = classifiers + regressors ids_supervised_learners = ids_classifiers + ids_regressors metric_learners = tuples_learners + supervised_learners ids_metric_learners = ids_tuples_learners + ids_supervised_learners def mock_preprocessor(indices): """A preprocessor for testing purposes that returns an all ones 3D array """ return np.ones((indices.shape[0], 3)) @pytest.mark.parametrize('type_of_inputs', ['other', 'tuple', 'classics', 2, int, NCA()]) def test_check_input_invalid_type_of_inputs(type_of_inputs): """Tests that an invalid type of inputs in check_inputs raises an error.""" with pytest.raises(ValueError) as e: check_input([[0.2, 2.1], [0.2, .8]], type_of_inputs=type_of_inputs) msg = ("Unknown value {} for type_of_inputs. Valid values are " "'classic' or 'tuples'.".format(type_of_inputs)) assert str(e.value) == msg # ---------------- test check_input with 'tuples' type_of_input' ------------ @pytest.fixture def tuples_prep(): """Basic array for testing when using a preprocessor""" tuples = np.array([[1, 2], [2, 3]]) return tuples @pytest.fixture def tuples_no_prep(): """Basic array for testing when using no preprocessor""" tuples = np.array([[[1., 2.3], [2.3, 5.3]], [[2.3, 4.3], [0.2, 0.4]]]) return tuples @pytest.mark.parametrize('estimator, expected', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) def test_make_context(estimator, expected): """test the make_name function""" assert make_context(estimator) == expected @pytest.mark.parametrize('estimator, expected', [(NCA(), "NCA"), ('NCA', "NCA"), (None, None)]) def test_make_name(estimator, expected): """test the make_name function""" assert make_name(estimator) == expected @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('load_tuples, preprocessor', [(tuples_prep, mock_preprocessor), (tuples_no_prep, None), (tuples_no_prep, mock_preprocessor)]) def test_check_tuples_invalid_tuple_size(estimator, context, load_tuples, preprocessor): """Checks that the exception are raised if tuple_size is not the one expected""" tuples = load_tuples() preprocessed_tuples = (preprocess_tuples(tuples, preprocessor) if (preprocessor is not None and tuples.ndim == 2) else tuples) expected_msg = ("Tuples of 3 element(s) expected{}. Got tuples of 2 " "element(s) instead (shape={}):\ninput={}.\n" .format(context, preprocessed_tuples.shape, preprocessed_tuples)) with pytest.raises(ValueError) as raised_error: check_input(tuples, type_of_inputs='tuples', tuple_size=3, preprocessor=preprocessor, estimator=estimator) assert str(raised_error.value) == expected_msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('tuples, found, expected, preprocessor', [(5, '0', '2D array of indicators or 3D array of ' 'formed tuples', mock_preprocessor), (5, '0', '3D array of formed tuples', None), ([1, 2], '1', '2D array of indicators or 3D array ' 'of formed tuples', mock_preprocessor), ([1, 2], '1', '3D array of formed tuples', None), ([[[[5]]]], '4', '2D array of indicators or 3D array' ' of formed tuples', mock_preprocessor), ([[[[5]]]], '4', '3D array of formed tuples', None), ([[1], [3]], '2', '3D array of formed ' 'tuples', None)]) def test_check_tuples_invalid_shape(estimator, context, tuples, found, expected, preprocessor): """Checks that a value error with the appropriate message is raised if shape is invalid (not 2D with preprocessor or 3D with no preprocessor) """ tuples = np.array(tuples) msg = ("{} expected{}{}. Found {}D array instead:\ninput={}. Reshape your " "data{}.\n" .format(expected, context, ' when using a preprocessor' if preprocessor else '', found, tuples, ' and/or use a preprocessor' if (not preprocessor and tuples.ndim == 2) else '')) with pytest.raises(ValueError) as raised_error: check_input(tuples, type_of_inputs='tuples', preprocessor=preprocessor, ensure_min_samples=0, estimator=estimator) assert str(raised_error.value) == msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) def test_check_tuples_invalid_n_features(estimator, context, tuples_no_prep): """Checks that the right warning is printed if not enough features Here we only test if no preprocessor (otherwise we don't ensure this) """ msg = ("Found array with 2 feature(s) (shape={}) while" " a minimum of 3 is required{}.".format(tuples_no_prep.shape, context)) with pytest.raises(ValueError) as raised_error: check_input(tuples_no_prep, type_of_inputs='tuples', preprocessor=None, ensure_min_features=3, estimator=estimator) assert str(raised_error.value) == msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('load_tuples, preprocessor', [(tuples_prep, mock_preprocessor), (tuples_no_prep, None), (tuples_no_prep, mock_preprocessor)]) def test_check_tuples_invalid_n_samples(estimator, context, load_tuples, preprocessor): """Checks that the right warning is printed if n_samples is too small""" tuples = load_tuples() msg = ("Found array with 2 sample(s) (shape={}) while a minimum of 3 " "is required{}.".format((preprocess_tuples(tuples, preprocessor) if (preprocessor is not None and tuples.ndim == 2) else tuples).shape, context)) with pytest.raises(ValueError) as raised_error: check_input(tuples, type_of_inputs='tuples', preprocessor=preprocessor, ensure_min_samples=3, estimator=estimator) assert str(raised_error.value) == msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('load_tuples, preprocessor', [(tuples_prep, mock_preprocessor), (tuples_no_prep, None), (tuples_no_prep, mock_preprocessor)]) def test_check_tuples_invalid_dtype_convertible(estimator, context, load_tuples, preprocessor): """Checks that a warning is raised if a convertible input is converted to float""" tuples = load_tuples().astype(object) # here the object conversion is # useless for the tuples_prep case, but this allows to test the # tuples_prep case if preprocessor is not None: # if the preprocessor is not None we # overwrite it to have a preprocessor that returns objects def preprocessor(indices): # # preprocessor that returns objects return np.ones((indices.shape[0], 3)).astype(object) msg = ("Data with input dtype object was converted to float64{}." .format(context)) with pytest.warns(DataConversionWarning) as raised_warning: check_input(tuples, type_of_inputs='tuples', preprocessor=preprocessor, dtype=np.float64, warn_on_dtype=True, estimator=estimator) assert str(raised_warning[0].message) == msg def test_check_tuples_invalid_dtype_not_convertible_with_preprocessor( tuples_prep): """Checks that a value error is thrown if attempting to convert an input not convertible to float, when using a preprocessor """ def preprocessor(indices): # preprocessor that returns objects return np.full((indices.shape[0], 3), 'a') with pytest.raises(ValueError): check_input(tuples_prep, type_of_inputs='tuples', preprocessor=preprocessor, dtype=np.float64) def test_check_tuples_invalid_dtype_not_convertible_without_preprocessor( tuples_no_prep): """Checks that a value error is thrown if attempting to convert an input not convertible to float, when using no preprocessor """ tuples = np.full_like(tuples_no_prep, 'a', dtype=object) with pytest.raises(ValueError): check_input(tuples, type_of_inputs='tuples', preprocessor=None, dtype=np.float64) @pytest.mark.parametrize('tuple_size', [2, None]) def test_check_tuples_valid_tuple_size(tuple_size, tuples_prep, tuples_no_prep): """For inputs that have the right matrix dimension (2D or 3D for instance), checks that checking the number of tuples (pairs, quadruplets, etc) raises no warning if there is the right number of points in a tuple. """ with pytest.warns(None) as record: check_input(tuples_prep, type_of_inputs='tuples', preprocessor=mock_preprocessor, tuple_size=tuple_size) check_input(tuples_no_prep, type_of_inputs='tuples', preprocessor=None, tuple_size=tuple_size) assert len(record) == 0 @pytest.mark.parametrize('tuples', [np.array([[2.5, 0.1, 2.6], [1.6, 4.8, 9.1]]), np.array([[2, 0, 2], [1, 4, 9]]), np.array([["img1.png", "img3.png"], ["img2.png", "img4.png"]]), [[2, 0, 2], [1, 4, 9]], [np.array([2, 0, 2]), np.array([1, 4, 9])], ((2, 0, 2), (1, 4, 9)), np.array([[[1.2, 2.2], [1.4, 3.3]], [[2.6, 2.3], [3.4, 5.0]]])]) def test_check_tuples_valid_with_preprocessor(tuples): """Test that valid inputs when using a preprocessor raises no warning""" with pytest.warns(None) as record: check_input(tuples, type_of_inputs='tuples', preprocessor=mock_preprocessor) assert len(record) == 0 @pytest.mark.parametrize('tuples', [np.array([[[2.5], [0.1], [2.6]], [[1.6], [4.8], [9.1]], [[5.6], [2.8], [6.1]]]), np.array([[[2], [0], [2]], [[1], [4], [9]], [[1], [5], [3]]]), [[[2], [0], [2]], [[1], [4], [9]], [[3], [4], [29]]], (((2, 1), (0, 2), (2, 3)), ((1, 2), (4, 4), (9, 3)), ((3, 1), (4, 4), (29, 4)))]) def test_check_tuples_valid_without_preprocessor(tuples): """Test that valid inputs when using no preprocessor raises no warning""" with pytest.warns(None) as record: check_input(tuples, type_of_inputs='tuples', preprocessor=None) assert len(record) == 0 def test_check_tuples_behaviour_auto_dtype(tuples_no_prep): """Checks that check_tuples allows by default every type if using a preprocessor, and numeric types if using no preprocessor""" tuples_prep = [['img1.png', 'img2.png'], ['img3.png', 'img5.png']] with pytest.warns(None) as record: check_input(tuples_prep, type_of_inputs='tuples', preprocessor=mock_preprocessor) assert len(record) == 0 with pytest.warns(None) as record: check_input(tuples_no_prep, type_of_inputs='tuples') # numeric type assert len(record) == 0 # not numeric type tuples_no_prep = np.array([[['img1.png'], ['img2.png']], [['img3.png'], ['img5.png']]]) tuples_no_prep = tuples_no_prep.astype(object) with pytest.raises(ValueError): check_input(tuples_no_prep, type_of_inputs='tuples') def test_check_tuples_invalid_complex_data(): """Checks that the right error message is thrown if given complex data ( this comes from sklearn's check_array's message)""" tuples = np.array([[[1 + 2j, 3 + 4j], [5 + 7j, 5 + 7j]], [[1 + 3j, 2 + 4j], [5 + 8j, 1 + 7j]]]) msg = ("Complex data not supported\n" "{}\n".format(tuples)) with pytest.raises(ValueError) as raised_error: check_input(tuples, type_of_inputs='tuples') assert str(raised_error.value) == msg # ------------- test check_input with 'classic' type_of_inputs ---------------- @pytest.fixture def points_prep(): """Basic array for testing when using a preprocessor""" points = np.array([1, 2]) return points @pytest.fixture def points_no_prep(): """Basic array for testing when using no preprocessor""" points = np.array([[1., 2.3], [2.3, 4.3]]) return points @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('points, found, expected, preprocessor', [(5, '0', '1D array of indicators or 2D array of ' 'formed points', mock_preprocessor), (5, '0', '2D array of formed points', None), ([1, 2], '1', '2D array of formed points', None), ([[[5]]], '3', '1D array of indicators or 2D ' 'array of formed points', mock_preprocessor), ([[[5]]], '3', '2D array of formed points', None)]) def test_check_classic_invalid_shape(estimator, context, points, found, expected, preprocessor): """Checks that a value error with the appropriate message is raised if shape is invalid (valid being 1D or 2D with preprocessor or 2D with no preprocessor) """ points = np.array(points) msg = ("{} expected{}{}. Found {}D array instead:\ninput={}. Reshape your " "data{}.\n" .format(expected, context, ' when using a preprocessor' if preprocessor else '', found, points, ' and/or use a preprocessor' if (not preprocessor and points.ndim == 1) else '')) with pytest.raises(ValueError) as raised_error: check_input(points, type_of_inputs='classic', preprocessor=preprocessor, ensure_min_samples=0, estimator=estimator) assert str(raised_error.value) == msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) def test_check_classic_invalid_n_features(estimator, context, points_no_prep): """Checks that the right warning is printed if not enough features Here we only test if no preprocessor (otherwise we don't ensure this) """ msg = ("Found array with 2 feature(s) (shape={}) while" " a minimum of 3 is required{}.".format(points_no_prep.shape, context)) with pytest.raises(ValueError) as raised_error: check_input(points_no_prep, type_of_inputs='classic', preprocessor=None, ensure_min_features=3, estimator=estimator) assert str(raised_error.value) == msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('load_points, preprocessor', [(points_prep, mock_preprocessor), (points_no_prep, None), (points_no_prep, mock_preprocessor)]) def test_check_classic_invalid_n_samples(estimator, context, load_points, preprocessor): """Checks that the right warning is printed if n_samples is too small""" points = load_points() msg = ("Found array with 2 sample(s) (shape={}) while a minimum of 3 " "is required{}.".format((preprocess_points(points, preprocessor) if preprocessor is not None and points.ndim == 1 else points).shape, context)) with pytest.raises(ValueError) as raised_error: check_input(points, type_of_inputs='classic', preprocessor=preprocessor, ensure_min_samples=3, estimator=estimator) assert str(raised_error.value) == msg @pytest.mark.parametrize('estimator, context', [(NCA(), " by NCA"), ('NCA', " by NCA"), (None, "")]) @pytest.mark.parametrize('load_points, preprocessor', [(points_prep, mock_preprocessor), (points_no_prep, None), (points_no_prep, mock_preprocessor)]) def test_check_classic_invalid_dtype_convertible(estimator, context, load_points, preprocessor): """Checks that a warning is raised if a convertible input is converted to float""" points = load_points().astype(object) # here the object conversion is # useless for the points_prep case, but this allows to test the # points_prep case if preprocessor is not None: # if the preprocessor is not None we # overwrite it to have a preprocessor that returns objects def preprocessor(indices): # preprocessor that returns objects return np.ones((indices.shape[0], 3)).astype(object) msg = ("Data with input dtype object was converted to float64{}." .format(context)) with pytest.warns(DataConversionWarning) as raised_warning: check_input(points, type_of_inputs='classic', preprocessor=preprocessor, dtype=np.float64, warn_on_dtype=True, estimator=estimator) assert str(raised_warning[0].message) == msg @pytest.mark.parametrize('preprocessor, points', [(mock_preprocessor, np.array([['a', 'b'], ['e', 'b']])), (None, np.array([[['b', 'v'], ['a', 'd']], [['x', 'u'], ['c', 'a']]]))]) def test_check_classic_invalid_dtype_not_convertible(preprocessor, points): """Checks that a value error is thrown if attempting to convert an input not convertible to float """ with pytest.raises(ValueError): check_input(points, type_of_inputs='classic', preprocessor=preprocessor, dtype=np.float64) @pytest.mark.parametrize('points', [["img1.png", "img3.png", "img2.png"], np.array(["img1.png", "img3.png", "img2.png"]), [2, 0, 2, 1, 4, 9], range(10), np.array([2, 0, 2]), (2, 0, 2), np.array([[1.2, 2.2], [2.6, 2.3]])]) def test_check_classic_valid_with_preprocessor(points): """Test that valid inputs when using a preprocessor raises no warning""" with pytest.warns(None) as record: check_input(points, type_of_inputs='classic', preprocessor=mock_preprocessor) assert len(record) == 0 @pytest.mark.parametrize('points', [np.array([[2.5, 0.1, 2.6], [1.6, 4.8, 9.1], [5.6, 2.8, 6.1]]), np.array([[2, 0, 2], [1, 4, 9], [1, 5, 3]]), [[2, 0, 2], [1, 4, 9], [3, 4, 29]], ((2, 1, 0, 2, 2, 3), (1, 2, 4, 4, 9, 3), (3, 1, 4, 4, 29, 4))]) def test_check_classic_valid_without_preprocessor(points): """Test that valid inputs when using no preprocessor raises no warning""" with pytest.warns(None) as record: check_input(points, type_of_inputs='classic', preprocessor=None) assert len(record) == 0 def test_check_classic_by_default(): """Checks that 'classic' is the default behaviour of check_input""" assert (check_input([[2, 3], [3, 2]]) == check_input([[2, 3], [3, 2]], type_of_inputs='classic')).all() def test_check_classic_behaviour_auto_dtype(points_no_prep): """Checks that check_input (for points) allows by default every type if using a preprocessor, and numeric types if using no preprocessor""" points_prep = ['img1.png', 'img2.png', 'img3.png', 'img5.png'] with pytest.warns(None) as record: check_input(points_prep, type_of_inputs='classic', preprocessor=mock_preprocessor) assert len(record) == 0 with pytest.warns(None) as record: check_input(points_no_prep, type_of_inputs='classic') # numeric type assert len(record) == 0 # not numeric type points_no_prep = np.array(['img1.png', 'img2.png', 'img3.png', 'img5.png']) points_no_prep = points_no_prep.astype(object) with pytest.raises(ValueError): check_input(points_no_prep, type_of_inputs='classic') def test_check_classic_invalid_complex_data(): """Checks that the right error message is thrown if given complex data ( this comes from sklearn's check_array's message)""" points = np.array([[[1 + 2j, 3 + 4j], [5 + 7j, 5 + 7j]], [[1 + 3j, 2 + 4j], [5 + 8j, 1 + 7j]]]) msg = ("Complex data not supported\n" "{}\n".format(points)) with pytest.raises(ValueError) as raised_error: check_input(points, type_of_inputs='classic') assert str(raised_error.value) == msg # ----------------------------- Test preprocessor ----------------------------- X = np.array([[0.89, 0.11, 1.48, 0.12], [2.63, 1.08, 1.68, 0.46], [1.00, 0.59, 0.62, 1.15]]) class MockFileLoader: """Preprocessor that takes a root file path at construction and simulates fetching the file in the specific root folder when given the name of the file""" def __init__(self, root): self.root = root self.folders = {'fake_root': {'img0.png': X[0], 'img1.png': X[1], 'img2.png': X[2] }, 'other_folder': {} # empty folder } def __call__(self, path_list): images = list() for path in path_list: images.append(self.folders[self.root][path]) return np.array(images) def mock_id_loader(list_of_indicators): """A preprocessor as a function that takes indicators (strings) and returns the corresponding samples""" points = [] for indicator in list_of_indicators: points.append(X[int(indicator[2:])]) return np.array(points) tuples_list = [np.array([[0, 1], [2, 1]]), np.array([['img0.png', 'img1.png'], ['img2.png', 'img1.png']]), np.array([['id0', 'id1'], ['id2', 'id1']]) ] points_list = [np.array([0, 1, 2, 1]), np.array(['img0.png', 'img1.png', 'img2.png', 'img1.png']), np.array(['id0', 'id1', 'id2', 'id1']) ] preprocessors = [X, MockFileLoader('fake_root'), mock_id_loader] @pytest.fixture def y_tuples(): y = [-1, 1] return y @pytest.fixture def y_points(): y = [0, 1, 0, 0] return y @pytest.mark.parametrize('preprocessor, tuples', zip(preprocessors, tuples_list)) def test_preprocessor_weakly_supervised(preprocessor, tuples, y_tuples): """Tests different ways to use the preprocessor argument: an array, a class callable, and a function callable, with a weakly supervised algorithm """ nca = ITML(preprocessor=preprocessor) nca.fit(tuples, y_tuples) @pytest.mark.parametrize('preprocessor, points', zip(preprocessors, points_list)) def test_preprocessor_supervised(preprocessor, points, y_points): """Tests different ways to use the preprocessor argument: an array, a class callable, and a function callable, with a supervised algorithm """ lfda = LFDA(preprocessor=preprocessor) lfda.fit(points, y_points) @pytest.mark.parametrize('estimator', ['NCA', NCA(), None]) def test_preprocess_tuples_invalid_message(estimator): """Checks that if the preprocessor does some weird stuff, the preprocessed input is detected as weird. Checks this for preprocess_tuples.""" context = make_context(estimator) + (' after the preprocessor ' 'has been applied') def preprocessor(sequence): return np.ones((len(sequence), 2, 2)) # returns a 3D array instead of 2D with pytest.raises(ValueError) as raised_error: check_input(np.ones((3, 2)), type_of_inputs='tuples', preprocessor=preprocessor, estimator=estimator) expected_msg = ("3D array of formed tuples expected{}. Found 4D " "array instead:\ninput={}. Reshape your data{}.\n" .format(context, np.ones((3, 2, 2, 2)), ' and/or use a preprocessor' if preprocessor is not None else '')) assert str(raised_error.value) == expected_msg @pytest.mark.parametrize('estimator', ['NCA', NCA(), None]) def test_preprocess_points_invalid_message(estimator): """Checks that if the preprocessor does some weird stuff, the preprocessed input is detected as weird.""" context = make_context(estimator) + (' after the preprocessor ' 'has been applied') def preprocessor(sequence): return np.ones((len(sequence), 2, 2)) # returns a 3D array instead of 2D with pytest.raises(ValueError) as raised_error: check_input(np.ones((3,)), type_of_inputs='classic', preprocessor=preprocessor, estimator=estimator) expected_msg = ("2D array of formed points expected{}. " "Found 3D array instead:\ninput={}. Reshape your data{}.\n" .format(context, np.ones((3, 2, 2)), ' and/or use a preprocessor' if preprocessor is not None else '')) assert str(raised_error.value) == expected_msg def test_preprocessor_error_message(): """Tests whether the preprocessor returns a preprocessor error when there is a problem using the preprocessor """ preprocessor = ArrayIndexer(np.array([[1.2, 3.3], [3.1, 3.2]])) # with tuples X = np.array([[[2, 3], [3, 3]], [[2, 3], [3, 2]]]) # There are less samples than the max index we want to preprocess with pytest.raises(PreprocessorError): preprocess_tuples(X, preprocessor) # with points X = np.array([[1], [2], [3], [3]]) with pytest.raises(PreprocessorError): preprocess_points(X, preprocessor) @pytest.mark.parametrize('input_data', [[[5, 3], [3, 2]], ((5, 3), (3, 2)) ]) @pytest.mark.parametrize('indices', [[0, 1], (1, 0)]) def test_array_like_indexer_array_like_valid_classic(input_data, indices): """Checks that any array-like is valid in the 'preprocessor' argument, and in the indices, for a classic input""" class MockMetricLearner(MahalanobisMixin): pass mock_algo = MockMetricLearner(preprocessor=input_data) mock_algo._prepare_inputs(indices, type_of_inputs='classic') @pytest.mark.parametrize('input_data', [[[5, 3], [3, 2]], ((5, 3), (3, 2)) ]) @pytest.mark.parametrize('indices', [[[0, 1], [1, 0]], ((1, 0), (1, 0))]) def test_array_like_indexer_array_like_valid_tuples(input_data, indices): """Checks that any array-like is valid in the 'preprocessor' argument, and in the indices, for a classic input""" class MockMetricLearner(MahalanobisMixin): pass mock_algo = MockMetricLearner(preprocessor=input_data) mock_algo._prepare_inputs(indices, type_of_inputs='tuples') @pytest.mark.parametrize('preprocessor', [4, NCA()]) def test_error_message_check_preprocessor(preprocessor): """Checks that if the preprocessor given is not an array-like or a callable, the right error message is returned""" class MockMetricLearner(MahalanobisMixin): pass mock_algo = MockMetricLearner(preprocessor=preprocessor) with pytest.raises(ValueError) as e: mock_algo.check_preprocessor() assert str(e.value) == ("Invalid type for the preprocessor: {}. You should " "provide either None, an array-like object, " "or a callable.".format(type(preprocessor))) @pytest.mark.parametrize('estimator', [ITML(), LSML(), MMC(), SDML()], ids=['ITML', 'LSML', 'MMC', 'SDML']) def test_error_message_tuple_size(estimator): """Tests that if a tuples learner is not given the good number of points per tuple, it throws an error message""" estimator = clone(estimator) set_random_state(estimator) invalid_pairs = np.array([[[1.3, 6.3], [3., 6.8], [6.5, 4.4]], [[1.9, 5.3], [1., 7.8], [3.2, 1.2]]]) y = [1, 1] with pytest.raises(ValueError) as raised_err: estimator.fit(invalid_pairs, y) expected_msg = ("Tuples of {} element(s) expected{}. Got tuples of 3 " "element(s) instead (shape=(2, 3, 2)):\ninput={}.\n" .format(estimator._tuple_size, make_context(estimator), invalid_pairs)) assert str(raised_err.value) == expected_msg @pytest.mark.parametrize('estimator, _', metric_learners, ids=ids_metric_learners) def test_error_message_t_score_pairs(estimator, _): """tests that if you want to score_pairs on triplets for instance, it returns the right error message """ estimator = clone(estimator) set_random_state(estimator) estimator.check_preprocessor() triplets = np.array([[[1.3, 6.3], [3., 6.8], [6.5, 4.4]], [[1.9, 5.3], [1., 7.8], [3.2, 1.2]]]) with pytest.raises(ValueError) as raised_err: estimator.score_pairs(triplets) expected_msg = ("Tuples of 2 element(s) expected{}. Got tuples of 3 " "element(s) instead (shape=(2, 3, 2)):\ninput={}.\n" .format(make_context(estimator), triplets)) assert str(raised_err.value) == expected_msg def test_preprocess_tuples_simple_example(): """Test the preprocessor on a very simple example of tuples to ensure the result is as expected""" array = np.array([[1, 2], [2, 3], [4, 5]]) def fun(row): return np.array([[1, 1], [3, 3], [4, 4]]) expected_result = np.array([[[1, 1], [1, 1]], [[3, 3], [3, 3]], [[4, 4], [4, 4]]]) assert (preprocess_tuples(array, fun) == expected_result).all() def test_preprocess_points_simple_example(): """Test the preprocessor on very simple examples of points to ensure the result is as expected""" array = np.array([1, 2, 4]) def fun(row): return [[1, 1], [3, 3], [4, 4]] expected_result = np.array([[1, 1], [3, 3], [4, 4]]) assert (preprocess_points(array, fun) == expected_result).all() @pytest.mark.parametrize('estimator, build_dataset', metric_learners, ids=ids_metric_learners) def test_same_with_or_without_preprocessor(estimator, build_dataset): """Test that algorithms using a preprocessor behave consistently # with their no-preprocessor equivalent """ dataset_indices = build_dataset(with_preprocessor=True) dataset_formed = build_dataset(with_preprocessor=False) X = dataset_indices.preprocessor indicators_to_transform = dataset_indices.to_transform formed_points_to_transform = dataset_formed.to_transform (indices_train, indices_test, y_train, y_test, formed_train, formed_test) = train_test_split(dataset_indices.data, dataset_indices.target, dataset_formed.data, random_state=SEED) def make_random_state(estimator): rs = {} if estimator.__class__.__name__[-11:] == '_Supervised': rs['random_state'] = check_random_state(SEED) return rs estimator_with_preprocessor = clone(estimator) set_random_state(estimator_with_preprocessor) estimator_with_preprocessor.set_params(preprocessor=X) estimator_with_preprocessor.fit(indices_train, y_train, **make_random_state(estimator)) estimator_without_preprocessor = clone(estimator) set_random_state(estimator_without_preprocessor) estimator_without_preprocessor.set_params(preprocessor=None) estimator_without_preprocessor.fit(formed_train, y_train, **make_random_state(estimator)) estimator_with_prep_formed = clone(estimator) set_random_state(estimator_with_prep_formed) estimator_with_prep_formed.set_params(preprocessor=X) estimator_with_prep_formed.fit(indices_train, y_train, **make_random_state(estimator)) # test prediction methods for method in ["predict", "decision_function"]: if hasattr(estimator, method): output_with_prep = getattr(estimator_with_preprocessor, method)(indices_test) output_without_prep = getattr(estimator_without_preprocessor, method)(formed_test) assert np.array(output_with_prep == output_without_prep).all() output_with_prep = getattr(estimator_with_preprocessor, method)(indices_test) output_with_prep_formed = getattr(estimator_with_prep_formed, method)(formed_test) assert np.array(output_with_prep == output_with_prep_formed).all() # test score_pairs output_with_prep = estimator_with_preprocessor.score_pairs( indicators_to_transform[[[[0, 2], [5, 3]]]]) output_without_prep = estimator_without_preprocessor.score_pairs( formed_points_to_transform[[[[0, 2], [5, 3]]]]) assert np.array(output_with_prep == output_without_prep).all() output_with_prep = estimator_with_preprocessor.score_pairs( indicators_to_transform[[[[0, 2], [5, 3]]]]) output_without_prep = estimator_with_prep_formed.score_pairs( formed_points_to_transform[[[[0, 2], [5, 3]]]]) assert np.array(output_with_prep == output_without_prep).all() # test transform output_with_prep = estimator_with_preprocessor.transform( indicators_to_transform) output_without_prep = estimator_without_preprocessor.transform( formed_points_to_transform) assert np.array(output_with_prep == output_without_prep).all() output_with_prep = estimator_with_preprocessor.transform( indicators_to_transform) output_without_prep = estimator_with_prep_formed.transform( formed_points_to_transform) assert np.array(output_with_prep == output_without_prep).all() def test_check_collapsed_pairs_raises_no_error(): """Checks that check_collapsed_pairs raises no error if no collapsed pairs is present""" pairs_ok = np.array([[[0.1, 3.3], [3.3, 0.1]], [[0.1, 3.3], [3.3, 0.1]], [[2.5, 8.1], [0.1, 3.3]]]) check_collapsed_pairs(pairs_ok) def test_check_collapsed_pairs_raises_error(): """Checks that check_collapsed_pairs raises no error if no collapsed pairs is present""" pairs_not_ok = np.array([[[0.1, 3.3], [0.1, 3.3]], [[0.1, 3.3], [3.3, 0.1]], [[2.5, 8.1], [2.5, 8.1]]]) with pytest.raises(ValueError) as e: check_collapsed_pairs(pairs_not_ok) assert str(e.value) == ("2 collapsed pairs found (where the left element is " "the same as the right element), out of 3 pairs in" " total.") def test__validate_vector(): """Replica of scipy.spatial.tests.test_distance.test__validate_vector""" x = [1, 2, 3] y = validate_vector(x) assert_array_equal(y, x) y = validate_vector(x, dtype=np.float64) assert_array_equal(y, x) assert_equal(y.dtype, np.float64) x = [1] y = validate_vector(x) assert_equal(y.ndim, 1) assert_equal(y, x) x = 1 y = validate_vector(x) assert_equal(y.ndim, 1) assert_equal(y, [x]) x = np.arange(5).reshape(1, -1, 1) y = validate_vector(x) assert_equal(y.ndim, 1) assert_array_equal(y, x[0, :, 0]) x = [[1, 2], [3, 4]] with pytest.raises(ValueError): validate_vector(x)
mit
terkkila/scikit-learn
examples/tree/plot_tree_regression_multioutput.py
206
1800
""" =================================================================== Multi-output Decision Tree Regression =================================================================== An example to illustrate multi-output regression with decision tree. The :ref:`decision trees <tree>` is used to predict simultaneously the noisy x and y observations of a circle given a single underlying feature. As a result, it learns local linear regressions approximating the circle. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += (0.5 - rng.rand(20, 2)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_3 = DecisionTreeRegressor(max_depth=8) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="max_depth=2") plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="max_depth=5") plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="max_depth=8") plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
eamontoyaa/pyCSS
functions/plotslice.py
1
4081
# import modules import matplotlib.pyplot as plt ''' # Description. Plot one slide from its structure. # Input(s). Slices dictionary type structures (slicesSTRCell). Has the following fields: plineCords: contains all the coordiantes that gives the slice closed polyline; area: slice polygon area; midPoint: coordinates of the middle point of the slice at its base; midHeight: value of the mean height taken the initial, middle and end heights of the slice at its base to terrain surface; width: value of width slice; inclinationAngleGradAtBottom: angle in sexagesimal grades of the secant line that passess trough the extreme borders of the bottom slice; inclinationAngleGradAtTop: angle in sexagesimal grades of the secant line that passess trough the extreme borders of the top slice; wtMidHeight: value of the mean height taken the initial, middle and end heights of the slice at its base to watertable surface; wtMidHeightAboveSlope: value of the mean height taken the initial, middle and end heights of the water column above slope surface; hrzMomentArm: value of the horizontal component of the moment arm acting on the slope due to the water above it; vrtMomentArm: value of the vertical component of the moment arm acting on the slope due to the water above it; # Output(s). Array containing the coordinates of the slice contourn (slicePlineCordsArray). # Example1. slicesSTR = \ {'area': 18.063276613019383, 'hrzMomentArm': -5.4527963142320601, 'inclinationAngleGradAtBottom': 21.379968728885775, 'inclinationAngleGradAtTop': 68.198590513648185, 'midHeight': 8.6015602919139909, 'midPoint': np.array([ 11.45 , 3.07666551]), 'plineCords': np.array([[ 10.4 , 14.30322581], [ 10.4 , 3.4877326 ], [ 11.45 , 3.07666551], [ 12.5 , 2.66559843], [ 12.5 , 9.05322581], [ 10.4 , 14.30322581]]), 'vrtMomentArm': 5.3266677434544878, 'width': 2.0999999999999996, 'wtMidHeight': 8.6015602919139909, 'wtMidHeightAboveSlope': 0.0} --- slicePlineCordsArray = plotslice(slicesSTR) ''' def plotslice(slicesSTR): plt.hold(True) #Plot the slice contourn and middle point plt.plot(slicesSTR['plineCords'][:,0], slicesSTR['plineCords']\ [:,1], 'k-', lw=0.5) plt.plot(slicesSTR['midPoint'][0], slicesSTR['midPoint'][1], 'k.', lw=0.3) #redirecting the to the output variable slicePlineCordsArray = slicesSTR['plineCords'] return slicePlineCordsArray ''' BSD 2 license. Copyright (c) 2016, Universidad Nacional de Colombia, Ludger O. Suarez-Burgoa and Exneyder Andrés Montoya Araque. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. '''
bsd-2-clause
bgris/ODL_bgris
lib/python3.5/site-packages/scipy/stats/_discrete_distns.py
16
21688
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy import special from scipy.special import entr, gammaln as gamln from scipy.misc import logsumexp from scipy._lib._numpy_compat import broadcast_to from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh import numpy as np from ._distn_infrastructure import ( rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf, get_distribution_names) class binom_gen(rv_discrete): """A binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `binom` is:: binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k) for ``k`` in ``{0, 1,..., n}``. `binom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.binomial(n, p, self._size) def _argcheck(self, n, p): self.b = n return (n >= 0) & (p >= 0) & (p <= 1) def _logpmf(self, x, n, p): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _cdf(self, x, n, p): k = floor(x) vals = special.bdtr(k, n, p) return vals def _sf(self, x, n, p): k = floor(x) return special.bdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.bdtrik(q, n, p)) vals1 = np.maximum(vals - 1, 0) temp = special.bdtr(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p, moments='mv'): q = 1.0 - p mu = n * p var = n * p * q g1, g2 = None, None if 's' in moments: g1 = (q - p) / sqrt(var) if 'k' in moments: g2 = (1.0 - 6*p*q) / var return mu, var, g1, g2 def _entropy(self, n, p): k = np.r_[0:n + 1] vals = self._pmf(k, n, p) return np.sum(entr(vals), axis=0) binom = binom_gen(name='binom') class bernoulli_gen(binom_gen): """A Bernoulli discrete random variable. %(before_notes)s Notes ----- The probability mass function for `bernoulli` is:: bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1 for ``k`` in ``{0, 1}``. `bernoulli` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return binom_gen._rvs(self, 1, p) def _argcheck(self, p): return (p >= 0) & (p <= 1) def _logpmf(self, x, p): return binom._logpmf(x, 1, p) def _pmf(self, x, p): return binom._pmf(x, 1, p) def _cdf(self, x, p): return binom._cdf(x, 1, p) def _sf(self, x, p): return binom._sf(x, 1, p) def _ppf(self, q, p): return binom._ppf(q, 1, p) def _stats(self, p): return binom._stats(1, p) def _entropy(self, p): return entr(p) + entr(1-p) bernoulli = bernoulli_gen(b=1, name='bernoulli') class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `nbinom` is:: nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k for ``k >= 0``. `nbinom` takes ``n`` and ``p`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, n, p): return self._random_state.negative_binomial(n, p, self._size) def _argcheck(self, n, p): return (n > 0) & (p >= 0) & (p <= 1) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _logpmf(self, x, n, p): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(p) + special.xlog1py(x, -p) def _cdf(self, x, n, p): k = floor(x) return special.betainc(n, k+1, p) def _sf_skip(self, x, n, p): # skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.nbdtrik(q, n, p)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p): Q = 1.0 / p P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom') class geom_gen(rv_discrete): """A geometric discrete random variable. %(before_notes)s Notes ----- The probability mass function for `geom` is:: geom.pmf(k) = (1-p)**(k-1)*p for ``k >= 1``. `geom` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): return self._random_state.geometric(p, size=self._size) def _argcheck(self, p): return (p <= 1) & (p >= 0) def _pmf(self, k, p): return np.power(1-p, k-1) * p def _logpmf(self, k, p): return special.xlog1py(k - 1, -p) + log(p) def _cdf(self, x, p): k = floor(x) return -expm1(log1p(-p)*k) def _sf(self, x, p): return np.exp(self._logsf(x, p)) def _logsf(self, x, p): k = floor(x) return k*log1p(-p) def _ppf(self, q, p): vals = ceil(log(1.0-q)/log(1-p)) temp = self._cdf(vals-1, p) return np.where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, p): mu = 1.0/p qr = 1.0-p var = qr / p / p g1 = (2.0-p) / sqrt(qr) g2 = np.polyval([1, -6, 6], p)/(1.0-p) return mu, var, g1, g2 geom = geom_gen(a=1, name='geom', longname="A geometric") class hypergeom_gen(rv_discrete): """A hypergeometric discrete random variable. The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total number of Type I objects. The random variate represents the number of Type I objects in N drawn without replacement from the total population. %(before_notes)s Notes ----- The probability mass function is defined as:: pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N), for max(0, N - (M-n)) <= k <= min(n, N) %(after_notes)s Examples -------- >>> from scipy.stats import hypergeom >>> import matplotlib.pyplot as plt Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function: >>> [M, n, N] = [20, 7, 12] >>> rv = hypergeom(M, n, N) >>> x = np.arange(0, n+1) >>> pmf_dogs = rv.pmf(x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, pmf_dogs, 'bo') >>> ax.vlines(x, 0, pmf_dogs, lw=2) >>> ax.set_xlabel('# of dogs in our group of chosen animals') >>> ax.set_ylabel('hypergeom PMF') >>> plt.show() Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use: >>> prb = hypergeom.cdf(x, M, n, N) And to generate random numbers: >>> R = hypergeom.rvs(M, n, N, size=10) """ def _rvs(self, M, n, N): return self._random_state.hypergeometric(n, M-n, N, size=self._size) def _argcheck(self, M, n, N): cond = (M > 0) & (n >= 0) & (N >= 0) cond &= (n <= M) & (N <= M) self.a = np.maximum(N-(M-n), 0) self.b = np.minimum(n, N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \ - gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \ + gamln(N+1) def _pmf(self, k, M, n, N): # same as the following but numerically more precise # return comb(good, k) * comb(bad, N-k) / comb(tot, N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): # tot, good, sample_size = M, n, N # "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n') M, n, N = 1.*M, 1.*n, 1.*N m = M - n p = n/M mu = N*p var = m*n*N*(M - N)*1.0/(M*M*(M-1)) g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N))) g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m g2 *= (M-1)*M*M g2 += 6.*n*N*(M-N)*m*(5.*M-6) g2 /= n * N * (M-N) * m * (M-2.) * (M-3.) return mu, var, g1, g2 def _entropy(self, M, n, N): k = np.r_[N - (M - n):min(n, N) + 1] vals = self.pmf(k, M, n, N) return np.sum(entr(vals), axis=0) def _sf(self, k, M, n, N): """More precise calculation, 1 - cdf doesn't cut it.""" # This for loop is needed because `k` can be an array. If that's the # case, the sf() method makes M, n and N arrays of the same shape. We # therefore unpack all inputs args, so we can do the manual # integration. res = [] for quant, tot, good, draw in zip(k, M, n, N): # Manual integration over probability mass function. More accurate # than integrate.quad. k2 = np.arange(quant + 1, draw + 1) res.append(np.sum(self._pmf(k2, tot, good, draw))) return np.asarray(res) def _logsf(self, k, M, n, N): """ More precise calculation than log(sf) """ res = [] for quant, tot, good, draw in zip(k, M, n, N): # Integration over probability mass function using logsumexp k2 = np.arange(quant + 1, draw + 1) res.append(logsumexp(self._logpmf(k2, tot, good, draw))) return np.asarray(res) hypergeom = hypergeom_gen(name='hypergeom') # FIXME: Fails _cdfvec class logser_gen(rv_discrete): """A Logarithmic (Log-Series, Series) discrete random variable. %(before_notes)s Notes ----- The probability mass function for `logser` is:: logser.pmf(k) = - p**k / (k*log(1-p)) for ``k >= 1``. `logser` takes ``p`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, p): # looks wrong for p>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return self._random_state.logseries(p, size=self._size) def _argcheck(self, p): return (p > 0) & (p < 1) def _pmf(self, k, p): return -np.power(p, k) * 1.0 / k / log(1 - p) def _stats(self, p): r = log(1 - p) mu = p / (p - 1.0) / r mu2p = -p / r / (p - 1.0)**2 var = mu2p - mu*mu mu3p = -p / r * (1.0+p) / (1.0 - p)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / np.power(var, 1.5) mu4p = -p / r * ( 1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1, name='logser', longname='A logarithmic') class poisson_gen(rv_discrete): """A Poisson discrete random variable. %(before_notes)s Notes ----- The probability mass function for `poisson` is:: poisson.pmf(k) = exp(-mu) * mu**k / k! for ``k >= 0``. `poisson` takes ``mu`` as shape parameter. %(after_notes)s %(example)s """ # Override rv_discrete._argcheck to allow mu=0. def _argcheck(self, mu): return mu >= 0 def _rvs(self, mu): return self._random_state.poisson(mu, self._size) def _logpmf(self, k, mu): Pk = special.xlogy(k, mu) - gamln(k + 1) - mu return Pk def _pmf(self, k, mu): return exp(self._logpmf(k, mu)) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k, mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k, mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q, mu)) vals1 = np.maximum(vals - 1, 0) temp = special.pdtr(vals1, mu) return np.where(temp >= q, vals1, vals) def _stats(self, mu): var = mu tmp = np.asarray(mu) mu_nonzero = tmp > 0 g1 = _lazywhere(mu_nonzero, (tmp,), lambda x: sqrt(1.0/x), np.inf) g2 = _lazywhere(mu_nonzero, (tmp,), lambda x: 1.0/x, np.inf) return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson') class planck_gen(rv_discrete): """A Planck discrete exponential random variable. %(before_notes)s Notes ----- The probability mass function for `planck` is:: planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k) for ``k*lambda_ >= 0``. `planck` takes ``lambda_`` as shape parameter. %(after_notes)s %(example)s """ def _argcheck(self, lambda_): self.a = np.where(lambda_ > 0, 0, -np.inf) self.b = np.where(lambda_ > 0, np.inf, 0) return lambda_ != 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck', longname='A discrete exponential ') class boltzmann_gen(rv_discrete): """A Boltzmann (Truncated Discrete Exponential) random variable. %(before_notes)s Notes ----- The probability mass function for `boltzmann` is:: boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N)) for ``k = 0,..., N-1``. `boltzmann` takes ``lambda_`` and ``N`` as shape parameters. %(after_notes)s %(example)s """ def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann', longname='A truncated discrete exponential ') class randint_gen(rv_discrete): """A uniform discrete random variable. %(before_notes)s Notes ----- The probability mass function for `randint` is:: randint.pmf(k) = 1./(high - low) for ``k = low, ..., high - 1``. `randint` takes ``low`` and ``high`` as shape parameters. %(after_notes)s %(example)s """ def _argcheck(self, low, high): self.a = low self.b = high - 1 return (high > low) def _pmf(self, k, low, high): p = np.ones_like(k) / (high - low) return np.where((k >= low) & (k < high), p, 0.) def _cdf(self, x, low, high): k = floor(x) return (k - low + 1.) / (high - low) def _ppf(self, q, low, high): vals = ceil(q * (high - low) + low) - 1 vals1 = (vals - 1).clip(low, high) temp = self._cdf(vals1, low, high) return np.where(temp >= q, vals1, vals) def _stats(self, low, high): m2, m1 = np.asarray(high), np.asarray(low) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d*d - 1) / 12.0 g1 = 0.0 g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0) return mu, var, g1, g2 def _rvs(self, low, high): """An array of *size* random integers >= ``low`` and < ``high``.""" if self._size is not None: # Numpy's RandomState.randint() doesn't broadcast its arguments. # Use `broadcast_to()` to extend the shapes of low and high # up to self._size. Then we can use the numpy.vectorize'd # randint without needing to pass it a `size` argument. low = broadcast_to(low, self._size) high = broadcast_to(high, self._size) randint = np.vectorize(self._random_state.randint, otypes=[np.int_]) return randint(low, high) def _entropy(self, low, high): return log(high - low) randint = randint_gen(name='randint', longname='A discrete uniform ' '(random integer)') # FIXME: problems sampling. class zipf_gen(rv_discrete): """A Zipf discrete random variable. %(before_notes)s Notes ----- The probability mass function for `zipf` is:: zipf.pmf(k, a) = 1/(zeta(a) * k**a) for ``k >= 1``. `zipf` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _rvs(self, a): return self._random_state.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / special.zeta(a, 1) / k**a return Pk def _munp(self, n, a): return _lazywhere( a > n + 1, (a, n), lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1), np.inf) zipf = zipf_gen(a=1, name='zipf', longname='A Zipf') class dlaplace_gen(rv_discrete): """A Laplacian discrete random variable. %(before_notes)s Notes ----- The probability mass function for `dlaplace` is:: dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k)) for ``a > 0``. `dlaplace` takes ``a`` as shape parameter. %(after_notes)s %(example)s """ def _pmf(self, k, a): return tanh(a/2.0) * exp(-a * abs(k)) def _cdf(self, x, a): k = floor(x) f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1) f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1) return _lazywhere(k >= 0, (k, a), f=f, f2=f2) def _ppf(self, q, a): const = 1 + exp(a) vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1, -log((1-q) * const) / a)) vals1 = vals - 1 return np.where(self._cdf(vals1, a) >= q, vals1, vals) def _stats(self, a): ea = exp(a) mu2 = 2.*ea/(ea-1.)**2 mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4 return 0., mu2, 0., mu4/mu2**2 - 3. def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-np.inf, name='dlaplace', longname='A discrete Laplacian') class skellam_gen(rv_discrete): """A Skellam discrete random variable. %(before_notes)s Notes ----- Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and ``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then ``rho = 0``. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution `skellam` takes ``mu1`` and ``mu2`` as shape parameters. %(after_notes)s %(example)s """ def _rvs(self, mu1, mu2): n = self._size return (self._random_state.poisson(mu1, n) - self._random_state.poisson(mu2, n)) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2, _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2) # ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = floor(x) px = np.where(x < 0, _ncx2_cdf(2*mu2, -2*x, 2*mu1), 1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2)) return px def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam') # Collect names of classes and objects in this module. pairs = list(globals().items()) _distn_names, _distn_gen_names = get_distribution_names(pairs, rv_discrete) __all__ = _distn_names + _distn_gen_names
gpl-3.0
lthurlow/Boolean-Constrained-Routing
working_dir/runs/read_plot.py
1
1247
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import os, sys import pdb files_to_read = [] for l in os.listdir('.'): if l.split('.')[-1] == 'txt': files_to_read.append(l) d_l = [] d_e = [] for k in files_to_read: f = open(k, 'r') counter = 0 temp_d = {} temp_e = {} for line in f: if '[' in line: counter = 0 continue lp = line.split(',') if counter not in temp_d: temp_d[counter] = [float(lp[0].strip())] temp_e[counter] = [float(lp[1].strip())] else: temp_d[counter].append(float(lp[0].strip())) temp_e[counter].append(float(lp[1].strip())) counter += 1 f.close() d_l.append((temp_d[1],k)) d_e.append((temp_d[1],k)) counter = 0 for zzz in d_l: # example data #x = np.arange(0.1, 4, 0.5) x = [10,20,30,40,50] y1 = zzz[0] # First illustrate basic pyplot interface, using defaults where possible. plt.plot(x, y1, 'rs-.',c=plt.cm.RdYlBu(counter),label=str(zzz[1])) counter += 25 plt.title('Time Comparision for Shortest Path') plt.ylabel('Time (s)') plt.xlabel('Nodes') lgd = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.grid('on') plt.savefig('all.png',bbox_extra_artists=(lgd,), bbox_inches='tight')
mit
jgowans/correlation_plotter
plot_one_cross_from_file.py
1
1196
#!/usr/bin/env python import argparse import numpy as np import matplotlib.pyplot as plt if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--f_start', default=200, type=float) parser.add_argument('--f_stop', default=300, type=float) parser.add_argument('--d', type=str) parser.add_argument('--annotate', type=float, default=None) args = parser.parse_args() sig = np.load('{d}/0x1.npy'.format(d = args.d)) sig = np.log10(np.abs(sig)) plt.plot(np.linspace(0, 400, len(sig), endpoint=False), sig) plt.title("Magnitude spectrum of 0x1 at XXXX") plt.xlabel("Frequency (MHz)") plt.ylabel("Magnitude (arbitrary units) [log]") plt.xlim(left = args.f_start, right = args.f_stop) if args.annotate is not None: xy = (args.annotate, sig[int(round(1024*(args.annotate/400.0)))]) xytext = (xy[0] - 22, xy[1] + 0.5) plt.annotate('{f}'.format(f = args.annotate), xy = xy, xytext = xytext, color='red', arrowprops=dict(facecolor='red', shrink=0.05, width=2, headwidth=6) ) plt.show()
mit
aabadie/scikit-learn
sklearn/calibration.py
18
19402
"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from math import log import numpy as np from scipy.optimize import fmin_bfgs from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from .preprocessing import LabelBinarizer from .utils import check_X_y, check_array, indexable, column_or_1d from .utils.validation import check_is_fitted from .utils.fixes import signature from .isotonic import IsotonicRegression from .svm import LinearSVC from .model_selection import check_cv from .metrics.classification import _check_binary_probabilistic_predictions class CalibratedClassifierCV(BaseEstimator, ClassifierMixin): """Probability calibration with isotonic regression or sigmoid. With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv="prefit" is passed to __init__, it is assumed that base_estimator has been fitted already and all data is used for calibration. Note that data for fitting the classifier and for calibrating it must be disjoint. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. If cv=prefit, the classifier must have been fit already on data. method : 'sigmoid' or 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach. It is not advised to use isotonic calibration with too few calibration samples ``(<<1000)`` since it tends to overfit. Use sigmoids (Platt's calibration) in this case. cv : integer, cross-validation generator, iterable or "prefit", optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. If ``y`` is neither binary nor multiclass, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. If "prefit" is passed, it is assumed that base_estimator has been fitted already and all data is used for calibration. Attributes ---------- classes_ : array, shape (n_classes) The class labels. calibrated_classifiers_: list (len() equal to cv or 1 if cv == "prefit") The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted on all but the validation fold and calibrated on the validation fold. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator=None, method='sigmoid', cv=3): self.base_estimator = base_estimator self.method = method self.cv = cv def fit(self, X, y, sample_weight=None): """Fit the calibrated model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) X, y = indexable(X, y) lb = LabelBinarizer().fit(y) self.classes_ = lb.classes_ # Check that each cross-validation fold can have at least one # example per class n_folds = self.cv if isinstance(self.cv, int) \ else self.cv.n_folds if hasattr(self.cv, "n_folds") else None if n_folds and \ np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]): raise ValueError("Requesting %d-fold cross-validation but provided" " less than %d examples for at least one class." % (n_folds, n_folds)) self.calibrated_classifiers_ = [] if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator if self.cv == "prefit": calibrated_classifier = _CalibratedClassifier( base_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X, y, sample_weight) else: calibrated_classifier.fit(X, y) self.calibrated_classifiers_.append(calibrated_classifier) else: cv = check_cv(self.cv, y, classifier=True) fit_parameters = signature(base_estimator.fit).parameters estimator_name = type(base_estimator).__name__ if (sample_weight is not None and "sample_weight" not in fit_parameters): warnings.warn("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) base_estimator_sample_weight = None else: base_estimator_sample_weight = sample_weight for train, test in cv.split(X, y): this_estimator = clone(base_estimator) if base_estimator_sample_weight is not None: this_estimator.fit( X[train], y[train], sample_weight=base_estimator_sample_weight[train]) else: this_estimator.fit(X[train], y[train]) calibrated_classifier = _CalibratedClassifier( this_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X[test], y[test], sample_weight[test]) else: calibrated_classifier.fit(X[test], y[test]) self.calibrated_classifiers_.append(calibrated_classifier) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) # Compute the arithmetic mean of the predictions of the calibrated # classifiers mean_proba = np.zeros((X.shape[0], len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples,) The predicted class. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] class _CalibratedClassifier(object): """Probability calibration with isotonic regression or sigmoid. It assumes that base_estimator has already been fit, and trains the calibration on the input set of the fit function. Note that this class should not be used as an estimator directly. Use CalibratedClassifierCV with cv="prefit" instead. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. No default value since it has to be an already fitted estimator. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parametric approach based on isotonic regression. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator, method='sigmoid'): self.base_estimator = base_estimator self.method = method def _preproc(self, X): n_classes = len(self.classes_) if hasattr(self.base_estimator, "decision_function"): df = self.base_estimator.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(self.base_estimator, "predict_proba"): df = self.base_estimator.predict_proba(X) if n_classes == 2: df = df[:, 1:] else: raise RuntimeError('classifier has no decision_function or ' 'predict_proba method.') idx_pos_class = np.arange(df.shape[1]) return df, idx_pos_class def fit(self, X, y, sample_weight=None): """Calibrate the fitted model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ lb = LabelBinarizer() Y = lb.fit_transform(y) self.classes_ = lb.classes_ df, idx_pos_class = self._preproc(X) self.calibrators_ = [] for k, this_df in zip(idx_pos_class, df.T): if self.method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') elif self.method == 'sigmoid': calibrator = _SigmoidCalibration() else: raise ValueError('method should be "sigmoid" or ' '"isotonic". Got %s.' % self.method) calibrator.fit(this_df, Y[:, k], sample_weight) self.calibrators_.append(calibrator) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. Can be exact zeros. """ n_classes = len(self.classes_) proba = np.zeros((X.shape[0], n_classes)) df, idx_pos_class = self._preproc(X) for k, this_df, calibrator in \ zip(idx_pos_class, df.T, self.calibrators_): if n_classes == 2: k += 1 proba[:, k] = calibrator.predict(this_df) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1. - proba[:, 1] else: proba /= np.sum(proba, axis=1)[:, np.newaxis] # XXX : for some reason all probas can be 0 proba[np.isnan(proba)] = 1. / n_classes # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(df, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- df : ndarray, shape (n_samples,) The decision function or predict proba for the samples. y : ndarray, shape (n_samples,) The targets. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ df = column_or_1d(df) y = column_or_1d(y) F = df # F follows Platt's notations tiny = np.finfo(np.float).tiny # to avoid division by 0 warning # Bayesian priors (see Platt end of section 2.2) prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(AB): # From Platt (beginning of Section 2.2) E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny)) if sample_weight is not None: return (sample_weight * l).sum() else: return l.sum() def grad(AB): # gradient of the objective function E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) TEP_minus_T1P = P * (T * E - T1) if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(BaseEstimator, RegressorMixin): """Sigmoid regression model. Attributes ---------- a_ : float The slope. b_ : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples,) Training data. y : array-like, shape (n_samples,) Training target. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like, shape (n_samples,) Data to predict from. Returns ------- T_ : array, shape (n_samples,) The predicted data. """ T = column_or_1d(T) return 1. / (1. + np.exp(self.a_ * T + self.b_)) def calibration_curve(y_true, y_prob, normalize=False, n_bins=5): """Compute true and predicted probabilities for a calibration curve. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. normalize : bool, optional, default=False Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper probability. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto 1. n_bins : int Number of bins. A bigger number requires more data. Returns ------- prob_true : array, shape (n_bins,) The true probability in each bin (fraction of positives). prob_pred : array, shape (n_bins,) The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1] and normalize is " "set to False.") y_true = _check_binary_probabilistic_predictions(y_true, y_prob) bins = np.linspace(0., 1. + 1e-8, n_bins + 1) binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = (bin_true[nonzero] / bin_total[nonzero]) prob_pred = (bin_sums[nonzero] / bin_total[nonzero]) return prob_true, prob_pred
bsd-3-clause
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/scipy/misc/pilutil.py
9
20925
""" A collection of image utilities using the Python Imaging Library (PIL). Note that PIL is not a dependency of SciPy and this module is not available on systems that don't have PIL installed. """ from __future__ import division, print_function, absolute_import # Functions which need the PIL import numpy import tempfile from numpy import (amin, amax, ravel, asarray, arange, ones, newaxis, transpose, iscomplexobj, uint8, issubdtype, array) try: from PIL import Image, ImageFilter except ImportError: import Image import ImageFilter if not hasattr(Image, 'frombytes'): Image.frombytes = Image.fromstring __all__ = ['fromimage', 'toimage', 'imsave', 'imread', 'bytescale', 'imrotate', 'imresize', 'imshow', 'imfilter'] @numpy.deprecate(message="`bytescale` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.") def bytescale(data, cmin=None, cmax=None, high=255, low=0): """ Byte scales an array (image). Byte scaling means converting the input image to uint8 dtype and scaling the range to ``(low, high)`` (default 0-255). If the input image already has dtype uint8, no scaling is done. This function is only available if Python Imaging Library (PIL) is installed. Parameters ---------- data : ndarray PIL image data array. cmin : scalar, optional Bias scaling of small values. Default is ``data.min()``. cmax : scalar, optional Bias scaling of large values. Default is ``data.max()``. high : scalar, optional Scale max value to `high`. Default is 255. low : scalar, optional Scale min value to `low`. Default is 0. Returns ------- img_array : uint8 ndarray The byte-scaled array. Examples -------- >>> from scipy.misc import bytescale >>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ], ... [ 73.88003259, 80.91433048, 4.88878881], ... [ 51.53875334, 34.45808177, 27.5873488 ]]) >>> bytescale(img) array([[255, 0, 236], [205, 225, 4], [140, 90, 70]], dtype=uint8) >>> bytescale(img, high=200, low=100) array([[200, 100, 192], [180, 188, 102], [155, 135, 128]], dtype=uint8) >>> bytescale(img, cmin=0, cmax=255) array([[91, 3, 84], [74, 81, 5], [52, 34, 28]], dtype=uint8) """ if data.dtype == uint8: return data if high > 255: raise ValueError("`high` should be less than or equal to 255.") if low < 0: raise ValueError("`low` should be greater than or equal to 0.") if high < low: raise ValueError("`high` should be greater than or equal to `low`.") if cmin is None: cmin = data.min() if cmax is None: cmax = data.max() cscale = cmax - cmin if cscale < 0: raise ValueError("`cmax` should be larger than `cmin`.") elif cscale == 0: cscale = 1 scale = float(high - low) / cscale bytedata = (data - cmin) * scale + low return (bytedata.clip(low, high) + 0.5).astype(uint8) @numpy.deprecate(message="`imread` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use ``imageio.imread`` instead.") def imread(name, flatten=False, mode=None): """ Read an image from a file as an array. This function is only available if Python Imaging Library (PIL) is installed. Parameters ---------- name : str or file object The file name or file object to be read. flatten : bool, optional If True, flattens the color layers into a single gray-scale layer. mode : str, optional Mode to convert image to, e.g. ``'RGB'``. See the Notes for more details. Returns ------- imread : ndarray The array obtained by reading the image. Notes ----- `imread` uses the Python Imaging Library (PIL) to read an image. The following notes are from the PIL documentation. `mode` can be one of the following strings: * 'L' (8-bit pixels, black and white) * 'P' (8-bit pixels, mapped to any other mode using a color palette) * 'RGB' (3x8-bit pixels, true color) * 'RGBA' (4x8-bit pixels, true color with transparency mask) * 'CMYK' (4x8-bit pixels, color separation) * 'YCbCr' (3x8-bit pixels, color video format) * 'I' (32-bit signed integer pixels) * 'F' (32-bit floating point pixels) PIL also provides limited support for a few special modes, including 'LA' ('L' with alpha), 'RGBX' (true color with padding) and 'RGBa' (true color with premultiplied alpha). When translating a color image to black and white (mode 'L', 'I' or 'F'), the library uses the ITU-R 601-2 luma transform:: L = R * 299/1000 + G * 587/1000 + B * 114/1000 When `flatten` is True, the image is converted using mode 'F'. When `mode` is not None and `flatten` is True, the image is first converted according to `mode`, and the result is then flattened using mode 'F'. """ im = Image.open(name) return fromimage(im, flatten=flatten, mode=mode) @numpy.deprecate(message="`imsave` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use ``imageio.imwrite`` instead.") def imsave(name, arr, format=None): """ Save an array as an image. This function is only available if Python Imaging Library (PIL) is installed. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Parameters ---------- name : str or file object Output file name or file object. arr : ndarray, MxN or MxNx3 or MxNx4 Array containing image values. If the shape is ``MxN``, the array represents a grey-level image. Shape ``MxNx3`` stores the red, green and blue bands along the last dimension. An alpha layer may be included, specified as the last colour band of an ``MxNx4`` array. format : str Image format. If omitted, the format to use is determined from the file name extension. If a file object was used instead of a file name, this parameter should always be used. Examples -------- Construct an array of gradient intensity values and save to file: >>> from scipy.misc import imsave >>> x = np.zeros((255, 255)) >>> x = np.zeros((255, 255), dtype=np.uint8) >>> x[:] = np.arange(255) >>> imsave('gradient.png', x) Construct an array with three colour bands (R, G, B) and store to file: >>> rgb = np.zeros((255, 255, 3), dtype=np.uint8) >>> rgb[..., 0] = np.arange(255) >>> rgb[..., 1] = 55 >>> rgb[..., 2] = 1 - np.arange(255) >>> imsave('rgb_gradient.png', rgb) """ im = toimage(arr, channel_axis=2) if format is None: im.save(name) else: im.save(name, format) return @numpy.deprecate(message="`fromimage` is deprecated in SciPy 1.0.0. " "and will be removed in 1.2.0.\n" "Use ``np.asarray(im)`` instead.") def fromimage(im, flatten=False, mode=None): """ Return a copy of a PIL image as a numpy array. This function is only available if Python Imaging Library (PIL) is installed. Parameters ---------- im : PIL image Input image. flatten : bool If true, convert the output to grey-scale. mode : str, optional Mode to convert image to, e.g. ``'RGB'``. See the Notes of the `imread` docstring for more details. Returns ------- fromimage : ndarray The different colour bands/channels are stored in the third dimension, such that a grey-image is MxN, an RGB-image MxNx3 and an RGBA-image MxNx4. """ if not Image.isImageType(im): raise TypeError("Input is not a PIL image.") if mode is not None: if mode != im.mode: im = im.convert(mode) elif im.mode == 'P': # Mode 'P' means there is an indexed "palette". If we leave the mode # as 'P', then when we do `a = array(im)` below, `a` will be a 2-D # containing the indices into the palette, and not a 3-D array # containing the RGB or RGBA values. if 'transparency' in im.info: im = im.convert('RGBA') else: im = im.convert('RGB') if flatten: im = im.convert('F') elif im.mode == '1': # Workaround for crash in PIL. When im is 1-bit, the call array(im) # can cause a seg. fault, or generate garbage. See # https://github.com/scipy/scipy/issues/2138 and # https://github.com/python-pillow/Pillow/issues/350. # # This converts im from a 1-bit image to an 8-bit image. im = im.convert('L') a = array(im) return a _errstr = "Mode is unknown or incompatible with input array shape." @numpy.deprecate(message="`toimage` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use Pillow's ``Image.fromarray`` directly instead.") def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None, mode=None, channel_axis=None): """Takes a numpy array and returns a PIL image. This function is only available if Python Imaging Library (PIL) is installed. The mode of the PIL image depends on the array shape and the `pal` and `mode` keywords. For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values (from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode is given as 'F' or 'I' in which case a float and/or integer array is made. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Notes ----- For 3-D arrays, the `channel_axis` argument tells which dimension of the array holds the channel data. For 3-D arrays if one of the dimensions is 3, the mode is 'RGB' by default or 'YCbCr' if selected. The numpy array must be either 2 dimensional or 3 dimensional. """ data = asarray(arr) if iscomplexobj(data): raise ValueError("Cannot convert a complex-valued array.") shape = list(data.shape) valid = len(shape) == 2 or ((len(shape) == 3) and ((3 in shape) or (4 in shape))) if not valid: raise ValueError("'arr' does not have a suitable array shape for " "any mode.") if len(shape) == 2: shape = (shape[1], shape[0]) # columns show up first if mode == 'F': data32 = data.astype(numpy.float32) image = Image.frombytes(mode, shape, data32.tostring()) return image if mode in [None, 'L', 'P']: bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax) image = Image.frombytes('L', shape, bytedata.tostring()) if pal is not None: image.putpalette(asarray(pal, dtype=uint8).tostring()) # Becomes a mode='P' automagically. elif mode == 'P': # default gray-scale pal = (arange(0, 256, 1, dtype=uint8)[:, newaxis] * ones((3,), dtype=uint8)[newaxis, :]) image.putpalette(asarray(pal, dtype=uint8).tostring()) return image if mode == '1': # high input gives threshold for 1 bytedata = (data > high) image = Image.frombytes('1', shape, bytedata.tostring()) return image if cmin is None: cmin = amin(ravel(data)) if cmax is None: cmax = amax(ravel(data)) data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low if mode == 'I': data32 = data.astype(numpy.uint32) image = Image.frombytes(mode, shape, data32.tostring()) else: raise ValueError(_errstr) return image # if here then 3-d array with a 3 or a 4 in the shape length. # Check for 3 in datacube shape --- 'RGB' or 'YCbCr' if channel_axis is None: if (3 in shape): ca = numpy.flatnonzero(asarray(shape) == 3)[0] else: ca = numpy.flatnonzero(asarray(shape) == 4) if len(ca): ca = ca[0] else: raise ValueError("Could not find channel dimension.") else: ca = channel_axis numch = shape[ca] if numch not in [3, 4]: raise ValueError("Channel axis dimension is not valid.") bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax) if ca == 2: strdata = bytedata.tostring() shape = (shape[1], shape[0]) elif ca == 1: strdata = transpose(bytedata, (0, 2, 1)).tostring() shape = (shape[2], shape[0]) elif ca == 0: strdata = transpose(bytedata, (1, 2, 0)).tostring() shape = (shape[2], shape[1]) if mode is None: if numch == 3: mode = 'RGB' else: mode = 'RGBA' if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']: raise ValueError(_errstr) if mode in ['RGB', 'YCbCr']: if numch != 3: raise ValueError("Invalid array shape for mode.") if mode in ['RGBA', 'CMYK']: if numch != 4: raise ValueError("Invalid array shape for mode.") # Here we know data and mode is correct image = Image.frombytes(mode, shape, strdata) return image @numpy.deprecate(message="`imrotate` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use ``skimage.transform.rotate`` instead.") def imrotate(arr, angle, interp='bilinear'): """ Rotate an image counter-clockwise by angle degrees. This function is only available if Python Imaging Library (PIL) is installed. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Parameters ---------- arr : ndarray Input array of image to be rotated. angle : float The angle of rotation. interp : str, optional Interpolation - 'nearest' : for nearest neighbor - 'bilinear' : for bilinear - 'lanczos' : for lanczos - 'cubic' : for bicubic - 'bicubic' : for bicubic Returns ------- imrotate : ndarray The rotated array of image. """ arr = asarray(arr) func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3} im = toimage(arr) im = im.rotate(angle, resample=func[interp]) return fromimage(im) @numpy.deprecate(message="`imshow` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use ``matplotlib.pyplot.imshow`` instead.") def imshow(arr): """ Simple showing of an image through an external viewer. This function is only available if Python Imaging Library (PIL) is installed. Uses the image viewer specified by the environment variable SCIPY_PIL_IMAGE_VIEWER, or if that is not defined then `see`, to view a temporary file generated from array data. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Parameters ---------- arr : ndarray Array of image data to show. Returns ------- None Examples -------- >>> a = np.tile(np.arange(255), (255,1)) >>> from scipy import misc >>> misc.imshow(a) """ im = toimage(arr) fnum, fname = tempfile.mkstemp('.png') try: im.save(fname) except: raise RuntimeError("Error saving temporary image data.") import os os.close(fnum) cmd = os.environ.get('SCIPY_PIL_IMAGE_VIEWER', 'see') status = os.system("%s %s" % (cmd, fname)) os.unlink(fname) if status != 0: raise RuntimeError('Could not execute image viewer.') @numpy.deprecate(message="`imresize` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use ``skimage.transform.resize`` instead.") def imresize(arr, size, interp='bilinear', mode=None): """ Resize an image. This function is only available if Python Imaging Library (PIL) is installed. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Parameters ---------- arr : ndarray The array of image to be resized. size : int, float or tuple * int - Percentage of current size. * float - Fraction of current size. * tuple - Size of the output image (height, width). interp : str, optional Interpolation to use for re-sizing ('nearest', 'lanczos', 'bilinear', 'bicubic' or 'cubic'). mode : str, optional The PIL image mode ('P', 'L', etc.) to convert `arr` before resizing. If ``mode=None`` (the default), 2-D images will be treated like ``mode='L'``, i.e. casting to long integer. For 3-D and 4-D arrays, `mode` will be set to ``'RGB'`` and ``'RGBA'`` respectively. Returns ------- imresize : ndarray The resized array of image. See Also -------- toimage : Implicitly used to convert `arr` according to `mode`. scipy.ndimage.zoom : More generic implementation that does not use PIL. """ im = toimage(arr, mode=mode) ts = type(size) if issubdtype(ts, numpy.signedinteger): percent = size / 100.0 size = tuple((array(im.size)*percent).astype(int)) elif issubdtype(type(size), numpy.floating): size = tuple((array(im.size)*size).astype(int)) else: size = (size[1], size[0]) func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3} imnew = im.resize(size, resample=func[interp]) return fromimage(imnew) @numpy.deprecate(message="`imfilter` is deprecated in SciPy 1.0.0, " "and will be removed in 1.2.0.\n" "Use Pillow filtering functionality directly.") def imfilter(arr, ftype): """ Simple filtering of an image. This function is only available if Python Imaging Library (PIL) is installed. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Parameters ---------- arr : ndarray The array of Image in which the filter is to be applied. ftype : str The filter that has to be applied. Legal values are: 'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more', 'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'. Returns ------- imfilter : ndarray The array with filter applied. Raises ------ ValueError *Unknown filter type.* If the filter you are trying to apply is unsupported. """ _tdict = {'blur': ImageFilter.BLUR, 'contour': ImageFilter.CONTOUR, 'detail': ImageFilter.DETAIL, 'edge_enhance': ImageFilter.EDGE_ENHANCE, 'edge_enhance_more': ImageFilter.EDGE_ENHANCE_MORE, 'emboss': ImageFilter.EMBOSS, 'find_edges': ImageFilter.FIND_EDGES, 'smooth': ImageFilter.SMOOTH, 'smooth_more': ImageFilter.SMOOTH_MORE, 'sharpen': ImageFilter.SHARPEN } im = toimage(arr) if ftype not in _tdict: raise ValueError("Unknown filter type.") return fromimage(im.filter(_tdict[ftype]))
mit
toobaz/pandas
pandas/tests/io/test_packers.py
2
32589
import datetime import glob from io import BytesIO import os from warnings import catch_warnings, filterwarnings import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.errors import PerformanceWarning import pandas from pandas import ( Categorical, DataFrame, Index, Interval, MultiIndex, NaT, Period, Series, Timestamp, bdate_range, date_range, period_range, ) import pandas.util.testing as tm from pandas.util.testing import ( assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, ensure_clean, ) from pandas.io.packers import read_msgpack, to_msgpack nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True @pytest.fixture(scope="module") def current_packers_data(): # our current version packers data from pandas.tests.io.generate_legacy_storage_files import create_msgpack_data return create_msgpack_data() @pytest.fixture(scope="module") def all_packers_data(): # our all of our current version packers data from pandas.tests.io.generate_legacy_storage_files import create_data return create_data() def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert len(a) == len(b) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) elif isinstance(a, Categorical): # Temp, # Categorical.categories is changed from str to bytes in PY3 # maybe the same as GH 13591 if b.categories.inferred_type == "string": pass else: tm.assert_categorical_equal(a, b) elif a is NaT: assert b is NaT elif isinstance(a, Timestamp): assert a == b assert a.freq == b.freq else: assert a == b @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestPackers: def setup_method(self, method): self.path = "__{}__.msg".format(tm.rands(10)) def teardown_method(self, method): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10, 2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(BytesIO(s)) tm.assert_frame_equal(result, df) s = to_msgpack(None, df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() with open(p, "wb") as fh: fh.write(s) result = read_msgpack(p) tm.assert_frame_equal(result, df) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_msgpack, read_msgpack) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath(df.to_msgpack, read_msgpack) tm.assert_frame_equal(df, result) def test_iterator_with_string_io(self): dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)] s = to_msgpack(None, *dfs) for i, result in enumerate(read_msgpack(s, iterator=True)): tm.assert_frame_equal(result, dfs[i]) def test_invalid_arg(self): # GH10369 class A: def __init__(self): self.read = 0 msg = "Invalid file path or buffer object type: <class '{}'>" invalid_path = os.path.join("nonexistent_dir", "df.msgpack") with pytest.raises(ValueError, match=msg.format("NoneType")): read_msgpack(path_or_buf=None) with pytest.raises(ValueError, match=msg.format("dict")): read_msgpack(path_or_buf={}) with pytest.raises(ValueError, match=msg.format(r".*\.A")): read_msgpack(path_or_buf=A()) with pytest.raises(FileNotFoundError, match="does not exist"): read_msgpack(path_or_buf=invalid_path) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_bool(self): x = np.bool_(1) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) x = np.bool_(0) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, "complex128"): pytest.skip("numpy can not handle complex128") x = [np.float32(np.random.rand()) for i in range(5)] + [ np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5) ] x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + [ (np.random.rand() + 1j * np.random.rand()) for i in range(5) ] x_rec = self.encode_decode(x) assert np.allclose(x, x_rec) def test_dict_float(self): x = {"foo": 1.0, "bar": 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_complex(self): x = {"foo": 1.0 + 1.0j, "bar": 2.0 + 2.0j} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="complex value") def test_dict_numpy_float(self): x = {"foo": np.float32(1.0), "bar": np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_numpy_complex(self): x = {"foo": np.complex128(1.0 + 1.0j), "bar": np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) tm.assert_dict_equal(x, x_rec) for key in x: tm.assert_class_equal(x[key], x_rec[key], obj="numpy complex128") def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ["float32", "float64"]: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) assert all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), "foo", np.bool_(1)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestBasic(TestPackers): def test_timestamp(self): for i in [ Timestamp("20130101"), Timestamp("20130101", tz="US/Eastern"), Timestamp("201301010501"), ]: i_rec = self.encode_decode(i) assert i == i_rec def test_nat(self): nat_rec = self.encode_decode(NaT) assert NaT is nat_rec def test_datetimes(self): for i in [ datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15)), ]: i_rec = self.encode_decode(i) assert i == i_rec def test_timedeltas(self): for i in [ datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000), ]: i_rec = self.encode_decode(i) assert i == i_rec def test_periods(self): # 13463 for i in [Period("2010-09", "M"), Period("2014-Q1", "Q")]: i_rec = self.encode_decode(i) assert i == i_rec def test_intervals(self): # 19967 for i in [Interval(0, 1), Interval(0, 1, "left"), Interval(10, 25.0, "right")]: i_rec = self.encode_decode(i) assert i == i_rec @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestIndex(TestPackers): def setup_method(self, method): super().setup_method(method) self.d = { "string": tm.makeStringIndex(100), "date": tm.makeDateIndex(100), "int": tm.makeIntIndex(100), "rng": tm.makeRangeIndex(100), "float": tm.makeFloatIndex(100), "empty": Index([]), "tuple": Index(zip(["foo", "bar", "baz"], [1, 2, 3])), "period": Index(period_range("2012-1-1", freq="M", periods=3)), "date2": Index(date_range("2013-01-1", periods=10)), "bdate": Index(bdate_range("2013-01-02", periods=10)), "cat": tm.makeCategoricalIndex(100), "interval": tm.makeIntervalIndex(100), "timedelta": tm.makeTimedeltaIndex(100, "H"), } self.mi = { "reg": MultiIndex.from_tuples( [ ("bar", "one"), ("baz", "two"), ("foo", "two"), ("qux", "one"), ("qux", "two"), ], names=["first", "second"], ) } def test_basic_index(self): for s, i in self.d.items(): i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) # datetime with no freq (GH5506) i = Index([Timestamp("20130101"), Timestamp("20130103")]) i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) # datetime with timezone i = Index( [Timestamp("20130101 9:00:00"), Timestamp("20130103 11:00:00")] ).tz_localize("US/Eastern") i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def test_multi_index(self): for s, i in self.mi.items(): i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def test_unicode(self): i = tm.makeUnicodeIndex(100) i_rec = self.encode_decode(i) tm.assert_index_equal(i, i_rec) def categorical_index(self): # GH15487 df = DataFrame(np.random.randn(10, 2)) df = df.astype({0: "category"}).set_index(0) result = self.encode_decode(df) tm.assert_frame_equal(result, df) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestSeries(TestPackers): def setup_method(self, method): super().setup_method(method) self.d = {} s = tm.makeStringSeries() s.name = "string" self.d["string"] = s s = tm.makeObjectSeries() s.name = "object" self.d["object"] = s s = Series(iNaT, dtype="M8[ns]", index=range(5)) self.d["date"] = s data = { "A": [0.0, 1.0, 2.0, 3.0, np.nan], "B": [0, 1, 0, 1, 0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": date_range("1/1/2009", periods=5), "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0], "F": [Timestamp("20130102", tz="US/Eastern")] * 2 + [Timestamp("20130603", tz="CET")] * 3, "G": [Timestamp("20130102", tz="US/Eastern")] * 5, "H": Categorical([1, 2, 3, 4, 5]), "I": Categorical([1, 2, 3, 4, 5], ordered=True), "J": (np.bool_(1), 2, 3, 4, 5), } self.d["float"] = Series(data["A"]) self.d["int"] = Series(data["B"]) self.d["mixed"] = Series(data["E"]) self.d["dt_tz_mixed"] = Series(data["F"]) self.d["dt_tz"] = Series(data["G"]) self.d["cat_ordered"] = Series(data["H"]) self.d["cat_unordered"] = Series(data["I"]) self.d["numpy_bool_mixed"] = Series(data["J"]) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_series_equal(i, i_rec) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestCategorical(TestPackers): def setup_method(self, method): super().setup_method(method) self.d = {} self.d["plain_str"] = Categorical(["a", "b", "c", "d", "e"]) self.d["plain_str_ordered"] = Categorical( ["a", "b", "c", "d", "e"], ordered=True ) self.d["plain_int"] = Categorical([5, 6, 7, 8]) self.d["plain_int_ordered"] = Categorical([5, 6, 7, 8], ordered=True) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_categorical_equal(i, i_rec) @pytest.mark.filterwarnings("ignore:msgpack:FutureWarning") class TestNDFrame(TestPackers): def setup_method(self, method): super().setup_method(method) data = { "A": [0.0, 1.0, 2.0, 3.0, np.nan], "B": [0, 1, 0, 1, 0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": date_range("1/1/2009", periods=5), "E": [0.0, 1, Timestamp("20100101"), "foo", 2.0], "F": [Timestamp("20130102", tz="US/Eastern")] * 5, "G": [Timestamp("20130603", tz="CET")] * 5, "H": Categorical(["a", "b", "c", "d", "e"]), "I": Categorical(["a", "b", "c", "d", "e"], ordered=True), } self.frame = { "float": DataFrame(dict(A=data["A"], B=Series(data["A"]) + 1)), "int": DataFrame(dict(A=data["B"], B=Series(data["B"]) + 1)), "mixed": DataFrame(data), } def test_basic_frame(self): for s, i in self.frame.items(): i_rec = self.encode_decode(i) assert_frame_equal(i, i_rec) def test_multi(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) packed_items = tuple( [self.frame["float"], self.frame["float"].A, self.frame["float"].B, None] ) l_rec = self.encode_decode(packed_items) check_arbitrary(packed_items, l_rec) # this is an oddity in that packed lists will be returned as tuples packed_items = [ self.frame["float"], self.frame["float"].A, self.frame["float"].B, None, ] l_rec = self.encode_decode(packed_items) assert isinstance(l_rec, tuple) check_arbitrary(packed_items, l_rec) def test_iterator(self): packed_items = [ self.frame["float"], self.frame["float"].A, self.frame["float"].B, None, ] with ensure_clean(self.path) as path: to_msgpack(path, *packed_items) for i, packed in enumerate(read_msgpack(path, iterator=True)): check_arbitrary(packed, packed_items[i]) def tests_datetimeindex_freq_issue(self): # GH 5947 # inferring freq on the datetimeindex df = DataFrame([1, 2, 3], index=date_range("1/1/2013", "1/3/2013")) result = self.encode_decode(df) assert_frame_equal(result, df) df = DataFrame([1, 2], index=date_range("1/1/2013", "1/2/2013")) result = self.encode_decode(df) assert_frame_equal(result, df) def test_dataframe_duplicate_column_names(self): # GH 9618 expected_1 = DataFrame(columns=["a", "a"]) expected_2 = DataFrame(columns=[1] * 100) expected_2.loc[0] = np.random.randn(100) expected_3 = DataFrame(columns=[1, 1]) expected_3.loc[0] = ["abc", np.nan] result_1 = self.encode_decode(expected_1) result_2 = self.encode_decode(expected_2) result_3 = self.encode_decode(expected_3) assert_frame_equal(result_1, expected_1) assert_frame_equal(result_2, expected_2) assert_frame_equal(result_3, expected_3) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:Series.to_sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestSparse(TestPackers): def _check_roundtrip(self, obj, comparator, **kwargs): # currently these are not implemetned # i_rec = self.encode_decode(obj) # comparator(obj, i_rec, **kwargs) msg = r"msgpack sparse (series|frame) is not implemented" with pytest.raises(NotImplementedError, match=msg): self.encode_decode(obj) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind="integer") self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.loc[3:5, 1:3] = np.nan s.loc[8:10, -2] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind="integer") self._check_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestCompression(TestPackers): """See https://github.com/pandas-dev/pandas/pull/9783 """ def setup_method(self, method): try: from sqlalchemy import create_engine self._create_sql_engine = create_engine except ImportError: self._SQLALCHEMY_INSTALLED = False else: self._SQLALCHEMY_INSTALLED = True super().setup_method(method) data = { "A": np.arange(1000, dtype=np.float64), "B": np.arange(1000, dtype=np.int32), "C": list(100 * "abcdefghij"), "D": date_range(datetime.datetime(2015, 4, 1), periods=1000), "E": [datetime.timedelta(days=x) for x in range(1000)], } self.frame = { "float": DataFrame({k: data[k] for k in ["A", "A"]}), "int": DataFrame({k: data[k] for k in ["B", "B"]}), "mixed": DataFrame(data), } def test_plain(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) def _test_compression(self, compress): i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames for block in value._data.blocks: assert block.values.flags.writeable def test_compression_zlib(self): if not _ZLIB_INSTALLED: pytest.skip("no zlib") self._test_compression("zlib") def test_compression_blosc(self): if not _BLOSC_INSTALLED: pytest.skip("no blosc") self._test_compression("blosc") def _test_compression_warns_when_decompress_caches(self, monkeypatch, compress): not_garbage = [] control = [] # copied data compress_module = globals()[compress] real_decompress = compress_module.decompress def decompress(ob): """mock decompress function that delegates to the real decompress but caches the result and a copy of the result. """ res = real_decompress(ob) not_garbage.append(res) # hold a reference to this bytes object control.append(bytearray(res)) # copy the data here to check later return res # types mapped to values to add in place. rhs = { np.dtype("float64"): 1.0, np.dtype("int32"): 1, np.dtype("object"): "a", np.dtype("datetime64[ns]"): np.timedelta64(1, "ns"), np.dtype("timedelta64[ns]"): np.timedelta64(1, "ns"), } with monkeypatch.context() as m, tm.assert_produces_warning( PerformanceWarning ) as ws: m.setattr(compress_module, "decompress", decompress) with catch_warnings(): filterwarnings("ignore", category=FutureWarning) i_rec = self.encode_decode(self.frame, compress=compress) for k in self.frame.keys(): value = i_rec[k] expected = self.frame[k] assert_frame_equal(value, expected) # make sure that we can write to the new frames even though # we needed to copy the data for block in value._data.blocks: assert block.values.flags.writeable # mutate the data in some way block.values[0] += rhs[block.dtype] for w in ws: # check the messages from our warnings assert str(w.message) == ( "copying data after decompressing; " "this may mean that decompress is " "caching its result" ) for buf, control_buf in zip(not_garbage, control): # make sure none of our mutations above affected the # original buffers assert buf == control_buf def test_compression_warns_when_decompress_caches_zlib(self, monkeypatch): if not _ZLIB_INSTALLED: pytest.skip("no zlib") self._test_compression_warns_when_decompress_caches(monkeypatch, "zlib") def test_compression_warns_when_decompress_caches_blosc(self, monkeypatch): if not _BLOSC_INSTALLED: pytest.skip("no blosc") self._test_compression_warns_when_decompress_caches(monkeypatch, "blosc") def _test_small_strings_no_warn(self, compress): empty = np.array([], dtype="uint8") with tm.assert_produces_warning(None): with catch_warnings(): filterwarnings("ignore", category=FutureWarning) empty_unpacked = self.encode_decode(empty, compress=compress) tm.assert_numpy_array_equal(empty_unpacked, empty) assert empty_unpacked.flags.writeable char = np.array([ord(b"a")], dtype="uint8") with tm.assert_produces_warning(None): with catch_warnings(): filterwarnings("ignore", category=FutureWarning) char_unpacked = self.encode_decode(char, compress=compress) tm.assert_numpy_array_equal(char_unpacked, char) assert char_unpacked.flags.writeable # if this test fails I am sorry because the interpreter is now in a # bad state where b'a' points to 98 == ord(b'b'). char_unpacked[0] = ord(b"b") # we compare the ord of bytes b'a' with unicode 'a' because the should # always be the same (unless we were able to mutate the shared # character singleton in which case ord(b'a') == ord(b'b'). assert ord(b"a") == ord("a") tm.assert_numpy_array_equal(char_unpacked, np.array([ord(b"b")], dtype="uint8")) def test_small_strings_no_warn_zlib(self): if not _ZLIB_INSTALLED: pytest.skip("no zlib") self._test_small_strings_no_warn("zlib") def test_small_strings_no_warn_blosc(self): if not _BLOSC_INSTALLED: pytest.skip("no blosc") self._test_small_strings_no_warn("blosc") def test_readonly_axis_blosc(self): # GH11880 if not _BLOSC_INSTALLED: pytest.skip("no blosc") df1 = DataFrame({"A": list("abcd")}) df2 = DataFrame(df1, index=[1.0, 2.0, 3.0, 4.0]) assert 1 in self.encode_decode(df1["A"], compress="blosc") assert 1.0 in self.encode_decode(df2["A"], compress="blosc") def test_readonly_axis_zlib(self): # GH11880 df1 = DataFrame({"A": list("abcd")}) df2 = DataFrame(df1, index=[1.0, 2.0, 3.0, 4.0]) assert 1 in self.encode_decode(df1["A"], compress="zlib") assert 1.0 in self.encode_decode(df2["A"], compress="zlib") def test_readonly_axis_blosc_to_sql(self): # GH11880 if not _BLOSC_INSTALLED: pytest.skip("no blosc") if not self._SQLALCHEMY_INSTALLED: pytest.skip("no sqlalchemy") expected = DataFrame({"A": list("abcd")}) df = self.encode_decode(expected, compress="blosc") eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql("test", eng, if_exists="append") result = pandas.read_sql_table("test", eng, index_col="index") result.index.names = [None] assert_frame_equal(expected, result) def test_readonly_axis_zlib_to_sql(self): # GH11880 if not _ZLIB_INSTALLED: pytest.skip("no zlib") if not self._SQLALCHEMY_INSTALLED: pytest.skip("no sqlalchemy") expected = DataFrame({"A": list("abcd")}) df = self.encode_decode(expected, compress="zlib") eng = self._create_sql_engine("sqlite:///:memory:") df.to_sql("test", eng, if_exists="append") result = pandas.read_sql_table("test", eng, index_col="index") result.index.names = [None] assert_frame_equal(expected, result) @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestEncoding(TestPackers): def setup_method(self, method): super().setup_method(method) data = { "A": ["\u2019"] * 1000, "B": np.arange(1000, dtype=np.int32), "C": list(100 * "abcdefghij"), "D": date_range(datetime.datetime(2015, 4, 1), periods=1000), "E": [datetime.timedelta(days=x) for x in range(1000)], "G": [400] * 1000, } self.frame = { "float": DataFrame({k: data[k] for k in ["A", "A"]}), "int": DataFrame({k: data[k] for k in ["B", "B"]}), "mixed": DataFrame(data), } self.utf_encodings = ["utf8", "utf16", "utf32"] def test_utf(self): # GH10581 for encoding in self.utf_encodings: for frame in self.frame.values(): result = self.encode_decode(frame, encoding=encoding) assert_frame_equal(result, frame) def test_default_encoding(self): for frame in self.frame.values(): result = frame.to_msgpack() expected = frame.to_msgpack(encoding="utf8") assert result == expected result = self.encode_decode(frame) assert_frame_equal(result, frame) files = glob.glob( os.path.join(os.path.dirname(__file__), "data", "legacy_msgpack", "*", "*.msgpack") ) @pytest.fixture(params=files) def legacy_packer(request, datapath): return datapath(request.param) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") @pytest.mark.filterwarnings("ignore:.*msgpack:FutureWarning") class TestMsgpack: """ How to add msgpack tests: 1. Install pandas version intended to output the msgpack. 2. Execute "generate_legacy_storage_files.py" to create the msgpack. $ python generate_legacy_storage_files.py <output_dir> msgpack 3. Move the created pickle to "data/legacy_msgpack/<version>" directory. """ minimum_structure = { "series": ["float", "int", "mixed", "ts", "mi", "dup"], "frame": ["float", "int", "mixed", "mi"], "index": ["int", "date", "period"], "mi": ["reg2"], } def check_min_structure(self, data, version): for typ, v in self.minimum_structure.items(): assert typ in data, '"{0}" not found in unpacked data'.format(typ) for kind in v: msg = '"{0}" not found in data["{1}"]'.format(kind, typ) assert kind in data[typ], msg def compare(self, current_data, all_data, vf, version): data = read_msgpack(vf) self.check_min_structure(data, version) for typ, dv in data.items(): assert typ in all_data, "unpacked data contains " 'extra key "{0}"'.format( typ ) for dt, result in dv.items(): assert ( dt in current_data[typ] ), 'data["{0}"] contains extra ' 'key "{1}"'.format(typ, dt) try: expected = current_data[typ][dt] except KeyError: continue # use a specific comparator # if available comp_method = "compare_{typ}_{dt}".format(typ=typ, dt=dt) comparator = getattr(self, comp_method, None) if comparator is not None: comparator(result, expected, typ, version) else: check_arbitrary(result, expected) return data def compare_series_dt_tz(self, result, expected, typ, version): tm.assert_series_equal(result, expected) def compare_frame_dt_mixed_tzs(self, result, expected, typ, version): tm.assert_frame_equal(result, expected) def test_msgpacks_legacy( self, current_packers_data, all_packers_data, legacy_packer, datapath ): version = os.path.basename(os.path.dirname(legacy_packer)) try: with catch_warnings(record=True): self.compare( current_packers_data, all_packers_data, legacy_packer, version ) except ImportError: # blosc not installed pass def test_msgpack_period_freq(self): # https://github.com/pandas-dev/pandas/issues/24135 s = Series(np.random.rand(5), index=date_range("20130101", periods=5)) r = read_msgpack(s.to_msgpack()) repr(r)
bsd-3-clause
xzh86/scikit-learn
examples/linear_model/plot_ard.py
248
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
Breta01/handwriting-ocr
src/ocr/imgtransform.py
1
1130
# -*- coding: utf-8 -*- """ Functions for transforming and preprocessing images for training """ import numpy as np import pandas as pd import cv2 from scipy.ndimage.interpolation import map_coordinates def coordinates_remap(image, factor_alpha, factor_sigma): """Transforming image using remaping coordinates.""" alpha = image.shape[1] * factor_alpha sigma = image.shape[1] * factor_sigma shape = image.shape blur_size = int(4*sigma) | 1 dx = alpha * cv2.GaussianBlur((np.random.rand(*shape) * 2 - 1), ksize=(blur_size, blur_size), sigmaX=sigma) dy = alpha * cv2.GaussianBlur((np.random.rand(*shape) * 2 - 1), ksize=(blur_size, blur_size), sigmaX=sigma) x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0])) indices = np.reshape(y+dy, (-1, 1)), np.reshape(x+dx, (-1, 1)) # TODO use cv2.remap(image, dx, dy, interpolation=cv2.INTER_LINEAR) return np.array(map_coordinates(image, indices, order=1, mode='constant').reshape(shape))
mit
ryanjmccall/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/quiver.py
69
36790
""" Support for plotting vector fields. Presently this contains Quiver and Barb. Quiver plots an arrow in the direction of the vector, with the size of the arrow related to the magnitude of the vector. Barbs are like quiver in that they point along a vector, but the magnitude of the vector is given schematically by the presence of barbs or flags on the barb. This will also become a home for things such as standard deviation ellipses, which can and will be derived very easily from the Quiver code. """ import numpy as np from numpy import ma import matplotlib.collections as collections import matplotlib.transforms as transforms import matplotlib.text as mtext import matplotlib.artist as martist import matplotlib.font_manager as font_manager from matplotlib.cbook import delete_masked_points from matplotlib.patches import CirclePolygon import math _quiver_doc = """ Plot a 2-D field of arrows. call signatures:: quiver(U, V, **kw) quiver(U, V, C, **kw) quiver(X, Y, U, V, **kw) quiver(X, Y, U, V, C, **kw) Arguments: *X*, *Y*: The x and y coordinates of the arrow locations (default is tail of arrow; see *pivot* kwarg) *U*, *V*: give the *x* and *y* components of the arrow vectors *C*: an optional array used to map colors to the arrows All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* are absent, they will be generated as a uniform grid. If *U* and *V* are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*) match the column and row dimensions of *U*, then *X* and *Y* will be expanded with :func:`numpy.meshgrid`. *U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not supported at present. Keyword arguments: *units*: ['width' | 'height' | 'dots' | 'inches' | 'x' | 'y' ] arrow units; the arrow dimensions *except for length* are in multiples of this unit. * 'width' or 'height': the width or height of the axes * 'dots' or 'inches': pixels or inches, based on the figure dpi * 'x' or 'y': *X* or *Y* data units The arrows scale differently depending on the units. For 'x' or 'y', the arrows get larger as one zooms in; for other units, the arrow size is independent of the zoom state. For 'width or 'height', the arrow size increases with the width and height of the axes, respectively, when the the window is resized; for 'dots' or 'inches', resizing does not change the arrows. *angles*: ['uv' | 'xy' | array] With the default 'uv', the arrow aspect ratio is 1, so that if *U*==*V* the angle of the arrow on the plot is 45 degrees CCW from the *x*-axis. With 'xy', the arrow points from (x,y) to (x+u, y+v). Alternatively, arbitrary angles may be specified as an array of values in degrees, CCW from the *x*-axis. *scale*: [ None | float ] data units per arrow unit, e.g. m/s per plot width; a smaller scale parameter makes the arrow longer. If *None*, a simple autoscaling algorithm is used, based on the average vector length and the number of vectors. *width*: shaft width in arrow units; default depends on choice of units, above, and number of vectors; a typical starting value is about 0.005 times the width of the plot. *headwidth*: scalar head width as multiple of shaft width, default is 3 *headlength*: scalar head length as multiple of shaft width, default is 5 *headaxislength*: scalar head length at shaft intersection, default is 4.5 *minshaft*: scalar length below which arrow scales, in units of head length. Do not set this to less than 1, or small arrows will look terrible! Default is 1 *minlength*: scalar minimum length as a multiple of shaft width; if an arrow length is less than this, plot a dot (hexagon) of this diameter instead. Default is 1. *pivot*: [ 'tail' | 'middle' | 'tip' ] The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. *color*: [ color | color sequence ] This is a synonym for the :class:`~matplotlib.collections.PolyCollection` facecolor kwarg. If *C* has been set, *color* has no effect. The defaults give a slightly swept-back arrow; to make the head a triangle, make *headaxislength* the same as *headlength*. To make the arrow more pointed, reduce *headwidth* or increase *headlength* and *headaxislength*. To make the head smaller relative to the shaft, scale down all the head parameters. You will probably do best to leave minshaft alone. linewidths and edgecolors can be used to customize the arrow outlines. Additional :class:`~matplotlib.collections.PolyCollection` keyword arguments: %(PolyCollection)s """ % martist.kwdocd _quiverkey_doc = """ Add a key to a quiver plot. call signature:: quiverkey(Q, X, Y, U, label, **kw) Arguments: *Q*: The Quiver instance returned by a call to quiver. *X*, *Y*: The location of the key; additional explanation follows. *U*: The length of the key *label*: a string with the length and units of the key Keyword arguments: *coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ] Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are normalized coordinate systems with 0,0 in the lower left and 1,1 in the upper right; 'data' are the axes data coordinates (used for the locations of the vectors in the quiver plot itself); 'inches' is position in the figure in inches, with 0,0 at the lower left corner. *color*: overrides face and edge colors from *Q*. *labelpos* = [ 'N' | 'S' | 'E' | 'W' ] Position the label above, below, to the right, to the left of the arrow, respectively. *labelsep*: Distance in inches between the arrow and the label. Default is 0.1 *labelcolor*: defaults to default :class:`~matplotlib.text.Text` color. *fontproperties*: A dictionary with keyword arguments accepted by the :class:`~matplotlib.font_manager.FontProperties` initializer: *family*, *style*, *variant*, *size*, *weight* Any additional keyword arguments are used to override vector properties taken from *Q*. The positioning of the key depends on *X*, *Y*, *coordinates*, and *labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y* positions the head, and if *labelpos* is 'W', *X*, *Y* positions the tail; in either of these two cases, *X*, *Y* is somewhere in the middle of the arrow+label key object. """ class QuiverKey(martist.Artist): """ Labelled arrow for use as a quiver plot scale key. """ halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'} valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'} pivot = {'N': 'mid', 'S': 'mid', 'E': 'tip', 'W': 'tail'} def __init__(self, Q, X, Y, U, label, **kw): martist.Artist.__init__(self) self.Q = Q self.X = X self.Y = Y self.U = U self.coord = kw.pop('coordinates', 'axes') self.color = kw.pop('color', None) self.label = label self._labelsep_inches = kw.pop('labelsep', 0.1) self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi) def on_dpi_change(fig): self.labelsep = (self._labelsep_inches * fig.dpi) self._initialized = False # simple brute force update # works because _init is called # at the start of draw. Q.ax.figure.callbacks.connect('dpi_changed', on_dpi_change) self.labelpos = kw.pop('labelpos', 'N') self.labelcolor = kw.pop('labelcolor', None) self.fontproperties = kw.pop('fontproperties', dict()) self.kw = kw _fp = self.fontproperties #boxprops = dict(facecolor='red') self.text = mtext.Text(text=label, # bbox=boxprops, horizontalalignment=self.halign[self.labelpos], verticalalignment=self.valign[self.labelpos], fontproperties=font_manager.FontProperties(**_fp)) if self.labelcolor is not None: self.text.set_color(self.labelcolor) self._initialized = False self.zorder = Q.zorder + 0.1 __init__.__doc__ = _quiverkey_doc def _init(self): if True: ##not self._initialized: self._set_transform() _pivot = self.Q.pivot self.Q.pivot = self.pivot[self.labelpos] self.verts = self.Q._make_verts(np.array([self.U]), np.zeros((1,))) self.Q.pivot = _pivot kw = self.Q.polykw kw.update(self.kw) self.vector = collections.PolyCollection(self.verts, offsets=[(self.X,self.Y)], transOffset=self.get_transform(), **kw) if self.color is not None: self.vector.set_color(self.color) self.vector.set_transform(self.Q.get_transform()) self._initialized = True def _text_x(self, x): if self.labelpos == 'E': return x + self.labelsep elif self.labelpos == 'W': return x - self.labelsep else: return x def _text_y(self, y): if self.labelpos == 'N': return y + self.labelsep elif self.labelpos == 'S': return y - self.labelsep else: return y def draw(self, renderer): self._init() self.vector.draw(renderer) x, y = self.get_transform().transform_point((self.X, self.Y)) self.text.set_x(self._text_x(x)) self.text.set_y(self._text_y(y)) self.text.draw(renderer) def _set_transform(self): if self.coord == 'data': self.set_transform(self.Q.ax.transData) elif self.coord == 'axes': self.set_transform(self.Q.ax.transAxes) elif self.coord == 'figure': self.set_transform(self.Q.ax.figure.transFigure) elif self.coord == 'inches': self.set_transform(self.Q.ax.figure.dpi_scale_trans) else: raise ValueError('unrecognized coordinates') def set_figure(self, fig): martist.Artist.set_figure(self, fig) self.text.set_figure(fig) def contains(self, mouseevent): # Maybe the dictionary should allow one to # distinguish between a text hit and a vector hit. if (self.text.contains(mouseevent)[0] or self.vector.contains(mouseevent)[0]): return True, {} return False, {} quiverkey_doc = _quiverkey_doc class Quiver(collections.PolyCollection): """ Specialized PolyCollection for arrows. The only API method is set_UVC(), which can be used to change the size, orientation, and color of the arrows; their locations are fixed when the class is instantiated. Possibly this method will be useful in animations. Much of the work in this class is done in the draw() method so that as much information as possible is available about the plot. In subsequent draw() calls, recalculation is limited to things that might have changed, so there should be no performance penalty from putting the calculations in the draw() method. """ def __init__(self, ax, *args, **kw): self.ax = ax X, Y, U, V, C = self._parse_args(*args) self.X = X self.Y = Y self.XY = np.hstack((X[:,np.newaxis], Y[:,np.newaxis])) self.N = len(X) self.scale = kw.pop('scale', None) self.headwidth = kw.pop('headwidth', 3) self.headlength = float(kw.pop('headlength', 5)) self.headaxislength = kw.pop('headaxislength', 4.5) self.minshaft = kw.pop('minshaft', 1) self.minlength = kw.pop('minlength', 1) self.units = kw.pop('units', 'width') self.angles = kw.pop('angles', 'uv') self.width = kw.pop('width', None) self.color = kw.pop('color', 'k') self.pivot = kw.pop('pivot', 'tail') kw.setdefault('facecolors', self.color) kw.setdefault('linewidths', (0,)) collections.PolyCollection.__init__(self, [], offsets=self.XY, transOffset=ax.transData, closed=False, **kw) self.polykw = kw self.set_UVC(U, V, C) self._initialized = False self.keyvec = None self.keytext = None def on_dpi_change(fig): self._new_UV = True # vertices depend on width, span # which in turn depend on dpi self._initialized = False # simple brute force update # works because _init is called # at the start of draw. self.ax.figure.callbacks.connect('dpi_changed', on_dpi_change) __init__.__doc__ = """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %s""" % _quiver_doc def _parse_args(self, *args): X, Y, U, V, C = [None]*5 args = list(args) if len(args) == 3 or len(args) == 5: C = ma.asarray(args.pop(-1)).ravel() V = ma.asarray(args.pop(-1)) U = ma.asarray(args.pop(-1)) nn = np.shape(U) nc = nn[0] nr = 1 if len(nn) > 1: nr = nn[1] if len(args) == 2: # remaining after removing U,V,C X, Y = [np.array(a).ravel() for a in args] if len(X) == nc and len(Y) == nr: X, Y = [a.ravel() for a in np.meshgrid(X, Y)] else: indexgrid = np.meshgrid(np.arange(nc), np.arange(nr)) X, Y = [np.ravel(a) for a in indexgrid] return X, Y, U, V, C def _init(self): """initialization delayed until first draw; allow time for axes setup. """ # It seems that there are not enough event notifications # available to have this work on an as-needed basis at present. if True: ##not self._initialized: trans = self._set_transform() ax = self.ax sx, sy = trans.inverted().transform_point( (ax.bbox.width, ax.bbox.height)) self.span = sx sn = max(8, min(25, math.sqrt(self.N))) if self.width is None: self.width = 0.06 * self.span / sn def draw(self, renderer): self._init() if self._new_UV or self.angles == 'xy': verts = self._make_verts(self.U, self.V) self.set_verts(verts, closed=False) self._new_UV = False collections.PolyCollection.draw(self, renderer) def set_UVC(self, U, V, C=None): self.U = U.ravel() self.V = V.ravel() if C is not None: self.set_array(C.ravel()) self._new_UV = True def _set_transform(self): ax = self.ax if self.units in ('x', 'y'): if self.units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width else: dx0 = ax.viewLim.height dx1 = ax.bbox.height dx = dx1/dx0 else: if self.units == 'width': dx = ax.bbox.width elif self.units == 'height': dx = ax.bbox.height elif self.units == 'dots': dx = 1.0 elif self.units == 'inches': dx = ax.figure.dpi else: raise ValueError('unrecognized units') trans = transforms.Affine2D().scale(dx) self.set_transform(trans) return trans def _angles(self, U, V, eps=0.001): xy = self.ax.transData.transform(self.XY) uv = ma.hstack((U[:,np.newaxis], V[:,np.newaxis])).filled(0) xyp = self.ax.transData.transform(self.XY + eps * uv) dxy = xyp - xy ang = ma.arctan2(dxy[:,1], dxy[:,0]) return ang def _make_verts(self, U, V): uv = ma.asarray(U+V*1j) a = ma.absolute(uv) if self.scale is None: sn = max(10, math.sqrt(self.N)) scale = 1.8 * a.mean() * sn / self.span # crude auto-scaling self.scale = scale length = a/(self.scale*self.width) X, Y = self._h_arrows(length) if self.angles == 'xy': theta = self._angles(U, V).filled(0)[:,np.newaxis] elif self.angles == 'uv': theta = np.angle(ma.asarray(uv[..., np.newaxis]).filled(0)) else: theta = ma.asarray(self.angles*np.pi/180.0).filled(0) xy = (X+Y*1j) * np.exp(1j*theta)*self.width xy = xy[:,:,np.newaxis] XY = ma.concatenate((xy.real, xy.imag), axis=2) return XY def _h_arrows(self, length): """ length is in arrow width units """ # It might be possible to streamline the code # and speed it up a bit by using complex (x,y) # instead of separate arrays; but any gain would be slight. minsh = self.minshaft * self.headlength N = len(length) length = length.reshape(N, 1) # x, y: normal horizontal arrow x = np.array([0, -self.headaxislength, -self.headlength, 0], np.float64) x = x + np.array([0,1,1,1]) * length y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) y = np.repeat(y[np.newaxis,:], N, axis=0) # x0, y0: arrow without shaft, for short vectors x0 = np.array([0, minsh-self.headaxislength, minsh-self.headlength, minsh], np.float64) y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64) ii = [0,1,2,3,2,1,0] X = x.take(ii, 1) Y = y.take(ii, 1) Y[:, 3:] *= -1 X0 = x0.take(ii) Y0 = y0.take(ii) Y0[3:] *= -1 shrink = length/minsh X0 = shrink * X0[np.newaxis,:] Y0 = shrink * Y0[np.newaxis,:] short = np.repeat(length < minsh, 7, axis=1) #print 'short', length < minsh # Now select X0, Y0 if short, otherwise X, Y X = ma.where(short, X0, X) Y = ma.where(short, Y0, Y) if self.pivot[:3] == 'mid': X -= 0.5 * X[:,3, np.newaxis] elif self.pivot[:3] == 'tip': X = X - X[:,3, np.newaxis] #numpy bug? using -= does not # work here unless we multiply # by a float first, as with 'mid'. tooshort = length < self.minlength if tooshort.any(): # Use a heptagonal dot: th = np.arange(0,7,1, np.float64) * (np.pi/3.0) x1 = np.cos(th) * self.minlength * 0.5 y1 = np.sin(th) * self.minlength * 0.5 X1 = np.repeat(x1[np.newaxis, :], N, axis=0) Y1 = np.repeat(y1[np.newaxis, :], N, axis=0) tooshort = ma.repeat(tooshort, 7, 1) X = ma.where(tooshort, X1, X) Y = ma.where(tooshort, Y1, Y) return X, Y quiver_doc = _quiver_doc _barbs_doc = """ Plot a 2-D field of barbs. call signatures:: barb(U, V, **kw) barb(U, V, C, **kw) barb(X, Y, U, V, **kw) barb(X, Y, U, V, C, **kw) Arguments: *X*, *Y*: The x and y coordinates of the barb locations (default is head of barb; see *pivot* kwarg) *U*, *V*: give the *x* and *y* components of the barb shaft *C*: an optional array used to map colors to the barbs All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y* are absent, they will be generated as a uniform grid. If *U* and *V* are 2-D arrays but *X* and *Y* are 1-D, and if len(*X*) and len(*Y*) match the column and row dimensions of *U*, then *X* and *Y* will be expanded with :func:`numpy.meshgrid`. *U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not supported at present. Keyword arguments: *length*: Length of the barb in points; the other parts of the barb are scaled against this. Default is 9 *pivot*: [ 'tip' | 'middle' ] The part of the arrow that is at the grid point; the arrow rotates about this point, hence the name *pivot*. Default is 'tip' *barbcolor*: [ color | color sequence ] Specifies the color all parts of the barb except any flags. This parameter is analagous to the *edgecolor* parameter for polygons, which can be used instead. However this parameter will override facecolor. *flagcolor*: [ color | color sequence ] Specifies the color of any flags on the barb. This parameter is analagous to the *facecolor* parameter for polygons, which can be used instead. However this parameter will override facecolor. If this is not set (and *C* has not either) then *flagcolor* will be set to match *barbcolor* so that the barb has a uniform color. If *C* has been set, *flagcolor* has no effect. *sizes*: A dictionary of coefficients specifying the ratio of a given feature to the length of the barb. Only those values one wishes to override need to be included. These features include: - 'spacing' - space between features (flags, full/half barbs) - 'height' - height (distance from shaft to top) of a flag or full barb - 'width' - width of a flag, twice the width of a full barb - 'emptybarb' - radius of the circle used for low magnitudes *fill_empty*: A flag on whether the empty barbs (circles) that are drawn should be filled with the flag color. If they are not filled, they will be drawn such that no color is applied to the center. Default is False *rounding*: A flag to indicate whether the vector magnitude should be rounded when allocating barb components. If True, the magnitude is rounded to the nearest multiple of the half-barb increment. If False, the magnitude is simply truncated to the next lowest multiple. Default is True *barb_increments*: A dictionary of increments specifying values to associate with different parts of the barb. Only those values one wishes to override need to be included. - 'half' - half barbs (Default is 5) - 'full' - full barbs (Default is 10) - 'flag' - flags (default is 50) *flip_barb*: Either a single boolean flag or an array of booleans. Single boolean indicates whether the lines and flags should point opposite to normal for all barbs. An array (which should be the same size as the other data arrays) indicates whether to flip for each individual barb. Normal behavior is for the barbs and lines to point right (comes from wind barbs having these features point towards low pressure in the Northern Hemisphere.) Default is False Barbs are traditionally used in meteorology as a way to plot the speed and direction of wind observations, but can technically be used to plot any two dimensional vector quantity. As opposed to arrows, which give vector magnitude by the length of the arrow, the barbs give more quantitative information about the vector magnitude by putting slanted lines or a triangle for various increments in magnitude, as show schematically below:: : /\ \\ : / \ \\ : / \ \ \\ : / \ \ \\ : ------------------------------ .. note the double \\ at the end of each line to make the figure .. render correctly The largest increment is given by a triangle (or "flag"). After those come full lines (barbs). The smallest increment is a half line. There is only, of course, ever at most 1 half line. If the magnitude is small and only needs a single half-line and no full lines or triangles, the half-line is offset from the end of the barb so that it can be easily distinguished from barbs with a single full line. The magnitude for the barb shown above would nominally be 65, using the standard increments of 50, 10, and 5. linewidths and edgecolors can be used to customize the barb. Additional :class:`~matplotlib.collections.PolyCollection` keyword arguments: %(PolyCollection)s """ % martist.kwdocd class Barbs(collections.PolyCollection): ''' Specialized PolyCollection for barbs. The only API method is :meth:`set_UVC`, which can be used to change the size, orientation, and color of the arrows. Locations are changed using the :meth:`set_offsets` collection method. Possibly this method will be useful in animations. There is one internal function :meth:`_find_tails` which finds exactly what should be put on the barb given the vector magnitude. From there :meth:`_make_barbs` is used to find the vertices of the polygon to represent the barb based on this information. ''' #This may be an abuse of polygons here to render what is essentially maybe #1 triangle and a series of lines. It works fine as far as I can tell #however. def __init__(self, ax, *args, **kw): self._pivot = kw.pop('pivot', 'tip') self._length = kw.pop('length', 7) barbcolor = kw.pop('barbcolor', None) flagcolor = kw.pop('flagcolor', None) self.sizes = kw.pop('sizes', dict()) self.fill_empty = kw.pop('fill_empty', False) self.barb_increments = kw.pop('barb_increments', dict()) self.rounding = kw.pop('rounding', True) self.flip = kw.pop('flip_barb', False) #Flagcolor and and barbcolor provide convenience parameters for setting #the facecolor and edgecolor, respectively, of the barb polygon. We #also work here to make the flag the same color as the rest of the barb #by default if None in (barbcolor, flagcolor): kw['edgecolors'] = 'face' if flagcolor: kw['facecolors'] = flagcolor elif barbcolor: kw['facecolors'] = barbcolor else: #Set to facecolor passed in or default to black kw.setdefault('facecolors', 'k') else: kw['edgecolors'] = barbcolor kw['facecolors'] = flagcolor #Parse out the data arrays from the various configurations supported x, y, u, v, c = self._parse_args(*args) self.x = x self.y = y xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis])) #Make a collection barb_size = self._length**2 / 4 #Empirically determined collections.PolyCollection.__init__(self, [], (barb_size,), offsets=xy, transOffset=ax.transData, **kw) self.set_transform(transforms.IdentityTransform()) self.set_UVC(u, v, c) __init__.__doc__ = """ The constructor takes one required argument, an Axes instance, followed by the args and kwargs described by the following pylab interface documentation: %s""" % _barbs_doc def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50): ''' Find how many of each of the tail pieces is necessary. Flag specifies the increment for a flag, barb for a full barb, and half for half a barb. Mag should be the magnitude of a vector (ie. >= 0). This returns a tuple of: (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*) *half_flag* is a boolean whether half of a barb is needed, since there should only ever be one half on a given barb. *empty_flag* flag is an array of flags to easily tell if a barb is empty (too low to plot any barbs/flags. ''' #If rounding, round to the nearest multiple of half, the smallest #increment if rounding: mag = half * (mag / half + 0.5).astype(np.int) num_flags = np.floor(mag / flag).astype(np.int) mag = np.mod(mag, flag) num_barb = np.floor(mag / full).astype(np.int) mag = np.mod(mag, full) half_flag = mag >= half empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0)) return num_flags, num_barb, half_flag, empty_flag def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length, pivot, sizes, fill_empty, flip): ''' This function actually creates the wind barbs. *u* and *v* are components of the vector in the *x* and *y* directions, respectively. *nflags*, *nbarbs*, and *half_barb*, empty_flag* are, *respectively, the number of flags, number of barbs, flag for *half a barb, and flag for empty barb, ostensibly obtained *from :meth:`_find_tails`. *length* is the length of the barb staff in points. *pivot* specifies the point on the barb around which the entire barb should be rotated. Right now, valid options are 'head' and 'middle'. *sizes* is a dictionary of coefficients specifying the ratio of a given feature to the length of the barb. These features include: - *spacing*: space between features (flags, full/half barbs) - *height*: distance from shaft of top of a flag or full barb - *width* - width of a flag, twice the width of a full barb - *emptybarb* - radius of the circle used for low magnitudes *fill_empty* specifies whether the circle representing an empty barb should be filled or not (this changes the drawing of the polygon). *flip* is a flag indicating whether the features should be flipped to the other side of the barb (useful for winds in the southern hemisphere. This function returns list of arrays of vertices, defining a polygon for each of the wind barbs. These polygons have been rotated to properly align with the vector direction. ''' #These control the spacing and size of barb elements relative to the #length of the shaft spacing = length * sizes.get('spacing', 0.125) full_height = length * sizes.get('height', 0.4) full_width = length * sizes.get('width', 0.25) empty_rad = length * sizes.get('emptybarb', 0.15) #Controls y point where to pivot the barb. pivot_points = dict(tip=0.0, middle=-length/2.) #Check for flip if flip: full_height = -full_height endx = 0.0 endy = pivot_points[pivot.lower()] #Get the appropriate angle for the vector components. The offset is due #to the way the barb is initially drawn, going down the y-axis. This #makes sense in a meteorological mode of thinking since there 0 degrees #corresponds to north (the y-axis traditionally) angles = -(ma.arctan2(v, u) + np.pi/2) #Used for low magnitude. We just get the vertices, so if we make it #out here, it can be reused. The center set here should put the #center of the circle at the location(offset), rather than at the #same point as the barb pivot; this seems more sensible. circ = CirclePolygon((0,0), radius=empty_rad).get_verts() if fill_empty: empty_barb = circ else: #If we don't want the empty one filled, we make a degenerate polygon #that wraps back over itself empty_barb = np.concatenate((circ, circ[::-1])) barb_list = [] for index, angle in np.ndenumerate(angles): #If the vector magnitude is too weak to draw anything, plot an #empty circle instead if empty_flag[index]: #We can skip the transform since the circle has no preferred #orientation barb_list.append(empty_barb) continue poly_verts = [(endx, endy)] offset = length #Add vertices for each flag for i in range(nflags[index]): #The spacing that works for the barbs is a little to much for #the flags, but this only occurs when we have more than 1 flag. if offset != length: offset += spacing / 2. poly_verts.extend([[endx, endy + offset], [endx + full_height, endy - full_width/2 + offset], [endx, endy - full_width + offset]]) offset -= full_width + spacing #Add vertices for each barb. These really are lines, but works #great adding 3 vertices that basically pull the polygon out and #back down the line for i in range(nbarbs[index]): poly_verts.extend([(endx, endy + offset), (endx + full_height, endy + offset + full_width/2), (endx, endy + offset)]) offset -= spacing #Add the vertices for half a barb, if needed if half_barb[index]: #If the half barb is the first on the staff, traditionally it is #offset from the end to make it easy to distinguish from a barb #with a full one if offset == length: poly_verts.append((endx, endy + offset)) offset -= 1.5 * spacing poly_verts.extend([(endx, endy + offset), (endx + full_height/2, endy + offset + full_width/4), (endx, endy + offset)]) #Rotate the barb according the angle. Making the barb first and then #rotating it made the math for drawing the barb really easy. Also, #the transform framework makes doing the rotation simple. poly_verts = transforms.Affine2D().rotate(-angle).transform( poly_verts) barb_list.append(poly_verts) return barb_list #Taken shamelessly from Quiver def _parse_args(self, *args): X, Y, U, V, C = [None]*5 args = list(args) if len(args) == 3 or len(args) == 5: C = ma.asarray(args.pop(-1)).ravel() V = ma.asarray(args.pop(-1)) U = ma.asarray(args.pop(-1)) nn = np.shape(U) nc = nn[0] nr = 1 if len(nn) > 1: nr = nn[1] if len(args) == 2: # remaining after removing U,V,C X, Y = [np.array(a).ravel() for a in args] if len(X) == nc and len(Y) == nr: X, Y = [a.ravel() for a in np.meshgrid(X, Y)] else: indexgrid = np.meshgrid(np.arange(nc), np.arange(nr)) X, Y = [np.ravel(a) for a in indexgrid] return X, Y, U, V, C def set_UVC(self, U, V, C=None): self.u = ma.asarray(U).ravel() self.v = ma.asarray(V).ravel() if C is not None: c = ma.asarray(C).ravel() x,y,u,v,c = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v, c) else: x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v) magnitude = np.sqrt(u*u + v*v) flags, barbs, halves, empty = self._find_tails(magnitude, self.rounding, **self.barb_increments) #Get the vertices for each of the barbs plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty, self._length, self._pivot, self.sizes, self.fill_empty, self.flip) self.set_verts(plot_barbs) #Set the color array if C is not None: self.set_array(c) #Update the offsets in case the masked data changed xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis])) self._offsets = xy def set_offsets(self, xy): ''' Set the offsets for the barb polygons. This saves the offets passed in and actually sets version masked as appropriate for the existing U/V data. *offsets* should be a sequence. ACCEPTS: sequence of pairs of floats ''' self.x = xy[:,0] self.y = xy[:,1] x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u, self.v) xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis])) collections.PolyCollection.set_offsets(self, xy) set_offsets.__doc__ = collections.PolyCollection.set_offsets.__doc__ barbs_doc = _barbs_doc
gpl-3.0
microsoft/EconML
econml/sklearn_extensions/ensemble.py
1
8978
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """ Subsampled honest forest extension to scikit-learn's forest methods. Contains pieces of code from scikit-learn's random forest implementation. """ from ..grf import RegressionForest from ..utilities import deprecated @deprecated("The SubsampledHonestForest class has been deprecated by the grf.RegressionForest class; " "an upcoming release will remove support for the this class.") def SubsampledHonestForest(n_estimators=100, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0., subsample_fr='auto', honest=True, n_jobs=None, random_state=None, verbose=0, warm_start=False): """ An implementation of a subsampled honest random forest regressor on top of an sklearn regression tree. Implements subsampling and honesty as described in [3]_, but uses a scikit-learn regression tree as a base. It provides confidence intervals based on ideas described in [3]_ and [4]_ Parameters ---------- n_estimators : integer, optional (default=100) The total number of trees in the forest. The forest consists of a forest of sqrt(n_estimators) sub-forests, where each sub-forest contains sqrt(n_estimators) trees. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of splitting samples required to split an internal node. - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a fraction and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node. A split point at any depth will only be considered if it leaves at least ``min_samples_leaf`` splitting samples in each of the left and right branches. This may have the effect of smoothing the model, especially in regression. After construction the tree is also pruned so that there are at least min_samples_leaf estimation samples on each leaf. - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a fraction and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all splitting samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. After construction the tree is pruned so that the fraction of the sum total weight of the estimation samples contained in each leaf node is at least min_weight_fraction_leaf max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a fraction and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of split samples, ``N_t`` is the number of split samples at the current node, ``N_t_L`` is the number of split samples in the left child, and ``N_t_R`` is the number of split samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. subsample_fr : float or 'auto', optional (default='auto') The fraction of the half-samples that are used on each tree. Each tree will be built on subsample_fr * n_samples/2. If 'auto', then the subsampling fraction is set to:: (n_samples/2)**(1-1/(2*n_features+2))/(n_samples/2) which is sufficient to guarantee asympotitcally valid inference. honest : boolean, optional (default=True) Whether to use honest trees, i.e. half of the samples are used for creating the tree structure and the other half for the estimation at the leafs. If False, then all samples are used for both parts. n_jobs : int or None, optional (default=None) The number of jobs to run in parallel for both `fit` and `predict`. `None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity when fitting and predicting. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See :term:`the Glossary <warm_start>`. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. subsample_fr_ : float The chosen subsample ratio. Eache tree was trained on ``subsample_fr_ * n_samples / 2`` data points. References ---------- .. [3] S. Athey, S. Wager, "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests", Journal of the American Statistical Association 113.523 (2018): 1228-1242. .. [4] S. Athey, J. Tibshirani, and S. Wager, "Generalized random forests", The Annals of Statistics, 47(2), 1148-1178, 2019. """ return RegressionForest(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, min_impurity_decrease=min_impurity_decrease, max_samples=.45 if subsample_fr == 'auto' else subsample_fr / 2, honest=honest, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start)
mit
mlperf/training_results_v0.5
v0.5.0/google/cloud_v2.8/gnmt-tpuv2-8/code/gnmt/model/staging/models/rough/nmt_gpu/nmt.py
6
46512
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow NMT model implementation.""" from __future__ import print_function import argparse import os import random import sys # import matplotlib.image as mpimg import numpy as np import time import tensorflow as tf from mlperf_compliance import mlperf_log import estimator from utils import evaluation_utils from utils import iterator_utils from utils import misc_utils as utils from utils import vocab_utils from variable_mgr import constants utils.check_tensorflow_version() FLAGS = None # LINT.IfChange def add_arguments(parser): """Build ArgumentParser.""" parser.register("type", "bool", lambda v: v.lower() == "true") # network parser.add_argument( "--num_units", type=int, default=1024, help="Network size.") parser.add_argument( "--num_layers", type=int, default=4, help="Network depth.") parser.add_argument("--num_encoder_layers", type=int, default=None, help="Encoder depth, equal to num_layers if None.") parser.add_argument("--num_decoder_layers", type=int, default=None, help="Decoder depth, equal to num_layers if None.") parser.add_argument( "--encoder_type", type=str, default="gnmt", help="""\ uni | bi | gnmt. For bi, we build num_encoder_layers/2 bi-directional layers. For gnmt, we build 1 bi-directional layer, and (num_encoder_layers - 1) uni-directional layers.\ """) parser.add_argument( "--residual", type="bool", nargs="?", const=True, default=True, help="Whether to add residual connections.") parser.add_argument("--time_major", type="bool", nargs="?", const=True, default=True, help="Whether to use time-major mode for dynamic RNN.") parser.add_argument("--num_embeddings_partitions", type=int, default=0, help="Number of partitions for embedding vars.") # attention mechanisms parser.add_argument( "--attention", type=str, default="normed_bahdanau", help="""\ luong | scaled_luong | bahdanau | normed_bahdanau or set to "" for no attention\ """) parser.add_argument( "--attention_architecture", type=str, default="gnmt_v2", help="""\ standard | gnmt | gnmt_v2. standard: use top layer to compute attention. gnmt: GNMT style of computing attention, use previous bottom layer to compute attention. gnmt_v2: similar to gnmt, but use current bottom layer to compute attention.\ """) parser.add_argument( "--output_attention", type="bool", nargs="?", const=True, default=True, help="""\ Only used in standard attention_architecture. Whether use attention as the cell output at each timestep. .\ """) parser.add_argument( "--pass_hidden_state", type="bool", nargs="?", const=True, default=True, help="""\ Whether to pass encoder's hidden state to decoder when using an attention based model.\ """) # optimizer parser.add_argument( "--optimizer", type=str, default="adam", help="sgd | adam") parser.add_argument( "--learning_rate", type=float, default=5e-4, help="Learning rate. Adam: 0.001 | 0.0001") parser.add_argument("--warmup_steps", type=int, default=0, help="How many steps we inverse-decay learning.") parser.add_argument("--warmup_scheme", type=str, default="t2t", help="""\ How to warmup learning rates. Options include: t2t: Tensor2Tensor's way, start with lr 100 times smaller, then exponentiate until the specified lr.\ """) parser.add_argument( "--decay_scheme", type=str, default="", help="""\ How we decay learning rate. Options include: luong234: after 2/3 num train steps, we start halving the learning rate for 4 times before finishing. luong5: after 1/2 num train steps, we start halving the learning rate for 5 times before finishing.\ luong10: after 1/2 num train steps, we start halving the learning rate for 10 times before finishing.\ """) parser.add_argument( "--num_train_steps", type=int, default=100000, help="Num steps to train.") parser.add_argument( "--max_train_epochs", type=int, default=8, help="Max number of epochs.") parser.add_argument("--num_examples_per_epoch", type=int, default=4068191, help="Number of examples in one epoch") parser.add_argument( "--target_bleu", type=float, default=22.0, help="Target bleu.") parser.add_argument("--colocate_gradients_with_ops", type="bool", nargs="?", const=True, default=True, help=("Whether try colocating gradients with " "corresponding op")) parser.add_argument("--label_smoothing", type=float, default=0.1, help=("If nonzero, smooth the labels towards " "1/num_classes.")) # initializer parser.add_argument("--init_op", type=str, default="uniform", help="uniform | glorot_normal | glorot_uniform") parser.add_argument("--init_weight", type=float, default=0.1, help=("for uniform init_op, initialize weights " "between [-this, this].")) # data parser.add_argument( "--src", type=str, default="en", help="Source suffix, e.g., en.") parser.add_argument( "--tgt", type=str, default="de", help="Target suffix, e.g., de.") parser.add_argument( "--data_dir", type=str, default="", help="Training/eval data directory.") parser.add_argument( "--train_prefix", type=str, default="train.tok.clean.bpe.32000", help="Train prefix, expect files with src/tgt suffixes.") parser.add_argument( "--dev_prefix", type=str, default="newstest2014.tok.bpe.32000", help="Dev prefix, expect files with src/tgt suffixes.") parser.add_argument( "--test_prefix", type=str, default="newstest2014.tok.bpe.32000", help="Test prefix, expect files with src/tgt suffixes.") parser.add_argument( "--output_dir", type=str, default="", help="Store log/model files.") # Vocab parser.add_argument( "--vocab_prefix", type=str, default="vocab.bpe.32000", help="""\ Vocab prefix, expect files with src/tgt suffixes.\ """) parser.add_argument( "--embed_prefix", type=str, default=None, help="""\ Pretrained embedding prefix, expect files with src/tgt suffixes. The embedding files should be Glove formatted txt files.\ """) parser.add_argument("--sos", type=str, default="<s>", help="Start-of-sentence symbol.") parser.add_argument("--eos", type=str, default="</s>", help="End-of-sentence symbol.") parser.add_argument( "--share_vocab", type="bool", nargs="?", const=True, default=True, help="""\ Whether to use the source vocab and embeddings for both source and target.\ """) parser.add_argument("--check_special_token", type="bool", default=True, help="""\ Whether check special sos, eos, unk tokens exist in the vocab files.\ """) # Sequence lengths parser.add_argument( "--src_max_len", type=int, default=50, help="Max length of src sequences during training.") parser.add_argument( "--tgt_max_len", type=int, default=50, help="Max length of tgt sequences during training.") parser.add_argument("--src_max_len_infer", type=int, default=None, help="Max length of src sequences during inference.") parser.add_argument("--tgt_max_len_infer", type=int, default=80, help="""\ Max length of tgt sequences during inference. Also use to restrict the maximum decoding length.\ """) # Default settings works well (rarely need to change) parser.add_argument("--unit_type", type=str, default="lstm", help="lstm | gru | layer_norm_lstm | nas") parser.add_argument("--forget_bias", type=float, default=1.0, help="Forget bias for BasicLSTMCell.") parser.add_argument("--dropout", type=float, default=0.2, help="Dropout rate (not keep_prob)") parser.add_argument("--max_gradient_norm", type=float, default=5.0, help="Clip gradients to this norm.") parser.add_argument("--batch_size", type=int, default=128, help="Batch size.") parser.add_argument("--steps_per_stats", type=int, default=5, help=("How many training steps to do per stats logging." "Save checkpoint every 10x steps_per_stats")) parser.add_argument("--max_train", type=int, default=0, help="Limit on the size of training data (0: no limit).") parser.add_argument( "--num_buckets", type=int, default=1, help="Put data into similar-length buckets.") # SPM parser.add_argument("--subword_option", type=str, default="bpe", choices=["", "bpe", "spm"], help="""\ Set to bpe or spm to activate subword desegmentation.\ """) # Experimental encoding feature. parser.add_argument("--use_char_encode", type="bool", default=False, help="""\ Whether to split each word or bpe into character, and then generate the word-level representation from the character reprentation. """) # Misc parser.add_argument( "--save_checkpoints_steps", type=int, default=1000, help="save_checkpoints_steps") parser.add_argument( "--num_gpus", type=int, default=1, help="Number of gpus in each worker.") parser.add_argument( "--log_device_placement", type="bool", nargs="?", const=True, default=True, help="Debug GPU allocation.") parser.add_argument("--steps_per_external_eval", type=int, default=None, help="""\ How many training steps to do per external evaluation. Automatically set based on data if None.\ """) parser.add_argument("--hparams_path", type=str, default=None, help=("Path to standard hparams json file that overrides" "hparams values from FLAGS.")) parser.add_argument( "--random_seed", type=int, default=1, help="Random seed (>0, set a specific seed).") parser.add_argument("--override_loaded_hparams", type="bool", nargs="?", const=True, default=False, help="Override loaded hparams with values specified") parser.add_argument("--num_keep_ckpts", type=int, default=5, help="Max number of checkpoints to keep.") parser.add_argument("--avg_ckpts", type="bool", nargs="?", const=True, default=False, help=("""\ Average the last N checkpoints for external evaluation. N can be controlled by setting --num_keep_ckpts.\ """)) parser.add_argument("--language_model", type="bool", nargs="?", const=True, default=False, help="True to train a language model, ignoring encoder") # Inference parser.add_argument("--ckpt", type=str, default="", help="Checkpoint file to load a model for inference.") parser.add_argument("--inference_input_file", type=str, default=None, help="Set to the text to decode.") parser.add_argument("--inference_list", type=str, default=None, help=("A comma-separated list of sentence indices " "(0-based) to decode.")) parser.add_argument( "--infer_batch_size", type=int, default=64, help="Batch size for inference mode.") parser.add_argument("--detokenizer_file", type=str, default="", help=("""Detokenizer script file.""")) parser.add_argument("--use_borg", type="bool", default=False) # Advanced inference arguments parser.add_argument("--infer_mode", type=str, default="beam_search", choices=["greedy", "sample", "beam_search"], help="Which type of decoder to use during inference.") parser.add_argument("--beam_width", type=int, default=5, help=("""\ beam width when using beam search decoder. If 0 (default), use standard decoder with greedy helper.\ """)) parser.add_argument( "--length_penalty_weight", type=float, default=0.6, help="Length penalty for beam search.") parser.add_argument( "--coverage_penalty_weight", type=float, default=0.1, help="Coverage penalty for beam search.") parser.add_argument("--sampling_temperature", type=float, default=0.0, help=("""\ Softmax sampling temperature for inference decoding, 0.0 means greedy decoding. This option is ignored when using beam search.\ """)) parser.add_argument("--num_translations_per_input", type=int, default=1, help=("""\ Number of translations generated for each sentence. This is only used for inference.\ """)) # Job info parser.add_argument("--jobid", type=int, default=0, help="Task id of the worker.") parser.add_argument("--num_workers", type=int, default=1, help="Number of workers (inference only).") parser.add_argument("--num_inter_threads", type=int, default=0, help="number of inter_op_parallelism_threads") parser.add_argument("--num_intra_threads", type=int, default=0, help="number of intra_op_parallelism_threads") # Fp16 parser.add_argument("--use_fp16", type="bool", default=False, help="use_fp16 for training and inference") parser.add_argument( "--fp16_loss_scale", type=float, default=128, help="If fp16 is enabled, the loss is multiplied by this amount " "right before gradients are computed, then each gradient " "is divided by this amount. Mathematically, this has no " "effect, but it helps avoid fp16 underflow. Set to 1 to " "effectively disable.") parser.add_argument( "--enable_auto_loss_scale", type="bool", default=False, help="If True and use_fp16 is True, automatically adjust the " "loss scale during training.") parser.add_argument( "--fp16_inc_loss_scale_every_n", type=int, default=1000, help="If fp16 is enabled and enable_auto_loss_scale is " "True, increase the loss scale every n steps.") parser.add_argument( "--check_tower_loss_numerics", type="bool", default=False, # Set to false for xla.compile() help="whether to check tower loss numerics") parser.add_argument( "--use_fp32_batch_matmul", type="bool", default=True, help="Whether to use fp32 batch matmul") # Performance # XLA parser.add_argument( "--force_inputs_padding", type="bool", default=False, help="Force padding input batch to src_max_len and tgt_max_len") parser.add_argument( "--use_xla", type="bool", default=False, help="Use xla to compile a few selected locations, mostly Defuns.") parser.add_argument( "--xla_compile", type="bool", default=False, help="Use xla.compile() for each tower's fwd and bak pass.") parser.add_argument( "--use_autojit_xla", type="bool", default=False, help="Use auto jit xla.") # GPU knobs parser.add_argument( "--use_pintohost_optimizer", type="bool", default=False, help="whether to use PinToHost optimizer") parser.add_argument( "--use_cudnn_lstm", type="bool", default=False, help="whether to use cudnn_lstm for encoder, non residual layers") parser.add_argument( "--use_loose_bidi_cudnn_lstm", type="bool", default=False, help="whether to use loose bidi cudnn_lstm") parser.add_argument( "--use_fused_lstm", type="bool", default=False, help="whether to use fused lstm and variant. If enabled, training will " "use LSTMBlockFusedCell, infer will use LSTMBlockCell when appropriate.") parser.add_argument( "--use_fused_lstm_dec", type="bool", default=False, help="whether to use fused lstm for decoder (training only).") parser.add_argument( "--gpu_indices", type=str, default="", help="Indices of worker GPUs in ring order") parser.add_argument( "--gpu_thread_mode", type=str, default="global", help="Methods to assign GPU host work to threads. " "global: all GPUs and CPUs share the same global threads; " "gpu_private: a private threadpool for each GPU; " "gpu_shared: all GPUs share the same threadpool.") parser.add_argument( "--per_gpu_thread_count", type=int, default=0, help="The number of threads to use for GPU. Only valid when " "gpu_thread_mode is not global.") parser.add_argument( "--sync_on_finish", type="bool", default=False, help="Enable/disable whether the devices are synced after each " "step.") parser.add_argument( "--force_gpu_compatible", type="bool", default=False, help="whether to enable force_gpu_compatible in GPU_Options") # Graph knobs parser.add_argument("--parallel_iterations", type=int, default=10, help="number of parallel iterations in dynamic_rnn") parser.add_argument("--use_dist_strategy", type="bool", default=False, help="whether to use distribution strategy") parser.add_argument( "--hierarchical_copy", type="bool", default=False, help="Use hierarchical copies. Currently only optimized for " "use on a DGX-1 with 8 GPUs and may perform poorly on " "other hardware. Requires --num_gpus > 1, and only " "recommended when --num_gpus=8") parser.add_argument( "--network_topology", type=constants.NetworkTopology, default=constants.NetworkTopology.DGX1, choices=list(constants.NetworkTopology)) parser.add_argument( "--enable_layout_optimizer", type="bool", default=False, help="whether to enable layout optimizer") parser.add_argument( "--use_block_lstm", type="bool", default=False, help="whether to use block lstm") parser.add_argument( "--use_defun", type="bool", default=False, help="whether to use Defun") # Gradient tricks parser.add_argument( "--gradient_repacking", type=int, default=0, help="Use gradient repacking. It" "currently only works with replicated mode. At the end of" "of each step, it repacks the gradients for more efficient" "cross-device transportation. A non-zero value specifies" "the number of split packs that will be formed.") parser.add_argument( "--compact_gradient_transfer", type="bool", default=True, help="Compact gradient as much as possible for cross-device transfer and " "aggregation.") parser.add_argument( "--all_reduce_spec", type=str, default="nccl", help="A specification of the all_reduce algorithm to be used " "for reducing gradients. For more details, see " "parse_all_reduce_spec in variable_mgr.py. An " "all_reduce_spec has BNF form:\n" "int ::= positive whole number\n" "g_int ::= int[KkMGT]?\n" "alg_spec ::= alg | alg#int\n" "range_spec ::= alg_spec | alg_spec/alg_spec\n" "spec ::= range_spec | range_spec:g_int:range_spec\n" "NOTE: not all syntactically correct constructs are " "supported.\n\n" "Examples:\n " "\"xring\" == use one global ring reduction for all " "tensors\n" "\"pscpu\" == use CPU at worker 0 to reduce all tensors\n" "\"nccl\" == use NCCL to locally reduce all tensors. " "Limited to 1 worker.\n" "\"nccl/xring\" == locally (to one worker) reduce values " "using NCCL then ring reduce across workers.\n" "\"pscpu:32k:xring\" == use pscpu algorithm for tensors of " "size up to 32kB, then xring for larger tensors.") parser.add_argument( "--agg_small_grads_max_bytes", type=int, default=0, help="If > 0, try to aggregate tensors of less than this " "number of bytes prior to all-reduce.") parser.add_argument( "--agg_small_grads_max_group", type=int, default=10, help="When aggregating small tensors for all-reduce do not " "aggregate more than this many into one new tensor.") parser.add_argument( "--allreduce_merge_scope", type=int, default=1, help="Establish a name scope around this many " "gradients prior to creating the all-reduce operations. " "It may affect the ability of the backend to merge " "parallel ops.") # Other knobs parser.add_argument( "--local_parameter_device", type=str, default="gpu", help="Device to use as parameter server: cpu or gpu. For " "distributed training, it can affect where caching of " "variables happens.") parser.add_argument( "--autotune_threshold", type=int, default=0, help="The autotune threshold for the models") parser.add_argument( "--datasets_num_private_threads", type=int, default=None, help="Number of threads for a private threadpool created for " "all datasets computation. By default, we pick an " "appropriate number. If set to 0, we use the default " "tf-Compute threads for dataset operations.") parser.add_argument( "--winograd_nonfused", type="bool", default=True, help="Enable/disable using the Winograd non-fused algorithms.") parser.add_argument( "--batchnorm_persistent", type="bool", default=True, help="Enable/disable using the CUDNN_BATCHNORM_SPATIAL_PERSISTENT " "mode for batchnorm.") parser.add_argument( "--device", type=str, default="gpu", help="Device to use for computation: cpu or gpu") parser.add_argument( "--allow_growth", type="bool", default=False, help="whether to enable allow_growth in GPU_Options") parser.add_argument( "--use_resource_vars", type="bool", default=False, help="Use resource variables instead of normal variables. " "Resource variables are slower, but this option is useful " "for debugging their performance.") # Performance tuning specific to MKL. parser.add_argument( "--mkl", type="bool", default=False, help="If true, set MKL environment variables.") parser.add_argument( "--kmp_blocktime", type=int, default=30, help="The time, in milliseconds, that a thread should wait, " "after completing the execution of a parallel region, " "before sleeping") parser.add_argument( "--kmp_affinity", type=str, default="granularity=fine,verbose,compact,1,0", help="Restricts execution of certain threads (virtual execution " "units) to a subset of the physical processing units in a " "multiprocessor computer.") parser.add_argument( "--kmp_settings", type=int, default=1, help="If set to 1, MKL settings will be printed.") # Debug parser.add_argument("--debug", type="bool", default=False, help="Debug train and eval") parser.add_argument("--show_metrics", type="bool", default=True, help="whether to show detailed metrics") parser.add_argument("--build_graph_only", type="bool", default=False, help="whehter or not just building the graph") parser.add_argument("--clip_grads", type="bool", default=True, help="whether to clip gradients") parser.add_argument("--profile", type="bool", default=False, help="If generate profile") parser.add_argument("--profile_save_steps", type=int, default=10, help="Save timeline every N steps.") # TPU parser.add_argument("--use_dynamic_rnn", type="bool", default=True) parser.add_argument("--master", type=str, default="") parser.add_argument("--use_synthetic_data", type="bool", default=False) parser.add_argument( "--iterations_per_loop", type=int, default=100, help="the number of iterations to run on TPU before returning to host") parser.add_argument( "--mode", type=str, default="train_and_eval", choices=["train", "train_and_eval", "infer"]) parser.add_argument( "--run_name", type=str, default="", help= "if set, load ckpt from /gs://ij-d/home/mlperf-nmt/'run_name'" ) def create_hparams(flags): """Create training hparams.""" return tf.contrib.training.HParams( # Data src=flags.src, tgt=flags.tgt, train_prefix=os.path.join(flags.data_dir, flags.train_prefix), dev_prefix=os.path.join(flags.data_dir, flags.dev_prefix), test_prefix=os.path.join(flags.data_dir, flags.test_prefix), vocab_prefix=os.path.join(flags.data_dir, flags.vocab_prefix), embed_prefix=flags.embed_prefix, output_dir=flags.output_dir, # Networks num_units=flags.num_units, num_encoder_layers=(flags.num_encoder_layers or flags.num_layers), num_decoder_layers=(flags.num_decoder_layers or flags.num_layers), dropout=flags.dropout, unit_type=flags.unit_type, encoder_type=flags.encoder_type, residual=flags.residual, time_major=flags.time_major, num_embeddings_partitions=flags.num_embeddings_partitions, # Attention mechanisms attention=flags.attention, attention_architecture=flags.attention_architecture, output_attention=flags.output_attention, pass_hidden_state=flags.pass_hidden_state, # Train optimizer=flags.optimizer, num_train_steps=flags.num_train_steps, max_train_epochs=flags.max_train_epochs, num_examples_per_epoch=flags.num_examples_per_epoch, target_bleu=flags.target_bleu, label_smoothing=flags.label_smoothing, batch_size=flags.batch_size, init_op=flags.init_op, init_weight=flags.init_weight, max_gradient_norm=flags.max_gradient_norm, learning_rate=flags.learning_rate, warmup_steps=flags.warmup_steps, warmup_scheme=flags.warmup_scheme, decay_scheme=flags.decay_scheme, colocate_gradients_with_ops=flags.colocate_gradients_with_ops, # Data constraints num_buckets=flags.num_buckets, max_train=flags.max_train, src_max_len=flags.src_max_len, tgt_max_len=flags.tgt_max_len, # Inference src_max_len_infer=flags.src_max_len_infer, tgt_max_len_infer=flags.tgt_max_len_infer, infer_batch_size=flags.infer_batch_size, detokenizer_file=flags.detokenizer_file, use_borg=flags.use_borg, # Advanced inference arguments infer_mode=flags.infer_mode, beam_width=flags.beam_width, length_penalty_weight=flags.length_penalty_weight, coverage_penalty_weight=flags.coverage_penalty_weight, sampling_temperature=flags.sampling_temperature, num_translations_per_input=flags.num_translations_per_input, # Vocab sos=flags.sos if flags.sos else vocab_utils.SOS, eos=flags.eos if flags.eos else vocab_utils.EOS, subword_option=flags.subword_option, check_special_token=flags.check_special_token, use_char_encode=flags.use_char_encode, # Misc forget_bias=flags.forget_bias, num_gpus=flags.num_gpus, save_checkpoints_steps=flags.save_checkpoints_steps, epoch_step=0, # record where we were within an epoch. steps_per_stats=flags.steps_per_stats, steps_per_external_eval=flags.steps_per_external_eval, share_vocab=flags.share_vocab, log_device_placement=flags.log_device_placement, random_seed=flags.random_seed, override_loaded_hparams=flags.override_loaded_hparams, num_keep_ckpts=flags.num_keep_ckpts, avg_ckpts=flags.avg_ckpts, language_model=flags.language_model, num_intra_threads=flags.num_intra_threads, num_inter_threads=flags.num_inter_threads, # Fp16 use_fp16=flags.use_fp16, fp16_loss_scale=flags.fp16_loss_scale, enable_auto_loss_scale=flags.enable_auto_loss_scale, fp16_inc_loss_scale_every_n=flags.fp16_inc_loss_scale_every_n, check_tower_loss_numerics=flags.check_tower_loss_numerics, use_fp32_batch_matmul=flags.use_fp32_batch_matmul, # Performance # GPU knbs force_inputs_padding=flags.force_inputs_padding, use_xla=flags.use_xla, xla_compile=flags.xla_compile, use_autojit_xla=flags.use_autojit_xla, use_pintohost_optimizer=flags.use_pintohost_optimizer, use_cudnn_lstm=flags.use_cudnn_lstm, use_loose_bidi_cudnn_lstm=flags.use_loose_bidi_cudnn_lstm, use_fused_lstm=flags.use_fused_lstm, use_fused_lstm_dec=flags.use_fused_lstm_dec, gpu_indices=flags.gpu_indices, gpu_thread_mode=flags.gpu_thread_mode, per_gpu_thread_count=flags.per_gpu_thread_count, sync_on_finish=flags.sync_on_finish, force_gpu_compatible=flags.force_gpu_compatible, # Graph knobs parallel_iterations=flags.parallel_iterations, use_dynamic_rnn=flags.use_dynamic_rnn, use_dist_strategy=flags.use_dist_strategy, hierarchical_copy=flags.hierarchical_copy, network_topology=flags.network_topology, enable_layout_optimizer=flags.enable_layout_optimizer, use_block_lstm=flags.use_block_lstm, # Grad tricks gradient_repacking=flags.gradient_repacking, compact_gradient_transfer=flags.compact_gradient_transfer, all_reduce_spec=flags.all_reduce_spec, agg_small_grads_max_bytes=flags.agg_small_grads_max_bytes, agg_small_grads_max_group=flags.agg_small_grads_max_group, allreduce_merge_scope=flags.allreduce_merge_scope, # Other knobs local_parameter_device=("cpu" if flags.num_gpus ==0 else flags.local_parameter_device), autotune_threshold=flags.autotune_threshold, datasets_num_private_threads=flags.datasets_num_private_threads, winograd_nonfused=flags.winograd_nonfused, batchnorm_persistent=flags.batchnorm_persistent, device=flags.device, allow_growth=flags.allow_growth, use_resource_vars=flags.use_resource_vars, mkl=flags.mkl, kmp_blocktime=flags.kmp_blocktime, kmp_affinity=flags.kmp_affinity, kmp_settings=flags.kmp_settings, # Debug debug=flags.debug, build_graph_only=flags.build_graph_only, clip_grads=flags.clip_grads, profile=flags.profile, profile_save_steps=flags.profile_save_steps, show_metrics=flags.show_metrics, # TPU master=flags.master, use_synthetic_data=flags.use_synthetic_data, iterations_per_loop=flags.iterations_per_loop, mode=flags.mode, run_name=flags.run_name) def _add_argument(hparams, key, value, update=True): """Add an argument to hparams; if exists, change the value if update==True.""" if hasattr(hparams, key): if update: setattr(hparams, key, value) else: hparams.add_hparam(key, value) def extend_hparams(hparams): """Add new arguments to hparams.""" # Sanity checks if hparams.encoder_type == "bi" and hparams.num_encoder_layers % 2 != 0: raise ValueError("For bi, num_encoder_layers %d should be even" % hparams.num_encoder_layers) if (hparams.attention_architecture in ["gnmt"] and hparams.num_encoder_layers < 2): raise ValueError("For gnmt attention architecture, " "num_encoder_layers %d should be >= 2" % hparams.num_encoder_layers) if hparams.subword_option and hparams.subword_option not in ["spm", "bpe"]: raise ValueError("subword option must be either spm, or bpe") if hparams.infer_mode == "beam_search" and hparams.beam_width <= 0: raise ValueError("beam_width must greater than 0 when using beam_search" "decoder.") if hparams.infer_mode == "sample" and hparams.sampling_temperature <= 0.0: raise ValueError("sampling_temperature must greater than 0.0 when using" "sample decoder.") # Different number of encoder / decoder layers assert hparams.num_encoder_layers and hparams.num_decoder_layers if hparams.num_encoder_layers != hparams.num_decoder_layers: hparams.pass_hidden_state = False utils.print_out("Num encoder layer %d is different from num decoder layer" " %d, so set pass_hidden_state to False" % ( hparams.num_encoder_layers, hparams.num_decoder_layers)) # Set residual layers num_encoder_residual_layers = 0 num_decoder_residual_layers = 0 if hparams.residual: if hparams.num_encoder_layers > 1: num_encoder_residual_layers = hparams.num_encoder_layers - 1 if hparams.num_decoder_layers > 1: num_decoder_residual_layers = hparams.num_decoder_layers - 1 if hparams.encoder_type == "gnmt": # The first unidirectional layer (after the bi-directional layer) in # the GNMT encoder can't have residual connection due to the input is # the concatenation of fw_cell and bw_cell's outputs. num_encoder_residual_layers = hparams.num_encoder_layers - 2 # Compatible for GNMT models if hparams.num_encoder_layers == hparams.num_decoder_layers: num_decoder_residual_layers = num_encoder_residual_layers _add_argument(hparams, "num_encoder_residual_layers", num_encoder_residual_layers) _add_argument(hparams, "num_decoder_residual_layers", num_decoder_residual_layers) # Language modeling if hparams.language_model: hparams.attention = "" hparams.attention_architecture = "" hparams.pass_hidden_state = False hparams.share_vocab = True hparams.src = hparams.tgt utils.print_out("For language modeling, we turn off attention and " "pass_hidden_state; turn on share_vocab; set src to tgt.") ## Vocab # Get vocab file names first if hparams.vocab_prefix: src_vocab_file = hparams.vocab_prefix + "." + hparams.src tgt_vocab_file = hparams.vocab_prefix + "." + hparams.tgt else: raise ValueError("hparams.vocab_prefix must be provided.") # Source vocab src_vocab_size, src_vocab_file = vocab_utils.check_vocab( src_vocab_file, hparams.output_dir, check_special_token=hparams.check_special_token, sos=hparams.sos, eos=hparams.eos, unk=vocab_utils.UNK) # Target vocab if hparams.share_vocab: utils.print_out(" using source vocab for target") tgt_vocab_file = src_vocab_file tgt_vocab_size = src_vocab_size else: tgt_vocab_size, tgt_vocab_file = vocab_utils.check_vocab( tgt_vocab_file, hparams.output_dir, check_special_token=hparams.check_special_token, sos=hparams.sos, eos=hparams.eos, unk=vocab_utils.UNK) mlperf_log.gnmt_print(key=mlperf_log.PREPROC_VOCAB_SIZE, value={"src": src_vocab_size, "tgt": tgt_vocab_size}) _add_argument(hparams, "src_vocab_size", src_vocab_size) _add_argument(hparams, "tgt_vocab_size", tgt_vocab_size) _add_argument(hparams, "src_vocab_file", src_vocab_file) _add_argument(hparams, "tgt_vocab_file", tgt_vocab_file) # Num embedding partitions _add_argument( hparams, "num_enc_emb_partitions", hparams.num_embeddings_partitions) _add_argument( hparams, "num_dec_emb_partitions", hparams.num_embeddings_partitions) # Pretrained Embeddings _add_argument(hparams, "src_embed_file", "") _add_argument(hparams, "tgt_embed_file", "") if hparams.embed_prefix: src_embed_file = hparams.embed_prefix + "." + hparams.src tgt_embed_file = hparams.embed_prefix + "." + hparams.tgt if tf.gfile.Exists(src_embed_file): utils.print_out(" src_embed_file %s exist" % src_embed_file) hparams.src_embed_file = src_embed_file utils.print_out( "For pretrained embeddings, set num_enc_emb_partitions to 1") hparams.num_enc_emb_partitions = 1 else: utils.print_out(" src_embed_file %s doesn't exist" % src_embed_file) if tf.gfile.Exists(tgt_embed_file): utils.print_out(" tgt_embed_file %s exist" % tgt_embed_file) hparams.tgt_embed_file = tgt_embed_file utils.print_out( "For pretrained embeddings, set num_dec_emb_partitions to 1") hparams.num_dec_emb_partitions = 1 else: utils.print_out(" tgt_embed_file %s doesn't exist" % tgt_embed_file) # Evaluation metric = "bleu" best_metric_dir = os.path.join(hparams.output_dir, "best_" + metric) tf.gfile.MakeDirs(best_metric_dir) _add_argument(hparams, "best_" + metric, 0, update=False) _add_argument(hparams, "best_" + metric + "_dir", best_metric_dir) if hparams.avg_ckpts: best_metric_dir = os.path.join(hparams.output_dir, "avg_best_" + metric) tf.gfile.MakeDirs(best_metric_dir) _add_argument(hparams, "avg_best_" + metric, 0, update=False) _add_argument(hparams, "avg_best_" + metric + "_dir", best_metric_dir) return hparams def create_or_load_hparams(default_hparams, hparams_path): """Create hparams or load hparams from output_dir.""" hparams = utils.maybe_parse_standard_hparams(default_hparams, hparams_path) hparams = extend_hparams(hparams) # Print HParams utils.print_hparams(hparams) return hparams def run_main(flags, default_hparams, estimator_fn): """Run main.""" # Job jobid = flags.jobid utils.print_out("# Job id %d" % jobid) # Random random_seed = flags.random_seed if random_seed is not None and random_seed > 0: utils.print_out("# Set random seed to %d" % random_seed) random.seed(random_seed + jobid) np.random.seed(random_seed + jobid) tf.set_random_seed(random_seed) # Model output directory output_dir = flags.output_dir if output_dir and not tf.gfile.Exists(output_dir): utils.print_out("# Creating output directory %s ..." % output_dir) tf.gfile.MakeDirs(output_dir) # Load hparams. hparams = create_or_load_hparams(default_hparams, flags.hparams_path) # Train or Evaluation estimator_fn(hparams) return hparams def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.use_fp16 and FLAGS.use_dist_strategy: raise ValueError("use_fp16 and use_dist_strategy aren't compatible") # Set up hacky envvars. # Hack that affects Defun in attention_wrapper.py active_xla_option_nums = np.sum([FLAGS.use_xla, FLAGS.use_autojit_xla, FLAGS.xla_compile]) if active_xla_option_nums > 1: raise ValueError( "Only one of use_xla, xla_compile, use_autojit_xla can be set") os.environ["use_xla"] = str(FLAGS.use_xla).lower() if FLAGS.use_xla: os.environ["use_defun"] = str(True).lower() else: os.environ["use_defun"] = str(FLAGS.use_defun).lower() utils.print_out("use_defun is %s for attention" % os.environ["use_defun"]) # TODO(jamesqin): retire this config after Cuda9.1 os.environ["use_fp32_batch_matmul"] = ("true" if FLAGS.use_fp32_batch_matmul else "false") os.environ["xla_compile"] = "true" if FLAGS.xla_compile else "false" os.environ["force_inputs_padding"] = ( "true" if FLAGS.force_inputs_padding else "false") if FLAGS.mode == "train": utils.print_out("Running training mode.") FLAGS.num_buckets = 5 default_hparams = create_hparams(FLAGS) run_main(FLAGS, default_hparams, estimator.train_fn) elif FLAGS.mode == "infer": utils.print_out("Running inference mode.") # Random random_seed = FLAGS.random_seed if random_seed is not None and random_seed > 0: utils.print_out("# Set random seed to %d" % random_seed) random.seed(random_seed) np.random.seed(random_seed) tf.set_random_seed(random_seed) # Model output directory output_dir = FLAGS.output_dir if output_dir and not tf.gfile.Exists(output_dir): utils.print_out("# Creating output directory %s ..." % output_dir) tf.gfile.MakeDirs(output_dir) # Load hparams. default_hparams = create_hparams(FLAGS) default_hparams.num_buckets = 1 # The estimator model_fn is written in a way allowing train hparams to be # passed in infer mode. hparams = create_or_load_hparams(default_hparams, FLAGS.hparams_path) utils.print_out("infer_hparams:") utils.print_hparams(hparams) # Run evaluation when there's a new checkpoint for i, ckpt in enumerate( evaluation_utils.get_all_checkpoints(FLAGS.output_dir)): tf.logging.info("Starting to evaluate...") eval_start = time.time() bleu_score = estimator.eval_fn(hparams, ckpt) eval_end = time.time() utils.print_out("eval time for %d th ckpt: %.2f mins" % (i, (eval_end - eval_start) / 60.), f=sys.stderr) else: assert FLAGS.mode == "train_and_eval" utils.print_out("Running train and eval mode.") # Random random_seed = FLAGS.random_seed if random_seed is not None and random_seed > 0: utils.print_out("# Set random seed to %d" % random_seed) random.seed(random_seed) np.random.seed(random_seed) tf.set_random_seed(random_seed) # Model output directory output_dir = FLAGS.output_dir if output_dir and not tf.gfile.Exists(output_dir): utils.print_out("# Creating output directory %s ..." % output_dir) tf.gfile.MakeDirs(output_dir) # Load hparams. default_hparams = create_hparams(FLAGS) default_hparams.num_buckets = 5 hparams = create_or_load_hparams(default_hparams, FLAGS.hparams_path) utils.print_out("training hparams:") utils.print_hparams(hparams) with tf.gfile.GFile(os.path.join(output_dir, "train_hparams.txt"), "w") as f: f.write(utils.serialize_hparams(hparams) + "\n") # The estimator model_fn is written in a way allowing train hparams to be # passed in infer mode. infer_hparams = tf.contrib.training.HParams(**hparams.values()) infer_hparams.num_buckets = 1 utils.print_out("infer_hparams:") utils.print_hparams(infer_hparams) with tf.gfile.GFile(os.path.join(output_dir, "infer_hparams.txt"), "w") as f: f.write(utils.serialize_hparams(infer_hparams) + "\n") epochs = 0 should_stop = epochs >= FLAGS.max_train_epochs mlperf_log.gnmt_print(key=mlperf_log.TRAIN_LOOP) mlperf_log.gnmt_print(key=mlperf_log.EVAL_TARGET, value=hparams.target_bleu) while not should_stop: utils.print_out("Starting epoch %d" % epochs) mlperf_log.gnmt_print(key=mlperf_log.TRAIN_EPOCH, value=epochs) mlperf_log.gnmt_print( key=mlperf_log.INPUT_SIZE, value=iterator_utils.get_effective_train_epoch_size(hparams)) mlperf_log.gnmt_print( key=mlperf_log.TRAIN_CHECKPOINT, value=("Under " + hparams.output_dir)) try: train_start = time.time() estimator.train_fn(hparams) except tf.errors.OutOfRangeError: utils.print_out("training hits OutOfRangeError", f=sys.stderr) train_end = time.time() utils.print_out("training time for epoch %d: %.2f mins" % (epochs, (train_end - train_start) / 60.), f=sys.stderr) # This is probably sub-optimal, doing eval per-epoch mlperf_log.gnmt_print(key=mlperf_log.EVAL_START) eval_start = time.time() bleu_score = estimator.eval_fn(infer_hparams) eval_end = time.time() utils.print_out("eval time for epoch %d: %.2f mins" % (epochs, (eval_end - eval_start) / 60.), f=sys.stderr) mlperf_log.gnmt_print(key=mlperf_log.EVAL_ACCURACY, value={"epoch": epochs, "value": bleu_score}) mlperf_log.gnmt_print(key=mlperf_log.EVAL_STOP, value=epochs) if FLAGS.debug or bleu_score > FLAGS.target_bleu: should_stop = True utils.print_out( "Stop job since target bleu is reached at epoch %d ." % epochs, f=sys.stderr) mlperf_log.gnmt_print(mlperf_log.RUN_STOP, {"success": True}) if epochs >= FLAGS.max_train_epochs: should_stop = True utils.print_out("Stop job since max_train_epochs is reached.", f=sys.stderr) mlperf_log.gnmt_print(mlperf_log.RUN_STOP, {"success": False}) epochs += 1 mlperf_log.gnmt_print(key=mlperf_log.RUN_FINAL) if __name__ == "__main__": nmt_parser = argparse.ArgumentParser() add_arguments(nmt_parser) FLAGS, unparsed = nmt_parser.parse_known_args() mlperf_log.gnmt_print(key=mlperf_log.RUN_START) tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
sunzhxjs/JobGIS
lib/python2.7/site-packages/pandas/util/testing.py
9
72423
from __future__ import division # pylint: disable-msg=W0402 import random import re import string import sys import tempfile import warnings import inspect import os import subprocess import locale import unittest import traceback from datetime import datetime from functools import wraps, partial from contextlib import contextmanager from distutils.version import LooseVersion from numpy.random import randn, rand import numpy as np import pandas as pd from pandas.core.common import (is_sequence, array_equivalent, is_list_like, is_number, is_datetimelike_v_numeric, is_datetimelike_v_object, is_number, pprint_thing, take_1d, needs_i8_conversion) import pandas.compat as compat from pandas.compat import( filter, map, zip, range, unichr, lrange, lmap, lzip, u, callable, Counter, raise_with_traceback, httplib, is_platform_windows, is_platform_32bit ) from pandas.computation import expressions as expr from pandas import (bdate_range, CategoricalIndex, DatetimeIndex, TimedeltaIndex, PeriodIndex, Index, MultiIndex, Series, DataFrame, Panel, Panel4D) from pandas.util.decorators import deprecate from pandas import _testing from pandas.io.common import urlopen N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE','None') if 'deprecate' in testing_mode: warnings.simplefilter('always', DeprecationWarning) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get('PANDAS_TESTING_MODE','None') if 'deprecate' in testing_mode: warnings.simplefilter('ignore', DeprecationWarning) set_testing_mode() class TestCase(unittest.TestCase): @classmethod def setUpClass(cls): pd.set_option('chained_assignment', 'raise') @classmethod def tearDownClass(cls): pass def reset_display_options(self): # reset the display options pd.reset_option('^display.', silent=True) def round_trip_pickle(self, obj, path=None): if path is None: path = u('__%s__.pickle' % rands(10)) with ensure_clean(path) as path: pd.to_pickle(obj, path) return pd.read_pickle(path) # https://docs.python.org/3/library/unittest.html#deprecated-aliases def assertEquals(self, *args, **kwargs): return deprecate('assertEquals', self.assertEqual)(*args, **kwargs) def assertNotEquals(self, *args, **kwargs): return deprecate('assertNotEquals', self.assertNotEqual)(*args, **kwargs) def assert_(self, *args, **kwargs): return deprecate('assert_', self.assertTrue)(*args, **kwargs) def assertAlmostEquals(self, *args, **kwargs): return deprecate('assertAlmostEquals', self.assertAlmostEqual)(*args, **kwargs) def assertNotAlmostEquals(self, *args, **kwargs): return deprecate('assertNotAlmostEquals', self.assertNotAlmostEqual)(*args, **kwargs) # NOTE: don't pass an NDFrame or index to this function - may not handle it # well. assert_almost_equal = _testing.assert_almost_equal assert_dict_equal = _testing.assert_dict_equal def randbool(size=(), p=0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array(list(u("").join(map(unichr, lrange(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1)) def rands_array(nchars, size, dtype='O'): """Generate an array of byte strings.""" retval = (choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype='O'): """Generate an array of unicode strings.""" retval = (choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)).reshape(size)) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return ''.join(choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return ''.join(choice(RANDU_CHARS, nchars)) def choice(x, size=10): """sample with replacement; uniform over the input""" try: return np.random.choice(x, size=size) except AttributeError: return np.random.randint(len(x), size=size).choose(x) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) def _skip_if_32bit(): import nose if is_platform_32bit(): raise nose.SkipTest("skipping for 32 bit") def mplskip(cls): """Skip a TestCase instance if matplotlib isn't installed""" @classmethod def setUpClass(cls): try: import matplotlib as mpl mpl.use("Agg", warn=False) except ImportError: import nose raise nose.SkipTest("matplotlib not installed") cls.setUpClass = setUpClass return cls def _skip_if_mpl_1_5(): import matplotlib v = matplotlib.__version__ if v > LooseVersion('1.4.3') or v[0] == '0': import nose raise nose.SkipTest("matplotlib 1.5") def _skip_if_no_scipy(): try: import scipy.stats except ImportError: import nose raise nose.SkipTest("no scipy.stats module") try: import scipy.interpolate except ImportError: import nose raise nose.SkipTest('scipy.interpolate missing') def _skip_if_no_pytz(): try: import pytz except ImportError: import nose raise nose.SkipTest("pytz not installed") def _skip_if_no_dateutil(): try: import dateutil except ImportError: import nose raise nose.SkipTest("dateutil not installed") def _skip_if_windows_python_3(): if compat.PY3 and is_platform_windows(): import nose raise nose.SkipTest("not used on python 3/win32") def _skip_if_windows(): if is_platform_windows(): import nose raise nose.SkipTest("Running on Windows") def _skip_if_no_cday(): from pandas.core.datetools import cday if cday is None: import nose raise nose.SkipTest("CustomBusinessDay not available.") def _skip_if_python26(): if sys.version_info[:2] == (2, 6): import nose raise nose.SkipTest("skipping on python2.6") def _skip_if_no_pathlib(): try: from pathlib import Path except ImportError: import nose raise nose.SkipTest("pathlib not available") def _skip_if_no_localpath(): try: from py.path import local as LocalPath except ImportError: import nose raise nose.SkipTest("py.path not installed") def _incompat_bottleneck_version(method): """ skip if we have bottleneck installed and its >= 1.0 as we don't match the nansum/nanprod behavior for all-nan ops, see GH9422 """ if method not in ['sum','prod']: return False try: import bottleneck as bn return bn.__version__ >= LooseVersion('1.0') except ImportError: return False def skip_if_no_ne(engine='numexpr'): import nose _USE_NUMEXPR = pd.computation.expressions._USE_NUMEXPR if engine == 'numexpr': try: import numexpr as ne except ImportError: raise nose.SkipTest("numexpr not installed") if not _USE_NUMEXPR: raise nose.SkipTest("numexpr disabled") if ne.__version__ < LooseVersion('2.0'): raise nose.SkipTest("numexpr version too low: " "%s" % ne.__version__) #------------------------------------------------------------------------------ # locale utilities def check_output(*popenargs, **kwargs): # shamelessly taken from Python 2.7 source r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE,stderr=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output def _default_locale_getter(): try: raw_locales = check_output(['locale -a'], shell=True) except subprocess.CalledProcessError as e: raise type(e)("%s, the 'locale -a' command cannot be found on your " "system" % e) return raw_locales def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter): """Get all the locales that are available on the system. Parameters ---------- prefix : str If not ``None`` then return only those locales with the prefix provided. For example to get all English language locales (those that start with ``"en"``), pass ``prefix="en"``. normalize : bool Call ``locale.normalize`` on the resulting list of available locales. If ``True``, only locales that can be set without throwing an ``Exception`` are returned. locale_getter : callable The function to use to retrieve the current locales. This should return a string with each locale separated by a newline character. Returns ------- locales : list of strings A list of locale strings that can be set with ``locale.setlocale()``. For example:: locale.setlocale(locale.LC_ALL, locale_string) On error will return None (no locale available, e.g. Windows) """ try: raw_locales = locale_getter() except: return None try: # raw_locales is "\n" seperated list of locales # it may contain non-decodable parts, so split # extract what we can and then rejoin. raw_locales = raw_locales.split(b'\n') out_locales = [] for x in raw_locales: if compat.PY3: out_locales.append(str(x, encoding=pd.options.display.encoding)) else: out_locales.append(str(x)) except TypeError: pass if prefix is None: return _valid_locales(out_locales, normalize) found = re.compile('%s.*' % prefix).findall('\n'.join(out_locales)) return _valid_locales(found, normalize) @contextmanager def set_locale(new_locale, lc_var=locale.LC_ALL): """Context manager for temporarily setting a locale. Parameters ---------- new_locale : str or tuple A string of the form <language_country>.<encoding>. For example to set the current locale to US English with a UTF8 encoding, you would pass "en_US.UTF-8". Notes ----- This is useful when you want to run a particular block of code under a particular locale, without globally setting the locale. This probably isn't thread-safe. """ current_locale = locale.getlocale() try: locale.setlocale(lc_var, new_locale) try: normalized_locale = locale.getlocale() except ValueError: yield new_locale else: if all(lc is not None for lc in normalized_locale): yield '.'.join(normalized_locale) else: yield new_locale finally: locale.setlocale(lc_var, current_locale) def _can_set_locale(lc): """Check to see if we can set a locale without throwing an exception. Parameters ---------- lc : str The locale to attempt to set. Returns ------- isvalid : bool Whether the passed locale can be set """ try: with set_locale(lc): pass except locale.Error: # horrible name for a Exception subclass return False else: return True def _valid_locales(locales, normalize): """Return a list of normalized locales that do not throw an ``Exception`` when set. Parameters ---------- locales : str A string where each locale is separated by a newline. normalize : bool Whether to call ``locale.normalize`` on each locale. Returns ------- valid_locales : list A list of valid locales. """ if normalize: normalizer = lambda x: locale.normalize(x.strip()) else: normalizer = lambda x: x.strip() return list(filter(_can_set_locale, map(normalizer, locales))) #------------------------------------------------------------------------------ # Console debugging tools def debug(f, *args, **kwargs): from pdb import Pdb as OldPdb try: from IPython.core.debugger import Pdb kw = dict(color_scheme='Linux') except ImportError: Pdb = OldPdb kw = {} pdb = Pdb(**kw) return pdb.runcall(f, *args, **kwargs) def pudebug(f, *args, **kwargs): import pudb return pudb.runcall(f, *args, **kwargs) def set_trace(): from IPython.core.debugger import Pdb try: Pdb(color_scheme='Linux').set_trace(sys._getframe().f_back) except: from pdb import Pdb as OldPdb OldPdb().set_trace(sys._getframe().f_back) #------------------------------------------------------------------------------ # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False): """Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. """ filename = filename or '' fd = None if return_filelike: f = tempfile.TemporaryFile(suffix=filename) try: yield f finally: f.close() else: # don't generate tempfile if using a path with directory specified if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(suffix=filename) except UnicodeEncodeError: import nose raise nose.SkipTest('no unicode file names on this system') try: yield filename finally: try: os.close(fd) except Exception as e: print("Couldn't close file descriptor: %d (file: %s)" % (fd, filename)) try: if os.path.exists(filename): os.remove(filename) except Exception as e: print("Exception on removing file: %s" % e) def get_data_path(f=''): """Return the path of a data file, these are relative to the current test directory. """ # get our callers file _, filename, _, _, _, _ = inspect.getouterframes(inspect.currentframe())[1] base_dir = os.path.abspath(os.path.dirname(filename)) return os.path.join(base_dir, 'data', f) #------------------------------------------------------------------------------ # Comparators def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_equal(a, b, msg=""): """asserts that a equals b, like nose's assert_equal, but allows custom message to start. Passes a and b to format string as well. So you can use '{0}' and '{1}' to display a and b. Examples -------- >>> assert_equal(2, 2, "apples") >>> assert_equal(5.2, 1.2, "{0} was really a dead parrot") Traceback (most recent call last): ... AssertionError: 5.2 was really a dead parrot: 5.2 != 1.2 """ assert a == b, "%s: %r != %r" % (msg.format(a,b), a, b) def assert_index_equal(left, right, exact=False, check_names=True, check_less_precise=False, check_exact=True, obj='Index'): """Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool, default False Whether to check the Index class, dtype and inferred_type are identical. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. check_exact : bool, default True Whether to compare number exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message """ def _check_types(l, r, obj='Index'): if exact: if type(l) != type(r): msg = '{0} classes are different'.format(obj) raise_assert_detail(obj, msg, l, r) assert_attr_equal('dtype', l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ('string', 'unicode'): assertIn(r.inferred_type, ('string', 'unicode')) else: assert_attr_equal('inferred_type', l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] labels = index.labels[level] filled = take_1d(unique.values, labels, fill_value=unique._na_value) values = unique._simple_new(filled, index.names[level], freq=getattr(unique, 'freq', None), tz=getattr(unique, 'tz', None)) return values # instance validation assertIsInstance(left, Index, '[index] ') assertIsInstance(right, Index, '[index] ') # class / dtype comparison _check_types(left, right) # level comparison if left.nlevels != right.nlevels: raise_assert_detail(obj, '{0} levels are different'.format(obj), '{0}, {1}'.format(left.nlevels, left), '{0}, {1}'.format(right.nlevels, right)) # length comparison if len(left) != len(right): raise_assert_detail(obj, '{0} length are different'.format(obj), '{0}, {1}'.format(len(left), left), '{0}, {1}'.format(len(right), right)) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = 'MultiIndex level [{0}]'.format(level) assert_index_equal(llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) if check_exact: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = '{0} values are different ({1} %)'.format(obj, np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) else: assert_almost_equal(left.values, right.values, check_less_precise=check_less_precise, obj=obj, lobj=left, robj=right) # metadata comparison if check_names: assert_attr_equal('names', left, right, obj=obj) def assert_attr_equal(attr, left, right, obj='Attributes'): """checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif (is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr)): # np.nan return True result = left_attr == right_attr if not isinstance(result, bool): result = result.all() if result: return True else: raise_assert_detail(obj, 'Attribute "{0}" are different'.format(attr), left_attr, right_attr) def isiterable(obj): return hasattr(obj, '__iter__') def is_sorted(seq): return assert_almost_equal(seq, np.sort(np.array(seq))) def assertIs(first, second, msg=''): """Checks that 'first' is 'second'""" a, b = first, second assert a is b, "%s: %r is not %r" % (msg.format(a, b), a, b) def assertIsNot(first, second, msg=''): """Checks that 'first' is not 'second'""" a, b = first, second assert a is not b, "%s: %r is %r" % (msg.format(a, b), a, b) def assertIn(first, second, msg=''): """Checks that 'first' is in 'second'""" a, b = first, second assert a in b, "%s: %r is not in %r" % (msg.format(a, b), a, b) def assertNotIn(first, second, msg=''): """Checks that 'first' is not in 'second'""" a, b = first, second assert a not in b, "%s: %r is in %r" % (msg.format(a, b), a, b) def assertIsNone(expr, msg=''): """Checks that 'expr' is None""" return assertIs(expr, None, msg) def assertIsNotNone(expr, msg=''): """Checks that 'expr' is not None""" return assertIsNot(expr, None, msg) def assertIsInstance(obj, cls, msg=''): """Test that obj is an instance of cls (which can be a class or a tuple of classes, as supported by isinstance()).""" assert isinstance(obj, cls), ( "%sExpected object to be of type %r, found %r instead" % ( msg, cls, type(obj))) def assert_isinstance(obj, class_type_or_tuple, msg=''): return deprecate('assert_isinstance', assertIsInstance)(obj, class_type_or_tuple, msg=msg) def assertNotIsInstance(obj, cls, msg=''): """Test that obj is not an instance of cls (which can be a class or a tuple of classes, as supported by isinstance()).""" assert not isinstance(obj, cls), ( "%sExpected object to be of type %r, found %r instead" % ( msg, cls, type(obj))) def assert_categorical_equal(res, exp): if not array_equivalent(res.categories, exp.categories): raise AssertionError( 'categories not equivalent: {0} vs {1}.'.format(res.categories, exp.categories)) if not array_equivalent(res.codes, exp.codes): raise AssertionError( 'codes not equivalent: {0} vs {1}.'.format(res.codes, exp.codes)) if res.ordered != exp.ordered: raise AssertionError("ordered not the same") def raise_assert_detail(obj, message, left, right): if isinstance(left, np.ndarray): left = pprint_thing(left) if isinstance(right, np.ndarray): right = pprint_thing(right) msg = """{0} are different {1} [left]: {2} [right]: {3}""".format(obj, message, left, right) raise AssertionError(msg) def assert_numpy_array_equal(left, right, strict_nan=False, err_msg=None, obj='numpy array'): """Checks that 'np_array' is equivalent to 'assert_equal'. This is similar to ``numpy.testing.assert_array_equal``, but can check equality including ``np.nan``. Two numpy arrays are regarded as equivalent if the arrays have equal non-NaN elements, and `np.nan` in corresponding locations. """ # compare shape and values if array_equivalent(left, right, strict_nan=strict_nan): return if err_msg is None: # show detailed error if np.isscalar(left) and np.isscalar(right): # show scalar comparison error assert_equal(left, right) elif is_list_like(left) and is_list_like(right): # some test cases pass list left = np.asarray(left) right = np.array(right) if left.shape != right.shape: raise_assert_detail(obj, '{0} shapes are different'.format(obj), left.shape, right.shape) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = '{0} values are different ({1} %)'.format(obj, np.round(diff, 5)) raise_assert_detail(obj, msg, left, right) elif is_list_like(left): msg = "First object is iterable, second isn't" raise_assert_detail(obj, msg, left, right) else: msg = "Second object is iterable, first isn't" raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # This could be refactored to use the NDFrame.equals method def assert_series_equal(left, right, check_dtype=True, check_index_type=True, check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, obj='Series'): """Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool, default False Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default False Whether to check the Series class is identical. check_less_precise : bool, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. check_exact : bool, default False Whether to compare number exactly. check_names : bool, default True Whether to check the Series and Index names attribute. check_dateteimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message """ # instance validation assertIsInstance(left, Series, '[Series] ') assertIsInstance(right, Series, '[Series] ') if check_series_type: assertIsInstance(left, type(right)) # length comparison if len(left) != len(right): raise_assert_detail(obj, 'Series length are different', '{0}, {1}'.format(len(left), left.index), '{0}, {1}'.format(len(right), right.index)) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj='{0}.index'.format(obj)) if check_dtype: assert_attr_equal('dtype', left, right) if check_exact: assert_numpy_array_equal(left.get_values(), right.get_values(), obj='{0}'.format(obj)) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check the values in that case if is_datetimelike_v_numeric(left, right) or is_datetimelike_v_object(left, right) or needs_i8_conversion(left) or needs_i8_conversion(right): # datetimelike may have different objects (e.g. datetime.datetime vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): raise AssertionError( '[datetimelike_compat=True] {0} is not equal to {1}.'.format(left.values, right.values)) else: assert_numpy_array_equal(left.values, right.values) else: assert_almost_equal(left.get_values(), right.get_values(), check_less_precise, obj='{0}'.format(obj)) # metadata comparison if check_names: assert_attr_equal('name', left, right, obj=obj) # This could be refactored to use the NDFrame.equals method def assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, obj='DataFrame'): """Check that left and right DataFrame are equal. Parameters ---------- left : DataFrame right : DataFrame check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool, default False Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool, default False Whether to check the columns class, dtype and inferred_type are identical. check_frame_type : bool, default False Whether to check the DataFrame class is identical. check_less_precise : bool, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. check_names : bool, default True Whether to check the Index names attribute. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_dateteimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message """ # instance validation assertIsInstance(left, DataFrame, '[DataFrame] ') assertIsInstance(right, DataFrame, '[DataFrame] ') if check_frame_type: assertIsInstance(left, type(right)) # shape comparison (row) if left.shape[0] != right.shape[0]: raise_assert_detail(obj, 'DataFrame shape (number of rows) are different', '{0}, {1}'.format(left.shape[0], left.index), '{0}, {1}'.format(right.shape[0], right.index)) # shape comparison (columns) if left.shape[1] != right.shape[1]: raise_assert_detail(obj, 'DataFrame shape (number of columns) are different', '{0}, {1}'.format(left.shape[1], left.columns), '{0}, {1}'.format(right.shape[1], right.columns)) # index comparison assert_index_equal(left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj='{0}.index'.format(obj)) # column comparison assert_index_equal(left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj='{0}.columns'.format(obj)) # compare by blocks if by_blocks: rblocks = right.blocks lblocks = left.blocks for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal(lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj='DataFrame.blocks') # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal(lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, obj='DataFrame.iloc[:, {0}]'.format(i)) def assert_panelnd_equal(left, right, check_panel_type=False, check_less_precise=False, assert_func=assert_frame_equal, check_names=False): if check_panel_type: assertIsInstance(left, type(right)) for axis in ['items', 'major_axis', 'minor_axis']: left_ind = getattr(left, axis) right_ind = getattr(right, axis) assert_index_equal(left_ind, right_ind, check_names=check_names) for i, item in enumerate(left._get_axis(0)): assert item in right, "non-matching item (right) '%s'" % item litem = left.iloc[i] ritem = right.iloc[i] assert_func(litem, ritem, check_less_precise=check_less_precise) for i, item in enumerate(right._get_axis(0)): assert item in left, "non-matching item (left) '%s'" % item # TODO: strangely check_names fails in py3 ? _panel_frame_equal = partial(assert_frame_equal, check_names=False) assert_panel_equal = partial(assert_panelnd_equal, assert_func=_panel_frame_equal) assert_panel4d_equal = partial(assert_panelnd_equal, assert_func=assert_panel_equal) def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, "Did not contain item: '%r'" % k def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) assert elem1 is not elem2, "Expected object %r and object %r to be different objects, were same." % ( type(elem1), type(elem2)) def getCols(k): return string.ascii_uppercase[:k] def getArangeMat(): return np.arange(N * K).reshape((N, K)) # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k)) def makeCategoricalIndex(k=10, n=3, name=None): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex(np.random.choice(x,k), name=name) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False,True], name=name) return Index([False,True] + [False]*(k-2), name=name) def makeIntIndex(k=10, name=None): return Index(lrange(k), name=name) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq='B', name=None): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name) def makeTimedeltaIndex(k=10, freq='D', name=None): return TimedeltaIndex(start='1 day', periods=k, freq=freq, name=name) def makePeriodIndex(k=10, name=None): dt = datetime(2000, 1, 1) dr = PeriodIndex(start=dt, periods=k, freq='B', name=name) return dr def all_index_generator(k=10): """Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeCategoricalIndex] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def all_timeseries_index_generator(k=10): """Generator which can be iterated over to get instances of all the classes which represent time-seires. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeObjectSeries(name=None): dateIndex = makeDateIndex(N) dateIndex = Index(dateIndex, dtype=object) index = makeStringIndex(N) return Series(dateIndex, index=index, name=name) def getSeriesData(): index = makeStringIndex(N) return dict((c, Series(randn(N), index=index)) for c in getCols(K)) def makeTimeSeries(nper=None, freq='B', name=None): if nper is None: nper = N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq='B'): return dict((c, makeTimeSeries(nper, freq)) for c in getCols(K)) def getPeriodData(nper=None): return dict((c, makePeriodSeries(nper)) for c in getCols(K)) # make frame def makeTimeDataFrame(nper=None, freq='B'): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(['a', 'b', 'c', 'd', 'e']) data = { 'A': [0., 1., 2., 3., 4.], 'B': [0., 1., 0., 1., 0.], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': bdate_range('1/1/2009', periods=5) } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makePanel(nper=None): cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]] data = dict((c, makeTimeDataFrame(nper)) for c in cols) return Panel.fromDict(data) def makePeriodPanel(nper=None): cols = ['Item' + c for c in string.ascii_uppercase[:K - 1]] data = dict((c, makePeriodFrame(nper)) for c in cols) return Panel.fromDict(data) def makePanel4D(nper=None): return Panel4D(dict(l1=makePanel(nper), l2=makePanel(nper), l3=makePanel(nper))) def makeCustomIndex(nentries, nlevels, prefix='#', names=False, ndupe_l=None, idx_type=None): """Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert (is_sequence(ndupe_l) and len(ndupe_l) <= nlevels) assert (names is None or names is False or names is True or len(names) is nlevels) assert idx_type is None or \ (idx_type in ('i', 'f', 's', 'u', 'dt', 'p', 'td') and nlevels == 1) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singelton case uniform if isinstance(names, compat.string_types) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict(i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError('"%s" is not a legal value for `idx_type`, use ' '"i"/"f"/"s"/"u"/"dt/"p"/"td".' % idx_type) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all([x > 0 for x in ndupe_l]) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub("[^\d_]_?", "", x).split("_") return lmap(int, numeric_tuple) # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = prefix + '_l%d_g' % i + str(j) cnt[label] = ndupe_l[i] # cute Counter trick result = list(sorted(cnt.elements(), key=keyfunc))[:nentries] tuples.append(result) tuples = lzip(*tuples) # convert tuples to index if nentries == 1: index = Index(tuples[0], name=names[0]) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe(nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None): """ nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjuncion with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples: # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated twice on first level, # default names on both axis, single index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or \ (r_idx_type in ('i', 'f', 's', 'u', 'dt', 'p', 'td') and r_idx_nlevels == 1) assert c_idx_type is None or \ (c_idx_type in ('i', 'f', 's', 'u', 'dt', 'p', 'td') and c_idx_nlevels == 1) columns = makeCustomIndex(ncols, nlevels=c_idx_nlevels, prefix='C', names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type) index = makeCustomIndex(nrows, nlevels=r_idx_nlevels, prefix='R', names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: "R%dC%d" % (r, c) data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1. / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingCustomDataframe(nrows, ncols, density=.9, random_state=None, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None): """ Parameters ---------- Density : float, optional Float in (0, 1) that gives the percentage of non-missing numbers in the DataFrame. random_state : {np.random.RandomState, int}, optional Random number generator or random seed. See makeCustomDataframe for descriptions of the rest of the parameters. """ df = makeCustomDataframe(nrows, ncols, c_idx_names=c_idx_names, r_idx_names=r_idx_names, c_idx_nlevels=c_idx_nlevels, r_idx_nlevels=r_idx_nlevels, data_gen_f=data_gen_f, c_ndupe_l=c_ndupe_l, r_ndupe_l=r_ndupe_l, dtype=dtype, c_idx_type=c_idx_type, r_idx_type=r_idx_type) i, j = _create_missing_idx(nrows, ncols, density, random_state) df.values[i, j] = np.nan return df def makeMissingDataframe(density=.9, random_state=None): df = makeDataFrame() i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state) df.values[i, j] = np.nan return df def add_nans(panel): I, J, N = panel.shape for i, item in enumerate(panel.items): dm = panel[item] for j, col in enumerate(dm.columns): dm[col][:i + j] = np.NaN return panel def add_nans_panel4d(panel4d): for l, label in enumerate(panel4d.labels): panel = panel4d[label] add_nans(panel) return panel4d class TestSubDict(dict): def __init__(self, *args, **kwargs): dict.__init__(self, *args, **kwargs) # Dependency checks. Copied this from Nipy/Nipype (Copyright of # respective developers, license: BSD-3) def package_check(pkg_name, version=None, app='pandas', checker=LooseVersion, exc_failed_import=ImportError, exc_failed_check=RuntimeError): """Check that the minimal version of the required package is installed. Parameters ---------- pkg_name : string Name of the required package. version : string, optional Minimal version number for required package. app : string, optional Application that is performing the check. For instance, the name of the tutorial being executed that depends on specific packages. checker : object, optional The class that will perform the version checking. Default is distutils.version.LooseVersion. exc_failed_import : Exception, optional Class of the exception to be thrown if import failed. exc_failed_check : Exception, optional Class of the exception to be thrown if version check failed. Examples -------- package_check('numpy', '1.3') package_check('networkx', '1.0', 'tutorial1') """ if app: msg = '%s requires %s' % (app, pkg_name) else: msg = 'module requires %s' % pkg_name if version: msg += ' with version >= %s' % (version,) try: mod = __import__(pkg_name) except ImportError: raise exc_failed_import(msg) if not version: return try: have_version = mod.__version__ except AttributeError: raise exc_failed_check('Cannot find version for %s' % pkg_name) if checker(have_version) < checker(version): raise exc_failed_check(msg) def skip_if_no_package(*args, **kwargs): """Raise SkipTest if package_check fails Parameters ---------- *args Positional parameters passed to `package_check` *kwargs Keyword parameters passed to `package_check` """ from nose import SkipTest package_check(exc_failed_import=SkipTest, exc_failed_check=SkipTest, *args, **kwargs) def skip_if_no_package_deco(pkg_name, version=None, app='pandas'): from nose import SkipTest def deco(func): @wraps(func) def wrapper(*args, **kwargs): package_check(pkg_name, version=version, app=app, exc_failed_import=SkipTest, exc_failed_check=SkipTest) return func(*args, **kwargs) return wrapper return deco # # Additional tags decorators for nose # def optional_args(decorator): """allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs)""" @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', 'timed out', 'Server Hangup', 'HTTP Error 503: Service Unavailable', '502: Proxy Error', 'HTTP Error 502: internal error', 'HTTP Error 502', 'HTTP Error 503', 'HTTP Error 403', 'Temporary failure in name resolution', 'Name or service not known', 'Connection refused', ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on these exception types _network_error_classes = (IOError, httplib.HTTPException) if sys.version_info >= (3, 3): _network_error_classes += (TimeoutError,) def can_connect(url, error_classes=_network_error_classes): """Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network(t, url="http://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=_network_error_classes, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'http://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to supress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supercedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas.util.testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("http://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... SkipTest Errors not related to networking will always be raised. """ from nose import SkipTest t.network = True @wraps(t) def wrapper(*args, **kwargs): if check_before_test and not raise_on_error: if not can_connect(url, error_classes): raise SkipTest try: return t(*args, **kwargs) except Exception as e: errno = getattr(e, 'errno', None) if not errno and hasattr(errno, "reason"): errno = getattr(e.reason, 'errno', None) if errno in skip_errnos: raise SkipTest("Skipping test due to known errno" " and error %s" % e) try: e_str = traceback.format_exc(e) except: e_str = str(e) if any([m.lower() in e_str.lower() for m in _skip_on_messages]): raise SkipTest("Skipping test because exception message is known" " and error %s" % e) if not isinstance(e, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: raise SkipTest("Skipping test due to lack of connectivity" " and error %s" % e) return wrapper with_connectivity_check = network class SimpleMock(object): """ Poor man's mocking object Note: only works for new-style classes, assumes __getattribute__ exists. >>> a = type("Duck",(),{}) >>> a.attr1,a.attr2 ="fizz","buzz" >>> b = SimpleMock(a,"attr1","bar") >>> b.attr1 == "bar" and b.attr2 == "buzz" True >>> a.attr1 == "fizz" and a.attr2 == "buzz" True """ def __init__(self, obj, *args, **kwds): assert(len(args) % 2 == 0) attrs = kwds.get("attrs", {}) for k, v in zip(args[::2], args[1::2]): # dict comprehensions break 2.6 attrs[k] = v self.attrs = attrs self.obj = obj def __getattribute__(self, name): attrs = object.__getattribute__(self, "attrs") obj = object.__getattribute__(self, "obj") return attrs.get(name, type(obj).__getattribute__(obj, name)) @contextmanager def stdin_encoding(encoding=None): """ Context manager for running bits of code while emulating an arbitrary stdin encoding. >>> import sys >>> _encoding = sys.stdin.encoding >>> with stdin_encoding('AES'): sys.stdin.encoding 'AES' >>> sys.stdin.encoding==_encoding True """ import sys _stdin = sys.stdin sys.stdin = SimpleMock(sys.stdin, "encoding", encoding) yield sys.stdin = _stdin def assertRaises(_exception, _callable=None, *args, **kwargs): """assertRaises that is usable as context manager or in a with statement Exceptions that don't match the given Exception type fall through:: >>> with assertRaises(ValueError): ... raise TypeError("banana") ... Traceback (most recent call last): ... TypeError: banana If it raises the given Exception type, the test passes >>> with assertRaises(KeyError): ... dct = dict() ... dct["apple"] If the expected error doesn't occur, it raises an error. >>> with assertRaises(KeyError): ... dct = {'apple':True} ... dct["apple"] Traceback (most recent call last): ... AssertionError: KeyError not raised. In addition to using it as a contextmanager, you can also use it as a function, just like the normal assertRaises >>> assertRaises(TypeError, ",".join, [1, 3, 5]) """ manager = _AssertRaisesContextmanager(exception=_exception) # don't return anything if used in function form if _callable is not None: with manager: _callable(*args, **kwargs) else: return manager def assertRaisesRegexp(_exception, _regexp, _callable=None, *args, **kwargs): """ Port of assertRaisesRegexp from unittest in Python 2.7 - used in with statement. Explanation from standard library: Like assertRaises() but also tests that regexp matches on the string representation of the raised exception. regexp may be a regular expression object or a string containing a regular expression suitable for use by re.search(). You can pass either a regular expression or a compiled regular expression object. >>> assertRaisesRegexp(ValueError, 'invalid literal for.*XYZ', ... int, 'XYZ') >>> import re >>> assertRaisesRegexp(ValueError, re.compile('literal'), int, 'XYZ') If an exception of a different type is raised, it bubbles up. >>> assertRaisesRegexp(TypeError, 'literal', int, 'XYZ') Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'XYZ' >>> dct = dict() >>> assertRaisesRegexp(KeyError, 'pear', dct.__getitem__, 'apple') Traceback (most recent call last): ... AssertionError: "pear" does not match "'apple'" You can also use this in a with statement. >>> with assertRaisesRegexp(TypeError, 'unsupported operand type\(s\)'): ... 1 + {} >>> with assertRaisesRegexp(TypeError, 'banana'): ... 'apple'[0] = 'b' Traceback (most recent call last): ... AssertionError: "banana" does not match "'str' object does not support \ item assignment" """ manager = _AssertRaisesContextmanager(exception=_exception, regexp=_regexp) if _callable is not None: with manager: _callable(*args, **kwargs) else: return manager class _AssertRaisesContextmanager(object): """handles the behind the scenes work for assertRaises and assertRaisesRegexp""" def __init__(self, exception, regexp=None, *args, **kwargs): self.exception = exception if regexp is not None and not hasattr(regexp, "search"): regexp = re.compile(regexp, re.DOTALL) self.regexp = regexp def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): expected = self.exception if not exc_type: name = getattr(expected, "__name__", str(expected)) raise AssertionError("{0} not raised.".format(name)) if issubclass(exc_type, expected): return self.handle_success(exc_type, exc_value, traceback) return self.handle_failure(exc_type, exc_value, traceback) def handle_failure(*args, **kwargs): # Failed, so allow Exception to bubble up return False def handle_success(self, exc_type, exc_value, traceback): if self.regexp is not None: val = str(exc_value) if not self.regexp.search(val): e = AssertionError('"%s" does not match "%s"' % (self.regexp.pattern, str(val))) raise_with_traceback(e, traceback) return True @contextmanager def assert_produces_warning(expected_warning=Warning, filter_level="always", clear=None, check_stacklevel=True): """ Context manager for running code that expects to raise (or not raise) warnings. Checks that code raises the expected warning and only the expected warning. Pass ``False`` or ``None`` to check that it does *not* raise a warning. Defaults to ``exception.Warning``, baseclass of all Warnings. (basically a wrapper around ``warnings.catch_warnings``). >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ with warnings.catch_warnings(record=True) as w: if clear is not None: # make sure that we are clearning these warnings # if they have happened before # to guarantee that we will catch them if not is_list_like(clear): clear = [ clear ] for m in clear: try: m.__warningregistry__.clear() except: pass saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if (expected_warning and issubclass(actual_warning.category, expected_warning)): saw_warning = True if check_stacklevel and issubclass(actual_warning.category, (FutureWarning, DeprecationWarning)): from inspect import getframeinfo, stack caller = getframeinfo(stack()[2][0]) msg = ("Warning not set with correct stacklevel. File were warning" " is raised: {0} != {1}. Warning message: {2}".format( actual_warning.filename, caller.filename, actual_warning.message)) assert actual_warning.filename == caller.filename, msg else: extra_warnings.append(actual_warning.category.__name__) if expected_warning: assert saw_warning, ("Did not see expected warning of class %r." % expected_warning.__name__) assert not extra_warnings, ("Caused unexpected warning(s): %r." % extra_warnings) def disabled(t): t.disabled = True return t class RNGContext(object): """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def use_numexpr(use, min_elements=expr._MIN_ELEMENTS): olduse = expr._USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) # Also provide all assert_* functions in the TestCase class for name, obj in inspect.getmembers(sys.modules[__name__]): if inspect.isfunction(obj) and name.startswith('assert'): setattr(TestCase, name, staticmethod(obj)) def test_parallel(num_threads=2, kwargs_list=None): """Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedDataFrame(DataFrame): _metadata = ['testattr'] @property def _constructor(self): return SubclassedDataFrame
mit
ga7g08/ga7g08.github.io
research/GenerateIntroPlots.py
1
1305
import matplotlib.pyplot as plt import numpy as np plt.rcParams['axes.labelsize'] = 18 plt.xkcd() N = 100 F1 = 1.0 F2 = 1e-3 time = np.linspace(0, 10, N) # Deterministic phase phase = F1 * time + .5 * F2 * time**2 # --------- Uncorrelated Noise --------------- fig, ax = plt.subplots() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') phase_N1 = phase + np.random.normal(0, 1, N) # Add uncorrelated noise res_N1 = phase_N1 - np.poly1d(np.polyfit(time, phase_N1, 2))(time) # Fit and remove ax.plot(time, res_N1, "-o", markersize=3) ax.set_xlabel("time") ax.set_xticks([]) ax.set_ylabel("Residual") ax.set_yticks([0]) ymax = 3*np.max(res_N1) ax.set_ylim(-ymax, ymax) ax.grid() plt.savefig("img/UncorrelatedNoise.png") plt.show() # --------- Correlated Noise --------------- fig, ax = plt.subplots() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') phase_N1 = phase + np.cumsum(np.random.normal(0, 0.1, N)) # Add uncorrelated noise res_N1 = phase_N1 - np.poly1d(np.polyfit(time, phase_N1, 2))(time) # Fit and remove ax.plot(time, res_N1, "-o", markersize=3) ax.set_xlabel("time") ax.set_xticks([]) ax.set_ylabel("Residual") ax.set_yticks([0]) ymax = 3*np.max(res_N1) ax.set_ylim(-ymax, ymax) ax.grid() plt.savefig("img/CorrelatedNoise.png") plt.show()
mit
ephes/scikit-learn
examples/cluster/plot_mean_shift.py
351
1793
""" ============================================= A demo of the mean-shift clustering algorithm ============================================= Reference: Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ print(__doc__) import numpy as np from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.datasets.samples_generator import make_blobs ############################################################################### # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6) ############################################################################### # Compute clustering with MeanShift # The following bandwidth can be automatically detected using bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(X) labels = ms.labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) print("number of estimated clusters : %d" % n_clusters_) ############################################################################### # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): my_members = labels == k cluster_center = cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
python-sasx/sasx
sasx/magic.py
1
1367
from __future__ import division import pandas from IPython.core.magic import (Magics, magics_class, cell_magic) from sasx.parse import sasx_parse from sasx.code import sasx_preloop from sasx.code import sasx_loop from sasx.code import sasx_postloop @magics_class class SasxMagics(Magics): """Define Magic to run code in Simple dAta SyntaX (SASX). %%sasx - Transform SASX code into Python code and execute it. Special keywords recognised by SASX : - data - set - drop - keep - output - where ? - _n_ ? - groupby ? """ def __init__(self, shell): super(SasxMagics, self).__init__(shell) @cell_magic def sasx(self, line_param, cell): cell_parsed = sasx_parse(cell, self) if cell_parsed['status']==0: print(cell_parsed['message']) return #Generate python code str_code = "" str_code = str_code + sasx_preloop(cell_parsed) str_code = str_code + sasx_loop(cell_parsed) str_code = str_code + sasx_postloop(cell_parsed) #Execute the code ns = {} print("-----") print(str_code) print("-----") exec str_code in self.shell.user_ns, ns # Register ip = get_ipython() ip.register_magics(SasxMagics)
mit
macks22/scikit-learn
examples/ensemble/plot_adaboost_multiclass.py
354
4124
""" ===================================== Multi-class AdaBoosted Decision Trees ===================================== This example reproduces Figure 1 of Zhu et al [1] and shows how boosting can improve prediction accuracy on a multi-class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). The performance of the SAMME and SAMME.R [1] algorithms are compared. SAMME.R uses the probability estimates to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a weight of one in the SAMME.R algorithm and therefore are not shown. .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause from sklearn.externals.six.moves import zip import matplotlib.pyplot as plt from sklearn.datasets import make_gaussian_quantiles from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier X, y = make_gaussian_quantiles(n_samples=13000, n_features=10, n_classes=3, random_state=1) n_split = 3000 X_train, X_test = X[:n_split], X[n_split:] y_train, y_test = y[:n_split], y[n_split:] bdt_real = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1) bdt_discrete = AdaBoostClassifier( DecisionTreeClassifier(max_depth=2), n_estimators=600, learning_rate=1.5, algorithm="SAMME") bdt_real.fit(X_train, y_train) bdt_discrete.fit(X_train, y_train) real_test_errors = [] discrete_test_errors = [] for real_test_predict, discrete_train_predict in zip( bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)): real_test_errors.append( 1. - accuracy_score(real_test_predict, y_test)) discrete_test_errors.append( 1. - accuracy_score(discrete_train_predict, y_test)) n_trees_discrete = len(bdt_discrete) n_trees_real = len(bdt_real) # Boosting might terminate early, but the following arrays are always # n_estimators long. We crop them to the actual number of trees here: discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete] real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real] discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete] plt.figure(figsize=(15, 5)) plt.subplot(131) plt.plot(range(1, n_trees_discrete + 1), discrete_test_errors, c='black', label='SAMME') plt.plot(range(1, n_trees_real + 1), real_test_errors, c='black', linestyle='dashed', label='SAMME.R') plt.legend() plt.ylim(0.18, 0.62) plt.ylabel('Test Error') plt.xlabel('Number of Trees') plt.subplot(132) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors, "b", label='SAMME', alpha=.5) plt.plot(range(1, n_trees_real + 1), real_estimator_errors, "r", label='SAMME.R', alpha=.5) plt.legend() plt.ylabel('Error') plt.xlabel('Number of Trees') plt.ylim((.2, max(real_estimator_errors.max(), discrete_estimator_errors.max()) * 1.2)) plt.xlim((-20, len(bdt_discrete) + 20)) plt.subplot(133) plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights, "b", label='SAMME') plt.legend() plt.ylabel('Weight') plt.xlabel('Number of Trees') plt.ylim((0, discrete_estimator_weights.max() * 1.2)) plt.xlim((-20, n_trees_discrete + 20)) # prevent overlapping y-axis labels plt.subplots_adjust(wspace=0.25) plt.show()
bsd-3-clause
geoscixyz/em_examples
em_examples/DCIP_overburden_PseudoSection.py
1
31511
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from SimPEG import Mesh, Maps, SolverLU, Utils from SimPEG.Utils import ExtractCoreMesh import numpy as np from SimPEG.EM.Static import DC, IP import matplotlib import matplotlib.pyplot as plt import matplotlib.pylab as pylab from matplotlib.ticker import LogFormatter from matplotlib import colors, ticker, cm from matplotlib.path import Path import matplotlib.patches as patches from scipy.constants import epsilon_0 from scipy.interpolate import griddata import copy from ipywidgets import ( interact, interact_manual, IntSlider, FloatSlider, FloatText, ToggleButtons, fixed, Widget ) from .Base import widgetify # Mesh, sigmaMap can be globals global npad = 12 growrate = 2. cs = 20. hx = [(cs, npad, -growrate), (cs, 100), (cs, npad, growrate)] hy = [(cs, npad, -growrate), (cs, 50)] mesh = Mesh.TensorMesh([hx, hy], "CN") expmap = Maps.ExpMap(mesh) mapping = expmap xmin = -1000. xmax = 1000. ymin = -1000. ymax = 100. dx = 60. xr = np.arange(xmin, xmax+1., dx) dxr = np.diff(xr) xylim = np.c_[[xmin, ymin], [xmax, ymax]] indCC, meshcore = ExtractCoreMesh(xylim, mesh) indx = (mesh.gridFx[:, 0] >= xmin) & (mesh.gridFx[:, 0] <= xmax) & (mesh.gridFx[:, 1] >= ymin) & (mesh.gridFx[:, 1] <= ymax) indy = (mesh.gridFy[:, 0] >= xmin) & (mesh.gridFy[:, 0] <= xmax) & (mesh.gridFy[:, 1] >= ymin) & (mesh.gridFy[:, 1] <= ymax) indF = np.concatenate((indx, indy)) nmax = 8 def model_valley(lnsig_air=np.log(1e-8), ln_sigback=np.log(1e-4), ln_over=np.log(1e-2), ln_sigtarget=np.log(1e-3), overburden_thick=200., overburden_wide=1000., target_thick=200., target_wide=400., a=1000., b=500., xc=0., zc=250.): mtrue = ln_sigback*np.ones(mesh.nC) mhalf = copy.deepcopy(mtrue) ellips = (((mesh.gridCC[:, 0]-xc)**2.)/a**2. + ((mesh.gridCC[:, 1]-zc)**2.)/b**2.) <1. mtrue[ellips] = lnsig_air mair = copy.deepcopy(mtrue) # overb = (mesh.gridCC[:, 1] >-overburden_thick) & (mesh.gridCC[:, 1]<=0)&(mesh.gridCC[:, 0] >-overburden_wide/2.)&(mesh.gridCC[:, 0] <overburden_wide/2.) # mtrue[overb] = ln_over*np.ones_like(mtrue[overb]) if np.any(ellips): bottom_valley = mesh.gridCC[ellips, 1].min() overb = (mesh.gridCC[:, 1] >= bottom_valley) & (mesh.gridCC[:, 1] < bottom_valley+overburden_thick) & ellips mtrue[overb] = ln_over*np.ones_like(mtrue[overb]) mair[overb] = ln_sigback else: bottom_valley = 0. mover = copy.deepcopy(mtrue) target = (mesh.gridCC[:, 1] > bottom_valley-target_thick) & (mesh.gridCC[:, 1] < bottom_valley) & (mesh.gridCC[:, 0] > -target_wide/2.) & (mesh.gridCC[:, 0] < target_wide/2.) mtrue[target] = ln_sigtarget*np.ones_like(mtrue[target]) mtrue = Utils.mkvc(mtrue) return mtrue, mhalf, mair, mover def findnearest(A): idx = np.abs(mesh.gridCC[:, 0, None]-A).argmin(axis=0) return mesh.gridCC[idx, 0] def get_Surface(mtrue, A): active = (mtrue > (np.log(1e-8))) nearpoint = findnearest(A) columns = mesh.gridCC[:, 0, None] == nearpoint ind = np.logical_and(columns.T, active).T idm = [] surface = [] for i in range(ind.shape[1]): idm.append(np.where(np.all(mesh.gridCC == np.r_[nearpoint[i], np.max(mesh.gridCC[ind[:, i], 1])], axis=1))) surface.append(mesh.gridCC[idm[-1], 1]) return Utils.mkvc(np.r_[idm]), Utils.mkvc(np.r_[surface]) def model_fields(A, B, mtrue, mhalf, mair, mover, whichprimary='overburden'): idA, surfaceA = get_Surface(mtrue, A) idB, surfaceB = get_Surface(mtrue, B) Mx = mesh.gridCC # Nx = np.empty(shape =(mesh.nC, 2)) rx = DC.Rx.Pole(Mx) # rx = DC.Rx.Dipole(Mx, Nx) if(B == []): src = DC.Src.Pole([rx], np.r_[A, surfaceA]) else: src = DC.Src.Dipole([rx], np.r_[A, surfaceA], np.r_[B, surfaceB]) # src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.]) survey = DC.Survey([src]) # survey = DC.Survey([src]) # survey_prim = DC.Survey([src]) survey_prim = DC.Survey([src]) survey_air = DC.Survey([src]) # problem = DC.Problem3D_CC(mesh, sigmaMap = mapping) problem = DC.Problem3D_CC(mesh, sigmaMap=mapping) # problem_prim = DC.Problem3D_CC(mesh, sigmaMap = mapping) problem_prim = DC.Problem3D_CC(mesh, sigmaMap=mapping) problem_air = DC.Problem3D_CC(mesh, sigmaMap=mapping) problem.Solver = SolverLU problem_prim.Solver = SolverLU problem_air.Solver = SolverLU problem.pair(survey) problem_prim.pair(survey_prim) problem_air.pair(survey_air) mesh.setCellGradBC("neumann") cellGrad = mesh.cellGrad faceDiv = mesh.faceDiv if whichprimary == 'air': phi_primary = survey_prim.dpred(mair) elif whichprimary == 'half': phi_primary = survey_prim.dpred(mhalf) elif whichprimary == 'overburden': phi_primary = survey_prim.dpred(mover) e_primary = -cellGrad*phi_primary j_primary = problem_prim.MfRhoI*problem_prim.Grad*phi_primary q_primary = epsilon_0*problem_prim.Vol*(faceDiv*e_primary) primary_field = {'phi': phi_primary, 'e': e_primary, 'j': j_primary, 'q': q_primary} phi_total = survey.dpred(mtrue) e_total = -cellGrad*phi_total j_total = problem.MfRhoI*problem.Grad*phi_total q_total = epsilon_0*problem.Vol*(faceDiv*e_total) total_field = {'phi': phi_total, 'e': e_total, 'j': j_total, 'q': q_total} phi_air = survey.dpred(mair) e_air = -cellGrad*phi_air j_air = problem.MfRhoI*problem.Grad*phi_air q_air = epsilon_0*problem.Vol*(faceDiv*e_air) air_field = {'phi': phi_air, 'e': e_air, 'j': j_air, 'q': q_air} return src, primary_field, air_field, total_field def get_Surface_Potentials(mtrue, survey, src, field_obj): phi = field_obj['phi'] CCLoc = mesh.gridCC XLoc = np.unique(mesh.gridCC[:, 0]) surfaceInd, zsurfaceLoc = get_Surface(mtrue, XLoc) phiSurface = phi[surfaceInd] phiScale = 0. if(survey == "Pole-Dipole" or survey == "Pole-Pole"): refInd = Utils.closestPoints(mesh, [xmax+60., 0.], gridLoc='CC') # refPoint = CCLoc[refInd] # refSurfaceInd = np.where(xSurface == refPoint[0]) # phiScale = np.median(phiSurface) phiScale = phi[refInd] phiSurface = phiSurface - phiScale return XLoc, phiSurface, phiScale def getCylinderPoints(xc, zc, a, b): xLocOrig1 = np.arange(-a, a+a/10., a/10.) xLocOrig2 = np.arange(a, -a-a/10., -a/10.) # Top half of cylinder zLoc1 = b*np.sqrt(1.-(xLocOrig1/a)**2)+zc # Bottom half of cylinder zLoc2 = -b*np.sqrt(1.-(xLocOrig2/a)**2)+zc # Shift from x = 0 to xc xLoc1 = xLocOrig1 + xc*np.ones_like(xLocOrig1) xLoc2 = xLocOrig2 + xc*np.ones_like(xLocOrig2) cylinderPoints = np.vstack([np.vstack([xLoc1, zLoc1]).T, np.vstack([xLoc2, zLoc2]).T]) return cylinderPoints def get_OverburdenPoints(cylinderPoints, overburden_thick): bottom = cylinderPoints[:, 1].min() indb = np.where(cylinderPoints[:, 1] < 0.) overburdenPoints = [np.maximum(cylinderPoints[i, 1], bottom+overburden_thick) for i in indb] return np.vstack([cylinderPoints[indb, 0], overburdenPoints]).T def getPlateCorners(target_thick, target_wide, cylinderPoints): bottom = cylinderPoints[:, 1].min() xc = 0. zc = bottom-0.5*target_thick rotPlateCorners = np.array([[-0.5*target_wide, 0.5*target_thick], [0.5*target_wide, 0.5*target_thick], [-0.5*target_wide, -0.5*target_thick], [0.5*target_wide, -0.5*target_thick]]) plateCorners = rotPlateCorners + np.hstack([np.repeat(xc, 4).reshape([4, 1]), np.repeat(zc, 4).reshape([4, 1])]) return plateCorners def get_TargetPoints(target_thick, target_wide, ellips_b, ellips_zc): xLocOrig1 = np.arange(-target_wide/2., target_wide/2.+target_wide/10., target_wide/10.) xLocOrig2 = np.arange(target_wide/2., -target_wide/2.-target_wide/10., -target_wide/10.) zloc1 = np.ones_like(xLocOrig1)*(ellips_b+ellips_zc) zloc1 = np.ones_like(xLocOrig1)*(ellips_b+ellips_zc-target_thick) corner targetpoint = np.vstack([np.vstack([xLoc1, zLoc1]).T, np.vstack([xLoc2, zLoc2]).T]) def getSensitivity(survey, A, B, M, N, model): if(survey == "Dipole-Dipole"): rx = DC.Rx.Dipole(np.r_[M, 0.], np.r_[N, 0.]) src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.]) elif(survey == "Pole-Dipole"): rx = DC.Rx.Dipole(np.r_[M, 0.], np.r_[N, 0.]) src = DC.Src.Pole([rx], np.r_[A, 0.]) elif(survey == "Dipole-Pole"): rx = DC.Rx.Pole(np.r_[M, 0.]) src = DC.Src.Dipole([rx], np.r_[A, 0.], np.r_[B, 0.]) elif(survey == "Pole-Pole"): rx = DC.Rx.Pole(np.r_[M, 0.]) src = DC.Src.Pole([rx], np.r_[A, 0.]) survey = DC.Survey([src]) problem = DC.Problem3D_CC(mesh, sigmaMap=mapping) problem.Solver = SolverLU problem.pair(survey) fieldObj = problem.fields(model) J = problem.Jtvec(model, np.array([1.]), f=fieldObj) return J def calculateRhoA(survey, VM, VN, A, B, M, N): # to stabilize division eps = 1e-9 if(survey == "Dipole-Dipole"): G = 1. / (1./(np.abs(A-M)+eps) - 1./(np.abs(M-B)+eps) - 1./(np.abs(N-A)+eps) + 1./(np.abs(N-B)+eps)) rho_a = (VM-VN)*2.*np.pi*G elif(survey == "Pole-Dipole"): G = 1. / (1./(np.abs(A-M)+eps) - 1./(np.abs(N-A)+eps)) rho_a = (VM-VN)*2.*np.pi*G elif(survey == "Dipole-Pole"): G = 1. / (1./(np.abs(A-M)+eps) - 1./(np.abs(M-B)+eps)) rho_a = (VM)*2.*np.pi*G elif(survey == "Pole-Pole"): G = 1. / (1./(np.abs(A-M)+eps)) rho_a = (VM)*2.*np.pi*G return rho_a def getPseudoLocs(xr, ntx, nmax, flag="PoleDipole"): xloc = [] yloc = [] for i in range(ntx): if i < ntx-nmax+1: if flag == 'DipoleDipole': txmid = xr[i]+dxr[i]*0.5 rxmid = xr[i+1:i+1+nmax]+dxr[i+1:i+1+nmax]*0.5 elif flag == 'PoleDipole': txmid = xr[i] rxmid = xr[i+1:i+1+nmax]+dxr[i+1:i+1+nmax]*0.5 elif flag == 'DipolePole': txmid = xr[i]+dxr[i]*0.5 rxmid = xr[i+1:i+1+nmax] mid = (txmid+rxmid)*0.5 xloc.append(mid) yloc.append(np.arange(nmax)+1.) else: if flag == 'DipoleDipole': txmid = xr[i]+dxr[i]*0.5 rxmid = xr[i+1:ntx+1]+dxr[i+1:ntx+1]*0.5 elif flag == 'PoleDipole': txmid = xr[i] rxmid = xr[i+1:ntx+1]+dxr[i+1:ntx+1]*0.5 elif flag == 'DipolePole': txmid = xr[i]+dxr[i]*0.5 rxmid = xr[i+1:ntx+1] mid = (txmid+rxmid)*0.5 xloc.append(mid) yloc.append(np.arange(mid.size)+1.) xlocvec = np.hstack(xloc) ylocvec = np.hstack(yloc) return np.c_[xlocvec, ylocvec] def DC2Dsurvey(mtrue, flag="PoleDipole", nmax=8): if flag == "PoleDipole": ntx = xr.size-2 elif flag == "DipolePole": ntx = xr.size-2 elif flag == "DipoleDipole": ntx = xr.size-3 else: raise Exception('Not Implemented') xzlocs = getPseudoLocs(xr, ntx, nmax, flag) txList = [] zloc = -cs/2. for i in range(ntx): if flag == "PoleDipole": A = np.r_[xr[i], zloc] B = np.r_[mesh.vectorCCx.min(), zloc] if i < ntx-nmax+1: Mx = xr[i+1:i+1+nmax] _, Mz = get_Surface(mtrue, Mx) Nx = xr[i+2:i+2+nmax] _, Nz = get_Surface(mtrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] else: Mx = xr[i+1:ntx+1] _, Mz = get_Surface(mtrue, Mx) Nx = xr[i+2:i+2+nmax] _, Nz = get_Surface(mtrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] elif flag == "DipolePole": A = np.r_[xr[i], zloc] B = np.r_[xr[i+1], zloc] if i < ntx-nmax+1: Mx = xr[i+2:i+2+nmax] _, Mz = get_Surface(mtrue, Mx) Nx = np.ones(nmax)*mesh.vectorCCx.max() _, Nz = get_Surface(mtrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] else: Mx = xr[i+2:ntx+2] _, Mz = get_Surface(mtrue, Mx) Nx = np.ones(ntx-i)*mesh.vectorCCx.max() _, Nz = get_Surface(mtrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] elif flag == "DipoleDipole": A = np.r_[xr[i], zloc] B = np.r_[xr[i+1], zloc] if i < ntx-nmax: Mx = xr[i+2:i+2+nmax] _, Mz = get_Surface(mtrue, Mx) Nx = xr[i+3:i+3+nmax] _, Nz = get_Surface(mtrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] else: Mx = xr[i+2:len(xr)-1] _, Mz = get_Surface(mtrue, Mx) Nx = xr[i+3:len(xr)] _, Nz = get_Surface(mtrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] rx = DC.Rx.Dipole(M, N) src = DC.Src.Dipole([rx], A, B) txList.append(src) survey = DC.Survey(txList) problem = DC.Problem3D_CC(mesh, sigmaMap=mapping) problem.pair(survey) return survey, xzlocs def IP2Dsurvey(miptrue, sigmadc, flag="PoleDipole", nmax=8): if flag == "PoleDipole": ntx = xr.size-2 elif flag == "DipolePole": ntx = xr.size-2 elif flag == "DipoleDipole": ntx = xr.size-3 else: raise Exception('Not Implemented') xzlocs = getPseudoLocs(xr, ntx, nmax, flag) txList = [] zloc = -cs/2. for i in range(ntx): if flag == "PoleDipole": A = np.r_[xr[i], zloc] B = np.r_[mesh.vectorCCx.min(), zloc] if i < ntx-nmax+1: Mx = xr[i+1:i+1+nmax] _, Mz = get_Surface(miptrue, Mx) Nx = xr[i+2:i+2+nmax] _, Nz = get_Surface(miptrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] else: Mx = xr[i+1:ntx+1] _, Mz = get_Surface(miptrue, Mx) Nx = xr[i+2:i+2+nmax] _, Nz = get_Surface(miptrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] elif flag == "DipolePole": A = np.r_[xr[i], zloc] B = np.r_[xr[i+1], zloc] if i < ntx-nmax+1: Mx = xr[i+2:i+2+nmax] _, Mz = get_Surface(miptrue, Mx) Nx = np.ones(nmax)*mesh.vectorCCx.max() _, Nz = get_Surface(miptrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] else: Mx = xr[i+2:ntx+2] _, Mz = get_Surface(miptrue, Mx) Nx = np.ones(ntx-i)*mesh.vectorCCx.max() _, Nz = get_Surface(miptrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] elif flag == "DipoleDipole": A = np.r_[xr[i], zloc] B = np.r_[xr[i+1], zloc] if i < ntx-nmax: Mx = xr[i+2:i+2+nmax] _, Mz = get_Surface(miptrue, Mx) Nx = xr[i+3:i+3+nmax] _, Nz = get_Surface(miptrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] else: Mx = xr[i+2:len(xr)-1] _, Mz = get_Surface(miptrue, Mx) Nx = xr[i+3:len(xr)] _, Nz = get_Surface(miptrue, Nx) M = np.c_[Mx, Mz] N = np.c_[Nx, Nz] rx = DC.Rx.Dipole(M, N) src = DC.Src.Dipole([rx], A, B) txList.append(src) survey = IP.Survey(txList) problem = IP.Problem3D_CC(mesh, sigma=sigmadc, etaMap=Maps.IdentityMap(mesh)) problem.pair(survey) return survey, xzlocs def PseudoSectionPlotfnc(i, j, survey, flag="PoleDipole"): matplotlib.rcParams['font.size'] = 14 ntx = xr.size-2 TxObj = survey.srcList TxLoc = TxObj[i].loc RxLoc = TxObj[i].rxList[0].locs fig = plt.figure(figsize=(10, 3)) ax = fig.add_subplot(111, autoscale_on=False, xlim=(xr.min()-5, xr.max()+5), ylim=(nmax+1, -2)) plt.plot(xr, np.zeros_like(xr), 'ko', markersize=4) if flag == "PoleDipole": plt.plot(TxLoc[0][0], np.zeros(1), 'rv', markersize=10) # print([TxLoc[0][0],0]) ax.annotate('A', xy=(TxLoc[0][0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') else: plt.plot([TxLoc[0][0],TxLoc[1][0]], np.zeros(2), 'rv', markersize=10) # print([[TxLoc[0][0],0],[TxLoc[1][0],0]]) ax.annotate('A', xy=(TxLoc[0][0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') ax.annotate('B', xy=(TxLoc[1][0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') # for i in range(ntx): if i < ntx-nmax+1: if flag == "PoleDipole": txmid = TxLoc[0][0] else: txmid = (TxLoc[0][0] + TxLoc[1][0])*0.5 MLoc = RxLoc[0][j] NLoc = RxLoc[1][j] if flag == "DipolePole": plt.plot(MLoc[0], np.zeros(1), 'bv', markersize=10) ax.annotate('M', xy=(MLoc[0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') rxmid = MLoc[0] else: rxmid = (MLoc[0]+NLoc[0])*0.5 plt.plot(MLoc[0], np.zeros(1), 'bv', markersize=10) plt.plot(NLoc[0], np.zeros(1), 'b^', markersize=10) ax.annotate('M', xy=(MLoc[0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') ax.annotate('N', xy=(NLoc[0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') mid = (txmid+rxmid)*0.5 midSep = np.sqrt(np.square(txmid-rxmid)) plt.plot(txmid, np.zeros(1), 'ro') plt.plot(rxmid, np.zeros(1), 'bo') plt.plot(mid, midSep/2., 'go') plt.plot(np.r_[txmid, mid], np.r_[0, midSep/2.], 'k:') plt.plot(np.r_[rxmid, mid], np.r_[0, midSep/2.], 'k:') else: if flag == "PoleDipole": txmid = TxLoc[0][0] else: txmid = (TxLoc[0][0] + TxLoc[1][0])*0.5 MLoc = RxLoc[0][j] NLoc = RxLoc[1][j] if flag == "DipolePole": plt.plot(MLoc[0], np.zeros(1), 'bv', markersize=10) ax.annotate('M', xy=(MLoc[0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') rxmid = MLoc[0] else: rxmid = (MLoc[0]+NLoc[0])*0.5 plt.plot(MLoc[0], np.zeros(1), 'bv', markersize=10) plt.plot(NLoc[0], np.zeros(1), 'b^', markersize=10) ax.annotate('M', xy=(MLoc[0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') ax.annotate('N', xy=(NLoc[0], np.zeros(1)), xycoords='data', xytext=(-4.25, 7.5), textcoords='offset points') mid = (txmid+rxmid)*0.5 plt.plot((txmid+rxmid)*0.5, np.arange(mid.size)+1., 'bo') plt.plot(rxmid, np.zeros(rxmid.size), 'go') plt.plot(np.r_[txmid, mid[-1]], np.r_[0, mid.size], 'k:') for j in range(ntx-i): plt.plot(np.r_[rxmid[j], mid[j]], np.r_[0, j+1], 'k:') plt.xlabel("X (m)") plt.ylabel("N-spacing") plt.xlim(xr.min()-5, xr.max()+5) plt.ylim(nmax*dx/2+dx, -2*dx) plt.show() return def DipoleDipolefun(i): matplotlib.rcParams['font.size'] = 14 plt.figure(figsize=(10, 3)) ntx = xr.size-2 plt.plot(xr[:-1]+dxr*0.5, np.zeros_like(xr[:-1]), 'ko') plt.plot(xr[i]+dxr[i]*0.5, np.zeros(1), 'ro') # for i in range(ntx): if i < ntx-nmax+1: txmid = xr[i]+dxr[i]*0.5 rxmid = xr[i+1:i+1+nmax]+dxr[i+1:i+1+nmax]*0.5 mid = (txmid+rxmid)*0.5 plt.plot(rxmid, np.zeros(rxmid.size), 'go') plt.plot(mid, np.arange(nmax)+1., 'bo') plt.plot(np.r_[txmid, mid[-1]], np.r_[0, nmax], 'k:') for j in range(nmax): plt.plot(np.r_[rxmid[j], mid[j]], np.r_[0, j+1], 'k:') else: txmid = xr[i]+dxr[i]*0.5 rxmid = xr[i+1:ntx+1]+dxr[i+1:ntx+1]*0.5 mid = (txmid+rxmid)*0.5 plt.plot((txmid+rxmid)*0.5, np.arange(mid.size)+1., 'bo') plt.plot(rxmid, np.zeros(rxmid.size), 'go') plt.plot(np.r_[txmid, mid[-1]], np.r_[0, mid.size], 'k:') for j in range(ntx-i): plt.plot(np.r_[rxmid[j], mid[j]], np.r_[0, j+1], 'k:') plt.xlabel("X (m)") plt.ylabel("N-spacing") plt.xlim(xr.min(), xr.max()) plt.ylim(nmax+1, -1) plt.show() return def PseudoSectionWidget(survey, flag): if flag == "PoleDipole": ntx, nmax = xr.size-2, 8 dxr = np.diff(xr) elif flag == "DipolePole": ntx, nmax = xr.size-1, 7 dxr = xr elif flag == "DipoleDipole": ntx, nmax = xr.size-3, 8 dxr = np.diff(xr) xzlocs = getPseudoLocs(dxr, ntx, nmax, flag) PseudoSectionPlot = lambda i,j,flag: PseudoSectionPlotfnc(i, j, survey, flag) return widgetify(PseudoSectionPlot, i=IntSlider(min=0, max=ntx-1, step=1, value=0), j=IntSlider(min=0, max=nmax-1, step=1, value=0), flag=ToggleButtons(options=['DipoleDipole', 'PoleDipole', 'DipolePole'], description='Array Type'),) def MidpointPseudoSectionWidget(): ntx = xr.size-2 return widgetify(DipoleDipolefun, i=IntSlider(min=0, max=ntx-1, step=1, value=0)) def DCIP2Dfwdfun(mesh, mapping, rhohalf, rholayer, rhoTarget, chghalf, chglayer, chgTarget, overburden_thick, overburden_wide, target_thick, target_wide, ellips_a, ellips_b, xc, zc, predmis, surveyType, nmax=8, which='DC', Scale='Linear'): matplotlib.rcParams['font.size'] = 14 ln_sigTarget = np.log(1./rhoTarget) ln_sigLayer = np.log(1./rholayer) ln_sigHalf = np.log(1./rhohalf) mtrue, mhalf, mair, mover = model_valley(lnsig_air=np.log(1e-8), ln_sigback=ln_sigHalf, ln_over=ln_sigLayer, ln_sigtarget=ln_sigTarget, overburden_thick =overburden_thick, target_thick=target_thick, target_wide =target_wide, a=ellips_a, b=ellips_b, xc=xc, zc=zc) mdctrue = mtrue if which == 'IP': mtrue, mhalf, mair, mover = model_valley(lnsig_air=0., ln_sigback=chghalf, ln_over=chglayer, ln_sigtarget=chgTarget, overburden_thick=overburden_thick, target_thick=target_thick, target_wide=target_wide, a=ellips_a, b=ellips_b, xc=xc,zc=zc) sigmadc = 1./(mapping*mdctrue) survey, xzlocs = IP2Dsurvey(mtrue, sigmadc, surveyType, nmax=nmax) else: survey, xzlocs = DC2Dsurvey(mtrue, surveyType, nmax=nmax) dmover = survey.dpred(mover) dpred = survey.dpred(mtrue) xi, yi = np.meshgrid(np.linspace(xr.min(), xr.max(), 120), np.linspace(1., nmax, 100)) # Cheat to compute a geometric factor # define as G = dV_halfspace / rho_halfspace if which == 'IP': mtest = 10.*np.ones_like(mtrue) mtest[mdctrue == np.log(1e-8)] = 0. dhalf = survey.dpred(mtest) appresover = 10.*(dmover/dhalf) apprestrue = 10.*(dpred/dhalf) else: dmair = survey.dpred(mair) appresover = dmover/dmair/np.exp(ln_sigHalf) apprestrue = dpred/dmair/np.exp(ln_sigHalf) dtrue = griddata(xzlocs, apprestrue, (xi, yi), method='linear') dtrue = np.ma.masked_where(np.isnan(dtrue), dtrue) dover = griddata(xzlocs, appresover, (xi, yi), method='linear') dover = np.ma.masked_where(np.isnan(dover), dover) if which == 'IP': label = 'Chargeability' else: label = 'Resistivity (Ohm-m)' fig = plt.figure(figsize=(12, 9)) ax1 = plt.subplot(311) if which == 'IP': u = np.ma.masked_where(mdctrue <= np.log(1e-8), mtrue) else: u = np.ma.masked_where(mtrue <= np.log(1e-8), np.log10(1./(mapping*mtrue))) dat1 = mesh.plotImage(u, ax=ax1, clim=(u.min(), u.max()), grid=True, gridOpts={'color': 'k', 'alpha': 0.5}) if which == 'IP': cb1 = plt.colorbar(dat1[0], ax=ax1) else: cb1ticks = np.linspace(u.min(), u.max(), 3) cb1 = plt.colorbar(dat1[0], ax=ax1, ticks=cb1ticks) cb1.ax.set_yticklabels(['{:.0f}'.format(10**x) for x in cb1ticks]) cb1.set_label(label) ax1.set_ylim(ymin, ymax) ax1.set_xlim(xmin, xmax) ax1.set_xlabel("") ax1.set_ylabel("Depth (m)") ax2 = plt.subplot(312) if Scale == 'Log': lev_exp = np.arange(np.floor(np.log10(np.abs(dtrue.min()))), np.ceil(np.log10(dtrue.max()))+0.1,0.1) lev = np.power(10, lev_exp) dat2 = ax2.contourf(xi, yi, dtrue, lev, locator=ticker.LogLocator()) ax2.contour(xi, yi, dtrue, lev, locator=ticker.LogLocator(), colors='k', alpha=0.5) ax2.plot(xzlocs[:, 0], xzlocs[:, 1],'k.', ms=3) cb2 = plt.colorbar(dat2, ax=ax2,ticks=np.linspace(appresover.min(), appresover.max(), 5), format="%4.0f") else: dat2 = ax2.contourf(xi, yi, dtrue, 10) ax2.contour(xi, yi, dtrue, 10, colors='k', alpha=0.5) ax2.plot(xzlocs[:, 0], xzlocs[:, 1], 'k.', ms=3) cb2 = plt.colorbar(dat2, ax=ax2) cb2.set_label('Apparent\n'+label) ax2.set_ylim(nmax+1, 0.) ax2.set_ylabel("N-spacing") ax2.text(250, nmax-1, "Observed") ax3 = plt.subplot(313) if predmis == "Data Without Target": if Scale == 'Log': dat3 = ax3.contourf(xi, yi, dover, lev, locator=ticker.LogLocator()) ax3.contour(xi, yi, dover, lev, locator=ticker.LogLocator(), colors='k', alpha=0.5) ax3.plot(xzlocs[:, 0], xzlocs[:, 1], 'k.', ms=3) cb3 = plt.colorbar(dat3, ax=ax3, ticks=np.linspace(appresover.min(), appresover.max(), 5), format="%4.0f") else: dat3 = ax3.contourf(xi, yi, dover, 10, vmin=dtrue.min(), vmax=dtrue.max()) ax3.contour(xi, yi, dover, 10, vmin=dtrue.min(),vmax=dtrue.max(), colors='k', alpha=0.5) ax3.plot(xzlocs[:, 0], xzlocs[:, 1], 'k.', ms=3) cb3 = plt.colorbar(dat3, ax=ax3, format="%4.0f") cb3.set_clim(cb2.get_clim()) cb3.set_label('Apparent\n'+label) ax3.text(250, nmax-1, "Predicted\nwithout Target") else: if predmis == "Difference": mis = (apprestrue-appresover) Mis = griddata(xzlocs, mis, (xi, yi), method='linear') if which == 'IP': diflabel = 'Difference (chg unit)' else: diflabel = 'Difference (Ohm-m)' else: mis = (apprestrue-appresover)/apprestrue Mis = griddata(xzlocs, mis, (xi, yi), method='linear') diflabel = 'Normalized Difference (%)' dat3 = ax3.contourf(xi, yi, Mis, 10) ax3.contour(xi, yi, Mis, 10, colors='k', alpha=0.5) ax3.plot(xzlocs[:, 0], xzlocs[:, 1], 'k.', ms=3) cb3 = plt.colorbar(dat3, ax=ax3, format="%4.2f") cb3.set_label(diflabel) ax3.text(-38, 7, diflabel) ax3.set_ylim(nmax+1, 0.) ax3.set_ylabel("N-spacing") ax3.set_xlabel("Distance (m)") plt.show() return def DC2DfwdWrapper(rhohalf, rholayer, rhoTarget, chghalf, chglayer, chgTarget, overburden_thick, overburden_wide, target_thick, target_wide, ellips_a, ellips_b, xc, zc, predmis, surveyType, nmax, which, Scale): DCIP2Dfwdfun(mesh, mapping, rhohalf, rholayer, rhoTarget, chghalf, chglayer, chgTarget, overburden_thick, overburden_wide, target_thick, target_wide, ellips_a, ellips_b, xc, zc, predmis, surveyType, nmax, which, Scale) return None def DCIP2DfwdWidget(): return widgetify( DC2DfwdWrapper, xc=FloatSlider(min=-1005., max=1000., step=10., value=0., continuous_update=False), zc=FloatSlider(min=-1000., max=1000., step=10., value=250., continuous_update=False), ellips_a=FloatSlider(min=10., max=10000., step=100., value=1000., continuous_update=False), ellips_b=FloatSlider(min=10., max=10000., step=100., value=500., continuous_update=False), rhohalf=FloatText(min=1e-8, max=1e8, value=1000., description='$\\rho_1$', continuous_update=False), chghalf=FloatText(min=0., max=100, value=0., description='$\\eta_1$', continuous_update=False), rholayer=FloatText(min=1e-8, max=1e8, value=100., description='$\\rho_2$', continuous_update=False), chglayer=FloatText(min=0., max=100, value=20., description='$\\eta_2$', continuous_update=False), rhoTarget=FloatText(min=1e-8, max=1e8, value=500., description='$\\rho_3$', continuous_update=False), chgTarget=FloatText(min=0., max=100, value=10., description='$\\eta_3$', continuous_update=False), overburden_thick=FloatSlider(min=0., max=1000., step=10., value=250., continuous_update=False), overburden_wide=fixed(2000.), target_thick=FloatSlider(min=0., max=1000., step=10., value=200., continuous_update=False), target_wide=FloatSlider(min=0., max=1000., step=10., value=200., continuous_update=False), predmis=ToggleButtons(options=["Data Without Target", 'Difference', 'Normalized Difference']), surveyType=ToggleButtons(options=['DipoleDipole', 'PoleDipole', 'DipolePole'], desciption='Array Type'), which=ToggleButtons(options=['DC', 'IP'], description='Survey'), nmax=IntSlider(min=1, max=16, value=8, description='Rx per Tx'), Scale=ToggleButtons(options=['Linear', 'Log']) )
mit
HaydenFaulkner/bottom-up-attention
tools/train_svms.py
16
13480
#!/usr/bin/env python # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """ Train post-hoc SVMs using the algorithm and hyper-parameters from traditional R-CNN. """ import _init_paths from fast_rcnn.config import cfg, cfg_from_file from datasets.factory import get_imdb from fast_rcnn.test import im_detect from utils.timer import Timer import caffe import argparse import pprint import numpy as np import numpy.random as npr import cv2 from sklearn import svm import os, sys class SVMTrainer(object): """ Trains post-hoc detection SVMs for all classes using the algorithm and hyper-parameters of traditional R-CNN. """ def __init__(self, net, imdb): self.imdb = imdb self.net = net self.layer = 'fc7' self.hard_thresh = -1.0001 self.neg_iou_thresh = 0.3 dim = net.params['cls_score'][0].data.shape[1] scale = self._get_feature_scale() print('Feature dim: {}'.format(dim)) print('Feature scale: {:.3f}'.format(scale)) self.trainers = [SVMClassTrainer(cls, dim, feature_scale=scale) for cls in imdb.classes] def _get_feature_scale(self, num_images=100): TARGET_NORM = 20.0 # Magic value from traditional R-CNN _t = Timer() roidb = self.imdb.roidb total_norm = 0.0 count = 0.0 inds = npr.choice(xrange(self.imdb.num_images), size=num_images, replace=False) for i_, i in enumerate(inds): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] _t.tic() scores, boxes = im_detect(self.net, im, roidb[i]['boxes']) _t.toc() feat = self.net.blobs[self.layer].data total_norm += np.sqrt((feat ** 2).sum(axis=1)).sum() count += feat.shape[0] print('{}/{}: avg feature norm: {:.3f}'.format(i_ + 1, num_images, total_norm / count)) return TARGET_NORM * 1.0 / (total_norm / count) def _get_pos_counts(self): counts = np.zeros((len(self.imdb.classes)), dtype=np.int) roidb = self.imdb.roidb for i in xrange(len(roidb)): for j in xrange(1, self.imdb.num_classes): I = np.where(roidb[i]['gt_classes'] == j)[0] counts[j] += len(I) for j in xrange(1, self.imdb.num_classes): print('class {:s} has {:d} positives'. format(self.imdb.classes[j], counts[j])) return counts def get_pos_examples(self): counts = self._get_pos_counts() for i in xrange(len(counts)): self.trainers[i].alloc_pos(counts[i]) _t = Timer() roidb = self.imdb.roidb num_images = len(roidb) # num_images = 100 for i in xrange(num_images): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] gt_inds = np.where(roidb[i]['gt_classes'] > 0)[0] gt_boxes = roidb[i]['boxes'][gt_inds] _t.tic() scores, boxes = im_detect(self.net, im, gt_boxes) _t.toc() feat = self.net.blobs[self.layer].data for j in xrange(1, self.imdb.num_classes): cls_inds = np.where(roidb[i]['gt_classes'][gt_inds] == j)[0] if len(cls_inds) > 0: cls_feat = feat[cls_inds, :] self.trainers[j].append_pos(cls_feat) print 'get_pos_examples: {:d}/{:d} {:.3f}s' \ .format(i + 1, len(roidb), _t.average_time) def initialize_net(self): # Start all SVM parameters at zero self.net.params['cls_score'][0].data[...] = 0 self.net.params['cls_score'][1].data[...] = 0 # Initialize SVMs in a smart way. Not doing this because its such # a good initialization that we might not learn something close to # the SVM solution. # # subtract background weights and biases for the foreground classes # w_bg = self.net.params['cls_score'][0].data[0, :] # b_bg = self.net.params['cls_score'][1].data[0] # self.net.params['cls_score'][0].data[1:, :] -= w_bg # self.net.params['cls_score'][1].data[1:] -= b_bg # # set the background weights and biases to 0 (where they shall remain) # self.net.params['cls_score'][0].data[0, :] = 0 # self.net.params['cls_score'][1].data[0] = 0 def update_net(self, cls_ind, w, b): self.net.params['cls_score'][0].data[cls_ind, :] = w self.net.params['cls_score'][1].data[cls_ind] = b def train_with_hard_negatives(self): _t = Timer() roidb = self.imdb.roidb num_images = len(roidb) # num_images = 100 for i in xrange(num_images): im = cv2.imread(self.imdb.image_path_at(i)) if roidb[i]['flipped']: im = im[:, ::-1, :] _t.tic() scores, boxes = im_detect(self.net, im, roidb[i]['boxes']) _t.toc() feat = self.net.blobs[self.layer].data for j in xrange(1, self.imdb.num_classes): hard_inds = \ np.where((scores[:, j] > self.hard_thresh) & (roidb[i]['gt_overlaps'][:, j].toarray().ravel() < self.neg_iou_thresh))[0] if len(hard_inds) > 0: hard_feat = feat[hard_inds, :].copy() new_w_b = \ self.trainers[j].append_neg_and_retrain(feat=hard_feat) if new_w_b is not None: self.update_net(j, new_w_b[0], new_w_b[1]) print(('train_with_hard_negatives: ' '{:d}/{:d} {:.3f}s').format(i + 1, len(roidb), _t.average_time)) def train(self): # Initialize SVMs using # a. w_i = fc8_w_i - fc8_w_0 # b. b_i = fc8_b_i - fc8_b_0 # c. Install SVMs into net self.initialize_net() # Pass over roidb to count num positives for each class # a. Pre-allocate arrays for positive feature vectors # Pass over roidb, computing features for positives only self.get_pos_examples() # Pass over roidb # a. Compute cls_score with forward pass # b. For each class # i. Select hard negatives # ii. Add them to cache # c. For each class # i. If SVM retrain criteria met, update SVM # ii. Install new SVM into net self.train_with_hard_negatives() # One final SVM retraining for each class # Install SVMs into net for j in xrange(1, self.imdb.num_classes): new_w_b = self.trainers[j].append_neg_and_retrain(force=True) self.update_net(j, new_w_b[0], new_w_b[1]) class SVMClassTrainer(object): """Manages post-hoc SVM training for a single object class.""" def __init__(self, cls, dim, feature_scale=1.0, C=0.001, B=10.0, pos_weight=2.0): self.pos = np.zeros((0, dim), dtype=np.float32) self.neg = np.zeros((0, dim), dtype=np.float32) self.B = B self.C = C self.cls = cls self.pos_weight = pos_weight self.dim = dim self.feature_scale = feature_scale self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1}, intercept_scaling=B, verbose=1, penalty='l2', loss='l1', random_state=cfg.RNG_SEED, dual=True) self.pos_cur = 0 self.num_neg_added = 0 self.retrain_limit = 2000 self.evict_thresh = -1.1 self.loss_history = [] def alloc_pos(self, count): self.pos_cur = 0 self.pos = np.zeros((count, self.dim), dtype=np.float32) def append_pos(self, feat): num = feat.shape[0] self.pos[self.pos_cur:self.pos_cur + num, :] = feat self.pos_cur += num def train(self): print('>>> Updating {} detector <<<'.format(self.cls)) num_pos = self.pos.shape[0] num_neg = self.neg.shape[0] print('Cache holds {} pos examples and {} neg examples'. format(num_pos, num_neg)) X = np.vstack((self.pos, self.neg)) * self.feature_scale y = np.hstack((np.ones(num_pos), -np.ones(num_neg))) self.svm.fit(X, y) w = self.svm.coef_ b = self.svm.intercept_[0] scores = self.svm.decision_function(X) pos_scores = scores[:num_pos] neg_scores = scores[num_pos:] pos_loss = (self.C * self.pos_weight * np.maximum(0, 1 - pos_scores).sum()) neg_loss = self.C * np.maximum(0, 1 + neg_scores).sum() reg_loss = 0.5 * np.dot(w.ravel(), w.ravel()) + 0.5 * b ** 2 tot_loss = pos_loss + neg_loss + reg_loss self.loss_history.append((tot_loss, pos_loss, neg_loss, reg_loss)) for i, losses in enumerate(self.loss_history): print((' {:d}: obj val: {:.3f} = {:.3f} ' '(pos) + {:.3f} (neg) + {:.3f} (reg)').format(i, *losses)) # Sanity check scores_ret = ( X * 1.0 / self.feature_scale).dot(w.T * self.feature_scale) + b assert np.allclose(scores, scores_ret[:, 0], atol=1e-5), \ "Scores from returned model don't match decision function" return ((w * self.feature_scale, b), pos_scores, neg_scores) def append_neg_and_retrain(self, feat=None, force=False): if feat is not None: num = feat.shape[0] self.neg = np.vstack((self.neg, feat)) self.num_neg_added += num if self.num_neg_added > self.retrain_limit or force: self.num_neg_added = 0 new_w_b, pos_scores, neg_scores = self.train() # scores = np.dot(self.neg, new_w_b[0].T) + new_w_b[1] # easy_inds = np.where(neg_scores < self.evict_thresh)[0] not_easy_inds = np.where(neg_scores >= self.evict_thresh)[0] if len(not_easy_inds) > 0: self.neg = self.neg[not_easy_inds, :] # self.neg = np.delete(self.neg, easy_inds) print(' Pruning easy negatives') print(' Cache holds {} pos examples and {} neg examples'. format(self.pos.shape[0], self.neg.shape[0])) print(' {} pos support vectors'.format((pos_scores <= 1).sum())) print(' {} neg support vectors'.format((neg_scores >= -1).sum())) return new_w_b else: return None def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train SVMs (old skool)') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--def', dest='prototxt', help='prototxt file defining the network', default=None, type=str) parser.add_argument('--net', dest='caffemodel', help='model to test', default=None, type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default=None, type=str) parser.add_argument('--imdb', dest='imdb_name', help='dataset to train on', default='voc_2007_trainval', type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args if __name__ == '__main__': # Must turn this off to prevent issues when digging into the net blobs to # pull out features (tricky!) cfg.DEDUP_BOXES = 0 # Must turn this on because we use the test im_detect() method to harvest # hard negatives cfg.TEST.SVM = True args = parse_args() print('Called with args:') print(args) if args.cfg_file is not None: cfg_from_file(args.cfg_file) print('Using config:') pprint.pprint(cfg) # fix the random seed for reproducibility np.random.seed(cfg.RNG_SEED) # set up caffe caffe.set_mode_gpu() if args.gpu_id is not None: caffe.set_device(args.gpu_id) net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net.name = os.path.splitext(os.path.basename(args.caffemodel))[0] out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svm' out_dir = os.path.dirname(args.caffemodel) imdb = get_imdb(args.imdb_name) print 'Loaded dataset `{:s}` for training'.format(imdb.name) # enhance roidb to contain flipped examples if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done' SVMTrainer(net, imdb).train() filename = '{}/{}.caffemodel'.format(out_dir, out) net.save(filename) print 'Wrote svm model to: {:s}'.format(filename)
mit
xiaohan2012/lst
twitter_util.py
1
1975
import itertools import pandas as pd import langdetect from langdetect import detect from merge_similar_messages import merge_messages from datetime import timedelta def remove_mentions_and_urls(df): def aux(r): body = r['body'].lower() mentions = map(lambda m: '@' + m, r['mentions']) for s in itertools.chain(mentions, r['urls']): body = body.replace(s.lower(), '') return body df['body'] = df['body'].map(lambda s: s.lower()) df['body'] = df[['body', 'mentions', 'urls']].apply( aux, axis=1 ) return df def detect_lan(msg): try: return detect(msg) except langdetect.lang_detect_exception.LangDetectException: return '' def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('-d', '--dataset', required=True) parser.add_argument('--hashtag_ban') args = parser.parse_args() try: df = pd.read_json('data/{}/interactions.json'.format(args.dataset)) except (ValueError, IOError): df = pd.read_pickle('data/{}/interactions.pkl'.format(args.dataset)) df = df.drop_duplicates(subset=['message_id']) df['hashtags'] = df['hashtags'].apply( lambda hs: list(set(map(lambda s: s.lower(), hs))) ) if args.hashtag_ban: df['hashtags'] = df['hashtags'].apply( lambda hs: filter(lambda h: h != args.hashtag_ban, hs) ) df = remove_mentions_and_urls(df) df = df[df['body'].map(len) > 10] # filter short body # df = df[df['body'].map(detect_lan) == 'en'] # non english df = merge_messages(df, timedelta(minutes=30), 50, 'datetime') # df.to_json('data/{}/interactions_new.json'.format(args.dataset), # orient='records') df.to_pickle('data/{}/interactions.pkl'.format(args.dataset)) if __name__ == '__main__': main()
mit
Aerotenna/Firmware
Tools/ecl_ekf/batch_process_metadata_ekf.py
3
31686
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import os import numpy as np import matplotlib.pyplot as plt """ Performs a composite analysis of ekf log analysis meta data for all .ulg.csv files in the specified directory Generates and saves histogram plots for the meta data in population_data.pdf Generates and saves population summary data in population_data.csv """ parser = argparse.ArgumentParser(description='Perform a composite analysis of ekf log analysis meta data for all .ulg.csv files in the specified directory') parser.add_argument("directory_path") def is_valid_directory(parser, arg): if os.path.isdir(arg): # Directory exists so return the directory return arg else: parser.error('The directory {} does not exist'.format(arg)) args = parser.parse_args() metadata_directory = args.directory_path # Run the metadata analsyis tool to generate population statistics # Loop through the csv files in the directory and load the metadata into a nested dictionary print("\n"+"analysing all .ulog.csv files in "+metadata_directory) population_data = {} for filename in os.listdir(metadata_directory): if filename.endswith(".mdat.csv"): print("loading "+filename) # get the dictionary of fail and warning test thresholds from a csv file file = open(metadata_directory+"/"+filename) single_log_data = { } # meta data dictionary for a single log for line in file: x = line.split(",") a=x[0] b=x[1] c=x[2] try: single_log_data[a]=float(b) except: single_log_data[a]=b file.close() population_data[filename]=single_log_data # # print out the check levels # print('\n'+'The following metadata loaded from '+filename+' were used'+'\n') # val = population_data.get(filename, {}).get('imu_hfdang_mean') # print(val) # Open pdf file for plotting from matplotlib.backends.backend_pdf import PdfPages output_plot_filename = "population_data.pdf" pp = PdfPages(metadata_directory+"/"+output_plot_filename) # get statistics for the population population_results = { 'master_warning_pct':[float('NaN'),'Percentage of logs with warnings'], 'master_fail_pct':[float('NaN'),'Percentage of logs with fails'], 'mag_warning_pct':[float('NaN'),'Percentage of logs with magnetometer sensor warnings'], 'mag_fail_pct':[float('NaN'),'Percentage of logs with magnetometer sensor fails'], 'yaw_warning_pct':[float('NaN'),'Percentage of logs with yaw sensor warnings'], 'yaw_fail_pct':[float('NaN'),'Percentage of logs with yaw sensor fails'], 'vel_warning_pct':[float('NaN'),'Percentage of logs with velocity sensor warnings'], 'vel_fail_pct':[float('NaN'),'Percentage of logs with velocity sensor fails'], 'pos_warning_pct':[float('NaN'),'Percentage of logs with position sensor warnings'], 'pos_fail_pct':[float('NaN'),'Percentage of logs with position sensor fails'], 'hgt_warning_pct':[float('NaN'),'Percentage of logs with height sensor warnings'], 'hgt_fail_pct':[float('NaN'),'Percentage of logs with height sensor fails'], 'hagl_warning_pct':[float('NaN'),'Percentage of logs with height above ground sensor warnings'], 'hagl_fail_pct':[float('NaN'),'Percentage of logs with height above ground sensor fails'], 'tas_warning_pct':[float('NaN'),'Percentage of logs with airspeed sensor warnings'], 'tas_fail_pct':[float('NaN'),'Percentage of logs with airspeed ground sensor fails'], 'mag_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the magnetic field sensor innovation consistency test ratio'], 'mag_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the magnetic field sensor innovation consistency test ratio'], 'vel_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the velocity sensor innovation consistency test ratio'], 'vel_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the velocity sensor innovation consistency test ratio'], 'pos_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the position sensor innovation consistency test ratio'], 'pos_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the position sensor innovation consistency test ratio'], 'hgt_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the height sensor innovation consistency test ratio'], 'hgt_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the height sensor innovation consistency test ratio'], 'tas_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the airspeed sensor innovation consistency test ratio'], 'tas_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the airspeed sensor innovation consistency test ratio'], 'hagl_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the height above ground sensor innovation consistency test ratio'], 'hagl_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the height above ground sensor innovation consistency test ratio'], 'ofx_fail_pct_avg':[float('NaN'),'The mean percentage of innovation test fails for the X axis optical flow sensor'], 'ofy_fail_pct_avg':[float('NaN'),'The mean percentage of innovation test fails for the Y axis optical flow sensor'], 'imu_coning_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU delta angle coning vibration level (mrad)'], 'imu_coning_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta angle coning vibration level (mrad)'], 'imu_hfdang_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta angle vibration level (mrad)'], 'imu_hfdang_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta angle vibration level (mrad)'], 'imu_hfdvel_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta velocity vibration level (m/s)'], 'imu_hfdvel_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta velocity vibration level (m/s)'], 'obs_ang_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer angular tracking error magnitude (mrad)'], 'obs_vel_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer velocity tracking error magnitude (m/s)'], 'obs_pos_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer position tracking error magnitude (m)'], } # get population summary statistics found_keys = population_data.keys() # master status result = [population_data[k].get('master_status') for k in found_keys] population_results['master_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['master_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # magnetometer sensor result = [population_data[k].get('mag_sensor_status') for k in found_keys] population_results['mag_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['mag_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # yaw sensor result = [population_data[k].get('yaw_sensor_status') for k in found_keys] population_results['yaw_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['yaw_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # velocity sensor result = [population_data[k].get('vel_sensor_status') for k in found_keys] population_results['vel_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['vel_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # position sensor result = [population_data[k].get('pos_sensor_status') for k in found_keys] population_results['pos_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['pos_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # height sensor result = [population_data[k].get('hgt_sensor_status') for k in found_keys] population_results['hgt_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['hgt_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # height above ground sensor result = [population_data[k].get('hagl_sensor_status') for k in found_keys] population_results['hagl_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['hagl_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # height above ground sensor result = [population_data[k].get('tas_sensor_status') for k in found_keys] population_results['tas_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) population_results['tas_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) # Mean and max innovation test levels # Magnetometer temp = np.asarray([population_data[k].get('mag_test_max') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('mag_test_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['mag_test_max_avg'][0] = np.mean(result1) population_results['mag_test_mean_avg'][0] = np.mean(result2) plt.figure(1,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - Magnetometer Innovation Test Ratio Maximum") plt.xlabel("mag_test_max") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - Magnetometer Innovation Test Ratio Mean") plt.xlabel("mag_test_mean") plt.ylabel("Frequency") pp.savefig() plt.close(1) # Velocity Sensor (GPS) temp = np.asarray([population_data[k].get('vel_test_max') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('vel_test_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['vel_test_max_avg'][0] = np.mean(result1) population_results['vel_test_mean_avg'][0] = np.mean(result2) plt.figure(2,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - Velocity Innovation Test Ratio Maximum") plt.xlabel("vel_test_max") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - Velocity Innovation Test Ratio Mean") plt.xlabel("vel_test_mean") plt.ylabel("Frequency") pp.savefig() plt.close(2) # Position Sensor (GPS or external vision) temp = np.asarray([population_data[k].get('pos_test_max') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('pos_test_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['pos_test_max_avg'][0] = np.mean(result1) population_results['pos_test_mean_avg'][0] = np.mean(result2) plt.figure(3,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - Position Innovation Test Ratio Maximum") plt.xlabel("pos_test_max") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - Position Innovation Test Ratio Mean") plt.xlabel("pos_test_mean") plt.ylabel("Frequency") pp.savefig() plt.close(3) # Height Sensor temp = np.asarray([population_data[k].get('hgt_test_max') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('hgt_test_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['hgt_test_max_avg'][0] = np.mean(result1) population_results['hgt_test_mean_avg'][0] = np.mean(result2) plt.figure(4,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - Height Innovation Test Ratio Maximum") plt.xlabel("pos_test_max") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - Height Innovation Test Ratio Mean") plt.xlabel("pos_test_mean") plt.ylabel("Frequency") pp.savefig() plt.close(4) # Airspeed Sensor temp = np.asarray([population_data[k].get('tas_test_max') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('tas_test_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['tas_test_max_avg'][0] = np.mean(result1) population_results['tas_test_mean_avg'][0] = np.mean(result2) plt.figure(5,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - Airspeed Innovation Test Ratio Maximum") plt.xlabel("tas_test_max") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - Airspeed Innovation Test Ratio Mean") plt.xlabel("tas_test_mean") plt.ylabel("Frequency") pp.savefig() plt.close(5) # Height Above Ground Sensor temp = np.asarray([population_data[k].get('hagl_test_max') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('hagl_test_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['hagl_test_max_avg'][0] = np.mean(result1) population_results['hagl_test_mean_avg'][0] = np.mean(result2) plt.figure(6,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - HAGL Innovation Test Ratio Maximum") plt.xlabel("hagl_test_max") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - HAGL Innovation Test Ratio Mean") plt.xlabel("hagl_test_mean") plt.ylabel("Frequency") pp.savefig() plt.close(6) # Optical Flow Sensor temp = np.asarray([population_data[k].get('ofx_fail_percentage') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('ofy_fail_percentage') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['ofx_fail_pct_avg'][0] = np.mean(result1) population_results['ofy_fail_pct_avg'][0] = np.mean(result2) plt.figure(7,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - Optical Flow X Axis Fail Percentage") plt.xlabel("ofx_fail_percentage") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - Optical Flow Y Axis Fail Percentage") plt.xlabel("ofy_fail_percentage") plt.ylabel("Frequency") pp.savefig() plt.close(7) # IMU coning vibration levels temp = np.asarray([population_data[k].get('imu_coning_peak') for k in found_keys]) result1 = 1000.0 * temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('imu_coning_mean') for k in found_keys]) result2 = 1000.0 * temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['imu_coning_max_avg'][0] = np.mean(result1) population_results['imu_coning_mean_avg'][0] = np.mean(result2) plt.figure(8,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - IMU Coning Vibration Peak") plt.xlabel("imu_coning_max (mrad)") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - IMU Coning Vibration Mean") plt.xlabel("imu_coning_mean (mrad)") plt.ylabel("Frequency") pp.savefig() plt.close(8) # IMU high frequency delta angle vibration levels temp = np.asarray([population_data[k].get('imu_hfdang_peak') for k in found_keys]) result1 = 1000.0 * temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('imu_hfdang_mean') for k in found_keys]) result2 = 1000.0 * temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['imu_hfdang_max_avg'][0] = np.mean(result1) population_results['imu_hfdang_mean_avg'][0] = np.mean(result2) plt.figure(9,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - IMU HF Delta Angle Vibration Peak") plt.xlabel("imu_hfdang_max (mrad)") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - IMU HF Delta Angle Vibration Mean") plt.xlabel("imu_hfdang_mean (mrad)") plt.ylabel("Frequency") pp.savefig() plt.close(9) # IMU high frequency delta velocity vibration levels temp = np.asarray([population_data[k].get('imu_hfdvel_peak') for k in found_keys]) result1 = temp[np.isfinite(temp)] temp = np.asarray([population_data[k].get('imu_hfdvel_mean') for k in found_keys]) result2 = temp[np.isfinite(temp)] if (len(result1) > 0 and len(result2) > 0): population_results['imu_hfdvel_max_avg'][0] = np.mean(result1) population_results['imu_hfdvel_mean_avg'][0] = np.mean(result2) plt.figure(10,figsize=(20,13)) plt.subplot(2,1,1) plt.hist(result1) plt.title("Gaussian Histogram - IMU HF Delta Velocity Vibration Peak") plt.xlabel("imu_hfdvel_max (m/s)") plt.ylabel("Frequency") plt.subplot(2,1,2) plt.hist(result2) plt.title("Gaussian Histogram - IMU HF Delta Velocity Vibration Mean") plt.xlabel("imu_hfdvel_mean (m/s)") plt.ylabel("Frequency") pp.savefig() plt.close(10) # Output Observer Angular Tracking temp = np.asarray([population_data[k].get('output_obs_ang_err_median') for k in found_keys]) result = 1000.0 * temp[np.isfinite(temp)] if (len(result) > 0): population_results['obs_ang_median_avg'][0] = np.mean(result) plt.figure(11,figsize=(20,13)) plt.hist(result) plt.title("Gaussian Histogram - Output Observer Angular Tracking Error Median") plt.xlabel("output_obs_ang_err_median (mrad)") plt.ylabel("Frequency") pp.savefig() plt.close(11) # Output Observer Velocity Tracking temp = np.asarray([population_data[k].get('output_obs_vel_err_median') for k in found_keys]) result = temp[np.isfinite(temp)] if (len(result) > 0): population_results['obs_vel_median_avg'][0] = np.mean(result) plt.figure(12,figsize=(20,13)) plt.hist(result) plt.title("Gaussian Histogram - Output Observer Velocity Tracking Error Median") plt.xlabel("output_obs_ang_err_median (m/s)") plt.ylabel("Frequency") pp.savefig() plt.close(12) # Output Observer Position Tracking temp = np.asarray([population_data[k].get('output_obs_pos_err_median') for k in found_keys]) result = temp[np.isfinite(temp)] if (len(result) > 0): population_results['obs_pos_median_avg'][0] = np.mean(result) plt.figure(13,figsize=(20,13)) plt.hist(result) plt.title("Gaussian Histogram - Output Observer Position Tracking Error Median") plt.xlabel("output_obs_ang_err_median (m)") plt.ylabel("Frequency") pp.savefig() plt.close(13) # IMU delta angle bias temp = np.asarray([population_data[k].get('imu_dang_bias_median') for k in found_keys]) result = temp[np.isfinite(temp)] if (len(result) > 0): plt.figure(14,figsize=(20,13)) plt.hist(result) plt.title("Gaussian Histogram - IMU Delta Angle Bias Median") plt.xlabel("imu_dang_bias_median (rad)") plt.ylabel("Frequency") pp.savefig() plt.close(14) # IMU delta velocity bias temp = np.asarray([population_data[k].get('imu_dvel_bias_median') for k in found_keys]) result = temp[np.isfinite(temp)] if (len(result) > 0): plt.figure(15,figsize=(20,13)) plt.hist(result) plt.title("Gaussian Histogram - IMU Delta Velocity Bias Median") plt.xlabel("imu_dvel_bias_median (m/s)") plt.ylabel("Frequency") pp.savefig() plt.close(15) # close the pdf file pp.close() print('Population summary plots saved in population_data.pdf') # don't display to screen #plt.show() # clase all figures plt.close("all") # write metadata to a .csv file population_results_filename = metadata_directory + "/population_data.csv" file = open(population_results_filename,"w") file.write("name,value,description\n") # loop through the dictionary and write each entry on a separate row, with data comma separated # save data in alphabetical order key_list = list(population_results.keys()) key_list.sort() for key in key_list: file.write(key+","+str(population_results[key][0])+","+population_results[key][1]+"\n") file.close() print('Population summary data saved in population_data.csv') single_log_results = { 'filter_faults_max':[float('NaN'),'Largest recorded value of the filter internal fault bitmask. Should always be zero.'], 'hagl_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'], 'hagl_percentage_amber':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'], 'hagl_percentage_red':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'], 'hagl_sensor_status':['Pass','Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'hagl_test_max':[float('NaN'),'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'], 'hagl_test_mean':[float('NaN'),'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'], 'hgt_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'], 'hgt_percentage_amber':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 0.5.'], 'hgt_percentage_red':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 1.0.'], 'hgt_sensor_status':['Pass','Height sensor check summary. This sensor data can be sourced from either Baro, GPS, range fidner or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'hgt_test_max':[float('NaN'),'The maximum in-flight value of the height sensor innovation consistency test ratio.'], 'hgt_test_mean':[float('NaN'),'The mean in-flight value of the height sensor innovation consistency test ratio.'], 'imu_coning_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'], 'imu_coning_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'], 'imu_hfdang_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'], 'imu_hfdang_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'], 'imu_hfdvel_mean':[float('NaN'),'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], 'imu_hfdvel_peak':[float('NaN'),'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], 'imu_sensor_status':['Pass','IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'in_air_transition_time':[float('NaN'),'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'], 'mag_percentage_amber':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'], 'mag_percentage_red':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'], 'mag_sensor_status':['Pass','Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'mag_test_max':[float('NaN'),'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'], 'mag_test_mean':[float('NaN'),'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'], 'magx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'], 'magy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'], 'magz_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'], 'master_status':['Pass','Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'ofx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'], 'ofy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'], 'on_ground_transition_time':[float('NaN'),'The time in seconds measured from startup that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'], 'output_obs_ang_err_median':[float('NaN'),'Median in-flight value of the output observer angular error (rad)'], 'output_obs_pos_err_median':[float('NaN'),'Median in-flight value of the output observer position error (m)'], 'output_obs_vel_err_median':[float('NaN'),'Median in-flight value of the output observer velocity error (m/s)'], 'pos_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], 'pos_percentage_amber':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'], 'pos_percentage_red':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'], 'pos_sensor_status':['Pass','Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'pos_test_max':[float('NaN'),'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'], 'pos_test_mean':[float('NaN'),'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'], 'tas_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'], 'tas_percentage_amber':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'], 'tas_percentage_red':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'], 'tas_sensor_status':['Pass','Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'tas_test_max':[float('NaN'),'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'], 'tas_test_mean':[float('NaN'),'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'], 'tilt_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'], 'vel_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], 'vel_percentage_amber':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'], 'vel_percentage_red':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'], 'vel_sensor_status':['Pass','Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], 'vel_test_max':[float('NaN'),'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], 'vel_test_mean':[float('NaN'),'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], 'yaw_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the yaw alignment.'], 'yaw_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'], 'yaw_sensor_status':['Pass','Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], }
bsd-3-clause
joshloyal/scikit-learn
sklearn/tests/test_discriminant_analysis.py
37
11979
import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.discriminant_analysis import _cov # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver state = np.random.RandomState(0) X = state.normal(loc=0, scale=100, size=(40, 20)) y = state.randint(0, 3, size=(40,)) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_covariance(): x, y = make_blobs(n_samples=100, n_features=5, centers=1, random_state=42) # make features correlated x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1])) c_e = _cov(x, 'empirical') assert_almost_equal(c_e, c_e.T) c_s = _cov(x, 'auto') assert_almost_equal(c_s, c_s.T)
bsd-3-clause
dhwang99/statistics_introduction
probility/random_walk.py
1
2204
# encoding: utf8 import numpy as np import matplotlib.pyplot as plt import pdb ''' 随机游走.random walk 在 股票市场 预测用得比较多 example: walk one unit to left by p, right by (1-p) Y = sum(Xi), Xi, random Variable for each step f(x) = p, x=-1, go left 1-p, x=1, go right E(Xi) = -1 * p + 1*(1-p) = 1-2p E(Xi^2) = 1*p + 1*(1-p) = 1 E(Xi) ^ 2 = 1 - 4p + 4p*p V(Xi) = E(Xi^2) - E(Xi)^2 = 4p(1-p) E(Y) = n(1-2p) V(Y) = 4np(1-p) 从图里的结果看,当p >= 0.3时,几次试验的结果,变化都很大。不确定性太多了 可以对照 最后 100 步的图 从这个例子看,p = 0.5, 累积行为基本不可预测? ''' ''' n: steps p: probility return expect, varible ''' def EV_for_random_walk(n,p): E = n*(1-2*p) V = 4*n*p*(1-p) return (E,V) def random_walk(n,p): pos = 0. pos_list = [] for i in xrange(1, n+1): rd_num = np.random.random() if rd_num < p: pos -= 1 else: pos += 1 pos_list.append(pos) return pos_list def plot_random_walk(n, p, last_steps, repeat_times): E_list = [] V_list = [] std1_list = [] std2_list = [] steps = range(1, n+1) colors = ['b', 'g', 'y', 'k', 'c', 'm', 'y'] for i in steps: E,V = EV_for_random_walk(i, p) E_list.append(E) V_list.append(V) std1_list = np.sqrt(V_list) + E_list std2_list = -np.sqrt(V_list) + E_list plt.clf() for i in xrange(repeat_times): pos_list = random_walk(n, p) color = colors[i%len(colors)] #pdb.set_trace() plt.plot(steps[-last_steps:], pos_list[-last_steps:], color=color, lw=0.5) lw=2 plt.plot(steps[-last_steps:], E_list[-last_steps:], color='b', lw=lw) plt.plot(steps[-last_steps:], std1_list[-last_steps:], color='r', lw=lw) plt.plot(steps[-last_steps:], std2_list[-last_steps:], color='r', lw=lw) plt.savefig('images/random_walk/laststep_%s_p%s.png' % (last_steps, p), format='png') if __name__ == "__main__": for i in range(1,6): plot_random_walk(10000, 0.1 * i, 10000, 5) plot_random_walk(10000, 0.1 * i, 100, 5)
gpl-3.0
rkmaddox/mne-python
examples/time_frequency/time_frequency_global_field_power.py
10
5307
""" .. _ex-time-freq-global-field-power: =========================================================== Explore event-related dynamics for specific frequency bands =========================================================== The objective is to show you how to explore spectrally localized effects. For this purpose we adapt the method described in :footcite:`HariSalmelin1997` and use it on the somato dataset. The idea is to track the band-limited temporal evolution of spatial patterns by using the :term:`global field power` (GFP). We first bandpass filter the signals and then apply a Hilbert transform. To reveal oscillatory activity the evoked response is then subtracted from every single trial. Finally, we rectify the signals prior to averaging across trials by taking the magniude of the Hilbert. Then the :term:`GFP` is computed as described in :footcite:`EngemannGramfort2015`, using the sum of the squares but without normalization by the rank. Baselining is subsequently applied to make the :term:`GFP` comparable between frequencies. The procedure is then repeated for each frequency band of interest and all :term:`GFPs<GFP>` are visualized. To estimate uncertainty, non-parametric confidence intervals are computed as described in :footcite:`EfronHastie2016` across channels. The advantage of this method over summarizing the Space x Time x Frequency output of a Morlet Wavelet in frequency bands is relative speed and, more importantly, the clear-cut comparability of the spectral decomposition (the same type of filter is used across all bands). We will use this dataset: :ref:`somato-dataset` References ---------- .. footbibliography:: """ # noqa: E501 # Authors: Denis A. Engemann <[email protected]> # Stefan Appelhoff <[email protected]> # # License: BSD (3-clause) import os.path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.datasets import somato from mne.baseline import rescale from mne.stats import bootstrap_confidence_interval ############################################################################### # Set parameters data_path = somato.data_path() subject = '01' task = 'somato' raw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg', 'sub-{}_task-{}_meg.fif'.format(subject, task)) # let's explore some frequency bands iter_freqs = [ ('Theta', 4, 7), ('Alpha', 8, 12), ('Beta', 13, 25), ('Gamma', 30, 45) ] ############################################################################### # We create average power time courses for each frequency band # set epoching parameters event_id, tmin, tmax = 1, -1., 3. baseline = None # get the header to extract events raw = mne.io.read_raw_fif(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') frequency_map = list() for band, fmin, fmax in iter_freqs: # (re)load the data to save memory raw = mne.io.read_raw_fif(raw_fname) raw.pick_types(meg='grad', eog=True) # we just look at gradiometers raw.load_data() # bandpass filter raw.filter(fmin, fmax, n_jobs=1, # use more jobs to speed up. l_trans_bandwidth=1, # make sure filter params are the same h_trans_bandwidth=1) # in each band and skip "auto" option. # epoch epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=baseline, reject=dict(grad=4000e-13, eog=350e-6), preload=True) # remove evoked response epochs.subtract_evoked() # get analytic signal (envelope) epochs.apply_hilbert(envelope=True) frequency_map.append(((band, fmin, fmax), epochs.average())) del epochs del raw ############################################################################### # Now we can compute the Global Field Power # We can track the emergence of spatial patterns compared to baseline # for each frequency band, with a bootstrapped confidence interval. # # We see dominant responses in the Alpha and Beta bands. # Helper function for plotting spread def stat_fun(x): """Return sum of squares.""" return np.sum(x ** 2, axis=0) # Plot fig, axes = plt.subplots(4, 1, figsize=(10, 7), sharex=True, sharey=True) colors = plt.get_cmap('winter_r')(np.linspace(0, 1, 4)) for ((freq_name, fmin, fmax), average), color, ax in zip( frequency_map, colors, axes.ravel()[::-1]): times = average.times * 1e3 gfp = np.sum(average.data ** 2, axis=0) gfp = mne.baseline.rescale(gfp, times, baseline=(None, 0)) ax.plot(times, gfp, label=freq_name, color=color, linewidth=2.5) ax.axhline(0, linestyle='--', color='grey', linewidth=2) ci_low, ci_up = bootstrap_confidence_interval(average.data, random_state=0, stat_fun=stat_fun) ci_low = rescale(ci_low, average.times, baseline=(None, 0)) ci_up = rescale(ci_up, average.times, baseline=(None, 0)) ax.fill_between(times, gfp + ci_up, gfp - ci_low, color=color, alpha=0.3) ax.grid(True) ax.set_ylabel('GFP') ax.annotate('%s (%d-%dHz)' % (freq_name, fmin, fmax), xy=(0.95, 0.8), horizontalalignment='right', xycoords='axes fraction') ax.set_xlim(-1000, 3000) axes.ravel()[-1].set_xlabel('Time [ms]')
bsd-3-clause
sssllliang/BuildingMachineLearningSystemsWithPython
ch11/demo_pca.py
25
4333
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License import os from matplotlib import pylab import numpy as np from sklearn import linear_model, decomposition from sklearn import lda logistic = linear_model.LogisticRegression() from utils import CHART_DIR np.random.seed(3) x1 = np.arange(0, 10, .2) x2 = x1 + np.random.normal(scale=1, size=len(x1)) def plot_simple_demo_1(): pylab.clf() fig = pylab.figure(num=None, figsize=(10, 4)) pylab.subplot(121) title = "Original feature space" pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") x1 = np.arange(0, 10, .2) x2 = x1 + np.random.normal(scale=1, size=len(x1)) good = (x1 > 5) | (x2 > 5) bad = ~good x1g = x1[good] x2g = x2[good] pylab.scatter(x1g, x2g, edgecolor="blue", facecolor="blue") x1b = x1[bad] x2b = x2[bad] pylab.scatter(x1b, x2b, edgecolor="red", facecolor="white") pylab.grid(True) pylab.subplot(122) X = np.c_[(x1, x2)] pca = decomposition.PCA(n_components=1) Xtrans = pca.fit_transform(X) Xg = Xtrans[good] Xb = Xtrans[bad] pylab.scatter( Xg[:, 0], np.zeros(len(Xg)), edgecolor="blue", facecolor="blue") pylab.scatter( Xb[:, 0], np.zeros(len(Xb)), edgecolor="red", facecolor="white") title = "Transformed feature space" pylab.title(title) pylab.xlabel("$X'$") fig.axes[1].get_yaxis().set_visible(False) print(pca.explained_variance_ratio_) pylab.grid(True) pylab.autoscale(tight=True) filename = "pca_demo_1.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_simple_demo_2(): pylab.clf() fig = pylab.figure(num=None, figsize=(10, 4)) pylab.subplot(121) title = "Original feature space" pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") x1 = np.arange(0, 10, .2) x2 = x1 + np.random.normal(scale=1, size=len(x1)) good = x1 > x2 bad = ~good x1g = x1[good] x2g = x2[good] pylab.scatter(x1g, x2g, edgecolor="blue", facecolor="blue") x1b = x1[bad] x2b = x2[bad] pylab.scatter(x1b, x2b, edgecolor="red", facecolor="white") pylab.grid(True) pylab.subplot(122) X = np.c_[(x1, x2)] pca = decomposition.PCA(n_components=1) Xtrans = pca.fit_transform(X) Xg = Xtrans[good] Xb = Xtrans[bad] pylab.scatter( Xg[:, 0], np.zeros(len(Xg)), edgecolor="blue", facecolor="blue") pylab.scatter( Xb[:, 0], np.zeros(len(Xb)), edgecolor="red", facecolor="white") title = "Transformed feature space" pylab.title(title) pylab.xlabel("$X'$") fig.axes[1].get_yaxis().set_visible(False) print(pca.explained_variance_ratio_) pylab.grid(True) pylab.autoscale(tight=True) filename = "pca_demo_2.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") def plot_simple_demo_lda(): pylab.clf() fig = pylab.figure(num=None, figsize=(10, 4)) pylab.subplot(121) title = "Original feature space" pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") good = x1 > x2 bad = ~good x1g = x1[good] x2g = x2[good] pylab.scatter(x1g, x2g, edgecolor="blue", facecolor="blue") x1b = x1[bad] x2b = x2[bad] pylab.scatter(x1b, x2b, edgecolor="red", facecolor="white") pylab.grid(True) pylab.subplot(122) X = np.c_[(x1, x2)] lda_inst = lda.LDA(n_components=1) Xtrans = lda_inst.fit_transform(X, good) Xg = Xtrans[good] Xb = Xtrans[bad] pylab.scatter( Xg[:, 0], np.zeros(len(Xg)), edgecolor="blue", facecolor="blue") pylab.scatter( Xb[:, 0], np.zeros(len(Xb)), edgecolor="red", facecolor="white") title = "Transformed feature space" pylab.title(title) pylab.xlabel("$X'$") fig.axes[1].get_yaxis().set_visible(False) pylab.grid(True) pylab.autoscale(tight=True) filename = "lda_demo.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight") if __name__ == '__main__': plot_simple_demo_1() plot_simple_demo_2() plot_simple_demo_lda()
mit
ypochien/TaiwanStockBSR
GetTWBSR.py
1
8597
# -*- coding: utf-8 -*- import re import urllib2,urllib import sys import csv from datetime import datetime import os import threading import Queue from time import strftime from time import sleep from time import time from types import * import pandas as pd from pandas import Series, DataFrame # TSE : Taiwan Stock Exchange , 台灣證交所 (上市) # OTC : Over-the-Counter , 櫃檯中心 (上櫃) # BSR : Buy Sell Report , 分公司買賣進出表 class ThreadingDownloadBot(threading.Thread): def __init__(self, pid, queue): threading.Thread.__init__(self) self.queue = queue self.pid = pid def run(self): while(True): try: Code = self.queue.get() except self.queue.Empty: #pass print 'self.queue.Empty' else: if self.pid < 5: # fast otc thread sleep(0.5) retry = 0 if ',' in Code: retry = int(Code.split(',')[1]) Code = Code.split(',')[0] print 'thread: id=%d, code=%s, queue_size=%d, retry=%d' % (self.pid, Code, self.queue.qsize(), retry) res = self.RunImp(Code) if res < 0: retry +=1 if retry >= 3: print 'fail3, ' + Code #print u'%s 下載三次失敗'%(Code) else: retryCode = '%s,%d'%(Code,retry) #print 'retry: ' + retryCode sleep(1) #有錯誤停1秒, sleep before putting into queue self.queue.put(retryCode) self.queue.task_done() #used by consumer thread, tells the queue that task is completed. class DownloadTSEBot(ThreadingDownloadBot): def __init__(self,pid,queue): super(DownloadTSEBot, self).__init__(pid,queue) self.name = "TSE BSR Download Bot." def RunImp(self, Code): # step1. GetMaxPage and POST data def GetDateAndspPage(Code): try: base_url = 'http://bsr.twse.com.tw/bshtm/bsMenu.aspx' req = urllib2.Request(base_url) response = urllib2.urlopen(req) html = response.read() __VIEWSTATE = re.findall(u'id="__VIEWSTATE" value="(.*)" />',html)[0] __EVENTVALIDATION = re.findall(u'id="__EVENTVALIDATION" value="(.*)" />',html)[0] HiddenField_spDate = re.findall(u'id="sp_Date" name="sp_Date" style="display: none;">(.*)</span>',html)[0] PostDataDict = {'__EVENTTARGET':'' , '__EVENTARGUMENT':'' ,'HiddenField_page':'PAGE_BS' ,'txtTASKNO':Code ,'hidTASKNO':Code ,'__VIEWSTATE': __VIEWSTATE ,'__EVENTVALIDATION':__EVENTVALIDATION ,'HiddenField_spDate':HiddenField_spDate ,'btnOK':'%E6%9F%A5%E8%A9%A2'} postData = urllib.urlencode( PostDataDict) req = urllib2.Request( base_url , postData) response = urllib2.urlopen( req) html = response.read() sp_ListCount = re.findall(u'<span id="sp_ListCount">(.*)</span>',html)[0] return (HiddenField_spDate,sp_ListCount) except Exception, e: return (None,None) # step 2. GetRawData def GetBSRawData(Code,MaxPageNum): try: url = 'http://bsr.twse.com.tw/bshtm/bsContent.aspx?StartNumber=%s&FocusIndex=All_%s'%(Code,MaxPageNum) req = urllib2.Request(url) response = urllib2.urlopen(req) html = response.read() return html #html contains N pages' report xhtml data except Exception , e: return None # step 3. from xhtml data to csv file def BSRawToCSV(BSRaw): #取得資料表title ''' <tr class='column_title_1'> <td>序</td> <td>證券商</td> <td>成交單價</td> <td>買進股數</td> <td>賣出股數</td> </tr> ''' title_tr_pattern = u"<tr class='column_title_1'>(.*?)<\/tr>" title_tr = re.compile(title_tr_pattern) result_tr = title_tr.findall(BSRaw) title_td_pattern = u'<td *>\B(.*?)</td>' title_td = re.compile(title_td_pattern) result_td = title_td.findall(result_tr[0]) #title = ','.join(title.decode('utf-8').encode('cp950') for title in result_td) title = ','.join(title for title in result_td) #取得各分公司買賣內容 td = ''' <td class='column_value_center'> 1</td> <td class='column_value_left'> 1233 彰銀台中</td> <td class='column_value_right'> 8.65</td> <td class='column_value_right'> 0</td> <td class='column_value_right'> 20,000</td> ''' content_tr_pattern = u"<tr class='column_value_price_[23]'>(.*?)<\/tr>" content_tr = re.compile(content_tr_pattern) result_tr_content = content_tr.findall(BSRaw) content_td_pattern = u"<td \S*>(.*?)</td>" content_td = re.compile(content_td_pattern) content_list = [] for tr in result_tr_content: result_td = content_td.findall(tr) row = ','.join(td.replace(',','').strip() for td in result_td if td.strip()[0] not in ['<','&']) if len(row) == 0: continue #content_list.append(row.decode('utf-8').encode('cp950')) content_list.append(row) sortedlist = sorted(content_list,key = lambda s: int(s.split(',')[0])) #將Title加入資料首列 sortedlist.insert(0,title) return sortedlist def CSVToFile(CSVData,filename): with open('BSR/'+filename, 'wb') as csvfile: content = '\n'.join(row for row in CSVData) csvfile.write(content) self.RawBSR = "TSE" self.date, MaxPageNum = GetDateAndspPage(Code) if None == MaxPageNum or "" == MaxPageNum: return -1 BSRawData = GetBSRawData(Code, MaxPageNum) if None == BSRawData: return -2 filename = "%s_%s.csv"%(Code,self.date) CSVData = BSRawToCSV(BSRawData) CSVToFile(CSVData, filename) return 0 class DownloadOTCBot(ThreadingDownloadBot): def __init__(self, pid, queue, otcdate): super(DownloadOTCBot, self).__init__(pid, queue) self.name = "OTC BSR Download Bot." self.date = otcdate def RunImp(self,Code): def DownloadOTC(Code,filename,otcdate): try: base_url = r'http://www.gretai.org.tw/web/stock/aftertrading/broker_trading/download_ALLCSV.php?curstk={}&stk_date={}'.format(Code,otcdate) response = urllib2.urlopen(base_url) #html = response.read() html = response.read().decode('cp950').encode('utf-8') except Exception, e: return -1 with open('BSR/'+filename, 'wb') as csvfile: content = '\n'.join(row for row in html.split(',,')[1:]) csvfile.write(content) return 0 #entity in RunImp() of OTC thread self.RawBSR = "OTC" #otcDate = getOTCDate(Code) #move this part outside the thread otcDate = self.date if otcDate == None: return -2 filename = "%s_%d%s.csv"%(Code, int(otcDate[0:3])+1911, otcDate[3:]) ret = DownloadOTC(Code, filename, otcDate) if ret < 0: return ret return 0 def getCodeListFromCSV(filename): CodeList = [] with open(filename,'r') as f: for row in f: code = row.split(',')[0] CodeList.append(code) return CodeList def getDateForOTC(CodeDict): for Code in CodeDict['OTC']: if Code[0].isdigit(): #print Code baseUrl = "http://www.gretai.org.tw/web/stock/aftertrading/broker_trading/brokerBS.php" postDataDict = { 'stk_code' : Code } postData = urllib.urlencode( postDataDict) req = urllib2.Request( baseUrl , postData) response = urllib2.urlopen(req) html = response.read() date_list = re.findall(u'<input type="hidden" id="stk_date" name="stk_date" value=(.*)>',html) for date in date_list: print 'get date @' + date return date return None if __name__ == '__main__': if not os.path.exists('BSR'): os.makedirs('BSR') CodeDict = {} CodeDict['TSE'] = getCodeListFromCSV('TSECode.csv') CodeDict['OTC'] = getCodeListFromCSV('OTCCode.csv') print 'TSE:%d, OTC:%d' % (len(CodeDict['TSE']), len(CodeDict['OTC'])) num_thread_otc = 5 num_thread_tse = 5 #preprocessing for otc otcdate = getDateForOTC(CodeDict) starttime = time() OTCqueue = Queue.Queue() for i in range(num_thread_otc): t = DownloadOTCBot(i, OTCqueue, otcdate) t.setDaemon(True) #the thread t is terminated when the main thread ends. t.start() for Code in CodeDict['OTC'][:]: if Code[0].isdigit(): #some stock have character id at tail, like '2833A' OTCqueue.put(Code) OTCqueue.join() endtime = time() print 'end of otc, ' + 'time: ' + str(endtime - starttime) starttime = time() TSEqueue = Queue.Queue() for i in range(num_thread_tse): t = DownloadTSEBot(i+num_thread_otc, TSEqueue) #shifted thread id from otc group t.setDaemon(True) t.start() for Code in CodeDict['TSE'][:]: if Code[0].isdigit(): TSEqueue.put(Code) # TSEqueue.put('1469') TSEqueue.join() #Blocks until all items in the queue have been gotten and processed. endtime = time() print 'end of tse, ' + 'time: ' + str(endtime - starttime)
mit
jakevdp/bokeh
examples/plotting/server/burtin.py
3
4773
# The plot server must be running # Go to http://localhost:5006/bokeh to view this plot import numpy as np import pandas as pd from bokeh.plotting import * from six.moves import cStringIO as StringIO from math import log, sqrt from collections import OrderedDict antibiotics = """ bacteria, penicillin, streptomycin, neomycin, gram Mycobacterium tuberculosis, 800, 5, 2, negative Salmonella schottmuelleri, 10, 0.8, 0.09, negative Proteus vulgaris, 3, 0.1, 0.1, negative Klebsiella pneumoniae, 850, 1.2, 1, negative Brucella abortus, 1, 2, 0.02, negative Pseudomonas aeruginosa, 850, 2, 0.4, negative Escherichia coli, 100, 0.4, 0.1, negative Salmonella (Eberthella) typhosa, 1, 0.4, 0.008, negative Aerobacter aerogenes, 870, 1, 1.6, negative Brucella antracis, 0.001, 0.01, 0.007, positive Streptococcus fecalis, 1, 1, 0.1, positive Staphylococcus aureus, 0.03, 0.03, 0.001, positive Staphylococcus albus, 0.007, 0.1, 0.001, positive Streptococcus hemolyticus, 0.001, 14, 10, positive Streptococcus viridans, 0.005, 10, 40, positive Diplococcus pneumoniae, 0.005, 11, 10, positive """ drug_color = OrderedDict([ ("Penicillin", "#0d3362"), ("Streptomycin", "#c64737"), ("Neomycin", "black" ), ]) gram_color = { "positive" : "#aeaeb8", "negative" : "#e69584", } df = pd.read_csv(StringIO(antibiotics), skiprows=1, skipinitialspace=True) width = 800 height = 800 inner_radius = 90 outer_radius = 300 - 10 minr = sqrt(log(.001 * 1E4)) maxr = sqrt(log(1000 * 1E4)) a = (outer_radius - inner_radius) / (minr - maxr) b = inner_radius - a * maxr def rad(mic): return a * np.sqrt(np.log(mic * 1E4)) + b big_angle = 2.0 * np.pi / (len(df) + 1) small_angle = big_angle / 7 output_server("burtin") hold() x = np.zeros(len(df)) y = np.zeros(len(df)) figure(plot_width=width, plot_height=height, title="", tools="pan,wheel_zoom,box_zoom,reset,previewsave", x_axis_type=None, y_axis_type=None, x_range=[-420, 420], y_range=[-420, 420], min_border=0, outline_line_color=None, background_fill="#f0e1d2", border_fill="#f0e1d2") line(x+1, y+1, alpha=0) # annular wedges angles = np.pi/2 - big_angle/2 - df.index*big_angle colors = [gram_color[gram] for gram in df.gram] annular_wedge( x, y, inner_radius, outer_radius, -big_angle+angles, angles, color=colors, ) # small wedges annular_wedge( x, y, inner_radius, rad(df.penicillin), -big_angle+angles + 5*small_angle, -big_angle+angles+6*small_angle, color=drug_color['Penicillin'], ) annular_wedge( x, y, inner_radius, rad(df.streptomycin), -big_angle+angles + 3*small_angle, -big_angle+angles+4*small_angle, color=drug_color['Streptomycin'], ) annular_wedge( x, y, inner_radius, rad(df.neomycin), -big_angle+angles + 1*small_angle, -big_angle+angles+2*small_angle, color=drug_color['Neomycin'], ) # circular axes and lables labels = np.power(10.0, np.arange(-3, 4)) radii = a * np.sqrt(np.log(labels * 1E4)) + b circle(x, y, radius=radii, fill_color=None, line_color="white") text(x[:-1], radii[:-1], [str(r) for r in labels[:-1]], angle=0, text_font_size="8pt", text_align="center", text_baseline="middle") # radial axes annular_wedge( x, y, inner_radius-10, outer_radius+10, -big_angle+angles, -big_angle+angles, color="black", ) # bacteria labels xr = radii[0]*np.cos(np.array(-big_angle/2 + angles)) yr = radii[0]*np.sin(np.array(-big_angle/2 + angles)) label_angle=np.array(-big_angle/2+angles) label_angle[label_angle < -np.pi/2] += np.pi # easier to read labels on the left side text(xr, yr, df.bacteria, angle=label_angle, text_font_size="9pt", text_align="center", text_baseline="middle") # OK, these hand drawn legends are pretty clunky, will be improved in future release circle([-40, -40], [-370, -390], color=list(gram_color.values()), radius=5) text([-30, -30], [-370, -390], text=["Gram-" + x for x in gram_color.keys()], angle=0, text_font_size="7pt", text_align="left", text_baseline="middle") rect([-40, -40, -40], [18, 0, -18], width=30, height=13, color=list(drug_color.values())) text([-15, -15, -15], [18, 0, -18], text=list(drug_color.keys()), angle=0, text_font_size="9pt", text_align="left", text_baseline="middle") xgrid().grid_line_color = None ygrid().grid_line_color = None show()
bsd-3-clause
schreiberx/sweet
tests/70_program_swe_plane_spatial_convergence/postprocessing_convergence_test.py
1
3895
#! /usr/bin/env python3 import sys import math from mule_local.JobMule import * from mule.plotting.Plotting import * from mule.postprocessing.JobsData import * from mule.postprocessing.JobsDataConsolidate import * import matplotlib.pyplot as plt from matplotlib.lines import Line2D groups = [ 'runtime.timestepping_method', 'runtime.timestepping_order', ] tagnames_y = [ 'output.error_end_linf_h_pert', ] j = JobsData(verbosity=0) c = JobsDataConsolidate(j) print("") print("Groups:") job_groups = c.create_groups(groups) for key, g in job_groups.items(): print(" + "+key) for tagname_y in tagnames_y: print("*"*80) print("Processing tagname "+tagname_y) print("*"*80) tagname_x = 'runtime.space_res_physical' if True: """ Plotting format """ d = JobsData_GroupsPlottingScattered( job_groups, tagname_x, tagname_y, meta_attribute_name = 'runtime.timestepping_order', # data_filter = data_filter ) for group_name, group_data in d.get_data_float().items(): print("*"*80) print("Group: "+group_name) if len(group_data['meta_values']) == 0: raise Exception("No data in group found") prev_value = -1.0 conv = '-' convergence_order = None for (x, y, convergence_order_) in zip(group_data['x_values'], group_data['y_values'], group_data['meta_values']): if prev_value > 0: #conv = y/prev_value conv = prev_value/y elif prev_value == 0: conv = '[error=0]' print("\t"+str(x)+"\t=>\t"+str(y)+"\tconvergence: "+str(conv)) prev_value = y if convergence_order != None: if convergence_order != convergence_order_: raise Exception("Convergence order mismatch!!!") convergence_order = convergence_order_ print("") print("Testing convergence") # Cubic for SL with cubic spatial interpolation if '_sl_' in group_name: conv_test_range_end = len(group_data['x_values']) conv_test_range_start = conv_test_range_end-4 target_conv = 16 error_tolerance_convergence = 0.2 else: # Convergence order is stored in meta value conv_test_range_end = len(group_data['x_values']) conv_test_range_start = conv_test_range_end-4 target_conv = pow(2.0, meta) error_tolerance_convergence = 0.25 print(" + range start/end: "+str(conv_test_range_start)+", "+str(conv_test_range_end)) print(" + error_tolerance_convergence: "+str(error_tolerance_convergence)) if len(group_data['meta_values']) < conv_test_range_end: raise Exception("Not enough samples to run convergence test") for i in range(len(group_data['meta_values'])): if group_data['meta_values'][i] != group_data['meta_values'][0]: raise Exception("FATAL: Different convergence orders in same test") prev_value = -1.0 conv = '-' for i in range(conv_test_range_start, conv_test_range_end): x = group_data['x_values'][i] y = group_data['y_values'][i] meta = group_data['meta_values'][i] if prev_value > 0: #conv = y/prev_value conv = prev_value/y elif prev_value == 0: conv = '[error=0]' error_convergence = '-' if isinstance(conv, float): error_convergence = abs(conv - target_conv)/target_conv print("\t"+str(x)+"\t=>\t"+str(y)+"\tconvergence: "+str(conv)+"\terror: "+str(error_convergence)) if error_convergence != '-': if error_convergence > error_tolerance_convergence: print("Error: "+str(error_convergence)) raise Exception("Convergence exceeds tolerance of "+str(error_tolerance_convergence)) prev_value = y print("[OK]") print("*"*80) print("Convergence tests successful") print("*"*80)
mit
nmartensen/pandas
pandas/core/base.py
1
39480
""" Base and utility classes for pandas objects. """ import warnings from pandas import compat from pandas.compat import builtins import numpy as np from pandas.core.dtypes.missing import isna from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries, ABCIndexClass from pandas.core.dtypes.common import ( is_object_dtype, is_list_like, is_scalar, is_datetimelike) from pandas.util._validators import validate_bool_kwarg from pandas.core import common as com import pandas.core.nanops as nanops import pandas._libs.lib as lib from pandas.compat.numpy import function as nv from pandas.compat import PYPY from pandas.util._decorators import (Appender, cache_readonly, deprecate_kwarg, Substitution) from pandas.core.common import AbstractMethodError, _maybe_box_datetimelike from pandas.core.accessor import DirNamesMixin _shared_docs = dict() _indexops_doc_kwargs = dict(klass='IndexOpsMixin', inplace='', unique='IndexOpsMixin', duplicated='IndexOpsMixin') class StringMixin(object): """implements string methods so long as object defines a `__unicode__` method. Handles Python2/3 compatibility transparently. """ # side note - this could be made into a metaclass if more than one # object needs # ---------------------------------------------------------------------- # Formatting def __unicode__(self): raise AbstractMethodError(self) def __str__(self): """ Return a string representation for a particular Object Invoked by str(df) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__() def __bytes__(self): """ Return a string representation for a particular object. Invoked by bytes(obj) in py3 only. Yields a bytestring in both py2/py3. """ from pandas.core.config import get_option encoding = get_option("display.encoding") return self.__unicode__().encode(encoding, 'replace') def __repr__(self): """ Return a string representation for a particular object. Yields Bytestring in Py2, Unicode String in py3. """ return str(self) class PandasObject(StringMixin, DirNamesMixin): """baseclass for various pandas objects""" @property def _constructor(self): """class constructor (for this class it's just `__class__`""" return self.__class__ def __unicode__(self): """ Return a string representation for a particular object. Invoked by unicode(obj) in py2 only. Yields a Unicode String in both py2/py3. """ # Should be overwritten by base classes return object.__repr__(self) def _reset_cache(self, key=None): """ Reset cached properties. If ``key`` is passed, only clears that key. """ if getattr(self, '_cache', None) is None: return if key is None: self._cache.clear() else: self._cache.pop(key, None) def __sizeof__(self): """ Generates the total memory usage for a object that returns either a value or Series of values """ if hasattr(self, 'memory_usage'): mem = self.memory_usage(deep=True) if not is_scalar(mem): mem = mem.sum() return int(mem) # no memory_usage attribute, so fall back to # object's 'sizeof' return super(PandasObject, self).__sizeof__() class NoNewAttributesMixin(object): """Mixin which prevents adding new attributes. Prevents additional attributes via xxx.attribute = "something" after a call to `self.__freeze()`. Mainly used to prevent the user from using wrong attributes on a accessor (`Series.cat/.str/.dt`). If you really want to add a new attribute at a later time, you need to use `object.__setattr__(self, key, value)`. """ def _freeze(self): """Prevents setting additional attributes""" object.__setattr__(self, "__frozen", True) # prevent adding any attribute via s.xxx.new_attribute = ... def __setattr__(self, key, value): # _cache is used by a decorator # dict lookup instead of getattr as getattr is false for getter # which error if getattr(self, "__frozen", False) and not \ (key in type(self).__dict__ or key == "_cache"): raise AttributeError("You cannot add any new attribute '{key}'". format(key=key)) object.__setattr__(self, key, value) class PandasDelegate(PandasObject): """ an abstract base class for delegating methods/properties """ @classmethod def _make_accessor(cls, data): raise AbstractMethodError("_make_accessor should be implemented" "by subclass and return an instance" "of `cls`.") def _delegate_property_get(self, name, *args, **kwargs): raise TypeError("You cannot access the " "property {name}".format(name=name)) def _delegate_property_set(self, name, value, *args, **kwargs): raise TypeError("The property {name} cannot be set".format(name=name)) def _delegate_method(self, name, *args, **kwargs): raise TypeError("You cannot call method {name}".format(name=name)) @classmethod def _add_delegate_accessors(cls, delegate, accessors, typ, overwrite=False): """ add accessors to cls from the delegate class Parameters ---------- cls : the class to add the methods/properties to delegate : the class to get methods/properties & doc-strings acccessors : string list of accessors to add typ : 'property' or 'method' overwrite : boolean, default False overwrite the method/property in the target class if it exists """ def _create_delegator_property(name): def _getter(self): return self._delegate_property_get(name) def _setter(self, new_values): return self._delegate_property_set(name, new_values) _getter.__name__ = name _setter.__name__ = name return property(fget=_getter, fset=_setter, doc=getattr(delegate, name).__doc__) def _create_delegator_method(name): def f(self, *args, **kwargs): return self._delegate_method(name, *args, **kwargs) f.__name__ = name f.__doc__ = getattr(delegate, name).__doc__ return f for name in accessors: if typ == 'property': f = _create_delegator_property(name) else: f = _create_delegator_method(name) # don't overwrite existing methods/properties if overwrite or not hasattr(cls, name): setattr(cls, name, f) class AccessorProperty(object): """Descriptor for implementing accessor properties like Series.str """ def __init__(self, accessor_cls, construct_accessor=None): self.accessor_cls = accessor_cls self.construct_accessor = (construct_accessor or accessor_cls._make_accessor) self.__doc__ = accessor_cls.__doc__ def __get__(self, instance, owner=None): if instance is None: # this ensures that Series.str.<method> is well defined return self.accessor_cls return self.construct_accessor(instance) def __set__(self, instance, value): raise AttributeError("can't set attribute") def __delete__(self, instance): raise AttributeError("can't delete attribute") class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass class SelectionMixin(object): """ mixin implementing the selection & aggregation interface on a group-like object sub-classes need to define: obj, exclusions """ _selection = None _internal_names = ['_cache', '__setstate__'] _internal_names_set = set(_internal_names) _builtin_table = { builtins.sum: np.sum, builtins.max: np.max, builtins.min: np.min } _cython_table = { builtins.sum: 'sum', builtins.max: 'max', builtins.min: 'min', np.sum: 'sum', np.mean: 'mean', np.prod: 'prod', np.std: 'std', np.var: 'var', np.median: 'median', np.max: 'max', np.min: 'min', np.cumprod: 'cumprod', np.cumsum: 'cumsum' } @property def _selection_name(self): """ return a name for myself; this would ideally be called the 'name' property, but we cannot conflict with the Series.name property which can be set """ if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, ABCSeries): return self.obj else: return self.obj[self._selection] @cache_readonly def ndim(self): return self._selected_obj.ndim @cache_readonly def _obj_with_exclusions(self): if self._selection is not None and isinstance(self.obj, ABCDataFrame): return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj def __getitem__(self, key): if self._selection is not None: raise Exception('Column(s) {selection} already selected' .format(selection=self._selection)) if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .format(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not getattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=1) def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ raise AbstractMethodError(self) def aggregate(self, func, *args, **kwargs): raise AbstractMethodError(self) agg = aggregate def _try_aggregate_string_function(self, arg, *args, **kwargs): """ if arg is a string, then try to operate on it: - try to find a function (or attribute) on ourselves - try to find a numpy function - raise """ assert isinstance(arg, compat.string_types) f = getattr(self, arg, None) if f is not None: if callable(f): return f(*args, **kwargs) # people may try to aggregate on a non-callable attribute # but don't let them think they can pass args to it assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = getattr(np, arg, None) if f is not None: return f(self, *args, **kwargs) raise ValueError("{arg} is an unknown string function".format(arg=arg)) def _aggregate(self, arg, *args, **kwargs): """ provide an implementation for the aggregators Parameters ---------- arg : string, dict, function *args : args to pass on to the function **kwargs : kwargs to pass on to the function Returns ------- tuple of result, how Notes ----- how can be a string describe the required post-processing, or None if not required """ is_aggregator = lambda x: isinstance(x, (list, tuple, dict)) is_nested_renamer = False _axis = kwargs.pop('_axis', None) if _axis is None: _axis = getattr(self, 'axis', 0) _level = kwargs.pop('_level', None) if isinstance(arg, compat.string_types): return self._try_aggregate_string_function(arg, *args, **kwargs), None if isinstance(arg, dict): # aggregate based on the passed dict if _axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj def nested_renaming_depr(level=4): # deprecation of nested renaming # GH 15931 warnings.warn( ("using a dict with renaming " "is deprecated and will be removed in a future " "version"), FutureWarning, stacklevel=level) # if we have a dict of any non-scalars # eg. {'A' : ['mean']}, normalize all to # be list-likes if any(is_aggregator(x) for x in compat.itervalues(arg)): new_arg = compat.OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v # the keys must be in the columns # for ndim=2, or renamers for ndim=1 # ok for now, but deprecated # {'A': { 'ra': 'mean' }} # {'A': { 'ra': ['mean'] }} # {'ra': ['mean']} # not ok # {'ra' : { 'A' : 'mean' }} if isinstance(v, dict): is_nested_renamer = True if k not in obj.columns: msg = ('cannot perform renaming for {key} with a ' 'nested dictionary').format(key=k) raise SpecificationError(msg) nested_renaming_depr(4 + (_level or 0)) elif isinstance(obj, ABCSeries): nested_renaming_depr() arg = new_arg else: # deprecation of renaming keys # GH 15931 keys = list(compat.iterkeys(arg)) if (isinstance(obj, ABCDataFrame) and len(obj.columns.intersection(keys)) != len(keys)): nested_renaming_depr() from pandas.core.reshape.concat import concat def _agg_1dim(name, how, subset=None): """ aggregate a 1-dim with how """ colg = self._gotitem(name, ndim=1, subset=subset) if colg.ndim != 1: raise SpecificationError("nested dictionary is ambiguous " "in aggregation") return colg.aggregate(how, _level=(_level or 0) + 1) def _agg_2dim(name, how): """ aggregate a 2-dim with how """ colg = self._gotitem(self._selection, ndim=2, subset=obj) return colg.aggregate(how, _level=None) def _agg(arg, func): """ run the aggregations over the arg with func return an OrderedDict """ result = compat.OrderedDict() for fname, agg_how in compat.iteritems(arg): result[fname] = func(fname, agg_how) return result # set the final keys keys = list(compat.iterkeys(arg)) result = compat.OrderedDict() # nested renamer if is_nested_renamer: result = list(_agg(arg, _agg_1dim).values()) if all(isinstance(r, dict) for r in result): result, results = compat.OrderedDict(), result for r in results: result.update(r) keys = list(compat.iterkeys(result)) else: if self._selection is not None: keys = None # some selection on the object elif self._selection is not None: sl = set(self._selection_list) # we are a Series like object, # but may have multiple aggregations if len(sl) == 1: result = _agg(arg, lambda fname, agg_how: _agg_1dim(self._selection, agg_how)) # we are selecting the same set as we are aggregating elif not len(sl - set(keys)): result = _agg(arg, _agg_1dim) # we are a DataFrame, with possibly multiple aggregations else: result = _agg(arg, _agg_2dim) # no selection else: try: result = _agg(arg, _agg_1dim) except SpecificationError: # we are aggregating expecting all 1d-returns # but we have 2d result = _agg(arg, _agg_2dim) # combine results def is_any_series(): # return a boolean if we have *any* nested series return any([isinstance(r, ABCSeries) for r in compat.itervalues(result)]) def is_any_frame(): # return a boolean if we have *any* nested series return any([isinstance(r, ABCDataFrame) for r in compat.itervalues(result)]) if isinstance(result, list): return concat(result, keys=keys, axis=1), True elif is_any_frame(): # we have a dict of DataFrames # return a MI DataFrame return concat([result[k] for k in keys], keys=keys, axis=1), True elif isinstance(self, ABCSeries) and is_any_series(): # we have a dict of Series # return a MI Series try: result = concat(result) except TypeError: # we want to give a nice error here if # we have non-same sized objects, so # we don't automatically broadcast raise ValueError("cannot perform both aggregation " "and transformation operations " "simultaneously") return result, True # fall thru from pandas import DataFrame, Series try: result = DataFrame(result) except ValueError: # we have a dict of scalars result = Series(result, name=getattr(self, 'name', None)) return result, True elif is_list_like(arg) and arg not in compat.string_types: # we require a list, but not an 'str' return self._aggregate_multiple_funcs(arg, _level=_level, _axis=_axis), None else: result = None f = self._is_cython_func(arg) if f and not args and not kwargs: return getattr(self, f)(), None # caller can react return result, True def _aggregate_multiple_funcs(self, arg, _level, _axis): from pandas.core.reshape.concat import concat if _axis != 0: raise NotImplementedError("axis other than 0 is not supported") if self._selected_obj.ndim == 1: obj = self._selected_obj else: obj = self._obj_with_exclusions results = [] keys = [] # degenerate case if obj.ndim == 1: for a in arg: try: colg = self._gotitem(obj.name, ndim=1, subset=obj) results.append(colg.aggregate(a)) # make sure we find a good name name = com._get_callable_name(a) or a keys.append(name) except (TypeError, DataError): pass except SpecificationError: raise # multiples else: for col in obj: try: colg = self._gotitem(col, ndim=1, subset=obj[col]) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except ValueError: # cannot aggregate continue except SpecificationError: raise # if we are empty if not len(results): raise ValueError("no results") try: return concat(results, keys=keys, axis=1) except TypeError: # we are concatting non-NDFrame objects, # e.g. a list of scalars from pandas.core.dtypes.cast import is_nested_object from pandas import Series result = Series(results, index=keys, name=self.name) if is_nested_object(result): raise ValueError("cannot combine transform and " "aggregation operations") return result def _shallow_copy(self, obj=None, obj_type=None, **kwargs): """ return a new object with the replacement attributes """ if obj is None: obj = self._selected_obj.copy() if obj_type is None: obj_type = self._constructor if isinstance(obj, obj_type): obj = obj.obj for attr in self._attributes: if attr not in kwargs: kwargs[attr] = getattr(self, attr) return obj_type(obj, **kwargs) def _is_cython_func(self, arg): """ if we define an internal function for this argument, return it """ return self._cython_table.get(arg) def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return self._builtin_table.get(arg, arg) class GroupByMixin(object): """ provide the groupby facilities to the mixed object """ @staticmethod def _dispatch(name, *args, **kwargs): """ dispatch to apply """ def outer(self, *args, **kwargs): def f(x): x = self._shallow_copy(x, groupby=self._groupby) return getattr(x, name)(*args, **kwargs) return self._groupby.apply(f) outer.__name__ = name return outer def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj # we need to make a shallow copy of ourselves # with the same groupby kwargs = dict([(attr, getattr(self, attr)) for attr in self._attributes]) self = self.__class__(subset, groupby=self._groupby[key], parent=self, **kwargs) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self class IndexOpsMixin(object): """ common ops mixin to support a unified inteface / docs for Series / Index """ # ndarray compatibility __array_priority__ = 1000 def transpose(self, *args, **kwargs): """ return the transpose, which is by definition self """ nv.validate_transpose(args, kwargs) return self T = property(transpose, doc="return the transpose, which is by " "definition self") @property def shape(self): """ return a tuple of the shape of the underlying data """ return self._values.shape @property def ndim(self): """ return the number of dimensions of the underlying data, by definition 1 """ return 1 def item(self): """ return the first element of the underlying data as a python scalar """ try: return self.values.item() except IndexError: # copy numpy's message here because Py26 raises an IndexError raise ValueError('can only convert an array of size 1 to a ' 'Python scalar') @property def data(self): """ return the data pointer of the underlying data """ return self.values.data @property def itemsize(self): """ return the size of the dtype of the item of the underlying data """ return self._values.itemsize @property def nbytes(self): """ return the number of bytes in the underlying data """ return self._values.nbytes @property def strides(self): """ return the strides of the underlying data """ return self._values.strides @property def size(self): """ return the number of elements in the underlying data """ return self._values.size @property def flags(self): """ return the ndarray.flags for the underlying data """ return self.values.flags @property def base(self): """ return the base object if the memory of the underlying data is shared """ return self.values.base @property def _values(self): """ the internal implementation """ return self.values @property def empty(self): return not self.size def max(self): """ The maximum value of the object """ return nanops.nanmax(self.values) def argmax(self, axis=None): """ return a ndarray of the maximum argument indexer See also -------- numpy.ndarray.argmax """ return nanops.nanargmax(self.values) def min(self): """ The minimum value of the object """ return nanops.nanmin(self.values) def argmin(self, axis=None): """ return a ndarray of the minimum argument indexer See also -------- numpy.ndarray.argmin """ return nanops.nanargmin(self.values) def tolist(self): """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) See Also -------- numpy.ndarray.tolist """ if is_datetimelike(self): return [_maybe_box_datetimelike(x) for x in self._values] else: return self._values.tolist() def __iter__(self): """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return iter(self.tolist()) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ return isna(self).any() def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): """ perform the reduction type operation if we can """ func = getattr(self, name, None) if func is None: raise TypeError("{klass} cannot perform the operation {op}".format( klass=self.__class__.__name__, op=name)) return func(**kwds) def value_counts(self, normalize=False, sort=True, ascending=False, bins=None, dropna=True): """ Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : boolean, default False If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order bins : integer, optional Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data dropna : boolean, default True Don't include counts of NaN. Returns ------- counts : Series """ from pandas.core.algorithms import value_counts result = value_counts(self, sort=sort, ascending=ascending, normalize=normalize, bins=bins, dropna=dropna) return result _shared_docs['unique'] = ( """ Return unique values in the object. Uniques are returned in order of appearance, this does NOT sort. Hash table-based unique. Parameters ---------- values : 1d array-like Returns ------- unique values. - If the input is an Index, the return is an Index - If the input is a Categorical dtype, the return is a Categorical - If the input is a Series/ndarray, the return will be an ndarray See Also -------- unique Index.unique Series.unique """) @Appender(_shared_docs['unique'] % _indexops_doc_kwargs) def unique(self): values = self._values if hasattr(values, 'unique'): result = values.unique() else: from pandas.core.algorithms import unique1d result = unique1d(values) return result def nunique(self, dropna=True): """ Return number of unique elements in the object. Excludes NA values by default. Parameters ---------- dropna : boolean, default True Don't include NaN in the count. Returns ------- nunique : int """ uniqs = self.unique() n = len(uniqs) if dropna and isna(uniqs).any(): n -= 1 return n @property def is_unique(self): """ Return boolean if values in the object are unique Returns ------- is_unique : boolean """ return self.nunique() == len(self) @property def is_monotonic(self): """ Return boolean if values in the object are monotonic_increasing .. versionadded:: 0.19.0 Returns ------- is_monotonic : boolean """ from pandas import Index return Index(self).is_monotonic is_monotonic_increasing = is_monotonic @property def is_monotonic_decreasing(self): """ Return boolean if values in the object are monotonic_decreasing .. versionadded:: 0.19.0 Returns ------- is_monotonic_decreasing : boolean """ from pandas import Index return Index(self).is_monotonic_decreasing def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy See Also -------- numpy.ndarray.nbytes """ if hasattr(self.values, 'memory_usage'): return self.values.memory_usage(deep=deep) v = self.values.nbytes if deep and is_object_dtype(self) and not PYPY: v += lib.memory_usage_of_objects(self.values) return v def factorize(self, sort=False, na_sentinel=-1): """ Encode the object as an enumerated type or categorical variable Parameters ---------- sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark "not found" Returns ------- labels : the indexer to the original array uniques : the unique Index """ from pandas.core.algorithms import factorize return factorize(self, sort=sort, na_sentinel=na_sentinel) _shared_docs['searchsorted'] = ( """Find indices where elements should be inserted to maintain order. Find the indices into a sorted %(klass)s `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. See Also -------- numpy.searchsorted Notes ----- Binary search is used to find the required insertion points. Examples -------- >>> x = pd.Series([1, 2, 3]) >>> x 0 1 1 2 2 3 dtype: int64 >>> x.searchsorted(4) array([3]) >>> x.searchsorted([0, 4]) array([0, 3]) >>> x.searchsorted([1, 3], side='left') array([0, 2]) >>> x.searchsorted([1, 3], side='right') array([1, 3]) >>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk' ]) [apple, bread, bread, cheese, milk] Categories (4, object): [apple < bread < cheese < milk] >>> x.searchsorted('bread') array([1]) # Note: an array, not a scalar >>> x.searchsorted(['bread']) array([1]) >>> x.searchsorted(['bread', 'eggs']) array([1, 4]) >>> x.searchsorted(['bread', 'eggs'], side='right') array([3, 4]) # eggs before milk """) @Substitution(klass='IndexOpsMixin') @Appender(_shared_docs['searchsorted']) @deprecate_kwarg(old_arg_name='key', new_arg_name='value') def searchsorted(self, value, side='left', sorter=None): # needs coercion on the key (DatetimeIndex does already) return self.values.searchsorted(value, side=side, sorter=sorter) _shared_docs['drop_duplicates'] = ( """Return %(klass)s with duplicate values removed Parameters ---------- keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. %(inplace)s Returns ------- deduplicated : %(klass)s """) @Appender(_shared_docs['drop_duplicates'] % _indexops_doc_kwargs) def drop_duplicates(self, keep='first', inplace=False): inplace = validate_bool_kwarg(inplace, 'inplace') if isinstance(self, ABCIndexClass): if self.is_unique: return self._shallow_copy() duplicated = self.duplicated(keep=keep) result = self[np.logical_not(duplicated)] if inplace: return self._update_inplace(result) else: return result _shared_docs['duplicated'] = ( """Return boolean %(duplicated)s denoting duplicate values Parameters ---------- keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : %(duplicated)s """) @Appender(_shared_docs['duplicated'] % _indexops_doc_kwargs) def duplicated(self, keep='first'): from pandas.core.algorithms import duplicated if isinstance(self, ABCIndexClass): if self.is_unique: return np.zeros(len(self), dtype=np.bool) return duplicated(self, keep=keep) else: return self._constructor(duplicated(self, keep=keep), index=self.index).__finalize__(self) # ---------------------------------------------------------------------- # abstracts def _update_inplace(self, result, **kwargs): raise AbstractMethodError(self)
bsd-3-clause
TheCentralLimit/TopSecret
src/chis_code.py
1
1237
# -*- coding: utf-8 -*- """ Code written by Chi Nguyen. """ from __future__ import division, print_function from numpy.polynomial import polynomial as P from os import path #import matplotlib import emcee import corner import numpy as np import scipy.optimize as op import matplotlib.pyplot as pl from matplotlib.ticker import MaxNLocator #matplotlib.use('Agg') # group modulus import density as ds import mcmc # Reproducible results! np.random.seed(123) def chis_code(x_in,y_in,yerr_in,output_directory): # Transform M_c into log-space. index = check_nonzero(y_in) # exclude y = 0 x = x_in[index>0] y = y_in[index>0] yerr = yerr_in[index>0] print(len(yerr)) degree = 9 # degree of polynomial # least square fitting lam_ls = mcmc.least_square(x,y,yerr,degree,output_directory) lam_ml = mcmc.maximum_likelihood(x,y,yerr,degree,lam_ls,output_directory) lam_mcmc = mcmc.MCMC(x,y,yerr,degree,lam_ml,output_directory) return lam_mcmc def check_nonzero(y_in): index = (y_in[:]>10**(-15.0)).astype(int) return index def yerr_log(y,yerr): yerr_return = (np.log10(y+yerr) - np.log10(y-yerr)) pl.plot(y,yerr_return) pl.show return yerr_return
mit
ltiao/scikit-learn
sklearn/decomposition/__init__.py
76
1490
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF, non_negative_factorization from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'non_negative_factorization', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
sssllliang/BuildingMachineLearningSystemsWithPython
ch06/01_start.py
22
3955
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License # # This script trains multinomial Naive Bayes on the tweet corpus # to find two different results: # - How well can we distinguis positive from negative tweets? # - How well can we detect whether a tweet contains sentiment at all? # import time start_time = time.time() import numpy as np from sklearn.metrics import precision_recall_curve, roc_curve, auc from sklearn.cross_validation import ShuffleSplit from utils import plot_pr from utils import load_sanders_data from utils import tweak_labels from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.naive_bayes import MultinomialNB def create_ngram_model(): tfidf_ngrams = TfidfVectorizer(ngram_range=(1, 3), analyzer="word", binary=False) clf = MultinomialNB() pipeline = Pipeline([('vect', tfidf_ngrams), ('clf', clf)]) return pipeline def train_model(clf_factory, X, Y, name="NB ngram", plot=False): cv = ShuffleSplit( n=len(X), n_iter=10, test_size=0.3, random_state=0) train_errors = [] test_errors = [] scores = [] pr_scores = [] precisions, recalls, thresholds = [], [], [] for train, test in cv: X_train, y_train = X[train], Y[train] X_test, y_test = X[test], Y[test] clf = clf_factory() clf.fit(X_train, y_train) train_score = clf.score(X_train, y_train) test_score = clf.score(X_test, y_test) train_errors.append(1 - train_score) test_errors.append(1 - test_score) scores.append(test_score) proba = clf.predict_proba(X_test) fpr, tpr, roc_thresholds = roc_curve(y_test, proba[:, 1]) precision, recall, pr_thresholds = precision_recall_curve( y_test, proba[:, 1]) pr_scores.append(auc(recall, precision)) precisions.append(precision) recalls.append(recall) thresholds.append(pr_thresholds) scores_to_sort = pr_scores median = np.argsort(scores_to_sort)[len(scores_to_sort) / 2] if plot: plot_pr(pr_scores[median], name, "01", precisions[median], recalls[median], label=name) summary = (np.mean(scores), np.std(scores), np.mean(pr_scores), np.std(pr_scores)) print("%.3f\t%.3f\t%.3f\t%.3f\t" % summary) return np.mean(train_errors), np.mean(test_errors) def print_incorrect(clf, X, Y): Y_hat = clf.predict(X) wrong_idx = Y_hat != Y X_wrong = X[wrong_idx] Y_wrong = Y[wrong_idx] Y_hat_wrong = Y_hat[wrong_idx] for idx in range(len(X_wrong)): print("clf.predict('%s')=%i instead of %i" % (X_wrong[idx], Y_hat_wrong[idx], Y_wrong[idx])) if __name__ == "__main__": X_orig, Y_orig = load_sanders_data() classes = np.unique(Y_orig) for c in classes: print("#%s: %i" % (c, sum(Y_orig == c))) print("== Pos vs. neg ==") pos_neg = np.logical_or(Y_orig == "positive", Y_orig == "negative") X = X_orig[pos_neg] Y = Y_orig[pos_neg] Y = tweak_labels(Y, ["positive"]) train_model(create_ngram_model, X, Y, name="pos vs neg", plot=True) print("== Pos/neg vs. irrelevant/neutral ==") X = X_orig Y = tweak_labels(Y_orig, ["positive", "negative"]) train_model(create_ngram_model, X, Y, name="sent vs rest", plot=True) print("== Pos vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["positive"]) train_model(create_ngram_model, X, Y, name="pos vs rest", plot=True) print("== Neg vs. rest ==") X = X_orig Y = tweak_labels(Y_orig, ["negative"]) train_model(create_ngram_model, X, Y, name="neg vs rest", plot=True) print("time spent:", time.time() - start_time)
mit
benslice/ggplot
ggplot/components/smoothers.py
12
2576
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from pandas.lib import Timestamp import pandas as pd import statsmodels.api as sm from statsmodels.nonparametric.smoothers_lowess import lowess as smlowess from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.stats.outliers_influence import summary_table import scipy.stats as stats _isdate = lambda x: isinstance(x, Timestamp) SPAN = 2/3. ALPHA = 0.05 # significance level for confidence interval def snakify(txt): txt = txt.strip().lower() return '_'.join(txt.split()) def plot_friendly(value): if not isinstance(value, (np.ndarray, pd.Series)): value = pd.Series(value) return value def lm(x, y, alpha=ALPHA): "fits an OLS from statsmodels. returns tuple." x, y = map(plot_friendly, [x,y]) if _isdate(x[0]): x = np.array([i.toordinal() for i in x]) X = sm.add_constant(x) fit = sm.OLS(y, X).fit() prstd, iv_l, iv_u = wls_prediction_std(fit) _, summary_values, summary_names = summary_table(fit, alpha=alpha) df = pd.DataFrame(summary_values, columns=map(snakify, summary_names)) fittedvalues = df['predicted_value'] predict_mean_se = df['std_error_mean_predict'] predict_mean_ci_low = df['mean_ci_95%_low'] predict_mean_ci_upp = df['mean_ci_95%_upp'] predict_ci_low = df['predict_ci_95%_low'] predict_ci_upp = df['predict_ci_95%_upp'] return (x, fittedvalues.tolist(), predict_mean_ci_low.tolist(), predict_mean_ci_upp.tolist()) def lowess(x, y, span=SPAN): "returns y-values estimated using the lowess function in statsmodels." """ for more see statsmodels.nonparametric.smoothers_lowess.lowess """ x, y = map(plot_friendly, [x,y]) if _isdate(x[0]): x = np.array([i.toordinal() for i in x]) result = smlowess(np.array(y), np.array(x), frac=span) x = pd.Series(result[::,0]) y = pd.Series(result[::,1]) lower, upper = stats.t.interval(span, len(x), loc=0, scale=2) std = np.std(y) y1 = pd.Series(lower * std + y).tolist() y2 = pd.Series(upper * std + y).tolist() return (x, y, y1, y2) def mavg(x,y, window): "compute moving average" x, y = map(plot_friendly, [x,y]) if _isdate(x[0]): x = np.array([i.toordinal() for i in x]) std_err = pd.rolling_std(y, window) y = pd.rolling_mean(y, window) y1 = y - std_err y2 = y + std_err return (x, y, y1.tolist(), y2.tolist())
bsd-2-clause
cpcloud/ibis
ibis/impala/client.py
1
60067
import io import operator import re import threading import time import traceback import weakref from collections import deque from posixpath import join as pjoin import numpy as np import pandas as pd from pkg_resources import parse_version import ibis.common.exceptions as com import ibis.expr.datatypes as dt import ibis.expr.operations as ops import ibis.expr.rules as rlz import ibis.expr.schema as sch import ibis.expr.types as ir import ibis.util as util from ibis.client import Database, DatabaseEntity, Query, SQLClient from ibis.config import options from ibis.filesystems import HDFS, WebHDFS from ibis.impala import ddl, udf from ibis.impala.compat import HS2Error, ImpylaError, impyla from ibis.impala.compiler import ImpalaDialect, build_ast from ibis.sql.compiler import DDL, DML from ibis.util import log class ImpalaDatabase(Database): def create_table(self, table_name, obj=None, **kwargs): """ Dispatch to ImpalaClient.create_table. See that function's docstring for more """ return self.client.create_table( table_name, obj=obj, database=self.name, **kwargs ) def list_udfs(self, like=None): return self.client.list_udfs( like=self._qualify_like(like), database=self.name ) def list_udas(self, like=None): return self.client.list_udas( like=self._qualify_like(like), database=self.name ) class ImpalaConnection: """ Database connection wrapper """ def __init__(self, pool_size=8, database='default', **params): self.params = params self.database = database self.lock = threading.Lock() self.options = {} self.max_pool_size = pool_size self._connections = weakref.WeakSet() self.connection_pool = deque(maxlen=pool_size) self.connection_pool_size = 0 def set_options(self, options): self.options.update(options) def close(self): """ Close all open Impyla sessions """ for impyla_connection in self._connections: impyla_connection.close() self._connections.clear() self.connection_pool.clear() def set_database(self, name): self.database = name def disable_codegen(self, disabled=True): key = 'DISABLE_CODEGEN' if disabled: self.options[key] = '1' elif key in self.options: del self.options[key] def execute(self, query): if isinstance(query, (DDL, DML)): query = query.compile() cursor = self._get_cursor() self.log(query) try: cursor.execute(query) except Exception: cursor.release() self.error( 'Exception caused by {}: {}'.format( query, traceback.format_exc() ) ) raise return cursor def log(self, msg): log(msg) def error(self, msg): self.log(msg) def fetchall(self, query): with self.execute(query) as cur: results = cur.fetchall() return results def _get_cursor(self): try: cursor = self.connection_pool.popleft() except IndexError: # deque is empty if self.connection_pool_size < self.max_pool_size: return self._new_cursor() raise com.InternalError('Too many concurrent / hung queries') else: if ( cursor.database != self.database or cursor.options != self.options ): return self._new_cursor() cursor.released = False return cursor def _new_cursor(self): params = self.params.copy() con = impyla.connect(database=self.database, **params) self._connections.add(con) # make sure the connection works cursor = con.cursor(user=params.get('user'), convert_types=True) cursor.ping() wrapper = ImpalaCursor( cursor, self, con, self.database, self.options.copy() ) wrapper.set_options() return wrapper def ping(self): self._get_cursor()._cursor.ping() def release(self, cur): self.connection_pool.append(cur) class ImpalaCursor: def __init__(self, cursor, con, impyla_con, database, options): self._cursor = cursor self.con = con self.impyla_con = impyla_con self.database = database self.options = options self.released = False self.con.connection_pool_size += 1 def __del__(self): try: self._close_cursor() except Exception: pass with self.con.lock: self.con.connection_pool_size -= 1 def _close_cursor(self): try: self._cursor.close() except HS2Error as e: # connection was closed elsewhere already_closed_messages = [ 'invalid query handle', 'invalid session', ] for message in already_closed_messages: if message in e.args[0].lower(): break else: raise def __enter__(self): return self def __exit__(self, type, value, tb): self.release() def set_options(self): for k, v in self.options.items(): query = 'SET {} = {!r}'.format(k, v) self._cursor.execute(query) @property def description(self): return self._cursor.description def release(self): if not self.released: self.con.release(self) self.released = True def execute(self, stmt): self._cursor.execute_async(stmt) self._wait_synchronous() def _wait_synchronous(self): # Wait to finish, but cancel if KeyboardInterrupt from impala.hiveserver2 import OperationalError loop_start = time.time() def _sleep_interval(start_time): elapsed = time.time() - start_time if elapsed < 0.05: return 0.01 elif elapsed < 1.0: return 0.05 elif elapsed < 10.0: return 0.1 elif elapsed < 60.0: return 0.5 return 1.0 cur = self._cursor try: while True: state = cur.status() if self._cursor._op_state_is_error(state): raise OperationalError("Operation is in ERROR_STATE") if not cur._op_state_is_executing(state): break time.sleep(_sleep_interval(loop_start)) except KeyboardInterrupt: print('Canceling query') self.cancel() raise def is_finished(self): return not self.is_executing() def is_executing(self): return self._cursor.is_executing() def cancel(self): self._cursor.cancel_operation() def fetchone(self): return self._cursor.fetchone() def fetchall(self, columnar=False): if columnar: return self._cursor.fetchcolumnar() else: return self._cursor.fetchall() class ImpalaQuery(Query): def _fetch(self, cursor): batches = cursor.fetchall(columnar=True) names = [x[0] for x in cursor.description] df = _column_batches_to_dataframe(names, batches) # Ugly Hack for PY2 to ensure unicode values for string columns if self.expr is not None: # in case of metadata queries there is no expr and # self.schema() would raise an exception return self.schema().apply_to(df) return df def _column_batches_to_dataframe(names, batches): cols = {} for name, chunks in zip(names, zip(*[b.columns for b in batches])): cols[name] = _chunks_to_pandas_array(chunks) return pd.DataFrame(cols, columns=names) def _chunks_to_pandas_array(chunks): total_length = 0 have_nulls = False for c in chunks: total_length += len(c) have_nulls = have_nulls or c.nulls.any() type_ = chunks[0].data_type numpy_type = _HS2_TTypeId_to_dtype[type_] def fill_nonnull(target, chunks): pos = 0 for c in chunks: target[pos : pos + len(c)] = c.values pos += len(c.values) def fill(target, chunks, na_rep): pos = 0 for c in chunks: nulls = c.nulls.copy() nulls.bytereverse() bits = np.frombuffer(nulls.tobytes(), dtype='u1') mask = np.unpackbits(bits).view(np.bool_) k = len(c) dest = target[pos : pos + k] dest[:] = c.values dest[mask[:k]] = na_rep pos += k if have_nulls: if numpy_type in ('bool', 'datetime64[ns]'): target = np.empty(total_length, dtype='O') na_rep = np.nan elif numpy_type.startswith('int'): target = np.empty(total_length, dtype='f8') na_rep = np.nan else: target = np.empty(total_length, dtype=numpy_type) na_rep = np.nan fill(target, chunks, na_rep) else: target = np.empty(total_length, dtype=numpy_type) fill_nonnull(target, chunks) return target _HS2_TTypeId_to_dtype = { 'BOOLEAN': 'bool', 'TINYINT': 'int8', 'SMALLINT': 'int16', 'INT': 'int32', 'BIGINT': 'int64', 'TIMESTAMP': 'datetime64[ns]', 'FLOAT': 'float32', 'DOUBLE': 'float64', 'STRING': 'object', 'DECIMAL': 'object', 'BINARY': 'object', 'VARCHAR': 'object', 'CHAR': 'object', } class ImpalaDatabaseTable(ops.DatabaseTable): pass class ImpalaTable(ir.TableExpr, DatabaseEntity): """ References a physical table in the Impala-Hive metastore """ @property def _qualified_name(self): return self.op().args[0] @property def _unqualified_name(self): return self._match_name()[1] @property def _client(self): return self.op().source def _match_name(self): m = ddl.fully_qualified_re.match(self._qualified_name) if not m: raise com.IbisError( 'Cannot determine database name from {0}'.format( self._qualified_name ) ) db, quoted, unquoted = m.groups() return db, quoted or unquoted @property def _database(self): return self._match_name()[0] def compute_stats(self, incremental=False): """ Invoke Impala COMPUTE STATS command to compute column, table, and partition statistics. See also ImpalaClient.compute_stats """ return self._client.compute_stats( self._qualified_name, incremental=incremental ) def invalidate_metadata(self): self._client.invalidate_metadata(self._qualified_name) def refresh(self): self._client.refresh(self._qualified_name) def metadata(self): """ Return parsed results of DESCRIBE FORMATTED statement Returns ------- meta : TableMetadata """ return self._client.describe_formatted(self._qualified_name) describe_formatted = metadata def files(self): """ Return results of SHOW FILES statement """ return self._client.show_files(self._qualified_name) def drop(self): """ Drop the table from the database """ self._client.drop_table_or_view(self._qualified_name) def truncate(self): self._client.truncate_table(self._qualified_name) def insert( self, obj=None, overwrite=False, partition=None, values=None, validate=True, ): """ Insert into Impala table. Wraps ImpalaClient.insert Parameters ---------- obj : TableExpr or pandas DataFrame overwrite : boolean, default False If True, will replace existing contents of table partition : list or dict, optional For partitioned tables, indicate the partition that's being inserted into, either with an ordered list of partition keys or a dict of partition field name to value. For example for the partition (year=2007, month=7), this can be either (2007, 7) or {'year': 2007, 'month': 7}. validate : boolean, default True If True, do more rigorous validation that schema of table being inserted is compatible with the existing table Examples -------- >>> t.insert(table_expr) # doctest: +SKIP # Completely overwrite contents >>> t.insert(table_expr, overwrite=True) # doctest: +SKIP """ if isinstance(obj, pd.DataFrame): from ibis.impala.pandas_interop import write_temp_dataframe writer, expr = write_temp_dataframe(self._client, obj) else: expr = obj if values is not None: raise NotImplementedError if validate: existing_schema = self.schema() insert_schema = expr.schema() if not insert_schema.equals(existing_schema): _validate_compatible(insert_schema, existing_schema) if partition is not None: partition_schema = self.partition_schema() partition_schema_names = frozenset(partition_schema.names) expr = expr.projection( [ column for column in expr.columns if column not in partition_schema_names ] ) else: partition_schema = None ast = build_ast(expr, ImpalaDialect.make_context()) select = ast.queries[0] statement = ddl.InsertSelect( self._qualified_name, select, partition=partition, partition_schema=partition_schema, overwrite=overwrite, ) return self._execute(statement) def load_data(self, path, overwrite=False, partition=None): """ Wraps the LOAD DATA DDL statement. Loads data into an Impala table by physically moving data files. Parameters ---------- path : string overwrite : boolean, default False Overwrite the existing data in the entire table or indicated partition partition : dict, optional If specified, the partition must already exist Returns ------- query : ImpalaQuery """ if partition is not None: partition_schema = self.partition_schema() else: partition_schema = None stmt = ddl.LoadData( self._qualified_name, path, partition=partition, partition_schema=partition_schema, ) return self._execute(stmt) @property def name(self): return self.op().name def rename(self, new_name, database=None): """ Rename table inside Impala. References to the old table are no longer valid. Parameters ---------- new_name : string database : string Returns ------- renamed : ImpalaTable """ m = ddl.fully_qualified_re.match(new_name) if not m and database is None: database = self._database statement = ddl.RenameTable( self._qualified_name, new_name, new_database=database ) self._client._execute(statement) op = self.op().change_name(statement.new_qualified_name) return type(self)(op) def _execute(self, stmt): return self._client._execute(stmt) @property def is_partitioned(self): """ True if the table is partitioned """ return self.metadata().is_partitioned def partition_schema(self): """ For partitioned tables, return the schema (names and types) for the partition columns Returns ------- partition_schema : ibis Schema """ schema = self.schema() name_to_type = dict(zip(schema.names, schema.types)) result = self.partitions() partition_fields = [] for x in result.columns: if x not in name_to_type: break partition_fields.append((x, name_to_type[x])) pnames, ptypes = zip(*partition_fields) return sch.Schema(pnames, ptypes) def add_partition(self, spec, location=None): """ Add a new table partition, creating any new directories in HDFS if necessary. Partition parameters can be set in a single DDL statement, or you can use alter_partition to set them after the fact. Returns ------- None (for now) """ part_schema = self.partition_schema() stmt = ddl.AddPartition( self._qualified_name, spec, part_schema, location=location ) return self._execute(stmt) def alter( self, location=None, format=None, tbl_properties=None, serde_properties=None, ): """ Change setting and parameters of the table. Parameters ---------- location : string, optional For partitioned tables, you may want the alter_partition function format : string, optional tbl_properties : dict, optional serde_properties : dict, optional Returns ------- None (for now) """ def _run_ddl(**kwds): stmt = ddl.AlterTable(self._qualified_name, **kwds) return self._execute(stmt) return self._alter_table_helper( _run_ddl, location=location, format=format, tbl_properties=tbl_properties, serde_properties=serde_properties, ) def set_external(self, is_external=True): """ Toggle EXTERNAL table property. """ self.alter(tbl_properties={'EXTERNAL': is_external}) def alter_partition( self, spec, location=None, format=None, tbl_properties=None, serde_properties=None, ): """ Change setting and parameters of an existing partition Parameters ---------- spec : dict or list The partition keys for the partition being modified location : string, optional format : string, optional tbl_properties : dict, optional serde_properties : dict, optional Returns ------- None (for now) """ part_schema = self.partition_schema() def _run_ddl(**kwds): stmt = ddl.AlterPartition( self._qualified_name, spec, part_schema, **kwds ) return self._execute(stmt) return self._alter_table_helper( _run_ddl, location=location, format=format, tbl_properties=tbl_properties, serde_properties=serde_properties, ) def _alter_table_helper(self, f, **alterations): results = [] for k, v in alterations.items(): if v is None: continue result = f(**{k: v}) results.append(result) return results def drop_partition(self, spec): """ Drop an existing table partition """ part_schema = self.partition_schema() stmt = ddl.DropPartition(self._qualified_name, spec, part_schema) return self._execute(stmt) def partitions(self): """ Return a pandas.DataFrame giving information about this table's partitions. Raises an exception if the table is not partitioned. Returns ------- partitions : pandas.DataFrame """ return self._client.list_partitions(self._qualified_name) def stats(self): """ Return results of SHOW TABLE STATS as a DataFrame. If not partitioned, contains only one row Returns ------- stats : pandas.DataFrame """ return self._client.table_stats(self._qualified_name) def column_stats(self): """ Return results of SHOW COLUMN STATS as a pandas DataFrame Returns ------- column_stats : pandas.DataFrame """ return self._client.column_stats(self._qualified_name) class ImpalaClient(SQLClient): """ An Ibis client interface that uses Impala """ dialect = ImpalaDialect database_class = ImpalaDatabase query_class = ImpalaQuery table_class = ImpalaDatabaseTable table_expr_class = ImpalaTable def __init__(self, con, hdfs_client=None, **params): import hdfs self.con = con if isinstance(hdfs_client, hdfs.Client): hdfs_client = WebHDFS(hdfs_client) elif hdfs_client is not None and not isinstance(hdfs_client, HDFS): raise TypeError(hdfs_client) self._hdfs = hdfs_client self._kudu = None self._temp_objects = weakref.WeakSet() self._ensure_temp_db_exists() def _build_ast(self, expr, context): return build_ast(expr, context) def _get_hdfs(self): if self._hdfs is None: raise com.IbisError( 'No HDFS connection; must pass connection ' 'using the hdfs_client argument to ' 'ibis.impala.connect' ) return self._hdfs def _set_hdfs(self, hdfs): if not isinstance(hdfs, HDFS): raise TypeError('must be HDFS instance') self._hdfs = hdfs hdfs = property(fget=_get_hdfs, fset=_set_hdfs) @property def kudu(self): from ibis.impala.kudu_support import KuduImpalaInterface if self._kudu is None: self._kudu = KuduImpalaInterface(self) return self._kudu def close(self): """ Close Impala connection and drop any temporary objects """ for obj in self._temp_objects: try: obj.drop() except HS2Error: pass self.con.close() def disable_codegen(self, disabled=True): """ Turn off or on LLVM codegen in Impala query execution Parameters ---------- disabled : boolean, default True To disable codegen, pass with no argument or True. To enable codegen, pass False """ self.con.disable_codegen(disabled) def log(self, msg): log(msg) def _fully_qualified_name(self, name, database): if ddl._is_fully_qualified(name): return name database = database or self.current_database return '{0}.`{1}`'.format(database, name) def list_tables(self, like=None, database=None): """ List tables in the current (or indicated) database. Like the SHOW TABLES command in the impala-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' database : string, default None If not passed, uses the current/default database Returns ------- tables : list of strings """ statement = 'SHOW TABLES' if database: statement += ' IN {0}'.format(database) if like: m = ddl.fully_qualified_re.match(like) if m: database, quoted, unquoted = m.groups() like = quoted or unquoted return self.list_tables(like=like, database=database) statement += " LIKE '{0}'".format(like) with self._execute(statement, results=True) as cur: result = self._get_list(cur) return result def _get_list(self, cur): tuples = cur.fetchall() return list(map(operator.itemgetter(0), tuples)) def set_database(self, name): """ Set the default database scope for client """ self.con.set_database(name) def exists_database(self, name): """ Checks if a given database exists Parameters ---------- name : string Database name Returns ------- if_exists : boolean """ return bool(self.list_databases(like=name)) def create_database(self, name, path=None, force=False): """ Create a new Impala database Parameters ---------- name : string Database name path : string, default None HDFS path where to store the database data; otherwise uses Impala default """ if path: # explicit mkdir ensures the user own the dir rather than impala, # which is easier for manual cleanup, if necessary self.hdfs.mkdir(path) statement = ddl.CreateDatabase(name, path=path, can_exist=force) return self._execute(statement) def drop_database(self, name, force=False): """Drop an Impala database. Parameters ---------- name : string Database name force : bool, default False If False and there are any tables in this database, raises an IntegrityError """ if not force or self.exists_database(name): tables = self.list_tables(database=name) udfs = self.list_udfs(database=name) udas = self.list_udas(database=name) else: tables = [] udfs = [] udas = [] if force: for table in tables: self.log('Dropping {0}'.format('{0}.{1}'.format(name, table))) self.drop_table_or_view(table, database=name) for func in udfs: self.log( 'Dropping function {0}({1})'.format(func.name, func.inputs) ) self.drop_udf( func.name, input_types=func.inputs, database=name, force=True, ) for func in udas: self.log( 'Dropping aggregate function {0}({1})'.format( func.name, func.inputs ) ) self.drop_uda( func.name, input_types=func.inputs, database=name, force=True, ) else: if len(tables) > 0 or len(udfs) > 0 or len(udas) > 0: raise com.IntegrityError( 'Database {0} must be empty before ' 'being dropped, or set ' 'force=True'.format(name) ) statement = ddl.DropDatabase(name, must_exist=not force) return self._execute(statement) def list_databases(self, like=None): """ List databases in the Impala cluster. Like the SHOW DATABASES command in the impala-shell. Parameters ---------- like : string, default None e.g. 'foo*' to match all tables starting with 'foo' Returns ------- databases : list of strings """ statement = 'SHOW DATABASES' if like: statement += " LIKE '{0}'".format(like) with self._execute(statement, results=True) as cur: results = self._get_list(cur) return results def get_schema(self, table_name, database=None): """ Return a Schema object for the indicated table and database Parameters ---------- table_name : string May be fully qualified database : string, default None Returns ------- schema : ibis Schema """ qualified_name = self._fully_qualified_name(table_name, database) query = 'DESCRIBE {}'.format(qualified_name) # only pull out the first two columns which are names and types pairs = [row[:2] for row in self.con.fetchall(query)] names, types = zip(*pairs) ibis_types = [udf.parse_type(type.lower()) for type in types] names = [name.lower() for name in names] return sch.Schema(names, ibis_types) @property def client_options(self): return self.con.options @property def version(self): with self._execute('select version()', results=True) as cur: raw = self._get_list(cur)[0] vstring = raw.split()[2] return parse_version(vstring) def get_options(self): """ Return current query options for the Impala session """ query = 'SET' return dict(row[:2] for row in self.con.fetchall(query)) def set_options(self, options): self.con.set_options(options) def reset_options(self): # Must nuke all cursors raise NotImplementedError def set_compression_codec(self, codec): """ Parameters """ if codec is None: codec = 'none' else: codec = codec.lower() if codec not in ('none', 'gzip', 'snappy'): raise ValueError('Unknown codec: {0}'.format(codec)) self.set_options({'COMPRESSION_CODEC': codec}) def exists_table(self, name, database=None): """ Determine if the indicated table or view exists Parameters ---------- name : string database : string, default None Returns ------- if_exists : boolean """ return len(self.list_tables(like=name, database=database)) > 0 def create_view(self, name, expr, database=None): """ Create an Impala view from a table expression Parameters ---------- name : string expr : ibis TableExpr database : string, default None """ ast = self._build_ast(expr, ImpalaDialect.make_context()) select = ast.queries[0] statement = ddl.CreateView(name, select, database=database) return self._execute(statement) def drop_view(self, name, database=None, force=False): """ Drop an Impala view Parameters ---------- name : string database : string, default None force : boolean, default False Database may throw exception if table does not exist """ statement = ddl.DropView(name, database=database, must_exist=not force) return self._execute(statement) def create_table( self, table_name, obj=None, schema=None, database=None, external=False, force=False, # HDFS options format='parquet', location=None, partition=None, like_parquet=None, ): """ Create a new table in Impala using an Ibis table expression. This is currently designed for tables whose data is stored in HDFS (or eventually other filesystems). Parameters ---------- table_name : string obj : TableExpr or pandas.DataFrame, optional If passed, creates table from select statement results schema : ibis.Schema, optional Mutually exclusive with obj, creates an empty table with a particular schema database : string, default None (optional) force : boolean, default False Do not create table if table with indicated name already exists external : boolean, default False Create an external table; Impala will not delete the underlying data when the table is dropped format : {'parquet'} location : string, default None Specify the directory location where Impala reads and writes files for the table partition : list of strings Must pass a schema to use this. Cannot partition from an expression (create-table-as-select) like_parquet : string (HDFS path), optional Can specify in lieu of a schema Examples -------- >>> con.create_table('new_table_name', table_expr) # doctest: +SKIP """ if like_parquet is not None: raise NotImplementedError if obj is not None: if isinstance(obj, pd.DataFrame): from ibis.impala.pandas_interop import write_temp_dataframe writer, to_insert = write_temp_dataframe(self, obj) else: to_insert = obj ast = self._build_ast(to_insert, ImpalaDialect.make_context()) select = ast.queries[0] statement = ddl.CTAS( table_name, select, database=database, can_exist=force, format=format, external=external, partition=partition, path=location, ) elif schema is not None: statement = ddl.CreateTableWithSchema( table_name, schema, database=database, format=format, can_exist=force, external=external, path=location, partition=partition, ) else: raise com.IbisError('Must pass obj or schema') return self._execute(statement) def avro_file( self, hdfs_dir, avro_schema, name=None, database=None, external=True, persist=False, ): """ Create a (possibly temporary) table to read a collection of Avro data. Parameters ---------- hdfs_dir : string Absolute HDFS path to directory containing avro files avro_schema : dict The Avro schema for the data as a Python dict name : string, default None database : string, default None external : boolean, default True persist : boolean, default False Returns ------- avro_table : ImpalaTable """ name, database = self._get_concrete_table_path( name, database, persist=persist ) stmt = ddl.CreateTableAvro( name, hdfs_dir, avro_schema, database=database, external=external ) self._execute(stmt) return self._wrap_new_table(name, database, persist) def delimited_file( self, hdfs_dir, schema, name=None, database=None, delimiter=',', na_rep=None, escapechar=None, lineterminator=None, external=True, persist=False, ): """ Interpret delimited text files (CSV / TSV / etc.) as an Ibis table. See `parquet_file` for more exposition on what happens under the hood. Parameters ---------- hdfs_dir : string HDFS directory name containing delimited text files schema : ibis Schema name : string, default None Name for temporary or persistent table; otherwise random one generated database : string Database to create the (possibly temporary) table in delimiter : length-1 string, default ',' Pass None if there is no delimiter escapechar : length-1 string Character used to escape special characters lineterminator : length-1 string Character used to delimit lines external : boolean, default True Create table as EXTERNAL (data will not be deleted on drop). Not that if persist=False and external=False, whatever data you reference will be deleted persist : boolean, default False If True, do not delete the table upon garbage collection of ibis table object Returns ------- delimited_table : ImpalaTable """ name, database = self._get_concrete_table_path( name, database, persist=persist ) stmt = ddl.CreateTableDelimited( name, hdfs_dir, schema, database=database, delimiter=delimiter, external=external, na_rep=na_rep, lineterminator=lineterminator, escapechar=escapechar, ) self._execute(stmt) return self._wrap_new_table(name, database, persist) def parquet_file( self, hdfs_dir, schema=None, name=None, database=None, external=True, like_file=None, like_table=None, persist=False, ): """ Make indicated parquet file in HDFS available as an Ibis table. The table created can be optionally named and persisted, otherwise a unique name will be generated. Temporarily, for any non-persistent external table created by Ibis we will attempt to drop it when the underlying object is garbage collected (or the Python interpreter shuts down normally). Parameters ---------- hdfs_dir : string Path in HDFS schema : ibis Schema If no schema provided, and neither of the like_* argument is passed, one will be inferred from one of the parquet files in the directory. like_file : string Absolute path to Parquet file in HDFS to use for schema definitions. An alternative to having to supply an explicit schema like_table : string Fully scoped and escaped string to an Impala table whose schema we will use for the newly created table. name : string, optional random unique name generated otherwise database : string, optional Database to create the (possibly temporary) table in external : boolean, default True If a table is external, the referenced data will not be deleted when the table is dropped in Impala. Otherwise (external=False) Impala takes ownership of the Parquet file. persist : boolean, default False Do not drop the table upon Ibis garbage collection / interpreter shutdown Returns ------- parquet_table : ImpalaTable """ name, database = self._get_concrete_table_path( name, database, persist=persist ) # If no schema provided, need to find some absolute path to a file in # the HDFS directory if like_file is None and like_table is None and schema is None: file_name = self.hdfs._find_any_file(hdfs_dir) like_file = pjoin(hdfs_dir, file_name) stmt = ddl.CreateTableParquet( name, hdfs_dir, schema=schema, database=database, example_file=like_file, example_table=like_table, external=external, can_exist=False, ) self._execute(stmt) return self._wrap_new_table(name, database, persist) def _get_concrete_table_path(self, name, database, persist=False): if not persist: if name is None: name = '__ibis_tmp_{0}'.format(util.guid()) if database is None: self._ensure_temp_db_exists() database = options.impala.temp_db return name, database else: if name is None: raise com.IbisError('Must pass table name if persist=True') return name, database def _ensure_temp_db_exists(self): # TODO: session memoize to avoid unnecessary `SHOW DATABASES` calls name, path = options.impala.temp_db, options.impala.temp_hdfs_path if not self.exists_database(name): if self._hdfs is None: print( 'Without an HDFS connection, certain functionality' ' may be disabled' ) else: self.create_database(name, path=path, force=True) def _wrap_new_table(self, name, database, persist): qualified_name = self._fully_qualified_name(name, database) if persist: t = self.table(qualified_name) else: schema = self._get_table_schema(qualified_name) node = ImpalaTemporaryTable(qualified_name, schema, self) t = self.table_expr_class(node) # Compute number of rows in table for better default query planning cardinality = t.count().execute() set_card = ( "alter table {0} set tblproperties('numRows'='{1}', " "'STATS_GENERATED_VIA_STATS_TASK' = 'true')".format( qualified_name, cardinality ) ) self._execute(set_card) self._temp_objects.add(t) return t def text_file(self, hdfs_path, column_name='value'): """ Interpret text data as a table with a single string column. Parameters ---------- Returns ------- text_table : TableExpr """ pass def insert( self, table_name, obj=None, database=None, overwrite=False, partition=None, values=None, validate=True, ): """ Insert into existing table. See ImpalaTable.insert for other parameters. Parameters ---------- table_name : string database : string, default None Examples -------- >>> table = 'my_table' >>> con.insert(table, table_expr) # doctest: +SKIP # Completely overwrite contents >>> con.insert(table, table_expr, overwrite=True) # doctest: +SKIP """ table = self.table(table_name, database=database) return table.insert( obj=obj, overwrite=overwrite, partition=partition, values=values, validate=validate, ) def load_data( self, table_name, path, database=None, overwrite=False, partition=None ): """ Wraps the LOAD DATA DDL statement. Loads data into an Impala table by physically moving data files. Parameters ---------- table_name : string database : string, default None (optional) """ table = self.table(table_name, database=database) return table.load_data(path, overwrite=overwrite, partition=partition) def drop_table(self, table_name, database=None, force=False): """ Drop an Impala table Parameters ---------- table_name : string database : string, default None (optional) force : boolean, default False Database may throw exception if table does not exist Examples -------- >>> table = 'my_table' >>> db = 'operations' >>> con.drop_table(table, database=db, force=True) # doctest: +SKIP """ statement = ddl.DropTable( table_name, database=database, must_exist=not force ) self._execute(statement) def truncate_table(self, table_name, database=None): """ Delete all rows from, but do not drop, an existing table Parameters ---------- table_name : string database : string, default None (optional) """ statement = ddl.TruncateTable(table_name, database=database) self._execute(statement) def drop_table_or_view(self, name, database=None, force=False): """ Attempt to drop a relation that may be a view or table """ try: self.drop_table(name, database=database) except Exception as e: try: self.drop_view(name, database=database) except Exception: raise e def cache_table(self, table_name, database=None, pool='default'): """ Caches a table in cluster memory in the given pool. Parameters ---------- table_name : string database : string default None (optional) pool : string, default 'default' The name of the pool in which to cache the table Examples -------- >>> table = 'my_table' >>> db = 'operations' >>> pool = 'op_4GB_pool' >>> con.cache_table('my_table', database=db, pool=pool) # noqa: E501 # doctest: +SKIP """ statement = ddl.CacheTable(table_name, database=database, pool=pool) self._execute(statement) def _get_table_schema(self, tname): return self.get_schema(tname) def _get_schema_using_query(self, query): with self._execute(query, results=True) as cur: # resets the state of the cursor and closes operation cur.fetchall() names, ibis_types = self._adapt_types(cur.description) # per #321; most Impala tables will be lower case already, but Avro # data, depending on the version of Impala, might have field names in # the metastore cased according to the explicit case in the declared # avro schema. This is very annoying, so it's easier to just conform on # all lowercase fields from Impala. names = [x.lower() for x in names] return sch.Schema(names, ibis_types) def create_function(self, func, name=None, database=None): """ Creates a function within Impala Parameters ---------- func : ImpalaUDF or ImpalaUDA Created with wrap_udf or wrap_uda name : string (optional) database : string (optional) """ if name is None: name = func.name database = database or self.current_database if isinstance(func, udf.ImpalaUDF): stmt = ddl.CreateUDF(func, name=name, database=database) elif isinstance(func, udf.ImpalaUDA): stmt = ddl.CreateUDA(func, name=name, database=database) else: raise TypeError(func) self._execute(stmt) def drop_udf( self, name, input_types=None, database=None, force=False, aggregate=False, ): """ Drops a UDF If only name is given, this will search for the relevant UDF and drop it. To delete an overloaded UDF, give only a name and force=True Parameters ---------- name : string input_types : list of strings (optional) force : boolean, default False Must be set to true to drop overloaded UDFs database : string, default None aggregate : boolean, default False """ if not input_types: if not database: database = self.current_database result = self.list_udfs(database=database, like=name) if len(result) > 1: if force: for func in result: self._drop_single_function( func.name, func.inputs, database=database, aggregate=aggregate, ) return else: raise Exception( "More than one function " + "with {0} found.".format(name) + "Please specify force=True" ) elif len(result) == 1: func = result.pop() self._drop_single_function( func.name, func.inputs, database=database, aggregate=aggregate, ) return else: raise Exception("No function found with name {0}".format(name)) self._drop_single_function( name, input_types, database=database, aggregate=aggregate ) def drop_uda(self, name, input_types=None, database=None, force=False): """ Drop aggregate function. See drop_udf for more information on the parameters. """ return self.drop_udf( name, input_types=input_types, database=database, force=force ) def _drop_single_function( self, name, input_types, database=None, aggregate=False ): stmt = ddl.DropFunction( name, input_types, must_exist=False, aggregate=aggregate, database=database, ) self._execute(stmt) def _drop_all_functions(self, database): udfs = self.list_udfs(database=database) for fnct in udfs: stmt = ddl.DropFunction( fnct.name, fnct.inputs, must_exist=False, aggregate=False, database=database, ) self._execute(stmt) udafs = self.list_udas(database=database) for udaf in udafs: stmt = ddl.DropFunction( udaf.name, udaf.inputs, must_exist=False, aggregate=True, database=database, ) self._execute(stmt) def list_udfs(self, database=None, like=None): """ Lists all UDFs associated with given database Parameters ---------- database : string like : string for searching (optional) """ if not database: database = self.current_database statement = ddl.ListFunction(database, like=like, aggregate=False) with self._execute(statement, results=True) as cur: result = self._get_udfs(cur, udf.ImpalaUDF) return result def list_udas(self, database=None, like=None): """ Lists all UDAFs associated with a given database Parameters ---------- database : string like : string for searching (optional) """ if not database: database = self.current_database statement = ddl.ListFunction(database, like=like, aggregate=True) with self._execute(statement, results=True) as cur: result = self._get_udfs(cur, udf.ImpalaUDA) return result def _get_udfs(self, cur, klass): def _to_type(x): ibis_type = udf._impala_type_to_ibis(x.lower()) return dt.dtype(ibis_type) tuples = cur.fetchall() if len(tuples) > 0: result = [] for tup in tuples: out_type, sig = tup[:2] name, types = _split_signature(sig) types = _type_parser(types).types inputs = [] for arg in types: argm = _arg_type.match(arg) var, simple = argm.groups() if simple: t = _to_type(simple) inputs.append(t) else: t = _to_type(var) inputs = rlz.listof(t) # TODO # inputs.append(varargs(t)) break output = udf._impala_type_to_ibis(out_type.lower()) result.append(klass(inputs, output, name=name)) return result else: return [] def exists_udf(self, name, database=None): """ Checks if a given UDF exists within a specified database Parameters ---------- name : string, UDF name database : string, database name Returns ------- if_exists : boolean """ return len(self.list_udfs(database=database, like=name)) > 0 def exists_uda(self, name, database=None): """ Checks if a given UDAF exists within a specified database Parameters ---------- name : string, UDAF name database : string, database name Returns ------- if_exists : boolean """ return len(self.list_udas(database=database, like=name)) > 0 def compute_stats(self, name, database=None, incremental=False): """ Issue COMPUTE STATS command for a given table Parameters ---------- name : string Can be fully qualified (with database name) database : string, optional incremental : boolean, default False If True, issue COMPUTE INCREMENTAL STATS """ maybe_inc = 'INCREMENTAL ' if incremental else '' cmd = 'COMPUTE {0}STATS'.format(maybe_inc) stmt = self._table_command(cmd, name, database=database) self._execute(stmt) def invalidate_metadata(self, name=None, database=None): """ Issue INVALIDATE METADATA command, optionally only applying to a particular table. See Impala documentation. Parameters ---------- name : string, optional Table name. Can be fully qualified (with database) database : string, optional """ stmt = 'INVALIDATE METADATA' if name is not None: stmt = self._table_command(stmt, name, database=database) self._execute(stmt) def refresh(self, name, database=None): """ Reload HDFS block location metadata for a table, for example after ingesting data as part of an ETL pipeline. Related to INVALIDATE METADATA. See Impala documentation for more. Parameters ---------- name : string Table name. Can be fully qualified (with database) database : string, optional """ # TODO(wesm): can this statement be cancelled? stmt = self._table_command('REFRESH', name, database=database) self._execute(stmt) def describe_formatted(self, name, database=None): """ Retrieve results of DESCRIBE FORMATTED command. See Impala documentation for more. Parameters ---------- name : string Table name. Can be fully qualified (with database) database : string, optional """ from ibis.impala.metadata import parse_metadata stmt = self._table_command( 'DESCRIBE FORMATTED', name, database=database ) query = ImpalaQuery(self, stmt) result = query.execute() # Leave formatting to pandas for c in result.columns: result[c] = result[c].str.strip() return parse_metadata(result) def show_files(self, name, database=None): """ Retrieve results of SHOW FILES command for a table. See Impala documentation for more. Parameters ---------- name : string Table name. Can be fully qualified (with database) database : string, optional """ stmt = self._table_command('SHOW FILES IN', name, database=database) return self._exec_statement(stmt) def list_partitions(self, name, database=None): stmt = self._table_command('SHOW PARTITIONS', name, database=database) return self._exec_statement(stmt) def table_stats(self, name, database=None): """ Return results of SHOW TABLE STATS for indicated table. See also ImpalaTable.stats """ stmt = self._table_command('SHOW TABLE STATS', name, database=database) return self._exec_statement(stmt) def column_stats(self, name, database=None): """ Return results of SHOW COLUMN STATS for indicated table. See also ImpalaTable.column_stats """ stmt = self._table_command( 'SHOW COLUMN STATS', name, database=database ) return self._exec_statement(stmt) def _exec_statement(self, stmt, adapter=None): query = ImpalaQuery(self, stmt) result = query.execute() if adapter is not None: result = adapter(result) return result def _table_command(self, cmd, name, database=None): qualified_name = self._fully_qualified_name(name, database) return '{0} {1}'.format(cmd, qualified_name) def _adapt_types(self, descr): names = [] adapted_types = [] for col in descr: names.append(col[0]) impala_typename = col[1] typename = udf._impala_to_ibis_type[impala_typename.lower()] if typename == 'decimal': precision, scale = col[4:6] adapted_types.append(dt.Decimal(precision, scale)) else: adapted_types.append(typename) return names, adapted_types def write_dataframe(self, df, path, format='csv'): """ Write a pandas DataFrame to indicated file path (default: HDFS) in the indicated format Parameters ---------- df : DataFrame path : string Absolute output path format : {'csv'}, default 'csv' Returns ------- None (for now) """ from ibis.impala.pandas_interop import DataFrameWriter writer = DataFrameWriter(self, df) return writer.write_csv(path) # ---------------------------------------------------------------------- # ORM-ish usability layer class ScalarFunction(DatabaseEntity): def drop(self): pass class AggregateFunction(DatabaseEntity): def drop(self): pass class ImpalaTemporaryTable(ops.DatabaseTable): def __del__(self): try: self.drop() except com.IbisError: pass def drop(self): try: self.source.drop_table(self.name) except ImpylaError: # database might have been dropped pass def _validate_compatible(from_schema, to_schema): if set(from_schema.names) != set(to_schema.names): raise com.IbisInputError('Schemas have different names') for name in from_schema: lt = from_schema[name] rt = to_schema[name] if not lt.castable(rt): raise com.IbisInputError( 'Cannot safely cast {0!r} to {1!r}'.format(lt, rt) ) def _split_signature(x): name, rest = x.split('(', 1) return name, rest[:-1] _arg_type = re.compile(r'(.*)\.\.\.|([^\.]*)') class _type_parser: NORMAL, IN_PAREN = 0, 1 def __init__(self, value): self.value = value self.state = self.NORMAL self.buf = io.StringIO() self.types = [] for c in value: self._step(c) self._push() def _push(self): val = self.buf.getvalue().strip() if val: self.types.append(val) self.buf = io.StringIO() def _step(self, c): if self.state == self.NORMAL: if c == '(': self.state = self.IN_PAREN elif c == ',': self._push() return elif self.state == self.IN_PAREN: if c == ')': self.state = self.NORMAL self.buf.write(c)
apache-2.0
Silmathoron/nest-simulator
pynest/examples/brette_gerstner_fig_3d.py
12
3030
# -*- coding: utf-8 -*- # # brette_gerstner_fig_3d.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """Testing the adapting exponential integrate and fire model in NEST (Brette and Gerstner Fig 3D) ---------------------------------------------------------------------------------------------------- This example tests the adaptive integrate and fire model (AdEx) according to Brette and Gerstner [1]_ reproduces Figure 3D of the paper. Note that Brette and Gerstner give the value for `b` in `nA`. To be consistent with the other parameters in the equations, `b` must be converted to `pA` (pico Ampere). References ~~~~~~~~~~~ .. [1] Brette R and Gerstner W (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity J. Neurophysiology. https://doi.org/10.1152/jn.00686.2005 """ import nest import nest.voltage_trace import matplotlib.pyplot as plt nest.ResetKernel() ############################################################################### # First we make sure that the resolution of the simulation is 0.1 ms. This is # important, since the slop of the action potential is very steep. res = 0.1 nest.SetKernelStatus({"resolution": res}) neuron = nest.Create("aeif_cond_exp") ############################################################################### # Set the parameters of the neuron according to the paper. neuron.set(V_peak=20., E_L=-60.0, a=80.0, b=80.5, tau_w=720.0) ############################################################################### # Create and configure the stimulus which is a step current. dc = nest.Create("dc_generator") dc.set(amplitude=-800.0, start=0.0, stop=400.0) ############################################################################### # We connect the DC generators. nest.Connect(dc, neuron, 'all_to_all') ############################################################################### # And add a ``voltmeter`` to sample the membrane potentials from the neuron # in intervals of 0.1 ms. voltmeter = nest.Create("voltmeter", params={'interval': 0.1}) nest.Connect(voltmeter, neuron) ############################################################################### # Finally, we simulate for 1000 ms and plot a voltage trace to produce the # figure. nest.Simulate(1000.0) nest.voltage_trace.from_device(voltmeter) plt.axis([0, 1000, -85, 0]) nest.voltage_trace.show()
gpl-2.0
iulian787/spack
var/spack/repos/builtin/packages/bart/package.py
2
3092
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Bart(MakefilePackage, CudaPackage): """BART: Toolbox for Computational Magnetic Resonance Imaging""" homepage = "https://mrirecon.github.io/bart/" url = "https://github.com/mrirecon/bart/archive/v0.5.00.tar.gz" version('0.6.00', sha256='dbbd33d1e3ed3324fe21f90a3b62cb51765fe369f21df100b46a32004928f18d') version('0.5.00', sha256='30eedcda0f0ef3808157542e0d67df5be49ee41e4f41487af5c850632788f643') # patch to fix build with MKL patch('https://github.com/mrirecon/bart/commit/b62ca4972d5ac41a44217a5c27123c15daae74db.patch', sha256='8fd1be181da928448da750b32d45ee6dce7ba6af0424617c4f8d653cf3f05445', when='@0.5.00') # patch to fix Makefile for openblas and cuda patch('Makefile.patch') # patch to set path to bart patch('bart_path-0.5.00.patch', when='@0.5.00') patch('bart_path-0.6.00.patch', when='@0.6.00') depends_on('libpng') depends_on('fftw') depends_on('blas') depends_on('lapack') depends_on('py-numpy', type='run') depends_on('py-matplotlib', type='run') extends('python') conflicts('^atlas', msg='BART does not currently support atlas') def edit(self, spec, prefix): env['PREFIX'] = prefix env['FFTW_BASE'] = spec['fftw'].prefix if spec['blas'].name == 'openblas': env['OPENBLAS'] = '1' if spec['blas'].name in ['intel-mkl', 'intel-parallel-studio']: env['MKL'] = '1' env['MKL_BASE'] = env['MKLROOT'] else: env['BLAS_BASE'] = spec['blas'].prefix if '^netlib-lapack+lapacke' not in spec: env['NOLAPACKE'] = '1' if '+cuda' in spec: cuda_arch = self.spec.variants['cuda_arch'].value env['CUDA'] = '1' env['CUDA_BASE'] = spec['cuda'].prefix env['GPUARCH_FLAGS'] = ' '.join(self.cuda_flags(cuda_arch)) def install(self, spec, prefix): python_dir = join_path(prefix, spec['python'].package.site_packages_dir) make('install') install_tree('scripts', prefix.scripts) install_tree('matlab', prefix.matlab) install('startup.m', prefix) install('python/bart.py', python_dir) install('python/cfl.py', python_dir) install('python/wslsupport.py', python_dir) if '^python@3:' in spec: install('python/bartview3.py', join_path(prefix.bin, 'bartview')) filter_file(r'#!/usr/bin/python3', '#!/usr/bin/env python', prefix.bin.bartview) else: install('python/bartview.py', join_path(prefix.bin, 'bartview')) filter_file(r'#!/usr/bin/python', '#!/usr/bin/env python', prefix.bin.bartview) def setup_run_environment(self, env): env.set('TOOLBOX_PATH', self.prefix)
lgpl-2.1
Locottus/Python
polygonsKML.py
1
2599
import pandas as pd import glob import os import datetime import random import decimal #https://developers.google.com/kml/documentation/kml_tut #global vars path = "." all_files = glob.glob(os.path.join(path, "*.csv")) #make list of files in path now = datetime.datetime.now() #get current date for output file fname = 'Polygon' + str(now.day) + str(now.month) + str(now.year) + '.kml' f = open(fname , 'w')#open output file with current date xmlHeader = """<?xml version="1.0" encoding="UTF-8"?> <kml xmlns="http://www.opengis.net/kml/2.2" xmlns:gx="http://www.google.com/kml/ext/2.2" xmlns:kml="http://www.opengis.net/kml/2.2" xmlns:atom="http://www.w3.org/2005/Atom"> <Document>\n""" xmlFooter = '\n</Document>\n</kml>\n' def pointConcat(df): for index, row in df.iterrows(): line = str(row[0]) + ',' + str(row[1]) + ',' + str(row[2]) + '.' f.write(line + '\n') print(line) def polygonCreation(df,p): line = """\n<Placemark> <name>""" + p + """</name> <Polygon> <tessellate>1</tessellate> <extrude>1</extrude> <gx:altitudeMode>relativeToGround</gx:altitudeMode> <outerBoundaryIs> <LinearRing> <coordinates>\n""" f.write(line) strude = str(decimal.Decimal(random.randrange(250, 400))/100)#random strude from 2.50 to 4.00 for index, row in df.iterrows(): if ((str(row[6]) == p )): line = str(row[0]) + ',' + str(row[1]) + ',' + strude f.write(line + '\n') print(line) line = """ </coordinates> </LinearRing> </outerBoundaryIs> </Polygon> </Placemark> \n""" f.write(line) def isPolygon(df,p): for index, row in df.iterrows(): if ((str(row[6]) == str(p))): return row[7]; return False #main() f.write(xmlHeader + '\n')#write header for file in all_files: # Getting the file name without extension file_name = os.path.splitext(os.path.basename(file))[0] # Reading the file content to create a DataFrame dataFile = pd.read_csv(file, header=None) df = pd.DataFrame(dataFile) polygons = df[6].unique() for p in polygons: if (isPolygon(df,p)): print('******' + str(p)) polygonCreation(df,str(p)) #pointConcat(df) f.write(xmlFooter+ '\n')#write footer f.close() print('end of line') #my output file contains Longitude,Latitude,Altitude in a csv file. #-90.5298628393332,14.608550970260422,1524.911447514169,2.1963847,1519558183000,8.0,comment,TRUE,num_poly
mit
IBMStreams/streamsx.topology
com.ibm.streamsx.topology/opt/python/packages/streamsx/topology/context.py
1
79645
# coding=utf-8 # Licensed Materials - Property of IBM # Copyright IBM Corp. 2015,2020 """ Context for submission and build of topologies. """ __all__ = ['ContextTypes', 'ConfigParams', 'JobConfig', 'SubmissionResult', 'submit', 'build', 'run'] import logging import os import os.path import shutil import json import platform import subprocess import threading import sys import codecs import tempfile import copy import time import warnings import streamsx.rest import streamsx.rest_primitives import streamsx._streams._version import urllib.parse as up __version__ = streamsx._streams._version.__version__ logger = logging.getLogger(__name__) # # Submission of a python graph using the Java Application API # The JAA is reused to have a single set of code_createJSONFile that creates # SPL, the toolkit, the bundle and submits it to the relevant # environment # def submit(ctxtype, graph, config=None, username=None, password=None): """ Submits a `Topology` (application) using the specified context type. Used to submit an application for compilation into a Streams application and execution within an Streaming Analytics service or IBM Streams instance. `ctxtype` defines how the application will be submitted, see :py:class:`ContextTypes`. The parameters `username` and `password` are only required when submitting to an IBM Streams instance and it is required to access the Streams REST API from the code performing the submit. Accessing data from views created by :py:meth:`~streamsx.topology.topology.Stream.view` requires access to the Streams REST API. Args: ctxtype(str): Type of context the application will be submitted to. A value from :py:class:`ContextTypes`. graph(Topology): The application topology to be submitted. config(dict): Configuration for the submission, augmented with values such as a :py:class:`JobConfig` or keys from :py:class:`ConfigParams`. username(str): Deprecated: Username for the Streams REST api. Use environment variable ``STREAMS_USERNAME`` if using user-password authentication. password(str): Deprecated: Password for `username`. Use environment variable ``STREAMS_PASSWORD`` if using user-password authentication. Returns: SubmissionResult: Result of the submission. Content depends on :py:class:`ContextTypes` constant passed as `ctxtype`. """ streamsx._streams._version._mismatch_check(__name__) graph = graph.graph if not graph.operators: raise ValueError("Topology {0} does not contain any streams.".format(graph.topology.name)) if username or password: warnings.warn("Use environment variables STREAMS_USERNAME and STREAMS_PASSWORD", DeprecationWarning, stacklevel=2) context_submitter = _SubmitContextFactory(graph, config, username, password).get_submit_context(ctxtype) sr = SubmissionResult(context_submitter.submit()) sr._submitter = context_submitter return sr def build(topology, config=None, dest=None, verify=None): """ Build a topology to produce a Streams application bundle. Builds a topology using :py:func:`submit` with context type :py:const:`~ContextTypes.BUNDLE`. The result is a sab file on the local file system along with a job config overlay file matching the application. The build uses a build service or a local install, see :py:const:`~ContextTypes.BUNDLE` for details. Args: topology(Topology): Application topology to be built. config(dict): Configuration for the build. dest(str): Destination directory for the sab and JCO files. Default is context specific. verify: SSL verification used by requests when using a build service. Defaults to enabling SSL verification. Returns: 3-element tuple containing - **bundle_path** (*str*): path to the bundle (sab file) or ``None`` if not created. - **jco_path** (*str*): path to file containing the job config overlay for the application or ``None`` if not created. - **result** (*SubmissionResult*): value returned from ``submit``. .. seealso:: :py:const:`~ContextTypes.BUNDLE` for details on how to configure the build service to use. .. versionadded:: 1.14 """ if verify is not None: config = config.copy() if config else dict() config[ConfigParams.SSL_VERIFY] = verify sr = submit(ContextTypes.BUNDLE, topology, config=config) if 'bundlePath' in sr: if dest: bundle = sr['bundlePath'] bundle_dest = os.path.join(dest, os.path.basename(bundle)) if os.path.exists(bundle_dest): os.remove(bundle_dest) shutil.move(bundle, dest) sr['bundlePath'] = bundle_dest jco = sr['jobConfigPath'] jco_dest = os.path.join(dest, os.path.basename(jco)) if os.path.exists(jco_dest): os.remove(jco_dest) shutil.move(jco, dest) sr['jobConfigPath'] = jco_dest return sr['bundlePath'], sr['jobConfigPath'], sr return None, None, sr class _BaseSubmitter(object): """ A submitter which handles submit operations common across all submitter types.. """ def __init__(self, ctxtype, config, graph): self.ctxtype = ctxtype self.config = dict() if config is not None: # Make copy of config to avoid modifying # the callers config self.config.update(config) # When SERVICE_DEFINITION is a String, it is assumed that # it is JSON SAS credentials, which must be converted to a JSON object service_def = self.config.get(ConfigParams.SERVICE_DEFINITION) if service_def: if isinstance(service_def, str): self.config[ConfigParams.SERVICE_DEFINITION] = json.loads(service_def) self.config['contextType'] = str(self.ctxtype) if 'originator' not in self.config: self.config['originator'] = 'topology-' + __version__ + ':python-' + platform.python_version() self.graph = graph self.fn = None self.results_file = None self.keepArtifacts = False if 'topology.keepArtifacts' in self.config: self.keepArtifacts = self.config.get('topology.keepArtifacts') def _config(self): "Return the submit configuration" return self.config def submit(self): # Convert the JobConfig into overlays self._create_job_config_overlays() # encode the relevant python version information into the config self._add_python_info() # Create the json file containing the representation of the application try: self._create_json_file(self._create_full_json()) except IOError: logger.error("Error writing json graph to file.") raise try: return self._submit_exec() finally: if not self.keepArtifacts: _delete_json(self) def _submit_exec(self): tk_root = self._get_toolkit_root() cp = os.path.join(tk_root, "lib", "com.ibm.streamsx.topology.jar") remote_context = False streams_install = os.environ.get('STREAMS_INSTALL') # If there is no streams install, get java from JAVA_HOME and use the remote contexts. if streams_install is None: java_home = os.environ.get('JAVA_HOME') if java_home is None: raise ValueError("JAVA_HOME not found. Please set the JAVA_HOME system variable") jvm = os.path.join(java_home, "bin", "java") remote_context = True # Otherwise, use the Java version from the streams install else: jvm = os.path.join(streams_install, "java", "jre", "bin", "java") if self.config.get(ConfigParams.FORCE_REMOTE_BUILD): remote_context = True cp = cp + ':' + os.path.join(streams_install, "lib", "com.ibm.streams.operator.samples.jar") progress_fn = lambda _ : None if remote_context: submit_class = "com.ibm.streamsx.topology.context.remote.RemoteContextSubmit" try: # Verify we are in a IPython env. get_ipython() # noqa : F821 import ipywidgets as widgets logger.debug("ipywidgets available - creating IntProgress") progress_bar = widgets.IntProgress( value=0, min=0, max=10, step=1, description='Initializing', bar_style='info', orientation='horizontal', style={'description_width':'initial'}) logger.debug("ipywidgets available - created IntProgress") try: display(progress_bar) # noqa : F821 def _show_progress(msg): if msg is True: progress_bar.value = progress_bar.max progress_bar.bar_style = 'success' return if msg is False: progress_bar.bar_style = 'danger' return msg = msg.split('-') progress_bar.value += 1 progress_bar.description = msg[3] progress_fn = _show_progress except: logger.debug("ipywidgets IntProgress error: %s", sys.exc_info()[1]) pass except: logger.debug("ipywidgets not available: %s", sys.exc_info()[1]) pass else: submit_class = "com.ibm.streamsx.topology.context.local.StreamsContextSubmit" jul_cfg = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'logging.properties') jul = '-Djava.util.logging.config.file=' + jul_cfg args = [jvm, '-classpath', cp, jul, submit_class, self.ctxtype, self.fn, str(logging.getLogger().getEffectiveLevel())] logger.info("Generating SPL and submitting application.") proc_env = self._get_java_env() process = subprocess.Popen(args, stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=0, env=proc_env) stderr_thread = threading.Thread(target=_print_process_stderr, args=([process, self, progress_fn])) stderr_thread.daemon = True stderr_thread.start() stdout_thread = threading.Thread(target=_print_process_stdout, args=([process])) stdout_thread.daemon = True stdout_thread.start() process.wait() results_json = {} # Only try to read the results file if the submit was successful. if process.returncode == 0: with open(self.results_file) as _file: try: results_json = json.loads(_file.read()) progress_fn(True) except IOError: logger.error("Could not read file:" + str(_file.name)) progress_fn(False) raise except json.JSONDecodeError: logger.error("Could not parse results file:" + str(_file.name)) progress_fn(False) raise except: logger.error("Unknown error while processing results file.") progress_fn(False) raise else: progress_fn(False) results_json['return_code'] = process.returncode self._augment_submission_result(results_json) self.submission_results = results_json return results_json def _augment_submission_result(self, submission_result): """Allow a subclass to augment a submission result""" pass def _get_java_env(self): "Get the environment to be passed to the Java execution" return os.environ.copy() def _add_python_info(self): # Python information added to deployment pi = {} pi["prefix"] = sys.exec_prefix pi["version"] = sys.version pi['major'] = sys.version_info.major pi['minor'] = sys.version_info.minor self.config["python"] = pi def _create_job_config_overlays(self): if ConfigParams.JOB_CONFIG in self.config: jco = self.config[ConfigParams.JOB_CONFIG] del self.config[ConfigParams.JOB_CONFIG] jco._add_overlays(self.config) def _create_full_json(self): fj = dict() # Removing Streams Connection object because it is not JSON serializable, and not applicable for submission # Need to re-add it, since the StreamsConnection needs to be returned from the submit. sc = self.config.pop(ConfigParams.STREAMS_CONNECTION, None) fj["deploy"] = self.config.copy() fj["graph"] = self.graph.generateSPLGraph() _file = tempfile.NamedTemporaryFile(prefix="results", suffix=".json", mode="w+t", delete=False) _file.close() fj["submissionResultsFile"] = _file.name self.results_file = _file.name logger.debug("Results file created at " + _file.name) if sc is not None: self.config[ConfigParams.STREAMS_CONNECTION] = sc return fj def _create_json_file(self, fj): if sys.hexversion < 0x03000000: tf = tempfile.NamedTemporaryFile(mode="w+t", suffix=".json", prefix="splpytmp", delete=False) else: tf = tempfile.NamedTemporaryFile(mode="w+t", suffix=".json", encoding="UTF-8", prefix="splpytmp", delete=False) tf.write(json.dumps(fj, sort_keys=True, indent=2, separators=(',', ': '))) tf.close() self.fn = tf.name def _setup_views(self): # Link each view back to this context. for view in self.graph._views: view.stop_data_fetch() view._submit_context = self def streams_connection(self): raise NotImplementedError("Views require submission to DISTRIBUTED or ANALYTICS_SERVICE context") # There are two modes for execution. # # Pypi (Python focused) # Pypi (pip install) package includes the SPL toolkit as # streamsx/.toolkit/com.ibm.streamsx.topology # However the streamsx Python packages have been moved out # of the toolkit's (opt/python/package) compared # to the original toolkit layout. They are moved to the # top level of the pypi package. # # SPL Toolkit (SPL focused): # Streamsx Python packages are executed from opt/python/packages # # This function determines the root of the SPL toolkit based # upon the existance of the '.toolkit' directory. # @staticmethod def _get_toolkit_root(): # Directory of this file (streamsx/topology) dir = os.path.dirname(os.path.abspath(__file__)) # This is streamsx dir = os.path.dirname(dir) # See if .toolkit exists, if so executing from # a pip install tk_root = os.path.join(dir, '.toolkit', 'com.ibm.streamsx.topology') if os.path.isdir(tk_root): return tk_root # Else dir is tk/opt/python/packages/streamsx dir = os.path.dirname(dir) dir = os.path.dirname(dir) dir = os.path.dirname(dir) tk_root = os.path.dirname(dir) return tk_root class _StreamingAnalyticsSubmitter(_BaseSubmitter): """ A submitter supports the ANALYTICS_SERVICE (Streaming Analytics service) context. """ # Maintains the last time by service in ms since epoch the last # time a thread saw the service running. Allows avoidance of # status checks when we are somewhat confident the service # is running, eg. during test runs or repeated submissions. _SERVICE_ACTIVE = threading.local() def __init__(self, ctxtype, config, graph): super(_StreamingAnalyticsSubmitter, self).__init__(ctxtype, config, graph) self._streams_connection = self._config().get(ConfigParams.STREAMS_CONNECTION) if ConfigParams.SERVICE_DEFINITION in self._config(): # Convert the service definition to a VCAP services definition. # Which is then passed through to Java as a VCAP_SERVICES env var # Service name matching the generated VCAP is passed through config. service_def = self._config().get(ConfigParams.SERVICE_DEFINITION) self._vcap_services = _vcap_from_service_definition(service_def) self._config()[ConfigParams.SERVICE_NAME] = _name_from_service_definition(service_def) else: self._vcap_services = self._config().get(ConfigParams.VCAP_SERVICES) self._service_name = self._config().get(ConfigParams.SERVICE_NAME) if self._streams_connection is not None: if not isinstance(self._streams_connection, streamsx.rest.StreamingAnalyticsConnection): raise ValueError("config must contain a StreamingAnalyticsConnection object when submitting to " "{} context".format(ctxtype)) # Use credentials stored within StreamingAnalyticsConnection self._service_name = self._streams_connection.service_name self._vcap_services = {'streaming-analytics': [ {'name': self._service_name, 'credentials': self._streams_connection.credentials} ]} self._config()[ConfigParams.SERVICE_NAME] = self._service_name # TODO: Compare credentials between the config and StreamsConnection, verify they are the same # Clear the VCAP_SERVICES key in config, since env var will contain the content self._config().pop(ConfigParams.VCAP_SERVICES, None) self._config().pop(ConfigParams.SERVICE_DEFINITION, None) self._setup_views() self._job = None def _create_full_json(self): fj = super(_StreamingAnalyticsSubmitter, self)._create_full_json() if hasattr(_StreamingAnalyticsSubmitter._SERVICE_ACTIVE, 'running'): rts = _StreamingAnalyticsSubmitter._SERVICE_ACTIVE.running if self._service_name in rts: sn = self._service_name if self._service_name else os.environ['STREAMING_ANALYTICS_SERVICE_NAME'] fj['deploy']['serviceRunningTime'] = rts[sn] return fj def _job_access(self): if self._job: return self._job if self._streams_connection is None: self._streams_connection = streamsx.rest.StreamingAnalyticsConnection(self._vcap_services, self._service_name) self._job = self._streams_connection.get_instances()[0].get_job( id=self.submission_results['jobId']) return self._job def _augment_submission_result(self, submission_result): vcap = streamsx.rest._get_vcap_services(self._vcap_services) credentials = streamsx.rest._get_credentials(vcap, self._service_name) if streamsx.rest_primitives._IAMConstants.V2_REST_URL in credentials: instance_id = credentials[streamsx.rest_primitives._IAMConstants.V2_REST_URL].split('streaming_analytics/', 1)[1] else: instance_id = credentials['jobs_path'].split('/service_instances/', 1)[1].split('/', 1)[0] submission_result['instanceId'] = instance_id if 'jobId' in submission_result: if not hasattr(_StreamingAnalyticsSubmitter._SERVICE_ACTIVE, 'running'): _StreamingAnalyticsSubmitter._SERVICE_ACTIVE.running = dict() sn = self._service_name if self._service_name else os.environ['STREAMING_ANALYTICS_SERVICE_NAME'] _StreamingAnalyticsSubmitter._SERVICE_ACTIVE.running[sn] = int(time.time() * 1000.0) def _get_java_env(self): "Pass the VCAP through the environment to the java submission" env = super(_StreamingAnalyticsSubmitter, self)._get_java_env() vcap = streamsx.rest._get_vcap_services(self._vcap_services) env['VCAP_SERVICES'] = json.dumps(vcap) return env class _BundleSubmitter(_BaseSubmitter): """ A submitter which supports the BUNDLE context including remote build. """ def __init__(self, ctxtype, config, graph): _BaseSubmitter.__init__(self, ctxtype, config, graph) self._remote = config.get(ConfigParams.FORCE_REMOTE_BUILD) if not self._remote and 'STREAMS_INSTALL' in os.environ: return self._streams_connection = config.get(ConfigParams.STREAMS_CONNECTION) if self._streams_connection is not None: pass else: # Look for a service definition svc_info = streamsx.rest_primitives.Instance._find_service_def(config) if not svc_info: # Look for endpoint set by env vars. inst = streamsx.rest_primitives.Instance.of_endpoint(verify=config.get(ConfigParams.SSL_VERIFY)) if inst is not None: self._streams_connection = inst.rest_client._sc if isinstance(self._streams_connection, streamsx.rest.StreamsConnection): if isinstance(self._streams_connection.session.auth, streamsx.rest_primitives._ICPDExternalAuthHandler): svc_info = self._streams_connection.session.auth._cfg self._config()[ConfigParams.SERVICE_DEFINITION] = svc_info if self._streams_connection.session.verify == False: self._config()[ConfigParams.SSL_VERIFY] = False else: svc_info = streamsx.rest_primitives.Instance._find_service_def(config) if svc_info: self._config()[ConfigParams.SERVICE_DEFINITION] = svc_info streamsx.rest_primitives.Instance._clear_service_info(self._config()) def _get_java_env(self): "Set env vars from connection if set" env = super(_BundleSubmitter, self)._get_java_env() env.pop('STREAMS_DOMAIN_ID', None) env.pop('STREAMS_INSTANCE_ID', None) if self._remote: env.pop('STREAMS_INSTALL', None) return env class _EdgeSubmitter(_BaseSubmitter): """ A submitter which supports the EDGE context (force remote build). """ def __init__(self, ctxtype, config, graph): _BaseSubmitter.__init__(self, ctxtype, config, graph) config[ConfigParams.FORCE_REMOTE_BUILD] = True # EDGE is always remote build self._remote = config.get(ConfigParams.FORCE_REMOTE_BUILD) self._streams_connection = config.get(ConfigParams.STREAMS_CONNECTION) if self._streams_connection is not None: pass else: # Look for a service definition svc_info = streamsx.rest_primitives.Instance._find_service_def(config) if not svc_info: # Look for endpoint set by env vars. inst = streamsx.rest_primitives.Instance.of_endpoint(verify=config.get(ConfigParams.SSL_VERIFY)) if inst is not None: self._streams_connection = inst.rest_client._sc if isinstance(self._streams_connection, streamsx.rest.StreamsConnection): if isinstance(self._streams_connection.session.auth, streamsx.rest_primitives._ICPDExternalAuthHandler): svc_info = self._streams_connection.session.auth._cfg self._config()[ConfigParams.SERVICE_DEFINITION] = svc_info if self._streams_connection.session.verify == False: self._config()[ConfigParams.SSL_VERIFY] = False else: svc_info = streamsx.rest_primitives.Instance._find_service_def(config) if svc_info: self._config()[ConfigParams.SERVICE_DEFINITION] = svc_info streamsx.rest_primitives.Instance._clear_service_info(self._config()) # check that serviceBuildPoolsEndpoint is set try: serviceBuildPoolsEndpoint = self._config()[ConfigParams.SERVICE_DEFINITION]['connection_info']['serviceBuildPoolsEndpoint'] except KeyError: raise RuntimeError('Build service is not configured for EDGE submission') def _get_java_env(self): "Set env vars from connection if set" env = super(_EdgeSubmitter, self)._get_java_env() env.pop('STREAMS_DOMAIN_ID', None) env.pop('STREAMS_INSTANCE_ID', None) if self._remote: env.pop('STREAMS_INSTALL', None) return env def _get_distributed_submitter(config, graph, username, password): # CP4D integrated environment and within project svc_info = streamsx.rest_primitives.Instance._find_service_def(config) if svc_info: return _DistributedSubmitterCP4DIntegratedProject(config, graph, svc_info) # CP4D integrated environment external to project if 'CP4D_URL' in os.environ and \ 'STREAMS_INSTANCE_ID' in os.environ and \ 'STREAMS_PASSWORD' in os.environ: return _DistributedSubmitterCP4DIntegrated(config, graph) # CP4D standalone environment if 'STREAMS_REST_URL' in os.environ and \ 'STREAMS_PASSWORD' in os.environ: return _DistributedSubmitterCP4DStandalone(config, graph) # Streams 4.2/4.3 by connection if 'STREAMS_INSTALL' in os.environ and \ 'STREAMS_INSTANCE_ID' in os.environ and \ ConfigParams.STREAMS_CONNECTION in config and \ isinstance(config[ConfigParams.STREAMS_CONNECTION], streamsx.rest.StreamsConnection): return _DistributedSubmitter4Conn(config, graph, username, password) # Streams 4.2/4.3 by environment if 'STREAMS_INSTALL' in os.environ and \ 'STREAMS_DOMAIN_ID' in os.environ and \ 'STREAMS_INSTANCE_ID' in os.environ: return _DistributedSubmitter4(config, graph, username, password) raise RuntimeError('Insufficient configuration for DISTRIBUTED submission') class _DistributedSubmitter(_BaseSubmitter): """ A submitter which supports the DISTRIBUTED context. Sub-classed for specific configurations """ def __init__(self, config, graph, username, password): super(_DistributedSubmitter, self).__init__(ContextTypes.DISTRIBUTED, config, graph) self._streams_connection = None self.username = username self.password = password self._job = None # Give each view in the app the necessary information to connect to SWS. self._setup_views() def _job_access(self): if self._job: return self._job instance = self._get_instance() self._job = instance.get_job(id=self.submission_results['jobId']) return self._job class _DistributedSubmitterCP4DIntegratedProject(_DistributedSubmitter): """ A submitter which supports the CPD integrated configuration within a project. """ def __init__(self, config, graph, svc_info): super(_DistributedSubmitterCP4DIntegratedProject, self).__init__(config, graph, None, None) # use the config here rather than svc_info as the config contains SSL_VERIFY streams_instance = streamsx.rest_primitives.Instance.of_service(config) if hasattr(streams_instance, 'productVersion'): svc_info['productVersion'] = streams_instance.productVersion # when we use the REST-API of the CP4D from inside the CP4D (Notebook in a project) # we go over this URL: https://internal-nginx-svc:12443 svc_info['cluster_ip'] = 'internal-nginx-svc' svc_info['cluster_port'] = 12443 # user-provided cp4d URL to override the hard-coded from above if ConfigParams.CP4D_URL in config: userUrl = config[ConfigParams.CP4D_URL] if userUrl: es = up.urlparse(userUrl) if ':' in es.netloc: cluster_ip = es.netloc.split(':')[0] cluster_port = es.netloc.split(':')[1] else: cluster_ip = es.netloc cluster_port = 443 svc_info['cluster_ip_orig'] = svc_info['cluster_ip'] svc_info['cluster_port_orig'] = svc_info['cluster_port'] svc_info['cluster_ip'] = cluster_ip svc_info['cluster_port'] = cluster_port self._config()[ConfigParams.SERVICE_DEFINITION] = svc_info self._config()[ConfigParams.FORCE_REMOTE_BUILD] = True streamsx.rest_primitives.Instance._clear_service_info(self._config()) def _get_instance(self): return streamsx.rest_primitives.Instance.of_service(self._config()) def _get_java_env(self): env = super(_DistributedSubmitterCP4DIntegratedProject, self)._get_java_env() env.pop('CP4D_URL', None) env.pop('STREAMS_DOMAIN_ID', None) env.pop('STREAMS_INSTANCE_ID', None) env.pop('STREAMS_INSTALL', None) return env class _DistributedSubmitterCP4DIntegrated(_DistributedSubmitter): """ A submitter which supports the CPD integrated configuration outside a project. """ def __init__(self, config, graph): super(_DistributedSubmitterCP4DIntegrated, self).__init__(config, graph, None, None) # Look for endpoint set by env vars. self._inst = streamsx.rest_primitives.Instance.of_endpoint(verify=config.get(ConfigParams.SSL_VERIFY)) if self._inst is None: raise ValueError("Incorrect configuration for Cloud Pak for Data integrated configuration") self._streams_connection = self._inst.rest_client._sc svc_info = self._streams_connection.session.auth._cfg if hasattr(self._inst, 'productVersion'): svc_info['productVersion'] = self._inst.productVersion self._config()[ConfigParams.SERVICE_DEFINITION] = svc_info self._config()[ConfigParams.FORCE_REMOTE_BUILD] = True def _get_instance(self): return self._inst def _get_java_env(self): env = super(_DistributedSubmitterCP4DIntegrated, self)._get_java_env() env.pop('CP4D_URL', None) env.pop('STREAMS_DOMAIN_ID', None) env.pop('STREAMS_INSTANCE_ID', None) env.pop('STREAMS_INSTALL', None) return env class _DistributedSubmitterCP4DStandalone(_DistributedSubmitter): """ A submitter which supports the CPD standalone configuration. """ def __init__(self, config, graph): super(_DistributedSubmitterCP4DStandalone, self).__init__(config, graph, None, None) # Look for endpoint set by env vars. self._inst = streamsx.rest_primitives.Instance.of_endpoint(verify=config.get(ConfigParams.SSL_VERIFY)) if self._inst is None: raise ValueError("Incorrect configuration for Cloud Pak for Data standalone configuration") self._streams_connection = self._inst.rest_client._sc self._config()[ConfigParams.FORCE_REMOTE_BUILD] = True def _get_instance(self): return self._inst def _get_java_env(self): env = super(_DistributedSubmitterCP4DStandalone, self)._get_java_env() env.pop('CP4D_URL', None) env.pop('STREAMS_DOMAIN_ID', None) env.pop('STREAMS_INSTANCE_ID', None) env.pop('STREAMS_INSTALL', None) return env class _DistributedSubmitter4(_DistributedSubmitter): """ A submitter which supports the DISTRIBUTED context for IBM Streams 4.2/4.3. """ def __init__(self, config, graph, username, password): super(_DistributedSubmitter4, self).__init__(config, graph, username, password) def _get_instance(self): if not self._streams_connection: self._streams_connection = streamsx.rest.StreamsConnection(self.username, self.password) if ConfigParams.SSL_VERIFY in self._config(): self._streams_connection.session.verify = self._config()[ConfigParams.SSL_VERIFY] return self._streams_connection.get_instance(os.environ['STREAMS_INSTANCE_ID']) class _DistributedSubmitter4Conn(_DistributedSubmitter4): """ A submitter which supports the DISTRIBUTED context for IBM Streams 4.2/4.3 using a connection. """ def __init__(self, config, graph, username, password): super(_DistributedSubmitter4Conn, self).__init__(config, graph, username, password) self._streams_connection = config.get(ConfigParams.STREAMS_CONNECTION) self.username = self._streams_connection.session.auth[0] self.password = self._streams_connection.session.auth[1] if (username is not None and username != self.username) or (password is not None and password != self.password): raise RuntimeError('Credentials supplied in the arguments differ than ' 'those specified in the StreamsConnection object') def _get_instance(self): iid = os.environ.get('STREAMS_INSTANCE_ID') return self._streams_connection.get_instance(id=iid) def _get_java_env(self): env = super(_DistributedSubmitter4Conn, self)._get_java_env() # Need to sure the environment matches the connection. sc = self._streams_connection env['STREAMS_DOMAIN_ID'] = sc.get_domains()[0].id return env class _SubmitContextFactory(object): """ ContextSubmitter: Responsible for performing the correct submission depending on a number of factors, including: the presence/absence of a streams install, the type of context, and whether the user seeks to retrieve data via rest """ def __init__(self, graph, config=None, username=None, password=None): self.graph = graph self.config = config self.username = username self.password = password if self.config is None: self.config = {} def get_submit_context(self, ctxtype): # If there is no streams install present, currently only ANALYTICS_SERVICE, TOOLKIT, and BUILD_ARCHIVE # are supported. streams_install = os.environ.get('STREAMS_INSTALL') if streams_install is None: if ctxtype == ContextTypes.STANDALONE: raise ValueError(ctxtype + " must be submitted when an IBM Streams install is present.") if ctxtype == ContextTypes.DISTRIBUTED: logger.debug("Selecting the DISTRIBUTED context for submission") return _get_distributed_submitter(self.config, self.graph, self.username, self.password) elif ctxtype == ContextTypes.STREAMING_ANALYTICS_SERVICE: logger.debug("Selecting the STREAMING_ANALYTICS_SERVICE context for submission") ctxtype = ContextTypes.STREAMING_ANALYTICS_SERVICE return _StreamingAnalyticsSubmitter(ctxtype, self.config, self.graph) elif ctxtype == 'BUNDLE': logger.debug("Selecting the BUNDLE context for submission") if 'CP4D_URL' in os.environ: return _BundleSubmitter(ctxtype, self.config, self.graph) if 'VCAP_SERVICES' in os.environ or \ ConfigParams.VCAP_SERVICES in self.config or \ ConfigParams.SERVICE_DEFINITION in self.config: sbs = _SasBundleSubmitter(self.config, self.graph) if sbs._remote: return sbs return _BundleSubmitter(ctxtype, self.config, self.graph) elif ctxtype == 'EDGE': logger.debug("Selecting the EDGE context for submission") return _EdgeSubmitter(ctxtype, self.config, self.graph) elif ctxtype == 'EDGE_BUNDLE': logger.debug("Selecting the EDGE_BUNDLE context for submission") return _EdgeSubmitter(ctxtype, self.config, self.graph) else: logger.debug("Using the BaseSubmitter, and passing the context type through to java.") return _BaseSubmitter(ctxtype, self.config, self.graph) # Used to delete the JSON file after it is no longer needed. def _delete_json(submitter): for fn in [submitter.fn, submitter.results_file]: if fn and os.path.isfile(fn): os.remove(fn) # Used by a thread which polls a subprocess's stdout and writes it to stdout def _print_process_stdout(process): try: while True: line = process.stdout.readline() if len(line) == 0: process.stdout.close() break line = line.decode("utf-8").strip() print(line) except: logger.error("Error reading from Java subprocess stdout stream.") raise finally: process.stdout.close() _JAVA_LOG_LVL = { # java.util.logging 'SEVERE': logging.ERROR, 'WARNING': logging.WARNING, 'INFO':logging.INFO, 'CONFIG':logging.INFO, 'FINE:':logging.DEBUG, 'FINER':logging.DEBUG, 'FINEST':logging.DEBUG, 'FATAL': logging.CRITICAL, 'ERROR': logging.ERROR, 'DEBUG:':logging.DEBUG, 'TRACE':logging.DEBUG } # Used by a thread which polls a subprocess's stderr and writes it to # a logger or stderr def _print_process_stderr(process, submitter, progress_fn): try: while True: line = process.stderr.readline() if len(line) == 0: process.stderr.close() break line = line.decode("utf-8").strip() em = line.rstrip().split(': ', 1) if len(em) == 2 and em[0] in _JAVA_LOG_LVL: if 'INFO' == em[0] and em[1].startswith('!!-streamsx-'): progress_fn(em[1]) continue logger.log(_JAVA_LOG_LVL[em[0]], em[1]) continue print(line, file=sys.stderr) except: logger.error("Error reading from Java subprocess stderr stream.") raise finally: process.stderr.close() class ContextTypes(object): """ Submission context types. A :py:class:`~streamsx.topology.topology.Topology` is submitted using :py:func:`submit` and a context type. Submision of a `Topology` generally builds the application into a Streams application bundle (sab) file and then submits it for execution in the required context. The Streams application bundle contains all the artifacts required by an application such that it can be executed remotely (e.g. on a Streaming Analytics service), including distributing the execution of the application across multiple resources (hosts). The context type defines which context is used for submission. The main context types result in a running application and are: * :py:const:`STREAMING_ANALYTICS_SERVICE` - Application is submitted to a Streaming Analytics service running on IBM Cloud. * :py:const:`DISTRIBUTED` - Application is submitted to an IBM Streams instance. * :py:const:`STANDALONE` - Application is executed as a local process, IBM Streams `standalone` application. Typically this is used during development or testing. The :py:const:`BUNDLE` context type compiles the application (`Topology`) to produce a Streams application bundle (sab file). The bundle is not executed but may subsequently be submitted to a Streaming Analytics service or an IBM Streams instance. A bundle may be submitted multiple times to services or instances, each resulting in a unique job (running application). """ STREAMING_ANALYTICS_SERVICE = 'STREAMING_ANALYTICS_SERVICE' """Submission to Streaming Analytics service running on IBM Cloud. The `Topology` is compiled and the resultant Streams application bundle (sab file) is submitted for execution on the Streaming Analytics service. When **STREAMS_INSTALL** is not set or the :py:func:`submit` `config` parameter has :py:const:`~ConfigParams.FORCE_REMOTE_BUILD` set to `True` the compilation of the application occurs remotely by the service. This allows creation and submission of Streams applications without a local install of IBM Streams. When **STREAMS_INSTALL** is set and the :py:func:`submit` `config` parameter has :py:const:`~ConfigParams.FORCE_REMOTE_BUILD` set to `False` or not set then the creation of the Streams application bundle occurs locally and the bundle is submitted for execution on the service. Environment variables: These environment variables define how the application is built and submitted. * **STREAMS_INSTALL** - (optional) Location of a IBM Streams installation (4.0.1 or later). The install must be running on RedHat/CentOS 7 and `x86_64` architecture. """ DISTRIBUTED = 'DISTRIBUTED' """Submission to an IBM Streams instance. .. rubric:: IBM Cloud Pak for Data integated configuration *Projects (within cluster)* The `Topology` is compiled using the Streams build service and submitted to an Streams service instance running in the same Cloud Pak for Data cluster as the Jupyter notebook or script declaring the application. The instance is specified in the configuration passed into :py:func:`submit`. The code that selects a service instance by name is:: from icpd_core import icpd_util cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams") topo = Topology() ... submit(ContextTypes.DISTRIBUTED, topo, cfg) The resultant `cfg` dict may be augmented with other values such as a :py:class:`JobConfig` or keys from :py:class:`ConfigParams`. *External to cluster or project* The `Topology` is compiled using the Streams build service and submitted to a Streams service instance running in Cloud Pak for Data. Environment variables: These environment variables define how the application is built and submitted. * **CP4D_URL** - Cloud Pak for Data deployment URL, e.g. `https://cp4d_server:31843` * **STREAMS_INSTANCE_ID** - Streams service instance name. * **STREAMS_USERNAME** - (optional) User name to submit the job as, defaulting to the current operating system user name. * **STREAMS_PASSWORD** - Password for authentication. .. rubric:: IBM Cloud Pak for Data standalone configuration The `Topology` is compiled using the Streams build service and submitted to a Streams service instance using REST apis. Environment variables: These environment variables define how the application is built and submitted. * **STREAMS_BUILD_URL** - Streams build service URL, e.g. when the service is exposed as node port: `https://<NODE-IP>:<NODE-PORT>` * **STREAMS_REST_URL** - Streams SWS service (REST API) URL, e.g. when the service is exposed as node port: `https://<NODE-IP>:<NODE-PORT>` * **STREAMS_USERNAME** - (optional) User name to submit the job as, defaulting to the current operating system user name. * **STREAMS_PASSWORD** - Password for authentication. .. rubric:: IBM Streams on-premise 4.2 & 4.3 The `Topology` is compiled locally and the resultant Streams application bundle (sab file) is submitted to an IBM Streams instance. Environment variables: These environment variables define how the application is built and submitted. * **STREAMS_INSTALL** - Location of a IBM Streams installation (4.2 or 4.3). * **STREAMS_DOMAIN_ID** - Domain identifier for the Streams instance. * **STREAMS_INSTANCE_ID** - Instance identifier. * **STREAMS_ZKCONNECT** - (optional) ZooKeeper connection string for domain (when not using an embedded ZooKeeper) * **STREAMS_USERNAME** - (optional) User name to submit the job as, defaulting to the current operating system user name. .. warning:: ``streamtool`` is used to submit the job with on-premise 4.2 & 4.3 Streams and requires that ``streamtool`` does not prompt for authentication. This is achieved by using ``streamtool genkey``. .. seealso:: `Generating authentication keys for IBM Streams <https://www.ibm.com/support/knowledgecenter/SSCRJU_4.2.1/com.ibm.streams.cfg.doc/doc/ibminfospherestreams-user-security-authentication-rsa.html>`_ """ STANDALONE = 'STANDALONE' """Build and execute locally. Compiles and executes the `Topology` locally in IBM Streams standalone mode as a separate sub-process. Typically used for devlopment and testing. The call to :py:func:`submit` return when (if) the application completes. An application completes when it has finite source streams and all tuples from those streams have been processed by the complete topology. If the source streams are infinite (e.g. reading tweets) then the standalone application will not complete. Environment variables: This environment variables define how the application is built. * **STREAMS_INSTALL** - Location of a IBM Streams installation (4.0.1 or later). """ BUNDLE = 'BUNDLE' """Create a Streams application bundle. The `Topology` is compiled to produce Streams application bundle (sab file). The resultant application can be submitted to: * Streaming Analytics service using the Streams console or the Streaming Analytics REST api. * IBM Streams instance using the Streams console, JMX api or command line ``streamtool submitjob``. * Executed standalone for development or testing. The bundle must be built on the same operating system version and architecture as the intended running environment. For Streaming Analytics service this is currently RedHat/CentOS 7 and `x86_64` architecture. .. rubric:: IBM Cloud Pak for Data integated configuration *Projects (within cluster)* The `Topology` is compiled using the Streams build service for a Streams service instance running in the same Cloud Pak for Data cluster as the Jupyter notebook or script declaring the application. The instance is specified in the configuration passed into :py:func:`submit`. The code that selects a service instance by name is:: from icpd_core import icpd_util cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams") topo = Topology() ... submit(ContextTypes.BUNDLE, topo, cfg) The resultant `cfg` dict may be augmented with other values such as keys from :py:class:`ConfigParams`. *External to cluster or project* The `Topology` is compiled using the Streams build service for a Streams service instance running in Cloud Pak for Data. Environment variables: These environment variables define how the application is built and submitted. * **CP4D_URL** - Cloud Pak for Data deployment URL, e.g. `https://cp4d_server:31843` * **STREAMS_INSTANCE_ID** - Streams service instance name. * **STREAMS_USERNAME** - (optional) User name to submit the job as, defaulting to the current operating system user name. * **STREAMS_PASSWORD** - Password for authentication. .. rubric:: IBM Cloud Pak for Data standalone configuration The `Topology` is compiled using the Streams build service. Environment variables: These environment variables define how the application is built. * **STREAMS_BUILD_URL** - Streams build service URL, e.g. when the service is exposed as node port: `https://<NODE-IP>:<NODE-PORT>` * **STREAMS_USERNAME** - (optional) User name to submit the job as, defaulting to the current operating system user name. * **STREAMS_PASSWORD** - Password for authentication. .. rubric:: IBM Streams on-premise 4.2 & 4.3 The `Topology` is compiled using a local IBM Streams installation. Environment variables: These environment variables define how the application is built. * **STREAMS_INSTALL** - Location of a local IBM Streams installation. """ TOOLKIT = 'TOOLKIT' """Creates an SPL toolkit. `Topology` applications are implemented as an SPL application before compilation into an Streams application bundle. This context type produces the intermediate SPL toolkit that is input to the SPL compiler for bundle creation. .. note:: `TOOLKIT` is typically only used when diagnosing issues with bundle generation. """ BUILD_ARCHIVE = 'BUILD_ARCHIVE' """Creates a build archive. This context type produces the intermediate code archive used for bundle creation. .. note:: `BUILD_ARCHIVE` is typically only used when diagnosing issues with bundle generation. """ EDGE = 'EDGE' """Submission to build service running on IBM Cloud Pak for Data to create an image for Edge. The `Topology` is compiled and the resultant Streams application bundle (sab file) is added to an image for Edge. .. rubric:: IBM Cloud Pak for Data integated configuration *Projects (within cluster)* The `Topology` is compiled using the Streams build service for a Streams service instance running in the same Cloud Pak for Data cluster as the Jupyter notebook or script declaring the application. The instance is specified in the configuration passed into :py:func:`submit`. The code that selects a service instance by name is:: from streamsx.topology.context import submit, ContextTypes from icpd_core import icpd_util cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams") topo = Topology() ... submit(ContextTypes.EDGE, topo, cfg) The resultant `cfg` dict may be augmented with other values such as keys from :py:class:`ConfigParams` or :py:class:`JobConfig`. For example, apply `imageName` and `imageTag`:: from streamsx.topology.context import submit, ContextTypes, JobConfig from icpd_core import icpd_util cfg = icpd_util.get_service_instance_details(name='instanceName', instance_type="streams") topo = Topology() ... jc = JobConfig() jc.raw_overlay = {'edgeConfig': {'imageName':'py-sample-app', 'imageTag':'v1.0'}} jc.add(cfg) submit(ContextTypes.EDGE, topo, cfg) *External to cluster or project* The `Topology` is compiled using the Streams build service for a Streams service instance running in Cloud Pak for Data. Environment variables: These environment variables define how the application is built and submitted. * **CP4D_URL** - Cloud Pak for Data deployment URL, e.g. `https://cp4d_server:31843` * **STREAMS_INSTANCE_ID** - Streams service instance name. * **STREAMS_USERNAME** - (optional) User name to submit the job as, defaulting to the current operating system user name. * **STREAMS_PASSWORD** - Password for authentication. Example code to query the base images:: from streamsx.build import BuildService bs = BuildService.of_endpoint(verify=False) baseImages = bs.get_base_images() print('# images = ' + str(len(baseImages))) for i in baseImages: print(i.id) print(i.registry) Example code to select a base image for the image build:: from streamsx.topology.context import submit, ContextTypes, JobConfig topo = Topology() ... jc = JobConfig() jc.raw_overlay = {'edgeConfig': {'imageName':'py-sample-app', 'imageTag':'v1.0', 'baseImage':'streams-base-edge-python-el7:5.3.0.0'}} jc.add(cfg) submit(ContextTypes.EDGE, topo, cfg) .. rubric:: EDGE configuration The dict *edgeConfig* supports the following fields that are used for the image creation: * **imageName** - [str] name of the image * **imageTag** - [str] name of the image tag * **baseImage** - [str] identify the name of the base image * **pipPackages** - [list] identify one or more Python install packages that are to be included in the image. * **rpms** - [list] identify one or more linux RPMs that are to be included in the image * **locales** - [list] identify one or more locales that are to be included in the image. The first item in the list is the "default" locale. The locales are identified in the java format  <language>_<county>_<variant>. Example: "en_US" Example with adding pip packages and rpms:: jc.raw_overlay = {'edgeConfig': {'imageName': image_name, 'imageTag': image_tag, 'pipPackages':['pandas','numpy'], 'rpms':['atlas-devel']}} """ EDGE_BUNDLE = 'EDGE_BUNDLE' """Creates a Streams application bundle. The `Topology` is compiled on build service running on IBM Cloud Pak for Data and the resultant Streams application bundle (sab file) is downloaded. .. note:: `EDGE_BUNDLE` is typically only used when diagnosing issues with applications for EDGE. """ class ConfigParams(object): """ Configuration options which may be used as keys in :py:func:`submit` `config` parameter. """ VCAP_SERVICES = 'topology.service.vcap' """Streaming Analytics service definitions including credentials in **VCAP_SERVICES** format. Provides the connection credentials when connecting to a Streaming Analytics service using context type :py:const:`~ContextTypes.STREAMING_ANALYTICS_SERVICE`. The ``streaming-analytics`` service to use within the service definitions is identified by name using :py:const:`SERVICE_NAME`. The key overrides the environment variable **VCAP_SERVICES**. The value can be: * Path to a local file containing a JSON representation of the VCAP services information. * Dictionary containing the VCAP services information. .. seealso:: :ref:`sas-vcap` """ SERVICE_NAME = 'topology.service.name' """Streaming Analytics service name. Selects the specific Streaming Analytics service from VCAP service definitions defined by the the environment variable **VCAP_SERVICES** or the key :py:const:`VCAP_SERVICES` in the `submit` config. .. seealso:: :ref:`sas-service-name` """ SPACE_NAME = 'topology.spaceName' """ Key for a deployment space on a Cloud Pak for Data, when submitted to :py:const:`DISTRIBUTED`. When a space name is specified for an application submitted from a project in Cloud Pak for Data, for example from a Jupyter notebook, the resulting job will not be associated with the project and can therefore not be found within the project. The job will be associated with a deployment space instead. When the specified space does not exist, it will be automatically created. .. versionadded:: 1.17 """ CP4D_URL = 'topology.cp4d_url' """ Key for specifying the URL of the Cloud Pak for Data, when submitted to :py:const:`DISTRIBUTED` from within a CP4D project .. versionadded:: 1.17 """ FORCE_REMOTE_BUILD = 'topology.forceRemoteBuild' """Force a remote build of the application. When submitting to :py:const:`STREAMING_ANALYTICS_SERVICE` a local build of the Streams application bundle will occur if the environment variable **STREAMS_INSTALL** is set. Setting this flag to `True` ignores the local Streams install and forces the build to occur remotely using the service. """ JOB_CONFIG = 'topology.jobConfigOverlays' """ Key for a :py:class:`JobConfig` object representing a job configuration for a submission. """ STREAMS_CONNECTION = 'topology.streamsConnection' """ Key for a :py:class:`StreamsConnection` object for connecting to a running IBM Streams instance. Only supported for Streams 4.2, 4.3. Requires environment variable ``STREAMS_INSTANCE_ID`` to be set. """ SSL_VERIFY = 'topology.SSLVerify' """ Key for the SSL verification value passed to `requests` as its ``verify`` option for distributed contexts. By default set to `True`. .. note:: Only ``True`` or ``False`` is supported. Behaviour is undefined when passing a path to a CA_BUNDLE file or directory with certificates of trusted CAs. .. versionadded:: 1.11 """ SERVICE_DEFINITION = 'topology.service.definition' """Streaming Analytics service definition. Identifies the Streaming Analytics service to use. The definition can be one of * The `service credentials` copied from the `Service credentials` page of the service console (not the Streams console). Credentials are provided in JSON format. They contain such as the API key and secret, as well as connection information for the service. * A JSON object (`dict`) created from the `service credentials`, for example with `json.loads(service_credentials)` * A JSON object (`dict`) of the form: ``{ "type": "streaming-analytics", "name": "service name", "credentials": ... }`` with the `service credentials` as the value of the ``credentials`` key. The value of the ``credentials`` key can be a JSON object (`dict`) or a `str` copied from the `Service credentials` page of the service console. This key takes precedence over :py:const:`VCAP_SERVICES` and :py:const:`SERVICE_NAME`. .. seealso:: :ref:`sas-service-def` """ SC_OPTIONS = 'topology.sc.options' """ Options to be passed to IBM Streams sc command. A topology is compiled into a Streams application bundle (`sab`) using the SPL compiler ``sc``. Additional options to be passed to ``sc`` may be set using this key. The value can be a single string option (e.g. ``--c++std=c++11`` to select C++ 11 compilation) or a list of strings for multiple options. Setting ``sc`` options may be required when invoking SPL operators directly or testing SPL applications. .. warning:: Options that modify the requested submission context (e.g. setting a different main composite) or deprecated options should not be specified. .. versionadded:: 1.12.10 """ _SPLMM_OPTIONS = 'topology.internal.splmm_options' """ TBD """ class JobConfig(object): """ Job configuration. `JobConfig` allows configuration of job that will result from submission of a :py:class:`Topology` (application). A `JobConfig` is set in the `config` dictionary passed to :py:func:`~streamsx.topology.context.submit` using the key :py:const:`~ConfigParams.JOB_CONFIG`. :py:meth:`~JobConfig.add` exists as a convenience method to add it to a submission configuration. A `JobConfig` can also be used when submitting a Streams application bundle through the Streaming Analytics REST API method :py:meth:`~streamsx.rest_primitives.StreamingAnalyticsService.submit_job`. Args: job_name(str): The name that is assigned to the job. A job name must be unique within a Streasm instance When set to `None` a system generated name is used. job_group(str): The job group to use to control permissions for the submitted job. preload(bool): Specifies whether to preload the job onto all resources in the instance, even if the job is not currently needed on each. Preloading the job can improve PE restart performance if the PEs are relocated to a new resource. data_directory(str): Specifies the location of the optional data directory. The data directory is a path within the cluster that is running the Streams instance. tracing: Specify the application trace level. See :py:attr:`tracing` space_name(str): Specifies the name of a deployment space on a CloudPak for Data system, which the job is associated with Example:: # Submit a job with the name NewsIngester cfg = {} job_config = JobConfig(job_name='NewsIngester') job_config.add(cfg) context.submit('STREAMING_ANALYTICS_SERVICE', topo, cfg) .. seealso:: `Job configuration overlays reference <https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.ref.doc/doc/submitjobparameters.html>`_ """ def __init__(self, job_name=None, job_group=None, preload=False, data_directory=None, tracing=None, space_name=None): self.job_name = job_name self.job_group = job_group self.preload = preload self.data_directory = data_directory self.tracing = tracing self._space_name = space_name self._pe_count = None self._raw_overlay = None self._submission_parameters = dict() self._comment = None @staticmethod def from_overlays(overlays): """Create a `JobConfig` instance from a full job configuration overlays object. All logical items, such as ``comment`` and ``job_name``, are extracted from `overlays`. The remaining information in the single job config overlay in ``overlays`` is set as ``raw_overlay``. Args: overlays(dict): Full job configuration overlays object. Returns: JobConfig: Instance representing logical view of `overlays`. .. versionadded:: 1.9 """ jc = JobConfig() jc.comment = overlays.get('comment') if 'jobConfigOverlays' in overlays: if len(overlays['jobConfigOverlays']) >= 1: jco = copy.deepcopy(overlays['jobConfigOverlays'][0]) # Now extract the logical information if 'jobConfig' in jco: _jc = jco['jobConfig'] jc.job_name = _jc.pop('jobName', None) jc.job_group = _jc.pop('jobGroup', None) jc.preload = _jc.pop('preloadApplicationBundles', False) jc.data_directory = _jc.pop('dataDirectory', None) jc.tracing = _jc.pop('tracing', None) for sp in _jc.pop('submissionParameters', []): jc.submission_parameters[sp['name']] = sp['value'] if not _jc: del jco['jobConfig'] if 'deploymentConfig' in jco: _dc = jco['deploymentConfig'] if 'manual' == _dc.get('fusionScheme'): if 'fusionTargetPeCount' in _dc: jc.target_pe_count = _dc.pop('fusionTargetPeCount') if len(_dc) == 1: del jco['deploymentConfig'] if jco: jc.raw_overlay = jco return jc @property def space_name(self): """ The deployment space of a Cloud Pak for Data that the job will be associated with. """ return self._space_name @space_name.setter def space_name(self, space_name): self._space_name = space_name @property def tracing(self): """ Runtime application trace level. The runtime application trace level can be a string with value ``error``, ``warn``, ``info``, ``debug`` or ``trace``. In addition a level from Python ``logging`` module can be used in with ``CRITICAL`` and ``ERROR`` mapping to ``error``, ``WARNING`` to ``warn``, ``INFO`` to ``info`` and ``DEBUG`` to ``debug``. Setting tracing to `None` or ``logging.NOTSET`` will result in the job submission using the Streams instance application trace level. The value of ``tracing`` is the level as a string (``error``, ``warn``, ``info``, ``debug`` or ``trace``) or None. """ return self._tracing @tracing.setter def tracing(self, level): if level is None: pass elif level in {'error', 'warn', 'info', 'debug', 'trace'}: pass elif level == logging.CRITICAL or level == logging.ERROR: level = 'error' elif level == logging.WARNING: level = 'warn' elif level == logging.INFO: level = 'info' elif level == logging.DEBUG: level = 'debug' elif level == logging.NOTSET: level = None else: raise ValueError("Tracing value {0} not supported.".format(level)) self._tracing = level @property def target_pe_count(self): """Target processing element count. When submitted against a Streams instance `target_pe_count` provides a hint to the scheduler as to how to partition the topology across processing elements (processes) for the job execution. When a job contains multiple processing elements (PEs) then the Streams scheduler can distributed the PEs across the resources (hosts) running in the instance. When set to ``None`` (the default) no hint is supplied to the scheduler. The number of PEs in the submitted job will be determined by the scheduler. The value is only a target and may be ignored when the topology contains :py:meth:`~Stream.isolate` calls. .. note:: Only supported in Streaming Analytics service and IBM Streams 4.2 or later. """ if self._pe_count is None: return None return int(self._pe_count) @target_pe_count.setter def target_pe_count(self, count): if count is not None: count = int(count) if count < 1: raise ValueError("target_pe_count must be greater than 0.") self._pe_count = count @property def raw_overlay(self): """Raw Job Config Overlay. A submitted job is configured using Job Config Overlay which is represented as a JSON. `JobConfig` exposes Job Config Overlay logically with properties such as ``job_name`` and ``tracing``. This property (as a ``dict``) allows merging of the configuration defined by this object and raw representation of a Job Config Overlay. This can be used when a capability of Job Config Overlay is not exposed logically through this class. For example, the threading model can be set by:: jc = streamsx.topology.context.JobConfig() jc.raw_overlay = {'deploymentConfig': {'threadingModel': 'manual'}} Any logical items set by this object **overwrite** any set with ``raw_overlay``. For example this sets the job name to to value set in the constructor (`DBIngest`) not the value in ``raw_overlay`` (`Ingest`):: jc = streamsx.topology.context.JobConfig(job_name='DBIngest') jc.raw_overlay = {'jobConfig': {'jobName': 'Ingest'}} .. note:: Contents of ``raw_overlay`` is a ``dict`` that is must match a single Job Config Overlay and be serializable as JSON to the correct format. .. seealso:: `Job Config Overlay reference <https://www.ibm.com/support/knowledgecenter/en/SSCRJU_4.2.1/com.ibm.streams.ref.doc/doc/submitjobparameters.html>`_ .. versionadded:: 1.9 """ return self._raw_overlay @raw_overlay.setter def raw_overlay(self, raw): self._raw_overlay = raw @property def submission_parameters(self): """Job submission parameters. Submission parameters values for the job. A `dict` object that maps submission parameter names to values. .. versionadded:: 1.9 """ return self._submission_parameters @property def comment(self): """ Comment for job configuration. The comment does not change the functionality of the job configuration. Returns: str: Comment text, `None` if it has not been set. .. versionadded:: 1.9 """ return self._comment @comment.setter def comment(self, value): if value: self._comment = str(value) else: self._comment = None def add(self, config): """ Add this `JobConfig` into a submission configuration object. Args: config(dict): Submission configuration. Returns: dict: config. """ config[ConfigParams.JOB_CONFIG] = self if self.space_name: config[ConfigParams.SPACE_NAME] = self.space_name return config def as_overlays(self): """Return this job configuration as a complete job configuration overlays object. Converts this job configuration into the full format supported by IBM Streams. The returned `dict` contains: * ``jobConfigOverlays`` key with an array containing a single job configuration overlay. * an optional ``comment`` key containing the comment ``str``. For example with this ``JobConfig``:: jc = JobConfig(job_name='TestIngester') jc.comment = 'Test configuration' jc.target_pe_count = 2 the returned `dict` would be:: {"comment": "Test configuration", "jobConfigOverlays": [{"jobConfig": {"jobName": "TestIngester"}, "deploymentConfig": {"fusionTargetPeCount": 2, "fusionScheme": "manual"}}]} The returned overlays object can be saved as JSON in a file using ``json.dump``. A file can be used with job submission mechanisms that support a job config overlays file, such as ``streamtool submitjob`` or the IBM Streams console. Example of saving a ``JobConfig`` instance as a file:: jc = JobConfig(job_name='TestIngester') with open('jobconfig.json', 'w') as f: json.dump(jc.as_overlays(), f) Returns: dict: Complete job configuration overlays object built from this object. .. versionadded:: 1.9 """ return self._add_overlays({}) def _add_overlays(self, config): """ Add this as a jobConfigOverlays JSON to config. """ if self._comment: config['comment'] = self._comment jco = {} config["jobConfigOverlays"] = [jco] if self._raw_overlay: jco.update(self._raw_overlay) jc = jco.get('jobConfig', {}) if self.job_name is not None: jc["jobName"] = self.job_name if self.job_group is not None: jc["jobGroup"] = self.job_group if self.data_directory is not None: jc["dataDirectory"] = self.data_directory if self.preload: jc['preloadApplicationBundles'] = True if self.tracing is not None: jc['tracing'] = self.tracing if self.submission_parameters: sp = jc.get('submissionParameters', []) for name in self.submission_parameters: sp.append({'name': str(name), 'value': self.submission_parameters[name]}) jc['submissionParameters'] = sp if jc: jco["jobConfig"] = jc if self.target_pe_count is not None and self.target_pe_count >= 1: deployment = jco.get('deploymentConfig', {}) deployment.update({'fusionScheme' : 'manual', 'fusionTargetPeCount' : self.target_pe_count}) jco["deploymentConfig"] = deployment return config class SubmissionResult(object): """Passed back to the user after a call to submit. Allows the user to use dot notation to access dictionary elements. Example accessing result files when using :py:const:`~ContextTypes.BUNDLE`:: submission_result = submit(ContextTypes.BUNDLE, topology, config) print(submission_result.bundlePath) ... os.remove(submission_result.bundlePath) os.remove(submission_result.jobConfigPath) Result contains the generated toolkit location when using :py:const:`~ContextTypes.TOOLKIT`:: submission_result = submit(ContextTypes.TOOLKIT, topology, config) print(submission_result.toolkitRoot) Result when using :py:const:`~ContextTypes.DISTRIBUTED` depends if the `Topology` is compiled locally and the resultant Streams application bundle (sab file) is submitted to an IBM Streams instance or if the `Topology` is compiled on build-service and submitted to an instance in Cloud Pak for Data:: submission_result = submit(ContextTypes.DISTRIBUTED, topology, config) print(submission_result) Result contains the generated `image`, `imageDigest`, `submitMetrics` (building the bundle), `submitImageMetrics` (building the image) when using :py:const:`~ContextTypes.EDGE`:: submission_result = submit(ContextTypes.EDGE, topology, config) print(submission_result.image) print(submission_result.imageDigest) """ def __init__(self, results): self.results = results self._submitter = None @property def job(self): """REST binding for the job associated with the submitted build. Returns: Job: REST binding for running job or ``None`` if connection information was not available or no job was submitted. """ if self._submitter and hasattr(self._submitter, '_job_access'): return self._submitter._job_access() return None def cancel_job_button(self, description=None): """Display a button that will cancel the submitted job. Used in a Jupyter IPython notebook to provide an interactive mechanism to cancel a job submitted from the notebook. Once clicked the button is disabled unless the cancel fails. A job may be cancelled directly using:: submission_result = submit(ctx_type, topology, config) submission_result.job.cancel() Args: description(str): Text used as the button description, defaults to value based upon the job name. .. warning:: Behavior when called outside a notebook is undefined. .. versionadded:: 1.12 """ if not hasattr(self, 'jobId'): return try: # Verify we are in a IPython env. get_ipython() # noqa : F821 import ipywidgets as widgets if not description: description = 'Cancel job: ' description += self.name if hasattr(self, 'name') else self.job.name button = widgets.Button(description=description, button_style='danger', layout=widgets.Layout(width='40%')) out = widgets.Output() vb = widgets.VBox([button, out]) @out.capture(clear_output=True) def _cancel_job_click(b): b.disabled=True print('Cancelling job: id=' + str(self.job.id) + ' ...\n', flush=True) try: rc = self.job.cancel() out.clear_output() if rc: print('Cancelled job: id=' + str(self.job.id) + ' : ' + self.job.name + '\n', flush=True) else: print('Job already cancelled: id=' + str(self.job.id) + ' : ' + self.job.name + '\n', flush=True) except: b.disabled=False out.clear_output() raise button.on_click(_cancel_job_click) display(vb) # noqa : F821 except: pass def __getattr__(self, key): if key in self.__getattribute__("results"): return self.results[key] return self.__getattribute__(key) def __setattr__(self, key, value): if "results" in self.__dict__: results = self.results results[key] = value else: super(SubmissionResult, self).__setattr__(key, value) def __getitem__(self, item): return self.__getattr__(item) def __setitem__(self, key, value): return self.__setattr__(key, value) def __delitem__(self, key): if key in self.__getattribute__("results"): del self.results[key] return self.__delattr__(key) def __contains__(self, item): return item in self.results def __repr__(self): r = copy.copy(self.results) if 'streamsConnection' in r: del r['streamsConnection'] return r.__repr__() def _vcap_from_service_definition(service_def): """Turn a service definition into a vcap services containing a single service. """ if 'credentials' in service_def: credentials = service_def['credentials'] else: credentials = service_def service = {} service['credentials'] = credentials if isinstance(credentials, dict) else json.loads(credentials) service['name'] = _name_from_service_definition(service_def) vcap = {'streaming-analytics': [service]} return vcap def _name_from_service_definition(service_def): return service_def['name'] if 'credentials' in service_def else 'service' class _SasBundleSubmitter(_BaseSubmitter): """ A submitter which supports the BUNDLE context for Streaming Analytics service. """ def __init__(self, config, graph): _BaseSubmitter.__init__(self, 'SAS_BUNDLE', config, graph) self._remote = config.get(ConfigParams.FORCE_REMOTE_BUILD) or \ not 'STREAMS_INSTALL' in os.environ def _get_java_env(self): "Set env vars from connection if set" env = super(_SasBundleSubmitter, self)._get_java_env() env.pop('STREAMS_DOMAIN_ID', None) env.pop('STREAMS_INSTANCE_ID', None) env.pop('STREAMS_INSTALL', None) return env def run(topology, config=None, job_name=None, verify=None, ctxtype=ContextTypes.DISTRIBUTED): """ Run a topology in a distributed Streams instance. Runs a topology using :py:func:`submit` with context type :py:const:`~ContextTypes.DISTRIBUTED` (by default). The result is running Streams job. Args: topology(Topology): Application topology to be run. config(dict): Configuration for the build. job_name(str): Optional job name. If set will override any job name in `config`. verify: SSL verification used by requests when using a build service. Defaults to enabling SSL verification. ctxtype(str): Context type for submission. Returns: 2-element tuple containing - **job** (*Job*): REST binding object for the running job or ``None`` if no job was submitted. - **result** (*SubmissionResult*): value returned from ``submit``. .. seealso:: :py:const:`~ContextTypes.DISTRIBUTED` for details on how to configure the Streams instance to use. .. versionadded:: 1.14 """ config = config.copy() if config else dict() if job_name: if ConfigParams.JOB_CONFIG in config: # Ensure the original is not changed jc = JobConfig.from_overlays(config[ConfigParams.JOB_CONFIG].as_overlays()) jc.job_name = job_name jc.add(config) else: JobConfig(job_name=job_name).add(config) if verify is not None: config[ConfigParams.SSL_VERIFY] = verify sr = submit(ctxtype, topology, config=config) return sr.job, sr
apache-2.0
girish946/plot-cat
setup.py
1
1808
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from setuptools import setup description = ''' plot-cat is the python library for plotting live serial input. plotcat works on python 2.7 and later. plotcat comes handy when you want to plot live data that is coming form different sensors over the serial port, SPI, websocket, tcp socket etc. For example you have to plot the output of a temperature sensor that is coming from an [arduino](https://www.arduino.cc/) or any other microcontroller for that matter; plotcat comes handy for such tasks. plotcat sits on the top of [matplotlib](http://matplotlib.org/) and does all the initialization and drawing stuff itself. you just have to provide the list of values to be plotted. plotcat works on linux osx and windows. plotcat also works well with [Raspberry Pi](https://www.raspberrypi.org/) ## install plotcat from pip ```bash pip install plotcat ``` or from github ```bash git clone https://github.com/girish946/plot-cat.git pip install -r requirements.txt python install setup.py install ``` on fedora 22 and above ```bash dnf copr enable girish946/plotcat dnf install python-plotcat ``` for ubuntu ```bash wget https://github.com/girish946/plot-cat/blob/master/dist/python-plotcat_1.0.0.1-1_all.deb sudo dpkg -i python-plotcat_1.0.0.1-1_all.deb ``` ''' setup( name = 'plotcat', version = '1.0.5', author = 'girish joshi', author_email = '[email protected]', description = ("""tool to plot live serial input"""), packages = ['plotcat'], install_requires = ['matplotlib', 'pyserial'], keywords = 'serial input plotting realtime data matplotlib Raspberry_pi ', scripts = ['live_plot.py'], long_description = """tool to plot live serial input""", license="GPL v3", )
gpl-3.0
why2012/imgRecog
scantronAnalyzeCV.py
1
35087
#!/usr/bin/env python #coding:utf-8 import cv2 import numpy as np from sklearn.cluster import KMeans def readImg(path): return cv2.imread(path) def grayImg(img): return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 图片宽度对应数组列数,高度对应数组行数 def getImgSize(img): return (img.shape[1], img.shape[0]) def swap(a, b): return b, a # 根据宽高创建纯白图,宽高对应数组的列数和行数 def createWhiteImg(size): return np.uint8(np.ones((size[1], size[0])) * 255) def createBlackImg(size): return np.uint8(np.zeros((size[1], size[0]))) def findContours(grayImg, mode = cv2.RETR_EXTERNAL, method = cv2.CHAIN_APPROX_SIMPLE): _, contours, hierarchy = cv2.findContours(grayImg, mode, method) return contours, hierarchy def drawContours(img, contours, color = (0, 0, 0), thickness = -1): cv2.drawContours(img, contours, -1, color, thickness) return img def binaryInv(grayImg): thresh, bimg = cv2.threshold(grayImg, 0, 255, cv2.THRESH_OTSU) return bimg def binaryThresh(grayImg, thresh1 = 0, thresh2 = 255, mode = cv2.THRESH_BINARY): thresh, bimg = cv2.threshold(grayImg, thresh1, thresh2, mode) return bimg def getKernel(size): kernel = np.uint8(np.zeros(size)) kw, kh = kernel.shape for x in range(kh): kernel[x, kw / 2] = 1 for x in range(kw): kernel[kh / 2, x] = 1 return kernel # 将矩形定点按top-left, top-right, bottom-right, bottom-left顺序排列 def order_points(pts): rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def erosion(grayImg, kernel = getKernel((4, 4)), iterations = 1): return cv2.erode(grayImg, kernel, iterations = iterations) def dilation(grayImg, kernel = getKernel((4, 4)), iterations = 1): return cv2.dilate(grayImg, kernel, iterations = iterations) def sobel(grayImg): gradX = cv2.Sobel(grayImg, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1) gradY = cv2.Sobel(grayImg, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1) gradient = cv2.subtract(gradX, gradY) gradient = cv2.convertScaleAbs(gradient) return gradient def showImg(*imgs): index = 0 for img in imgs: cv2.imshow("img" + str(index), img) index += 1 cv2.waitKey(10) cv2.destroyAllWindows() def showImgSingle(img, wname = "img"): cv2.imshow(wname, img) cv2.waitKey(0) cv2.destroyAllWindows() # 获取轮廓的包围矩形 def getBoundingRect(contours): boundingRect = [] for contour in contours: boundingRect.append(cv2.boundingRect(contour)) return boundingRect # lines[ line[ subline[]], ...] def drawLines(img, lines, color = (0, 0, 0), thickness = 1): for line in lines: for subline in line: cv2.line(img, (subline[0], subline[1]), (subline[2], subline[3]), color, thickness) # boundingBox = [x, y, w, h] -> [x1, y1, x2, y2] def convertBoundingBoxToBox(boundingBox): realBox = [] for box in boundingBox: realBox.append([box[0], box[1], box[0] + box[2], box[1] + box[3]]) return realBox def drawBox(img, boxes, color = (0, 0, 0), thickness = 1): for box in boxes: cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), color, thickness) def drawRectP4(img, points, color = (0, 0, 0), thickness = 1): lines = [[points[0], points[1]], [points[1], points[2]], [points[2], points[3]], [points[3], points[0]]] for line in lines: cv2.line(img, (line[0][0], line[0][1]), (line[1][0], line[1][1]), color, thickness) # 从极坐标获取线段端点 def getLinesFromPolarCoord(polarLines, thresh = 4000): lines = [] for rhoThetaPack in polarLines: subline = [] for rho,theta in rhoThetaPack: a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + thresh * (-b)) y1 = int(y0 + thresh * (a)) x2 = int(x0 - thresh * (-b)) y2 = int(y0 - thresh * (a)) subline.append([x1, y1, x2, y2]) lines.append(subline) return lines # 找出面积大于一定阈值的矩形 def findMainBox(boundingBox, size, thresh = 2): boxes = [] S = size[0] * size[1] for box in boundingBox: for x1, y1, x2, y2 in box: w = np.abs(x2 - x1) h = np.abs(y2 - y1) s = w * h if s > S / thresh: boxes.append(box) return boxes # 将短线段加长, d == 0(垂直) def expandLine(lines, thresh): newLines = [] if lines is None: return newLines for sublines in lines: newSublines = [] for x1, y1, x2, y2 in sublines: if x1 > x2: x1, x2 = swap(x1, x2) y1, y2 = swap(y1, y2) newLine = [0] * 4 d1 = float(x2 - x1) d2 = float(y2 - y1) # 垂直 if d1 >= -5 and d1 <= 5: newLine = [x1, y1, x2, y2] f = newLine[1] - newLine[3] f = int(float(f) / np.abs(f)) newLine[1] = newLine[1] + f * thresh newLine[3] = newLine[3] - f * thresh else: deltaY1 = d2 / d1 * x1 deltaY2 = d2 / d1 * thresh newLine[0] = 0 newLine[1] = int(y1 - deltaY1) newLine[2] = int(x2 + thresh) newLine[3] = int(y2 + deltaY2) newSublines.append(newLine) newLines.append(newSublines) return newLines # 保留一定角度的直线, 自动取角度绝对值 def remainLine(lines, angles = [[0, 10], [80, 90]]): if lines is None: return lines PI_DEGREE = 180.0 / np.pi newLines = [] for sublines in lines: newSublines = [] for x1, y1, x2, y2 in sublines: newLine = [x1, y1, x2, y2] if x1 - x2 == 0: theta = 90 else: theta = np.arctan(np.abs(float(y1 - y2) / (x1 - x2))) * PI_DEGREE for angle in angles: if theta >= angle[0] and theta <= angle[1]: newSublines.append(newLine) break if len(newSublines) != 0: newLines.append(newSublines) return newLines # 计算两直线夹角 def computeLineAngle(line1, line2): dx1 = line1[2] - line1[0] dx2 = line2[2] - line2[0] dy1 = line1[3] - line1[1] dy2 = line2[3] - line2[1] dx1 /= 100 dx2 /= 100 dy1 /= 100 dy2 /= 100 theta = np.arccos((dx1 * dx2 + dy1 * dy2) / np.sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2))) theta = theta * 180.0 / np.pi return theta # 两条直线交点 # segment==True, 求线段交点, 允许thresh大小的误差 def computeIntersect(a, b, segment = False, thresh = 100): x1 = a[0]; y1 = a[1]; x2 = a[2]; y2 = a[3]; x3 = b[0]; y3 = b[1]; x4 = b[2]; y4 = b[3] d = float((x1 - x2) * (y3 - y4)) - (y1 - y2) * (x3 - x4) if d != 0: pt = [0, 0] pt[0] = ((x1 * y2 - y1 * x2) * (x3 - x4) - (x1 - x2) * (x3 * y4 - y3 * x4)) / d pt[1] = ((x1 * y2 - y1 * x2) * (y3 - y4) - (y1 - y2) * (x3 * y4 - y3 * x4)) / d if segment: x = [x1, x2, x3, x4] y = [y1, y2, y3, y4] x.remove(min(x)) x.remove(max(x)) y.remove(min(y)) y.remove(max(y)) x.sort() y.sort() x[0] -= thresh x[1] += thresh y[0] -= thresh y[1] += thresh if (pt[0] < x[0] or pt[0] > x[1]) or (pt[1] < y[0] or pt[1] > y[1]): pt = [-1, -1] return pt else: return [-1, -1] # 线段交点 # thresh1可以调整交点超出边界的程度 def getIntersectPoints(lines, filterSize = None, thresh1 = 0): length = len(lines) points = [] for i in range(length): for n in range(i, length): # 防止近似平行线相交 angle = computeLineAngle(lines[i][0], lines[n][0]) thresh0 = 60 if angle <= thresh0 or angle >= 180 - thresh0: continue point = computeIntersect(lines[i][0], lines[n][0], True) if point[0] != -1: if filterSize: if point[0] >= 0 - thresh1 and point[0] <= filterSize[0] + thresh1 and point[1] >= 0 - thresh1 and point[1] <= filterSize[1] + thresh1: points.append(point) else: points.append(point) return points # 边角点 def getBoundingCornerPoints(points, size): points = np.array(points) centerP = np.array([size[0] / 2.0, size[1] / 2.0]) topLeftPoint = [[0, 0], 0] topRightPoint = [[size[0], 0], 0] bottomRightPoint = [[size[0], size[1]], 0] bottomLeftPoint = [[0, size[1]], 0] for point in points: length = np.sum((point - centerP) * (point - centerP)) # topLeft if point[0] <= centerP[0] and point[1] <= centerP[1]: if length > topLeftPoint[1]: topLeftPoint[0] = point topLeftPoint[1] = length # topRight elif point[0] >= centerP[0] and point[1] <= centerP[1]: if length > topRightPoint[1]: topRightPoint[0] = point topRightPoint[1] = length # bottomRight elif point[0] >= centerP[0] and point[1] >= centerP[1]: if length > bottomRightPoint[1]: bottomRightPoint[0] = point bottomRightPoint[1] = length # bottomLeft else: if length > bottomLeftPoint[1]: bottomLeftPoint[0] = point bottomLeftPoint[1] = length return np.array([topLeftPoint[0], topRightPoint[0], bottomRightPoint[0], bottomLeftPoint[0]], dtype = np.float32) # 求众数, 允许+-thresh误差, 若merge != 0, 则分别把+-前merge个连续符号的统计结果合并, 并且只返回合并后的+-两个结果 # [(elem, [count, [indexes]]), ...] # merge: [([elem1, elem2, ...], [count, [indexes]]), ...] def findMode(data, thresh = 1, merge = 2): # {[count, [indexes]]} elemMap = {} for index, elem in enumerate(data): finded = False if elem in elemMap: elemMap[elem][0] += 1 elemMap[elem][1].append(index) finded = True elif thresh != 0: if elem + thresh in elemMap: elemMap[elem + thresh][0] += 1 elemMap[elem + thresh][1].append(index) finded = True if elem - thresh in elemMap: elemMap[elem - thresh][0] += 1 elemMap[elem - thresh][1].append(index) finded = True if not finded: elemMap[elem] = [1, [index]] # [(elem, [count, [indexes]])] elemMap = sorted(elemMap.items(), key=lambda e:e[1][0], reverse=True) if merge != 0: if merge < 0: merge = max(0, len(elemMap) + merge) newElemMap = [([], [0, []]), ([], [0, []])] for index, modeR in enumerate(elemMap): if modeR[0] >= 0: newElemMap[0][0].append(modeR[0]) newElemMap[0][1][0] += modeR[1][0] newElemMap[0][1][1].extend(modeR[1][1]) else: newElemMap[1][0].append(modeR[0]) newElemMap[1][1][0] += modeR[1][0] newElemMap[1][1][1].extend(modeR[1][1]) if index >= merge: break elemMap = newElemMap return elemMap # 直线倾角 def findAngle(lines): angles = [] if lines is None: return angles for sublines in lines: for x1, y1, x2, y2 in sublines: length = np.sqrt((y1 - y2) * (y1 - y2) + (x1 - x2) * (x1 - x2)) angle = np.arcsin((y1 - y2) / length) * 180 / np.pi angles.append(np.round(angle)) return angles def getSlideWindow(arr, windowIndex, unitSize): if len(arr) < unitSize or windowIndex >= len(arr) or windowIndex < 0: return [] if windowIndex + unitSize - 1 < len(arr): return arr[windowIndex: unitSize + windowIndex] else: windowArr = [] windowArr.extend(arr[windowIndex: len(arr)]) leftCount = unitSize - (len(arr) - windowIndex); windowArr.extend(arr[0: leftCount]) return windowArr # 畸变矫正幅度 def getSkewScale(topLeft, topRight, bottomRight, bottomLeft): topAvg = 0.5 * (topLeft[1] + topRight[1]) bottomAvg = 0.5 * (bottomLeft[1] + bottomRight[1]) leftAvg = 0.5 * (topLeft[0] + bottomLeft[0]) rightAvg = 0.5 * (topRight[0] + bottomRight[0]) # 四个点畸变值, 左上,右上,右下,左下 # return [[topLeft[0] - leftAvg, topLeft[1] - topAvg], [topRight[0] - rightAvg, topRight[1] - topAvg], [bottomRight[0] - rightAvg, bottomRight[1] - bottomAvg], [bottomLeft[0] - leftAvg, bottomLeft[1] - bottomAvg]] # 只保留上方畸变值 # return [[0, topLeft[1] - topAvg], [0, topRight[1] - topAvg], [0, topRight[1] - topAvg], [0, topLeft[1] - topAvg]] # 只保留平均畸变值 A = ((topLeft[0] - leftAvg) + (topRight[0] - rightAvg)) / 2.0 B = ((bottomRight[0] - rightAvg) + (bottomLeft[0] - leftAvg)) / 2.0 C = ((topLeft[1] - topAvg) + (bottomLeft[1] - bottomAvg)) / 2.0 D = ((topRight[1] - topAvg) + (bottomRight[1] - bottomAvg)) / 2.0 # 取消X方向畸变, 针对图像内凹或外凸的情况, 平整图像不需要取消X方向畸变 A = B = 0 return [[A, C], [A, D], [B, D], [B, C]] def determineBoxRatio(c1, c2, c3, c4, whRatio, thresh = 0.2): # c1 = np.array(c1) # c2 = np.array(c2) # c3 = np.array(c3) # c4 = np.array(c4) # c = [c1, c2, c3, c4] # # 四个圆心距原点距离 # len1 = np.sum(c1 * c1) # len2 = np.sum(c2 * c2) # len3 = np.sum(c3 * c3) # len4 = np.sum(c4 * c4) # lenTotal = [len1, len2, len3, len4] # # 最小和最大距离分别为左上点和右下点 # minLenIndex = np.argmin(lenTotal) # maxLenIndex = np.argmax(lenTotal) # leftIndex = [0, 1, 2, 3] # leftIndex.remove(minLenIndex) # leftIndex.remove(maxLenIndex) # cLeft1 = c[leftIndex[0]] # cLeft2 = c[leftIndex[1]] # # 剩下两个点,y坐标大的为左下点 # if cLeft1[1] > cLeft2[1]: # cLeft1, cLeft2 = (cLeft2, cLeft1) # topLeft = np.array((c[minLenIndex][0], c[minLenIndex][1])) # topRight = np.array((cLeft1[0], cLeft1[1])) # bottomRight = np.array((c[maxLenIndex][0], c[maxLenIndex][1])) # bottomLeft = np.array((cLeft2[0], cLeft2[1])) topLeft = np.array([c1[0], c1[1]]) topRight = np.array([c2[0], c2[1]]) bottomRight = np.array([c3[0], c3[1]]) bottomLeft = np.array([c4[0], c4[1]]) # 上下,左右,宽高 w1 = np.sum((topRight - topLeft) * (topRight - topLeft)) w2 = np.sum((bottomRight - bottomLeft) * (bottomRight - bottomLeft)) h1 = np.sum((bottomLeft - topLeft) * (bottomLeft - topLeft)) h2 = np.sum((bottomRight - topRight) * (bottomRight - topRight)) # 宽高比 staRatio = whRatio * whRatio ratio1 = w1 / h1 ratio2 = w2 / h2 ratio3 = w1 / h2 ratio4 = w2 / h1 # diagLength = w * w + h * h diagLength1 = np.sum((topLeft - bottomRight) * (topLeft - bottomRight)) diagLength2 = np.sum((topRight - bottomLeft) * (topRight - bottomLeft)) # 宽高比判定 whRatioBool = (ratio1 >= staRatio - thresh and ratio1 <= staRatio + thresh) and (ratio2 >= staRatio - thresh and ratio2 <= staRatio + thresh) \ and (ratio3 >= staRatio - thresh and ratio3 <= staRatio + thresh) and (ratio4 >= staRatio - thresh and ratio4 <= staRatio + thresh) # 对角线绝对长度 # diagAbsoluteLengthBool = (diagLength1 >= diagLength * (1 - thresh) and diagLength1 <= diagLength * (1 + thresh)) and (diagLength2 >= diagLength * (1 - thresh) and diagLength2 <= diagLength * (1 + thresh)) # 对角线相对长度 diagLengthRatio = diagLength1 / diagLength2 diagLengthRatioBool = (diagLengthRatio >= 1 - thresh) and (diagLengthRatio <= 1 + thresh) # 半径方差 radiusArr = np.array((c1[2], c2[2], c3[2], c4[2])) radiusVar = np.sum(np.power(radiusArr - np.array([np.average(radiusArr)] * 4), 2)) # if diagLengthRatioBool or True: # print c1,c2,c3,c4 # print " topLeft, topRight: ", [topLeft.tolist(), topRight.tolist()] # print "bottomLeft, bottomRight: ", [bottomLeft.tolist(), bottomRight.tolist()] # print "w1, w2: ", [w1, w2] # print "h1, h2: ", [h1, h2] # print "staRatio: ", staRatio # print "ratio1(w1/h1), ratio2(w2/h2), ratio3(w1/h2), ratio4(w2/h1): ", [ratio1, ratio2, ratio3, ratio4] # print "ratioBool: ", whRatioBool # # print "diagLength: ", diagLength # print "diagLength1, diagLength2, diagLengthRatio", [diagLength1, diagLength2, diagLengthRatio] # print "diagLengthRatioBool: ", diagLengthRatioBool # print "----------" # 宽高比与对角线长度 if whRatioBool and diagLengthRatioBool: # 差异度 difference = np.abs(diagLengthRatio - thresh) + radiusVar return True, (topLeft, topRight, bottomRight, bottomLeft), getSkewScale(topLeft, topRight, bottomRight, bottomLeft), difference else: return False, (), [], float('inf') def determingCorrectCircles(circles, whRatio): if len(circles) < 4: return [], (), [] # for currentCircleIndex, currentCircle in enumerate(circles): # leftCircles = circles[range(currentCircleIndex + 1, len(circles))].tolist(); # leftCircles.extend(circles[range(0, currentCircleIndex)]) # c1 = currentCircle # for windowIndex in range(len(leftCircles)): # c2, c3, c4 = getSlideWindow(leftCircles, windowIndex, 3) # result, corners, skewScale = determineBoxRatio((c1[0], c1[1]), (c2[0], c2[1]), (c3[0], c3[1]), (c4[0], c4[1]), whRatio) # if result: # return corners, (c1, c2, c3, c4), skewScale # return [], (), [] # 分别获取四个象限的点 topLeftCircles = [] topRightCircles = [] bottomLeftCircles = [] bottomRightCircles = [] minX = np.min(circles[:, 0]) maxX = np.max(circles[:, 0]) minY = np.min(circles[:, 1]) maxY = np.max(circles[:, 1]) centerX = (minX + maxX) / 2.0 centerY = (minY + maxY) / 2.0 for curCircle in circles: x, y, r = curCircle if x <= centerX and y <= centerY: topLeftCircles.append(curCircle) elif x >= centerX and y <= centerY: topRightCircles.append(curCircle) elif x >= centerX and y >= centerY: bottomRightCircles.append(curCircle) else: bottomLeftCircles.append(curCircle) # print topLeftCircles # print topRightCircles # print bottomRightCircles # print bottomLeftCircles correctResult = [] for circleTopLeft in topLeftCircles: for circleTopRight in topRightCircles: for circleBottomRight in bottomRightCircles: for circleBottomLeft in bottomLeftCircles: result, corners, skewScale, difference = determineBoxRatio(circleTopLeft, circleTopRight, circleBottomRight, circleBottomLeft, whRatio) if result: correctResult.append({"diff": difference, "corners": corners, "skewScale": skewScale, \ "circleTopLeft": circleTopLeft, "circleTopRight": circleTopRight, "circleBottomRight": circleBottomRight, \ "circleBottomLeft": circleBottomLeft}) #print correctResult if correctResult: # 选取差异度最小的candidate correctResult = sorted(correctResult, key = lambda a: a["diff"]) minDiffResult = correctResult[0] return minDiffResult["corners"], (minDiffResult["circleTopLeft"], minDiffResult["circleTopRight"], minDiffResult["circleBottomRight"], minDiffResult["circleBottomLeft"]), minDiffResult["skewScale"] return [], (), [] # main function, paperW,paperH: 目标区域宽高(相对比例), blockList = [(0.3,0.3,0.5,0.5), ]左上右下 def houghTestCircle(originalImg, paperW, paperH, blockList = None, scaleThresh = 0.3): imgSize = getImgSize(originalImg) w, h = imgSize # 按比例缩放 w, h = (np.int(w * scaleThresh), np.int(h * scaleThresh)) # 调试 dw, dh = (int(paperW * scaleThresh * 2), int(paperH * scaleThresh * 2)) minWH = np.min((w, h)) originalImg = cv2.resize(originalImg, (w, h)) img = grayImg(originalImg) # 调试, 画圆 imgColor = originalImg.copy() # 调试, 画圆 imgColor02 = originalImg.copy() # 切割结果 splitArea = np.array([]) circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, minWH * 0.08, param1 = 60, param2 = 20, minRadius = int(np.ceil(3 * scaleThresh)), maxRadius = int(50 * scaleThresh)) # 只取半径大于平均值的圆 avgRadius = np.average(circles[0, :, 2]) * 0.9 circles = np.array([circles[0, circles[0, :, 2] >= avgRadius]]) # 调试,轮廓 img = cv2.Canny(img, 15, 60, apertureSize = 3) # 确定四个边角圆 # skewScale: 边界框四个角畸变值, 减去即可矫正畸变 corners, correctCircles, skewScale = determingCorrectCircles(circles[0], float(paperW) / paperH) corners = np.array(corners, dtype = np.float32) # 未过滤的圆 print "circles: ", circles # 半径平均值 print "avgRadius: ", avgRadius # 过滤后的圆 print "correctCircles: ", correctCircles # 过滤后的圆的圆心 print "corners: ", corners # 畸变值 print "skew: ", skewScale # 画出过滤前的圆 if circles.any(): # 调试:画圆 circles = np.uint16(np.around(circles)) for i in circles[0]: cv2.circle(imgColor02,(i[0],i[1]),i[2],(0,255,0),2) cv2.circle(imgColor02,(i[0],i[1]),2,(0,0,255),3) # 画出过滤后的圆 blockListImg = [] if correctCircles: # 调试:画圆 correctCirclesUint = np.uint16(np.around(correctCircles)) for i in correctCirclesUint: cv2.circle(imgColor,(i[0],i[1]),i[2],(0,255,0),2) cv2.circle(imgColor,(i[0],i[1]),2,(0,0,255),3) # 映射,切割 transPs = np.array([[0, 0], [dw, 0], [dw, dh], [0, dh]], dtype = np.float32) transform = cv2.getPerspectiveTransform(corners, transPs) splitArea = cv2.warpPerspective(src = originalImg, M = transform, dsize = (dw, dh)) blockListImg.append(splitArea) # 调试:切割目标区域 if blockList and correctCircles: for blockCorner in blockList: # 待切割区域对角点 topLeftX, topLeftY, bottomRightX, bottomRightY = np.array(blockCorner) * np.array([dw, dh, dw, dh]) # 待切割区域宽高 tmpW = int(bottomRightX - topLeftX) tmpH = int(bottomRightY - topLeftY) # 待切割区域四个边角, 不抵消畸变 fourPoints = np.array([[topLeftX, topLeftY], [bottomRightX, topLeftY], [bottomRightX, bottomRightY], [topLeftX, bottomRightY]]) # 待切割区域四个边角,抵消畸变 # 左上,右上,右下,左下 fourPointsAntiSkew = np.array([[topLeftX, topLeftY], [bottomRightX, topLeftY], [bottomRightX, bottomRightY], [topLeftX, bottomRightY]]) #- np.array(skewScale) # 结果图像四个边角 transPsTmp = np.array([[0, 0], [tmpW, 0], [tmpW, tmpH], [0,tmpH]], dtype = np.float32) cornersTmp = np.array(fourPoints, dtype = np.float32) cornersTmpSkew = np.array(fourPointsAntiSkew, dtype = np.float32) transform = cv2.getPerspectiveTransform(cornersTmp, transPsTmp) splitAreaTmp = cv2.warpPerspective(src = splitArea, M = transform, dsize = (tmpW, tmpH)) transformSkew = cv2.getPerspectiveTransform(cornersTmpSkew, transPsTmp) splitAreaTmpSkew = cv2.warpPerspective(src = splitArea, M = transformSkew, dsize = (tmpW, tmpH)) blockListImg.extend([splitAreaTmp, splitAreaTmpSkew]) showImg(img, imgColor02, imgColor, *blockListImg) return # main function def houghTest(img): img = cv2.resize(img, (600, 700)) originalImg = img # 增加亮度和对比度, 加高光可以突出黑色区域, 弱化灰色区域 # img = cv2.convertScaleAbs(img, alpha = 1, beta = -60) # 灰度图 img = grayImg(img) imgSize = getImgSize(img) minW = min(img.shape) maxW = max(img.shape) img = cv2.blur(img, (4, 4)) # 画出轮廓 edges0 = cv2.Canny(img, 10, 50, apertureSize = 3) # edges = sobel(img) # edges = cv2.blur(edges, (8, 8)) # edges = erosion(edges, iterations = 1) edges = dilation(edges0, iterations = 2) # 调试: 整体轮廓 edges = cv2.Canny(edges, 10, 50, apertureSize = 3) # 寻找边框 # contours, hierarchy = findContours(edges, cv2.RETR_TREE) # 白色外层轮廓 # blackImg = createBlackImg(img.shape) # drawContours(blackImg, contours, (255, 255, 255), 1) # drawContours(blackImg, contours, (255, 255, 255), 1) # 边框黑色外层轮廓 # whiteImg = createWhiteImg(imgSize) # 调试:绘制边框 # drawContours(whiteImg, contours, (0, 0, 0), 1) # boundingBoxes = getBoundingRect(contours) # for boundingBox in boundingBoxes: # cv2.rectangle(img, (boundingBox[0], boundingBox[1]), (boundingBox[2], boundingBox[3]), (0, 0, 255), 1) # 先找轮廓边线, 再找边线交出的矩形 # lines = cv2.HoughLines(edges, 1, np.pi / 360, 200) # lines = getLinesFromPolarCoord(lines, maxW) # lines = cv2.HoughLinesP(edges, 1, np.pi / 360, 50, minLineLength = 100, maxLineGap = 20) lines = np.array(cv2.HoughLinesP(edges, 1, np.pi / 360, 50, minLineLength = 100, maxLineGap = 50)) # lines = remainLine(lines) # 求倾角众数 mode = findMode(findAngle(lines), 7, 9) mode[0][1][1].extend(mode[1][1][1]) lines = lines[mode[0][1][1]] # 调试: 画出延长线 lines0 = expandLine(lines, int(maxW)) wimg0 = createWhiteImg(getImgSize(img)) drawLines(wimg0, lines0) # 调试:画出边线 wimg = createWhiteImg(getImgSize(img)) drawLines(wimg, lines) # 计算交点 intersectPoints = getIntersectPoints(lines, imgSize) cornerPoints = getBoundingCornerPoints(intersectPoints, imgSize) # 微调, 收缩边框 thresh = 190.0 threshZero = 1.0 cornerPoints[0] += minW / thresh * threshZero cornerPoints[1][0] -= minW / thresh * threshZero cornerPoints[1][1] += minW / thresh * threshZero cornerPoints[2] -= minW / thresh * threshZero cornerPoints[3][0] += minW / thresh * threshZero cornerPoints[3][1] -= minW / thresh * threshZero transPs = np.array([[0, 0], [imgSize[0], 0], [imgSize[0], imgSize[1]], [0, imgSize[1]]], dtype = np.float32) transform = cv2.getPerspectiveTransform(cornerPoints, transPs) # 调试:画出边框 wimg2 = createWhiteImg(imgSize) drawRectP4(wimg2, np.array(cornerPoints).astype(np.int32)) # 画出前景 wimg3 = cv2.warpPerspective(src = originalImg, M = transform, dsize = imgSize) # 在检测到的直线上找边框 # contours, hierarchy = findContours(wimg, cv2.RETR_TREE) # contours, hierarchy = findContours(blackImg, cv2.RETR_TREE) # wimg = createWhiteImg(imgSize) # 画出边框 # drawContours(wimg, contours, (0, 0, 0), 1) # 找到面积最大的区域 # maxAreaContours = sorted(contours, key = cv2.contourArea, reverse = True)[0] # 求出其最小包围矩形 # rect = cv2.minAreaRect(maxAreaContours) # 调试:画出矩形 # box = np.int0(cv2.boxPoints(rect)) # whiteImg = createWhiteImg(imgSize) # drawContours(wimg, [maxAreaContours], (0, 0, 0), 1) showImg(wimg0, wimg, wimg2, edges0, edges, originalImg, img, wimg3) # main function def ansAreaSplit(img): img = cv2.resize(img, (600, 700)) originalImg = img img = grayImg(img) imgSize = getImgSize(img) minW = min(img.shape) maxW = max(img.shape) img = cv2.blur(img, (4, 4)) # 画出轮廓 edges0 = cv2.Canny(img, 10, 50, apertureSize = 3) edges = dilation(edges0, iterations = 2) #edges = erosion(edges, iterations = 1) #edges = erosion(edges, iterations = 2) #edges = dilation(edges0, iterations = 3) # 边框 contours, hierarchy = findContours(edges, cv2.RETR_TREE) blackImg = createBlackImg(imgSize) drawContours(blackImg, contours, (255, 255, 255), 1) showImg(edges0, edges, blackImg) # 从填涂区域包围框中选出正确的填涂框, 并计算中心坐标 # hierarchy结构:(前一个框序号,后一个框序号,第一个子框序号,父框序号) # 序号为-1表示无 # 返回所有填涂区域的中心坐标和区域框 def findAnswerBoxCenter(rectangles, hierarchy): hierarchy = hierarchy[0] ansBoxCenter = [] topBoundingBox = [] for index, item in enumerate(hierarchy): if item[3] != -1: x1, y1, w, h = rectangles[index] # centerX, centerY,S ansBoxCenter.append(((x1 + x1 + w) / 2, (y1 + y1 + h) / 2, w * h)) elif rectangles[index][2] != -1: topBoundingBox = rectangles[index] return ansBoxCenter, topBoundingBox # 通过填涂区域坐标确定填涂的答案 # ansBoxCenter为填涂区域中心坐标 # questionCount为竖排的题目数 # answerCount为每个题目备选答案数目 # W,H为作答区域的宽高 # 返回答题结果,questionCount * answerCount的二位数组,置1位代表填涂,置0位代表未填涂 def determineAnswer(ansBoxCenter, questionCount, answerCount, W, H, restrictArea = True, restrictAreaThresh = 0.2): baseX = baseY = 0 stepX = int(float(W) / questionCount) stepY = int(float(H) / answerCount) standardS = stepX * stepY answerMap = np.zeros((questionCount, answerCount)) for anSenter in ansBoxCenter: ansX, ansY, S = anSenter # 填涂面积至少为判定方格面积的20% if restrictArea and S <= restrictAreaThresh * standardS: continue ansIndex = int((ansY - baseY) / stepY) quesIndex = int((ansX - baseX) / stepX) answerMap[quesIndex][ansIndex] = 1 return answerMap # 横跨整个答题卡的长条形作答区域,包含多个题组 # 通过填涂区域坐标确定填涂的答案 # ansBoxCenter为填涂区域中心坐标 # questionCount为[!每个!]题组的竖排的题目数 # answerCount为每个[!每个!]题组的题目备选答案数目 # groupCount为题组个数 # W,H为作答区域的宽高 # spaceStep为每个题组的间隔长度,默认一个填涂区域大小 # 返回答题结果,questionCount * answerCount的二位数组,置1位代表填涂,置0位代表未填涂 def determineAnswerBar(ansBoxCenter, questionCount, answerCount, groupCount, W, H, spaceStep = 1, restrictArea = True, restrictAreaThresh = 0.2): baseX = baseY = 0 stepX = int(float(W) / (questionCount * groupCount + groupCount - 1)) stepY = int(float(H) / answerCount) standardS = stepX * stepY answerMap = np.zeros((questionCount * groupCount, answerCount)) for anSenter in ansBoxCenter: ansX, ansY, S = anSenter # 填涂面积至少为判定方格面积的20% if restrictArea and S <= restrictAreaThresh * standardS: continue ansIndex = int((ansY - baseY) / stepY) quesIndePre = int((ansX - baseX) / stepX) # gapIndex 填涂区域所属组序号, 从1编号 # determine spacegap index # quesIndex -> [q * (i - 1) + 1, (q + 1) * i - 1], where q:questionCount, i:gapIndex # q * (i - 1) + 1 <= x and (q + 1) * i - 1 >= x, where x: quesIndex # resolve this euqation # i -> [(x + 1) / (q + 1), (x + q) / (q + 1)] gapIndex = np.ceil(float((quesIndePre + 1)) / (questionCount + 1)) # or np.floor(float((quesIndePre + questionCount)) / (questionCount + 1)) quesIndex = int(quesIndePre - gapIndex + 1) answerMap[quesIndex][ansIndex] = 1 return answerMap # main function def readCard(img): questionCount = 5 answerCount = 5 # 增加亮度和对比度, 加高光可以突出黑色区域, 弱化灰色区域 # img = cv2.convertScaleAbs(img, alpha = 1.3, beta = 20) # 确定裁剪范围,row1,row2,col1,col2 areas = [[245, 325, 320, 480], [258, 325, 485, 615], [245, 325, 10, 615]] area = None#areas[1] groupCount = 1 # 灰度图 originalImg = img img = grayImg(img) w, h = img.shape imgSize = getImgSize(img) # otsu二值化 # img = binaryInv(img) # 低通滤波 # img = cv2.blur(img, (3, 3)) # 腐蚀, 实际效果为涂抹填涂区域 # img = erosion(img) # 膨胀, 实际效果为缩小填涂区域 # img = dilation(img, iterations = 1) # 裁剪 # 裁剪 if area: rectImg01 = img[area[0]: area[1], area[2]: area[3]] else: rectImg01 = img # 角点检 # rectImg01_32 = np.float32(rectImg01) # rectImg01 = cv2.cornerHarris(np.float32(rectImg01_32), 2, 3, 0.04) # rectImg01 = dilation(rectImg01) # rectImg01 = erosion(rectImg01) # rectImg01 = binaryThresh(rectImg01, 0.01 * rectImg01.max(), 255, 1) # # find centroids # rectImg01 = np.uint8(rectImg01) # ret, labels, stats, centroids = cv2.connectedComponentsWithStats(rectImg01) # criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001) # corners = np.int0(cv2.cornerSubPix(rectImg01_32, np.float32(centroids), (5, 5), (-1, -1), criteria)) # 寻找填涂区域数量 rectImg010 = erosion(rectImg01, iterations=3) contours, hierarchy = findContours(rectImg010, cv2.RETR_TREE) whiteImg00 = createWhiteImg(imgSize) drawContours(whiteImg00, contours, (0, 0, 0), 1) print "Count: ", len(hierarchy[0]) - 1 ansCount = len(hierarchy[0]) - 1 corners = np.int0(cv2.goodFeaturesToTrack(rectImg01, 20, 0.01, 10)) # 聚类,找出角点中心 cornersStack = np.hstack((corners[:, :, 0], corners[:, :, 1])) pred = KMeans(n_clusters = ansCount).fit_predict(cornersStack) _cornerMap = {} for index, _corner in enumerate(cornersStack): if pred[index] not in _cornerMap: _cornerMap[pred[index]] = [] _cornerMap[pred[index]].append(_corner) newCorners = [] for v in _cornerMap.values(): _sum = np.zeros(2) c = 0 for p in v: _sum += p c += 1 avg = _sum / c newCorners.append(np.int32(avg)) newCorners = np.array(newCorners) # print corners # originalImg[corners[:, 0, 1], corners[:, 0, 0]] = [0, 0, 255] # rectImg01 = binaryThresh(rectImg01, 50, 255, cv2.THRESH_BINARY_INV) # rectImg01 = np.uint8(rectImg01) # # 白边 # row, col = rectImg01.shape # rectImg01[0] = 255 # rectImg01[row - 1] = 255 # rectImg01[:, col - 1] = 255 # rectImg01[:, 0] = 255 # #rectImg01[1] = 255 # # 调试:寻找并在白色底图上画出轮廓 originalImg[newCorners[:, 1], newCorners[:, 0]] = [0, 0, 255] # # 找出轮廓 # 角点标注 whiteImg = createWhiteImg(imgSize) whiteImg[newCorners[:, 1], newCorners[:, 0]] = 0 contours, hierarchy = findContours(whiteImg, cv2.RETR_TREE) # # 调试:画出轮廓 drawContours(whiteImg, contours, (0, 0, 0), 1) # 得到填涂答案 boundingBox = getBoundingRect(contours) ansBoxCenter, topBoundingBox = findAnswerBoxCenter(boundingBox, hierarchy) # 单个题组 # ansMap = determineAnswer(ansBoxCenter, 5, 4, topBoundingBox[2] - topBoundingBox[0], topBoundingBox[3] - topBoundingBox[1]) # 四个题组 # ansMap = determineAnswerBar(ansBoxCenter, 5, 5, groupCount, topBoundingBox[2] - topBoundingBox[0], topBoundingBox[3] - topBoundingBox[1] # , restrictArea = True, restrictAreaThresh = 0.05) ansMap = determineAnswerBar(ansBoxCenter, questionCount, answerCount, groupCount, topBoundingBox[2] - topBoundingBox[0], topBoundingBox[3] - topBoundingBox[1] , restrictArea = True, restrictAreaThresh = 0.00) # 调试:画出轮廓 showImg(whiteImg00, rectImg01, whiteImg) # showImg(whiteImg) return ansMap.T # main function def readCard02(img, details = [], mode = "noise"): if "area" not in details or not details["area"]: area = None else: area = details["area"] groupCount = 1 #details["groupCount"] questionCount = 5 #details["questionCount"] answerCount = 5 #details["answerCount"] # 灰度图 img = grayImg(img) w, h = img.shape # otsu二值化 img = binaryInv(img) # 低通滤波 if mode == "noise": img = cv2.blur(img, (3, 3)) # 腐蚀, 实际效果为涂抹填涂区域 # img = erosion(img) # 膨胀, 实际效果为缩小填涂区域 if mode == "noise": img = dilation(img, iterations = 1) # 裁剪 if area: rectImg01 = img[area[0]: area[1], area[2]: area[3]] else: rectImg01 = img # 白边框,防止贴近边缘的填涂区域被并入外围边框中 row, col = rectImg01.shape rectImg01[0] = 255 rectImg01[row - 1] = 255 rectImg01[:, col - 1] = 255 rectImg01[:, 0] = 255 # 调试:寻找并在白色底图上画出轮廓 whiteImg = createWhiteImg((col, row)) # 找出轮廓 contours, hierarchy = findContours(rectImg01, cv2.RETR_TREE) # 调试:画出轮廓 drawContours(whiteImg, contours, (0, 0, 0), 2) # 得到填涂答案 boundingBox = getBoundingRect(contours) ansBoxCenter, topBoundingBox = findAnswerBoxCenter(boundingBox, hierarchy) # 单个题组 # ansMap = determineAnswer(ansBoxCenter, 5, 4, topBoundingBox[2] - topBoundingBox[0], topBoundingBox[3] - topBoundingBox[1]) # 四个题组 ansMap = determineAnswerBar(ansBoxCenter, questionCount, answerCount, groupCount, topBoundingBox[2] - topBoundingBox[0], topBoundingBox[3] - topBoundingBox[1] , restrictArea = True, restrictAreaThresh = 0.02) # 调试:画出轮廓 showImg(rectImg01, whiteImg) return ansMap.T if __name__ == "__main__": img = readImg("/Volumes/SD/ML/scantron/pics/card01.jpg") #houghTest(img) readCard(img)
mit
untom/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
0x0all/scikit-learn
examples/plot_multilabel.py
25
4261
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] pl.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) pl.subplot(2, 2, subplot) pl.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) pl.scatter(X[:, 0], X[:, 1], s=40, c='gray') pl.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') pl.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') pl.xticks(()) pl.yticks(()) pl.xlim(min_x - .5 * max_x, max_x + .5 * max_x) pl.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: pl.xlabel('First principal component') pl.ylabel('Second principal component') pl.legend(loc="upper left") pl.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, return_indicator=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") pl.subplots_adjust(.04, .02, .97, .94, .09, .2) pl.show()
bsd-3-clause
h2educ/scikit-learn
examples/cluster/plot_digits_agglomeration.py
377
1694
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Feature agglomeration ========================================================= These images how similar features are merged together using feature agglomeration. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, cluster from sklearn.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(()) plt.yticks(()) if i == 1: plt.title('Original data') plt.subplot(3, 4, 4 + i + 1) plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') if i == 1: plt.title('Agglomerated data') plt.xticks(()) plt.yticks(()) plt.subplot(3, 4, 10) plt.imshow(np.reshape(agglo.labels_, images[0].shape), interpolation='nearest', cmap=plt.cm.spectral) plt.xticks(()) plt.yticks(()) plt.title('Labels') plt.show()
bsd-3-clause
tawsifkhan/scikit-learn
examples/model_selection/plot_roc.py
96
4487
""" ======================================= Receiver Operating Characteristic (ROC) ======================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. Multiclass settings ------------------- ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the classification of each label. .. note:: See also :func:`sklearn.metrics.roc_auc_score`, :ref:`example_model_selection_plot_roc_crossval.py`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # Import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features to make the problem harder random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # shuffle and split training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) # Learn to predict each class against the other classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) ############################################################################## # Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr[2], tpr[2], label='ROC curve (area = %0.2f)' % roc_auc[2]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ############################################################################## # Plot ROC curves for the multiclass problem # Compute macro-average ROC curve and ROC area fpr["macro"] = np.mean([fpr[i] for i in range(n_classes)], axis=0) tpr["macro"] = np.mean([tpr[i] for i in range(n_classes)], axis=0) roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), linewidth=2) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), linewidth=2) for i in range(n_classes): plt.plot(fpr[i], tpr[i], label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
jaeilepp/mne-python
examples/inverse/plot_lcmv_beamformer.py
1
3405
""" ====================================== Compute LCMV beamformer on evoked data ====================================== Compute LCMV beamformer solutions on an evoked dataset for three different choices of source orientation and store the solutions in stc files for visualisation. """ # Author: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import matplotlib.pyplot as plt import numpy as np import mne from mne.datasets import sample from mne.beamformer import lcmv print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif' label_name = 'Aud-lh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name subjects_dir = data_path + '/subjects' ############################################################################### # Get epochs event_id, tmin, tmax = 1, -0.2, 0.5 # Setup for reading the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) raw.info['bads'] = ['MEG 2443', 'EEG 053'] # 2 bads channels events = mne.read_events(event_fname) # Set up pick list: EEG + MEG - bad channels (modify to your needs) picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, exclude='bads') # Pick the channels of interest raw.pick_channels([raw.ch_names[pick] for pick in picks]) # Re-normalize our empty-room projectors, so they are fine after subselection raw.info.normalize_proj() # Read epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=(None, 0), preload=True, proj=True, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6)) evoked = epochs.average() forward = mne.read_forward_solution(fname_fwd, surf_ori=True) # Compute regularized noise and data covariances noise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0, method='shrunk') data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15, method='shrunk') plt.close('all') pick_oris = [None, 'normal', 'max-power'] names = ['free', 'normal', 'max-power'] descriptions = ['Free orientation, voxel: %i', 'Normal orientation, voxel: %i', 'Max-power orientation, voxel: %i'] colors = ['b', 'k', 'r'] for pick_ori, name, desc, color in zip(pick_oris, names, descriptions, colors): # compute unit-noise-gain beamformer with whitening of the leadfield and # data (enabled by passing a noise covariance matrix) stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.05, pick_ori=pick_ori, weight_norm='unit-noise-gain', max_ori_out='signed') # View activation time-series in maximum voxel at 100 ms: time_idx = stc.time_as_index(0.1) max_vox = np.argmax(stc.data[:, time_idx]) plt.plot(stc.times, stc.data[max_vox, :], color, hold=True, label=desc % max_vox) plt.xlabel('Time (ms)') plt.ylabel('LCMV value') plt.ylim(-0.8, 2.2) plt.title('LCMV in maximum voxel') plt.legend() plt.show() # take absolute value for plotting stc.data[:, :] = np.abs(stc.data) # Plot last stc in the brain in 3D with PySurfer if available brain = stc.plot(hemi='lh', subjects_dir=subjects_dir, initial_time=0.1, time_unit='s') brain.show_view('lateral')
bsd-3-clause
megamorphf/decluterfy
main.py
1
4542
import logging import spotipy.util as util from spotipy_client import MLearnipy from ml_items import DatasetFormer from sklearn import tree username = 'coder-hermes' # KILL ME FOR HARDCODE OR USE YOUR UNAME INSTEAD selected_features = [ "id", "duration_ms", "acousticness", "tempo", "speechiness", "mode", "danceability", "liveness", "instrumentalness", "loudness", "time_signature", "energy", "valence", "key" ] def fetch_token(username='coder-hermes'): return util.prompt_for_user_token(username, scope = 'playlist-modify-public') def predict_playlists_for_unsorted_songs(already_sorted_set, incorrectly_sorted_set): decision_tree_classifier = tree.DecisionTreeClassifier() songs_not_in_unsorted_playlist = already_sorted_set.data playlists_for_sorted_songs = already_sorted_set.target # the 3 lines of magic decision_tree_classifier.fit(songs_not_in_unsorted_playlist, playlists_for_sorted_songs) incorrectly_sorted_songs = incorrectly_sorted_set.data playlists_for_unsorted_songs = decision_tree_classifier.predict(incorrectly_sorted_songs) return playlists_for_unsorted_songs def make_track_names(item): return '{} - {}'.format(item[0], item[1]) def user_confirms(message='\nY/n', negation_list=('n', 'N')): prompt = input(message) if prompt not in negation_list: return True else: return False def main(): token = fetch_token() if token: sp = MLearnipy(username, auth=token) unsorted_playlist, all_playlists = sp.get_target_and_all_other_pls(selected_features) # Form a data-frame for ml analysis already_sorted_set = DatasetFormer(all_playlists, 'playlist_id', ['id']) incorrectly_sorted_set = DatasetFormer(unsorted_playlist, 'playlist_id', ['id']) # playlists_for_unsorted_songs contains ids for playlists to which unsorted songs have to be moved # elements of playlists_for_unsorted_songs are in the same order as songs in incorrectly_sorted_set playlists_for_unsorted_songs = predict_playlists_for_unsorted_songs(already_sorted_set, incorrectly_sorted_set) logger.debug("predicted list: {}".format(playlists_for_unsorted_songs)) logger.debug("names: {}".format(already_sorted_set.target_names)) logger.debug("ids : {}".format(already_sorted_set.targets_as_ids)) remaped_playlist = already_sorted_set.remap_list_of_targets_to_initial_value(playlists_for_unsorted_songs) logger.debug("Songs remapped: {}".format(remaped_playlist)) # returns destination playlist from their respective ids pl_names = sp.last_fetch_of_all_pls sp.print_separator(' Decluter suggestions ') # gets all song ids song_ids_list = incorrectly_sorted_set.popped_entries['id'] raw_track_list = sp.resolve_song_names_from_id_list(song_ids_list) tracks = list( map(make_track_names, raw_track_list)) for index,playlist in list(enumerate(remaped_playlist, start=0)): # todo add song names here: print('#{}\t{}\t->\t{}'.format(index, tracks[index], sp.find_in_list_of_tuples(pl_names, playlist, 0, 1))) sp.print_separator(' Chose songs you want to move ') for index, playlist in list(enumerate(remaped_playlist, start=0)): track = tracks[index] pl_name = sp.find_in_list_of_tuples(pl_names, playlist, 0, 1) print('Move:\t{}\n#{}\t{} -> {}\n'.format((raw_track_list[index][2]),index, track, pl_name)) # asks if user want to move a song to a predicted playlist if user_confirms(): print('Moving...') # todo: add moving here sp.user_playlist_add_tracks(username, playlist, [song_ids_list[index]]) print('Do you wish to delete the song you just moved?') if user_confirms(): print('Deleting...') # todo: delete songs here sp.user_playlist_remove_all_occurrences_of_tracks(username, unsorted_playlist['playlist_id'][0], [song_ids_list[index]]) else: pass else: pass sp.print_separator('') sp.print_separator(' Decluterfy finished ') if __name__ == '__main__': logger = logging.getLogger() logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') main()
mit
FEniCS/mshr
demo/python/csg-subdomains-2D.py
1
1532
# Copyright (C) 2012-2014 Benjamin Kehlet # # This file is part of mshr. # # mshr is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # mshr is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with mshr. If not, see <http://www.gnu.org/licenses/>. import dolfin from mshr import * #dolfin.set_log_level(dolfin.TRACE) # Define 2D geometry domain = Rectangle(dolfin.Point(0., 0.), dolfin.Point(5., 5.)) \ - Rectangle(dolfin.Point(2., 1.25), dolfin.Point(3., 1.75)) \ - Circle(dolfin.Point(1, 4), .25) \ - Circle(dolfin.Point(4, 4), .25) domain.set_subdomain(1, Rectangle(dolfin.Point(1., 1.), dolfin.Point(4., 3.))) domain.set_subdomain(2, Rectangle(dolfin.Point(2., 2.), dolfin.Point(3., 4.))) print("Verbose output of 2D geometry:") dolfin.info(domain, True) # Generate and plot mesh mesh2d = generate_mesh(domain, 45) print(mesh2d) dolfin.plot(mesh2d, "2D mesh") # Convert subdomains to mesh function for plotting mf = dolfin.MeshFunction("size_t", mesh2d, 2, mesh2d.domains()) dolfin.plot(mf, "Subdomains") # import matplotlib.pyplot as plt # plt.show()
gpl-3.0
JeyZeta/Dangerous
Dangerous/Golismero/thirdparty_libs/nltk/probability.py
12
81647
# -*- coding: utf-8 -*- # Natural Language Toolkit: Probability and Statistics # # Copyright (C) 2001-2012 NLTK Project # Author: Edward Loper <[email protected]> # Steven Bird <[email protected]> (additions) # Trevor Cohn <[email protected]> (additions) # Peter Ljunglöf <[email protected]> (additions) # Liang Dong <[email protected]> (additions) # Geoffrey Sampson <[email protected]> (additions) # # URL: <http://www.nltk.org/> # For license information, see LICENSE.TXT """ Classes for representing and processing probabilistic information. The ``FreqDist`` class is used to encode "frequency distributions", which count the number of times that each outcome of an experiment occurs. The ``ProbDistI`` class defines a standard interface for "probability distributions", which encode the probability of each outcome for an experiment. There are two types of probability distribution: - "derived probability distributions" are created from frequency distributions. They attempt to model the probability distribution that generated the frequency distribution. - "analytic probability distributions" are created directly from parameters (such as variance). The ``ConditionalFreqDist`` class and ``ConditionalProbDistI`` interface are used to encode conditional distributions. Conditional probability distributions can be derived or analytic; but currently the only implementation of the ``ConditionalProbDistI`` interface is ``ConditionalProbDist``, a derived distribution. """ _NINF = float('-1e300') import math import random import warnings from operator import itemgetter from itertools import imap, islice from collections import defaultdict ##////////////////////////////////////////////////////// ## Frequency Distributions ##////////////////////////////////////////////////////// # [SB] inherit from defaultdict? # [SB] for NLTK 3.0, inherit from collections.Counter? class FreqDist(dict): """ A frequency distribution for the outcomes of an experiment. A frequency distribution records the number of times each outcome of an experiment has occurred. For example, a frequency distribution could be used to record the frequency of each word type in a document. Formally, a frequency distribution can be defined as a function mapping from each sample to the number of times that sample occurred as an outcome. Frequency distributions are generally constructed by running a number of experiments, and incrementing the count for a sample every time it is an outcome of an experiment. For example, the following code will produce a frequency distribution that encodes how often each word occurs in a text: >>> from nltk.tokenize import word_tokenize >>> from nltk.probability import FreqDist >>> sent = 'This is an example sentence' >>> fdist = FreqDist() >>> for word in word_tokenize(sent): ... fdist.inc(word.lower()) An equivalent way to do this is with the initializer: >>> fdist = FreqDist(word.lower() for word in word_tokenize(sent)) """ def __init__(self, samples=None): """ Construct a new frequency distribution. If ``samples`` is given, then the frequency distribution will be initialized with the count of each object in ``samples``; otherwise, it will be initialized to be empty. In particular, ``FreqDist()`` returns an empty frequency distribution; and ``FreqDist(samples)`` first creates an empty frequency distribution, and then calls ``update`` with the list ``samples``. :param samples: The samples to initialize the frequency distribution with. :type samples: Sequence """ dict.__init__(self) self._N = 0 self._reset_caches() if samples: self.update(samples) def inc(self, sample, count=1): """ Increment this FreqDist's count for the given sample. :param sample: The sample whose count should be incremented. :type sample: any :param count: The amount to increment the sample's count by. :type count: int :rtype: None :raise NotImplementedError: If ``sample`` is not a supported sample type. """ if count == 0: return self[sample] = self.get(sample,0) + count def __setitem__(self, sample, value): """ Set this FreqDist's count for the given sample. :param sample: The sample whose count should be incremented. :type sample: any hashable object :param count: The new value for the sample's count :type count: int :rtype: None :raise TypeError: If ``sample`` is not a supported sample type. """ self._N += (value - self.get(sample, 0)) dict.__setitem__(self, sample, value) # Invalidate the caches self._reset_caches() def N(self): """ Return the total number of sample outcomes that have been recorded by this FreqDist. For the number of unique sample values (or bins) with counts greater than zero, use ``FreqDist.B()``. :rtype: int """ return self._N def B(self): """ Return the total number of sample values (or "bins") that have counts greater than zero. For the total number of sample outcomes recorded, use ``FreqDist.N()``. (FreqDist.B() is the same as len(FreqDist).) :rtype: int """ return len(self) def samples(self): """ Return a list of all samples that have been recorded as outcomes by this frequency distribution. Use ``fd[sample]`` to determine the count for each sample. :rtype: list """ return self.keys() def hapaxes(self): """ Return a list of all samples that occur once (hapax legomena) :rtype: list """ return [item for item in self if self[item] == 1] def Nr(self, r, bins=None): """ Return the number of samples with count r. :type r: int :param r: A sample count. :type bins: int :param bins: The number of possible sample outcomes. ``bins`` is used to calculate Nr(0). In particular, Nr(0) is ``bins-self.B()``. If ``bins`` is not specified, it defaults to ``self.B()`` (so Nr(0) will be 0). :rtype: int """ if r < 0: raise IndexError, 'FreqDist.Nr(): r must be non-negative' # Special case for Nr(0): if r == 0: if bins is None: return 0 else: return bins-self.B() # We have to search the entire distribution to find Nr. Since # this is an expensive operation, and is likely to be used # repeatedly, cache the results. if self._Nr_cache is None: self._cache_Nr_values() if r >= len(self._Nr_cache): return 0 return self._Nr_cache[r] def _cache_Nr_values(self): Nr = [0] for sample in self: c = self.get(sample, 0) if c >= len(Nr): Nr += [0]*(c+1-len(Nr)) Nr[c] += 1 self._Nr_cache = Nr def _cumulative_frequencies(self, samples=None): """ Return the cumulative frequencies of the specified samples. If no samples are specified, all counts are returned, starting with the largest. :param samples: the samples whose frequencies should be returned. :type sample: any :rtype: list(float) """ cf = 0.0 if not samples: samples = self.keys() for sample in samples: cf += self[sample] yield cf # slightly odd nomenclature freq() if FreqDist does counts and ProbDist does probs, # here, freq() does probs def freq(self, sample): """ Return the frequency of a given sample. The frequency of a sample is defined as the count of that sample divided by the total number of sample outcomes that have been recorded by this FreqDist. The count of a sample is defined as the number of times that sample outcome was recorded by this FreqDist. Frequencies are always real numbers in the range [0, 1]. :param sample: the sample whose frequency should be returned. :type sample: any :rtype: float """ if self._N is 0: return 0 return float(self[sample]) / self._N def max(self): """ Return the sample with the greatest number of outcomes in this frequency distribution. If two or more samples have the same number of outcomes, return one of them; which sample is returned is undefined. If no outcomes have occurred in this frequency distribution, return None. :return: The sample with the maximum number of outcomes in this frequency distribution. :rtype: any or None """ if self._max_cache is None: if len(self) == 0: raise ValueError('A FreqDist must have at least one sample before max is defined.') self._max_cache = max([(a,b) for (b,a) in self.items()])[1] return self._max_cache def plot(self, *args, **kwargs): """ Plot samples from the frequency distribution displaying the most frequent sample first. If an integer parameter is supplied, stop after this many samples have been plotted. If two integer parameters m, n are supplied, plot a subset of the samples, beginning with m and stopping at n-1. For a cumulative plot, specify cumulative=True. (Requires Matplotlib to be installed.) :param title: The title for the graph :type title: str :param cumulative: A flag to specify whether the plot is cumulative (default = False) :type title: bool """ try: import pylab except ImportError: raise ValueError('The plot function requires the matplotlib package (aka pylab). ' 'See http://matplotlib.sourceforge.net/') if len(args) == 0: args = [len(self)] samples = list(islice(self, *args)) cumulative = _get_kwarg(kwargs, 'cumulative', False) if cumulative: freqs = list(self._cumulative_frequencies(samples)) ylabel = "Cumulative Counts" else: freqs = [self[sample] for sample in samples] ylabel = "Counts" # percents = [f * 100 for f in freqs] only in ProbDist? pylab.grid(True, color="silver") if not "linewidth" in kwargs: kwargs["linewidth"] = 2 if "title" in kwargs: pylab.title(kwargs["title"]) del kwargs["title"] pylab.plot(freqs, **kwargs) pylab.xticks(range(len(samples)), [unicode(s) for s in samples], rotation=90) pylab.xlabel("Samples") pylab.ylabel(ylabel) pylab.show() def tabulate(self, *args, **kwargs): """ Tabulate the given samples from the frequency distribution (cumulative), displaying the most frequent sample first. If an integer parameter is supplied, stop after this many samples have been plotted. If two integer parameters m, n are supplied, plot a subset of the samples, beginning with m and stopping at n-1. (Requires Matplotlib to be installed.) :param samples: The samples to plot (default is all samples) :type samples: list """ if len(args) == 0: args = [len(self)] samples = list(islice(self, *args)) cumulative = _get_kwarg(kwargs, 'cumulative', False) if cumulative: freqs = list(self._cumulative_frequencies(samples)) else: freqs = [self[sample] for sample in samples] # percents = [f * 100 for f in freqs] only in ProbDist? for i in range(len(samples)): print "%4s" % str(samples[i]), print for i in range(len(samples)): print "%4d" % freqs[i], print def _sort_keys_by_value(self): if not self._item_cache: self._item_cache = sorted(dict.items(self), key=lambda x:(-x[1], x[0])) def keys(self): """ Return the samples sorted in decreasing order of frequency. :rtype: list(any) """ self._sort_keys_by_value() return map(itemgetter(0), self._item_cache) def values(self): """ Return the samples sorted in decreasing order of frequency. :rtype: list(any) """ self._sort_keys_by_value() return map(itemgetter(1), self._item_cache) def items(self): """ Return the items sorted in decreasing order of frequency. :rtype: list(tuple) """ self._sort_keys_by_value() return self._item_cache[:] def __iter__(self): """ Return the samples sorted in decreasing order of frequency. :rtype: iter """ return iter(self.keys()) def iterkeys(self): """ Return the samples sorted in decreasing order of frequency. :rtype: iter """ return iter(self.keys()) def itervalues(self): """ Return the values sorted in decreasing order. :rtype: iter """ return iter(self.values()) def iteritems(self): """ Return the items sorted in decreasing order of frequency. :rtype: iter of any """ self._sort_keys_by_value() return iter(self._item_cache) def copy(self): """ Create a copy of this frequency distribution. :rtype: FreqDist """ return self.__class__(self) def update(self, samples): """ Update the frequency distribution with the provided list of samples. This is a faster way to add multiple samples to the distribution. :param samples: The samples to add. :type samples: list """ try: sample_iter = samples.iteritems() except: sample_iter = imap(lambda x: (x,1), samples) for sample, count in sample_iter: self.inc(sample, count=count) def pop(self, other): self._N -= 1 self._reset_caches() return dict.pop(self, other) def popitem(self): self._N -= 1 self._reset_caches() return dict.popitem(self) def clear(self): self._N = 0 self._reset_caches() dict.clear(self) def _reset_caches(self): self._Nr_cache = None self._max_cache = None self._item_cache = None def __add__(self, other): clone = self.copy() clone.update(other) return clone def __le__(self, other): if not isinstance(other, FreqDist): return False return set(self).issubset(other) and all(self[key] <= other[key] for key in self) def __lt__(self, other): if not isinstance(other, FreqDist): return False return self <= other and self != other def __ge__(self, other): if not isinstance(other, FreqDist): return False return other <= self def __gt__(self, other): if not isinstance(other, FreqDist): return False return other < self def __repr__(self): """ Return a string representation of this FreqDist. :rtype: string """ return '<FreqDist with %d samples and %d outcomes>' % (len(self), self.N()) def __str__(self): """ Return a string representation of this FreqDist. :rtype: string """ items = ['%r: %r' % (s, self[s]) for s in self.keys()[:10]] if len(self) > 10: items.append('...') return '<FreqDist: %s>' % ', '.join(items) def __getitem__(self, sample): return self.get(sample, 0) ##////////////////////////////////////////////////////// ## Probability Distributions ##////////////////////////////////////////////////////// class ProbDistI(object): """ A probability distribution for the outcomes of an experiment. A probability distribution specifies how likely it is that an experiment will have any given outcome. For example, a probability distribution could be used to predict the probability that a token in a document will have a given type. Formally, a probability distribution can be defined as a function mapping from samples to nonnegative real numbers, such that the sum of every number in the function's range is 1.0. A ``ProbDist`` is often used to model the probability distribution of the experiment used to generate a frequency distribution. """ SUM_TO_ONE = True """True if the probabilities of the samples in this probability distribution will always sum to one.""" def __init__(self): if self.__class__ == ProbDistI: raise NotImplementedError("Interfaces can't be instantiated") def prob(self, sample): """ Return the probability for a given sample. Probabilities are always real numbers in the range [0, 1]. :param sample: The sample whose probability should be returned. :type sample: any :rtype: float """ raise NotImplementedError() def logprob(self, sample): """ Return the base 2 logarithm of the probability for a given sample. :param sample: The sample whose probability should be returned. :type sample: any :rtype: float """ # Default definition, in terms of prob() p = self.prob(sample) if p == 0: # Use some approximation to infinity. What this does # depends on your system's float implementation. return _NINF else: return math.log(p, 2) def max(self): """ Return the sample with the greatest probability. If two or more samples have the same probability, return one of them; which sample is returned is undefined. :rtype: any """ raise NotImplementedError() def samples(self): """ Return a list of all samples that have nonzero probabilities. Use ``prob`` to find the probability of each sample. :rtype: list """ raise NotImplementedError() # cf self.SUM_TO_ONE def discount(self): """ Return the ratio by which counts are discounted on average: c*/c :rtype: float """ return 0.0 # Subclasses should define more efficient implementations of this, # where possible. def generate(self): """ Return a randomly selected sample from this probability distribution. The probability of returning each sample ``samp`` is equal to ``self.prob(samp)``. """ p = random.random() for sample in self.samples(): p -= self.prob(sample) if p <= 0: return sample # allow for some rounding error: if p < .0001: return sample # we *should* never get here if self.SUM_TO_ONE: warnings.warn("Probability distribution %r sums to %r; generate()" " is returning an arbitrary sample." % (self, 1-p)) return random.choice(list(self.samples())) class UniformProbDist(ProbDistI): """ A probability distribution that assigns equal probability to each sample in a given set; and a zero probability to all other samples. """ def __init__(self, samples): """ Construct a new uniform probability distribution, that assigns equal probability to each sample in ``samples``. :param samples: The samples that should be given uniform probability. :type samples: list :raise ValueError: If ``samples`` is empty. """ if len(samples) == 0: raise ValueError('A Uniform probability distribution must '+ 'have at least one sample.') self._sampleset = set(samples) self._prob = 1.0/len(self._sampleset) self._samples = list(self._sampleset) def prob(self, sample): if sample in self._sampleset: return self._prob else: return 0 def max(self): return self._samples[0] def samples(self): return self._samples def __repr__(self): return '<UniformProbDist with %d samples>' % len(self._sampleset) class DictionaryProbDist(ProbDistI): """ A probability distribution whose probabilities are directly specified by a given dictionary. The given dictionary maps samples to probabilities. """ def __init__(self, prob_dict=None, log=False, normalize=False): """ Construct a new probability distribution from the given dictionary, which maps values to probabilities (or to log probabilities, if ``log`` is true). If ``normalize`` is true, then the probability values are scaled by a constant factor such that they sum to 1. If called without arguments, the resulting probability distribution assigns zero probabiliy to all values. """ if prob_dict is None: self._prob_dict = {} else: self._prob_dict = prob_dict.copy() self._log = log # Normalize the distribution, if requested. if normalize: if log: value_sum = sum_logs(self._prob_dict.values()) if value_sum <= _NINF: logp = math.log(1.0/len(prob_dict), 2) for x in prob_dict: self._prob_dict[x] = logp else: for (x, p) in self._prob_dict.items(): self._prob_dict[x] -= value_sum else: value_sum = sum(self._prob_dict.values()) if value_sum == 0: p = 1.0/len(prob_dict) for x in prob_dict: self._prob_dict[x] = p else: norm_factor = 1.0/value_sum for (x, p) in self._prob_dict.items(): self._prob_dict[x] *= norm_factor def prob(self, sample): if self._log: if sample not in self._prob_dict: return 0 else: return 2**(self._prob_dict[sample]) else: return self._prob_dict.get(sample, 0) def logprob(self, sample): if self._log: return self._prob_dict.get(sample, _NINF) else: if sample not in self._prob_dict: return _NINF elif self._prob_dict[sample] == 0: return _NINF else: return math.log(self._prob_dict[sample], 2) def max(self): if not hasattr(self, '_max'): self._max = max((p,v) for (v,p) in self._prob_dict.items())[1] return self._max def samples(self): return self._prob_dict.keys() def __repr__(self): return '<ProbDist with %d samples>' % len(self._prob_dict) class MLEProbDist(ProbDistI): """ The maximum likelihood estimate for the probability distribution of the experiment used to generate a frequency distribution. The "maximum likelihood estimate" approximates the probability of each sample as the frequency of that sample in the frequency distribution. """ def __init__(self, freqdist, bins=None): """ Use the maximum likelihood estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. """ self._freqdist = freqdist def freqdist(self): """ Return the frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._freqdist def prob(self, sample): return self._freqdist.freq(sample) def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def __repr__(self): """ :rtype: str :return: A string representation of this ``ProbDist``. """ return '<MLEProbDist based on %d samples>' % self._freqdist.N() class LidstoneProbDist(ProbDistI): """ The Lidstone estimate for the probability distribution of the experiment used to generate a frequency distribution. The "Lidstone estimate" is paramaterized by a real number *gamma*, which typically ranges from 0 to 1. The Lidstone estimate approximates the probability of a sample with count *c* from an experiment with *N* outcomes and *B* bins as ``c+gamma)/(N+B*gamma)``. This is equivalant to adding *gamma* to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. """ SUM_TO_ONE = False def __init__(self, freqdist, gamma, bins=None): """ Use the Lidstone estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. :type gamma: float :param gamma: A real number used to paramaterize the estimate. The Lidstone estimate is equivalant to adding *gamma* to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ if (bins == 0) or (bins is None and freqdist.N() == 0): name = self.__class__.__name__[:-8] raise ValueError('A %s probability distribution ' % name + 'must have at least one bin.') if (bins is not None) and (bins < freqdist.B()): name = self.__class__.__name__[:-8] raise ValueError('\nThe number of bins in a %s distribution ' % name + '(%d) must be greater than or equal to\n' % bins + 'the number of bins in the FreqDist used ' + 'to create it (%d).' % freqdist.N()) self._freqdist = freqdist self._gamma = float(gamma) self._N = self._freqdist.N() if bins is None: bins = freqdist.B() self._bins = bins self._divisor = self._N + bins * gamma if self._divisor == 0.0: # In extreme cases we force the probability to be 0, # which it will be, since the count will be 0: self._gamma = 0 self._divisor = 1 def freqdist(self): """ Return the frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._freqdist def prob(self, sample): c = self._freqdist[sample] return (c + self._gamma) / self._divisor def max(self): # For Lidstone distributions, probability is monotonic with # frequency, so the most probable sample is the one that # occurs most frequently. return self._freqdist.max() def samples(self): return self._freqdist.keys() def discount(self): gb = self._gamma * self._bins return gb / (self._N + gb) def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<LidstoneProbDist based on %d samples>' % self._freqdist.N() class LaplaceProbDist(LidstoneProbDist): """ The Laplace estimate for the probability distribution of the experiment used to generate a frequency distribution. The "Laplace estimate" approximates the probability of a sample with count *c* from an experiment with *N* outcomes and *B* bins as *(c+1)/(N+B)*. This is equivalant to adding one to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. """ def __init__(self, freqdist, bins=None): """ Use the Laplace estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ LidstoneProbDist.__init__(self, freqdist, 1, bins) def __repr__(self): """ :rtype: str :return: A string representation of this ``ProbDist``. """ return '<LaplaceProbDist based on %d samples>' % self._freqdist.N() class ELEProbDist(LidstoneProbDist): """ The expected likelihood estimate for the probability distribution of the experiment used to generate a frequency distribution. The "expected likelihood estimate" approximates the probability of a sample with count *c* from an experiment with *N* outcomes and *B* bins as *(c+0.5)/(N+B/2)*. This is equivalant to adding 0.5 to the count for each bin, and taking the maximum likelihood estimate of the resulting frequency distribution. """ def __init__(self, freqdist, bins=None): """ Use the expected likelihood estimate to create a probability distribution for the experiment used to generate ``freqdist``. :type freqdist: FreqDist :param freqdist: The frequency distribution that the probability estimates should be based on. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ LidstoneProbDist.__init__(self, freqdist, 0.5, bins) def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<ELEProbDist based on %d samples>' % self._freqdist.N() class HeldoutProbDist(ProbDistI): """ The heldout estimate for the probability distribution of the experiment used to generate two frequency distributions. These two frequency distributions are called the "heldout frequency distribution" and the "base frequency distribution." The "heldout estimate" uses uses the "heldout frequency distribution" to predict the probability of each sample, given its frequency in the "base frequency distribution". In particular, the heldout estimate approximates the probability for a sample that occurs *r* times in the base distribution as the average frequency in the heldout distribution of all samples that occur *r* times in the base distribution. This average frequency is *Tr[r]/(Nr[r].N)*, where: - *Tr[r]* is the total count in the heldout distribution for all samples that occur *r* times in the base distribution. - *Nr[r]* is the number of samples that occur *r* times in the base distribution. - *N* is the number of outcomes recorded by the heldout frequency distribution. In order to increase the efficiency of the ``prob`` member function, *Tr[r]/(Nr[r].N)* is precomputed for each value of *r* when the ``HeldoutProbDist`` is created. :type _estimate: list(float) :ivar _estimate: A list mapping from *r*, the number of times that a sample occurs in the base distribution, to the probability estimate for that sample. ``_estimate[r]`` is calculated by finding the average frequency in the heldout distribution of all samples that occur *r* times in the base distribution. In particular, ``_estimate[r]`` = *Tr[r]/(Nr[r].N)*. :type _max_r: int :ivar _max_r: The maximum number of times that any sample occurs in the base distribution. ``_max_r`` is used to decide how large ``_estimate`` must be. """ SUM_TO_ONE = False def __init__(self, base_fdist, heldout_fdist, bins=None): """ Use the heldout estimate to create a probability distribution for the experiment used to generate ``base_fdist`` and ``heldout_fdist``. :type base_fdist: FreqDist :param base_fdist: The base frequency distribution. :type heldout_fdist: FreqDist :param heldout_fdist: The heldout frequency distribution. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ self._base_fdist = base_fdist self._heldout_fdist = heldout_fdist # The max number of times any sample occurs in base_fdist. self._max_r = base_fdist[base_fdist.max()] # Calculate Tr, Nr, and N. Tr = self._calculate_Tr() Nr = [base_fdist.Nr(r, bins) for r in range(self._max_r+1)] N = heldout_fdist.N() # Use Tr, Nr, and N to compute the probability estimate for # each value of r. self._estimate = self._calculate_estimate(Tr, Nr, N) def _calculate_Tr(self): """ Return the list *Tr*, where *Tr[r]* is the total count in ``heldout_fdist`` for all samples that occur *r* times in ``base_fdist``. :rtype: list(float) """ Tr = [0.0] * (self._max_r+1) for sample in self._heldout_fdist: r = self._base_fdist[sample] Tr[r] += self._heldout_fdist[sample] return Tr def _calculate_estimate(self, Tr, Nr, N): """ Return the list *estimate*, where *estimate[r]* is the probability estimate for any sample that occurs *r* times in the base frequency distribution. In particular, *estimate[r]* is *Tr[r]/(N[r].N)*. In the special case that *N[r]=0*, *estimate[r]* will never be used; so we define *estimate[r]=None* for those cases. :rtype: list(float) :type Tr: list(float) :param Tr: the list *Tr*, where *Tr[r]* is the total count in the heldout distribution for all samples that occur *r* times in base distribution. :type Nr: list(float) :param Nr: The list *Nr*, where *Nr[r]* is the number of samples that occur *r* times in the base distribution. :type N: int :param N: The total number of outcomes recorded by the heldout frequency distribution. """ estimate = [] for r in range(self._max_r+1): if Nr[r] == 0: estimate.append(None) else: estimate.append(Tr[r]/(Nr[r]*N)) return estimate def base_fdist(self): """ Return the base frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._base_fdist def heldout_fdist(self): """ Return the heldout frequency distribution that this probability distribution is based on. :rtype: FreqDist """ return self._heldout_fdist def samples(self): return self._base_fdist.keys() def prob(self, sample): # Use our precomputed probability estimate. r = self._base_fdist[sample] return self._estimate[r] def max(self): # Note: the Heldout estimation is *not* necessarily monotonic; # so this implementation is currently broken. However, it # should give the right answer *most* of the time. :) return self._base_fdist.max() def discount(self): raise NotImplementedError() def __repr__(self): """ :rtype: str :return: A string representation of this ``ProbDist``. """ s = '<HeldoutProbDist: %d base samples; %d heldout samples>' return s % (self._base_fdist.N(), self._heldout_fdist.N()) class CrossValidationProbDist(ProbDistI): """ The cross-validation estimate for the probability distribution of the experiment used to generate a set of frequency distribution. The "cross-validation estimate" for the probability of a sample is found by averaging the held-out estimates for the sample in each pair of frequency distributions. """ SUM_TO_ONE = False def __init__(self, freqdists, bins): """ Use the cross-validation estimate to create a probability distribution for the experiment used to generate ``freqdists``. :type freqdists: list(FreqDist) :param freqdists: A list of the frequency distributions generated by the experiment. :type bins: int :param bins: The number of sample values that can be generated by the experiment that is described by the probability distribution. This value must be correctly set for the probabilities of the sample values to sum to one. If ``bins`` is not specified, it defaults to ``freqdist.B()``. """ self._freqdists = freqdists # Create a heldout probability distribution for each pair of # frequency distributions in freqdists. self._heldout_probdists = [] for fdist1 in freqdists: for fdist2 in freqdists: if fdist1 is not fdist2: probdist = HeldoutProbDist(fdist1, fdist2, bins) self._heldout_probdists.append(probdist) def freqdists(self): """ Return the list of frequency distributions that this ``ProbDist`` is based on. :rtype: list(FreqDist) """ return self._freqdists def samples(self): # [xx] nb: this is not too efficient return set(sum([fd.keys() for fd in self._freqdists], [])) def prob(self, sample): # Find the average probability estimate returned by each # heldout distribution. prob = 0.0 for heldout_probdist in self._heldout_probdists: prob += heldout_probdist.prob(sample) return prob/len(self._heldout_probdists) def discount(self): raise NotImplementedError() def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<CrossValidationProbDist: %d-way>' % len(self._freqdists) class WittenBellProbDist(ProbDistI): """ The Witten-Bell estimate of a probability distribution. This distribution allocates uniform probability mass to as yet unseen events by using the number of events that have only been seen once. The probability mass reserved for unseen events is equal to *T / (N + T)* where *T* is the number of observed event types and *N* is the total number of observed events. This equates to the maximum likelihood estimate of a new type event occurring. The remaining probability mass is discounted such that all probability estimates sum to one, yielding: - *p = T / Z (N + T)*, if count = 0 - *p = c / (N + T)*, otherwise """ def __init__(self, freqdist, bins=None): """ Creates a distribution of Witten-Bell probability estimates. This distribution allocates uniform probability mass to as yet unseen events by using the number of events that have only been seen once. The probability mass reserved for unseen events is equal to *T / (N + T)* where *T* is the number of observed event types and *N* is the total number of observed events. This equates to the maximum likelihood estimate of a new type event occurring. The remaining probability mass is discounted such that all probability estimates sum to one, yielding: - *p = T / Z (N + T)*, if count = 0 - *p = c / (N + T)*, otherwise The parameters *T* and *N* are taken from the ``freqdist`` parameter (the ``B()`` and ``N()`` values). The normalising factor *Z* is calculated using these values along with the ``bins`` parameter. :param freqdist: The frequency counts upon which to base the estimation. :type freqdist: FreqDist :param bins: The number of possible event types. This must be at least as large as the number of bins in the ``freqdist``. If None, then it's assumed to be equal to that of the ``freqdist`` :type bins: int """ assert bins is None or bins >= freqdist.B(),\ 'Bins parameter must not be less than freqdist.B()' if bins is None: bins = freqdist.B() self._freqdist = freqdist self._T = self._freqdist.B() self._Z = bins - self._freqdist.B() self._N = self._freqdist.N() # self._P0 is P(0), precalculated for efficiency: if self._N==0: # if freqdist is empty, we approximate P(0) by a UniformProbDist: self._P0 = 1.0 / self._Z else: self._P0 = self._T / float(self._Z * (self._N + self._T)) def prob(self, sample): # inherit docs from ProbDistI c = self._freqdist[sample] if c == 0: return self._P0 else: return c / float(self._N + self._T) def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def freqdist(self): return self._freqdist def discount(self): raise NotImplementedError() def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<WittenBellProbDist based on %d samples>' % self._freqdist.N() ##////////////////////////////////////////////////////// ## Good-Turing Probablity Distributions ##////////////////////////////////////////////////////// # Good-Turing frequency estimation was contributed by Alan Turing and # his statistical assistant I.J. Good, during their collaboration in # the WWII. It is a statistical technique for predicting the # probability of occurrence of objects belonging to an unknown number # of species, given past observations of such objects and their # species. (In drawing balls from an urn, the 'objects' would be balls # and the 'species' would be the distinct colors of the balls (finite # but unknown in number). # # The situation frequency zero is quite common in the original # Good-Turing estimation. Bill Gale and Geoffrey Sampson present a # simple and effective approach, Simple Good-Turing. As a smoothing # curve they simply use a power curve: # # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic # relationsihp) # # They estimate a and b by simple linear regression technique on the # logarithmic form of the equation: # # log Nr = a + b*log(r) # # However, they suggest that such a simple curve is probably only # appropriate for high values of r. For low values of r, they use the # measured Nr directly. (see M&S, p.213) # # Gale and Sampson propose to use r while the difference between r and # r* is 1.96 greather than the standar deviation, and switch to r* if # it is less or equal: # # |r - r*| > 1.96 * sqrt((r + 1)^2 (Nr+1 / Nr^2) (1 + Nr+1 / Nr)) # # The 1.96 coefficient correspond to a 0.05 significance criterion, # some implementations can use a coefficient of 1.65 for a 0.1 # significance criterion. # class GoodTuringProbDist(ProbDistI): """ The Good-Turing estimate of a probability distribution. This method calculates the probability mass to assign to events with zero or low counts based on the number of events with higher counts. It does so by using the smoothed count *c\**: - *c\* = (c + 1) N(c + 1) / N(c)* for c >= 1 - *things with frequency zero in training* = N(1) for c == 0 where *c* is the original count, *N(i)* is the number of event types observed with count *i*. We can think the count of unseen as the count of frequency one (see Jurafsky & Martin 2nd Edition, p101). """ def __init__(self, freqdist, bins=None): """ :param freqdist: The frequency counts upon which to base the estimation. :type freqdist: FreqDist :param bins: The number of possible event types. This must be at least as large as the number of bins in the ``freqdist``. If None, then it's assumed to be equal to that of the ``freqdist`` :type bins: int """ assert bins is None or bins >= freqdist.B(),\ 'Bins parameter must not be less than freqdist.B()' if bins is None: bins = freqdist.B() self._freqdist = freqdist self._bins = bins def prob(self, sample): count = self._freqdist[sample] # unseen sample's frequency (count zero) uses frequency one's if count == 0 and self._freqdist.N() != 0: p0 = 1.0 * self._freqdist.Nr(1) / self._freqdist.N() if self._bins == self._freqdist.B(): p0 = 0.0 else: p0 = p0 / (1.0 * self._bins - self._freqdist.B()) nc = self._freqdist.Nr(count) ncn = self._freqdist.Nr(count + 1) # avoid divide-by-zero errors for sparse datasets if nc == 0 or self._freqdist.N() == 0: return 0 return 1.0 * (count + 1) * ncn / (nc * self._freqdist.N()) def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def discount(self): """ :return: The probability mass transferred from the seen samples to the unseen samples. :rtype: float """ return 1.0 * self._freqdist.Nr(1) / self._freqdist.N() def freqdist(self): return self._freqdist def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<GoodTuringProbDist based on %d samples>' % self._freqdist.N() ##////////////////////////////////////////////////////// ## Simple Good-Turing Probablity Distributions ##////////////////////////////////////////////////////// class SimpleGoodTuringProbDist(ProbDistI): """ SimpleGoodTuring ProbDist approximates from frequency to freqency of frequency into a linear line under log space by linear regression. Details of Simple Good-Turing algorithm can be found in: - Good Turing smoothing without tears" (Gale & Sampson 1995), Journal of Quantitative Linguistics, vol. 2 pp. 217-237. - "Speech and Language Processing (Jurafsky & Martin), 2nd Edition, Chapter 4.5 p103 (log(Nc) = a + b*log(c)) - http://www.grsampson.net/RGoodTur.html Given a set of pair (xi, yi), where the xi denotes the freqency and yi denotes the freqency of freqency, we want to minimize their square variation. E(x) and E(y) represent the mean of xi and yi. - slope: b = sigma ((xi-E(x)(yi-E(y))) / sigma ((xi-E(x))(xi-E(x))) - intercept: a = E(y) - b.E(x) """ def __init__(self, freqdist, bins=None): """ :param freqdist: The frequency counts upon which to base the estimation. :type freqdist: FreqDist :param bins: The number of possible event types. This must be larger than the number of bins in the ``freqdist``. If None, then it's assumed to be equal to ``freqdist``.B() + 1 :type bins: int """ assert bins is None or bins > freqdist.B(),\ 'Bins parameter must not be less than freqdist.B() + 1' if bins is None: bins = freqdist.B() + 1 self._freqdist = freqdist self._bins = bins r, nr = self._r_Nr() self.find_best_fit(r, nr) self._switch(r, nr) self._renormalize(r, nr) def _r_Nr(self): """ Split the frequency distribution in two list (r, Nr), where Nr(r) > 0 """ r, nr = [], [] b, i = 0, 0 while b != self._freqdist.B(): nr_i = self._freqdist.Nr(i) if nr_i > 0: b += nr_i r.append(i) nr.append(nr_i) i += 1 return (r, nr) def find_best_fit(self, r, nr): """ Use simple linear regression to tune parameters self._slope and self._intercept in the log-log space based on count and Nr(count) (Work in log space to avoid floating point underflow.) """ # For higher sample frequencies the data points becomes horizontal # along line Nr=1. To create a more evident linear model in log-log # space, we average positive Nr values with the surrounding zero # values. (Church and Gale, 1991) if not r or not nr: # Empty r or nr? return zr = [] for j in range(len(r)): if j > 0: i = r[j-1] else: i = 0 if j != len(r) - 1: k = r[j+1] else: k = 2 * r[j] - i zr_ = 2.0 * nr[j] / (k - i) zr.append(zr_) log_r = [math.log(i) for i in r] log_zr = [math.log(i) for i in zr] xy_cov = x_var = 0.0 x_mean = 1.0 * sum(log_r) / len(log_r) y_mean = 1.0 * sum(log_zr) / len(log_zr) for (x, y) in zip(log_r, log_zr): xy_cov += (x - x_mean) * (y - y_mean) x_var += (x - x_mean)**2 if x_var != 0: self._slope = xy_cov / x_var else: self._slope = 0.0 self._intercept = y_mean - self._slope * x_mean def _switch(self, r, nr): """ Calculate the r frontier where we must switch from Nr to Sr when estimating E[Nr]. """ for i, r_ in enumerate(r): if len(r) == i + 1 or r[i+1] != r_ + 1: # We are at the end of r, or there is a gap in r self._switch_at = r_ break Sr = self.smoothedNr smooth_r_star = (r_ + 1) * Sr(r_+1) / Sr(r_) unsmooth_r_star = 1.0 * (r_ + 1) * nr[i+1] / nr[i] std = math.sqrt(self._variance(r_, nr[i], nr[i+1])) if abs(unsmooth_r_star-smooth_r_star) <= 1.96 * std: self._switch_at = r_ break def _variance(self, r, nr, nr_1): r = float(r) nr = float(nr) nr_1 = float(nr_1) return (r + 1.0)**2 * (nr_1 / nr**2) * (1.0 + nr_1 / nr) def _renormalize(self, r, nr): """ It is necessary to renormalize all the probability estimates to ensure a proper probability distribution results. This can be done by keeping the estimate of the probability mass for unseen items as N(1)/N and renormalizing all the estimates for previously seen items (as Gale and Sampson (1995) propose). (See M&S P.213, 1999) """ prob_cov = 0.0 for r_, nr_ in zip(r, nr): prob_cov += nr_ * self._prob_measure(r_) if prob_cov: self._renormal = (1 - self._prob_measure(0)) / prob_cov def smoothedNr(self, r): """ Return the number of samples with count r. :param r: The amount of freqency. :type r: int :rtype: float """ # Nr = a*r^b (with b < -1 to give the appropriate hyperbolic # relationship) # Estimate a and b by simple linear regression technique on # the logarithmic form of the equation: log Nr = a + b*log(r) return math.exp(self._intercept + self._slope * math.log(r)) def prob(self, sample): """ Return the sample's probability. :param sample: sample of the event :type sample: str :rtype: float """ count = self._freqdist[sample] p = self._prob_measure(count) if count == 0: if self._bins == self._freqdist.B(): p = 0.0 else: p = p / (1.0 * self._bins - self._freqdist.B()) else: p = p * self._renormal return p def _prob_measure(self, count): if count == 0 and self._freqdist.N() == 0 : return 1.0 elif count == 0 and self._freqdist.N() != 0: return 1.0 * self._freqdist.Nr(1) / self._freqdist.N() if self._switch_at > count: Er_1 = 1.0 * self._freqdist.Nr(count+1) Er = 1.0 * self._freqdist.Nr(count) else: Er_1 = self.smoothedNr(count+1) Er = self.smoothedNr(count) r_star = (count + 1) * Er_1 / Er return r_star / self._freqdist.N() def check(self): prob_sum = 0.0 for i in range(0, len(self._Nr)): prob_sum += self._Nr[i] * self._prob_measure(i) / self._renormal print "Probability Sum:", prob_sum #assert prob_sum != 1.0, "probability sum should be one!" def discount(self): """ This function returns the total mass of probability transfers from the seen samples to the unseen samples. """ return 1.0 * self.smoothedNr(1) / self._freqdist.N() def max(self): return self._freqdist.max() def samples(self): return self._freqdist.keys() def freqdist(self): return self._freqdist def __repr__(self): """ Return a string representation of this ``ProbDist``. :rtype: str """ return '<SimpleGoodTuringProbDist based on %d samples>'\ % self._freqdist.N() class MutableProbDist(ProbDistI): """ An mutable probdist where the probabilities may be easily modified. This simply copies an existing probdist, storing the probability values in a mutable dictionary and providing an update method. """ def __init__(self, prob_dist, samples, store_logs=True): """ Creates the mutable probdist based on the given prob_dist and using the list of samples given. These values are stored as log probabilities if the store_logs flag is set. :param prob_dist: the distribution from which to garner the probabilities :type prob_dist: ProbDist :param samples: the complete set of samples :type samples: sequence of any :param store_logs: whether to store the probabilities as logarithms :type store_logs: bool """ try: import numpy except ImportError: print "Error: Please install numpy; for instructions see http://www.nltk.org/" exit() self._samples = samples self._sample_dict = dict((samples[i], i) for i in range(len(samples))) self._data = numpy.zeros(len(samples), numpy.float64) for i in range(len(samples)): if store_logs: self._data[i] = prob_dist.logprob(samples[i]) else: self._data[i] = prob_dist.prob(samples[i]) self._logs = store_logs def samples(self): # inherit documentation return self._samples def prob(self, sample): # inherit documentation i = self._sample_dict.get(sample) if i is not None: if self._logs: return 2**(self._data[i]) else: return self._data[i] else: return 0.0 def logprob(self, sample): # inherit documentation i = self._sample_dict.get(sample) if i is not None: if self._logs: return self._data[i] else: return math.log(self._data[i], 2) else: return float('-inf') def update(self, sample, prob, log=True): """ Update the probability for the given sample. This may cause the object to stop being the valid probability distribution - the user must ensure that they update the sample probabilities such that all samples have probabilities between 0 and 1 and that all probabilities sum to one. :param sample: the sample for which to update the probability :type sample: any :param prob: the new probability :type prob: float :param log: is the probability already logged :type log: bool """ i = self._sample_dict.get(sample) assert i is not None if self._logs: if log: self._data[i] = prob else: self._data[i] = math.log(prob, 2) else: if log: self._data[i] = 2**(prob) else: self._data[i] = prob ##////////////////////////////////////////////////////// ## Probability Distribution Operations ##////////////////////////////////////////////////////// def log_likelihood(test_pdist, actual_pdist): if (not isinstance(test_pdist, ProbDistI) or not isinstance(actual_pdist, ProbDistI)): raise ValueError('expected a ProbDist.') # Is this right? return sum(actual_pdist.prob(s) * math.log(test_pdist.prob(s), 2) for s in actual_pdist) def entropy(pdist): probs = [pdist.prob(s) for s in pdist.samples()] return -sum([p * math.log(p,2) for p in probs]) ##////////////////////////////////////////////////////// ## Conditional Distributions ##////////////////////////////////////////////////////// class ConditionalFreqDist(defaultdict): """ A collection of frequency distributions for a single experiment run under different conditions. Conditional frequency distributions are used to record the number of times each sample occurred, given the condition under which the experiment was run. For example, a conditional frequency distribution could be used to record the frequency of each word (type) in a document, given its length. Formally, a conditional frequency distribution can be defined as a function that maps from each condition to the FreqDist for the experiment under that condition. Conditional frequency distributions are typically constructed by repeatedly running an experiment under a variety of conditions, and incrementing the sample outcome counts for the appropriate conditions. For example, the following code will produce a conditional frequency distribution that encodes how often each word type occurs, given the length of that word type: >>> from nltk.probability import ConditionalFreqDist >>> from nltk.tokenize import word_tokenize >>> sent = "the the the dog dog some other words that we do not care about" >>> cfdist = ConditionalFreqDist() >>> for word in word_tokenize(sent): ... condition = len(word) ... cfdist[condition].inc(word) An equivalent way to do this is with the initializer: >>> cfdist = ConditionalFreqDist((len(word), word) for word in word_tokenize(sent)) The frequency distribution for each condition is accessed using the indexing operator: >>> cfdist[3] <FreqDist with 6 outcomes> >>> cfdist[3].freq('the') 0.5 >>> cfdist[3]['dog'] 2 When the indexing operator is used to access the frequency distribution for a condition that has not been accessed before, ``ConditionalFreqDist`` creates a new empty FreqDist for that condition. """ def __init__(self, cond_samples=None): """ Construct a new empty conditional frequency distribution. In particular, the count for every sample, under every condition, is zero. :param cond_samples: The samples to initialize the conditional frequency distribution with :type cond_samples: Sequence of (condition, sample) tuples """ defaultdict.__init__(self, FreqDist) if cond_samples: for (cond, sample) in cond_samples: self[cond].inc(sample) def conditions(self): """ Return a list of the conditions that have been accessed for this ``ConditionalFreqDist``. Use the indexing operator to access the frequency distribution for a given condition. Note that the frequency distributions for some conditions may contain zero sample outcomes. :rtype: list """ return sorted(self.keys()) def N(self): """ Return the total number of sample outcomes that have been recorded by this ``ConditionalFreqDist``. :rtype: int """ return sum(fdist.N() for fdist in self.itervalues()) def plot(self, *args, **kwargs): """ Plot the given samples from the conditional frequency distribution. For a cumulative plot, specify cumulative=True. (Requires Matplotlib to be installed.) :param samples: The samples to plot :type samples: list :param title: The title for the graph :type title: str :param conditions: The conditions to plot (default is all) :type conditions: list """ try: import pylab except ImportError: raise ValueError('The plot function requires the matplotlib package (aka pylab).' 'See http://matplotlib.sourceforge.net/') cumulative = _get_kwarg(kwargs, 'cumulative', False) conditions = _get_kwarg(kwargs, 'conditions', self.conditions()) title = _get_kwarg(kwargs, 'title', '') samples = _get_kwarg(kwargs, 'samples', sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted if not "linewidth" in kwargs: kwargs["linewidth"] = 2 for condition in conditions: if cumulative: freqs = list(self[condition]._cumulative_frequencies(samples)) ylabel = "Cumulative Counts" legend_loc = 'lower right' else: freqs = [self[condition][sample] for sample in samples] ylabel = "Counts" legend_loc = 'upper right' # percents = [f * 100 for f in freqs] only in ConditionalProbDist? kwargs['label'] = str(condition) pylab.plot(freqs, *args, **kwargs) pylab.legend(loc=legend_loc) pylab.grid(True, color="silver") pylab.xticks(range(len(samples)), [unicode(s) for s in samples], rotation=90) if title: pylab.title(title) pylab.xlabel("Samples") pylab.ylabel(ylabel) pylab.show() def tabulate(self, *args, **kwargs): """ Tabulate the given samples from the conditional frequency distribution. :param samples: The samples to plot :type samples: list :param title: The title for the graph :type title: str :param conditions: The conditions to plot (default is all) :type conditions: list """ cumulative = _get_kwarg(kwargs, 'cumulative', False) conditions = _get_kwarg(kwargs, 'conditions', self.conditions()) samples = _get_kwarg(kwargs, 'samples', sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted condition_size = max(len(str(c)) for c in conditions) print ' ' * condition_size, for s in samples: print "%4s" % str(s), print for c in conditions: print "%*s" % (condition_size, str(c)), if cumulative: freqs = list(self[c]._cumulative_frequencies(samples)) else: freqs = [self[c][sample] for sample in samples] for f in freqs: print "%4d" % f, print def __le__(self, other): if not isinstance(other, ConditionalFreqDist): return False return set(self.conditions()).issubset(other.conditions()) \ and all(self[c] <= other[c] for c in self.conditions()) def __lt__(self, other): if not isinstance(other, ConditionalFreqDist): return False return self <= other and self != other def __ge__(self, other): if not isinstance(other, ConditionalFreqDist): return False return other <= self def __gt__(self, other): if not isinstance(other, ConditionalFreqDist): return False return other < self def __repr__(self): """ Return a string representation of this ``ConditionalFreqDist``. :rtype: str """ return '<ConditionalFreqDist with %d conditions>' % len(self) class ConditionalProbDistI(defaultdict): """ A collection of probability distributions for a single experiment run under different conditions. Conditional probability distributions are used to estimate the likelihood of each sample, given the condition under which the experiment was run. For example, a conditional probability distribution could be used to estimate the probability of each word type in a document, given the length of the word type. Formally, a conditional probability distribution can be defined as a function that maps from each condition to the ``ProbDist`` for the experiment under that condition. """ def __init__(self): raise NotImplementedError("Interfaces can't be instantiated") def conditions(self): """ Return a list of the conditions that are represented by this ``ConditionalProbDist``. Use the indexing operator to access the probability distribution for a given condition. :rtype: list """ return self.keys() def __repr__(self): """ Return a string representation of this ``ConditionalProbDist``. :rtype: str """ return '<%s with %d conditions>' % (type(self).__name__, len(self)) class ConditionalProbDist(ConditionalProbDistI): """ A conditional probability distribution modelling the experiments that were used to generate a conditional frequency distribution. A ConditionalProbDist is constructed from a ``ConditionalFreqDist`` and a ``ProbDist`` factory: - The ``ConditionalFreqDist`` specifies the frequency distribution for each condition. - The ``ProbDist`` factory is a function that takes a condition's frequency distribution, and returns its probability distribution. A ``ProbDist`` class's name (such as ``MLEProbDist`` or ``HeldoutProbDist``) can be used to specify that class's constructor. The first argument to the ``ProbDist`` factory is the frequency distribution that it should model; and the remaining arguments are specified by the ``factory_args`` parameter to the ``ConditionalProbDist`` constructor. For example, the following code constructs a ``ConditionalProbDist``, where the probability distribution for each condition is an ``ELEProbDist`` with 10 bins: >>> from nltk.probability import ConditionalProbDist, ELEProbDist >>> cpdist = ConditionalProbDist(cfdist, ELEProbDist, 10) >>> print cpdist['run'].max() 'NN' >>> print cpdist['run'].prob('NN') 0.0813 """ def __init__(self, cfdist, probdist_factory, *factory_args, **factory_kw_args): """ Construct a new conditional probability distribution, based on the given conditional frequency distribution and ``ProbDist`` factory. :type cfdist: ConditionalFreqDist :param cfdist: The ``ConditionalFreqDist`` specifying the frequency distribution for each condition. :type probdist_factory: class or function :param probdist_factory: The function or class that maps a condition's frequency distribution to its probability distribution. The function is called with the frequency distribution as its first argument, ``factory_args`` as its remaining arguments, and ``factory_kw_args`` as keyword arguments. :type factory_args: (any) :param factory_args: Extra arguments for ``probdist_factory``. These arguments are usually used to specify extra properties for the probability distributions of individual conditions, such as the number of bins they contain. :type factory_kw_args: (any) :param factory_kw_args: Extra keyword arguments for ``probdist_factory``. """ # self._probdist_factory = probdist_factory # self._cfdist = cfdist # self._factory_args = factory_args # self._factory_kw_args = factory_kw_args factory = lambda: probdist_factory(FreqDist(), *factory_args, **factory_kw_args) defaultdict.__init__(self, factory) for condition in cfdist: self[condition] = probdist_factory(cfdist[condition], *factory_args, **factory_kw_args) class DictionaryConditionalProbDist(ConditionalProbDistI): """ An alternative ConditionalProbDist that simply wraps a dictionary of ProbDists rather than creating these from FreqDists. """ def __init__(self, probdist_dict): """ :param probdist_dict: a dictionary containing the probdists indexed by the conditions :type probdist_dict: dict any -> probdist """ defaultdict.__init__(self, DictionaryProbDist) self.update(probdist_dict) ##////////////////////////////////////////////////////// ## Adding in log-space. ##////////////////////////////////////////////////////// # If the difference is bigger than this, then just take the bigger one: _ADD_LOGS_MAX_DIFF = math.log(1e-30, 2) def add_logs(logx, logy): """ Given two numbers ``logx`` = *log(x)* and ``logy`` = *log(y)*, return *log(x+y)*. Conceptually, this is the same as returning ``log(2**(logx)+2**(logy))``, but the actual implementation avoids overflow errors that could result from direct computation. """ if (logx < logy + _ADD_LOGS_MAX_DIFF): return logy if (logy < logx + _ADD_LOGS_MAX_DIFF): return logx base = min(logx, logy) return base + math.log(2**(logx-base) + 2**(logy-base), 2) def sum_logs(logs): if len(logs) == 0: # Use some approximation to infinity. What this does # depends on your system's float implementation. return _NINF else: return reduce(add_logs, logs[1:], logs[0]) ##////////////////////////////////////////////////////// ## Probabilistic Mix-in ##////////////////////////////////////////////////////// class ProbabilisticMixIn(object): """ A mix-in class to associate probabilities with other classes (trees, rules, etc.). To use the ``ProbabilisticMixIn`` class, define a new class that derives from an existing class and from ProbabilisticMixIn. You will need to define a new constructor for the new class, which explicitly calls the constructors of both its parent classes. For example: >>> from nltk.probability import ProbabilisticMixIn >>> class A: ... def __init__(self, x, y): self.data = (x,y) ... >>> class ProbabilisticA(A, ProbabilisticMixIn): ... def __init__(self, x, y, **prob_kwarg): ... A.__init__(self, x, y) ... ProbabilisticMixIn.__init__(self, **prob_kwarg) See the documentation for the ProbabilisticMixIn ``constructor<__init__>`` for information about the arguments it expects. You should generally also redefine the string representation methods, the comparison methods, and the hashing method. """ def __init__(self, **kwargs): """ Initialize this object's probability. This initializer should be called by subclass constructors. ``prob`` should generally be the first argument for those constructors. :param prob: The probability associated with the object. :type prob: float :param logprob: The log of the probability associated with the object. :type logprob: float """ if 'prob' in kwargs: if 'logprob' in kwargs: raise TypeError('Must specify either prob or logprob ' '(not both)') else: ProbabilisticMixIn.set_prob(self, kwargs['prob']) elif 'logprob' in kwargs: ProbabilisticMixIn.set_logprob(self, kwargs['logprob']) else: self.__prob = self.__logprob = None def set_prob(self, prob): """ Set the probability associated with this object to ``prob``. :param prob: The new probability :type prob: float """ self.__prob = prob self.__logprob = None def set_logprob(self, logprob): """ Set the log probability associated with this object to ``logprob``. I.e., set the probability associated with this object to ``2**(logprob)``. :param logprob: The new log probability :type logprob: float """ self.__logprob = logprob self.__prob = None def prob(self): """ Return the probability associated with this object. :rtype: float """ if self.__prob is None: if self.__logprob is None: return None self.__prob = 2**(self.__logprob) return self.__prob def logprob(self): """ Return ``log(p)``, where ``p`` is the probability associated with this object. :rtype: float """ if self.__logprob is None: if self.__prob is None: return None self.__logprob = math.log(self.__prob, 2) return self.__logprob class ImmutableProbabilisticMixIn(ProbabilisticMixIn): def set_prob(self, prob): raise ValueError, '%s is immutable' % self.__class__.__name__ def set_logprob(self, prob): raise ValueError, '%s is immutable' % self.__class__.__name__ ## Helper function for processing keyword arguments def _get_kwarg(kwargs, key, default): if key in kwargs: arg = kwargs[key] del kwargs[key] else: arg = default return arg ##////////////////////////////////////////////////////// ## Demonstration ##////////////////////////////////////////////////////// def _create_rand_fdist(numsamples, numoutcomes): """ Create a new frequency distribution, with random samples. The samples are numbers from 1 to ``numsamples``, and are generated by summing two numbers, each of which has a uniform distribution. """ import random fdist = FreqDist() for x in range(numoutcomes): y = (random.randint(1, (1+numsamples)/2) + random.randint(0, numsamples/2)) fdist.inc(y) return fdist def _create_sum_pdist(numsamples): """ Return the true probability distribution for the experiment ``_create_rand_fdist(numsamples, x)``. """ fdist = FreqDist() for x in range(1, (1+numsamples)/2+1): for y in range(0, numsamples/2+1): fdist.inc(x+y) return MLEProbDist(fdist) def demo(numsamples=6, numoutcomes=500): """ A demonstration of frequency distributions and probability distributions. This demonstration creates three frequency distributions with, and uses them to sample a random process with ``numsamples`` samples. Each frequency distribution is sampled ``numoutcomes`` times. These three frequency distributions are then used to build six probability distributions. Finally, the probability estimates of these distributions are compared to the actual probability of each sample. :type numsamples: int :param numsamples: The number of samples to use in each demo frequency distributions. :type numoutcomes: int :param numoutcomes: The total number of outcomes for each demo frequency distribution. These outcomes are divided into ``numsamples`` bins. :rtype: None """ # Randomly sample a stochastic process three times. fdist1 = _create_rand_fdist(numsamples, numoutcomes) fdist2 = _create_rand_fdist(numsamples, numoutcomes) fdist3 = _create_rand_fdist(numsamples, numoutcomes) # Use our samples to create probability distributions. pdists = [ MLEProbDist(fdist1), LidstoneProbDist(fdist1, 0.5, numsamples), HeldoutProbDist(fdist1, fdist2, numsamples), HeldoutProbDist(fdist2, fdist1, numsamples), CrossValidationProbDist([fdist1, fdist2, fdist3], numsamples), GoodTuringProbDist(fdist1), SimpleGoodTuringProbDist(fdist1), SimpleGoodTuringProbDist(fdist1, 7), _create_sum_pdist(numsamples), ] # Find the probability of each sample. vals = [] for n in range(1,numsamples+1): vals.append(tuple([n, fdist1.freq(n)] + [pdist.prob(n) for pdist in pdists])) # Print the results in a formatted table. print ('%d samples (1-%d); %d outcomes were sampled for each FreqDist' % (numsamples, numsamples, numoutcomes)) print '='*9*(len(pdists)+2) FORMATSTR = ' FreqDist '+ '%8s '*(len(pdists)-1) + '| Actual' print FORMATSTR % tuple(`pdist`[1:9] for pdist in pdists[:-1]) print '-'*9*(len(pdists)+2) FORMATSTR = '%3d %8.6f ' + '%8.6f '*(len(pdists)-1) + '| %8.6f' for val in vals: print FORMATSTR % val # Print the totals for each column (should all be 1.0) zvals = zip(*vals) def sum(lst): return reduce(lambda x,y:x+y, lst, 0) sums = [sum(val) for val in zvals[1:]] print '-'*9*(len(pdists)+2) FORMATSTR = 'Total ' + '%8.6f '*(len(pdists)) + '| %8.6f' print FORMATSTR % tuple(sums) print '='*9*(len(pdists)+2) # Display the distributions themselves, if they're short enough. if len(`str(fdist1)`) < 70: print ' fdist1:', str(fdist1) print ' fdist2:', str(fdist2) print ' fdist3:', str(fdist3) print print 'Generating:' for pdist in pdists: fdist = FreqDist(pdist.generate() for i in range(5000)) print '%20s %s' % (pdist.__class__.__name__[:20], str(fdist)[:55]) print def gt_demo(): from nltk import corpus emma_words = corpus.gutenberg.words('austen-emma.txt') fd = FreqDist(emma_words) gt = GoodTuringProbDist(fd) sgt = SimpleGoodTuringProbDist(fd) katz = SimpleGoodTuringProbDist(fd, 7) print '%18s %8s %12s %14s %12s' \ % ("word", "freqency", "GoodTuring", "SimpleGoodTuring", "Katz-cutoff" ) for key in fd: print '%18s %8d %12e %14e %12e' \ % (key, fd[key], gt.prob(key), sgt.prob(key), katz.prob(key)) if __name__ == '__main__': demo(6, 10) demo(5, 5000) gt_demo() __all__ = ['ConditionalFreqDist', 'ConditionalProbDist', 'ConditionalProbDistI', 'CrossValidationProbDist', 'DictionaryConditionalProbDist', 'DictionaryProbDist', 'ELEProbDist', 'FreqDist', 'GoodTuringProbDist', 'SimpleGoodTuringProbDist', 'HeldoutProbDist', 'ImmutableProbabilisticMixIn', 'LaplaceProbDist', 'LidstoneProbDist', 'MLEProbDist', 'MutableProbDist', 'ProbDistI', 'ProbabilisticMixIn', 'UniformProbDist', 'WittenBellProbDist', 'add_logs', 'log_likelihood', 'sum_logs', 'entropy']
mit
walterreade/scikit-learn
sklearn/feature_selection/tests/test_base.py
143
3670
import numpy as np from scipy import sparse as sp from nose.tools import assert_raises, assert_equal from numpy.testing import assert_array_equal from sklearn.base import BaseEstimator from sklearn.feature_selection.base import SelectorMixin from sklearn.utils import check_array class StepSelector(SelectorMixin, BaseEstimator): """Retain every `step` features (beginning with 0)""" def __init__(self, step=2): self.step = step def fit(self, X, y=None): X = check_array(X, 'csc') self.n_input_feats = X.shape[1] return self def _get_support_mask(self): mask = np.zeros(self.n_input_feats, dtype=bool) mask[::self.step] = True return mask support = [True, False] * 5 support_inds = [0, 2, 4, 6, 8] X = np.arange(20).reshape(2, 10) Xt = np.arange(0, 20, 2).reshape(2, 5) Xinv = X.copy() Xinv[:, 1::2] = 0 y = [0, 1] feature_names = list('ABCDEFGHIJ') feature_names_t = feature_names[::2] feature_names_inv = np.array(feature_names) feature_names_inv[1::2] = '' def test_transform_dense(): sel = StepSelector() Xt_actual = sel.fit(X, y).transform(X) Xt_actual2 = StepSelector().fit_transform(X, y) assert_array_equal(Xt, Xt_actual) assert_array_equal(Xt, Xt_actual2) # Check dtype matches assert_equal(np.int32, sel.transform(X.astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(X.astype(np.float32)).dtype) # Check 1d list and other dtype: names_t_actual = sel.transform([feature_names]) assert_array_equal(feature_names_t, names_t_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xt_actual = sel.fit(sparse(X)).transform(sparse(X)) Xt_actual2 = sel.fit_transform(sparse(X)) assert_array_equal(Xt, Xt_actual.toarray()) assert_array_equal(Xt, Xt_actual2.toarray()) # Check dtype matches assert_equal(np.int32, sel.transform(sparse(X).astype(np.int32)).dtype) assert_equal(np.float32, sel.transform(sparse(X).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.transform, np.array([[1], [2]])) def test_inverse_transform_dense(): sel = StepSelector() Xinv_actual = sel.fit(X, y).inverse_transform(Xt) assert_array_equal(Xinv, Xinv_actual) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(Xt.astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(Xt.astype(np.float32)).dtype) # Check 1d list and other dtype: names_inv_actual = sel.inverse_transform([feature_names_t]) assert_array_equal(feature_names_inv, names_inv_actual.ravel()) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_inverse_transform_sparse(): sparse = sp.csc_matrix sel = StepSelector() Xinv_actual = sel.fit(sparse(X)).inverse_transform(sparse(Xt)) assert_array_equal(Xinv, Xinv_actual.toarray()) # Check dtype matches assert_equal(np.int32, sel.inverse_transform(sparse(Xt).astype(np.int32)).dtype) assert_equal(np.float32, sel.inverse_transform(sparse(Xt).astype(np.float32)).dtype) # Check wrong shape raises error assert_raises(ValueError, sel.inverse_transform, np.array([[1], [2]])) def test_get_support(): sel = StepSelector() sel.fit(X, y) assert_array_equal(support, sel.get_support()) assert_array_equal(support_inds, sel.get_support(indices=True))
bsd-3-clause
andybrnr/QuantEcon.py
quantecon/estspec.py
7
4856
""" Filename: estspec.py Authors: Thomas Sargent, John Stachurski Functions for working with periodograms of scalar data. """ from __future__ import division, print_function import numpy as np from numpy.fft import fft from pandas import ols, Series def smooth(x, window_len=7, window='hanning'): """ Smooth the data in x using convolution with a window of requested size and type. Parameters ---------- x : array_like(float) A flat NumPy array containing the data to smooth window_len : scalar(int), optional An odd integer giving the length of the window. Defaults to 7. window : string A string giving the window type. Possible values are 'flat', 'hanning', 'hamming', 'bartlett' or 'blackman' Returns ------- array_like(float) The smoothed values Notes ----- Application of the smoothing window at the top and bottom of x is done by reflecting x around these points to extend it sufficiently in each direction. """ if len(x) < window_len: raise ValueError("Input vector length must be >= window length.") if window_len < 3: raise ValueError("Window length must be at least 3.") if not window_len % 2: # window_len is even window_len += 1 print("Window length reset to {}".format(window_len)) windows = {'hanning': np.hanning, 'hamming': np.hamming, 'bartlett': np.bartlett, 'blackman': np.blackman, 'flat': np.ones # moving average } # === Reflect x around x[0] and x[-1] prior to convolution === # k = int(window_len / 2) xb = x[:k] # First k elements xt = x[-k:] # Last k elements s = np.concatenate((xb[::-1], x, xt[::-1])) # === Select window values === # if window in windows.keys(): w = windows[window](window_len) else: msg = "Unrecognized window type '{}'".format(window) print(msg + " Defaulting to hanning") w = windows['hanning'](window_len) return np.convolve(w / w.sum(), s, mode='valid') def periodogram(x, window=None, window_len=7): """ Computes the periodogram .. math:: I(w) = (1 / n) | sum_{t=0}^{n-1} x_t e^{itw} |^2 at the Fourier frequences w_j := 2 pi j / n, j = 0, ..., n - 1, using the fast Fourier transform. Only the frequences w_j in [0, pi] and corresponding values I(w_j) are returned. If a window type is given then smoothing is performed. Parameters ---------- x : array_like(float) A flat NumPy array containing the data to smooth window_len : scalar(int), optional(default=7) An odd integer giving the length of the window. Defaults to 7. window : string A string giving the window type. Possible values are 'flat', 'hanning', 'hamming', 'bartlett' or 'blackman' Returns ------- w : array_like(float) Fourier frequences at which periodogram is evaluated I_w : array_like(float) Values of periodogram at the Fourier frequences """ n = len(x) I_w = np.abs(fft(x))**2 / n w = 2 * np.pi * np.arange(n) / n # Fourier frequencies w, I_w = w[:int(n/2)+1], I_w[:int(n/2)+1] # Take only values on [0, pi] if window: I_w = smooth(I_w, window_len=window_len, window=window) return w, I_w def ar_periodogram(x, window='hanning', window_len=7): """ Compute periodogram from data x, using prewhitening, smoothing and recoloring. The data is fitted to an AR(1) model for prewhitening, and the residuals are used to compute a first-pass periodogram with smoothing. The fitted coefficients are then used for recoloring. Parameters ---------- x : array_like(float) A flat NumPy array containing the data to smooth window_len : scalar(int), optional An odd integer giving the length of the window. Defaults to 7. window : string A string giving the window type. Possible values are 'flat', 'hanning', 'hamming', 'bartlett' or 'blackman' Returns ------- w : array_like(float) Fourier frequences at which periodogram is evaluated I_w : array_like(float) Values of periodogram at the Fourier frequences """ # === run regression === # x_current, x_lagged = x[1:], x[:-1] # x_t and x_{t-1} x_current, x_lagged = Series(x_current), Series(x_lagged) # pandas series results = ols(y=x_current, x=x_lagged, intercept=True, nw_lags=1) e_hat = results.resid.values phi = results.beta['x'] # === compute periodogram on residuals === # w, I_w = periodogram(e_hat, window=window, window_len=window_len) # === recolor and return === # I_w = I_w / np.abs(1 - phi * np.exp(1j * w))**2 return w, I_w
bsd-3-clause
bsipocz/statsmodels
statsmodels/sandbox/infotheo.py
33
16417
""" Information Theoretic and Entropy Measures References ---------- Golan, As. 2008. "Information and Entropy Econometrics -- A Review and Synthesis." Foundations And Trends in Econometrics 2(1-2), 1-145. Golan, A., Judge, G., and Miller, D. 1996. Maximum Entropy Econometrics. Wiley & Sons, Chichester. """ #For MillerMadow correction #Miller, G. 1955. Note on the bias of information estimates. Info. Theory # Psychol. Prob. Methods II-B:95-100. #For ChaoShen method #Chao, A., and T.-J. Shen. 2003. Nonparametric estimation of Shannon's index of diversity when #there are unseen species in sample. Environ. Ecol. Stat. 10:429-443. #Good, I. J. 1953. The population frequencies of species and the estimation of population parameters. #Biometrika 40:237-264. #Horvitz, D.G., and D. J. Thompson. 1952. A generalization of sampling without replacement from a finute universe. J. Am. Stat. Assoc. 47:663-685. #For NSB method #Nemenman, I., F. Shafee, and W. Bialek. 2002. Entropy and inference, revisited. In: Dietterich, T., #S. Becker, Z. Gharamani, eds. Advances in Neural Information Processing Systems 14: 471-478. #Cambridge (Massachusetts): MIT Press. #For shrinkage method #Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised discretization of #continuous features. In International Conference on Machine Learning. #Yang, Y. and Webb, G. I. (2003). Discretization for naive-bayes learning: managing discretization #bias and variance. Technical Report 2003/131 School of Computer Science and Software Engineer- #ing, Monash University. from statsmodels.compat.python import range, lzip, lmap from scipy import stats import numpy as np from matplotlib import pyplot as plt from scipy.misc import logsumexp as sp_logsumexp #TODO: change these to use maxentutils so that over/underflow is handled #with the logsumexp. def logsumexp(a, axis=None): """ Compute the log of the sum of exponentials log(e^{a_1}+...e^{a_n}) of a Avoids numerical overflow. Parameters ---------- a : array-like The vector to exponentiate and sum axis : int, optional The axis along which to apply the operation. Defaults is None. Returns ------- sum(log(exp(a))) Notes ----- This function was taken from the mailing list http://mail.scipy.org/pipermail/scipy-user/2009-October/022931.html This should be superceded by the ufunc when it is finished. """ if axis is None: # Use the scipy.maxentropy version. return sp_logsumexp(a) a = np.asarray(a) shp = list(a.shape) shp[axis] = 1 a_max = a.max(axis=axis) s = np.log(np.exp(a - a_max.reshape(shp)).sum(axis=axis)) lse = a_max + s return lse def _isproperdist(X): """ Checks to see if `X` is a proper probability distribution """ X = np.asarray(X) if not np.allclose(np.sum(X), 1) or not np.all(X>=0) or not np.all(X<=1): return False else: return True def discretize(X, method="ef", nbins=None): """ Discretize `X` Parameters ---------- bins : int, optional Number of bins. Default is floor(sqrt(N)) method : string "ef" is equal-frequency binning "ew" is equal-width binning Examples -------- """ nobs = len(X) if nbins == None: nbins = np.floor(np.sqrt(nobs)) if method == "ef": discrete = np.ceil(nbins * stats.rankdata(X)/nobs) if method == "ew": width = np.max(X) - np.min(X) width = np.floor(width/nbins) svec, ivec = stats.fastsort(X) discrete = np.zeros(nobs) binnum = 1 base = svec[0] discrete[ivec[0]] = binnum for i in range(1,nobs): if svec[i] < base + width: discrete[ivec[i]] = binnum else: base = svec[i] binnum += 1 discrete[ivec[i]] = binnum return discrete #TODO: looks okay but needs more robust tests for corner cases def logbasechange(a,b): """ There is a one-to-one transformation of the entropy value from a log base b to a log base a : H_{b}(X)=log_{b}(a)[H_{a}(X)] Returns ------- log_{b}(a) """ return np.log(b)/np.log(a) def natstobits(X): """ Converts from nats to bits """ return logbasechange(np.e, 2) * X def bitstonats(X): """ Converts from bits to nats """ return logbasechange(2, np.e) * X #TODO: make this entropy, and then have different measures as #a method def shannonentropy(px, logbase=2): """ This is Shannon's entropy Parameters ----------- logbase, int or np.e The base of the log px : 1d or 2d array_like Can be a discrete probability distribution, a 2d joint distribution, or a sequence of probabilities. Returns ----- For log base 2 (bits) given a discrete distribution H(p) = sum(px * log2(1/px) = -sum(pk*log2(px)) = E[log2(1/p(X))] For log base 2 (bits) given a joint distribution H(px,py) = -sum_{k,j}*w_{kj}log2(w_{kj}) Notes ----- shannonentropy(0) is defined as 0 """ #TODO: haven't defined the px,py case? px = np.asarray(px) if not np.all(px <= 1) or not np.all(px >= 0): raise ValueError("px does not define proper distribution") entropy = -np.sum(np.nan_to_num(px*np.log2(px))) if logbase != 2: return logbasechange(2,logbase) * entropy else: return entropy # Shannon's information content def shannoninfo(px, logbase=2): """ Shannon's information Parameters ---------- px : float or array-like `px` is a discrete probability distribution Returns ------- For logbase = 2 np.log2(px) """ px = np.asarray(px) if not np.all(px <= 1) or not np.all(px >= 0): raise ValueError("px does not define proper distribution") if logbase != 2: return - logbasechange(2,logbase) * np.log2(px) else: return - np.log2(px) def condentropy(px, py, pxpy=None, logbase=2): """ Return the conditional entropy of X given Y. Parameters ---------- px : array-like py : array-like pxpy : array-like, optional If pxpy is None, the distributions are assumed to be independent and conendtropy(px,py) = shannonentropy(px) logbase : int or np.e Returns ------- sum_{kj}log(q_{j}/w_{kj} where q_{j} = Y[j] and w_kj = X[k,j] """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) condent = np.sum(pxpy * np.nan_to_num(np.log2(py/pxpy))) if logbase == 2: return condent else: return logbasechange(2, logbase) * condent def mutualinfo(px,py,pxpy, logbase=2): """ Returns the mutual information between X and Y. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like The joint probability distribution of random variables X and Y. Note that if X and Y are independent then the mutual information is zero. logbase : int or np.e, optional Default is 2 (bits) Returns ------- shannonentropy(px) - condentropy(px,py,pxpy) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) return shannonentropy(px, logbase=logbase) - condentropy(px,py,pxpy, logbase=logbase) def corrent(px,py,pxpy,logbase=2): """ An information theoretic correlation measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py,logbase=logbase) Notes ----- This is also equivalent to corrent(px,py,pxpy) = 1 - condent(px,py,pxpy)/shannonentropy(py) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) return mutualinfo(px,py,pxpy,logbase=logbase)/shannonentropy(py, logbase=logbase) def covent(px,py,pxpy,logbase=2): """ An information theoretic covariance measure. Reflects linear and nonlinear correlation between two random variables X and Y, characterized by the discrete probability distributions px and py respectively. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) Returns ------- condent(px,py,pxpy,logbase=logbase) + condent(py,px,pxpy, logbase=logbase) Notes ----- This is also equivalent to covent(px,py,pxpy) = condent(px,py,pxpy) + condent(py,px,pxpy) """ if not _isproperdist(px) or not _isproperdist(py): raise ValueError("px or py is not a proper probability distribution") if pxpy != None and not _isproperdist(pxpy): raise ValueError("pxpy is not a proper joint distribtion") if pxpy == None: pxpy = np.outer(py,px) return condent(px,py,pxpy,logbase=logbase) + condent(py,px,pxpy, logbase=logbase) #### Generalized Entropies #### def renyientropy(px,alpha=1,logbase=2,measure='R'): """ Renyi's generalized entropy Parameters ---------- px : array-like Discrete probability distribution of random variable X. Note that px is assumed to be a proper probability distribution. logbase : int or np.e, optional Default is 2 (bits) alpha : float or inf The order of the entropy. The default is 1, which in the limit is just Shannon's entropy. 2 is Renyi (Collision) entropy. If the string "inf" or numpy.inf is specified the min-entropy is returned. measure : str, optional The type of entropy measure desired. 'R' returns Renyi entropy measure. 'T' returns the Tsallis entropy measure. Returns ------- 1/(1-alpha)*log(sum(px**alpha)) In the limit as alpha -> 1, Shannon's entropy is returned. In the limit as alpha -> inf, min-entropy is returned. """ #TODO:finish returns #TODO:add checks for measure if not _isproperdist(px): raise ValueError("px is not a proper probability distribution") alpha = float(alpha) if alpha == 1: genent = shannonentropy(px) if logbase != 2: return logbasechange(2, logbase) * genent return genent elif 'inf' in string(alpha).lower() or alpha == np.inf: return -np.log(np.max(px)) # gets here if alpha != (1 or inf) px = px**alpha genent = np.log(px.sum()) if logbase == 2: return 1/(1-alpha) * genent else: return 1/(1-alpha) * logbasechange(2, logbase) * genent #TODO: before completing this, need to rethink the organization of # (relative) entropy measures, ie., all put into one function # and have kwdargs, etc.? def gencrossentropy(px,py,pxpy,alpha=1,logbase=2, measure='T'): """ Generalized cross-entropy measures. Parameters ---------- px : array-like Discrete probability distribution of random variable X py : array-like Discrete probability distribution of random variable Y pxpy : 2d array-like, optional Joint probability distribution of X and Y. If pxpy is None, X and Y are assumed to be independent. logbase : int or np.e, optional Default is 2 (bits) measure : str, optional The measure is the type of generalized cross-entropy desired. 'T' is the cross-entropy version of the Tsallis measure. 'CR' is Cressie-Read measure. """ if __name__ == "__main__": print("From Golan (2008) \"Information and Entropy Econometrics -- A Review \ and Synthesis") print("Table 3.1") # Examples from Golan (2008) X = [.2,.2,.2,.2,.2] Y = [.322,.072,.511,.091,.004] for i in X: print(shannoninfo(i)) for i in Y: print(shannoninfo(i)) print(shannonentropy(X)) print(shannonentropy(Y)) p = [1e-5,1e-4,.001,.01,.1,.15,.2,.25,.3,.35,.4,.45,.5] plt.subplot(111) plt.ylabel("Information") plt.xlabel("Probability") x = np.linspace(0,1,100001) plt.plot(x, shannoninfo(x)) # plt.show() plt.subplot(111) plt.ylabel("Entropy") plt.xlabel("Probability") x = np.linspace(0,1,101) plt.plot(x, lmap(shannonentropy, lzip(x,1-x))) # plt.show() # define a joint probability distribution # from Golan (2008) table 3.3 w = np.array([[0,0,1./3],[1/9.,1/9.,1/9.],[1/18.,1/9.,1/6.]]) # table 3.4 px = w.sum(0) py = w.sum(1) H_X = shannonentropy(px) H_Y = shannonentropy(py) H_XY = shannonentropy(w) H_XgivenY = condentropy(px,py,w) H_YgivenX = condentropy(py,px,w) # note that cross-entropy is not a distance measure as the following shows D_YX = logbasechange(2,np.e)*stats.entropy(px, py) D_XY = logbasechange(2,np.e)*stats.entropy(py, px) I_XY = mutualinfo(px,py,w) print("Table 3.3") print(H_X,H_Y, H_XY, H_XgivenY, H_YgivenX, D_YX, D_XY, I_XY) print("discretize functions") X=np.array([21.2,44.5,31.0,19.5,40.6,38.7,11.1,15.8,31.9,25.8,20.2,14.2, 24.0,21.0,11.3,18.0,16.3,22.2,7.8,27.8,16.3,35.1,14.9,17.1,28.2,16.4, 16.5,46.0,9.5,18.8,32.1,26.1,16.1,7.3,21.4,20.0,29.3,14.9,8.3,22.5, 12.8,26.9,25.5,22.9,11.2,20.7,26.2,9.3,10.8,15.6]) discX = discretize(X) #CF: R's infotheo #TODO: compare to pyentropy quantize? print print("Example in section 3.6 of Golan, using table 3.3") print("Bounding errors using Fano's inequality") print("H(P_{e}) + P_{e}log(K-1) >= H(X|Y)") print("or, a weaker inequality") print("P_{e} >= [H(X|Y) - 1]/log(K)") print("P(x) = %s" % px) print("X = 3 has the highest probability, so this is the estimate Xhat") pe = 1 - px[2] print("The probability of error Pe is 1 - p(X=3) = %0.4g" % pe) H_pe = shannonentropy([pe,1-pe]) print("H(Pe) = %0.4g and K=3" % H_pe) print("H(Pe) + Pe*log(K-1) = %0.4g >= H(X|Y) = %0.4g" % \ (H_pe+pe*np.log2(2), H_XgivenY)) print("or using the weaker inequality") print("Pe = %0.4g >= [H(X) - 1]/log(K) = %0.4g" % (pe, (H_X - 1)/np.log2(3))) print("Consider now, table 3.5, where there is additional information") print("The conditional probabilities of P(X|Y=y) are ") w2 = np.array([[0.,0.,1.],[1/3.,1/3.,1/3.],[1/6.,1/3.,1/2.]]) print(w2) # not a proper distribution? print("The probability of error given this information is") print("Pe = [H(X|Y) -1]/log(K) = %0.4g" % ((np.mean([0,shannonentropy(w2[1]),shannonentropy(w2[2])])-1)/np.log2(3))) print("such that more information lowers the error") ### Stochastic processes markovchain = np.array([[.553,.284,.163],[.465,.312,.223],[.420,.322,.258]])
bsd-3-clause
DakotaNelson/SoftwareSystems
lecture14/thinkplot.py
88
12565
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ import math import matplotlib import matplotlib.pyplot as pyplot import numpy as np # customize some matplotlib attributes #matplotlib.rc('figure', figsize=(4, 3)) #matplotlib.rc('font', size=14.0) #matplotlib.rc('axes', labelsize=22.0, titlesize=22.0) #matplotlib.rc('legend', fontsize=20.0) #matplotlib.rc('xtick.major', size=6.0) #matplotlib.rc('xtick.minor', size=3.0) #matplotlib.rc('ytick.major', size=6.0) #matplotlib.rc('ytick.minor', size=3.0) class Brewer(object): """Encapsulates a nice sequence of colors. Shades of blue that look good in color and can be distinguished in grayscale (up to a point). Borrowed from http://colorbrewer2.org/ """ color_iter = None colors = ['#081D58', '#253494', '#225EA8', '#1D91C0', '#41B6C4', '#7FCDBB', '#C7E9B4', '#EDF8B1', '#FFFFD9'] # lists that indicate which colors to use depending on how many are used which_colors = [[], [1], [1, 3], [0, 2, 4], [0, 2, 4, 6], [0, 2, 3, 5, 6], [0, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6], ] @classmethod def Colors(cls): """Returns the list of colors. """ return cls.colors @classmethod def ColorGenerator(cls, n): """Returns an iterator of color strings. n: how many colors will be used """ for i in cls.which_colors[n]: yield cls.colors[i] raise StopIteration('Ran out of colors in Brewer.ColorGenerator') @classmethod def InitializeIter(cls, num): """Initializes the color iterator with the given number of colors.""" cls.color_iter = cls.ColorGenerator(num) @classmethod def ClearIter(cls): """Sets the color iterator to None.""" cls.color_iter = None @classmethod def GetIter(cls): """Gets the color iterator.""" return cls.color_iter def PrePlot(num=None, rows=1, cols=1): """Takes hints about what's coming. num: number of lines that will be plotted """ if num: Brewer.InitializeIter(num) # TODO: get sharey and sharex working. probably means switching # to subplots instead of subplot. # also, get rid of the gray background. if rows > 1 or cols > 1: pyplot.subplots(rows, cols, sharey=True) global SUBPLOT_ROWS, SUBPLOT_COLS SUBPLOT_ROWS = rows SUBPLOT_COLS = cols def SubPlot(rows, cols, plot_number): """Configures the number of subplots and changes the current plot. rows: int cols: int plot_number: int """ pyplot.subplot(rows, cols, plot_number) class InfiniteList(list): """A list that returns the same value for all indices.""" def __init__(self, val): """Initializes the list. val: value to be stored """ list.__init__(self) self.val = val def __getitem__(self, index): """Gets the item with the given index. index: int returns: the stored value """ return self.val def Underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.iteritems(): d.setdefault(key, val) return d def Clf(): """Clears the figure and any hints that have been set.""" Brewer.ClearIter() pyplot.clf() def Figure(**options): """Sets options for the current figure.""" Underride(options, figsize=(6, 8)) pyplot.figure(**options) def Plot(xs, ys, style='', **options): """Plots a line. Args: xs: sequence of x values ys: sequence of y values style: style string passed along to pyplot.plot options: keyword args passed to pyplot.plot """ color_iter = Brewer.GetIter() if color_iter: try: options = Underride(options, color=color_iter.next()) except StopIteration: print 'Warning: Brewer ran out of colors.' Brewer.ClearIter() options = Underride(options, linewidth=3, alpha=0.8) pyplot.plot(xs, ys, style, **options) def Scatter(xs, ys, **options): """Makes a scatter plot. xs: x values ys: y values options: options passed to pyplot.scatter """ options = Underride(options, color='blue', alpha=0.2, s=30, edgecolors='none') pyplot.scatter(xs, ys, **options) def Pmf(pmf, **options): """Plots a Pmf or Hist as a line. Args: pmf: Hist or Pmf object options: keyword args passed to pyplot.plot """ xs, ps = pmf.Render() if pmf.name: options = Underride(options, label=pmf.name) Plot(xs, ps, **options) def Pmfs(pmfs, **options): """Plots a sequence of PMFs. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: pmfs: sequence of PMF objects options: keyword args passed to pyplot.plot """ for pmf in pmfs: Pmf(pmf, **options) def Hist(hist, **options): """Plots a Pmf or Hist with a bar plot. The default width of the bars is based on the minimum difference between values in the Hist. If that's too small, you can override it by providing a width keyword argument, in the same units as the values. Args: hist: Hist or Pmf object options: keyword args passed to pyplot.bar """ # find the minimum distance between adjacent values xs, fs = hist.Render() width = min(Diff(xs)) if hist.name: options = Underride(options, label=hist.name) options = Underride(options, align='center', linewidth=0, width=width) pyplot.bar(xs, fs, **options) def Hists(hists, **options): """Plots two histograms as interleaved bar plots. Options are passed along for all PMFs. If you want different options for each pmf, make multiple calls to Pmf. Args: hists: list of two Hist or Pmf objects options: keyword args passed to pyplot.plot """ for hist in hists: Hist(hist, **options) def Diff(t): """Compute the differences between adjacent elements in a sequence. Args: t: sequence of number Returns: sequence of differences (length one less than t) """ diffs = [t[i+1] - t[i] for i in range(len(t)-1)] return diffs def Cdf(cdf, complement=False, transform=None, **options): """Plots a CDF as a line. Args: cdf: Cdf object complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot Returns: dictionary with the scale options that should be passed to Config, Show or Save. """ xs, ps = cdf.Render() scale = dict(xscale='linear', yscale='linear') for s in ['xscale', 'yscale']: if s in options: scale[s] = options.pop(s) if transform == 'exponential': complement = True scale['yscale'] = 'log' if transform == 'pareto': complement = True scale['yscale'] = 'log' scale['xscale'] = 'log' if complement: ps = [1.0-p for p in ps] if transform == 'weibull': xs.pop() ps.pop() ps = [-math.log(1.0-p) for p in ps] scale['xscale'] = 'log' scale['yscale'] = 'log' if transform == 'gumbel': xs.pop(0) ps.pop(0) ps = [-math.log(p) for p in ps] scale['yscale'] = 'log' if cdf.name: options = Underride(options, label=cdf.name) Plot(xs, ps, **options) return scale def Cdfs(cdfs, complement=False, transform=None, **options): """Plots a sequence of CDFs. cdfs: sequence of CDF objects complement: boolean, whether to plot the complementary CDF transform: string, one of 'exponential', 'pareto', 'weibull', 'gumbel' options: keyword args passed to pyplot.plot """ for cdf in cdfs: Cdf(cdf, complement, transform, **options) def Contour(obj, pcolor=False, contour=True, imshow=False, **options): """Makes a contour plot. d: map from (x, y) to z, or object that provides GetDict pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot imshow: boolean, whether to use pyplot.imshow options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ try: d = obj.GetDict() except AttributeError: d = obj Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) xs, ys = zip(*d.iterkeys()) xs = sorted(set(xs)) ys = sorted(set(ys)) X, Y = np.meshgrid(xs, ys) func = lambda x, y: d.get((x, y), 0) func = np.vectorize(func) Z = func(X, Y) x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) if imshow: extent = xs[0], xs[-1], ys[0], ys[-1] pyplot.imshow(Z, extent=extent, **options) def Pcolor(xs, ys, zs, pcolor=True, contour=False, **options): """Makes a pseudocolor plot. xs: ys: zs: pcolor: boolean, whether to make a pseudocolor plot contour: boolean, whether to make a contour plot options: keyword args passed to pyplot.pcolor and/or pyplot.contour """ Underride(options, linewidth=3, cmap=matplotlib.cm.Blues) X, Y = np.meshgrid(xs, ys) Z = zs x_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) axes = pyplot.gca() axes.xaxis.set_major_formatter(x_formatter) if pcolor: pyplot.pcolormesh(X, Y, Z, **options) if contour: cs = pyplot.contour(X, Y, Z, **options) pyplot.clabel(cs, inline=1, fontsize=10) def Config(**options): """Configures the plot. Pulls options out of the option dictionary and passes them to the corresponding pyplot functions. """ names = ['title', 'xlabel', 'ylabel', 'xscale', 'yscale', 'xticks', 'yticks', 'axis'] for name in names: if name in options: getattr(pyplot, name)(options[name]) loc = options.get('loc', 0) legend = options.get('legend', True) if legend: pyplot.legend(loc=loc) def Show(**options): """Shows the plot. For options, see Config. options: keyword args used to invoke various pyplot functions """ # TODO: figure out how to show more than one plot Config(**options) pyplot.show() def Save(root=None, formats=None, **options): """Saves the plot in the given formats. For options, see Config. Args: root: string filename root formats: list of string formats options: keyword args used to invoke various pyplot functions """ Config(**options) if formats is None: formats = ['pdf', 'eps'] if root: for fmt in formats: SaveFormat(root, fmt) Clf() def SaveFormat(root, fmt='eps'): """Writes the current figure to a file in the given format. Args: root: string filename root fmt: string format """ filename = '%s.%s' % (root, fmt) print 'Writing', filename pyplot.savefig(filename, format=fmt, dpi=300) # provide aliases for calling functons with lower-case names preplot = PrePlot subplot = SubPlot clf = Clf figure = Figure plot = Plot scatter = Scatter pmf = Pmf pmfs = Pmfs hist = Hist hists = Hists diff = Diff cdf = Cdf cdfs = Cdfs contour = Contour pcolor = Pcolor config = Config show = Show save = Save def main(): color_iter = Brewer.ColorGenerator(7) for color in color_iter: print color if __name__ == '__main__': main()
gpl-3.0
harisbal/pandas
pandas/tests/indexes/datetimes/test_indexing.py
1
25831
from datetime import datetime, time, timedelta import numpy as np import pytest import pytz import pandas.compat as compat import pandas as pd from pandas import DatetimeIndex, Index, Timestamp, date_range, notna import pandas.util.testing as tm from pandas.tseries.offsets import BDay, CDay START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestGetItem(object): def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq def test_dti_business_getitem(self): rng = pd.bdate_range(START, END) smaller = rng[:5] exp = DatetimeIndex(rng.view(np.ndarray)[:5]) tm.assert_index_equal(smaller, exp) assert smaller.freq == rng.freq sliced = rng[::5] assert sliced.freq == BDay() * 5 fancy_indexed = rng[[4, 3, 2, 1, 0]] assert len(fancy_indexed) == 5 assert isinstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert rng[4] == rng[np.int_(4)] def test_dti_business_getitem_matplotlib_hackaround(self): rng = pd.bdate_range(START, END) values = rng[:, None] expected = rng.values[:, None] tm.assert_numpy_array_equal(values, expected) def test_dti_custom_getitem(self): rng = pd.bdate_range(START, END, freq='C') smaller = rng[:5] exp = DatetimeIndex(rng.view(np.ndarray)[:5]) tm.assert_index_equal(smaller, exp) assert smaller.freq == rng.freq sliced = rng[::5] assert sliced.freq == CDay() * 5 fancy_indexed = rng[[4, 3, 2, 1, 0]] assert len(fancy_indexed) == 5 assert isinstance(fancy_indexed, DatetimeIndex) assert fancy_indexed.freq is None # 32-bit vs. 64-bit platforms assert rng[4] == rng[np.int_(4)] def test_dti_custom_getitem_matplotlib_hackaround(self): rng = pd.bdate_range(START, END, freq='C') values = rng[:, None] expected = rng.values[:, None] tm.assert_numpy_array_equal(values, expected) class TestWhere(object): def test_where_other(self): # other is ndarray or Index i = pd.date_range('20130101', periods=3, tz='US/Eastern') for arr in [np.nan, pd.NaT]: result = i.where(notna(i), other=np.nan) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2), i2) tm.assert_index_equal(result, i2) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2), i2.values) tm.assert_index_equal(result, i2) def test_where_tz(self): i = pd.date_range('20130101', periods=3, tz='US/Eastern') result = i.where(notna(i)) expected = i tm.assert_index_equal(result, expected) i2 = i.copy() i2 = Index([pd.NaT, pd.NaT] + i[2:].tolist()) result = i.where(notna(i2)) expected = i2 tm.assert_index_equal(result, expected) class TestTake(object): def test_take(self): # GH#10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) assert result == Timestamp('2011-01-01', tz=idx.tz) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq == expected.freq result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') tm.assert_index_equal(result, expected) assert result.freq is None def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') # TODO: This method came from test_datetime; de-dup with version above @pytest.mark.parametrize('tz', [None, 'US/Eastern', 'Asia/Tokyo']) def test_take2(self, tz): dates = [datetime(2010, 1, 1, 14), datetime(2010, 1, 1, 15), datetime(2010, 1, 1, 17), datetime(2010, 1, 1, 21)] idx = DatetimeIndex(start='2010-01-01 09:00', end='2010-02-01 09:00', freq='H', tz=tz, name='idx') expected = DatetimeIndex(dates, freq=None, name='idx', tz=tz) taken1 = idx.take([5, 6, 8, 12]) taken2 = idx[[5, 6, 8, 12]] for taken in [taken1, taken2]: tm.assert_index_equal(taken, expected) assert isinstance(taken, DatetimeIndex) assert taken.freq is None assert taken.tz == expected.tz assert taken.name == expected.name def test_take_fill_value(self): # GH#12631 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], name='xxx') result = idx.take(np.array([1, 0, -1])) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx') tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', 'NaT'], name='xxx') tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx') tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def test_take_fill_value_with_timezone(self): idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], name='xxx', tz='US/Eastern') result = idx.take(np.array([1, 0, -1])) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx', tz='US/Eastern') tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', 'NaT'], name='xxx', tz='US/Eastern') tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = pd.DatetimeIndex(['2011-02-01', '2011-01-01', '2011-03-01'], name='xxx', tz='US/Eastern') tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) class TestDatetimeIndex(object): @pytest.mark.parametrize('null', [None, np.nan, pd.NaT]) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern']) def test_insert_nat(self, tz, null): # GH#16537, GH#18295 (test missing) idx = pd.DatetimeIndex(['2017-01-01'], tz=tz) expected = pd.DatetimeIndex(['NaT', '2017-01-01'], tz=tz) res = idx.insert(0, null) tm.assert_index_equal(res, expected) def test_insert(self): idx = DatetimeIndex( ['2000-01-04', '2000-01-01', '2000-01-02'], name='idx') result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02'], name='idx') tm.assert_index_equal(result, exp) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)], name='idx') assert not isinstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) assert result.name == expected.name idx = date_range('1/1/2000', periods=3, freq='M', name='idx') # preserve freq expected_0 = DatetimeIndex(['1999-12-31', '2000-01-31', '2000-02-29', '2000-03-31'], name='idx', freq='M') expected_3 = DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-04-30'], name='idx', freq='M') # reset freq to None expected_1_nofreq = DatetimeIndex(['2000-01-31', '2000-01-31', '2000-02-29', '2000-03-31'], name='idx', freq=None) expected_3_nofreq = DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-01-02'], name='idx', freq=None) cases = [(0, datetime(1999, 12, 31), expected_0), (-3, datetime(1999, 12, 31), expected_0), (3, datetime(2000, 4, 30), expected_3), (1, datetime(2000, 1, 31), expected_1_nofreq), (3, datetime(2000, 1, 2), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq # reset freq to None result = idx.insert(3, datetime(2000, 1, 2)) expected = DatetimeIndex(['2000-01-31', '2000-02-29', '2000-03-31', '2000-01-02'], name='idx', freq=None) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq is None # see gh-7299 idx = date_range('1/1/2000', periods=3, freq='D', tz='Asia/Tokyo', name='idx') with pytest.raises(ValueError): idx.insert(3, pd.Timestamp('2000-01-04')) with pytest.raises(ValueError): idx.insert(3, datetime(2000, 1, 4)) with pytest.raises(ValueError): idx.insert(3, pd.Timestamp('2000-01-04', tz='US/Eastern')) with pytest.raises(ValueError): idx.insert(3, datetime(2000, 1, 4, tzinfo=pytz.timezone('US/Eastern'))) for tz in ['US/Pacific', 'Asia/Singapore']: idx = date_range('1/1/2000 09:00', periods=6, freq='H', tz=tz, name='idx') # preserve freq expected = date_range('1/1/2000 09:00', periods=7, freq='H', tz=tz, name='idx') for d in [pd.Timestamp('2000-01-01 15:00', tz=tz), pytz.timezone(tz).localize(datetime(2000, 1, 1, 15))]: result = idx.insert(6, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq assert result.tz == expected.tz expected = DatetimeIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-01 14:00', '2000-01-01 10:00'], name='idx', tz=tz, freq=None) # reset freq to None for d in [pd.Timestamp('2000-01-01 10:00', tz=tz), pytz.timezone(tz).localize(datetime(2000, 1, 1, 10))]: result = idx.insert(6, d) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.tz == expected.tz assert result.freq is None def test_delete(self): idx = date_range(start='2000-01-01', periods=5, freq='M', name='idx') # prserve freq expected_0 = date_range(start='2000-02-01', periods=4, freq='M', name='idx') expected_4 = date_range(start='2000-01-01', periods=4, freq='M', name='idx') # reset freq to None expected_1 = DatetimeIndex(['2000-01-31', '2000-03-31', '2000-04-30', '2000-05-31'], freq=None, name='idx') cases = {0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq with pytest.raises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) for tz in [None, 'Asia/Tokyo', 'US/Pacific']: idx = date_range(start='2000-01-01 09:00', periods=10, freq='H', name='idx', tz=tz) expected = date_range(start='2000-01-01 10:00', periods=9, freq='H', name='idx', tz=tz) result = idx.delete(0) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freqstr == 'H' assert result.tz == expected.tz expected = date_range(start='2000-01-01 09:00', periods=9, freq='H', name='idx', tz=tz) result = idx.delete(-1) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freqstr == 'H' assert result.tz == expected.tz def test_delete_slice(self): idx = date_range(start='2000-01-01', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = date_range(start='2000-01-04', periods=7, freq='D', name='idx') expected_7_9 = date_range(start='2000-01-01', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-07', '2000-01-08', '2000-01-09', '2000-01-10'], freq=None, name='idx') cases = {(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq result = idx.delete(slice(n[0], n[-1] + 1)) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq for tz in [None, 'Asia/Tokyo', 'US/Pacific']: ts = pd.Series(1, index=pd.date_range( '2000-01-01 09:00', periods=10, freq='H', name='idx', tz=tz)) # preserve freq result = ts.drop(ts.index[:5]).index expected = pd.date_range('2000-01-01 14:00', periods=5, freq='H', name='idx', tz=tz) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq assert result.tz == expected.tz # reset freq to None result = ts.drop(ts.index[[1, 3, 5, 7, 9]]).index expected = DatetimeIndex(['2000-01-01 09:00', '2000-01-01 11:00', '2000-01-01 13:00', '2000-01-01 15:00', '2000-01-01 17:00'], freq=None, name='idx', tz=tz) tm.assert_index_equal(result, expected) assert result.name == expected.name assert result.freq == expected.freq assert result.tz == expected.tz def test_get_loc(self): idx = pd.date_range('2000-01-01', periods=3) for method in [None, 'pad', 'backfill', 'nearest']: assert idx.get_loc(idx[1], method) == 1 assert idx.get_loc(idx[1].to_pydatetime(), method) == 1 assert idx.get_loc(str(idx[1]), method) == 1 if method is not None: assert idx.get_loc(idx[1], method, tolerance=pd.Timedelta('0 days')) == 1 assert idx.get_loc('2000-01-01', method='nearest') == 0 assert idx.get_loc('2000-01-01T12', method='nearest') == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance='1 day') == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance=pd.Timedelta('1D')) == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance=np.timedelta64(1, 'D')) == 1 assert idx.get_loc('2000-01-01T12', method='nearest', tolerance=timedelta(1)) == 1 with tm.assert_raises_regex(ValueError, 'unit abbreviation w/o a number'): idx.get_loc('2000-01-01T12', method='nearest', tolerance='foo') with pytest.raises(KeyError): idx.get_loc('2000-01-01T03', method='nearest', tolerance='2 hours') with pytest.raises( ValueError, match='tolerance size must match target index size'): idx.get_loc('2000-01-01', method='nearest', tolerance=[pd.Timedelta('1day').to_timedelta64(), pd.Timedelta('1day').to_timedelta64()]) assert idx.get_loc('2000', method='nearest') == slice(0, 3) assert idx.get_loc('2000-01', method='nearest') == slice(0, 3) assert idx.get_loc('1999', method='nearest') == 0 assert idx.get_loc('2001', method='nearest') == 2 with pytest.raises(KeyError): idx.get_loc('1999', method='pad') with pytest.raises(KeyError): idx.get_loc('2001', method='backfill') with pytest.raises(KeyError): idx.get_loc('foobar') with pytest.raises(TypeError): idx.get_loc(slice(2)) idx = pd.to_datetime(['2000-01-01', '2000-01-04']) assert idx.get_loc('2000-01-02', method='nearest') == 0 assert idx.get_loc('2000-01-03', method='nearest') == 1 assert idx.get_loc('2000-01', method='nearest') == slice(0, 2) # time indexing idx = pd.date_range('2000-01-01', periods=24, freq='H') tm.assert_numpy_array_equal(idx.get_loc(time(12)), np.array([12]), check_dtype=False) tm.assert_numpy_array_equal(idx.get_loc(time(12, 30)), np.array([]), check_dtype=False) with pytest.raises(NotImplementedError): idx.get_loc(time(12, 30), method='pad') def test_get_indexer(self): idx = pd.date_range('2000-01-01', periods=3) exp = np.array([0, 1, 2], dtype=np.intp) tm.assert_numpy_array_equal(idx.get_indexer(idx), exp) target = idx[0] + pd.to_timedelta(['-1 hour', '12 hours', '1 day 1 hour']) tm.assert_numpy_array_equal(idx.get_indexer(target, 'pad'), np.array([-1, 0, 1], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'backfill'), np.array([0, 1, 2], dtype=np.intp)) tm.assert_numpy_array_equal(idx.get_indexer(target, 'nearest'), np.array([0, 1, 1], dtype=np.intp)) tm.assert_numpy_array_equal( idx.get_indexer(target, 'nearest', tolerance=pd.Timedelta('1 hour')), np.array([0, -1, 1], dtype=np.intp)) tol_raw = [pd.Timedelta('1 hour'), pd.Timedelta('1 hour'), pd.Timedelta('1 hour').to_timedelta64(), ] tm.assert_numpy_array_equal( idx.get_indexer(target, 'nearest', tolerance=[np.timedelta64(x) for x in tol_raw]), np.array([0, -1, 1], dtype=np.intp)) tol_bad = [pd.Timedelta('2 hour').to_timedelta64(), pd.Timedelta('1 hour').to_timedelta64(), 'foo', ] with pytest.raises( ValueError, match='abbreviation w/o a number'): idx.get_indexer(target, 'nearest', tolerance=tol_bad) with pytest.raises(ValueError): idx.get_indexer(idx[[0]], method='nearest', tolerance='foo') def test_reasonable_keyerror(self): # GH#1062 index = DatetimeIndex(['1/3/2000']) with pytest.raises(KeyError) as excinfo: index.get_loc('1/1/2000') assert '2000' in str(excinfo.value) @pytest.mark.parametrize('key', [pd.Timedelta(0), pd.Timedelta(1), timedelta(0)]) def test_timedelta_invalid_key(self, key): # GH#20464 dti = pd.date_range('1970-01-01', periods=10) with pytest.raises(TypeError): dti.get_loc(key) def test_get_loc_nat(self): # GH#20464 index = DatetimeIndex(['1/3/2000', 'NaT']) assert index.get_loc(pd.NaT) == 1
bsd-3-clause
rubensmachado/nolearn
nolearn/lasagne/tests/test_base.py
2
19397
import pickle from lasagne.layers import ConcatLayer from lasagne.layers import DenseLayer from lasagne.layers import InputLayer from lasagne.layers import Layer from lasagne.nonlinearities import identity from lasagne.nonlinearities import softmax from lasagne.objectives import categorical_crossentropy from lasagne.updates import nesterov_momentum from mock import Mock from mock import patch import numpy as np import pytest from sklearn.base import clone from sklearn.grid_search import GridSearchCV from sklearn.metrics import accuracy_score from sklearn.metrics import mean_absolute_error import theano import theano.tensor as T floatX = theano.config.floatX class TestLayers: @pytest.fixture def layers(self): from nolearn.lasagne.base import Layers return Layers([('one', 1), ('two', 2), ('three', 3)]) def test_getitem_with_key(self, layers): assert layers['one'] == 1 def test_getitem_with_index(self, layers): assert layers[0] == 1 def test_getitem_with_slice(self, layers): assert layers[:2] == [1, 2] def test_keys_returns_list(self, layers): assert layers.keys() == ['one', 'two', 'three'] def test_values_returns_list(self, layers): assert layers.values() == [1, 2, 3] class TestFunctionalMNIST: def test_accuracy(self, net_fitted, mnist, y_pred): X, y = mnist y_test = y[60000:] assert accuracy_score(y_pred, y_test) > 0.85 def test_train_history(self, net_fitted): history = net_fitted.train_history_ assert len(history) == 2 # due to early stopping assert history[1]['valid_accuracy'] > 0.85 assert history[1]['valid_accuracy'] > history[0]['valid_accuracy'] assert set(history[0].keys()) == set([ 'dur', 'epoch', 'train_loss', 'train_loss_best', 'valid_loss', 'valid_loss_best', 'valid_accuracy', ]) def test_early_stopping(self, net_fitted): early_stopping = net_fitted.on_epoch_finished[0] assert early_stopping.train_history == net_fitted.train_history_ def test_pickle(self, net_fitted, X_test, y_pred): pickled = pickle.dumps(net_fitted, -1) net_loaded = pickle.loads(pickled) assert np.array_equal(net_loaded.predict(X_test), y_pred) def test_load_params_from_net(self, net, net_fitted, X_test, y_pred): net_loaded = clone(net) net_loaded.load_params_from(net_fitted) assert np.array_equal(net_loaded.predict(X_test), y_pred) def test_load_params_from_params_values(self, net, net_fitted, X_test, y_pred): net_loaded = clone(net) net_loaded.load_params_from(net_fitted.get_all_params_values()) assert np.array_equal(net_loaded.predict(X_test), y_pred) def test_save_params_to_path(self, net_fitted, X_test, y_pred): path = '/tmp/test_lasagne_functional_mnist.params' net_fitted.save_params_to(path) net_loaded = clone(net_fitted) net_loaded.load_params_from(path) assert np.array_equal(net_loaded.predict(X_test), y_pred) def test_load_params_from_message(self, net, net_fitted, capsys): net2 = clone(net) net2.verbose = 1 net2.load_params_from(net_fitted) out = capsys.readouterr()[0] message = """\ Loaded parameters to layer 'conv1' (shape 8x1x5x5). Loaded parameters to layer 'conv1' (shape 8). Loaded parameters to layer 'conv2' (shape 8x8x5x5). Loaded parameters to layer 'conv2' (shape 8). Loaded parameters to layer 'hidden1' (shape 128x128). Loaded parameters to layer 'hidden1' (shape 128). Loaded parameters to layer 'output' (shape 128x10). Loaded parameters to layer 'output' (shape 10). """ assert out == message def test_lasagne_functional_grid_search(mnist, monkeypatch): # Make sure that we can satisfy the grid search interface. from nolearn.lasagne import NeuralNet nn = NeuralNet( layers=[], ) param_grid = { 'more_params': [{'hidden_num_units': 100}, {'hidden_num_units': 200}], 'update_momentum': [0.9, 0.98], } X, y = mnist vars_hist = [] def fit(self, X, y): vars_hist.append(vars(self).copy()) return self with patch.object(NeuralNet, 'fit', autospec=True) as mock_fit: mock_fit.side_effect = fit with patch('nolearn.lasagne.NeuralNet.score') as score: score.return_value = 0.3 gs = GridSearchCV(nn, param_grid, cv=2, refit=False, verbose=4) gs.fit(X, y) assert [entry['update_momentum'] for entry in vars_hist] == [ 0.9, 0.9, 0.98, 0.98] * 2 assert [entry['more_params'] for entry in vars_hist] == ( [{'hidden_num_units': 100}] * 4 + [{'hidden_num_units': 200}] * 4 ) def test_clone(): from nolearn.lasagne import NeuralNet from nolearn.lasagne import BatchIterator from nolearn.lasagne import objective params = dict( layers=[ ('input', InputLayer), ('hidden', DenseLayer), ('output', DenseLayer), ], input_shape=(100, 784), output_num_units=10, output_nonlinearity=softmax, more_params={ 'hidden_num_units': 100, }, update=nesterov_momentum, update_learning_rate=0.01, update_momentum=0.9, regression=False, objective=objective, objective_loss_function=categorical_crossentropy, batch_iterator_train=BatchIterator(batch_size=100), y_tensor_type=T.ivector, use_label_encoder=False, on_epoch_finished=None, on_training_finished=None, max_epochs=100, eval_size=0.1, # BBB verbose=0, ) nn = NeuralNet(**params) nn2 = clone(nn) params1 = nn.get_params() params2 = nn2.get_params() for ignore in ( 'batch_iterator_train', 'batch_iterator_test', 'output_nonlinearity', 'loss', 'objective', 'train_split', 'eval_size', 'X_tensor_type', 'on_epoch_finished', 'on_training_started', 'on_training_finished', 'custom_score', ): for par in (params, params1, params2): par.pop(ignore, None) assert params == params1 == params2 def test_lasagne_functional_regression(boston): from nolearn.lasagne import NeuralNet X, y = boston nn = NeuralNet( layers=[ ('input', InputLayer), ('hidden1', DenseLayer), ('output', DenseLayer), ], input_shape=(128, 13), hidden1_num_units=100, output_nonlinearity=identity, output_num_units=1, update_learning_rate=0.01, update_momentum=0.1, regression=True, max_epochs=50, ) nn.fit(X[:300], y[:300]) assert mean_absolute_error(nn.predict(X[300:]), y[300:]) < 3.0 class TestDefaultObjective: @pytest.fixture def get_output(self, monkeypatch): from nolearn.lasagne import base get_output_mock = Mock() monkeypatch.setattr(base, 'get_output', get_output_mock) return get_output_mock @pytest.fixture def objective(self): from nolearn.lasagne.base import objective return objective def test_with_defaults(self, objective, get_output): loss_function, target = Mock(), Mock() loss_function.return_value = np.array([1, 2, 3]) result = objective( [1, 2, 3], loss_function=loss_function, target=target) assert result == 2.0 get_output.assert_called_with(3, deterministic=False) loss_function.assert_called_with(get_output.return_value, target) def test_with_get_output_kw(self, objective, get_output): loss_function, target = Mock(), Mock() loss_function.return_value = np.array([1, 2, 3]) objective( [1, 2, 3], loss_function=loss_function, target=target, get_output_kw={'i_was': 'here'}, ) get_output.assert_called_with(3, deterministic=False, i_was='here') class TestTrainSplit: @pytest.fixture def TrainSplit(self): from nolearn.lasagne import TrainSplit return TrainSplit def test_reproducable(self, TrainSplit, nn): X, y = np.random.random((100, 10)), np.repeat([0, 1, 2, 3], 25) X_train1, X_valid1, y_train1, y_valid1 = TrainSplit(0.2)( X, y, nn) X_train2, X_valid2, y_train2, y_valid2 = TrainSplit(0.2)( X, y, nn) assert np.all(X_train1 == X_train2) assert np.all(y_valid1 == y_valid2) def test_eval_size_zero(self, TrainSplit, nn): X, y = np.random.random((100, 10)), np.repeat([0, 1, 2, 3], 25) X_train, X_valid, y_train, y_valid = TrainSplit(0.0)( X, y, nn) assert len(X_train) == len(X) assert len(y_train) == len(y) assert len(X_valid) == 0 assert len(y_valid) == 0 def test_eval_size_half(self, TrainSplit, nn): X, y = np.random.random((100, 10)), np.repeat([0, 1, 2, 3], 25) X_train, X_valid, y_train, y_valid = TrainSplit(0.51)( X, y, nn) assert len(X_train) + len(X_valid) == 100 assert len(y_train) + len(y_valid) == 100 assert len(X_train) > 45 def test_regression(self, TrainSplit, nn): X = np.random.random((100, 10)) y = np.random.random((100)) nn.regression = True X_train, X_valid, y_train, y_valid = TrainSplit(0.2)( X, y, nn) assert len(X_train) == len(y_train) == 80 assert len(X_valid) == len(y_valid) == 20 def test_stratified(self, TrainSplit, nn): X = np.random.random((100, 10)) y = np.hstack([np.repeat([0, 0, 0], 25), np.repeat([1], 25)]) X_train, X_valid, y_train, y_valid = TrainSplit(0.2)( X, y, nn) assert y_train.sum() == 0.8 * 25 assert y_valid.sum() == 0.2 * 25 def test_not_stratified(self, TrainSplit, nn): X = np.random.random((100, 10)) y = np.hstack([np.repeat([0, 0, 0], 25), np.repeat([1], 25)]) X_train, X_valid, y_train, y_valid = TrainSplit(0.2, stratify=False)( X, y, nn) assert y_train.sum() == 25 assert y_valid.sum() == 0 class TestTrainTestSplitBackwardCompatibility: @pytest.fixture def LegacyNet(self, NeuralNet): class LegacyNet(NeuralNet): def train_test_split(self, X, y, eval_size): self.__call_args__ = (X, y, eval_size) split = int(X.shape[0] * eval_size) return X[:split], X[split:], y[:split], y[split:] return LegacyNet def test_legacy_eval_size(self, NeuralNet): net = NeuralNet([], eval_size=0.3, max_epochs=0) assert net.train_split.eval_size == 0.3 def test_legacy_method_default_eval_size(self, LegacyNet): net = LegacyNet([], max_epochs=0) X, y = np.ones((10, 3)), np.zeros(10) net.train_loop(X, y) assert net.__call_args__ == (X, y, 0.2) def test_legacy_method_given_eval_size(self, LegacyNet): net = LegacyNet([], eval_size=0.3, max_epochs=0) X, y = np.ones((10, 3)), np.zeros(10) net.train_loop(X, y) assert net.__call_args__ == (X, y, 0.3) class TestCheckForUnusedKwargs: def test_okay(self, NeuralNet): net = NeuralNet( layers=[('input', Mock), ('mylayer', Mock)], input_shape=(10, 10), mylayer_hey='hey', update_foo=1, update_bar=2, ) net._create_iter_funcs = lambda *args: (1, 2, 3) net.initialize() def test_unused(self, NeuralNet): net = NeuralNet( layers=[('input', Mock), ('mylayer', Mock)], input_shape=(10, 10), mylayer_hey='hey', yourlayer_ho='ho', update_foo=1, update_bar=2, ) net._create_iter_funcs = lambda *args: (1, 2, 3) with pytest.raises(ValueError) as err: net.initialize() assert str(err.value) == 'Unused kwarg: yourlayer_ho' class TestInitializeLayers: def test_initialization(self, NeuralNet): input = Mock(__name__='InputLayer', __bases__=(InputLayer,)) hidden1, hidden2, output = [ Mock(__name__='MockLayer', __bases__=(Layer,)) for i in range(3)] nn = NeuralNet( layers=[ (input, {'shape': (10, 10), 'name': 'input'}), (hidden1, {'some': 'param', 'another': 'param'}), (hidden2, {}), (output, {'name': 'output'}), ], input_shape=(10, 10), mock1_some='iwin', ) out = nn.initialize_layers(nn.layers) input.assert_called_with( name='input', shape=(10, 10)) assert nn.layers_['input'] is input.return_value hidden1.assert_called_with( incoming=input.return_value, name='mock1', some='iwin', another='param') assert nn.layers_['mock1'] is hidden1.return_value hidden2.assert_called_with( incoming=hidden1.return_value, name='mock2') assert nn.layers_['mock2'] is hidden2.return_value output.assert_called_with( incoming=hidden2.return_value, name='output') assert out is nn.layers_['output'] def test_initialization_legacy(self, NeuralNet): input = Mock(__name__='InputLayer', __bases__=(InputLayer,)) hidden1, hidden2, output = [ Mock(__name__='MockLayer', __bases__=(Layer,)) for i in range(3)] nn = NeuralNet( layers=[ ('input', input), ('hidden1', hidden1), ('hidden2', hidden2), ('output', output), ], input_shape=(10, 10), hidden1_some='param', ) out = nn.initialize_layers(nn.layers) input.assert_called_with( name='input', shape=(10, 10)) assert nn.layers_['input'] is input.return_value hidden1.assert_called_with( incoming=input.return_value, name='hidden1', some='param') assert nn.layers_['hidden1'] is hidden1.return_value hidden2.assert_called_with( incoming=hidden1.return_value, name='hidden2') assert nn.layers_['hidden2'] is hidden2.return_value output.assert_called_with( incoming=hidden2.return_value, name='output') assert out is nn.layers_['output'] def test_diamond(self, NeuralNet): input = Mock(__name__='InputLayer', __bases__=(InputLayer,)) hidden1, hidden2, concat, output = [ Mock(__name__='MockLayer', __bases__=(Layer,)) for i in range(4)] nn = NeuralNet( layers=[ ('input', input), ('hidden1', hidden1), ('hidden2', hidden2), ('concat', concat), ('output', output), ], input_shape=(10, 10), hidden2_incoming='input', concat_incomings=['hidden1', 'hidden2'], ) nn.initialize_layers(nn.layers) input.assert_called_with(name='input', shape=(10, 10)) hidden1.assert_called_with(incoming=input.return_value, name='hidden1') hidden2.assert_called_with(incoming=input.return_value, name='hidden2') concat.assert_called_with( incomings=[hidden1.return_value, hidden2.return_value], name='concat' ) output.assert_called_with(incoming=concat.return_value, name='output') class TestCheckGoodInput: @pytest.fixture def check_good_input(self, nn): return nn._check_good_input @pytest.fixture def X(self): return np.arange(100).reshape(10, 10).astype(floatX) @pytest.fixture def y(self): return np.arange(10).astype(np.int32) @pytest.fixture def y_regr(self): return np.arange(10).reshape(-1, 1).astype(floatX) def test_X_OK(self, check_good_input, X): assert check_good_input(X) == (X, None) def test_X_and_y_OK(self, check_good_input, X, y): assert check_good_input(X, y) == (X, y) def test_X_and_y_OK_regression(self, nn, check_good_input, X, y_regr): nn.regression = True assert check_good_input(X, y_regr) == (X, y_regr) def test_X_and_y_length_mismatch(self, check_good_input, X, y): with pytest.raises(ValueError): check_good_input( X[:9], y ) def test_X_dict_and_y_length_mismatch(self, check_good_input, X, y): with pytest.raises(ValueError): check_good_input( {'one': X, 'two': X}, y[:9], ) def test_X_dict_length_mismatch(self, check_good_input, X): with pytest.raises(ValueError): check_good_input({ 'one': X, 'two': X[:9], }) def test_y_regression_1dim(self, nn, check_good_input, X, y_regr): y = y_regr.reshape(-1) nn.regression = True X1, y1 = check_good_input(X, y) assert (X1 == X).all() assert (y1 == y.reshape(-1, 1)).all() def test_y_regression_2dim(self, nn, check_good_input, X, y_regr): y = y_regr nn.regression = True X1, y1 = check_good_input(X, y) assert (X1 == X).all() assert (y1 == y).all() class TestMultiInputFunctional: @pytest.fixture(scope='session') def net(self, NeuralNet): return NeuralNet( layers=[ (InputLayer, {'name': 'input1', 'shape': (None, 392)}), (DenseLayer, {'name': 'hidden1', 'num_units': 98}), (InputLayer, {'name': 'input2', 'shape': (None, 392)}), (DenseLayer, {'name': 'hidden2', 'num_units': 98}), (ConcatLayer, {'incomings': ['hidden1', 'hidden2']}), (DenseLayer, {'name': 'hidden3', 'num_units': 98}), (DenseLayer, {'name': 'output', 'num_units': 10, 'nonlinearity': softmax}), ], update=nesterov_momentum, update_learning_rate=0.01, update_momentum=0.9, max_epochs=2, verbose=4, ) @pytest.fixture(scope='session') def net_fitted(self, net, mnist): X, y = mnist X_train, y_train = X[:10000], y[:10000] X_train1, X_train2 = X_train[:, :392], X_train[:, 392:] return net.fit({'input1': X_train1, 'input2': X_train2}, y_train) @pytest.fixture(scope='session') def y_pred(self, net_fitted, mnist): X, y = mnist X_test = X[60000:] X_test1, X_test2 = X_test[:, :392], X_test[:, 392:] return net_fitted.predict({'input1': X_test1, 'input2': X_test2}) def test_accuracy(self, net_fitted, mnist, y_pred): X, y = mnist y_test = y[60000:] assert accuracy_score(y_pred, y_test) > 0.85
mit
NixaSoftware/CVis
venv/lib/python2.7/site-packages/pandas/tests/io/msgpack/test_seq.py
14
1171
# coding: utf-8 import io import pandas.io.msgpack as msgpack binarydata = bytes(bytearray(range(256))) def gen_binary_data(idx): return binarydata[:idx % 300] def test_exceeding_unpacker_read_size(): dumpf = io.BytesIO() packer = msgpack.Packer() NUMBER_OF_STRINGS = 6 read_size = 16 # 5 ok for read_size=16, while 6 glibc detected *** python: double free or # corruption (fasttop): # 20 ok for read_size=256, while 25 segfaults / glibc detected *** python: # double free or corruption (!prev) # 40 ok for read_size=1024, while 50 introduces errors # 7000 ok for read_size=1024*1024, while 8000 leads to glibc detected *** # python: double free or corruption (!prev): for idx in range(NUMBER_OF_STRINGS): data = gen_binary_data(idx) dumpf.write(packer.pack(data)) f = io.BytesIO(dumpf.getvalue()) dumpf.close() unpacker = msgpack.Unpacker(f, read_size=read_size, use_list=1) read_count = 0 for idx, o in enumerate(unpacker): assert type(o) == bytes assert o == gen_binary_data(idx) read_count += 1 assert read_count == NUMBER_OF_STRINGS
apache-2.0
victorbergelin/scikit-learn
benchmarks/bench_plot_fastkmeans.py
294
4676
from __future__ import print_function from collections import defaultdict from time import time import numpy as np from numpy import random as nr from sklearn.cluster.k_means_ import KMeans, MiniBatchKMeans def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) chunk = 100 max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() data = nr.random_integers(-50, 50, (n_samples, n_features)) print('K-Means') tstart = time() kmeans = KMeans(init='k-means++', n_clusters=10).fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.5f" % kmeans.inertia_) print() results['kmeans_speed'].append(delta) results['kmeans_quality'].append(kmeans.inertia_) print('Fast K-Means') # let's prepare the data in small chunks mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=10, batch_size=chunk) tstart = time() mbkmeans.fit(data) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %f" % mbkmeans.inertia_) print() print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results def compute_bench_2(chunks): results = defaultdict(lambda: []) n_features = 50000 means = np.array([[1, 1], [-1, -1], [1, -1], [-1, 1], [0.5, 0.5], [0.75, -0.5], [-1, 0.75], [1, 0]]) X = np.empty((0, 2)) for i in range(8): X = np.r_[X, means[i] + 0.8 * np.random.randn(n_features, 2)] max_it = len(chunks) it = 0 for chunk in chunks: it += 1 print('==============================') print('Iteration %03d of %03d' % (it, max_it)) print('==============================') print() print('Fast K-Means') tstart = time() mbkmeans = MiniBatchKMeans(init='k-means++', n_clusters=8, batch_size=chunk) mbkmeans.fit(X) delta = time() - tstart print("Speed: %0.3fs" % delta) print("Inertia: %0.3fs" % mbkmeans.inertia_) print() results['MiniBatchKMeans Speed'].append(delta) results['MiniBatchKMeans Quality'].append(mbkmeans.inertia_) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(50, 150, 5).astype(np.int) features_range = np.linspace(150, 50000, 5).astype(np.int) chunks = np.linspace(500, 10000, 15).astype(np.int) results = compute_bench(samples_range, features_range) results_2 = compute_bench_2(chunks) max_time = max([max(i) for i in [t for (label, t) in results.iteritems() if "speed" in label]]) max_inertia = max([max(i) for i in [ t for (label, t) in results.iteritems() if "speed" not in label]]) fig = plt.figure('scikit-learn K-Means benchmark results') for c, (label, timings) in zip('brcy', sorted(results.iteritems())): if 'speed' in label: ax = fig.add_subplot(2, 2, 1, projection='3d') ax.set_zlim3d(0.0, max_time * 1.1) else: ax = fig.add_subplot(2, 2, 2, projection='3d') ax.set_zlim3d(0.0, max_inertia * 1.1) X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.5) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') i = 0 for c, (label, timings) in zip('br', sorted(results_2.iteritems())): i += 1 ax = fig.add_subplot(2, 2, i + 2) y = np.asarray(timings) ax.plot(chunks, y, color=c, alpha=0.8) ax.set_xlabel('Chunks') ax.set_ylabel(label) plt.show()
bsd-3-clause
jbonaiuto/perceptual-choice-hysteresis
src/python/perceptchoice/model/utils.py
1
3691
from brian import second, ms, hertz from matplotlib.patches import Rectangle from matplotlib.pyplot import figure, subplot, ylim, legend, ylabel, title, xlabel import numpy as np def get_response_time(e_firing_rates, stim_start_time, stim_end_time, upper_threshold=60, threshold_diff=None, dt=.1*ms): rate_1=e_firing_rates[0] rate_2=e_firing_rates[1] times=np.array(range(len(rate_1)))*(dt/second) rt=None decision_idx=-1 for idx,time in enumerate(times): time=time*second if stim_start_time < time < stim_end_time: if rt is None: if rate_1[idx]>=upper_threshold and (threshold_diff is None or rate_1[idx]-rate_2[idx]>=threshold_diff): decision_idx=0 rt=(time-stim_start_time)/ms break elif rate_2[idx]>=upper_threshold and (threshold_diff is None or rate_2[idx]-rate_1[idx]>=threshold_diff): decision_idx=1 rt=(time-stim_start_time)/ms break return rt,decision_idx def plot_network_firing_rates(e_rates, sim_params, network_params, std_e_rates=None, i_rate=None, std_i_rate=None, plt_title=None, labels=None, ax=None): rt, choice = get_response_time(e_rates, sim_params.stim_start_time, sim_params.stim_end_time, upper_threshold = network_params.resp_threshold, dt = sim_params.dt) if ax is None: figure() max_rates=[network_params.resp_threshold] if i_rate is not None: max_rates.append(np.max(i_rate[500:])) for i in range(network_params.num_groups): max_rates.append(np.max(e_rates[i,500:])) max_rate=np.max(max_rates) if i_rate is not None: ax=subplot(211) elif ax is None: ax=subplot(111) rect=Rectangle((0,0),(sim_params.stim_end_time-sim_params.stim_start_time)/ms, max_rate+5, alpha=0.25, facecolor='yellow', edgecolor='none') ax.add_patch(rect) for idx in range(network_params.num_groups): label='e %d' % idx if labels is not None: label=labels[idx] time_ticks=(np.array(range(e_rates.shape[1]))*sim_params.dt)/ms-sim_params.stim_start_time/ms baseline,=ax.plot(time_ticks, e_rates[idx,:], label=label) if std_e_rates is not None: ax.fill_between(time_ticks, e_rates[idx,:]-std_e_rates[idx,:], e_rates[idx,:]+std_e_rates[idx,:], alpha=0.5, facecolor=baseline.get_color()) ylim(0,max_rate+5) ax.plot([0-sim_params.stim_start_time/ms, (sim_params.trial_duration-sim_params.stim_start_time)/ms], [network_params.resp_threshold/hertz, network_params.resp_threshold/hertz], 'k--') ax.plot([rt,rt],[0, max_rate+5],'k--') legend(loc='best') ylabel('Firing rate (Hz)') if plt_title is not None: title(plt_title) if i_rate is not None: ax=subplot(212) rect=Rectangle((0,0),(sim_params.stim_end_time-sim_params.stim_start_time)/ms, max_rate+5, alpha=0.25, facecolor='yellow', edgecolor='none') ax.add_patch(rect) label='i' if labels is not None: label=labels[network_params.num_groups] time_ticks=(np.array(range(len(i_rate)))*sim_params.dt)/ms-sim_params.stim_start_time/ms baseline,=ax.plot(time_ticks, i_rate, label=label) if std_i_rate is not None: ax.fill_between(time_ticks, i_rate-std_i_rate, i_rate+std_i_rate, alpha=0.5, facecolor=baseline.get_color()) ylim(0,max_rate+5) ax.plot([rt,rt],[0, max_rate],'k--') ylabel('Firing rate (Hz)') xlabel('Time (ms)')
gpl-3.0
alfonsokim/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/units.py
70
4810
""" The classes here provide support for using custom classes with matplotlib, eg those that do not expose the array interface but know how to converter themselves to arrays. It also supoprts classes with units and units conversion. Use cases include converters for custom objects, eg a list of datetime objects, as well as for objects that are unit aware. We don't assume any particular units implementation, rather a units implementation must provide a ConversionInterface, and the register with the Registry converter dictionary. For example, here is a complete implementation which support plotting with native datetime objects import matplotlib.units as units import matplotlib.dates as dates import matplotlib.ticker as ticker import datetime class DateConverter(units.ConversionInterface): def convert(value, unit): 'convert value to a scalar or array' return dates.date2num(value) convert = staticmethod(convert) def axisinfo(unit): 'return major and minor tick locators and formatters' if unit!='date': return None majloc = dates.AutoDateLocator() majfmt = dates.AutoDateFormatter(majloc) return AxisInfo(majloc=majloc, majfmt=majfmt, label='date') axisinfo = staticmethod(axisinfo) def default_units(x): 'return the default unit for x or None' return 'date' default_units = staticmethod(default_units) # finally we register our object type with a converter units.registry[datetime.date] = DateConverter() """ import numpy as np from matplotlib.cbook import iterable, is_numlike class AxisInfo: 'information to support default axis labeling and tick labeling' def __init__(self, majloc=None, minloc=None, majfmt=None, minfmt=None, label=None): """ majloc and minloc: TickLocators for the major and minor ticks majfmt and minfmt: TickFormatters for the major and minor ticks label: the default axis label If any of the above are None, the axis will simply use the default """ self.majloc = majloc self.minloc = minloc self.majfmt = majfmt self.minfmt = minfmt self.label = label class ConversionInterface: """ The minimal interface for a converter to take custom instances (or sequences) and convert them to values mpl can use """ def axisinfo(unit): 'return an units.AxisInfo instance for unit' return None axisinfo = staticmethod(axisinfo) def default_units(x): 'return the default unit for x or None' return None default_units = staticmethod(default_units) def convert(obj, unit): """ convert obj using unit. If obj is a sequence, return the converted sequence. The ouput must be a sequence of scalars that can be used by the numpy array layer """ return obj convert = staticmethod(convert) def is_numlike(x): """ The matplotlib datalim, autoscaling, locators etc work with scalars which are the units converted to floats given the current unit. The converter may be passed these floats, or arrays of them, even when units are set. Derived conversion interfaces may opt to pass plain-ol unitless numbers through the conversion interface and this is a helper function for them. """ if iterable(x): for thisx in x: return is_numlike(thisx) else: return is_numlike(x) is_numlike = staticmethod(is_numlike) class Registry(dict): """ register types with conversion interface """ def __init__(self): dict.__init__(self) self._cached = {} def get_converter(self, x): 'get the converter interface instance for x, or None' if not len(self): return None # nothing registered #DISABLED idx = id(x) #DISABLED cached = self._cached.get(idx) #DISABLED if cached is not None: return cached converter = None classx = getattr(x, '__class__', None) if classx is not None: converter = self.get(classx) if converter is None and iterable(x): # if this is anything but an object array, we'll assume # there are no custom units if isinstance(x, np.ndarray) and x.dtype != np.object: return None for thisx in x: converter = self.get_converter( thisx ) return converter #DISABLED self._cached[idx] = converter return converter registry = Registry()
agpl-3.0
poojavade/Genomics_Docker
Dockerfiles/gedlab-khmer-filter-abund/pymodules/python2.7/lib/python/statsmodels-0.5.0-py2.7-linux-x86_64.egg/statsmodels/examples/ex_kernel_regression2.py
3
1470
# -*- coding: utf-8 -*- """ Created on Wed Jan 02 13:43:44 2013 Author: Josef Perktold """ import numpy as np import numpy.testing as npt import statsmodels.nonparametric.api as nparam if __name__ == '__main__': np.random.seed(500) nobs = [250, 1000][0] sig_fac = 1 x = np.random.uniform(-2, 2, size=nobs) x.sort() y_true = np.sin(x*5)/x + 2*x y = y_true + sig_fac * (np.sqrt(np.abs(3+x))) * np.random.normal(size=nobs) model = nparam.KernelReg(endog=[y], exog=[x], reg_type='lc', var_type='c', bw='cv_ls', defaults=nparam.EstimatorSettings(efficient=True)) sm_bw = model.bw sm_mean, sm_mfx = model.fit() model1 = nparam.KernelReg(endog=[y], exog=[x], reg_type='lc', var_type='c', bw='cv_ls') mean1, mfx1 = model1.fit() model2 = nparam.KernelReg(endog=[y], exog=[x], reg_type='ll', var_type='c', bw='cv_ls') mean2, mfx2 = model2.fit() print model.bw print model1.bw print model2.bw import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(x, y, 'o', alpha=0.5) ax.plot(x, y_true, lw=2, label='DGP mean') ax.plot(x, sm_mean, lw=2, label='kernel mean') ax.plot(x, mean2, lw=2, label='kernel mean') ax.legend() plt.show()
apache-2.0
IshankGulati/scikit-learn
examples/model_selection/plot_validation_curve.py
141
1931
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show()
bsd-3-clause
shyamalschandra/scikit-learn
examples/linear_model/plot_logistic_path.py
349
1195
#!/usr/bin/env python """ ================================= Path with L1- Logistic Regression ================================= Computes path on IRIS dataset. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets from sklearn.svm import l1_min_c iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X -= np.mean(X, 0) ############################################################################### # Demo path functions cs = l1_min_c(X, y, loss='log') * np.logspace(0, 3) print("Computing regularization path ...") start = datetime.now() clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) print("This took ", datetime.now() - start) coefs_ = np.array(coefs_) plt.plot(np.log10(cs), coefs_) ymin, ymax = plt.ylim() plt.xlabel('log(C)') plt.ylabel('Coefficients') plt.title('Logistic Regression Path') plt.axis('tight') plt.show()
bsd-3-clause
devanshdalal/scikit-learn
sklearn/ensemble/forest.py
8
67993
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest .. versionadded:: 0.18 Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start or not hasattr(self, "estimators_"): # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False, random_state=random_state) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'estimators_') all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('balanced', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight != 'balanced_subsample' or not self.bootstrap): if self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, its dtype will be converted to ``dtype=np.float32``. If a sparse matrix is provided, it will be converted into a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ check_is_fitted(self, 'estimators_') # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. Notes ----- The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. Notes ----- The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data, ``max_features=n_features`` and ``bootstrap=False``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ X = check_array(X, accept_sparse=['csc']) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
bsd-3-clause
zorojean/scikit-learn
examples/cluster/plot_cluster_comparison.py
246
4684
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example aims at showing characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this behavior. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler np.random.seed(0) # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'SpectralClustering', 'Ward', 'AgglomerativeClustering', 'DBSCAN', 'Birch'] plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 datasets = [noisy_circles, noisy_moons, blobs, no_structure] for i_dataset, dataset in enumerate(datasets): X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=2) ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.2) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=2, connectivity=connectivity) birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ two_means, affinity_propagation, ms, spectral, ward, average_linkage, dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
bsd-3-clause
gfyoung/pandas
pandas/tests/resample/test_base.py
2
7259
from datetime import datetime import numpy as np import pytest from pandas import DataFrame, Series import pandas._testing as tm from pandas.core.groupby.groupby import DataError from pandas.core.groupby.grouper import Grouper from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import period_range from pandas.core.indexes.timedeltas import timedelta_range from pandas.core.resample import _asfreq_compat # a fixture value can be overridden by the test parameter value. Note that the # value of the fixture can be overridden this way even if the test doesn't use # it directly (doesn't mention it in the function prototype). # see https://docs.pytest.org/en/latest/fixture.html#override-a-fixture-with-direct-test-parametrization # noqa # in this module we override the fixture values defined in conftest.py # tuples of '_index_factory,_series_name,_index_start,_index_end' DATE_RANGE = (date_range, "dti", datetime(2005, 1, 1), datetime(2005, 1, 10)) PERIOD_RANGE = (period_range, "pi", datetime(2005, 1, 1), datetime(2005, 1, 10)) TIMEDELTA_RANGE = (timedelta_range, "tdi", "1 day", "10 day") all_ts = pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, PERIOD_RANGE, TIMEDELTA_RANGE], ) @pytest.fixture def create_index(_index_factory): def _create_index(*args, **kwargs): """ return the _index_factory created using the args, kwargs """ return _index_factory(*args, **kwargs) return _create_index @pytest.mark.parametrize("freq", ["2D", "1H"]) @pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE] ) def test_asfreq(series_and_frame, freq, create_index): obj = series_and_frame result = obj.resample(freq).asfreq() new_index = create_index(obj.index[0], obj.index[-1], freq=freq) expected = obj.reindex(new_index) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE] ) def test_asfreq_fill_value(series, create_index): # test for fill value during resampling, issue 3715 s = series result = s.resample("1H").asfreq() new_index = create_index(s.index[0], s.index[-1], freq="1H") expected = s.reindex(new_index) tm.assert_series_equal(result, expected) frame = s.to_frame("value") frame.iloc[1] = None result = frame.resample("1H").asfreq(fill_value=4.0) new_index = create_index(frame.index[0], frame.index[-1], freq="1H") expected = frame.reindex(new_index, fill_value=4.0) tm.assert_frame_equal(result, expected) @all_ts def test_resample_interpolate(frame): # # 12925 df = frame tm.assert_frame_equal( df.resample("1T").asfreq().interpolate(), df.resample("1T").interpolate() ) def test_raises_on_non_datetimelike_index(): # this is a non datetimelike index xp = DataFrame() msg = ( "Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, " "but got an instance of 'Index'" ) with pytest.raises(TypeError, match=msg): xp.resample("A").mean() @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_empty_series(freq, empty_series_dti, resample_method): # GH12771 & GH12868 if resample_method == "ohlc": pytest.skip("need to test for ohlc from GH13083") s = empty_series_dti result = getattr(s.resample(freq), resample_method)() expected = s.copy() expected.index = _asfreq_compat(s.index, freq) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq tm.assert_series_equal(result, expected, check_dtype=False) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) @pytest.mark.parametrize("resample_method", ["count", "size"]) def test_resample_count_empty_series(freq, empty_series_dti, resample_method): # GH28427 result = getattr(empty_series_dti.resample(freq), resample_method)() index = _asfreq_compat(empty_series_dti.index, freq) expected = Series([], dtype="int64", index=index, name=empty_series_dti.name) tm.assert_series_equal(result, expected) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_empty_dataframe(empty_frame_dti, freq, resample_method): # GH13212 df = empty_frame_dti # count retains dimensions too result = getattr(df.resample(freq), resample_method)() if resample_method != "size": expected = df.copy() else: # GH14962 expected = Series([], dtype=object) expected.index = _asfreq_compat(df.index, freq) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq tm.assert_almost_equal(result, expected, check_dtype=False) # test size for GH13212 (currently stays as df) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_count_empty_dataframe(freq, empty_frame_dti): # GH28427 empty_frame_dti["a"] = [] result = empty_frame_dti.resample(freq).count() index = _asfreq_compat(empty_frame_dti.index, freq) expected = DataFrame({"a": []}, dtype="int64", index=index) tm.assert_frame_equal(result, expected) @all_ts @pytest.mark.parametrize("freq", ["M", "D", "H"]) def test_resample_size_empty_dataframe(freq, empty_frame_dti): # GH28427 empty_frame_dti["a"] = [] result = empty_frame_dti.resample(freq).size() index = _asfreq_compat(empty_frame_dti.index, freq) expected = Series([], dtype="int64", index=index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("index", tm.all_timeseries_index_generator(0)) @pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"]) def test_resample_empty_dtypes(index, dtype, resample_method): # Empty series were sometimes causing a segfault (for the functions # with Cython bounds-checking disabled) or an IndexError. We just run # them to ensure they no longer do. (GH #10228) empty_series_dti = Series([], index, dtype) try: getattr(empty_series_dti.resample("d"), resample_method)() except DataError: # Ignore these since some combinations are invalid # (ex: doing mean with dtype of np.object) pass @all_ts def test_apply_to_empty_series(empty_series_dti): # GH 14313 s = empty_series_dti for freq in ["M", "D", "H"]: result = s.resample(freq).apply(lambda x: 1) expected = s.resample(freq).apply(np.sum) tm.assert_series_equal(result, expected, check_dtype=False) @all_ts def test_resampler_is_iterable(series): # GH 15314 freq = "H" tg = Grouper(freq=freq, convention="start") grouped = series.groupby(tg) resampled = series.resample(freq) for (rk, rv), (gk, gv) in zip(resampled, grouped): assert rk == gk tm.assert_series_equal(rv, gv) @all_ts def test_resample_quantile(series): # GH 15023 s = series q = 0.75 freq = "H" result = s.resample(freq).quantile(q) expected = s.resample(freq).agg(lambda x: x.quantile(q)).rename(s.name) tm.assert_series_equal(result, expected)
bsd-3-clause
JeffRoy/mi-dataset
utils/parse_file.py
3
6615
#!/usr/bin/env python import importlib import json import os from functools import wraps import click as click import datetime import pandas as pd import xarray as xr import numpy as np from mi.core.log import get_logger, LoggerManager try: import cPickle as pickle except ImportError: import pickle lm = LoggerManager() log = get_logger() base_path = os.path.dirname(os.path.dirname(__file__)) class StopWatch(object): """ Easily measure elapsed time """ def __init__(self, message=None): self.start_time = datetime.datetime.now() self.message = message def __repr__(self): stop = datetime.datetime.now() r = str(stop - self.start_time) if self.message: return self.message + ' ' + r return r def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): log.info(self) def monkey_patch_particles(): """ Monkey patch DataParticle.generate to skip the JSON-encoding :return: """ log.info('Monkey patching DataParticle.generate') import mi.core.instrument.data_particle def _generate(self, sorted=False): return self.generate_dict() mi.core.instrument.data_particle.DataParticle.generate = _generate def log_timing(func): """ Decorator which will log the time elapsed while executing a function call :param func: function to be wrapped :return: wrapped function """ @wraps(func) def inner(*args, **kwargs): with StopWatch('Function %s took:' % func): return func(*args, **kwargs) return inner class ParticleHandler(object): """ Particle handler which flattens all data particle "values" lists to key: value pairs in the parent dictionary Also contains a method to output the particle data as a dictionary of pandas dataframes """ def __init__(self, output_path=None, formatter=None): self.samples = {} self.failure = False if output_path is None: output_path = os.getcwd() self.output_path = output_path self.formatter = formatter self.check_output_path() def check_output_path(self): op = self.output_path if os.path.isdir(op): return if os.path.isfile(op): raise OSError('output path is a file!') else: os.makedirs(op) @staticmethod def flatten(sample): values = sample.pop('values') for each in values: sample[each['value_id']] = each['value'] return sample def addParticleSample(self, sample_type, sample): sample = self.flatten(sample) self.samples.setdefault(sample_type, []).append(sample) def setParticleDataCaptureFailure(self): self.failure = True @log_timing def to_dataframes(self): data_frames = {} for particle_type in self.samples: data_frames[particle_type] = self.fix_arrays(pd.DataFrame(self.samples[particle_type])) return data_frames def to_datasets(self): datasets = {} for particle_type in self.samples: datasets[particle_type] = self.fix_arrays(pd.DataFrame(self.samples[particle_type]), return_as_xr=True) return datasets @staticmethod @log_timing def fix_arrays(data_frame, return_as_xr=False): # round-trip the dataframe through xray to get the multidimensional indexing correct new_ds = xr.Dataset() for each in data_frame: if data_frame[each].dtype == 'object' and isinstance(data_frame[each].values[0], list): data = np.array([np.array(x) for x in data_frame[each].values]) new_ds[each] = xr.DataArray(data) else: new_ds[each] = data_frame[each] if return_as_xr: return new_ds return new_ds.to_dataframe() @log_timing def to_csv(self): dataframes = self.to_dataframes() for particle_type in dataframes: file_path = os.path.join(self.output_path, '%s.csv' % particle_type) dataframes[particle_type].to_csv(file_path) @log_timing def to_json(self): for particle_type in self.samples: file_path = os.path.join(self.output_path, '%s.json' % particle_type) with open(file_path, 'w') as fh: json.dump(self.samples[particle_type], fh) @log_timing def to_pd_pickle(self): dataframes = self.to_dataframes() for particle_type in dataframes: file_path = os.path.join(self.output_path, '%s.pd' % particle_type) with open(file_path, 'w') as fh: pickle.dump(dataframes[particle_type], fh, protocol=-1) @log_timing def to_xr_pickle(self): datasets = self.to_datasets() for particle_type in datasets: file_path = os.path.join(self.output_path, '%s.xr' % particle_type) with open(file_path, 'w') as fh: pickle.dump(datasets[particle_type], fh, protocol=-1) def write(self): option_map = { 'csv': self.to_csv, 'json': self.to_json, 'pd-pickle': self.to_pd_pickle, 'xr-pickle': self.to_xr_pickle } formatter = option_map[self.formatter] formatter() def find_driver(driver_string): try: return importlib.import_module(driver_string) except ImportError: if os.sep in driver_string: driver_string = driver_string.replace('.py', '') driver_string = driver_string.replace(os.sep, '.') return importlib.import_module(driver_string) raise Exception('Unable to locate driver: %r', driver_string) def run(driver, files, fmt, out): monkey_patch_particles() log.info('Importing driver: %s', driver) module = find_driver(driver) particle_handler = ParticleHandler(output_path=out, formatter=fmt) for file_path in files: log.info('Begin parsing: %s', file_path) with StopWatch('Parsing file: %s took' % file_path): module.parse(base_path, file_path, particle_handler) particle_handler.write() @click.command() @click.option('--fmt', type=click.Choice(['csv', 'json', 'pd-pickle', 'xr-pickle']), default='csv') @click.option('--out', type=click.Path(exists=False), default=None) @click.argument('driver', nargs=1) @click.argument('files', nargs=-1, type=click.Path(exists=True)) def main(driver, files, fmt, out): run(driver, files, fmt, out) if __name__ == '__main__': main()
bsd-2-clause
jgomezdans/sampyl
examples/slice_sample.py
2
1708
import sys sys.path.append('.') import sampyl as smp from sampyl.state import State from sampyl import np from sampyl.diagnostics import diagnostics import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import seaborn as sns # correlated gaussian log likelihood def logp(x, y): icov = np.linalg.inv(np.array([[1., .8], [.8, 1.]])) d = np.array([x, y]) return -.5 * np.dot(np.dot(d, icov), d) logp_xy = lambda(th): logp(th[0], th[1]) # compare slice samplers, metropolis hastings, and the two variable # slice sampler ssamp = smp.Slice(logp, start={'x': 4., 'y': 4.} ) slice_trace = ssamp.sample(1000) met = smp.Metropolis(logp, start={'x': 4., 'y': 4.}) met_trace = met.sample(1000) bslice = smp.Slice(logp_xy, start={'th': np.array([4., 4.])}) btrace = bslice.sample(1000) # compute effective sample size based on autocorrelation slice_eff = diagnostics.compute_n_eff_acf(slice_trace.x) met_eff = diagnostics.compute_n_eff_acf(met_trace.x) b_eff = diagnostics.compute_n_eff_acf(btrace.th[:,0]) print "Slice effective sample size: %2.2f"%slice_eff print "MH effective sample size: %2.2f"%met_eff print "two var slice effective sample size: %2.2f"%b_eff print " ----- " print "Slice sampler evals per sample: ", ssamp.evals_per_sample # graphically compare samples fig, axarr = plt.subplots(1, 3, figsize=(12,4)) axarr[0].scatter(slice_trace.x, slice_trace.y) axarr[0].set_title("Slice samples") axarr[1].scatter(met_trace.x, met_trace.y) axarr[1].set_title("MH samples") axarr[2].scatter(btrace.th[:,0], btrace.th[:,1]) axarr[2].set_title("Two var Slice samples") for ax in axarr: ax.set_xlim((-4, 4)) ax.set_ylim((-4, 4)) plt.show()
apache-2.0
tboch/mocpy
mocpy/moc/moc.py
1
35073
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import numpy as np from urllib.parse import urlencode from io import BytesIO from astropy.utils.data import download_file from astropy import units as u from astropy.io import fits from astropy.coordinates import ICRS, Galactic, BaseCoordinateFrame from astropy.coordinates import SkyCoord, Angle from astropy import wcs import cdshealpix try: from astropy_healpix import HEALPix except ImportError: pass from ..abstract_moc import AbstractMOC from ..interval_set import IntervalSet from .. import core from .boundaries import Boundaries from .plot import fill, border __author__ = "Thomas Boch, Matthieu Baumann" __copyright__ = "CDS, Centre de Données astronomiques de Strasbourg" __license__ = "BSD 3-Clause License" __email__ = "[email protected], [email protected]" class MOC(AbstractMOC): """ Multi-order spatial coverage class. A MOC describes the coverage of an arbitrary region on the unit sphere. MOCs are usually used for describing the global coverage of catalog/image surveys such as GALEX or SDSS. A MOC corresponds to a list of `HEALPix <https://healpix.sourceforge.io/>`__ cells at different depths. This class gives you the possibility to: 1. Define `~mocpy.moc.MOC` objects: - From a FITS file that stores HEALPix cells (see `from_fits`). - Directly from a list of HEALPix cells expressed either as a numpy structural array (see `from_healpix_cells`) or a simple python dictionnary (see `from_json`). - From a list of sky coordinates (see `from_skycoords`, `from_lonlat`). - From a convex/concave polygon (see `from_polygon`). - From a cone (will be implemented in a next version). 2. Perform fast logical operations between `~mocpy.moc.MOC` objects: - The `intersection` - The `union` - The `difference` - The `complement` 3. Plot the `~mocpy.moc.MOC` objects: - Draw the MOC with its HEALPix cells (see `fill`) - Draw the perimeter of a MOC (see `border`) 4. Get the sky coordinates defining the border(s) of `~mocpy.moc.MOC` objects (see `get_boundaries`). 5. Serialize `~mocpy.moc.MOC` objects to `astropy.io.fits.HDUList` or JSON dictionary and save it to a file. """ def __init__(self, interval_set=None): super(MOC, self).__init__(interval_set) def contains(self, ra, dec, keep_inside=True): """ Returns a boolean mask array of the positions lying inside (or outside) the MOC instance. Parameters ---------- ra : `astropy.units.Quantity` Right ascension array dec : `astropy.units.Quantity` Declination array keep_inside : bool, optional True by default. If so the mask describes coordinates lying inside the MOC. If ``keep_inside`` is false, contains will return the mask of the coordinates lying outside the MOC. Returns ------- array : `~np.ndarray` A mask boolean array """ max_depth = self.max_order m = np.zeros(3 << (2*(max_depth + 1)), dtype=bool) pix_id = core.flatten_pixels(self._interval_set._intervals, max_depth) m[pix_id] = True if not keep_inside: m = np.logical_not(m) pix = cdshealpix.lonlat_to_healpix(ra, dec, max_depth) return m[pix] def add_neighbours(self): """ Extends the MOC instance so that it includes the HEALPix cells touching its border. The depth of the HEALPix cells added at the border is equal to the maximum depth of the MOC instance. Returns ------- moc : `~mocpy.moc.MOC` self extended by one degree of neighbours. """ max_depth = self.max_order # Get the pixels array of the MOC at the its max order. ipix = core.flatten_pixels(self._interval_set._intervals, max_depth) # Get the HEALPix array containing the neighbors of ``ipix``. # This array "extends" ``ipix`` by one degree of neighbors. ipix_extended = cdshealpix.neighbours(ipix, max_depth) ipix_extended = ipix_extended[ipix_extended >= 0] ipix_extended = ipix_extended.astype(np.uint64) # Compute the difference between ``extend_ipix`` and ``ipix`` to get only the neighboring pixels # located at the border of the MOC. ipix_neighbors = np.setdiff1d(ipix_extended, ipix) depth_neighbors = np.full(shape=ipix_neighbors.shape, fill_value=max_depth, dtype=np.int8) #intervals_neighbors = core.from_healpix_cells(ipix_neighbors, depth_neighbors) moc_neighbors = MOC.from_healpix_cells(ipix_neighbors, depth_neighbors) # This array of HEALPix neighbors are added to the MOC to get an ``extended`` MOC #self._interval_set._intervals = core.coverage_union(self._interval_set._intervals, moc_neighbors._interval_set._intervals) final = self.union(moc_neighbors) self._interval_set = final._interval_set return self def remove_neighbours(self): """ Removes from the MOC instance the HEALPix cells located at its border. The depth of the HEALPix cells removed is equal to the maximum depth of the MOC instance. Returns ------- moc : `~mocpy.moc.MOC` self minus its HEALPix cells located at its border. """ max_depth = self.max_order # Get the HEALPix cells of the MOC at its max depth ipix = core.flatten_pixels(self._interval_set._intervals, max_depth) # Get the HEALPix array containing the neighbors of ``ipix``. # This array "extends" ``ipix`` by one degree of neighbors. ipix_extended = cdshealpix.neighbours(ipix, max_depth) ipix_extended = ipix_extended[ipix_extended >= 0] ipix_extended = ipix_extended.astype(np.uint64) # Get only the max depth HEALPix cells lying at the border of the MOC ipix_neighbors = np.setxor1d(ipix_extended, ipix) # Remove these pixels from ``ipix`` ipix_around_border = cdshealpix.neighbours(ipix_neighbors, max_depth) ipix_around_border = ipix_around_border[ipix_around_border >= 0] ipix_around_border = ipix_around_border.astype(np.uint64) final_ipix = np.setdiff1d(ipix, ipix_around_border) final_depth = np.full(shape=final_ipix.shape, fill_value=max_depth, dtype=np.int8) # Build the reduced MOC, i.e. MOC without its pixels which were located at its border. final = MOC.from_healpix_cells(final_ipix, final_depth) self._interval_set = final._interval_set return self def fill(self, ax, wcs, **kw_mpl_pathpatch): """ Draws the MOC on a matplotlib axis. This performs the projection of the cells from the world coordinate system to the pixel image coordinate system. You are able to specify various styling kwargs for `matplotlib.patches.PathPatch` (see the `list of valid keywords <https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch>`__). Parameters ---------- ax : `matplotlib.axes.Axes` Matplotlib axis. wcs : `astropy.wcs.WCS` WCS defining the World system <-> Image system projection. kw_mpl_pathpatch Plotting arguments for `matplotlib.patches.PathPatch`. Examples -------- >>> from mocpy import MOC, World2ScreenMPL >>> from astropy.coordinates import Angle, SkyCoord >>> import astropy.units as u >>> # Load a MOC, e.g. the MOC of GALEXGR6-AIS-FUV >>> filename = './../resources/P-GALEXGR6-AIS-FUV.fits' >>> moc = MOC.from_fits(filename) >>> # Plot the MOC using matplotlib >>> import matplotlib.pyplot as plt >>> fig = plt.figure(111, figsize=(15, 15)) >>> # Define a WCS as a context >>> with World2ScreenMPL(fig, ... fov=50 * u.deg, ... center=SkyCoord(0, 20, unit='deg', frame='icrs'), ... coordsys="icrs", ... rotation=Angle(0, u.degree), ... projection="AIT") as wcs: ... ax = fig.add_subplot(1, 1, 1, projection=wcs) ... # Call fill giving the matplotlib axe and the `~astropy.wcs.WCS` object. ... # We will set the matplotlib keyword linewidth to 0 so that it does not plot ... # the border of each HEALPix cell. ... # The color can also be specified along with an alpha value. ... moc.fill(ax=ax, wcs=wcs, linewidth=0, alpha=0.5, fill=True, color="green") >>> plt.xlabel('ra') >>> plt.ylabel('dec') >>> plt.grid(color="black", linestyle="dotted") """ fill.fill(self, ax, wcs, **kw_mpl_pathpatch) def border(self, ax, wcs, **kw_mpl_pathpatch): """ Draws the MOC border(s) on a matplotlib axis. This performs the projection of the sky coordinates defining the perimeter of the MOC to the pixel image coordinate system. You are able to specify various styling kwargs for `matplotlib.patches.PathPatch` (see the `list of valid keywords <https://matplotlib.org/api/_as_gen/matplotlib.patches.PathPatch.html#matplotlib.patches.PathPatch>`__). Parameters ---------- ax : `matplotlib.axes.Axes` Matplotlib axis. wcs : `astropy.wcs.WCS` WCS defining the World system <-> Image system projection. kw_mpl_pathpatch Plotting arguments for `matplotlib.patches.PathPatch` Examples -------- >>> from mocpy import MOC, World2ScreenMPL >>> from astropy.coordinates import Angle, SkyCoord >>> import astropy.units as u >>> # Load a MOC, e.g. the MOC of GALEXGR6-AIS-FUV >>> filename = './../resources/P-GALEXGR6-AIS-FUV.fits' >>> moc = MOC.from_fits(filename) >>> # Plot the MOC using matplotlib >>> import matplotlib.pyplot as plt >>> fig = plt.figure(111, figsize=(15, 15)) >>> # Define a WCS as a context >>> with World2ScreenMPL(fig, ... fov=50 * u.deg, ... center=SkyCoord(0, 20, unit='deg', frame='icrs'), ... coordsys="icrs", ... rotation=Angle(0, u.degree), ... projection="AIT") as wcs: ... ax = fig.add_subplot(1, 1, 1, projection=wcs) ... # Call border giving the matplotlib axe and the `~astropy.wcs.WCS` object. ... moc.border(ax=ax, wcs=wcs, alpha=0.5, color="red") >>> plt.xlabel('ra') >>> plt.ylabel('dec') >>> plt.grid(color="black", linestyle="dotted") """ border.border(self, ax, wcs, **kw_mpl_pathpatch) def get_boundaries(self, order=None): """ Returns the sky coordinates defining the border(s) of the MOC. The border(s) are expressed as a list of SkyCoord. Each SkyCoord refers to the coordinates of one border of the MOC (i.e. either a border of a connexe MOC part or a border of a hole located in a connexe MOC part). This function is currently not stable: encoding a vertice of a HEALPix cell (N, E, S, W) should not depend on the position of the vertice but rather on the uniq value (+ 2 bits to encode the direction of the vertice). Parameters ---------- order : int The depth of the MOC before computing its boundaries. A shallow depth leads to a faster computation. By default the maximum depth of the MOC is taken. Raises ------ DeprecationWarning This method is not stable and not tested! A future more stable algorithm will be implemented! Return ------ coords: [`~astropy.coordinates.SkyCoord`] A list of `~astropy.coordinates.SkyCoord` each describing one border. """ import warnings warnings.simplefilter('default') warnings.warn('This method is not stable. A future more stable algorithm will be implemented!', DeprecationWarning) return Boundaries.get(self, order) @classmethod def from_fits_image(cls, hdu, max_norder, mask=None): """ Creates a `~mocpy.moc.MOC` from an image stored as a FITS file. Parameters ---------- hdu : HDU object HDU containing the data of the image max_norder : int The moc resolution. mask : `numpy.ndarray`, optional A boolean array of the same size of the image where pixels having the value 1 are part of the final MOC and pixels having the value 0 are not. Returns ------- moc : `~mocpy.moc.MOC` The resulting MOC. """ # Only take the first HDU header = hdu.header height = header['NAXIS2'] width = header['NAXIS1'] # Compute a WCS from the header of the image w = wcs.WCS(header) if mask is None: data = hdu.data # A mask is computed discarding nan floating values mask = np.isfinite(data) # If the BLANK keyword is set to a value then we mask those # pixels too if header.get('BLANK') is not None: discard_val = header['BLANK'] # We keep the finite values and those who are not equal to the BLANK field mask = mask & (data != discard_val) y, x = np.where(mask) pix = np.dstack((x, y))[0] world = w.wcs_pix2world(pix, 0) # Remove coord containing inf/nan values good = np.isfinite(world) # It is a good coordinates whether both its coordinate are good good = good[:, 0] & good[:, 1] world = world[good] # Get the frame from the wcs frame = wcs.utils.wcs_to_celestial_frame(w) skycrd = SkyCoord( world, unit="deg", frame=frame ) # Compute the order based on the CDELT c1 = header['CDELT1'] c2 = header['CDELT2'] max_res_px = np.sqrt(c1*c1 + c2*c2) * np.pi / 180.0 max_depth_px = int(np.floor(np.log2(np.pi / (3 * max_res_px * max_res_px)) / 2)) max_norder = min(max_norder, max_depth_px) moc = MOC.from_lonlat( lon=skycrd.icrs.ra, lat=skycrd.icrs.dec, max_norder=max_norder ) return moc @classmethod def from_fits_images(cls, path_l, max_norder): """ Loads a MOC from a set of FITS file images. Assumes the data of the image is stored in the first HDU of the FITS file. Please call `~mocpy.moc.MOC.from_fits_image` for passing another hdu than the first one. Parameters ---------- path_l : [str] A list of path where the fits image are located. max_norder : int The MOC resolution. Returns ------- moc : `~mocpy.moc.MOC` The union of all the MOCs created from the paths found in ``path_l``. """ moc = MOC() for filename in path_l: with fits.open(filename) as hdul: current_moc = MOC.from_fits_image(hdu=hdul[0], max_norder=max_norder) moc = moc.union(current_moc) return moc @classmethod def from_vizier_table(cls, table_id, nside=256): """ Creates a `~mocpy.moc.MOC` object from a VizieR table. **Info**: This method is already implemented in `astroquery.cds <https://astroquery.readthedocs.io/en/latest/cds/cds.html>`__. You can ask to get a `mocpy.moc.MOC` object from a vizier catalog ID. Parameters ---------- table_id : str table index nside : int, optional 256 by default Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ nside_possible_values = (8, 16, 32, 64, 128, 256, 512) if nside not in nside_possible_values: raise ValueError('Bad value for nside. Must be in {0}'.format(nside_possible_values)) result = cls.from_ivorn('ivo://CDS/' + table_id, nside) return result MOC_SERVER_ROOT_URL = 'http://alasky.unistra.fr/MocServer/query' @classmethod def from_ivorn(cls, ivorn, nside=256): """ Creates a `~mocpy.moc.MOC` object from a given ivorn. Parameters ---------- ivorn : str nside : int, optional 256 by default Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ return cls.from_url('%s?%s' % (MOC.MOC_SERVER_ROOT_URL, urlencode({ 'ivorn': ivorn, 'get': 'moc', 'order': int(np.log2(nside)) }))) @classmethod def from_url(cls, url): """ Creates a `~mocpy.moc.MOC` object from a given url. Parameters ---------- url : str The url of a FITS file storing a MOC. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC. """ path = download_file(url, show_progress=False, timeout=60) return cls.from_fits(path) @classmethod def from_skycoords(cls, skycoords, max_norder): """ Creates a MOC from an `astropy.coordinates.SkyCoord`. Parameters ---------- skycoords : `astropy.coordinates.SkyCoord` The sky coordinates that will belong to the MOC. max_norder : int The depth of the smallest HEALPix cells contained in the MOC. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ return cls.from_lonlat(lon=skycoords.icrs.ra, lat=skycoords.icrs.dec, max_norder=max_norder) @classmethod def from_lonlat(cls, lon, lat, max_norder): """ Creates a MOC from astropy lon, lat `astropy.units.Quantity`. Parameters ---------- lon : `astropy.units.Quantity` The longitudes of the sky coordinates belonging to the MOC. lat : `astropy.units.Quantity` The latitudes of the sky coordinates belonging to the MOC. max_norder : int The depth of the smallest HEALPix cells contained in the MOC. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ intervals = core.from_lonlat(max_norder, lon.to_value(u.rad).astype(np.float64), lat.to_value(u.rad).astype(np.float64)) return cls(IntervalSet(intervals, make_consistent=False)) @classmethod def from_valued_healpix_cells(cls, uniq, values, max_depth=None, cumul_from=0.0, cumul_to=1.0): """ Creates a MOC from a list of uniq associated with values. HEALPix cells are first sorted by their values. The MOC contains the cells from which the cumulative value is between ``cumul_from`` and ``cumul_to``. Cells being on the fence are recursively splitted and added until the depth of the cells is equal to ``max_norder``. Parameters ---------- uniq : `numpy.ndarray` HEALPix cell indices written in uniq. dtype must be np.uint64 values : `numpy.ndarray` Probabilities associated with each ``uniq`` cells. dtype must be np.float64 max_depth : int, optional The max depth of the MOC. If a depth is given, degrade the MOC to this depth before returning it to the user. Otherwise choose as ``max_depth`` the depth corresponding to the smallest HEALPix cell found in ``uniq``. cumul_from : float Cumulative value from which cells will be added to the MOC cumul_to : float Cumulative value to which cells will be added to the MOC Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ max_depth_tile = 0 if uniq.size > 0: # Get the depth of the smallest uniq # Bigger uniq corresponds to big depth HEALPix cells. max_depth_tile = int(np.log2(uniq.max() >> 2)) >> 1 assert max_depth_tile >= 0 and max_depth_tile <= 29, "Invalid uniq numbers. Too big uniq or negative uniq numbers might the cause." # Create the MOC at the max_depth equals to the smallest cell # found in the uniq array intervals = core.from_valued_hpx_cells( np.uint8(max_depth_tile), uniq.astype(np.uint64), values.astype(np.float64), np.float64(cumul_from), np.float64(cumul_to) ) moc = cls(IntervalSet(intervals, make_consistent=False)) # Degrade the MOC to the depth requested by the user if max_depth is not None: assert max_depth >= 0 and max_depth <= 29, "Max depth must be in [0, 29]" moc = moc.degrade_to_order(max_depth) return moc @classmethod def from_elliptical_cone(cls, lon, lat, a, b, pa, max_depth, delta_depth=2): """ Creates a MOC from an elliptical cone The ellipse is centered around the (`lon`, `lat`) position. `a` (resp. `b`) corresponds to the semi-major axis magnitude (resp. semi-minor axis magnitude). `pa` is expressed as a `~astropy.coordinates.Angle` and defines the position angle of the elliptical cone. Parameters ---------- lon : `astropy.units.Quantity` The longitude of the center of the elliptical cone. lat : `astropy.units.Quantity` The latitude of the center of the elliptical cone. a : `astropy.coordinates.Angle` The semi-major axis angle of the elliptical cone. b : `astropy.coordinates.Angle` The semi-minor axis angle of the elliptical cone. pa : `astropy.coordinates.Angle` The position angle (i.e. the angle between the north and the semi-major axis, east-of-north). max_depth : int Maximum HEALPix cell resolution. delta_depth : int, optional To control the approximation, you can choose to perform the computations at a deeper depth using the `depth_delta` parameter. The depth at which the computations will be made will therefore be equal to `depth` + `depth_delta`. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC Examples -------- >>> from mocpy import MOC >>> import astropy.units as u >>> from astropy.coordinates import Angle >>> moc = MOC.from_elliptical_cone( ... lon=0 * u.deg, ... lat=0 * u.deg, ... a=Angle(10, u.deg), ... b=Angle(5, u.deg), ... pa=Angle(0, u.deg), ... max_depth=10 ... ) """ pix, depth, fully_covered_flags = cdshealpix.elliptical_cone_search(lon, lat, a, b, pa, max_depth, delta_depth, flat=False) return MOC.from_healpix_cells(pix, depth, fully_covered_flags) @classmethod def from_cone(cls, lon, lat, radius, max_depth, delta_depth=2): """ Creates a MOC from a cone. The cone is centered around the (`lon`, `lat`) position with a radius expressed by `radius`. Parameters ---------- lon : `astropy.units.Quantity` The longitude of the center of the cone. lat : `astropy.units.Quantity` The latitude of the center of the cone. radius : `astropy.coordinates.Angle` The radius angle of the cone. max_depth : int Maximum HEALPix cell resolution. delta_depth : int, optional To control the approximation, you can choose to perform the computations at a deeper depth using the `depth_delta` parameter. The depth at which the computations will be made will therefore be equal to `max_depth` + `depth_delta`. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC Examples -------- >>> from mocpy import MOC >>> import astropy.units as u >>> from astropy.coordinates import Angle >>> moc = MOC.from_cone( ... lon=0 * u.deg, ... lat=0 * u.deg, ... radius=Angle(10, u.deg), ... max_depth=10 ... ) """ pix, depth, fully_covered_flags = cdshealpix.cone_search(lon, lat, radius, max_depth, delta_depth, flat=False) return MOC.from_healpix_cells(pix, depth, fully_covered_flags) @classmethod def from_polygon_skycoord(cls, skycoord, max_depth=10): """ Creates a MOC from a polygon. The polygon is given as an `astropy.coordinates.SkyCoord` that contains the vertices of the polygon. Concave, convex and self-intersecting polygons are accepted. Parameters ---------- skycoord : `astropy.coordinates.SkyCoord` The sky coordinates defining the vertices of a polygon. It can describe a convex or concave polygon but not a self-intersecting one. max_depth : int, optional The resolution of the MOC. Set to 10 by default. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ return MOC.from_polygon(lon=skycoord.icrs.ra, lat=skycoord.icrs.dec, max_depth=max_depth) @classmethod def from_polygon(cls, lon, lat, max_depth=10): """ Creates a MOC from a polygon The polygon is given as lon and lat `astropy.units.Quantity` that define the vertices of the polygon. Concave, convex and self-intersecting polygons are accepted. Parameters ---------- lon : `astropy.units.Quantity` The longitudes defining the polygon. Can describe convex and concave polygons but not self-intersecting ones. lat : `astropy.units.Quantity` The latitudes defining the polygon. Can describe convex and concave polygons but not self-intersecting ones. max_depth : int, optional The resolution of the MOC. Set to 10 by default. Returns ------- result : `~mocpy.moc.MOC` The resulting MOC """ pix, depth, fully_covered_flags = cdshealpix.polygon_search(lon, lat, max_depth) return MOC.from_healpix_cells(pix, depth, fully_covered_flags) @classmethod def from_healpix_cells(cls, ipix, depth, fully_covered=None): """ Creates a MOC from a set of HEALPix cells at a given depth. Parameters ---------- ipix : `numpy.ndarray` HEALPix cell indices in the NESTED notation. dtype must be np.uint64 depth : `numpy.ndarray` Depth of the HEALPix cells. Must be of the same size of `ipix`. dtype must be np.uint8. Corresponds to the `level` of an HEALPix cell in astropy.healpix. fully_covered : `numpy.ndarray`, optional HEALPix cells coverage flags. This flag informs whether a cell is fully covered by a cone (resp. polygon, elliptical cone) or not. Must be of the same size of `ipix`. Raises ------ IndexError When `ipix`, `depth` and `fully_covered` do not have the same shape Returns ------- moc : `~mocpy.moc.MOC` The MOC """ if ipix.shape != depth.shape: raise IndexError("pixels and depth arrays must have the same shape") if fully_covered is not None and fully_covered.shape != ipix.shape: raise IndexError("fully covered and depth arrays must have the same shape") intervals = core.from_healpix_cells(ipix.astype(np.uint64), depth.astype(np.int8)) return cls(IntervalSet(intervals, make_consistent=False)) @staticmethod def order_to_spatial_resolution(order): """ Convert a depth to its equivalent spatial resolution. Parameters ---------- order : int Spatial depth. Returns ------- spatial_resolution : `~astropy.coordinates.Angle` Spatial resolution. """ spatial_resolution = Angle(np.sqrt(np.pi/(3 * 4**(order))), unit='rad') return spatial_resolution @staticmethod def spatial_resolution_to_order(spatial_resolution): """ Convert a spatial resolution to a MOC order. Parameters ---------- spatial_resolution : `~astropy.coordinates.Angle` Spatial resolution Returns ------- order : int The order corresponding to the spatial resolution """ res_rad = spatial_resolution.rad order = np.ceil(np.log2(np.pi/(3*res_rad*res_rad))/2) return np.uint8(order) @property def _fits_header_keywords(self): return { 'PIXTYPE': 'HEALPIX', 'ORDERING': 'NUNIQ', 'COORDSYS': ('C', 'reference frame (C=ICRS)'), 'MOCORDER': self.max_order, 'MOCTOOL': 'MOCPy' } @property def _fits_format(self): depth = self.max_order if depth <= 13: fits_format = '1J' else: fits_format = '1K' return fits_format @property def sky_fraction(self): """ Sky fraction covered by the MOC """ sky_fraction = core.coverage_sky_fraction(self._interval_set._intervals) return sky_fraction # TODO : move this in astroquery.Simbad.query_region # See https://github.com/astropy/astroquery/pull/1466 def query_simbad(self, max_rows=10000): """ Query a view of SIMBAD data for SIMBAD objects in the coverage of the MOC instance. """ return self._query('SIMBAD', max_rows) # TODO : move this in astroquery.Vizier.query_region # See https://github.com/astropy/astroquery/pull/1466 def query_vizier_table(self, table_id, max_rows=10000): """ Query a VizieR table for sources in the coverage of the MOC instance. """ return self._query(table_id, max_rows) # TODO : move this in astroquery def _query(moc, resource_id, max_rows=100000): """ Internal method to query Simbad or a VizieR table for sources in the coverage of the MOC instance """ from astropy.io.votable import parse_single_table import requests moc_file = BytesIO() moc_fits = moc.serialize(format='fits') moc_fits.writeto(moc_file) r = requests.post('http://cdsxmatch.u-strasbg.fr/QueryCat/QueryCat', data={'mode': 'mocfile', 'catName': resource_id, 'format': 'votable', 'limit': max_rows}, files={'moc': moc_file.getvalue()}, headers={'User-Agent': 'MOCPy'}, stream=True) votable = BytesIO() votable.write(r.content) table = parse_single_table(votable).to_table() return table def plot(self, title='MOC', frame=None): """ Plot the MOC object using a mollweide projection. **Deprecated**: New `fill` and `border` methods produce more reliable results and allow you to specify additional matplotlib style parameters. Parameters ---------- title : str The title of the plot frame : `astropy.coordinates.BaseCoordinateFrame`, optional Describes the coordinate system the plot will be (ICRS, Galactic are the only coordinate systems supported). """ import warnings warnings.simplefilter('default') warnings.warn('This method is deprecated and is no longer tested.' 'Please refer to this documentation page for plotting MOCs using' 'matplotlib: https://mocpy.readthedocs.io/en/latest/examples/examples.html#loading-and-plotting-the-moc-of-sdss', DeprecationWarning) frame = ICRS() if frame is None else frame from matplotlib.colors import LinearSegmentedColormap import matplotlib.pyplot as plt plot_order = 8 if self.max_order > plot_order: plotted_moc = self.degrade_to_order(plot_order) else: plotted_moc = self num_pixels_map = 1024 delta = 2. * np.pi / num_pixels_map x = np.arange(-np.pi, np.pi, delta) y = np.arange(-np.pi/2, np.pi/2, delta) lon_rad, lat_rad = np.meshgrid(x, y) hp = HEALPix(nside=(1 << plotted_moc.max_order), order='nested') if frame and not isinstance(frame, BaseCoordinateFrame): raise ValueError("Only Galactic/ICRS coordinate systems are supported." "Please set `coord` to either 'C' or 'G'.") pix_map = hp.lonlat_to_healpix(lon_rad * u.rad, lat_rad * u.rad) m = np.zeros(12*4**(plotted_moc.max_order)) pix_id = core.flatten_pixels(plotted_moc._interval_set._intervals, plotted_moc.max_order) # change the HEALPix cells if the frame of the MOC is not the same as the one associated with the plot method. if isinstance(frame, Galactic): lon, lat = hp.boundaries_lonlat(pix_id, step=2) sky_crd = SkyCoord(lon, lat, unit='deg') pix_id = hp.lonlat_to_healpix(sky_crd.galactic.l, sky_crd.galactic.b) m[pix_id] = 1 z = np.flip(m[pix_map], axis=1) plt.figure(figsize=(10, 10)) ax = plt.subplot(111, projection="mollweide") ax.set_xticklabels(['150°', '120°', '90°', '60°', '30°', '0°', '330°', '300°', '270°', '240°', '210°', '180°']) color_map = LinearSegmentedColormap.from_list('w2r', ['#eeeeee', '#aa0000']) color_map.set_under('w') color_map.set_bad('gray') ax.pcolormesh(x, y, z, cmap=color_map, vmin=0, vmax=1) ax.tick_params(labelsize=14, labelcolor='#000000') plt.title(title) plt.grid(True, linestyle='--', linewidth=1, color='#555555') plt.show()
gpl-3.0